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Abstract

Text normalization is the task of transforming lexical variants to their canonical forms. We model
the problem of text normalization as a character-level sequence to sequence learning problem
and present a neural encoder-decoder model for solving it. To train the encoder-decoder model,
many sentences pairs are generally required. However, Japanese non-standard canonical pairs
are scarce in the form of parallel corpora. To address this issue, we propose a method of data
augmentation to increase data size by converting existing resources into synthesized non-standard
forms using handcrafted rules. We conducted an experiment to demonstrate that the synthesized
corpus contributes to stably train an encoder-decoder model and improve the performance of
Japanese text normalization.

1 Introduction

With the rapid spread of the social media, many texts have been uploaded to the internet. As such, social
media texts are considered important language resources owing to an increasing demand for informa-
tion extraction and text mining (Lau et al., 2012; Aramaki et al., 2011). However, these texts include
lexical variants such as insertions, phonetic substitutions and internet slangs. These non-standard forms
adversely affect language analysis tools that are trained on a clean corpus. Since Japanese has no ex-
plicit boundaries between words, word segmentation and part-of-speech (POS) tagging are extremely
important in Japanese language processing. For example, the output obtained using the Japanese mor-
phological analyzer: MeCab 1 for a non-standard sentence: “このあぷりすげえええ！” is as follows:

Input:このあぷりすげえええ！ (kono apuri sugeee; This app is greeeat!)
Output:この (This, Prenominal adjective) /あ (a, Filler) /ぷりすげえええ (UNK) /！(Symbol)

where the slashes indicate word boundaries. Although “アプリ” (apuri; app) is originally written in
Katakana form, it is written in Hiragana form “あぷり” (apuri; app) in this example. Japanese has several
writing scripts: Kanji, Hiragana and Katakana. Such interchanging between scripts in social media texts
often occurs. Furthermore, “すげえええ” (sugeeee; greeeat) is derived from “すごい” (sugoi; great) by
changing some vowels from /oi/ to /eee/. These non-standard forms such as “あぷり” and “すげえええ”
are not registered in the morphological analysis dictionary. For this reason, if a word does not exist in the
morphological analysis dictionary, the traditional system cannot predict the correct word segmentation
or POS tags. If we could normalize all non-standard forms, then the canonical sentence is considerd as
“このアプリすごい！”. As a result, we can obtain the correct result of morphological analysis for this
normalized sentence as follows:

Input:このアプリすごい！(kono apuri sugoi; This app is great!)
Output:この (This, Prenominal adjective) /アプリ (app, Noun) /すごい (great, Adjective) /！(Symbol)

As the above example shows, we would expect improvement in the result of the morphological analysis
by transforming non-standard forms into their standard ones.

In this work, we adopt the character-level encoder-decoder model as a method of Japanese text nor-
malization. Since the encoder-decoder model was proposed in the field of machine translation, it has
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://taku910.github.io/mecab/
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achieved good results in morphological inflection generation and error correction (Bahdanau et al., 2015;
Luong et al., 2015; Sutskever et al., 2015; Cho et al., 2014; Manaal et al., 2016; Barret et al., 2016). As
these models are capable of capturing sequential patterns, it is possible to apply the encoder-decoder
model to Japanese text normalization. As mentioned previously, Japanese has no explicit boundaries
between words. Thus, Japanese text normalization is naturally posed to a character-level sequence to
sequence learning.

Although the encoder-decoder model has been shown its effectiveness in large datasets, it is much less
effective for small datasets such as low-resource languages (Barret et al., 2016). Unfortunately, contrary
to machine translation, Japanese non-standard canonical pairs are scarce in the form of parallel corpora.
To address this issue, we propose a method of data augmentation to increase the data size by converting
existing resources into synthesized non-standard forms using handcrafted rules. We conducted an exper-
iment to demonstrate that the synthesized corpus provides stable training of the encoder-decoder model
and improves the performance of Japanese text normalization.

The contributions of this research can be summarized by citing two points. First, the proposed data
augmentation methods can provide stable training of the encoder-decoder model. Second, it can improve
the performance of Japanese text normalization by adding the synthesized corpus. The rest of this paper
is organized as follows. Section 2 describes the related work to our research including Japanese text
normalization and the neural encoder-decoder model. Section 3 introduces the model architecture in this
research. Section 4 describes how to construct a synthesized corpus. Section 5 discusses experiments
that we have performed and our corresponding analyses of the experimental results. Section 6 concludes
the paper with a brief summary and a mention of future work.

2 Related Work

In this section, we mainly describe text normalization for Japanese. Furthermore, we explain some
related works with regard to the encoder-decoder model in the field of machine translation.

2.1 Text Normalization

Several studies for joint modeling of morphological analysis and text normalization have been conducted
(Saito et al., 2014; Kaji and Kitsuregawa, 2014; Sasano et al., 2013). Saito et al. (2014) extracted non-
standard tokens from Twitter and blog texts, and manually annotated their standard forms. They auto-
matically generated derivational patterns based on the character-level alignment between non-standard
tokens and their standard forms, then included these patterns to a morphological lattice. Kaji et al. (2014)
similarly proposed a joint modeling for morphological analysis and text normalization via their construc-
tion of a normalization dictionary using handcrafted rules that were similar to those used in (Sasano et
al., 2013) to derive non-standard forms from the entries already registered in a dictionary. Sasaki et al.
(2013) solved Japanese text normalization as a character-level sequential labeling problem. Specifically,
they extracted one-to-one character alignment from non-standard canonical pairs. Then, they performed
character-level Conditional Random Fields (CRF) to normalize a non-standard sentence by assigning
a tag to each character. In their work, the sequence labeler specifies the class of rules such as delete,
replace and no edit. While these methods need feature engineering, our approach uses character vectors
as features instead of discrete features of a surface character sequence. In our approach, a canonical
text is generated as a sequence of characters from all character vocabularies, which is different from the
approaches that assign tags from a fixed tag set.

2.2 The Encoder-Decoder Model

In this work, we normalize non-standard sentences using the neural encoder-decoder model. The
encoder-decoder model has been shown effective in the field of machine translation (Bahdanau et al.,
2015; Luong et al., 2015; Sutskever et al., 2015; Cho et al., 2014). It consists of two neural networks: the
encoder network and the decoder network. The encoder maps the input sentence to a fixed-dimensional
vector and the decoder generates the output sentence. Although the encoder-decoder model has been
shown effective with large datasets, it is much less effective in small datasets of low-resource lan-
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Figure 1: The encode-decoder architecture for Japanese text normalization

guages (Barret et al., 2016). As a solution to this issue, we propose a method of data augmentation
to increase data size. Our approach converts existing resources into synthesized non-standard forms with
handcrafted rules.

Our model is also inspired by character-level models of error correction and morphological inflection
(Manaal et al., 2016; Ziang et al., 2016). However, the character set used in Japanese is numerous much
larger than that in English, which makes the encoder-decoder model challenging. For example, there are
about 3,500 Kanji character types used in a Japanese newspaper corpus. On the contrary, the character
set used in English includes at most 100 characters; lower alphabet, upper alphabet, numerals and special
symbols.

3 The Model Architecture

In this section, we briefly describe the architecture of our model. Our neural network model consists of
the encoder and decoder networks. The encoder maps the input sentence to a fixed-dimensional vector
with bidirectional recurrent neural network. The decoder is also a recurrent neural network (RNN) that
uses a content-based attention mechanism (Bahdanau et al., 2015) to attend to the encoded representa-
tion, and generate the output sentence one character at a time. Figure 1 shows our text normalization
architecture. Our model performs at a character-level process in the encoder as well as the decoder. The
encoder reads the input x = (x1, x2, . . . , xN ), where xi ∈ RV is an input vector of length V . The length
V is equal to the vocabulary size of all characters in the training data. xi is represented as a one-hot
vector that corresponds to a character. N is the length of the input sentence. The decoder generates the
output y = (y1, y2, . . . , yM ), where yi ∈ RV is an output vector of length V . yi is represented as a
one-hot vector that corresponds to a character. M is the length of the output sentence. Then, the task of
text normalization is formularized as follows:

P (y|x; θ) =
M∏
t=1

p(yt|y1, y2, . . . , yt−1, x) (1)

To summarize, we map a non-standard sentence x to a canonical sentence y with the encoder-decoder
model.

3.1 The Encoder Network
The encoder maps the input sentence to a fixed-dimensional vector h with a bidirectional RNN. The bidi-
rectional RNN has two parallel layers in two directions, and these two layers memorize the information
of the sentences from both forward and backward direction (Schusteret al., 1997). More specifically,
given the input vector x, the forward and backward hidden vectors are computed by using an RNN as
follows: −→

h t = GRU(xt,
−→
h t−1) (2)
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←−
h t = GRU(xt,

←−
h t+1) (3)

where
−→
h t ∈ Rl is a forward hidden vector at time t and GRU denotes the gated recurrent unit function

that is similar to long short-term memory units (LSTMs), which have shown to improve the performance
of RNN (Cho et al., 2014). GRU allows the retention of information from time steps in the distant past.
GRU has two gates: the update gate and the reset gate. These gates control how much each hidden
unit remembers or forgets the information while reading a sequence. Finally, in the encoder we get
ht = [−→h t,

←−
h t] by concatenating the forward hidden state

−→
h t and the backward one

←−
h t for each time.

3.2 The Decoder Network
The decoder network is also GRU based on a recurrent neural network. The decoder is trained to predict
the next output yt, given the encoded h = [h1, h2, . . . , hN ] and all the previously predicted outputs
y1, y2, . . . , yt−1.

yt = Decoder(y1, y2, . . . , yt−1, h) (4)

Specifically, the decoder is conditioned on the encoded representation ct which is the weighted sum of
the encoded hidden states ht by an attention mechanism. The attention mechanism is computed as:

ct =
N∑

j=1

αtjhj (5)

αtj =
exp(etj)∑N

k=1 exp(etk)
(6)

etj = vt
a tanh(Wast−1 + Uahj + ba) (7)

The attention mechanism decides which parts of the input characters to be paid attention. Then, a hidden
state of the decoder st is computed as:

st = GRU(st−1, yt−1, ct) (8)

In the decoder, we compute the hidden layer st at time t and feed this into a softmax layer to obtain the
conditional probability of the output character yt as:

ot = softmax(Wsst + bs) (9)

Finally, we obtain the max probability of ot as the output character yt at time t.

3.3 Training
We use the cross-entropy per time step summed over the output sequence y as a loss function. Given
the training data of the non-standard sentence x and the canonical sentence y, the goal is to optimize the
parameters set θ by minimizing the loss function E(θ).

E(θ) = −
∑

(x,y)∈D

log P (y|x; θ) (10)

We minimize the loss function E(θ) using stochastic gradient-based optimization techniques.

4 Construction of Synthesized Corpus

To address the problem of a small dataset, a method of data augmentation to increase data size is pro-
posed. To achieve the increase in data size, our approach focuses on converting existing resources into
synthesized non-standard forms using handcrafted rules. Specifically, we convert a morpheme in the
canonical form from the newswire portion of Balanced Corpus of Contemporary Written Japanese (BC-
CWJ) (Maekawa et al., 2014) into a non-standard form with handcrafted rules. We use some rules from
the work of (Sasano et al., 2013). Our proposed synthesized rules are explained below in detail.
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rules part-of-speech vowel original canonical form transformed non-standard form
(1) adjective i かわいい (kawaii; cute) かわいー (kawaii)
(2) auxiliary verb i たい (tai; want) てええ (teee)
(3) adjective i 美味しい (oishii; delicious) 美味しぃ(oishii)
(4) sentence-end particle a な (na) なぁ(naa)
(5) auxiliary verb a です (desu) で～す (deesu)
(6) interjection u ありがとう (arigatou; Thank you) ありがと (arigato)

Table 1: Examples of transforming canonical forms into their non-standard forms

Rule 1: Substitution of vowel characters with long sound symbols
Japanese vowel characters “あ”(a), “い”(i), “う”(u), “え”(e) and “お”(o) are substituted by long
sound symbols “ー” or “～”. For example, a vowel character “う” in the morpheme “どう” (dou;
how) is substituted by “ー” and this morpheme is transformed as “どー” (doo).

Rule 2: Substitution of an end of the word with a common non-standard form
For example, “すげえええ” (sugeeee; greeeat) is derived from “すごい” (sugoi; great) by changing
the vowels from /oi/ to /eee/, where changing vowels are observed in Japanese social media texts.
Thus, we substitute the end of the word of canonical forms with common non-standard form such
as changing vowels.

Rule 3: Substitution with lowercases
Some hiragana characters, such as “あ”(a), “い”(i), “う”(u), “え”(e), “お”(o) and “わ”(wa) are
substituted by their lowercases: “ぁ”, “ぃ”, “ぅ”, “ぇ”, “ぉ” and “ゎ”.

Rule 4: Insertion of vowel characters or double consonants
Japanese vowel characters (their lowercases) or double consonants “っ” are inserted into a mor-
pheme.

Rule 5: Insertion of long sound symbols
Long sound symbols “ー” or “～” are inserted into a morpheme.

Rule 6: Abbreviation
Abbreviate some characters from a morpheme. For example, we drop “い” from this canonical
form“している”(shiteiru; to be doing), which results in “してる”(shiteru) as the non-standard form.

Table 1 shows examples of the application of our rules to the newswire portion of BCCWJ. To apply
our rules, we would first check the POS, surface form and vowel of a morpheme from a sentence in
BCCWJ; Then, we would employ the appropriate rules to the morpheme. Note that the rules are not
applicable to some sentences in the corpus.

5 Experiments

To evaluate the effectiveness of our normalization method, we conducted experiments on a microblog
data to confirm the effectiveness of our model. For the experiments, we used the Microblog corpus and
the Synthesized corpus for training. Both corpora consist of canonical and non-standard sentence pairs.
The Synthesized corpus comprised 213,618 non-standard and canonical sentences pairs. The Microblog
corpus was constructed from Japanese Twitter data by Kaji and Kitsuregawa (2014). They collected
17,386 Japanese tweets using the Twitter Api. Among these, 1000 tweets were randomly selected, and
they annotated the 1831 sentences with canonical forms and morphological information. In our work,
we extracted 506 sentences that included at least one non-standard form from the Microblog corpus.
These extracted sentences comprised 697 non-standard canonical pairs. In the preprocessing, repetitions
of more than one character of long sound symbols, namely “ー”, “～” and the double consonant “っ”
are reduced back to one character, whereas the others are reduced to three characters. We used these
sentences as the Microblog corpus.

133



method test CER(%)
No-operation 17.15
Rule-based 15.07
CRF (Microblog corpus) 13.71
CRF (Synthesized corpus) 13.63
CRF (Combined corpus) 13.43
EncDec (Microblog corpus) 87.07
EncDec (Synthesized corpus) 13.54
EncDec (Combined corpus) 13.43

Table 2: Results for test sets on CER

Figure 2: Scatter plot of the relationship between Test CER and the training data size

5.1 Compared Methods

We compared our method with two baseline methods listed in Table 2. Rule-based is a method of
applying simple rules to a non-standard sentence in order to normalize it. In particular, we use the
following rules: “Substitution of long sound symbols with vowel characters” and “Deletion of long
sound symbols or lowercases”. CRF is a method of tagging each character with normalization rules
proposed by (Sasaki et al., 2013). Specifically, we extracted one-to-many character alignments from
non-standard canonical pairs of the training data. Then, we assigned each character the class of rules
such as “delete”, “replace with arbitrary characters” and “no edit”. The features we used in CRF were
“the current characters including window size of 2” and “the binary value indicating whether the current
character is a vowel character or not”.

EncDec is our proposed method. Across all the encoder-decoder models described in this paper,
we used the following hyperparameters. We used the Adam optimizer with a learning rate of 0.0002
(Diederik Kingma and Jimmy Ba, 2014). In both the encoder and decoder models, we used a single
layer GRU with the hidden vector of size 500. The size of the character embedding vector was 250. The
minibatch size was 32. While models are trained for 50 epochs, the parameters set was selected with
the lowest character error rate on the development set. All results were obtained by using a beam search
with a beam width of 10. Our models were implemented using Theano (Theano Development Team,
2016). In decoding, characters with the exception of Hiragana, Katakana, Kanji and long sound symbols
are directly to the output.

We explain how to use the training datasets on each method in Table 2. In the case of Rule-based,
the training data is not used at all. In the case of CRF (Microblog corpus) and EncDec (Microblog
corpus), we used only the Microblog corpus as the training data. In the case of CRF (Synthesized corpus)
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sentences
input sentence ラルクって海外でも人気すげーな☆ (L’Arc is greeatly popular in the world☆)
target sentence ラルクって海外でも人気すごいな☆ (L’Arc is greatly popular in the world☆)
EncDec (Microblog) 一近と一ー中ちゃんとうらみたとう☆ (This sentence doesn’t make sense.)
EncDec (Synthesized) ラルクって海外でも人気すごいな☆ (L’Arc is greatly popular in the world☆)

Table 3: System output examples: The training of EncDec on the different training data sets

sentences
input sentence (1) おごりっすか？ (isit your treat?)
target sentence (1) おごりですか？ (Is it your treat?)
Rule-based おごりっすか？ (isit your treat?)
CRF (Microblog) おごりっすか？ (isit your treat?)
EncDec (Combined) おごりですか？ (Is it your treat?)
input sentence (2) 久々にＴｗｉｔｔｅｒ浮上したなぁ。(I’ve not been on twitter for a long time.)
target sentence (2) 久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long time.)
Rule-based 久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long time.)
CRF (Microblog) 久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long time)
EncDec (Combined) 久久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long long time.)
input sentence (3) 車離れが捗りますなーｗ (It makes people turning away from driving.)
target sentence (3) 車離れが捗りますなｗ (It makes people turning away from driving.)
Rule-based 車離れが捗りますなｗ (It makes people turning away from driving.)
CRF (Microblog) 車離れが捗りますなｗ (It makes people turning away from driving.)
EncDec (Combined) 車離れが暇りますなｗ (It makes free turning away from driving.)

Table 4: System output examples: Comparison between our method and the baselines

and EncDec (Synthesized corpus), we used only the Synthesized corpus as the training data, while the
Microblog corpus is only used as the development data. In the case of EncDec (Combined corpus) and
CRF (Combined corpus), we used the Microblog corpus and the Synthesized corpus together as the
training data and then termed both as the Combined corpus.

5.2 Evaluation

As our evaluation metric, we used a character error rate (CER), which is defined as the Levenshtein edit
distance between the predicted character sequence x and the target character sequence y, normalized
by the total number of characters in the target. CER indicates the closeness of the normalized sentence
toward the target sentence.

In the experiments, we performed 5-fold cross validation. By dividing the Microblog corpus into the
test data, development data and training data, we tested on only the Microblog corpus to evaluate the
effectiveness of each method on all the microblog data.

5.3 Results and Discussion

Table 2 shows the results of our experiments on test CER. No-operation indicates a baseline that leaves
the input sentence unchanged. This demonstrates that the input sentence has about two non-standard
characters in itself. As shown in Table 2, the Rule-based method reduces errors by 2.08％, as compared
with No-operation. CRF trained on only the Microblog corpus: CRF (Microblog corpus) reduces er-
rors by 3.44％, as compared with No-operation. With these results, when the encoder-decoder model
trained on only the Microblog corpus, we found that the EncDec (Microblog corpus) is worse than
No-operation, then the results in CER from 17.15％ to 87.07％. As Table 3 shows, it generated en-
tirely different strings of the input sentence. This indicates that the Microblog corpus is too small for
training the encoder-decoder model; however, the Synthesized corpus contributes to the stable train-
ing of the encoder-decoder model. Additionally, EncDec (Synthesized corpus) is able to normalize the
non-standard form “すげー” (sugee; greeat) into the canonical form “すごい” (sugoi; great) without
generating different strings of the input sentence. Figure 2 shows the relation between test CER and
the training data size for the encoder-decoder model. The first dotted line indicates that it needs more
than 10,000 sentences to reduce the error rate than No-operation. The second dotted line represents that
about 200,000 sentences reach CER on CRF (Microblog corpus). As we have combined the Microblog
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corpus and the Synthesized corpus, the Combined corpus contributes to improving the performance of
Japanese text normalization in CRF and EncDec. Both methods are able to reduce errors by 3.72％,
as compared with No-operation. Other examples of our normalization system output are illustrated in
Table 4. Example (1) shows that our method is able to normalize the spoken form “っす” (ssu; is) into
its canonical form “です” (desu; is). Examples (2) and (3) demonstrate that our method is inability to
generate correct normalization sentence. Example (2) shows an incorrect example of over-translation,
which generates the same character repeatedly: The Kanji character “久” was generated twice. Example
(3) shows an incorrect example of the low frequency of a character: The Kanji character “捗” appears
once in the training data. Thus, the wrong character “暇” was generated instead of “捗” in this example.

6 Conclusions and Future Work

In this work, we modeled the problem of text normalization as a character-level sequence to sequence
learning problem. To address the problem of a small dataset, we proposed a method of data augmentation
to increase data size, which converts existing resources into synthesized non-standard forms using hand-
crafted rules. We found that the proposed data augmentation methods could provide a stable training of
the encoder-decoder model, and it improved the performance of Japanese text normalization by adding
the synthesized corpus. For our future work, we plan to extend the encoder-decoder model by incorpo-
rating a copy mechanism (Gu et al., 2016; Miltiadis et al., 2016) to address the issues of over-translation
and low frequency of a character.
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