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Abstract

We examine the use of traffic informa-
tion with other knowledge sources to auto-
matically generate natural language tweets
similar to those created by humans. We
consider how different forms of informa-
tion can be combined to provide tweets
customized to a particular location and/or
specific user. Our approach is based on
data-driven natural language generation
(NLG) techniques using corpora contain-
ing examples of natural language tweets.
It specifically draws upon semantic data
and knowledge developed and used in the
web based Connected Vehicles and Smart
Transportation system. We introduce an
alignment model, generation model and
location-based user model which will to-
gether support location-relevant informa-
tion delivery. We provide examples of our
system output and discuss evaluation is-
sues with generated tweets.

1 Introduction

Traffic congestion continues to be a major prob-
lem in large cities around the world, and a source
of frustration for commuters, commercial drivers,
tourists, and even occasional drivers. Current ef-
forts to reduce congestion and frustration often
involve providing road users with real-time traf-
fic information to help estimate travel time accu-
rately, resulting in better route planning and travel
decisions (Tseng et al., 2013). The different ap-
proaches to deliver traffic information include ra-
dio, smart navigation devices and social networks.

Information from radio and social networks is
delivered as messages, which consist primarily
of natural language. When delivered on smart
navigation devices, information is presented with

colour and icons on interactive maps; for example,
congested road segments are usually in red while
clear road segments are in green 1.

Text and audio messages associated with radio
and social network channels are mainly human-
generated, requiring time and effort. The infor-
mation sources for these messages primarily uses
the same data used as smart navigation devices
in conjunction with camera images, eye-witness
reports and other sources, which collectively re-
quire substantial effort and time. Although sev-
eral social network channels may use computer
programs (i.e., “bots”) to generate messages auto-
matically from a data source, these messages are
constructed using strict templates which appear to
users as cold, unnatural, distant and unreliable.

2 Our Approach

We look at the role of natural language generation
(NLG) in the context of a system that automat-
ically generate messages about traffic incidents.
Our approach is based on data-driven NLG tech-
niques where corpora containing examples of nat-
ural language tweets are used to train the model
to generate natural language texts. It draws upon
semantic data and knowledge developed and used
in the web based Connected Vehicles and Smart
Transportation (CVST) system (Tizghadam and
Leon-Garcia, 2015). We introduce an alignment
model, generation model and location-based user
model which together support location-relevant in-
formation delivery.

We design a traffic notification system having
a location-based user model to predict a user’s
routes and deliver real-time notifications if traffic
incidents occur. Figure 1 shows the design of our
proposed system. The GPS location of a user is

1Google Maps uses this colour code as described in
https://support.google.com/maps/answer/3092439?hl=en&rd=1



Figure 1: The traffic notification system that notifies location-relevant traffic information for road users.

processed through the location-based user model.
It predicts a ranked list of routes and destinations
the user could take. Concurrently, a live stream of
traffic incidents is collected and forwarded to the
location-relevant information filter. This compo-
nent applies a location filter on the traffic incident
data based on the predicted user’s routes and desti-
nations. The output is the data scenarios of traffic
incidents that happen on or nearby the routes the
user may take. Next, the generation model com-
poses short messages describing nearby traffic in-
cidents. These messages are sent to users as tex-
tual or speech notifications using a text-to-speech
system.

We construct our corpus from two data-sets
from the CVST APIs 2. The first data-set is a col-
lection of 13,667 tweets mentioning traffic inci-
dents in the greater Toronto area of Canada. The
second data-set consists of 27,795 records con-
cerning road incidents in greater Toronto. Using
incident times and locations from the two data-
sets, we are able to match tweets with the road in-
cidents to construct a corpus of road incidents with
their corresponding tweets. We also explore other
traffic related data-sets that can be used to train our
system. However, using such data is restricted as
discussed in Section 4.1. On the other hand, for
each road incident in our constructed corpus, we
are able to collect more than one tweet from dif-
ferent users mentioning the event. Utilizing these
human-generated texts ensures better output qual-
ity for our NLG system.

Using the constructed corpus, we apply an ex-
isting semantic alignment model (Section 4.2) to
learn the semantic correspondences between data

2http://portal.cvst.ca

records and their textual descriptions in the tweets.
Then, we apply a model for concept-to-text gener-
ation (Section 4.3) to generate tweets about traf-
fic incidents from given records. However, our
system’s output is not limited to tweet generation.
Output can be personalized, for example, as a vir-
tual assistant, to generate traffic notifications for
users based on their driving routines incorporat-
ing daily routes, departure and arrival times, and
specific locations. Previous work on capturing
users’ locations and route prediction (Section 4.4)
can be applied to select only the potentially user-
interested traffic information and deliver it to the
drivers.

The evaluation of automatically generated
tweets can be approached from several perspec-
tives. Evaluation in the context of the task outlined
in Figure 1 can involve human subjects, looking at
metrics such as the usefulness of tweets (using rat-
ing criteria like those in rating the helpfulness of
reviews or comments), and the quality of tweets
(involving fluency and readability). Detailed hu-
man evaluation of the tweets is beyond the scope
of the current research. Our plan is to focus on
automated techniques in the evaluation of the au-
tomatically generated tweets, given that we have a
gold-standard of human generated data. To evalu-
ate our models, we build on previous evaluation
techniques such as BLEU and METEOR (Kon-
stas, 2014).

3 Related work

Recent work in automatic tweet generation fo-
cuses on the tasks of automatic text summariza-
tion and topic classification. Lloret and Palo-
mar (2013) present a framework that automatically



generates twitter headlines for journal articles us-
ing text summarization approaches. Analogously,
by applying different text processing techniques
including content grouping, topic classification
and text summarization, Lofi and Krestel (2012)
develop a system that generates tweets from gov-
ernment documents. Krokos and Samet (2014)
also utilize several sentiment analysis and classifi-
cation methods in their approach to automatically
discover and generate hashtags for tweets that do
not have user-generated hashtags. On the other
hand, Sidhaye and Cheung (2015) use different
metrics and statistics to show that most tweets can-
not be re-constructed from the original articles that
they reference; concluding that applying extrac-
tive summarization methods to generate indicative
tweets could be a limitation.

Our work focuses on another aspect where
tweets are constructed from structured data, and in
our case the data can come from a real-time web
application. Our generation task is also known as
data-to-text, concept-to-text or linguistic descrip-
tion of data generation. The domain of our NLG
work is novel with respect to the previous work
in different domains including weather forecasts
(Ramos-Soto et al., 2015a), educational reports
(Bontcheva and Wilks, 2004; Ramos-Soto et al.,
2015b) and clinical reports (Portet et al., 2009).

Although the results from previous work are
promising and some proven to be better than
human-generated content, they still have limita-
tions. Most current approaches are based on very
specific rules or grammars. Therefore, adapt-
ing these systems to a different data-set or do-
main usually requires re-designing the entire sys-
tem again. However, data-driven techniques are
applicable to different domains (Liang et al., 2009;
Angeli et al., 2010; Kim and Mooney, 2010; Kon-
stas, 2014). These approaches define probabilistic
models that can be trained to learn the patterns and
hidden alignments between data and text, thereby
avoiding the construction of rules and grammars
that require domain-specific knowledge.

We focus on a generation system that can ap-
ply to different types of traffic data-sets (road
closures, road incidents, traffic flow, etc.). We
use an existing alignment model (Liang et al.,
2009) to learn the semantic correspondences be-
tween traffic data and its textual description. Kon-
stas (2014)’s concept-to-text generation approach
is used for the automatic generation of tweets to be

ultimately incorporated into a real-time system.
Overall, we chose our data-driven approach

since it is location independent; different cities
have different kinds of traffic data, information
road closures, road incidents, road conditions each
with different kinds of data structures. We can
handle different data-sets without changing the
model structure, incorporating it into an end-to-
end system with surface realisation and content
planning in one model.

4 The Task

A data entry d consists of a set of records r =
{r1, r2, ..., rn}. Each record is described with a
record type ri.t, 1 ≤ i ≤| r |, and a set of fields
f . Each field fj ∈ f , 1 ≤ j ≤| f |, has a field
type fj .t and a value fj .v. A scenario in the train-
ing corpus is a pair of (d,w) where w is the text
describing the data entry d. Our goal is to train
a model that represents the hidden alignments be-
tween data entry d and the observed text w in the
training corpus. Then, the trained model that cap-
tures the alignment is used to generate text g from
a new entry d not contained in the training corpus.

4.1 Dataset

There are various types of traffic-related data in-
cluding traffic flow, traffic incidents, road con-
structions and road closures. Such data is usu-
ally available through different map and road nav-
igation APIs such as Tom Tom Traffic3, Google
Maps4 and Bing Maps5 or government open data
sources. Despite the wide availability of traffic-
related data, most of the data are only useful for
visualisation purposes since they lack the corre-
sponding textual descriptions. A few of the data
sources have a short description associated with
each data entry such as Dublin City Council’s road
works and maintenance6 and Bing Maps’ Traffic
Incidents7. However, the text description is not
sufficiently detailed to cover essential information
in the data entry.

The CVST project has APIs for different traffic-
related data-sets of greater Toronto area including
traffic cameras and sensors, road closures and in-

3http://developer.tomtom.com/
4https://developers.google.com/maps/
5https://www.bingmapsportal.com/
6https://data.dublinked.ie/dataset/roads-maintenance-

annual-works-programme
7https://msdn.microsoft.com/en-

us/library/hh441726.aspx



cidents, public transportation and tweets. We use
two data-sets from the CVST APIs, road incidents
and twitter incidents, to construct our corpus. The
road incidents data-set has details about traffic in-
cidents such as time, location, type and reason.
The twitter incidents data-set contains basic infor-
mation about the incident and its related tweets.

By matching times and locations of records in
the two data-sets, we construct a parallel corpus
of traffic incidents with their related tweets. How-
ever, the times and locations from the two data-
sets are not always exactly matched. Therefore,
we allow errors when matching these values. We
consider two incidents from two data-sets to be
matched if:

• the events’ locations are within 100 meters
from each other,

• and the events’ start times are within 90 min-
utes of each other

The data is collected from January 2015 to May
2016. There are 27,795 records in road incident
data-set and 13,134 records with 13,667 tweets in
the twitter incident data-set (some records have
more than one associated tweets). After match-
ing the two data-sets using the described rules, we
have a corpus of 1,388 incidents and 2,829 tweets.
The tweets are crawled from Twitter and are gen-
erated by both humans and machines.

4.2 The alignment model
Liang et al. (2009) introduce a hierarchical semi-
Markov model to learn the correspondences be-
tween a world state and an unsegmented stream of
text. Their approach is a generative process with
three main components:

• Record choice: choose a sequence of records
r = (r1, ..., r|r|) where each ri ∈ d and has
a record type ri.t. The choice of consecutive
records depends on their types.

• Field choice: for each chosen record ri, select
a sequence of fields fi = (fi1, ..., fi|fi|) where
each fij ∈ {1, ...,m}.

• Word choice: for each chosen field fij ,
choose a number cij > 0 and generate a se-
quence of cij words.

Their record choice model is described as a
Markov chain of records conditioned on record

types. Their intention is to capture salience and
coherence. Formally:

p(r | d) =
|r|∏
i=1

p(ri.t | ri−1.t)
1

| s(ri.t) |

where s(ri.t) is the set of records in d that has
record type ri.t and r0.t is the START record type.
Their model also includes a special NULL record
type responsible for generating text that does not
belong to any real record types. Analogously, field
choice model is a Markov chain of fields condi-
tioned on the choice of records:

p(f | r) =
|r|∏
i=1

|fj |∏
j=1

p(fij | fi(j−1))

Two special fields — START and STOP — are
also implemented to capture the transitions at the
boundaries of the phrases. In addition, each record
type has a NULL field aligned to words that re-
fer to that record type in general. The final step
of the process is the word choice model where
words are generated from the choice of records
and fields. Specifically, for each field fij , we gen-
erate a number of words cij , chosen uniformly.
Then the words w are generated conditioned on
the field f .

p(w | r, f , c,d) =
|w|∏
k=1

pw(wk | r(k).tf(k), r(k).vf(k))

where r(k) and f(k) are record and field respon-
sible for generating word wk and pw(wk | t, v) is
the distribution of words given a field type t and
field value v. Their model supports three different
field types. Depending on the field types, Liang et
al. 2009 define different methods for generating
words:

• Integer type: generate the exact value, round-
ing up, rounding down and adding or sub-
tracting unexplained noise ε+ or ε−

• String type: generate a word chosen uni-
formly from those in the field value

• Categorical type: maintain a separate multi-
nomial distribution over words for each field
value in the category.



GCS 1. S→ R(start) [Pr = 1]

2. R(ri.t)→ FS(rj , start) R(rj .t)
[
P (rj .t | ri.t) 1

|s(rj .t)|

]
3. R(ri.t)→ FS(rj , start)

[
P (rj .t | ri.t) 1

|s(rj .t)|

]
4. FS(r, r.fi)→ F(r, r.fj)FS(r, r.fj) [P (fj | fi)]
5. FS(r, r.fi)→ F(r, r.fj) [P (fj | fi)]
6. F(r, r.f)→W(r, r.f)F(r, r.f) [P (w | w−1, r, r.f)]

7. F(r, r.f)→W(r, r.f) [P (w | w−1, r, r.f)]

GSURF 8. W(r, r.f)→ α [P (α | r, r.f, f.t, f.v, f.t = cat, null)]

9. W(r, r.f)→ gen(f.v) [P (gen(f.v).mode | r, r.f, f.t = int)×
P (f.v | gen(f.v).mode)]

10. W(r, r.f)→ gen str(f.v, i) [Pr = 1]

Table 1: Grammar rules used for generation with their corresponding weights.

4.3 The generation model

Konstas (2014) recasts an earlier model (Liang
et al., 2009) into a set of context-free grammar
(CFG) rules. To capture word-to-word dependen-
cies during the generation process, he added more
rules to emit a chain of words, rather than words
in isolation. Table 1 shows his defined grammar
rules with their corresponding weights.

The first rule in the grammar expands from
a start symbol S to a special START record
R(start). Then, the chain of two consecutive
records, ri and rj is defined through rule (2)
and (3). Their weight is the probability of emit-
ting record rj given record ri and corresponds to
the record choice model of Liang et al. (2009).
Equivalently, rule (4) and (5) define the chain of
two consecutive fields, fi followed by fj , and
their weight corresponds to the field choice model.
Rule (6) and (7) are added to specify the expansion
of field F to a sequence of words W. Their weight
is the bigram probability of the current word given
its previous word, the current record and field. Fi-
nally, rules (8)-(10) are responsible for generating
words. If the field type is categorical (denoted as
cat) or NULL (denoted as null), rule (8) is ap-
plied to generate a single word α in the vocabu-
lary of the training set. Its weight is the probabil-
ity of seeing α, given the current record, field and
the field type is cat or null. Rule (9) is applied if
the field type is integer (denoted as int). gen(f.v)
is a function that accepts the field value (an inte-
ger) as its input and return an integer using one of
the six methods described by Liang et al. (2009).
The weight is a multinomial distribution over the
six integer generation function choices, given the
record field f , times P (f.v | gen(f.v).mode)],
which is set to the geometric distribution of noise

ε+ and ε−, or to 1 otherwise (Konstas, 2014).
Rule (10) is responsible for generating a word for
string-type field. gen str(f.v, i) is a function that
simply return the ith word of the string in the field
value f.v.

After defining the grammar rules, Konstas
(2014) treats the generation problem as a parsing
problem using the CFG rules. He uses a modi-
fied version of the CYK algorithm (Kasami, 1966;
Younger, 1967) to find the best text w given a
structured data entry d. His basic decoder is pre-
sented as a deductive proof system (Shieber et al.,
1995) in Table 2. The decoding process works in
a bottom-up fashion. It starts with choosing N —
the length (number of words) of the output text.
Konstas (2014) determines N using a simple lin-
ear regression model where features being record-
field pairs in the data entry d. Then, for each po-
sition i in the output text, it searches for the best
scoring item that spans from i to i+ 1 (one single
word). Next, items are visited and combined in or-
der for larger spans until it reaches the goal item
[S, 0, N ] — symbol S spans from position 0 to N .

The basic decoder always chooses the best scor-
ing item during the parsing process. Konstas
(2014) extends the basic decoder with the k-best
decoder in which a list of k-best derivations will
be kept for each item. The extension significantly
improves the output quality by avoiding local opti-
mums. He also intersects the grammar rules with a
tri-gram language model and a dependency model
to ensure fluency and grammaticality of the output
text.

4.4 Location-based user model

There has been wide range of work on location-
based user models, learning and predicting users’
routes and destinations. These tasks involve some



Items: [A, i, j]
R(A→ B)
R(A→ BC)

Axioms: [W, i, i+ 1] : s W → gi+1, gi+1 ∈ {α, gen(), gen str()}

Inference rules:
(1) R(A→B):s[B,i,j]:s1

[A,i,j]:s·s1

(2) R(A→BC):s[B,i,k]:s1[C,k,j]:s2
[A,i,j]:s·s1·s2

Goal: [S, 0, N ]

Table 2: The basic decoder deductive system.

uncertainties. Much work relies on GPS signal
data to identify a user’s location and may not be
accurate. In addition, intended destinations are not
always certain since they may be affected by fac-
tors such as weather, traffic, day of week, and time
of day. Due to many uncertainties arising from the
task, most systems build probabilistic models to
identify and predict users’ locations. Marmasse
and Schmandt (2000, 2002) apply pattern recog-
nition techniques to learn users’ patterns of trav-
eling and frequent destinations. These frequent
locations can be added or removed manually by
users. Then, each location is assigned to a to-do
list which is displayed whenever users travel to
this location. In Krumm et al. (2013)’s model, the
map can be modelled as a directed graph where
road intersections are vertices and road segments
connecting these intersections are edges. A prob-
abilistic model is used to rank the potential desti-
nations based on the current trip (previous inter-
sections users have passed). After collecting a list
of candidate destinations and their probabilities,
route probabilities are computed by summing all
destination probabilities along the fastest routes.
Therefore, a corpus of the driver’s regular routes is
not necessary in this model. Simons et al. (2006)
use a Hidden Markov Model (HMM) with the ex-
tended version where they consider factors such as
day of week and time of travel in their prediction
algorithms, while Liao et al. (2007) use a more
complex HMM with the ability to infer the user’s
mode of transportation.

5 Examples

Table 3 presents an example of input and output
of the generation model with different settings. In
the first setting, we train the weights of the gram-
mar rules using the whole corpus. Next, we use the
k-best decoder integrated with a tri-gram language
model to generate the text given the input scenario.

We try different values of k (the number of k-best
derivations kept for each item during the gener-
ation process). The generation system generates
output 1a and output 1b for k = 10 and k = 20
respectively. We can try with larger values of k,
however, it will affect the generation time, which
becomes a factor if incorporated into a real time
system. In the above example, instead of using
the whole corpus, we use only tweets from a spe-
cific user to train the model. The chosen tweets in
the second setting are generated by the user “680
NEWS Traffic” who has the majority of tweets in
the corpus. We also try different k values (k = 10
and k = 20), however, the results are the same and
presented in output 2.

Some essential records such as “Reference
road” and “Reason” from the input scenario are
not chosen by the generator for inclusion in the
generated tweets in output 1a and output 2 re-
spectively. On the other hand, extra information
that the input does not cover is included arbitrar-
ily such as “collision”, “the right lane” or “the left
lane”. There are two main reasons for this behav-
ior:

• inaccurate alignments between data and text:
all the alignments are inferred from an unan-
notated corpus. A fully or partially annotated
corpus will improve the accuracy of the align-
ment model.

• corpus: usually, the tweets contain more in-
formation than the structured data. This extra
information can create noise in the training
process, especially without supervision.

6 Conclusions and Future Work

The preliminary results for the data-driven ap-
proaches show that it is possible to generate real-
time tweets for inclusion in a real-time traffic no-
tification system, using techniques that are oth-



Input
Main road

Name Direction
401 Eastbound

Reference road
Name

Yonge St

Lane
Value

collectors

Stream
Value

collectors

Condition
Value

Bad traffic

Reason
Value

Disabled vehicle

Incident type
Value

Disabled vehicle

Output 1a collision: collision: #hwy401 eb express at yonge st

Output 1b 401 collectors - right lane blocked with a collision.

Output 2 eb 401 at yonge express, blocking the left lane

Table 3: Example input and output of the generation system with different settings.

erwise applicable to different domains and data-
sets. There are various types and sources of traffic-
related data useful to drivers (e.g. traffic flow,
road construction,...), and we have only scratched
the surface of the issues concerning personalized
tweets. Further evaluation is required and we
will present the preliminary results from automatic
evaluation during the workshop.

A high priority for the ongoing research is the
content-preference model: some users desire cer-
tain information more than other information (e.g.
reason of the accident, detour information, ...). A
content-preference model can be integrated into
the grammar to re-rank the generated sentences
with the information users need.

Given the relatively constrained domain, we
want to consider how template based models can
be used with the data-driven approach introduced
in this paper. A template approach requires differ-
ent set of patterns and rules for each traffic data
type, but integrating techniques involving seman-
tic role labels (Lindberg et al., 2013) may assist
in applying our approach to different data-sets and
different locations.

Another aspect we need to consider to improve
the system is how can we optimize it in terms
of output quality and generation time. For out-
put quality, considering the limitation described
in section 5, we may want to get more data and
potentially annotate parts of the data to get bet-
ter alignment accuracy. In addition, applying dif-
ferent data pre-processing and normalizing tech-
niques can also help clean up the data before train-
ing the model. To improve the generation time, we
can apply an approximate search approach such as
cube-pruning (Chiang, 2007).

Finally, we will evaluate the system using met-
rics such as BLEU and METEOR given that we
have human-generated data. These two metrics are
also used for evaluation in Konstas (2014)’s work.

However, the data we have collected is comprised
of both human-generated and machine-generated
texts. Therefore, we need to develop a technique
to separate the two sets. One simple way is based
on the Twitter username generating the tweets. In
addition, we can also set up experiments compar-
ing how different the results are when the system
is trained with only human-generated texts and is
trained with both sets.
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