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Abstract

Differential diagnosis aims at distinguish-
ing between diseases causing similar
symptoms. This is exemplified by epilep-
sies and dissociative disorders. Recently,
it has been shown that linguistic features
of physician-patient talks allow for dif-
ferentiating between these two diseases.
Since this method relies on trained lin-
guists, it is not suitable for daily use.
In this paper, we introduce a novel ap-
proach, called text2voronoi, for utilizing
the paradigm of text visualization to re-
construct differential diagnosis as a task
of text categorization. In line with cur-
rent research on linguistic differential di-
agnosis, we explore linguistic characteris-
tics of physician-patient talks to span our
feature space. However, unlike standard
approaches to categorization, we do not
use linguistic feature spaces directly, but
explore visual features derived from the
talks’ pictorial representations. That is,
we provide an approach to image-driven
differential diagnosis. By example of 24
talks of epileptics and dissociatively disor-
dered patients, we show that our approach
outperforms its counterpart based on the
bag-of-words model.

1 Introduction

Physicians use medical imaging for diagnosing.
Bone fractures, for example, are visualized by ra-
diographs, pregnancies are examined by means
of ultrasound scans, while neurological disorders
are studied with the help of MRI scans. Our
goal is to assist physicians in diagnosing mental
disorders by analogy to such image-driven meth-
ods. To this end, we introduce a method for scan-

ning physician-patient talks to get pictorial rep-
resentations as input of classifiers which perform
the differential diagnosis. This approach is in
line with recent efforts in clinical NLP to utilize
computational methods for automatically analyz-
ing medical histories (Friedman et al., 2013). It
profits from recent findings showing that linguis-
tic features provide reliable bases for differentiat-
ing between epilepsies and dissociative disorders
(Gülich, 2010; Reuber et al., 2009; Opp et al.,
2015). Since the latter approach relies on trained
linguists for performing the feature analysis it does
not allow for daily use. The present paper aims
at filling this gap. It introduces a new method
for visualizing linguistic data by means of images
as input to classifiers which learn from their pic-
torial features to arrive at the desired diagnoses.
The main hypothesis of our paper (as elaborated
in Section 3) runs as follows: Linguistic features
of physician-patient talks can be visualized in a
way that a certain range of diagnoses can be de-
rived from analyzing pictorial features of these vi-
sualizations. In Section 3, we introduce so called
Voronoi diagrams of Texts (VoTe) to provide such
expressive visualizations. VoTes are generated by
our text2voronoi algorithm as described in Section
3. Unlike the classical bag-of-words model, this
approach explores bags of visual features derived
from the talks’ image representations in terms of
VoTes. To this end, we utilize the TextImager
which automatically extracts a wide range of lin-
guistic information from input texts to derive rep-
resentational images thereof. In Section 4, we de-
scribe an experiment, which shows that our image-
driven classifier can indeed differentiate between
epilepsies and dissociative disorders: its F -score
outperforms its classical counterpart based on the
bag-of-words model. Note that we do not claim
that VoTes allow for differentiating between what-
ever mental diseases. Rather, we start with epilep-
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sies and dissociative disorders as two initial ex-
amples and will extend our approach by including
related diseases in future work (cf. Section 5).

2 Related Work

Recent studies have shown that a linguistic exam-
ination of physician-patient talks based on Con-
versation Analysis (CA) (Drew et al., 2001) al-
lows for distinguishing between epileptic and non-
epileptic seizures (Reuber et al., 2009; Plug et al.,
2009; Plug et al., 2010; Gülich, 2010; Opp et
al., 2015). Reuber et al. (2009) describe a CA-
inspired experiment where two linguists blinded
to medical data attempted to predict the diagnosis
on the basis of qualitative linguistic assessments.
Using these assessments, the linguists predicted
17 of 20 (85%) diagnoses correctly. Opp et al.
(2015) found that patients with epileptic seizures
try to describe their attacks as accurate as possible,
whereas patients suffering from dissociative disor-
ders avoid detailed descriptions of their seizures.
As a matter of fact, such differences are mirrored
by linguistic choices. However, these and related
methods (Gülich, 2010) rely on the expertise of
trained linguists and are, thus, not practical in
terms of daily use.

Other approaches use machine learning to pre-
dict diagnoses from therapy transcripts by means
of extracted linguistic features (Howes et al.,
2012a). Howes et al. (2013), for example, use
topics that have been derived by means of LDA.
Support vector machines operating on linguistic
features have also been used to predict diagnoses
(Howes et al., 2012b; DeVault et al., 2013; De-
Vault et al., 2014). Unlike these approaches to text
categorization, which rely on the bag-of-words
model or some of its descendants, we use picto-
rial representations of linguistic features as input
for our classifier. This is done by extending the
UIMA-based TextImager by means of visual scans
of physician-patient talks as explained in Section
3. Alternatives to the TextImager are given by
the UIMA-based frameworks cTAKES (Savova et
al., 2010) and EpiDEA (Cui et al., 2012). Unlike
the TextImager, both tools do not provide a visu-
alization engine and, thus, do not fit our task of
text classification based on pictorial text represen-
tations.

Note that the pictorial representations of texts
as introduced here rely on so called Voronoi di-
agrams (de Berg et al., 2000). Voronoi dia-

Label POS

C1 Noun
C2 Verb
C3 Preposition
C4 Adjective
C5 Adverb
C6 Temporal expression

Table 1: Parts of speech and expressions explored
by text2voronoi.

Label Category Example

G1 Case {nominative, accusative,..}
G2 Mood {indicative, imperative,..}
G3 Number {singular, plural}
G4 Person {first, second,..}
G5 Tense {past, present,..}
G6 Gender {feminine, masculine,..}
G7 Degree {positive, comparative,..}

Table 2: Categories explored by text2voronoi.

grams have already been used to represent seman-
tic structures of lexical units (Jäger, 2006). We
further develop this approach in the sense of deriv-
ing Voronoi diagrams as representations of natural
language texts in general.

3 The text2voronoi Model of Texts

Our goal is to generate images from physician-pa-
tient talks whose visual features can be used by
classifiers to perform the desired differential diag-
nosis. To this end, we provide the text2voronoi al-
gorithm which computes this visualization in four
steps (see Figure 1):

1. extraction of linguistic features,

2. embedding the features in vector space,

3. Voronoi tesselation of this space and

4. extraction of visual features from the tessela-
tion.

In what follows, we describe each of these steps.

3.1 Linguistic Feature Extraction
Each input text is preprocessed by the TextImager
which utilizes several NLP tools to tag a range of
linguistic features per lexical token. This includes
POS tags (e.g., pronouns, prepositions), grammat-
ical categories (e.g., case, gender, number, tense)
and temporal expressions (e.g., dates, temporal ad-
verbs) – see Table 1 and 2 for all POS and their
features considered in Step 1 combining to 180
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Figure 1: Workflow of the text2voronoi algorithm generating a Voronoi diagram of the Text (VoTe) x.

(a) Dissociation disorder (b) Dissociation disorder (c) Dissociation disorder

(d) Epilepsy (e) Epilepsy (f) Epilepsy

Figure 2: Visualizations (VoTes) of six physician-patient talks as used in our classification experiment.

features. The reason for selecting these features is
that according to (Gülich, 2010; Opp et al., 2015),
patients suffering from epilepsies tend to give de-
tailed descriptions of their seizures, while disso-
ciatively disordered patients tend to avoid such de-
scriptions. Thus, while the former group of pa-
tients likely uses personal pronouns in connection
with prepositions (for localizing their seizures)
and polarity cues (for evaluating them), the lat-
ter group will rather avoid the co-selection of such
features. For tagging POS and grammatical fea-
tures, we use a retrained instance (Eger et al.,
2016) of MarMoT (Müller et al., 2013), while Hei-
delTime (Strötgen and Gertz, 2010) is used for tag-
ging temporal expressions.

3.2 Embedding the Features in Vector Space

Since our features are tagged per token, we can
transcode each sentence of the corresponding in-
put text as a sequence of these features to make
them as input to word2vec (Mikolov et al., 2013)
by projecting on exactly two dimensions. The rea-
son behind this approach is to compute feature as-
sociations in a manner that is characteristic of the
input text. Thus, we do not use a (huge) refer-
ence corpus (e.g., Wikipedia) for computing “ref-
erence” associations but explore text-specific pat-
terns in our two-dimensional feature space.

3.3 Voronoi Tesselation of the Feature Space

The vector embeddings span a two-dimensional
space for which we compute a Voronoi decom-
position (de Berg et al., 2000). Each cell of the
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resulting Voronoi diagram of a Text (VoTe) cor-
responds to a single feature. Generally speaking,
starting from a set P of distinct points in a plane
we get a corresponding Voronoi diagram by col-
oring all points q1, . . . of equal distance to at least
two points in P (de Berg et al., 2000). The points
q1, . . . manifest the borders of the Voronoi regions
that consist of all points with the same single near-
est neighbor in P . To color the VoTe of a text, we
additionally explore two kinds of frequency infor-
mation: while the overall frequency of a feature
determines how much of its cell is filled (starting
from the center), the transparency of the cell de-
pends on the feature’s inverse sentence frequency:
the smaller this value, the more transparent the
cell. Figure 2 exemplifies the VoTes of 6 texts.
Note that for each text each feature is mapped onto
the same color in order to allow for comparing
different texts. However, the exact position of a
feature cell in a text’s VoTe, its size, degree of fill-
ing, transparency and neighborhood depend on the
specifics of that text. That is, they depend on the
characteristics of the given physician-patient talk
in terms of the co-occurrence statistics of the un-
derlying linguistic features. Thus, our classifica-
tion hypothesis is: talks of patients suffering from
the same disease induce similar VoTes. Exploring
the visual patterns of VoTes is then a way to per-
form the targeted classification.

3.4 Extracting Visual Features from VoTes

For the sake of the latter classification, we extract
a set of visual features for each cell of the VoTes
(see Table 3). The underlying hypothesis is that
two VoTes are the more similar, the more of their
equally colored cells share similar visual features.
Each cell is characterized (1) by its gestalt (area,
corner, filling, shape, transparency), (2) location
(position, shape) and (3) neighborhood (central-
ity). While the first group of features informs
about how a single cell looks like, the second
group informs about its localization on the map,
and the third group about its relations to other
cells. The more of these features are shared by
two equally colored cells, the more visually sim-
ilar they are. For mapping neighborhood-related
features, we compute the closeness centralities of
the cells in the graph representation of the Voronoi
diagrams. Next, for all Voronoi cells that corre-
spond to the 180 features of Step 1, we compute
11 features (see Table 3) so that each VoTe of a

Feature Description #Features

Area The surface area 1
Position x/y coordinates of center 2
Shape Min (x, y), max (x, y) 4
Filling Percentage of fill coverage 1
Transparency Degree of opacity 1
Corner Number of corners 1
Centrality Closeness centrality 1

Table 3: Visual features of the cells of a Voronoi
tesselation (VoTe) explored by text2voronoi.

Features Kernel nu-SVC C-SVC SVM light

All Linear 0.832 0.832 0.832
Subset Linear 1.0 1.0 1.0

All RBF 0.832 0.832 0.832
Subset RBF 0.958 1.0 1.0

Table 4: F -scores of text2voronoi-based classifi-
cation.

text is finally mapped onto a vector of 1980 visual
features. Note that if a linguistic feature did not
occur in a talk, it was mapped onto a null vector
so that VoTes get also comparable for commonly
absent features.

4 Experiment

This section provides experimental data on test-
ing the text2voronoi model. To this end, we use
a German corpus of 24 physician-patient talks of
12 epileptics and 12 dissociatively disordered pa-
tients. The talks were transcribed according to
GAT2 (Selting et al., 2009) and annotated w.r.t.
turns and seizure descriptions (Gülich, 2010; Opp
et al., 2015). The corpus was further processed ac-
cording to Section 3 so that each talk was mapped
onto a vector of 1980 visual features. Finally, the
vectors were independently made input to SVM-
light and LIBSVM to compute F -scores based on a
leave-one-out cross-validation. Using all features,
both kernels (linear and RBF) achieve an F -score
of 83.2% – see Table 4. Next, we performed an
optimal feature selection for SVMs (Nguyen and
De la Torre, 2010) using a genetic search on our
feature space with the aim of optimizing F -scores
based on the same setting of cross-validation.
This optimization resulted in a perfect classifica-
tion (see Table 4) regardless of the kernel and the
implementation of SVMs in use. Finally, we com-
puted a bag-of-words model based on the lexical
data of all talks in our corpus. Using an RBF
kernel (leave-on-out cross-validation) this model
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Features Linear kernel RBF kernel

All 0.60 0.69
Subset 0.91 0.82

Table 5: F -scores of the bag-of-words model.

achieved an F -score of 69% (see Table 5); a search
for an optimal feature subset raised this score to
91% (by means of a linear kernel).

4.1 Discussion

Obviously, our findings are independent of the ker-
nels (linear or RBF) and the SVM implementa-
tions in use. They show that by example of our
corpus data, differential diagnoses come into reach
based on visual depictions of the underlying talks.
Moreover, we show that an optimal feature se-
lection for SVMs can boost the classifier enor-
mously. This may hint at problems of overfitting
(negative interpretation) or at the expressiveness
of the visual features in use (positive interpreta-
tion). Evidently, our corpus data is too small to
decide between these alternatives. Thus, further
research is required that starts from larger corpora
of physician-patient talks. As a matter of fact, such
data is extremely difficult to obtain (Friedman et
al., 2013) so that comparative studies have to be
considered in related areas of more easily acces-
sible data. However, as indicated by our F -scores
and as exemplified by Figure 2, our VoTe represen-
tations of texts are seemingly informative enough
to provide visual depictions of text that may be
used by physicians as scans of neurologically dis-
ordered patients based on their medical histories.
Based on our results, we may speak of a novel ap-
proach to text representation according to which
symbolically coded information in texts is visually
reconstructed in a way that allows for performing
text operations (in our case text classification) in-
directly by processing the resulting visual repre-
sentations.

5 Conclusion

We presented a novel approach to image-driven
text classification based on Voronoi tesselations of
linguistic features spaces. Our method allows for
high score differential diagnoses by exploring fea-
tures of the pictorial representations of physician-
patient talks. Our experiments show that this ap-
proach outperforms classifiers based on the bag-
of-words models. In order to further test its va-

lidity, we plan to experiment with larger corpora
and various tasks in text classification (e.g., au-
thorship attribution and genre detection). A ma-
jor reason to do this is to clarify whether the F -
scores reached by our approach so far reflect over-
fitting or not. To this end, we will also experi-
ment with data of different languages. Moreover,
since a great deal of information about the cor-
rect diagnosis relates to whether a patient tends to
suppress the memory of her or his seizures, po-
larity cues are promising candidates for extending
our feature space. However, since we deal with
seizure descriptions, such a distinction is rather
challenging. The reason is that turns of patients
about seizures have very likely negative connota-
tions. An alternative is to consider simpler quan-
titative features (turn length, number of turns etc.)
to simplify the generation of VoTes. This is needed
to enable automatic differential diagnoses instan-
taneously during physician-patient talks, which –
because of error-prone speech recognition systems
– require easy to measure features. Obviously, this
requirement implies a trade-off: the more easily a
feature is measured, the lower its semantic speci-
ficity with respect to the target classes to be learnt.
Thus, a great deal of progress may be expected
by developing speech recognition systems that fo-
cus on expressive linguistic features especially of
physician-patient talks. Last but not least, we may
consider quantitative characteristics that are more
closely related to the geometry of Voronoi dia-
grams (e.g., in terms of their order and size – cf.
(de Berg et al., 2000)). In this way, we want to
contribute to the further development of text rep-
resentation models based on text visualizations.
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