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Abstract

The number of scientific papers published
each year is growing exponentially and
given the rate of this growth, automated
information extraction is needed to effi-
ciently extract information from this cor-
pus. A critical first step in this process
is to accurately recognize the names of
entities in text. Previous efforts, such as
SPECIES, have identified bacteria strain
names, among other taxonomic groups,
but have been limited to those names
present in NCBI taxonomy. We have im-
plemented a dictionary-based named en-
tity tagger, TagIt, that is followed by a rule
based expansion system to identify bacte-
ria strain names and habitats and resolve
them to the closest match possible in the
NCBI taxonomy and the OntoBiotope on-
tology respectively. The rule based post
processing steps expand acronyms, and
extend strain names according to a set
of rules, which captures additional aliases
and strains that are not present in the dic-
tionary. TagIt has the best performance
out of three entries to BioNLP-ST BB3
cat+ner, with an overall SER of 0.628 on
the independent test set.

1 Introduction

The biomedical literature is growing at an esti-
mated 4% per year and as of 2016 there are at
least 26 Million documents in PubMed (Lu, 2011).
12% of this work is never cited after 5 years and
much of it might not reach its intended audience,
effectively limiting the value of these scientific
contributions (Lariviere et al., 2008). Molecular
biology databases such as UniProt address this is-
sue by manually curating domain-specific knowl-

edge and providing it in a structured form (The
UniProt Consortium, 2014). Despite efforts by
the metagenomics community (Lombardot et al.,
2006; Reddy et al., 2015; Hoopen et al., 2016),
the same attention has not been given to man-
ual curation in microbial and molecular ecology,
where a lack of samples annotated with compre-
hensive metadata hinders comparative and integra-
tive studies (Yilmaz et al., 2011). Both the initial
creation and subsequent ongoing maintenance of
such databases require a significant investment of
labour and money (Attwood et al., 2015). In order
to scale up this process, we need to automate the
extraction of information from text.

The BioCreative and BioNLP communities are
responding to this need by organising scientific lit-
erature mining challenges that aim to advance the
state of the art (Arighi et al., 2014; Bossy et al.,
2015). These competitions have resulted in the
development of text-mining tools focusing on spe-
cific curation tasks (Bossy et al., 2015; Wang et al.,
2015), one of which is the interactive EXTRACT
tool that assists curators through automated named
entity recognition (NER) of organisms, tissues,
diseases and environments (Pafilis et al., 2015).

The BioNLP BB3 focuses on the identification
of bacteria and their habitats in text. Bacteria are
ubiquitous in natural and artificial environments,
and play major diverse roles in shaping ecosys-
tems. They thrive in the most extreme habitats
– under the west Antarctic ice sheet (Christner
et al., 2014), in alkaline hot springs (De León
et al., 2013) – and they also proliferate in the
most mundane habitats – such as the human body,
which contains roughly an equal number of bac-
terial and human cells (Sender et al., 2016). Bac-
teria are responsible for the majority of nitrogen
fixation on the planet (Galloway et al., 2004), af-
fect the absorption of nutrients in the human gut
(Semova et al., 2012), and are responsible for the
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deaths of approximately 1.5 million people each
year from Mycobacterium tuberculosis infection
(WHO, 2016). Given both their beneficial and
pestilential impacts, it is important to understand
the habitats in which bacteria grow so that they can
be managed and controlled, especially in medical
environments that provide care for immunocom-
promised patients (Sydnor and Perl, 2011), and in
food processing environments which have the po-
tential for wide distribution of contaminated prod-
ucts (Brackett, 1999).

The first steps towards automatically turning
unstructured text into structured information about
bacteria and their habitats are i) to recognize
names of bacteria and habitats in a text, and ii)
to resolve these to a predefined ontology or tax-
onomic resource. Whereas the first step can be
addressed in a variety of different ways, such as
using machine learning, manually crafted rules or
dictionaries, the second step clearly requires the
use of a dictionary.

The SPECIES and ORGANISMS resources
are purely dictionary based methods that demon-
strate above 85% precision and recall on identify-
ing cellular organisms in abstracts (Pafilis et al.,
2013). Further, these tools have extremely fast
run times, a necessary requirement for processing
large datasets. Dictionary based methods have the
advantage of always correctly normalizing a term
that has been tagged, but conversely they have the
disadvantage of requiring an up-to-date, compre-
hensive dictionary. Building such a dictionary can
be a difficult manual task, but it can be aided by the
use of orthographic expansion rules and stopword
lists. When parsing documents from a limited do-
main, such as biomedical literature, the dictionary
required is much smaller in scope, and building
one becomes feasible, as has been demonstrated
by SPECIES and ORGANISMS which have been
built from NCBI Taxonomy (Sayers et al., 2009).

NCBI taxonomy is a curated classification and
nomenclature resource that covers all of the or-
ganisms in the Entrez sequence database (Sayers
et al., 2009). Although these resources are the
most comprehensive of their kind, very new and
very old strains that are lacking sequences can-
not be found in the NCBI taxonomy, and neither
can known strains that have been spelled with un-
common misspellings. Further, acronyms that are
not defined as synonyms will also not be present,
meaning that a dictionary method that naively

used only the entries in the taxonomy would miss
tagging such terms.

Here we present TagIt, a tool for named en-
tity recognition and categorization of bacteria and
their habitats. It primarily uses a dictionary-based
approach, the results of which are extended with
pattern-matching rules that handle acronyms that
are not found in the dictionary and refine match
boundaries to include bacterial strain names.

2 Methods

2.1 Dictionary creation

A dictionary for bacteria terms was generated
from all NCBI taxonomy entities under the bacte-
ria superkingdom (taxid: 2) (Sayers et al., 2009).
The dictionary generation process is based on that
used in (Pafilis et al., 2013). Briefly, NCBI tax-
onomy provides alternate names for each taxon-
omy level, which include common names, obso-
lete names and other synonyms, all of which were
included in our dictionary. These terms were ex-
panded to plural forms following the English and
Latin rules for pluralizing nouns, and the abbrevi-
ations of Linnaean names, such as E. coli for Es-
cherichia coli, were generated and included in the
dictionary.

A dictionary for habitat terms was generated
from the OntoBiotope ontology (OBT), and the
names present in the ontology were expanded to
their plural forms giving 8,345 terms. The habi-
tat dictionary was expanded via synonym transfer
based on manual mappings between OBT terms
and their Brenda Tissue Ontology (BTO) counter-
parts (Chang et al., 2015). The BTO name dictio-
nary available in the TISSUES database facilitated
this process (Santos et al., 2015). This gave an ad-
ditional 121,321 habitat synonyms. For example,
the term “central nervous system” (OBT:000831)
was expanded to include “hippocampus” and 2748
other terms, 76 of which are particular cell lines
derived from nervous system tissue.

The same synonym transfer process was ap-
plied to map OBT terms to their NCBI taxonomy
counterparts under the eukaryote branch (taxid:
2759). The term duck (OBT:002200), for ex-
ample, was expanded with 46 synonyms includ-
ing “mallard ducks”, “northern mallard”, “Anas
platyrhynchos”, and so forth. Terms that existed
in NCBI taxonomy but not in OBT were mapped
to the most specific relevant term. For example,
all 145,546 names and synonyms under the NCBI
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taxonomy node Metazoa (taxid: 33208) that could
not be mapped to anything more specific in Onto-
Biotope were mapped to “animal” (OBT:000218).
This gave a total of 5,106,213 additional syn-
onyms.

Synonym transfer was also applied to OBT
and the corresponding Environments Ontology
(ENVO) terms (with name information from the
ENVIRONMENTS tool) for an additional 54,673
synonyms (Buttigieg et al., 2013; Pafilis et al.,
2015). However, as shown later, this did not im-
prove the systems accuracy and so was not used in
the final version.

Since dictionary-based NER is prone to poor
precision, especially after automatic dictionary
expansion, stopword lists are used to remove
matches that contribute the most to the drop in
precision. Here, stopword lists were generated
for both bacteria and habitat entity types by man-
ually inspecting the most frequently identified
terms when tagging the Medline corpus, and re-
moving those terms that were likely to not re-
fer to true positive matches. This resulted in
2381 stopwords for bacteria including words such
as “unclassified”, and 2592 stopwords for habi-
tat, including words such as “scales” and “root”,
which can have many different meanings. The
full dictionaries, including the stopwords, are
provided in the associated repository located at
http://github.com/bitmask/BioNLP-BB3.

2.2 Tagging and post processing

Both entity types were tagged using the left-most
longest matching and hashing function present
in the SPECIES tool, which is case insensitive,
and disregards hyphens and white space charac-
ters within names and quotes and parentheses at
the beginning or end of names (Pafilis et al., 2013).

A series of post processing steps followed the
tagging step. First, the input document was ex-
amined for parentheses, and these and their con-
tents were replaced by whitespace. The tagger
was run again on the modified text to identify any
additional matches that spanned the parentheses.
These new results were merged into the original
results.

Second, the normalizations were filtered to re-
turn only the highest confidence normalization for
each entry (by default SPECIES may return multi-
ple normalizations). The normalizations for bacte-
ria were updated so that a mention of a genus that

ability of Lactobacillus (Lb.) gasseri K 7 to inhibit adhesion

ability of Lactobacillus         gasseri K 7 to inhibit adhesion

taxid: 1578

taxid: 1334627

soil cyanobacterium Anabaena sp. strain L-31 exhibited signi�cantly

soil cyanobacterium Anabaena sp. strain L-31 exhibited signi�cantly

taxid: 1163

taxid: 1163

methicillin-resistant Staphylococcus aureus (MRSA) colonization ... MRSA isolates

methicillin-resistant Staphylococcus aureus (MRSA) colonization ... MRSA isolates

taxid: 1280

taxid: 1280taxid: 1280taxid: 1280

Chlamydia trachomatis is a common ... during Chlamydia infection

Chlamydia ... Chlamydia trachomatis is a common ... during Chlamydia infection

taxid: 813

taxid: 813taxid: 810 taxid: 810

taxid: 813
Chlamydia trachomatis is a common ... during Chlamydia infection

taxid: 813 taxid: 810

Figure 1: Illustration of the four post processing
steps: Parentheses avoidance, normalization cor-
rection, strain expansion, and acronym expansion,
where the first line in each block indicates the
matches and normalizations prior to post process-
ing, and the subsequent lines show how they are
updated after post processing.

followed a more specific species mention (within
that genus) would be normalized to the species.
Although not in the annotation guidelines, we
added the exception that if the genus was men-
tioned alone before any species within that genus,
then later mentions of the genus would not be
changed to refer to the specific species because
such mentions were much more likely to refer to
the genus in general than to have been an instance
of synecdoche. These cases are illustrated in Fig-
ure 1.

Third, for bacteria, strain names were expanded
by matching the text immediately following a
match returned from the tagger against a regex that
would identify it as a strain. Strains names were
identified as sequences of letters and punctuation
that may have included an indicator such as “sp.”
or “strain”.

Lastly, acronyms were identified for both bacte-
ria and habitats by searching the text following a
match for a potential short form. Text was consid-
ered to be a short form if it was within parentheses,
contained capital letters, and contained the first
letter of the long form within its first three letters.
Then, the remainder of the document was searched
for further instances of the short form, which were
normalized to the definition of the long form.
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Full details and code are available at
http://github.com/bitmask/BioNLP-BB3

3 Results and Discussion

Our entry, TagIt, performed best out of three en-
tries submitted to the BioNLP-ST BB3-cat+ner
task with an overall slot error rate (SER) of 0.628
on the test set. For bacteria only the SER was
0.399, and for habitats only the SER was 0.775.

TagIt uses a dictionary for both named entity
recognition and for categorization, which is gen-
erated a priori from existing ontologies and rules
regarding name expansion. Generating the dic-
tionary does not require the input of any training
documents, nor does this approach require that the
values of any variables be learned during a training
step. Therefore, we have evaluated our method on
both the provided training and development sets,
and see consistent performance between them.

In order to quantify the improvements from ex-
panding the dictionaries, we generated six itera-
tions of the dictionary that we evaluated indepen-
dently on the training and development sets. The
first, included only the dictionary for bacteria. The
second naively added in habitats from the Onto-
Biotope ontology with no synonym transfer for the
habitats dictionary. The next three variants trans-
ferred synonyms to the habitats dictionary from
BTO, eukaryotic entries from NCBI and ENVO,
respectively. The final dictionary featured syn-
onym transfer from both BTO and NCBI, giving
better performance than either alone. This dictio-
nary was selected as our final submission to the
contest.

For both training and development sets, perfor-
mance increased (i.e. SER decreased) with the ad-
dition of BTO and NCBI synonyms to the dictio-
nary. The improvement in habitat only SER from
using an unexpanded habitats dictionary, and in-
cluding the mappings from BTO and NCBI – from
0.568 to 0.511 (dev) or 0.635 to 0.587 (train) –
shows the performance increase possible by using
synonyms in other ontologies to expand the range
and number of synonyms present in the dictionary.

Adding ENVO synonyms surprisingly did not
increase performance. The performance of this
dictionary was evaluated in (Pafilis et al., 2015)
at 87.8% precision over 600 documents, so it is
unlikely that the lack of performance increase we
see is due to some underlying defect in the dic-
tionary. Further, the mapping between OBT and

ENVO orthologies was performed manually by
subject matter experts, so this is also unlikely to
be a major source of error. The addition of ENVO
synonyms cannot increase the false negative rate,
as adding names to the dictionary will not result
in less being found. The addition of ENVO syn-
onyms did increase the false positive rate. The
false positives included three terms that were used
as homonyms such as “reservoir”, intended in the
dictionary to refer to a body of water, but used in
the text to mean a source of bacteria. The instances
of these false positives could be reduced by adding
these terms to the stopword list. One further case
registers as a false positive (“farms” at position
502, 507 in BB-cat+ner-2696427.txt), but
upon manual inspection appears to be consistent
with the annotation guidelines. Overall, the addi-
tion of the ENVO dictionary resulted in the iden-
tification of only a few additional terms, and if the
identified errors were fixed, we would see only a
minor improvement in performance compared to a
dictionary without ENVO included.

In terms of the results for bacteria, the false
negatives identified by TagIt included the names
of strain mutants (such as Ara+), multiposition
matches, and acronyms that are defined in a non-
standard manner. Bacterial false positives in-
cluded a small number of cases in which terms
such as “cyanobacterium” were used as adjectives
or descriptions and should not have been anno-
tated. Further, TagIt identified an additional 3 in-
stances in which the boundaries disagreed with the
gold standard, and 27 cases in which the normal-
izations disagreed with the gold standard, but in
both cases our annotations more closely reflected
the annotation guidelines.

4 Conclusions

Accurate identification of entities in text is a first
necessary step towards automated extraction of in-
formation about those entities. Here, we have
presented a dictionary- and rule-based system,
called TagIt, to identify bacterial names and habi-
tats which gives good performance on both entity
types.

Dictionary methods for named entity recogni-
tion and categorization can give very good per-
formance on limited domains, and rule based post
processing can help overcome the intrinsic limi-
tations to the dictionary approach. To recognize
bacterial entities, applying simple rules to expand

53



Overall SER Bacteria only SER Habitats only SER
Train Dev Test Train Dev Test Train Dev Test

Bacteria 0.778 0.757 0.341 0.303 n/a n/a
Bacteria + Habitats 0.537 0.477 0.341 0.303 0.635 0.568
Bacteria + Habitats + BTO 0.529 0.468 0.341 0.303 0.623 0.555
Bacteria + Habitats + NCBI 0.514 0.448 0.341 0.303 0.599 0.524
Bacteria + Habitats + ENVO 0.540 0.479 0.341 0.303 0.639 0.572
Bacteria + Habitats + BTO + NCBI 0.506 0.439 0.628 0.341 0.303 0.399 0.587 0.511 0.775

Table 1: Performance of TagIt in terms of overall, bacteria only and habitat only slot error rates for
training, development and test sets over six variations of the dictionary (see text for their definitions).

strains and acronyms helped identify names that
were not present in the dictionary. Dictionary syn-
onym expansion also increases the performance of
dictionary based methods, as was seen by the ad-
dition of BTO and NCBI synonyms to our habitats
dictionary, boosting the performance over what
was possible with no synonym expansion.
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