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Abstract

This paper presents the Bacteria Biotope
task of the BioNLP Shared Task 2016,
which follows the previous 2013 and 2011
editions. The task focuses on the extrac-
tion of the locations (biotopes and geo-
graphical places) of bacteria from PubMed
abstracts and the characterization of bac-
teria and their associated habitats with
respect to reference knowledge sources
(NCBI taxonomy, OntoBiotope ontology).
The task is motivated by the importance
of the knowledge on bacteria habitats for
fundamental research and applications in
microbiology. The paper describes the dif-
ferent proposed subtasks, the corpus char-
acteristics, the challenge organization, and
the evaluation metrics. We also provide an
analysis of the results obtained by partici-
pants.

1 Introduction

Since 2009, BioNLP Shared Task is a community-
wide effort on the development of fine-grained
information extraction methods in biomedicine
(Kim et al., 2009; Kim et al., 2011; Nédellec et al.,
2013). The tasks provide a sound framework for
the comparison and evaluation of the technologies
on a manually curated benchmark with the aim to
contribute to progress by drawing general lessons
from the individual contributions and assessment
of the participants. In this paper, we present the
third edition of the Bacteria Biotope task that has
been first introduced in 2011 with the ambition
to use information extraction from scientific docu-
ments at a large scale in order to automatically fill
knowledge bases (Bossy et al., 2012).

Information about bacteria biotopes (e.g., habi-
tats of bacteria) is critical for studying the interac-
tion and association mechanisms between organ-

isms and their environments from genetic, phylo-
genetic and ecological points of view. This infor-
mation is not only highly useful in all fields of ap-
plied microbiology such as food processing and
safety, health sciences and waste processing, but
also in fundamental research (e.g., metagenomics,
phylogeography, phyloecology).

Currently, there is no centralized resource gath-
ering the state of knowledge on habitats of bacteria
in a comprehensive and normalized way. A large
part of this knowledge is scattered in numerous
scientific papers and databases, such as genomics
databases (e.g., GenBank1, GOLD2), international
microorganism culture collections ( e.g., ATCC3,
DSMZ4), and biodiversity surveys (e.g. , GBIF5).
The information on bacteria biotopes is mostly ex-
pressed in free text (e.g., articles or free-text fields
of databases) describing very diverse locations
(any physical location may be a bacteria habitat)
in many different ways. The need for information
processing is not only the extraction of habitats
and microorganisms relationships from text, but
also their normalization with respect to a common
referential so that they can be integrated and com-
pared. This need has been acknowledged by pre-
vious work on habitat classifications for metage-
nomic samples (Ivanova et al., 2010), microorgan-
isms (Floyd et al., 2005) and other living organ-
isms (Buttigieg et al., 2013) and text-mining tools
for mapping textual descriptions to habitat classi-
fication (Pignatelli et al., 2009).

The aim of Bacteria Biotope (BB) task is to pro-
vide a framework for the evaluation and compari-

1http://www.ncbi.nlm.nih.gov/genbank
2https://gold.jgi.doe.gov/ (Genomes Online

Database)
3http://www.atcc.org/ (American Type Culture

Collection)
4https://www.dsmz.de/ (Deutsche Sammlung von

Mikroorganismen und Zellkulturen)
5http://www.gbif.org/ (Global Biodiversity In-

formation Facility)
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son of such methods for Bacteria organism habi-
tats. More specifically, the BB task consists in
the extraction of bacteria and their locations (habi-
tats or geographical places) from the text, their
categorization according to dedicated knowledge
sources, and the linking of bacteria to their loca-
tions through so-called localization events named
” Lives in”. The widely used NCBI taxonomy6

(Federhen, 2012) is the resource used for Bac-
teria entity categorization. The OntoBiotope on-
tology7, which is dedicated to the description of
microorganism habitats, is used for biotope cat-
egorization. Previous work has shown the rele-
vance of OntoBiotope for bacteria habitat detec-
tion (Ratkovic et al., 2012). The first two edi-
tions of the task (Bossy et al., 2012; Bossy et al.,
2015) used general-purpose documents, mostly
web pages of genomics projects that can be un-
derstood by non-specialists. However, scientific
literature is the major source of detailed and ac-
curate information on bacteria for biologists. This
edition focuses then on scientific paper abstracts
from the PubMed database, which offers a twofold
advantage, open access and easier readability than
full-text. We also introduce this year a new sub-
task of knowledge base extraction, in which sys-
tems are evaluated by measuring how much infor-
mation content can be extracted from the corpus.

2 Task Description

The BB task involves three types of entities, Bac-
teria, Habitats and Geographical places. It also in-
volves a single type of event, the Lives in event,
which is a relation between two mandatory argu-
ments, the bacterium and the location where it
lives, either a Habitat or a Geographical entity.
Figure 1 displays an example of entities and events
in the BB task.

Figure 1: Example of entities and Lives in events
in the BB task

6http://www.ncbi.nlm.nih.gov/taxonomy
7http://2016.bionlp-st.org/tasks/bb2/

OntoBiotope_BioNLP-ST-2016.obo

We proposed three subtasks with two modalities
each. Each subtask had a plain modality where
named entities were given as input, thus partici-
pants were not required to perform entity recogni-
tion. In the second modality, entities were not pro-
vided, thus methods had to perform named entity
recognition and submissions are partly evaluated
on the accuracy of entity boundaries. Our purpose
is to assess independently the quality of the meth-
ods when dealing with different sub-goals and to
assess the impact of predictions made at a given
step on the predictions made at the next steps.

2.1 Bacteria and Habitat Categorization
The first subtask focused on the categorization
of Bacteria and Habitat entity occurrences in the
text with categories from the NCBI Taxonomy for
Bacteria and from the OntoBiotope ontology for
Habitat entities. In the first modality of the sub-
task (referred to as BB-cat), entity mentions were
given and participants had only to perform cate-
gorization. In the second modality (BB-cat+ner),
systems had to perform bacteria and habitat entity
detection as well as categorization.

2.2 Entity and Event Extraction
The second subtask consists in the extraction of
Lives in events among Bacteria, Habitat and Ge-
ographical entities. In the BB-event modality, en-
tity mentions were given and participant systems
only had to perform event extraction. In the BB-
event+ner modality, systems had to perform Bac-
teria, Habitat and Geographical entity recognition
as well as event extraction.

2.3 Knowledge Base Extraction
The third subtask aims at building a knowledge
base using information extracted from the corpus.
The knowledge base is composed of the set of dis-
tinct Lives in events between categorized Bacte-
ria and Habitats. This subtask can be seen as a
combination of the entity categorization and event
extraction subtasks. In contrast with the two previ-
ously described subtasks, this task does not eval-
uate text-bound annotations. All pieces of infor-
mation extracted from the text are gathered and
merged into a single knowledge base, without du-
plicate events. The focus of this task is the knowl-
edge itself (which types of bacteria and habitat
are linked through a Lives In event) and not the
individual text-bound annotations (where Lives In
events are marked precisely in each text segment).
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In the first modality, BB-kb, entity mentions were
given and participating systems perform catego-
rization and event extraction. In the second modal-
ity, BB-kb+ner, systems had to perform Bacteria
and Habitat entity detection and categorization as
well as event extraction.

3 Corpus Construction

3.1 Corpus Selection

The BB corpus consists of titles and abstracts of
PubMed entries. We followed a four step pro-
cedure to build a representative reference corpus
for the task from the whole PubMed database. It
started from the set of all PubMed references and
successively selected a subset of references while
preserving the distribution of bacteria and habitat
categories.

In the first step, we selected PubMed entries
relevant to bacteria, relying on the MeSH in-
dex provided by the NLM. We selected all en-
tries that were indexed by any term of the Organ-
isms/Bacteria subtree (B03). PubMed contained
27,872,481 entries, of which 1,156,824 indexed by
a term in the Bacteria subtree (4%).

In the second step, we automatically annotated
Bacteria, Geographical and Habitat entities in the
title and abstract of these selected entries (see the
corpus annotation subsection for details about this
automatic approach). We found 6.8 million habi-
tat occurrences, 3.7 million occurrences of bacte-
ria taxon names, and 374 thousand geographical
names. This gave us a broad idea of the quantity
and diversity of the entries in terms of bacterial
taxa and bacterial habitats.

However this collection is too large to be man-
ageable by human annotators. Therefore in the
third step, we built a sub-collection of 1,000 en-
tries. We selected the most representative in 2,000
random samples of 1,000 entries. The representa-
tiveness was evaluated by the mean squared error
(MSE) between the sample and the original col-
lection. We selected the sample with the lowest
MSE. The observations from which we computed
the MSE included the number of words, the num-
ber of occurrences of taxon names for each bacte-
rial family and the number of occurrences of habi-
tat mentions for each top-level concept of Onto-
Biotope. As expected from a PubMed sample, the
majority of entries were biomedical studies. Even
though habitats related to human health and wel-
fare are important, the sample does not convey the

full diversity of bacteria habitats.
In the fourth step we manually annotated the

title and abstract of references from the sample
(see section 3.2). As it would require too much
human resources the manual annotation of 1,000
PubMed entries is not an option. We randomly
picked entries as we finished annotating the pre-
vious ones in order to preserve the distribution.
The random selection used the same method as the
sampling, however we deliberately biased against
clinical habitats in order to leave room for more
diverse and less frequent habitats.

3.2 Corpus Annotation

Manual annotation was performed by seven anno-
tators with diverse backgrounds: biology, com-
puter science, linguistics, and bioinformatics.
Three annotators had annotated documents in the
previous editions of the BB task. Each document
was annotated by two annotators in a double-blind
manner and an adjudication phase resolved dis-
agreements. Annotators relied on detailed guide-
lines which were revised and clarified when ques-
tions arose during the annotation process. The
guideline document is available on the BB task
website8.

Annotators used the AlvisAE annotation edi-
tor (Papazian et al., 2012). In order to speed up
the annotation process, we used Alvis Suite (Ba
and Bossy, 2016) to automatically pre-annotate the
corpus. It included the Stanford NER tool (Finkel
et al., 2005) to annotate Geographical locations
and the ToMap method (Golik et al., 2011) to de-
tect and categorize Habitat entities. Bacteria en-
tity automatic recognition and categorization were
performed with a rule-based approach relying on a
customized dictionary of taxon names, i.e. NCBI
taxonomy names augmented with typographical
variations. Events were extracted using manu-
ally defined trigger words and rules in a similar
way as Ratkovic et al. (2012). Table 1 gives pre-
annotation performance for habitat and bacteria
recognition and categorization (cat+ner) and for
entity and Lives In event extraction (event+ner).
Performance is low, especially for event extrac-
tion, which calls into question the benefit of us-
ing automatic pre-annotation for these tasks. The
low performance of pre-annotation compared to
the final gold standard is also an indication that
text pre-annotation did not much bias manual an-

8http://2016.bionlp-st.org/tasks/bb2

14



notation, since the annotators did not hesitate to
make extensive changes in the pre-annotation. We
computed the inter-annotator agreement by com-
paring the individual manual annotations with the
consensus, using the same evaluation framework
as for the evaluation of participant systems (Sec-
tion 5). We did not compute any Kappa statis-
tics, since this type of metric is not well-suited
for the annotation of textual entities (Hripcsak and
Rothschild, 2005). Moreover, even in the case of
event annotation, computing Kappa would have
been difficult, because event annotation is based
on entity annotation. Table 2 shows the agree-
ment of entity boundaries and categorization com-
puted with BB-cat+ner scores and the agreement
of entity boundaries and Lives In events computed
with BB-event+ner scores. The high precision
demonstrates that there was not much disagree-
ment among annotators on the entity boundaries
and categorization, or in the Lives In events. The
consensus consisted mostly in annotation merg-
ing. The lower recall stresses the necessity of mul-
tiple annotators in order to ensure that the refer-
ence is complete.

SER Recall Precision F1
cat+ner 1.167 0.287 0.341 0.312
event+ner 1.749 0.187 0.158 0.171

Table 1: Pre-annotation performance (SER = Stan-
dard Error Rate)

Recall Precision F1
Entity recog. 0.621 0.955 0.753
Lives In event 0.311 0.952 0.468

Table 2: Inter-annotator agreement

3.3 Corpus Statistics
Tables 3, 4 and 5 provide descriptive statistics of
the corpus for the three subtasks respectively.

They show the distributions of entities, cate-
gories, and events among the different datasets
(training, development and test) of each subtask.
We analyzed these statistics in order to study the
characteristics of the BB corpora with respect
to the tasks. Each distinct entity surface form
has only two occurrences on average in the cor-
pus, which makes the recognition task more dif-
ficult than with highly repeated mentions: there
are 1,489 and 1,466 distinct entity mentions (i.e.,
strings or surface forms) out of a total 2,887 and
2,842 annotated entity mentions in the BB-cat and

BB-cat+ner datasets, respectively (see Table 3).
In comparison, there is less variety in entity cat-
egories, since the number of distinct categories
is only 519 out of a total of 3,189 occurrences.
The combination of these two observations indi-
cates that there is quite a lot of variation in the
surface forms of entities, i.e., the same category
can be expressed in several different ways in the
text. This is particularly true for Habitat entities
for which there is a higher proportion of distinct
surface forms than for Bacteria names (59% vs.
38% in the combined BB-cat datasets).

Additionally, we computed the proportion of di-
rect mappings ( i.e., exact string matches) between
Habitat surface forms from the training and de-
velopment datasets of BB-cat and BB-cat+ner and
the ontology labels. We found that respectively
24% and 27% Habitat entity occurrences exactly
matched with an ontology label. As expected,
proportions were similar in the test sets of these
two tasks, with respectively 25% and 27% exact
matches. This finding emphasizes the fact that
there is much variation in the expression of Habi-
tat entities, and thus simple methods based on ex-
act string matching are not sufficient to automati-
cally categorize entities with high quality.

Multiple categories may be assigned to a given
entity mention, as can be seen in Table 3, which
is more challenging than single categories. This is
the case mainly for Habitat entities, since there is
a total of 1,921 distinct Habitat entities for a total
of 2,221 assigned Habitat categories in the BB-cat
datasets.

The number of Geographical entities in the BB-
event+ner sets is much lower than the other en-
tity types with 101 Geographical entities only
in total, which may make machine-learning ap-
proaches less efficient for this type of entity.

Not surprisingly, the majority of Lives in events
links Bacteria entities to Habitat entities and only
a small number of events involves Geographical
entities in the BB-event datasets (e.g., 98 out of a
total of 890 events (11%)).

Table 4 also shows the number of intra-sentence
vs. inter-sentence events, i.e. events that in-
volve entity arguments occurring in the same sen-
tence vs. events that involve entities occurring
in different sentences. The proportion of inter-
sentence events is still significant (27%). Meth-
ods restricted to the extraction of sentence-level
events would suffer from a serious disadvantage.
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However the extraction of inter-sentence events is
a major challenge, since they are notably more dif-
ficult to predict and may require co-reference res-
olution.

Table 5 details statistics for the knowledge base
extraction subtask (BB-kb and BB-kb+ner). Its
goal is to build a knowledge base composed of
all distinct pairs of Bacteria and Habitat categories
linked through the Lives in relation that can be ex-
tracted from the corpus. The number of linked
pairs of distinct categories is high with respect to
the total number of pairs. There are 185 distinct
events out of a total of 312 events in the test set
of the BB-kb task (last row of Table 5). This re-
flects the richness of the information content of the
corpus.

4 Shared Task Organization

The BB task schedule was divided in a training
period of two months and a test period of twelve
days. After the test, detailed evaluation of the sys-
tem performances was provided to the participat-
ing teams and published on the BioNLP-ST 2016
website.

Supporting resources were made available to
the participants. These resources are the output
of state-of-the-art automated corpus analysis tools
applied to the BB datasets. They were generated in
the same way as for the SeeDev task of BioNLP-
ST (see Chaix et al. (2016) for further details). In
addition to the information available on the web-
site, we maintained a set of community web tools.
They included a dedicated forum that allowed par-
ticipants to interact directly with each other and
with the organizers, and an online evaluation ser-
vice the participants could use to evaluate their
predictions during the training phase. This service
also keeps track of multiple runs allowing partici-
pants to monitor their experiments and to compare
their predictions to other participant predictions in
an anonymous way.

5 Evaluation

The metrics used to evaluate systems depend on
the subtasks. When possible we reused metrics
from the previous editions so that the results re-
main comparable.

5.1 BB-cat and BB-cat+ner

BB-cat. For each entity the metrics measures the
similarity between the reference category and the

predicted category. The overall score is equal to
the mean of the similarities for all entities. For
Bacteria entities the similarity is defined as fol-
lows, if the predicted taxon identifier is identical
to the reference taxon identifier, then it is set to
1, otherwise 0. For Habitat entities we used the
same similarity measure as for the 2013 edition of
the BB task (Bossy et al., 2013): it is the semantic
similarity defined by Wang et al. (2007) with the
weight parameter set to 0.65.

BB-cat+ner. The BB subtask was evaluated us-
ing the Slot Error Rate (SER), the same method as
BioNLP-ST 2013 BB task 1 (Bossy et al., 2013)
since the two tasks are the same.

5.2 BB-event and BB-event+ner
The metrics for the evaluation of the BB-event and
BB-event+ner subtasks are recall, precision and F-
score as for BioNLP-ST 2013 BB task 2 and 3 for
the same reasons (Bossy et al., 2013).

5.3 BB-kb and BB-kb+ner
The evaluation of BB-kb submissions is based on
the comparison of the reference knowledge base
to the one that each participant system has built.
The knowledge base associates bacterial taxa with
habitat categories. The taxon-habitat category as-
sociations are obtained from text-bound Lives In
event arguments assigned to taxa and habitat cate-
gories. Duplicate associations are removed to gen-
erate the knowledge base so that a single associa-
tion remains between a given taxon and a given
habitat category. We applied this procedure to the
set of reference events and categories to generate
the reference knowledge base and to the events and
categories predicted by the participant systems in
the same way.

The goal of the BB-kb is to assess how much
knowledge a system can extract from a collection
of documents. The measure of the exact match be-
tween the predicted knowledge base and the ref-
erence knowledge base would be too strict and
would not satisfy this goal. Thus we designed a
measure that evaluate the similarity between the
two knowledge bases

Each predicted association is paired to the clos-
est reference association using the similarity func-
tions of BB-cat. This process results in each ref-
erence association paired to zero (false negative),
one, or several predicted associations. Then we
can measure the accuracy by which each reference
association was found. If the association is not
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paired to any prediction, then its accuracy is zero,
otherwise the accuracy is the mean of the similar-
ity to each prediction. The submissions are evalu-
ated by the mean accuracy for each reference asso-
ciation (mean references). The ” mean references”
score computes how much the predicted knowl-
edge base maps into the reference knowledge base.

Since the evaluation does not rely on text-bound
annotations, the BB-kb+ner was evaluated with
the same metrics as BB-kb.

6 Results

A total of 14 teams participated in Bacteria
Biotope 2016. They were from several coun-
tries: Turkey (BOUN), France (LIMSI), Denmark
(TagIt), Canada (VERSE), Finland (TurkuNLP,
UTS, UMS) and China (DUTIR, WhuNlpRE, HK,
whunlp, WXU). Two participants retracted their
submissions (they correspond to blank lines in re-
sult tables). We present the results obtained by the
participating teams. Detailed results are available
on the task page9.

6.1 Performance on BB-cat / BB-cat+ner
The results of systems that participated to BB-cat
(2 teams) and BB-cat+ner subtasks (3 teams) are
given in Table 6 and 7, respectively.

Team Prec.
all

Prec.
Bacteria

Prec.
Habitat

Prec.
Multi cat.

BOUN 0.679 0.801 0.620 0.486
LIMSI 0.503 0.637 0.438 0.516

Table 6: Team results for the BB-cat task (” Prec.”
= ” Precision”; ” Multi cat.” = ” Multiple catego-
rizations”)

BOUN achieved the best performance for the
categorization task (BB-cat) with 0.679 precision.
As expected, performance was much higher for
the categorization of Bacteria entities (0.801 for
the best precision) than for that of Habitat enti-
ties (0.62). Bacteria are usually referred to us-
ing names from the NCBI taxonomy with a few
variations, while Habitats are mainly noun and ad-
jectival phrases that are expressed in many ways
and may be very different from their concept la-
bel form. Moreover, Habitats may be catego-
rized using several ontology concepts, which cre-
ates an additional difficulty. The last column of
Table 6 shows results for multiple categorization

9http://2016.bionlp-st.org/tasks/bb2/
bb3-evaluation

cases. The LIMSI team obtained stable perfor-
mance while the BOUN team performed signifi-
cantly lower than for all entities (0.486 vs. 0.679).

When taking into account entity recognition in
addition to categorization (BB-cat+ner, Table 7),
TagIt achieved the best SER (0.628), and the dif-
ference between the top and last teams is signif-
icant (0.27 points). As for the BB-cat task, sys-
tems performed better on Bacteria entities than
on Habitat entities. We also assessed the perfor-
mance of entity recognition (without taking into
account categorization), i.e., systems are evaluated
for their ability to predict entity boundaries in the
text (see the bottom part of Table 7). The results
of boundary detection also reflect the difference in
difficulty between Habitat and Bacteria entities.

Compared to the Bacteria Biotope 2013 edition,
the performance seems to have dropped. The best
SER for Habitat entity recognition and categoriza-
tion was 0.661 (Bossy et al., 2015), while it is
0.775 this year. This may be due to the change of
document source, i.e., scientific dense documents
instead of general purpose web pages. It may also
be due to the higher proportion of cases of multiple
category assignments, while these cases remained
marginal in the 2013 edition. Another reason
may be the high number of clinical studies where
the distinction between categories (e.g., treated
and non-treated patients, pediatric and adult pa-
tients) may require a more thorough analysis of
the event context. Therefore the task also entails
co-reference resolution.

TagIt LIMSI whunlp

Overall
SER 0.628 0.827 0.901
Recall 0.456 0.361 0.273
Precision 0.612 0.486 0.407

Bacteria
SER 0.399 0.771 0.823
Recall 0.692 0.539 0.397
Precision 0.857 0.623 0.637

Habitat
SER 0.775 0.862 0.950
Recall 0.303 0.246 0.193
Precision 0.430 0.371 0.275

Bacteria
boundaries

SER 0.236 0.277 0.436
Recall 0.772 0.751 0.565
Precision 0.954 0.903 0.893

Habitat
boundaries

SER 0.599 0.597 0.627
Recall 0.476 0.504 0.493
Precision 0.675 0.728 0.690

Table 7: Team results for the BB-cat+ner task

6.2 Performance on BB-event / BB-event+ner
Among subtasks, the event extraction subtask
(more specifically the BB-event task) attracted the
most participants, with a total of eleven differ-
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ent teams, three of which participated in the BB-
event+ner subtask and eleven in the BB-event sub-
task. Tables 8 and 9 show team performances on
BB-event and BB-event+ner tasks respectively.

VERSE obtained the highest F1 score for the
BB-event task (0.558). The difference between
the top and last teams is only 0.10 points and par-
ticipants ranked 4th to 11th obtained very simi-
lar results (ranging from 0.474 to 0.455 F1 score).
All participants achieved better performance when
predicting Lives in events with Geographical ar-
guments than events with Habitat arguments (5th
and 6th columns of Table 8), although events with
Geographical arguments are less frequent. The
reason could be that most of Geographical enti-
ties are linked to a Bacteria entity, which makes
the decision easier than for Habitat entities, for
which there are many occurrences that are not in-
volved in any Lives in event.

Not surprisingly systems had less trouble pre-
dicting intra-sentence events than inter-sentence
events, as all yielded significantly higher F1 score
on intra-sentence events (see last column of Ta-
ble 8). Detailed analysis of the predictions made
by the systems shows that LIMSI was the only
team to consistently predict inter-sentence events.
Other systems predicted roughly the same num-
ber of events when considering only intra-sentence
events or all events together in the evaluation.

There is a drastic drop in performance when
adding entity recognition to the event extraction
task (BB-event+ner task, see Table 9). All three
participating teams obtained very similar results
in terms of F1 score, although the balance be-
tween precision and recall differs. The LIMSI
team (ranked 1st) achieved a perfect balance be-
tween precision and recall, while UTS and the
WhuNlpRE team obtained much higher precision
but lower recall. As for the BB-event task, per-
formances are significantly higher for Lives in
events involving Geographical entities, and intra-
sentence events.

For both tasks, systems performed better in av-
erage than in the 2013 edition. Indeed, the best F1
scores (Bossy et al., 2015) were 0.49 for the detec-
tion of localization events (vs. 0.558 for Lives in
events in this edition) and 0.14 for the combi-
nation of entity recognition and event extraction
(vs. 0.19). This suggests that participant methods
have improved and become more accurate. How-
ever, the F1-score for BB-event+ner remains rel-

atively low, which directly results from the com-
bined complexity of the two sub-problems in the
same task.

6.3 Performance on BB-kb / BB-kb+ner

Only the LIMSI team participated in the knowl-
edge base extraction subtask. Results are given
in Table 10 for both the BB-kb and BB-kb+ner
tasks. The LIMSI system for BB-cat (Table 6) and
BB-event (Table 8) provides a good reconstruc-
tion of the knowledge base (BB-kb) which high-
lights the fact that automatic categorization and
event extraction methods are already efficient for
the task of knowledge base construction. How-
ever, the performance is significantly lower when
reference entities are not provided. This large gap
in performance may be explained by the difficulty
of recognizing entities (as also shown in the BB-
cat+ner task), and the fact that a fair amount of en-
tities is not repeated in the corpus. Consequently
the false negatives in entity detection have a strong
impact on the end-to-end task of knowledge base
construction.

LIMSI UTS WhuNlpRE
F1 0.192 0.190 0.182
Recall 0.191 0.133 0.111
Precision 0.193 0.331 0.498
F1 (Habitat) 0.186 0.174 0.196
F1 (Geographical) 0.283 0.350 NA
F1 (Intra-sentence) 0.286 0.234 0.232

Table 9: Team results for the BB-event+ner task

BB-kb BB-kb+ner
LIMSI 0.771 0.202

Table 10: Results for BB-kb and BB-kb+ner
(mean-references measure)

6.4 Systems

Systems used different resources and methods de-
pending on the sub-tasks.

Entity Detection and Categorization. Sys-
tems used dictionary-based (TagIt) and machine-
learning based (LIMSI, WhuNlpRE, UTS) meth-
ods to detect entity mentions in text in the BB-
cat+ner and BB-event+ner subtasks. All relied on
existing terminology and ontology resources, in-
cluding the NCBI Taxonomy, the List of Prokary-
otic Names with Standing in Nomenclature (Parte,
2013), the Brenda Tissue Ontology (Gremse et al.,
2011), the Environment Ontology (Buttigieg et al.,
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2013), the OntoBiotope ontology, and WordNet
(Fellbaum, 1998). The TagIt system performed
dictionary matching coupled with acronym detec-
tion and heuristic rules to adjust entity bound-
aries. The LIMSI team used conditional random
fields (CRFs) and the WhuNlpRE team used neu-
ral networks. Both these teams generated rich fea-
tures for their machine-learning algorithms: lex-
ical, morpho-syntactic, dictionary projection, ex-
isting named entity recognition tools, Brown clus-
tering, and word embeddings. The UTS team
relied on Support Vector Machines (SVM) with
features based on the output of existing NER
tools provided by the organizers as supporting re-
sources. The rule-based approach of the TagIt sys-
tem achieved the highest performance in entity de-
tection and categorization (BB-cat+ner), although
the CRF approach of the LIMSI system was the
most accurate in Habitat boundary detection.

Teams relied on rule-based (TagIt, LIMSI) and
similarity-based (BOUN) approaches to catego-
rize entities in the BB-cat and BB-cat+ner sub-
tasks. The TagIt system performed entity cate-
gorization jointly with entity detection using dic-
tionaries and rules. The BOUN team combined
approximate string matching (edit distance) with
an Information Retrieval based bag-of-word ap-
proach (cosine similarity of word vectors weighted
with the tf-idf). This approach was the most suc-
cessful in the BB-cat.

Prediction of Events. All systems used
machine-learning to predict Lives in events. The
most popular algorithms are SVM (VERSE, HK,
UTS, LIMSI) and neural networks (TurkuNLP,
WhuNlpRE, DUTIR). UMS combined predictions
from a SVM and a neural network. Most sys-
tems rely on syntactic parsing to generate features
(VERSE, TurkuNLP, UMS, HK, DUTIR, UTS).
Other common features included part-of-speech
tags, word embeddings (trained on large corpora,
e.g., large sets of PubMed abstracts), and entity
recognition. Rankings do not show any correlation
to the machine learning algorithm, for instance the
top ranking is based on SVM and the second is
based on neural networks. Therefore, no conclu-
sion can be drawn on the most appropriate class of
methods. The quality of the predictions seems to
rely mainly on the feature design, i.e., what types
of feature were used by the systems. To this re-
spect the two top ranking systems have syntac-
tic parsing-based features. More specifically, they

both generate features based on the dependency
path between entities.

7 Conclusion

The interest for the Bacteria Biotope Task keeps
growing with a total of 14 teams participating in
this third edition, and showing very promising re-
sults. 11 teams participated in the event extrac-
tion task (BB-event), demonstrating the interest of
the NLP community for this challenging subject.
For this event detection task, the most commonly
used methods were SVMs and neural networks,
and they yielded higher performance than during
the 2013 edition of the task. However, a detailed
analysis of the results showed that inter-sentence
events still remain a challenge and are ignored by
most systems. The other BB tasks, i.e. entity de-
tection and categorization and knowledge base ex-
traction, attracted fewer participants in compari-
son to event extraction. Knowledge base popu-
lation was the most challenging task, since it re-
quired a large range of skills.

To help participants, supporting resources were
provided but they were not much used. A more
thorough investigation is needed to better under-
stand the needs of participants in terms of external
resources. The introduction of the online evalua-
tion service with detailed metrics appears to have
facilitated the development cycle of predictive sys-
tems. This service will be maintained online al-
lowing for future experiments and comparisons
with BB’16 data.
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BB-cat BB-cat+ner
Train Dev Test Total Train Dev Test Total

Documents 71 36 54 161 71 36 54 161
Words 16,295 8,890 13,797 38,982 16,295 8,890 13,933 39,118
Bacteria 375 244 347 966 375 244 401 1,020
Habitat 747 454 720 1,921 747 454 621 1,822
Total entities 1,122 698 1,067 2,887 1,122 698 1,022 2,842
Distinct Bacteria 167 111 146 364 167 111 181 393
Distinct Habitat 476 267 478 1,125 476 267 416 1,073
Total distinct entities 643 378 624 1,489 643 378 597 1,466
Bacteria categories 376 245 347 968 376 245 401 1,022
Habitat categories 825 535 861 2,221 825 535 681 2,041
Total categories 1,201 780 1,208 3,189 1,201 780 1,082 3,063
Distinct Bacteria categories 85 70 80 190 85 70 87 193
Distinct Habitat categories 210 122 177 329 210 122 168 341
Total distinct categories 295 192 257 519 295 192 255 534

Table 3: Descriptive statistics of the corpus for BB-cat and BB-cat+ner

BB-event BB-event+ner
Train Dev Test Total Train Dev Test Total

Documents 61 34 51 146 71 36 54 161
Words 13,850 8,491 13,039 35,380 16,295 8,890 13,933 39,118
Bacteria 358 238 336 932 375 244 401 1,020
Habitat 687 454 720 1,861 747 454 621 1,822
Geographical 35 38 37 110 36 38 27 101
Total entities 1,080 730 1,093 2,903 1,158 736 1,049 2,943
Lives in events (Habitat) 294 186 312 792 294 186 288 768
Lives in events (Geog.) 33 37 28 98 33 37 26 96
Intra-sentence events 240 165 248 653 240 165 231 636
Inter-sentence events 87 58 92 237 87 58 83 228
Total Lives in events 327 223 340 890 327 223 314 864

Table 4: Descriptive statistics of the corpus for BB-event and BB-event+ner

BB-kb BB-kb+ner
Train Dev Test Total Train Dev Test Total

Documents 61 34 50 145 71 36 54 161
Words 13,850 8,491 12,758 35,099 16,295 8,890 13,933 39,118
Bacteria 358 238 330 926 375 244 401 1,020
Habitat 687 454 720 1,861 747 454 621 1,822
Total entities 1,045 692 1,050 2,787 1,122 698 1,022 2,842
Bacteria categories 359 239 330 928 376 245 401 1,022
Habitat categories 765 535 861 2,161 825 535 681 2,041
Total categories 1,124 774 1,191 3,089 1,201 780 1,082 3,063
Distinct Bacteria categories 81 69 77 183 85 70 87 193
Distinct Habitat categories 197 122 177 317 210 122 168 341
Total distinct categories 278 191 254 500 295 192 255 534
Lives in events 294 186 312 792 294 186 288 768
Distinct Lives in events 204 156 185 522 204 156 183 524

Table 5: Descriptive statistics of the corpus for BB-kb and BB-kb+ner

Team F1 Recall Precision F1 (Habitat) F1 ( Geo.) F1 (Intra-sentence)
VERSE 0.558 0.615 0.510 0.545 0.714 0.634
TurkuNLP 0.521 0.448 0.623 0.499 0.755 0.620
LIMSI 0.485 0.646 0.388 0.482 0.525 0.636
HK 0.474 0.392 0.599 0.452 0.708 0.567
WhuNlpRE 0.471 0.407 0.559 0.471 0.465 0.561
UMS 0.463 0.399 0.551 0.439 0.704 0.550
DUTIR 0.456 0.382 0.566 0.451 0.512 0.544
WXU 0.455 0.383 0.560 0.445 0.578 0.540

UTS 0.451 0.382 0.551 0.425 0.704 0.537

Table 8: Team results for the BB-event task
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