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Abstract

Causal precedence between biochemical
interactions is crucial in the biomedi-
cal domain, because it transforms collec-
tions of individual interactions, e.g., bind-
ings and phosphorylations, into the causal
mechanisms needed to inform meaning-
ful search and inference. Here, we an-
alyze causal precedence in the biomedi-
cal domain as distinct from open-domain,
temporal precedence. First, we describe
a novel, hand-annotated text corpus of
causal precedence in the biomedical do-
main. Second, we use this corpus to inves-
tigate a battery of models of precedence,
covering rule-based, feature-based, and la-
tent representation models. The highest-
performing individual model achieved a
micro F1 of 43 points, approaching the
best performers on the simpler temporal-
only precedence tasks. Feature-based and
latent representation models each outper-
form the rule-based models, but their per-
formance is complementary to one an-
other. We apply a sieve-based architec-
ture to capitalize on this lack of overlap,
achieving a micro F1 score of 46 points.

1 Introduction

In the biomedical domain, an enormous amount
of information about protein, gene, and drug in-
teractions appears in the form of natural language
across millions of academic papers. There is a
tremendous ongoing effort (Nédellec et al., 2013;
Kim et al., 2012; Kim et al., 2009) to extract indi-
vidual chemical interactions from these texts, but
these interactions are only isolated fragments of
larger causal mechanisms such as protein signal-
ing pathways. Nowhere, however, including any

database, is the complete mechanism described in
a form that lends itself to causal search or infer-
ence. The absence of such a database is not for
lack of trying; Pathway Commons (Cerami et al.,
2011) aims to address the need, but its authors esti-
mate it currently covers 1% of the literature due to
the high cost of annotation1. This issue only grows
more pressing with the yearly growth in biomedi-
cal publishing, which presents an otherwise insur-
mountable challenge for biomedical researchers to
query and interpret.

The Big Mechanism program (Cohen, 2015)
aims to construct exactly such large-scale mecha-
nistic information by reading and assembling pro-
tein signaling pathways that are relevant for can-
cer, and exploit them to generate novel explana-
tory and treatment hypotheses. Although prior
work (Chambers et al., 2014; Mirza, 2016) has
addressed the challenging area of temporal prece-
dence in the open domain, the biomedical domain
presents very different data and, consequently, re-
quires novel techniques. Precedence in mech-
anistic biology is causal rather than temporal.
Though event temporality is crucial to understand-
ing electronic health records for individual pa-
tients (Bethard et al., 2015; Bethard et al., 2016),
its contribution to the understanding of biomolec-
ular reactions is less clear as these events and pro-
cesses may repeat in extremely short cycles, con-
tinue without end, or overlap in time. At any level
of abstraction, causal precedence encodes mech-
anistic information and facilitates inference over
spotty evidence. For the purpose of this work,
precedence is defined for two events, A and B, as

A precedes B if and only if the output of
A is necessary for the successful execu-
tion of B.2

1Personal communication.
2See the “precedes” examples in Table 1.
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Very little annotated data exists for causal
precedence, especially efforts focusing on signal-
ing pathways. BioCause (Mihăilă et al., 2013),
for instance, is centered on connections between
claims and evidence and contains only 51 an-
notated examples of causal precedence3. Our
work4 offers three contributions in aid of auto-
matically extracting causal ordering in biomedical
text. First, we provide and describe a dataset of
real text examples, manually annotated for causal
precedence. Second, we analyze the efficacy of
a battery of different models in automatically de-
termining precedence, built on top of the Reach
automatic reading system (Valenzuela-Escárcega
et al., 2015a; Valenzuela-Escárcega et al., 2015c)
and measured against this novel corpus. In partic-
ular, we investigate three classes of models: (a)
deterministic rule-based models inspired by the
precedence sieves proposed by Chambers et al.
(2014), (b) feature-based models, and (c) mod-
els that rely on latent representations such as long
short-term memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997). Our analysis indi-
cates that while independently the top-performing
model achieves a micro F1 of 43, these models are
largely complementary with a combined recall of
58 points. Lastly, we conduct an error analysis
of these models to motivate and inform future re-
search.

2 A Corpus for Causal Precedence in the
Biomedical Domain

Our corpus annotates several types of relations
between mentions of biochemical interactions.
Following common terminology promoted by
the BioNLP shared tasks, we will interchange-
ably use “events” to refer to these interactions.
To generate candidate events for our planned
annotations, we ran the Reach event extrac-
tion system (Valenzuela-Escárcega et al., 2015a;
Valenzuela-Escárcega et al., 2015c) over the full
text5 of 500 biomedical papers taken from the

3These are marked in the BioCause corpus as
Causality events with Cause and Effect argu-
ments. The remaining 800 annotations are claim-evidence
relations.

4The corpus, tools, and system introduced in this
work are publicly available at https://github.com/
myedibleenso/this-before-that

5We chose to ignore the “references”, “materials”, and
“methods” sections, which generally do not contain mech-
anistic information.

Relation Example

E1 precedes E2 A is phosphorylated by B.
Following its phosphorylation, A
binds with C.

E2 precedes E1 A is phosphorylated by B.
Prior to its phosphorylation, A binds
with D.

Equivalent The phosphorylation of A by B.
A is phosphorylated by B.

E1 specifies E2 A is phosphorylated by B at Site 123.
A is phosphorylated by B.

E2 specifies E1 A is phosphorylated by B.
A is phosphorylated by B at Site 123.

Other B does not regulate C when C is
bound to A.

None A phosphorylates B.
A ubiquitinates C.

Table 1: The seven inter-event relation labels an-
notated in the corpus. The “precedes” labels are
causal. Subsumption is captured with the “speci-
fies” labels.

Open Access subset of PubMed6. The events ex-
tracted by Reach are biochemical events of two
types: simple events such as phosphorylation that
modify one or more entities (typically proteins),
and nested events (regulations) that have other
events as arguments.

To improve the likelihood of finding pairs of
events with a relevant link, we filtered event pairs
by imposing the following requirements for inclu-
sion in the corpus:

1. Event pairs must share at least one partic-
ipant. This constraint is based on the obser-
vation that interactions that share participants
are more likely to be connected.

2. Event pairs must be within 1 sentence of
each other. Similarly, discourse proximity in-
creases the likelihood of two events being re-
lated.

3. Event pairs must not share the same type.
This helps to maximize the diversity of the
dataset.

4. Event pairs must not already be contained
in an extracted Regulation event. For ex-
ample, we did not annotate the relation be-
tween the binding and the phosphorylation
events in “The binding of X and Y is inhibited

6http://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/
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by X phosphorylation”, because it is already
captured by most state-of-the-art biomedical
event extraction systems.

After applying these constraints, only 1700
event pairs remained. In order to rapidly anno-
tate the event pairs, we developed a browser-based
annotation UI that is completely client-side (see
Figure 3). Using this tool, we annotated 1000
event pairs for this work; 84 of these were dis-
carded due to severe extraction errors. The an-
notations include the event spans, event triggers
(i.e., the verbal or nominal predicates that indicate
the type of interaction such as “binding” or “phos-
phorylated”), source document, minimal senten-
tial span encompassing both event mentions, and
whether or not the event pair involves coreference
for either the event trigger or the event partici-
pants. For events requiring coreference resolution,
we expanded the encompassing span of text to also
capture the antecedent. Note that domain-specific
coreference resolution is a component of the event
extraction system used here (Bell et al., 2016).

When describing the relations between these
event pairs, we refer to the event that occurs first
in text as Event 1 (E1) and the event that follows
as Event 2 (E2). Each (E1, E2) pair was assigned
one of seven labels: “E1 precedes E2”, “E2 pre-
cedes E1”, “Equivalent”, “E1 specifies E2”, “E2
specifies E1”, “Other”, or “None”. Table 1 pro-
vides examples for each of these labels. We con-
verged on these labels because they are fundamen-
tal to the assembly of causal mechanisms from a
collection of events. Collectively, the seven labels
address three important assembly tasks: equiva-
lence, i.e., understanding that two event mentions
discuss the same event, subsumption, i.e., the two
mentions discuss the same event, but one is more
specific than the other, and, most importantly,
causal precedence, the identification of which is
the focus of this work. During the annotation pro-
cess, we came across examples of other relevant
phenomena. We grouped these instances under the
label “Other” and leave their analysis for future
work.

Though simplified, the examples in Table 3 il-
lustrate that this is a complex task sensitive to lin-
guistic evidence. For example, the direction of the
precedence relations in the first two rows in the ta-
ble changes based on a single word in the context
(“prior” vs. “following”).

In terms of the distribution of relations, causal

Figure 1: The distribution of assembly relation la-
bels both within and across sentences.

Figure 2: The distribution of event pairs involving
coreference across assembly relations.

precedence pairs appear more frequently within
the same sentence, while cases of the subsump-
tion (“specifies”) and equivalence relations are far
more common across sentences (see Figure 1).
Coreference is involved in 10–15% of the in-
stances for each relation label (see Figure 2).

The annotation process was performed by two
linguists familiar with the biomedical domain. To
minimize errors, the annotation task was initially
performed together at the same workstation.7 On
a randomly selected sample of 100 event pairs, the
two annotators had a Cohen’s kappa score (Cohen,
1960) of 0.82, indicating “almost perfect” agree-
ment for the precedes labels (Landis and Koch,
1977).

3 Models of Causal Precedence

We have developed both deterministic, inter-
pretable models and automatic, machine-learning
models for detecting causal precedence in our
dataset. Importantly, the models covered in this
work focus solely on causal precedence, which is
the most complex relation annotated in the dataset
previously introduced. Thus, for all experiments
discussed here, we reduce these annotations to
three labels: “E1 precedes E2”, “E2 precedes E1”,
and Nil, which covers all the other labels in the

7Similar to pair programming.
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Figure 3: Browser-based tool for annotating assembly relations in text. An annotation instance consists
of a pair of event mentions. The annotator assigns a label to each pair of events using the number keys
and navigates from annotation to annotation using the arrow keys. E1 refers to the event in the pair
that appears first in the text. The event span is formatted to stand out from the surrounding text. The
“Paper” field provides the annotator with easy access to the full text of the source document for the
current annotation instance. Annotations can be exported to JSON and reloaded via a local storage cache
or through file upload.

corpus.

Model Rules

Intra-sentence 29
Inter-sentence 5
Reichenbach 8

Table 2: Few rules defined each deterministic
model of precedence compared with the number
of features for the machine learning models.

3.1 Deterministic Models

The deterministic models are defined by a small
number of hand-written rules using the Odin event
extraction framework (Valenzuela-Escárcega et
al., 2015b). The number of rules for each model
is shown in Table 2, and sharply contrast with the
92,711 features introduced later (Table 3) that are
used by our machine-learning models. In order to
avoid overfitting, all of the deterministic models
were created without reference to the annotation
corpus, using general linguistic expertise and do-
main knowledge.

Intra-sentence ordering Within sentences,
syntactic regularities can be exploited to cover a
large variety of grammatical constructions indi-
cating precedence relations. Rules defined over
dependency parses (De Marneffe and Manning,
2008) capture precedence in sentences like those
in (1) and (2) as well as many others.

(1) [The RBD of PI3KC2B binds HRAS]after ,
when [HRAS is not bound to GTP]before

(2) [The ubiquitination of A]before is followed
by [the phosphorylation of B]after

Other phrases captured include: “precedes”, “due
to”, “leads to”, “results in”, etc.

Inter-sentence ordering Although syntax oper-
ates over single sentences, cross-sentence time ex-
pressions can indicate ordering, as shown in Ex-
amples (3) and (4). We exploit these regularities
as well by checking for sentence-initial word com-
binations.

(3) [A is phosphorylated by B]before. As a
downstream effect, [C is . . . ]after

(4) [A is phosphorylated by B]before. [C is then
. . . ]after

Other phrases captured include: “Later”, “In re-
sponse”, “For this”, and “Ultimately”.

Verbal tense- and aspect-based (Reichenbach)
ordering Following Chambers et al. (2014), we
use deterministic rules to establish precedence be-
tween events that have certain verbal tense and as-
pect. These rules are derived from linguistic anal-
ysis of tense and aspect by (Reichenbach, 1947;
Derczynski and Gaizauskas, 2013). Example (5)
illustrates a case in which we can accurately in-
fer order just from this information. Because has
been phosphorylated has past tense and perfective
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aspect, this model concludes that it precedes share
(present tense, simple aspect) and thus the binding
of histone H2A.

(5) These [PTIP] proteins also share the
ability to bind histone H2A (or H2AX
in mammals) that has been phosphory-
lated. . . .

The logic determining which tense-aspect com-
binations receive which precedence relations is
identical to CAEVO, which is possible because it
is open source8. However, CAEVO operates over
annotations that include gold tense and aspect val-
ues, whereas this model additionally detects tense
and aspect using Odin rules before applying this
logic.

3.2 Feature-based Models

Most instances of causal precedence cannot be
captured with deterministic rules, because they
lack explicit words, phrases, or syntactic struc-
tures that unambiguously mark the relation. Using
a combination of the surface, syntactic, and tax-
onomic features outlined in Table 3, we trained a
set of statistical classifiers to detect causal prece-
dence relations between pairs of events in our cor-
pus. For training and testing purposes, we treated
any instance not labeled as either “E1 precedes
E2” or “E2 precedes E1” as a negative example.
We examined the following statistical models: a
linear kernel SVM (Chang and Lin, 2011), logis-
tic regression (Fan et al., 2008), and random for-
est9 (Surdeanu et al., 2014). For the SVM and lo-
gistic regression (LR) models, we also compared
the effects of L1 and L2 regularization.

3.3 Latent Representation Models

Due to the complexity of the task and variety
of causal precedence instances encountered dur-
ing the annotation process, it is unclear whether
a linear combination of engineered features is
sufficient for broad coverage classification. For
this reason, we introduce a latent feature repre-
sentation model using an LSTM (Hochreiter and
Schmidhuber, 1997; Bergstra et al., 2010; Chol-
let, 2015) to capture underlying semantic features
by incorporating long-distance contextual infor-
mation and selectively persisting memory of pre-
vious event pairs to aid in classification.

8https://github.com/nchambers/caevo
9Abbreviated as RF

The basic architecture is shown in Figure 5. The
input to this model is the provenance of the rela-
tion, i.e., the whole text containing the two events
and the text in between. Formally, this is repre-
sented as a concatenated sequence of 200 dimen-
sional vectors where each vector in the sequence
corresponds to a token in the minimal sentential
span encompassing the event pair being classified.
Intuitively, this LSTM “reads” the text from left
to right and outputs a classification label from the
set of three when done. We consider two vari-
ations of this model: the basic model (LSTM)
with the vector weights for each token uninitial-
ized and a second form (LSTM+P) where the vec-
tors are initialized using pre-training. In the pre-
training configuration, the vector weights are ini-
tialized using word embeddings generated by a
word2vec (Mikolov et al., 2013; Řehůřek and So-
jka, 2010) model trained on the full text of over
1 million biomedical papers taken from the Open
Access subset of PubMed. Because the corpus
is only 1000 annotations, it was thought that pre-
training could improve prediction of causal prece-
dence and guide the model with distributional se-
mantic representations specific to this domain.

Building on this simple blueprint, we designed
a three-pronged “pitchfork” (FLSTM) where the
span of E1, the span of E2, and the minimal sen-
tential span encompassing E1 and E2 each serve as
a separate input, allowing the model to explicitly
address each of them as well as discover how these
three inputs relate to one another. This architec-
ture is shown in Figure 6. Each input feeds into its
own LSTM and corresponding dropout layer be-
fore the three forks are merged via a concatena-
tion of tensors. Like the basic model, one version
of the “pitchfork” is trained with vector weights
initialized using the pre-trained word embeddings
(FLSTM+P).

4 Results

We summarize the performance of all these mod-
els on the dataset previously introduced in Table 4.
We report results using micro precision, recall,
and F1 scores for each model. With fewer than
200 instances of causal precedence occurring in
1000 annotations, training and testing for both the
feature-based classifiers and latent feature mod-
els was performed using stratified 10-fold cross
validation. For the latent feature models, train-
ing was parameterized using a maximum of 100
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Feature Description

Event

Event labels The taxonomic labels Reach assigned to the event (e.g. phosphorylation→ Phosphorylation, AdditiveEvent, . . . ).

Event trigger The predicate signaling an event mention (ex. “phosphorylated”, “phosphorylation”).

Event trigger + label A concatenation of the event’s trigger with the event’s label.

token n-grams with
entity replacement

n-grams of the tokens in the mention span, where each entity is replaced with the entity label (ex. “the ABC
protein”→ “the PROTEIN”). If an entity is shared between pairs of events, replace it with the label SHARED.

token n-grams with
role replacement

n-grams of the tokens in the mention span, where each argument is replaced with the argument role (ex. “A inhibits
the phosphorylation of B”→ “CONTROLLER inhibits the CONTROLLED”)

Syntactic path from
trigger to args

Variations of the syntactic dependency path from an event’s trigger to each of its arguments (unlexicalized path,
path + lemmas, trigger→ argument role, trigger→ argument label, etc.).

Event-Event
(surface)

Interceding tokens
(n-grams)

n-grams (1-3) of the tokens between E1 and E2.

Event-Event
(syntax)

Cross-sentence
syntactic paths

A concatenation of the syntactic path from the sentential ROOT to an event’s trigger (see the example in Figure 4).

Trigger-to-trigger
syntactic paths
(within sentence)

the syntactic path from the trigger of E1 to the trigger of E2

Shortest syntactic
paths

The shortest syntactic path between E1 and E2 (restricted to intra-sentence cases).

Syntactic distance The length of each syntactic path (restricted to intra-sentence cases).

Coreference

Event features for
anaphors

Whether or not an event mention is resolved through coreference. For cases of coreference, generate the Event
features prefixed with “coref-anaphor” for the text labeled “E1-anaphor” in the following example:

(6) [A binds with B]E1-antecedent

(7) [This interaction]E1-anaphor precedes the [phosphorylation of C]E2

Resolved arguments Which arguments, if any, were resolved through coreference. For example:
[The mutantTHEME binds with BTHEME]E1 → THEME:resolved

Table 3: An overview of the primary features used in the feature-based classifier, grouped into four
classes: Event – features extracted from the two participating events, in isolation; Event-Event (surface)
– features that model the lexical context between the two events; Event-Event (syntax) – features that
model the syntactic context between the two events; and Coreference – features that capture coreference
resolution information that impact the participating events.

In addition, binding of nucleotide-free Ras to PI3KC2β inhibits its lipid kinase activity. The PI3KC2β and Ras
complex may then translocate to distal sites such as early endosomes (EE) where ITSN1 then binds to PI3KC2β
leading to the release of nucleotide-free Ras and activation of the lipid kinase activity of PI3KC2β.

IN NN , NN IN JJ NN TO NN PRP$ NN NN NN .
In addition , binding of nucleotide-free Ras to PI3KC2beta inhibits lipid kinase activity .

root
nsubj

THEME

THEME

NN MD RB VB TO JJ NNS JJ IN JJ NNS NN RB VBZ TO NN
. . . complex may then translocate to distal sites such as early endosomes . . . ITSN1 then binds to PI3KC2beta . . .

root

prep to prep such as rcmod

THEME

THEME

ROOT >NSUBJ + ROOT >PREP TO >PREP SUCH AS >RCMOD

Figure 4: Generation procedure for the cross-sentence syntactic path feature. For each event in a pair, we
find the shortest syntactic path originating from the sentential root node leading to a token in the event’s
trigger. The two syntactic paths are then joined using the + symbol to form a single feature.
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Input
(tokenized text)

Embeddings
(optional pre-trained weights)

Dropout
(50%)

Dense
(dim. 3)

Softmax

concatenated vectors

Figure 5: Architecture for the basic latent feature
model using the minimal sentential span encom-
passing events 1 and 2 as input.

Input 1
E1 tokenized

text

Embeddings

LSTM

Dropout

Input 2
Encompassing

tokenized text

Embeddings

LSTM

Dropout

Input 3
E2 tokenized

text

Embeddings

LSTM

Dropout

Merge
(concat)

Dropout

Dense

Softmax

Figure 6: Modified architecture for a latent feature
model with three-pronged input: the text of event
1 (left), the minimal sentential span encompassing
events 1 and 2 (middle), and the text of event 2
(right).

epochs with support for early stopping through
monitoring of validation loss10. Weight updates
were made on batches of 32 examples and all folds
completed in fewer than 50 epochs.

The table also includes a sieve-based ensemble
system, which performs significantly better than
the best-performing single model. In this archi-
tecture, the sieves are applied in descending order

10The validation set used for each fold came from a differ-
ent class-balanced fold.

of precision, so that the positive predictions of the
higher precision sieves will always be preferred
to contradictory predictions made by subsequent,
lower-precision sieves. Figure 7 illustrates that as
sieves are added, the F1 score remains fairly con-
stant, while recall increases at the cost of preci-
sion.

Model p r f1

Intra-sentence 0.5 0.01 0.01
Inter-sentence 0.5 0.01 0.01
Reichenbach 0 0 0

LR+L1 0.58 0.32 0.41
LR+L2 0.65 0.26 0.37
SVM+L1 0.54 0.35 0.43
SVM+L2 0.54 0.29 0.38
RF 0.62 0.25 0.36

LSTM 0.40 0.25 0.31
LSTM+P 0.39 0.20 0.26
FLSTM 0.43 0.15 0.22
FLSTM+P 0.38 0.22 0.28

Combined 0.38 0.58 0.46*

Table 4: Results of all proposed causal models,
using stratified 10-fold cross-validation. The com-
bined system is a sieve-based architecture that ap-
plies the models in decreasing order of their pre-
cision. The combined system significantly outper-
forms the best single model, SVM with L1 regu-
larization, according to a bootstrap resampling test
(p = 0.022).

Despite some obvious patterns noted in Table 1,
the deterministic models perform the worst due in
large part to their rarity in the corpus. An anal-
ysis of this result is given in Section 5. Over-
all, our top-performing model was the linear ker-
nel SVM with L1 regularization. In all cases, the
feature-based classifiers outperform the latent fea-
ture representations, suggesting that in cases such
as this where little data is available, feature-based
classifiers capitalizing on high-level linguistic fea-
tures are able to better generalize and thus outper-
form latent feature models. However, as our dis-
cussion in Section 5.1 will show, our combined
model demonstrates that the latent and feature-
based models are largely complementary.
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Figure 7: The performance of the sieve-based
combined model varies with each model added.

5 Discussion

Overall, results are promising, particularly in light
of the conscious choice to omit (causal) regulation
reactions from this task, as they are already cap-
tured by the Reach reading system.

However, the deterministic models created so
far have extremely low recall, such that it is diffi-
cult even to determine their precision. An analysis
of the Reichenbach model reveals one source of
this low coverage. In short, although writers could
describe causal mechanisms using temporal indi-
cators such as tense and aspect, temporal descrip-
tion is rare enough in this domain not to be repre-
sented in our randomly sampled database. Table
5 illustrates the lack of overlap with informative
tense-aspect combinations; a single tense is used
per passage, and no perfective aspect is used.

E1↓, E2→ past pres. fut.
simple perf. simple perf. simple perf.

past simple 69 0 38 0 0 0
perf. 0 0 0 0 0 0

pres. simple 49 0 134 0 1 0
perf. 0 0 0 0 0 0

fut. simple 0 0 0 0 0 0
perf. 0 0 0 0 0 0

Table 5: Event tense and aspect for events contain-
ing verbs in the present study. Highlighted cells
are tense-aspect combinations that are informa-
tive for establishing temporal precedence, follow-
ing Chambers et al. (2014). All but one event pair
fall outside of these informative combinations, and
that exceptional pair was a false positive case.

Similarly, the time expressions required by the
deterministic intra- and inter-sentence precedence
rules are rare enough to make them ineffective on
this sample.

5.1 Model overlap

As Chambers et al. (2014), Mirza (2016), and
many other algorithms have shown, models can be
applied sequentially in “sieves” to produce higher-
quality output. Ideally, each model in a sieve-
based system will capture different portions of
the data through a mixture of approaches, distin-
guishing this method from more naive ensembles
in which the contributions of a lone component
would be washed out. Figure 8 details this ob-
servation by showing the coverage difference be-
tween the models described here.

4

3

9

4

1

16

2

2

13

3
14 0

1

6

6

LSTM LSTM+P

FLSTM FLSTM+P

(a) Overlap of true positive predictions made by LSTM mod-
els. Though in Table 4 the models appear to perform simi-
larly, the learned representations are largely distinct and com-
plementary in their coverage.

4334 472

Feature-basedLatent

Rules

(b) Similarly, the overlap between the feature-based models
and the latent models was low overall.

Figure 8: The overlap of true positives among the
investigated models was low.

5.2 Error analysis

We performed an analysis of the false positives
shared by all feature-based classifiers, in addition
to the false negatives shared by all models. Here
we limit our discussion to only the most promi-
nent characteristic shared by the majority of false
positives.

153



Discourse information More than half of the
false positives share contrastive discourse fea-
tures, suggesting that a model of discourse could
improve classifier discrimination. Example (8)
demonstrates such a contrastive structure, which
whereas introduces a clause (and event) that
is contrasted and therefore both temporally and
causally distinct from the following clause (and
event). The existence of regular cues like whereas
indicates that a feature to explicitly model these
structures is possible.

(8) Whereas [PRAS40 inhibits the mTORC1
activity via raptor]E1, DEPTOR was
identified to interact directly with
mTOR in both [mTORC1 and mTORC2
complexes]E2

6 Related Work

Though focused on temporal ordering, Cham-
bers et al. (2014) adopt a sieve-based approach,
with high-precision deterministic sieves preced-
ing and constraining lower-precision, higher-recall
machine learning sieves. As with our system, the
deterministic sieves were linguistically motivated,
and had the additional advantage of operating over
time expressions (during, Friday, etc.) as well as
events, the former of which are typically lacking
in the biomedical domain.

Mirza (2016) implemented a hybrid sieve-based
approach for causal relation detection between
events that includes a set of causal verb rules
and corresponding syntactic dependencies and a
feature-based classifier. However, both of these
works focus on open-domain texts. To our knowl-
edge, we are the first to investigate causal prece-
dence in the biomedical domain.

7 Conclusion

These are the first experiments regarding au-
tomatic annotation of causal precedence in the
biomedical domain. Although the dearth of tem-
poral expressions and other regular linguistic cues
make the task especially difficult in this domain,
the initial results are promising, and demonstrate
that a sieve-based system of the models tested here
improves performance over the top-performing in-
dividual component. Both the annotation cor-
pus and the models described here represent large
steps toward linking automatic reading to a larger,
more informative biological mechanism.
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Claudiu Mihăilă, Tomoko Ohta, Sampo Pyysalo, and
Sophia Ananiadou. 2013. Biocause: Annotating
and analysing causality in the biomedical domain.
BMC Bioinformatics, 14(1):1–18.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word repre-
sentations in vector space. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

Paramita Mirza. 2016. Extracting temporal and causal
relations between events.

Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-
Jae Kim, Tomoko Ohta, Sampo Pyysalo, and Pierre
Zweigenbaum. 2013. Overview of bionlp shared
task 2013. In Proceedings of the BioNLP Shared
Task 2013 Workshop, pages 1–7.
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