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Introduction

The past year has been an exciting and productive time for biomedical natural language processing. A
search for natural language processing or text mining in PubMed R©/MEDLINE R© limited to 2015 and
2016 returns over 800 results. The number of corpora available in the domain continues to increase, and
the past year has seen two hackathons devoted to biomedical corpora, with another two planned for this
coming year. A variety of shared tasks have led to increases in the shared knowledge of the community,
with more to come.

The high level of activity in biomedical natural language processing includes a number of good
conferences. Among those, the BioNLP meeting has now been ongoing for 15 years, and the quality of
submissions continues to impress the program committee and the organizers—and to increase. BioNLP
2016 received 38 exceptional submissions, of which 13 were accepted for oral presentation and 15 as
poster presentations; increasing the rejection rate to 30% this year.

The themes in this year’s papers and posters continue showing equal interest in clinical text and in
biological language processing. The morning sessions focus on extraction of entities, relations and
events. The afternoon sessions present disambiguation, classification, vocabulary development and
syntactic analysis. The invited talks present overviews of two community-wide evaluations: BioNLP-ST
2016 and BioASQ 2016.

As always, we are profoundly grateful to the authors who chose BioNLP as venue for presenting
their innovative research. The authors’ willingness to continue sharing their work through BioNLP
consistently makes the workshop noteworthy and stimulating. We are equally indebted to the program
committee members (listed elsewhere in this volume) who produced three thorough reviews per paper
on a tight review schedule and with an admirable level of insight.

Invited Talks

The BioNLP-ST challenges on information extraction and knowledge acquisition in biology

Speakers: Robert Bossy and Jin-Dong Kim

Robert Bossy is a research engineer at INRA, the French national institute for agronomy, agriculture and
food science. His main interests are the design of Natural Language Processing, Information Extraction,
Information Retrieval, and Knowledge Acquisition methods and services in the domains of biology and
food science. His domains of expertise are NLP workflows and software development for knowledge
engineering. He also has a wide experience in the dialogue between biology experts and NLP method
providers. He has organized the Bacteria Biotope and Bacteria Genic Interaction tasks in the BioNLP-
ST challenges 2011 and 2013. He has a MSc in Populations Biology and Taxonomy and a PhD in
bioinformatics from Pierre et Marie Curie (Paris, France).

Jin-Dong Kim is a project associate professor of DBCLS (Database Center for Life Science). He received
his Ph.D from Korea University in 2001. He is the main author of Genia resources and a regular organizer
of BioNLP Shared Task series. He is also the chief organizer of the BLAH (annual Biomedical Linked
Annotation Hackathon) series. His recent projects include PubAnnotation, TextAE and LODQA.
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BioASQ: A challenge on large-scale biomedical semantic indexing and question answering

Speaker: Anastasia Krithara

Dr. Anastasia Krithara has been a post-doctoral researcher in the Institute of Informatics and
Telecommunications at National Center for Scientific Research (NCSR) "Demokritos" since 2008,
where she is involved in national and international projects. Before, she was a research engineer in
Xerox Research Centre Europe, in Grenoble, France, where she carried out research in the area of
machine learning. She holds a BSc in Informatics from Athens University of Economics and Business,
an MSc in Machine Learning and Data Mining from University of Bristol and a PhD in Machine
Learning from Pierre and Marie Curie University (Paris VI). Her research interests include Machine
Learning, Information Retrieval, Bioinformatics and Natural Language Processing. She is a program
committee member of several international conferences and workshops and her work has been published
in international journals, conferences and books. She is co-organizing the BioASQ challenges.
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Laura Gambarte2, Sonia Benı́tez2, Daniel Luna2, Fernando Campos2 and Sofı́a Zanetti2

1Depto. Computación, FCEyN, Universidad de Buenos Aires
jcastano@dc.uba.ar

2Departamento de Informática en Salud, Hospital Italiano de Buenos Aires
{firstname.lastname}@hospitalitaliano.org.ar

Abstract

We propose a machine learning approach
for semantic recognition and normaliza-
tion of clinical term descriptions. Clin-
ical terms considered here are noisy de-
scriptions in Spanish language written by
health care professionals in our electronic
health record system. These description
terms contain clinical findings, family his-
tory, suspected disease, among other cat-
egories of concepts. Descriptions are
usually very short texts presenting high
lexical variability containing synonymy,
acronyms, abbreviations and typographi-
cal errors. Mapping description terms to
normalized descriptions requires medical
expertise which makes it difficult to de-
velop a rule-based knowledge engineer-
ing approach. In order to build a training
dataset we use those descriptions that have
been previously matched by terminolo-
gists to the hospital thesaurus database.
We generate a set of feature vectors based
on pairs of descriptions involving their in-
dividual and joint characteristics. We pro-
pose an unsupervised learning approach to
discover term equivalence classes includ-
ing synonyms, abbreviations, acronyms
and frequent typographical errors. We
evaluate different combinations of features
to train MaxEnt and XGBoost models.
Our system achieves an F1 score of 89%
on the Hospital Italiano de Buenos Aires
(HIBA) problem list.

1 Introduction

Some electronic health records (EHR) implemen-
tations allow users to introduce free text descrip-
tions to capture clinical problems information en-

abling higher level of expressiveness and flexibil-
ity to physicians. Those descriptions must be en-
coded according to their meaning in order to allow
the information to be consumed by other systems.
Descriptions are grouped into concepts according
to the meaning. The following descriptions corre-
spond to the same concept1:

(1) neoplasia
neoplasia

maligna
malign

de
of

pulmón
lung

’Malignant tumor of lung’

(2) cáncer
cancer

pulmonar
lung-of

’lung cancer’

(3) ca
ca

pulmonar
lung-of

’lung cancer’

(4) cáncer
cancer

de
of

pulmón
lung

desde
since

2009
2009

’cancer of the lung since 2009’

Free text descriptions written by health care
professionals contain typos as in cancer plum-
noar: a variation of description (2). It should be
noted also that description (4) does not represent a
synonym in a strict terminological sense. How-
ever it represents the same concept because the
string desde 2009 (since 2009) does not add rel-
evant information from a problem list perspective
(in the sense of EHR and terminology tradition
(Van Vleck et al., 2008)).

Mapping strings to concepts has been a long
standing problem in BioNLP, string similarity
techniques as well as machine learning approaches
have been applied. Automatic mapping of key
concepts from text in clinical notes to a reference
terminology is an important task to achieve, in or-
der to extract clinical information present in notes
and patient reports. One of the problems of bio-

1In these examples the Spanish description is followed by
the word-for-word English gloss and then the English trans-
lation.
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medical data integration is variation of terms us-
age. Exact string matching often fails to associate
a string with its bio-medical concept (represented
by an ID or accession number in the database) due
to differences of string occurrences. Soft string
matching algorithms are able to find the relevant
concept by considering the string similarity be-
tween candidate strings. However, the accuracy
of soft matching highly depends on the similarity
measure employed. String similarity techniques
have been applied to a variety of problems in
BioNLP, such as UMLS concepts normalization
(Aronson and Lang, 2010; Wellner et al., 2005;
Rudniy et al., 2014), UMLS clinical terms (Kate,
2016), disease normalization (Leaman et al., 2013;
Kang et al., 2013), gene and protein names (Kim
and Park, 2004; Tsuruoka et al., 2007; Tsuruoka
et al., 2008; Fang et al., 2006; Wermter et al.,
2009), to interface terminologies (Rosenbloom et
al., 2006) and different databases (Sun, 2004).

String similarity can be used for named entity
recognition (SNOMED-CT taggers) and reference
resolution (Castaño et al., 2002; Lin and Liang,
2004; C. et al., 2003) alias extraction (Yu and
Agichtein, 2003), acronym-expansion extraction,
e.g. (Pustejovsky et al., 2001).

On a similar view there are a number of works
on automated clinical coding (Friedman et al.,
2004; Pakhomov et al., 2006; Patrick et al., 2006;
Suominen et al., 2008; Stanfill et al., 2010; Perotte
et al., 2014).

This work explores traditional soft string match-
ing methods along with n-gram character and
word features in a machine learning approach us-
ing MaxEnt and XGBoost classifiers. An unsu-
pervised learning approach to generate new fea-
tures by detecting synonyms, abbreviations and ty-
pos is presented to improve classification perfor-
mance. The models are compared to a baseline
obtained by a vector space model configuration
based on character n-grams and a TF-IDF weight-
ing scheme, implemented in Apache Lucene.

The remainder of this paper is structured as fol-
lows: in Section 2, we describe the data set we
used. In Section 3, we discuss the similarity met-
rics and similarity features for machine learning
algorithms. In Section 4 we discuss the experi-
mentation and results. Finally in Section 5 we re-
port our conclusions and expected future work.

2 Description Terms Data-set

We build a data-set based on the problem list
of Hospital Italiano de Buenos Aires (HIBA) in-
terface terminology (Lopez Osornio et al., 2007;
Gambarte et al., 2007) which includes adequate
synonym coverage and it is linked to the HIBA
thesaurus. This thesaurus is built upon the Spanish
version of SNOMED-CT, while extending it with
new concepts and additional synonym terms.

Following SNOMED-CT and other thesauri,
terms in the thesaurus are grouped by concepts.
The following terms are associated to the same
concept.

(5) tabaquismo
smoking

(6) abuso
tobacco

de tabaco
consumption

We selected those clinical concepts that had at
least 10 terms and no more than 100 for a given
concept.2 The set is composed of 151,513 terms
and 5,222 concepts. The set of descriptions (D)
was split in a training set (T ) 70%, and an evalua-
tion test set (E) 30%.

Descriptions in T were used to build a new data-
set T1 consisting of pairs of descriptions samples
of the form (d1, d2, value). Positive and negative
samples were constructed in the following way:

• For each pair of descriptions di, dj ∈ T with
i 6= j such that di and dj are associated to the
same concept, we create a sample (di, dj , 1)

• We split the set of descriptions T in corpus
and query sets. We indexed with Apache
Lucene the corpus set of descriptions using
TF-IDF weights on n-gram characters. Using
a description d as a query, a set of relevant
and non-relevant results are retrieved. Rele-
vant results are those descriptions di already
stored as samples of pair of terms describing
the same concept: (d, di, 1). Non-relevant
results are those results dj for which there is
not a sample (d, dj , 1) and therefore a sample
(d, dj , 0) is created.

The training data-set (T1) has 1,173,617 in-
stances with 777,585 negative and 396,032 posi-
tive samples.

2Those concepts that had more than 100 terms were noisy,
and were not considered relevant.
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3 Methods for Computing Term
Normalization

String similarity methods can be either character-
based or token-based. Character-based ap-
proaches typically consist of variations of the
edit-distance metric, like Levenshtein distance or
longest common subsequence. Token-based ap-
proaches include the Jaccard similarity metric and
the cosine similarity based on TF-IDF weight-
ing schema. There are also hybrid token and
character-based approaches. Soft-TFIDF (Cohen
et al., 2003) includes not only exact matches but
also close matches, using a threshold. Another ap-
proach uses n-grams of the target strings instead
of the tokens (Cohen et al., 2003; Moreau et al.,
2008; Köpcke and Rahm, 2010).

Many works have also focused on automatic
methods for combining these string similarity
measures using machine learning (Cohen and
Richman, 2001; Belenko and Mooney, 2003;
Wellner et al., 2005; Moreau et al., 2008).

In this section we explore a hybrid soft-TFIDF
approach based on an n-gram character vector
space model as well as other character-based and
token-based similarity metrics. Next, we mention
some limitations of combining the previous met-
rics due to information redundancy and lack of se-
mantic information which produces false positive
and false negative instances. We propose an usu-
pervised machine learning approach which allows
to capture semantic information.

3.1 Information retrieval and TF-IDF

We use an information retrieval (IR) Soft-TFIDF
approach (Cohen et al., 2003) to match a new de-
scription to those terms already existing in the hos-
pital thesaurus database. First, the set of known
terms in the thesaurus are indexed with Lucene,
where the collection of terms is represented in a
Vector Space Model (VSM) using TF-IDF weights
based on character n-grams. A new description is
used as a query and the set of ranked descriptions
terms with the corresponding scores is retrieved,
being the highest ranked description the candidate
term to associate the query with. The cosine simi-
larity measure is used to obtain similarity scores.

However this approach will outcome both false
positive and false negative results such as:

(7) sospecha
suspected

de
(of)

laringitis
alergic

alérgica
laringytis

(query)

(8) sospecha
suspected

de
(of)

faringitis
alergic

alérgica
pharyngitis

(false positive)

Due to the high string similarity score between
sospecha de laringitis alérgica and sospecha de
faringitis alérgica if either of them is not indexed
as a concept, then the returned result is considered
a match and therefore a false positive instance is
obtained.

(9) neoplasia
malignant

maligna
tumor

de
of

pulmón
lung

(query)

(10) cáncer
lung

pulmonar
cancer

(false negative, not retrieved)

A low similarity score between neoplasia
maligna de pulmón and cáncer pulmonar implies
that the target string is not retrieved (i.e. it is not
ranked above the threshold). Since the concept is
just represented by cáncer pulmonar, the string
neoplasia maligna de pulmón is a false negative
instance.

Figure 1 shows overlapping distribution of
scores. The positive match curve represents the
score (cosine similarity) distribution of query
and retrieved string pairs that represent the same
concept. It shows higher average score than
negative match. As threshold score increases,
false negative cases increase and false positive
cases decrease.

Figure 1: IR Score distribution (normalized histograms)

Given a query, it is not known whether relevant
information exists or not in the indexed dataset,
and the term with the highest score is not neces-
sarily a desired result. The performance of match-
ing the query with the highest ranked term can be
measured using precision, recall and F1 metrics.
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In a Soft-TFIDF approach is possible to control
precision/recall trade-off considering a threshold t
as shown in Figure 2. The algorithm returns the
highest ranked term if score ≥ t. Higher values
of t increase precision but recall is decreased.

Figure 2: Precision, recall and F1 measure

Precision(t), recall(t) and F1(t) show measures for the results

returned by the IR system where score ≥ t (when increasing

t, precision(t) increases and recall(t) decreases)

3.2 String similarity metrics

String similarity metrics have been used com-
bined with IR TF-IDF approaches. Using tradi-
tional string similarity and distance metrics like
Damerau-Levenshtein or Longest common sub-
sequence allow to increase to some extent preci-
sion. It is possible to score results using a string
metric or combine together with IR scores using
some rules or formulas and thresholds. Using a
set of scores it is possible to use machine learning
models to classify relevant/non-relevant result.

Even though there are other string metric mea-
sures that can be combined, some of them are very
much related. For example Damerau-Levenshtein
(DamLevdist) distance allows an additional edit
operation respect to Levenshtein (Levdist) dis-
tance, then DamLevdist ≤ Levdist. Also Jac-
card and Sorensen-Dice similarity metrics present
a high correlation. In Table 1 we show pairwise
correlations between Damerau-Levenshtein ratio,
Longest common sub-sequence, Sorensen-Dice,
Jaro-Winkler and Jaccard coefficient metrics.

Due to high correlation between Jaccard and
Sorensen-Dice, we can choose one of them, and
in the same way with Damerau-Levenshtein and
Longest common subsequence to fit a classifica-
tion model using machine learning approach.

Metric DamLev LCS SorDic JarWin Jac
DamLev 1.00 0.96 0.78 0.73 0.77
LCS 1.00 0.84 0.73 0.82
SorDic 1.00 0.65 0.99
JarWin 1.00 0.64
Jac 1.00

Table 1: Correlation (Pearson) between string
metrics
Damerau-Levenshtein ratio (DamLev), Longest common
subsequence (LCS), Sorensen-Dice (SorDic), Jaro-Winkler
(JarWin) and Jaccard (Jac). Damerau-Levenshtein ratio is a
transformation of Damerau-Levenshtein distance d using the
formula M is the maximum lenght of s1 and s2.

By computing the principal components, the
eigenvalues show that using the first k components
the cumulative variance explained is 76% (k = 1),
93% (k = 2), 98% (k = 3), 99% (k = 4). This
means that k new variables (linear combination of
original metrics) explain those proportions of the
total variance and we can also reduce redundant
information.

Limitations to this approach are present both in
false positive and false negative cases. It is a quan-
titative improvement but cases like those presented
in examples (7-10) above, require a more sophis-
ticated approach. Such approach must consider
which modifications in a clinical term changes its
meaning.

3.3 A machine learning approach to string
matching

As it has been already observed in many other
works, abbreviations, acronyms, synonyms and ty-
pos are sources of variation that generate terms
with the same meaning. Table shows some exam-
ples from the Spanish dataset:3

Many pairs of description terms are very sim-
ilar but they have different meaning as described
by the following non-synonym pairs where only a
character difference in a long string entails a dif-
ferent meaning:

(11) a. sospecha de laringitis alérgica
b. sospecha de faringitis alérgica

(12) a. duelo por fallecimiento de madre
b. duelo por fallecimiento de padre

(13) a. sospecha de hi potiroidismo
b. sospecha de hi pertiroidismo

(14) a. artr itis de tobillo
b. artr osis de tobillo

3We do not include the translations from now on because
the relevant information is the string similarity.
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Alternative forms ’meaning’
sd, sme, sind, sindr sindrome
izq, izqdo, iz izquierdo
mmii miembros inferiores
grado 2, 2do grado, segundo grado
2 grado, gr II, G2, GII
hta hipertensión arterial
ira insuficiencia renal aguda
oma otitis media aguda
AF, antec fliar, atc familiar antecedente familiar
fratura fractura
trauatismo traumatismo
dematitis dermatitis
litisis litiasis
Reynaud/Raynoud Raynaud
Hodkin, Hodking Hodgkin
dolores de cabeza dolor de cabeza
fallecimiento , muerte deceso
de hı́gado hepático
biológico natural
cáncer neoplasia maligna

Table 2: Examples of equivalent strings.

We use a machine learning approach to learn
whether a pair of descriptions is a match or not.
We create a family of features to train classifica-
tion algorithms. Hyper-parameters were adjusted
using 5-fold cross-validation. Models are based on
different combinations of feature sets explained in
next subsection.

3.4 Features

Features are organized in sets S1, ..., S10 and then
different set combinations are used to generate the
corresponding models. In Table 3 d1 and d2 are
the description strings that are compared, where d1

vectors represent queries and d2 a retrieved string.
The training corpus was used to adjust the cor-
responding d2 vectors, using both word unigrams
and character bi-grams.4

Feature set S1 represents string metrics to
obtain differences in string characteristics be-
tween a pair of description terms. Features in
S2, S3, S4, S5 are traditional representations in
vector space model of d1 and d2 based on uni-
gram word and bi-gram character representation
with TF-IDF, binary occurrence and term fre-
quency weights. In S6 and S7 we consider dif-
ferences in descriptions (d12 and d21), and S9, S10

considers context (c) also.
We define w(d) as the set of words in d, and

d12, d21 and c as follows

d12 = w(d1) \ w(d2)

d21 = w(d2) \ w(d1)

4Features d12 and d21 are explained below.

Set Feature
S1 L1 = length(d1)

L2 = length(d2)
m = min(L1, L2)
M = max(L1, L2)
ratiolength = m

M
differencelength = |M −m|
Levenshteinratio(L1, L2)
Jaccard(L1, L2)

S2 Vector of unigram word occurrence in d1

Vector of unigram word occurrence in d2

S3 Vector of unigram word TF-IDF in d1

Vector of unigram word TF-IDF in d2

S4 Vector of bigram character frequency in d1

Vector of bigram character frequency in d2

S5 Vector of bigram character TF-IDF in d1

Vector of bigram character TF-IDF in d2

S6 Vector of unigram word occurrence in d12

Vector of unigram word occurrence in d21

S7 Vector of bigram character frequency in d12

Vector of bigram character frequency in d21

S8 Vector of unigram word occurrence in d12

Vector of unigram word occurrence in d21

Vector of unigram word occurrence in c
S9 Vector of bigram character frequency in d12

Vector of bigram character frequency in d21

Vector of bigram character frequency in c
S10 Vector of group of words in d12

Vector of group of words in d21

Vector of group of words in c

Table 3: Feature-sets.

c = w(d1) ∩ w(d2)

For example:

d1 = fractura de rodilla izquierda,
d2 = fractura de rodilla izq then
w(d1) = {fractura, de, rodilla, izquierda},
w(d2) = {fractura, de, rodilla, izq},
d12 = {izquierda}
d21 = {izq} and c = {fractura, de, rodilla}

3.5 Unsupervised Learning of Synonyms,
Abbreviations and Typos

In this section we present an approach to detect
word synonyms, abbreviations, acronyms and
frequent typographical errors. We explain how
the set of features S10 was generated.

Unsupervised algorithms were studied widely
in the literature to detect relationships between
words in order to improve results of NLP tasks
such us chunking or named entity recognition.
Clustering to detect word equivalence classes
from unlabeled corpus were studied in (Kneser
and Ney, 1993) and (Turian et al., 2010).

We introduce a procedure to generate sets
of semantically equivalent strings from term
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descriptions using a graph algorithm.

Given a set of positive description pair match-
ings such as

(15) d1: sospecha de infección urinaria
d2: probable infección urinaria

(16) d1: urticaria en cara
d2: urticaria en rostro

(17) d1: duelo por fallecimiento de padre
d2: duelo por muerte de padre

(18) d1: duelo por deceso de padre
d2: duelo por muerte de padre

The following semantically equivalent pairs can be
inferred using word differences between pairs of
descriptions:
{sospecha, probable}, {cara, rostro}
{fallecimiento, muerte} and {deceso, muerte}

Therefore it is possible to replace, for example,
the terms sospecha and probable by a concept
representing this class with some label. Using the
concept class label instead of a term as a feature in
a vector space model we can deal with synonymy
problems.

Since this approach only infers direct associa-
tions, we cannot detect the pair {deceso, muerte}
using this approach.

Semantically equivalent pairs can be extended
to larger sets (semantically equivalence classes),
building an undirected weighted graph, consider-
ing terms as vertices and equivalent pairs as edges.
Connected components in the graph can be de-
tected and terms can be clustered in some cases.

An undirected weighted graph G = (V,E,W )
is generated creating an edge (d12, d21, w) ∈ E
for each pair of descriptions d1, d2 such that
| d12 |=| d21 |= 1. For example, the pair of
descriptions duelo por fallecimiento de padre
and duelo por muerte de padre generates the
fallecimiento and muerte connection. In the same
way, deceso and muerte are connected. The
weight associated with each edge is the frequency
of the corresponding pair in T1.

The graph constructed under this approach
is composed of different connected components.
Figure 3 shows some connected components in
the final graph once all edges are generated us-

ing T1 and considering only edges with minimum
frequency of 20 (lower frequency thresholds are
very sensible to noisy data while higher values re-
sults in loss of information). Vertices in the same
connected component are potentially equivalent.
The connected components of G can be computed
in linear time using either depth-first search or
breadth-first search approach.

Since some terms can be ambiguous, they can
be connected to some non-equivalent terms, like
od which can be connected to ojo derecho (right
eye) and oido derecho (right ear). In those cases,
the connected component containing an ambigu-
ous term, includes more than one concept. In a
vector space model, in some cases disambiguation
can be obtained from the context. For example in
otitis od the od term refers to oido, while in con-
juntivitis od refers to ojo. It would still be desir-
able to partition the connected component break-
ing edges like ojo derecho and oido derecho.

We used the label propagation algorithm de-
scribed in (Raghavan et al., 2007). It is a clus-
tering algorithm intended to be applied in social
communities detection in large-scale networks and
biochemical networks among other domains. This

Figure 3: Word graph connected components ex-
ample
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clustering algorithm computes clusters based on
the network structure and -unlike other approaches
like k-means or DBSCAN- there is no requirement
to specify the number of clusters or the neighbour-
hood size as parameters. The algorithm initial-
izes each node with a unique identifier, and iter-
atively assigns to each node the label that most of
its neighboors currently have. We run this label
propagation algorithm to obtain a clustering anal-
ysis on large connected components that contained
different word meanings.

As a final example, combining different terms
from the final set of equivalence classes, we ob-
tain a unique representation of the following 72
possible ways to express duelo por fallecimiento
de padre biológico debido a cáncer renal:

Duelo por

{
fallecimiento

muerte
deceso

}
de padre

{
biológico

natural

}
{

debido a
a causa de

}{ cáncer
ca

neoplasia maligna

}{
de riñón

renal

}

4 Experiments and Results
Our experiments were conducted by using scikit-
learn machine learning library (Pedregosa et al.,
2011) with liblinear (Fan et al., 2008) solver
for MaxEnt, considering L2 regularization. Hy-
perparameter C was determined by 5-fold cross-
validation considering F1 measure. We trained
XGBoost model, with binary logistic objective
and F1 score as evaluation metric, by using XG-
Boost library described in (Chen and He, 2015).
Connected components in graph and label prop-
agation algorithm for graph clustering were con-
ducted by using igraph library.

In order to generate word equivalence classes
for S10 we found 278,555 concepts in the the-
saurus with at least two associated descriptions
which generate 5,956,368 potential pairs of de-
scriptions connected to the same concept. Filter-
ing pairs of descriptions such that both shares the
same words except one, we obtain 505,447 word
associations. By taking the connected components
of G we get 505, 447 edges and 805 groups. Fi-
nally, clustering connected components for which
more than one meaning are represented, we obtain
4,711 words in 957 group of words.

We compare the predictive power to classify a
pair of descriptions as a positive match by calcu-
lating the F1 measure on different models. Also,

we compare the ability to rank the retrieved results
using the classification model probability as scor-
ing by calculating P@1, R@1 and the mean recip-
rocal rank (MRR).

By using IR score with some fixed threshold
we define a classifier algorithm with its respective
precision and recall (as threshold increases, recall
decreases and precision increase). Figure 4 shows
IR score precision-recall curve against string met-
rics features based fitted models. Table 4 shows
MaxEnt and XGBoost F1 score for string features
based models.

Figure 4: Precision-recall curves (String metrics
features)

IR comparison vs MaxEnt and XGBoost models based on
string metrics features.

Featureset Source MaxEnt XGBoost
String metrics (S1) d1, d2 0.67 0.70

Table 4: MaxEnt and XGBoost F1-score over string met-
rics

By considering F1 measure on string metrics
(S1) and vector space model representation of de-
scriptions (S2, S3, S4, S5), XGBoost showed a
considerable improvement on bi-gram character
features based (see Table 5) either on frequency
(S4) or TF-IDF (S5) weight schemas, outperform-
ing MaxEnt.

Source Weight MaxEnt XGBoost
(S4) d1, d2 freq. 0.57 0.76
(S5) d1, d2 tf-idf 0.56 0.74
(S7) d12, d21 freq. 0.58 0.76
(S9) d12, d21, c freq. 0.72 0.77

Table 5: MaxEnt and XGBoost F1-score over bigram char-
acter features S4, S5, S7, S9

Each XGBoost bi-gram character features based
model (dashed lines with markers) outperforms
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the word features based models (solid lines). Pre-
cision values are given across all recall levels (Fig-
ure 5).

Figure 5: Precision-recall curves (XGBoost)

Markers are present on word and bi-gram features curves. IR
curve has no markers. Word features are represented by

solid lines while bi-gram character features are represented
in dashed lines. Marker type indicates a specific source, for
example S6 and S7 triangle correspond to d12, d21 source.

s

Figure 6: Precision-recall curves (MaxEnt)

Markers are present on word and bi-gram features curves. IR
curve has no markers. Word features are represented by

solid lines while bi-gram character features are represented
in dashed lines. Marker type indicates a specific source, for
example S6 and S7 triangle correspond to d12, d21 source.

We can see in Figure 6 that word features based
models improves performance over bi-gram char-
acter feature based models using MaxEnt (each
source is represented by a marker type, e.g. a tri-
angle for the source d12, d21). S8 and S9 features
outperform the others features on MaxEnt. Results
on word features are detailed in Table 6.

With respect to the set of features consider-
ing word difference between pairs of descriptions
(S6, S7), XGBoost also performs the task bet-
ter when consider bi-gram character features (S7)

Source Weight MaxEnt XGBoost
(S2) d1, d2 binary 0.59 0.59
(S3) d1, d2 tf-idf 0.59 0.58
(S6) d12, d21 binary 0.63 0.62
(S8) d12, d21, c binary 0.76 0.62

Table 6: MaxEnt and XGBoost F1-score over unigram
word features S2, S3, S4, S6, S8

as shown in Table 5, while MaxEnt works bet-
ter on word features (S6) as shown in Table 6.
When context vector is present along with word
difference representation (S6 vs S8 and S7 vs
S9), MaxEnt showed a considerable improvement
in S8 respect to S6 (see Table 6) but XGBoost
achieves a slightly improvement in S9 compared
to S7 (see Table 5, S6 vs S8 and S7 vs S9). Word
difference vector representation worked better in
MaxEnt, than combining string metric and tradi-
tional word or n-gram based representation of de-
scriptions, while XGBoost achieves similar per-
formance when consider that combination.

When word equivalence classes features based
models are considered (S10), MaxEnt and XG-
Boost achieves similar performance (see Table 7).

Featureset Source MaxEnt XGBoost
(S10) d1, d2 0.69 0.69

Table 7: MaxEnt and XGBoost F1-score over word equiv-
alence class features

By combining (S1, S8, S10) features Max-
Ent achieves an F1 score of 0.87, while XGBoost
achieves an F1 score of 0.86 by combining (S1,
S9, S10) as showed in Table 8 and Figure 7 im-
proving the previous models.

Figure 7: Precision-recall curves

MaxEnt vs XGBoost comparison. Circle markers represent
string based features (S1) models, diamond d12, d21, c

based models. Models combining string, d12, d21, c and S10
features are represented by curves with star markers.
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Model Prec Rec F1
IR 0.73 0.76 0.74
MaxEnt (S1, S8, S10) 0.80 0.95 0.87
XGBoost (S1, S9, S10) 0.77 0.96 0.86

Table 8: MaxEnt and XGBoost F1-score over feature sets
combination

To evaluate these models performance on
ranked results, we compute the P@1, R@1 and
mean reciprocal rank (MRR) metrics showed in
Table 9.

Model P@1 R@1 F1 MRR
IR 0.73 0.76 0.74 0.84
MaxEnt (S1, S8, S10) 0.87 0.91 0.89 0.94
XGBoost (S1, S9, S10) 0.87 0.91 0.89 0.94

Table 9: MaxEnt and XGBoost F1-score over feature sets
combination

5 Conclusions and future work

We presented a hybrid Soft-TFIDF and machine
learning approach to bio-medical terms normal-
ization. This technique can be used in different
problems such as automatic coding of descrip-
tions and reference resolution in general. Our
approach neither requires any additional resource
like acronyms/abbreviations, alias and synonyms
lists nor a spell checker because that ability is ac-
quired from examples by defining a scoring func-
tion learned from data. As a result, our approach
shows very good F1 score and mean reciprocal
rank results. Even though the data set was in Span-
ish, we did not use any specific resource for that
language, therefore our approach can be replicated
in any language.

Creation of new features based on differences
between descriptions and its context, in addition to
the more traditional features, allow machine learn-
ing models to improve detection of pairs of seman-
tically equivalent descriptions with low syntactic
similarity and discard non semantically equivalent
ones with high syntactic similarity by learning se-
mantic equivalence from pairs of descriptions ex-
amples. As result, the false negative and false pos-
itive rates were reduced.

By generating a clustering of words to find syn-
onyms, specially from indirect associations be-
tween words from descriptions across different
concepts from direct associations, the semantic
feature space generated improved the performance
of machine learning models increasing F1 mea-
sure.

Finally, MaxEnt and XGBoost models showed
to be effective for the task with some minor differ-
ences in the set of features returning best results.

Our work was based on the performance of the
text search engine results. Then, this approach can
not consider results that were not retrieved by the
search engine. To overcome this limitation it is
possible to use a query expansion approach. Al-
ternatively, words in the terms can be transformed
to a canonical form, both at index and query time.
We also plan to expand this work to other bio-
medical domains such as procedures or drugs.
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Abstract

Most existing corpus-based approaches to
semantic representation suffer from inac-
curate modeling of domain-specific lexical
items which either have low frequencies or
are non-existent in open-domain corpora.
We put forward a technique that improves
word embeddings in specific domains by
first transforming a given lexical item to a
sorted list of representative words and then
modeling the item by combining the em-
beddings of these words. Our experiments
show that the proposed technique can sig-
nificantly improve some of the recent word
embedding techniques while modeling a
set of lexical items in the biomedical do-
main, i.e., phenotypes.

1 Introduction

Semantic representation is one of the oldest, yet
most active, research areas in Natural Language
Processing (NLP) owing to the central role it plays
in many applications (Pilehvar and Navigli, 2015).
The field has experienced a resurgence of inter-
est in recent years with the introduction of low-
dimensional continuous space models that lever-
age neural networks for learning semantic repre-
sentations. Word2vec (Mikolov et al., 2013) is
a good example which despite its recent inven-
tion has found its way prominently into literature,
mainly thanks to its ability to be quickly and ef-
fectively trained on large amounts of text.

However, since most of these corpus-based
techniques base their representation only on the
co-occurrence statistics derived from text corpora,
they fall short of effectively modeling lexical items
for which not many statistical clues can be ob-
tained from the underlying corpus. Several at-
tempts have been made to improve word embed-

dings with the help of knowledge derived from
other resources (Yu and Dredze, 2014; Bian et al.,
2014; Faruqui et al., 2015) or by including arbi-
trary contexts in the training process (Levy and
Goldberg, 2014). However, most of these tech-
niques still suffer from another deficiency of word
embeddings that they inherit from their count-
based ancestors: they conflate the different mean-
ings of a word into a single vector representa-
tion. Attempts have been made to tackle the
meaning conflation issue of word-level represen-
tations. A series of approaches cluster the context
of a word prior to representation (Reisinger and
Mooney, 2010; Huang et al., 2012; Neelakantan
et al., 2014) whereas others exploit lexical knowl-
edge bases for sense-specific information (Rothe
and Schütze, 2015; Chen et al., 2014; Iacobacci et
al., 2015; Camacho-Collados et al., 2015).

We propose a model that addresses both these
issues through a mapping of a lexical item to
a sorted list of representative words that brings
about two advantages. Firstly, it pinpoints with an
inherent disambiguation the meaning of the given
lexical item at a deeper semantic level. Secondly,
by casting the representation of the item as that
of a set of potentially more frequent words, our
approach can provide a more reliable represen-
tation of domain-specific items based on signif-
icantly more statistical knowledge. Our experi-
ments show that the proposed model can provide a
considerable improvement over some of the state-
of-the-art word embedding approaches in a se-
mantic similarity-based task.

Data. The final goal of this paper is to improve
the semantic representation of domain-specific
terms and phrases which usually have low fre-
quencies (or are non-existent) in open-domain cor-
pora and hence have a lower chance of being ef-
fectively modeled by existing word representation
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techniques. Therefore, for our experiments we re-
trieved terms and phrases from a domain-specific
ontology in the biomedical domain. Specifically,
as our dataset in the experiments we opted for Hu-
man Phenotype Ontology (Sebastian Khler, 2014,
HPO) which is a standardized vocabulary of phe-
notypic abnormalities encountered in human dis-
ease. Semantic modeling of phenotypes has sev-
eral applications in the biomedical domain such
as profiling heritable diseases or understanding the
genetic origins of diseases (Collier et al., 2013).

2 Improved Semantic Representation

In this section we explain how our technique
builds on top of pre-trained word embeddings to
provide a more accurate semantic representation.

2.1 Disambiguation

As mentioned in the Introduction, one of the draw-
backs of word-level representations is that they
conflate different meanings of a word into a sin-
gle vector. Our technique constructs a more accu-
rate semantic representation of a lexical item by
constraining its semantics through a set of rele-
vant words. Interestingly, we achieve this on the
basis of the same set of word-level representa-
tions. To this end, we first disambiguate the con-
tent word(s) in a given lexical item. In our experi-
ments, we used Babelfy (Moro et al., 2014) which
is a state-of-the-art WSD system based on the Ba-
belNet sense inventory. BabelNet is a merger of
Wikipedia and WordNet, among other resources
(Navigli and Ponzetto, 2012). Let t = flexion con-
tracture of digit be the phrase we are interested in
modeling. The disambiguation phase transforms
the phrase to three BabelNet concepts correspond-
ing to the intended meanings of the content words
{flexion, contracture, and digit}. Disambiguating
with respect to BabelNet provides us with an addi-
tional benefit: it links a content word to the corre-
sponding Wikipedia page of its intended meaning,
giving us the chance to draw additional context for
improving its representation.

2.2 Representative list

Let the set of disambiguated concepts for a lex-
ical item t be Ct. We further enrich this set by
adding all the BabelNet concepts that have a se-
mantic link (in the semantic network of BabelNet)
to any of the concepts in Ct. Let the enriched
set of concepts be C∗t . Our goal here is to map

C∗t to a set of most relevant words that can repre-
sent its semantics. We achieve this by exploiting
the fact that these concepts are linked to relevant
Wikipedia articles. Let Dt be the set of Wikipedia
articles retrieved for t (i.e., the set of articles that
are associated with the concepts in C∗t ). We ana-
lyze the textual content of these articles by lever-
aging the method proposed by Camacho-Collados
et al. (2015) and retrieve a sorted list of salient
words. Specifically, we use lexical specificity and
contrast word frequency statistics between Dt and
all articles in Wikipedia. Lexical specificity (La-
fon, 1980) is a statistical measure based on the
hypergeometric distribution which can be used to
compute the semantic importance of an arbitrary
vocabulary word w for Dt as:

Spec(H;h;G; g) = −log10P (X ≥ g) (1)

where H and h are the respective aggregate fre-
quencies of all words in all Wikipedia articles and
Dt, and G and g are the respective frequencies of
w in all Wikipedia articles and Dt. For a given
lexical item t, we construct the set of semantically
representative wordsRt by keeping the words that
are relevant to Dt with a minimum confidence of
99% according to the hypergeometric distribution,
i.e., P (X ≥ 0.01).

For our example phenotype flexion contracture
of digit, the representative list Rt comprises of
around 1300 weighted words, with the top ones
being muscle, finger, spasticity, toe, hand, pa-
tient, and spastic. Please note that our technique
mapped an ambiguous term digit to a set of more
semantically constrained keywords such as finger,
toe, and hand. This enables us to construct a
sense-specific representation of the word by lever-
aging word-level representations.

2.3 Vector construction
So far, we mapped a given lexical item t to a set of
relevant concepts C∗t and obtained for this set the
sorted list Rt = {r1, ..., rm} of the most seman-
tically representative words. The final step is to
construct a vector representation Vt for t. We do
this by combining the vectors for the words inRt.
Let V(x) be the vector representation given by a
model such as Word2vec for the word x. We com-
pute the weight for the ith dimension of the vector
Vt, i.e., vi, as:

vi =
m∑
j=1

e−λjV(rj)i i = 1, ..., n (2)
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sim. Flexion contracture of digit sim. Bipolar affective disorder sim. Chaotic rapid conjugate ocular movements

0.94 Flexion contracture of finger 0.80 Personality disorder 0.85 Abnormal conjugate eye movement
0.92 Flexion contracture of thumb 0.85 Schizophrenia 0.80 Jerky ocular pursuit movements
0.91 Congenital finger flexion contractures 0.85 Psychosis 0.76 Slow saccadic eye movements

sim. Hydranencephaly (A defect of development of the brain characterized by replacement of greater portions of the cerebral hemispheres [...].)

0.81 Porencephaly (A disorder of the brain in which a cyst or cavity filled with cerebrospinal fluid develops in the cerebral hemisphere.)
0.79 Dandy-walker malformation (A congenital brain malformation typically characterized by incomplete formation of the cerebellar vermis, dilation of [...].)
0.77 Ventriculomegaly (An increase in size of the ventricular system of the brain.)

Table 1: The most similar phenotypes (among 11,591) to four phenotypes in the HPO database together
with their similarity scores. We also show the definitions for more technical terms in parentheses.

where V(rj)i is the weight of the ith dimension of
the base vector for the jth word in Rt and e−λj is
a decay function (with the decay constant λ) that
gives more importance to the higher ranking terms
in Rt. In our experiments, we did not perform a
tuning on the value of λwhich was set to 1

5 . Please
note that the dimensionality of Vt is identical to
that of the base word representations, i.e., n. Table
1 shows the top-3 most similar phenotypes for four
phenotypes in the HPO ontology when Word2vec
was used as the base representation.

3 Experiments

We evaluate our model in the semantic representa-
tion of phenotypes in the HPO ontology.

3.1 Dataset

As of February 2016, the HPO ontology comprises
of 11,591 phenotypic abnormalities. Each of these
concepts is provided with a title (with an average
length of four words) and about 35% of all these
concepts are associated with synonymous titles
(by average, each of these concepts has 1.94 syn-
onyms). For example, Keratoconjunctivitis sicca
is a phenotype for which three synonymous titles
are provided by the ontology: Dry eye syndrome,
Keratitis sicca, and Xerophthalmia.

3.2 Tasks

Based on the ontological structure of HPO, we
propose two tasks in the framework of semantic
similarity measurement.

Synonym identification. Let P be the set of
all phenotypes in the HPO ontology. Let P∗ =
{p1, ..., pk} (⊂ P) be the subset of k phenotypes
for which at least one synonymous phenotype is
provided in HPO and Spi = {s1pi

, ..., slpi
} be the

set of l synonymous phenotypes for phenotype pi.
Given a spi , the task here is simply to identify the

corresponding phenotype (i.e., pi). In other words,
the system has to identify the set of synonymous
phenotypes to a given phenotype. Specifically, we
compare the representation of spi with those of
all the phenotypes in P , obtaining a sorted list of
most similar phenotypes. Ideally, the concept con-
taining the synonymous title should appear at the
top of this list. The higher the rank of pi for a
given spi , the better has the system captured the
semantics of the phenotypes. For this task we have
7193 synonymous titles (

∑k
i=1 |Spi |) that are to

be matched with their corresponding phenotypes
(among a total of 11,591 phenotypes).

Hypernym identification. Similarly to the pre-
vious experiment, a system’s task here is to iden-
tify the hypernym of a given phenotype. The aim
of this experiment is to have a broader evaluation
that can also cover all those concepts that do not
provide synonymous titles (the dataset comprises
of 11,590 phenotypes that have a hypernym).

3.3 Baselines
As baseline, we benchmark our improved repre-
sentations against Word2vec. We use the 300-
dimensional vectors trained on the Google News
corpus (about 100B tokens). We also report results
for the Word2vec vectors when retrofitted using
the approach of Faruqui et al. (2015) to the Para-
phrase Database (Ganitkevitch et al., 2013, PPDB)
and SNOMED-CT1. The latter is a comprehen-
sive clinical terminology from which we extracted
108K synonymous sets, each comprising an aver-
age of 2.7 synonyms. We also compare our rep-
resentations against the 300-dimensional GloVe
vectors (Pennington et al., 2014) trained on the
Wikipedia 2014 + Gigaword 5 corpus (6B tokens).

We were also interested in verifying how
Word2vec and GloVe would perform if trained on

1https://www.nlm.nih.gov/snomed/
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System Description Mean rank Median rank First match

Word2vec Trained on open-domain data (Google News) 1343.6 11 22%
Word2vec (2nd order) 664.1 6 28%

Word2vec Trained on in-domain data (PubMed) 224.1 4 32%
Word2vec (2nd order) 198.2 3 36%

GloVe Trained on open-domain data (Wikipedia + Gigaword) 1326.4 9 24%
GloVe (2nd order) 673.5 6 28%

GloVe Trained on in-domain data (PubMed) 701.4 4 34%
GloVe (2nd order) 493.5 3 36%

Word2vec Trained on Google News, retrofitted to PPDB 1357.4 8 26%
Word2vec Trained on Google News, retrofitted to SNOMED-CT 1346.2 9 25%
Random baseline Random selection of the synonymous phenotype 5473.0 5473.0 0%

Table 2: Evaluation results for the synonym identification task. We report mean and median rank (lower
better) and the percentage of phenotypes for which the rank was equal to one (first match; higher better).

an in-domain corpus. Thankfully, the biomedical
domain is a rich domain for which large amounts
of textual data are available. We retrieved a cor-
pus of 4B tokens from article abstracts indexed in
PubMed2. We then trained Word2vec and GloVe
with window size of 5 words and the same dimen-
sionality as the open-domain vectors (i.e., 300).
For Word2vec we opted for the skip-gram model.

3.4 Results and discussion

Table 2 shows the evaluation results. We report
mean and median rank of the target phenotype in
the sorted list of most semantically similar phe-
notypes as well as the percentage of target pheno-
types for which this rank was equal to one, i.e., the
synonymous title was computed as the most simi-
lar item (first match in the table). As a reference,
we also report the performance of a baseline which
randomly picks the target phenotype.

We can see that a considerable performance im-
provement was gained when our technique was
used for improving Word2vec and GloVe repre-
sentations trained on open-domain corpora. In-
terestingly, even when the vectors were trained
on an in-domain corpus (PubMed) that covers a
large portion of the phenotypes with high frequen-
cies, our model was still able to provide statisti-
cally significant improvements according to mean
rank over the vanilla Word2vec and GloVe.3 The
retrofitting of the vanilla vectors improved median
rank and first match irrespective of the resource
but did not match the performance of our model.

The substantial improvement of our approach
in the open-domain setting should be attributed to

2http://www.ncbi.nlm.nih.gov/pubmed/
3According to t-test with 95% confidence interval.

its mapping of domain-specific phenotypes with
lower frequencies to a set of more frequent rep-
resentative terms. In fact, only around 60% of
the unique tokens of the phenotypes in the HPO
ontology were covered by the vanilla Word2vec
and GloVe models, which left around 5% of all
the phenotypes with no representation. The token
coverage raised to 91% when the two models were
trained on PubMed, resulting in the generation of
representations for 99.7% of all phenotypes. In
this setting, the respective relative mean rank im-
provements of 11.4% and 29.7% of our approach
with respect to Word2vec and GloVe should be at-
tributed to the additional semantic information that
our model introduces to the vectors as well as the
more accurate representation of concepts, thanks
to the disambiguation phase and the semantically
constraining keywords.

For the hypernym identification task we ob-
served a very similar trend where our model im-
proved Word2vec and GloVe from the respective
mean ranks of 1034.1 and 1021.5 to 606.1 and
556.7 on the open-domain corpus and from 317.2
and 424.9 to 277.6 and 309.5 on PubMed.

4 Conclusions and future work

We proposed an approach for enhancing the rep-
resentation capability of existing word model-
ing techniques in specific domains and showed
that consistent improvement can be gained over
Word2vec and GloVe even when they are trained
on domain-specific corpora. We plan to enhance
our technique by making it sensitive to syntax and
different parts of speech, such as in the manner
of Baroni and Zamparelli (2010). We also plan
to carry out a deeper analysis to better understand
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the potential of our model and to identify places in
which it can be improved.
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Abstract

Gradable adjectives are inherently vague
and are used by clinicians to document
medical interpretations (e.g., severe reac-
tion, mild symptoms). We present a com-
prehensive study of gradable adjectives
used in the clinical domain. We auto-
matically identify gradable adjectives and
demonstrate that they have a substantial
presence in clinical text. Further, we show
that there is a specific pattern associated
with their usage, where certain medical
concepts are more likely to be described
using these adjectives than others. Inter-
pretation of statements using such adjec-
tives is a barrier in medical decision mak-
ing. Therefore, we use a simple prob-
abilistic model to ground their meaning
based on their usage in context.

1 Introduction

Expressions used in a language are said to be
vague if they do not convey a precise meaning.
Sentences using vague expressions do not give rise
to precise truth conditions (Kennedy, 2007). Con-
sider the following sentence: “The patient was
maintained on a high dose of insulin.” Interpret-
ing such statements is a problem since it is un-
clear what was the exact amount of insulin used.
Gradability (Sapir, 1944; Lyons, 1977) is a seman-
tic property that allows a word to describe the in-
tensity of a measure in context, and thus enables
comparative constructs. In the above example,
the word high is said to be gradable since it con-
veys the meaning associated with the measure -
amount.

Gradable adjectives inherently possess a degree
of vagueness and are used in a language to express
epistemic uncertainties (Kennedy, 2007; Frazier et

al., 2008). While judgments are strong in extreme
cases, there exist borderline cases, where it is dif-
ficult to ascribe an adjective. In the above exam-
ple, some amounts of insulin would be considered
as a high dose by all, other amounts would never
be considered a high dose, but there is a middle
range where it can be difficult for even experts to
judge, if it is a high dose. This is because, differ-
ent experts may have differing thresholds for what
constitutes a high dose.

Broadly, gradable adjectives can be classified
into two categories based on their interpretation
as measure functions (Bartsch, 1975; Kennedy,
1999). Adjectives such as tall, heavy, expensive
can be viewed as measurements that are clearly as-
sociated with a numerical quantity (height, weight,
cost). In contrast, adjectives like clever, beauti-
ful, naive are more complex and underspecified for
the exact feature being measured. Gradable adjec-
tives have been the focus of several recent studies
(de Melo and Bansal, 2013; Ruppenhofer et al.,
2014) in the NLP community. Gradablity is prop-
erty not limited to adjectives and also extends to
other parts of speech such as adverbs (Shivade et
al., 2015; Ruppenhofer et al., 2015) (e.g., slightly,
marginally), nouns (e.g., joy, euphoria), and also
verbs (e.g., drizzling, pouring).

In this paper, we conduct a comprehensive study
of gradable adjectives used in clinical text. Using
a method proposed by Hatzivassiloglou and Wiebe
(2000), we identify the gradable adjectives in our
dataset of clinical notes. We found that these ad-
jectives have a substantial presence (30%) in our
data. Further, we show that there is a specific pat-
tern in which gradable adjectives are used: some
medical concepts are more likely to be modified
by these adjectives than others. Finally, we focus
on a specific subset of gradable adjectives asso-
ciated with measurements of numerical quantities
and demonstrate the use of a simple computational
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model to ground their meaning.

2 Dataset preparation

We used 58,880 clinical notes on Chronic Lym-
phocytic Leukemia (CLL), 2,652 notes on prostate
cancer (PC) and 14,378 notes on Methicillin-
resistant Staphylococcus Aureus (MRSA) repre-
senting three different cohorts from our institution
as a corpus for our study. Thus we had a total of
75,910 notes with an average word count of 1,476
words per note. In addition, we also had access to
8,192 echocardiograms, which are cardiology re-
ports mostly containing semi-structured data with
few lines of free text (avg. word count = 64). All
clinical notes were from adult patients collected
for a period from 2005 to 2010 with necessary ap-
proval of the institutional review board at our in-
stitution.

These notes are written by healthcare profes-
sionals communicating different aspects of patient
care and therefore correspond to different note
types. For instance, “Progress Notes” are writ-
ten by physicians documenting periodic develop-
ments in the condition of patients, their diagno-
sis, and treatment. “Operative Notes” are written
by surgeons documenting the pre-operative diag-
nosis, description of the procedure, and the post-
operative condition. Our corpus consists of notes
belonging to 98 different note types. The name of
each note type is mentioned in the first few lines of
a templated document header and often has multi-
ple lexical variations. For instance, a “Progress
Note” can be an “Inpatient Progress Note” or an
“Outpatient Progress Note.” These names were
manually normalized to 18 note types, and con-
firmed by a physician for correctness. Each note
from our dataset was thus mapped to one of these
normalized types.

Clinical notes have a typical structure: the con-
tent is often organized in sections (e.g., “History
of Present Illness” followed by “Physical Exami-
nation” and ending with “Assessment and Plan”).
The beginning of a section is formatted as distinct
text with the section name in capital letters fol-
lowed by a newline characted. We used a sim-
ple rule-based system to identify section headers
and map the contents of a note to these sections.
As with note types, section names also had mul-
tiple lexical variations (e.g., “Physical Examina-
tion” can be “Physical Exam” or “Physical Assess-
ment” or simply “Exam”). Our corpus had 587

section names which were normalized to 17 note
sections with a physician’s approval.

3 Identification of gradable adjectives

First, we want to automatically identifiy gradable
adjectives in our corpus. We reimplemented the
method described in (Hatzivassiloglou and Wiebe,
2000), a log linear regression model that learns the
weights associated with two features: 1) Number
of times an adjective is used in comparative and
superlative constructs, and 2) Number of times an
adjective is modified by terms that intensify or di-
minish the semantic meaning of adjectives (mostly
adverbs such as very, little, somewhat, etc. and
a few nouns such as bit, etc.). Hatzivassiloglou
and Wiebe (2000) manually created a list of 73
such terms. Their model was generated using the
1987 Wall Street Journal Corpus (Marcus et al.,
1993) and tested on a hand curated gold standard
dataset of 453 adjectives (235 gradable and 218
non-gradable) created using the Collins Birming-
ham University International Language Database
dictionary, which is annotated for gradable and
non-gradable adjectives.

We developed a logistic regression model with
the two features described above. For the first fea-
ture, a morphology analysis component was devel-
oped to identify inflections of adjectives from their
base form. This consisted of identifying adjectives
in their comparative form using simple parts-of-
speech tagging (Toutanova et al., 2003) and reg-
ular expression based rules. Although the test
set used in (Hatzivassiloglou and Wiebe, 2000) is
available, the list of 73 noun phrases and adverbial
modifications is not. We therefore compiled this
list using ten fold cross validation to capture the
second feature. In each fold of training, we found
all the adverbs and nouns modifying the gradable
adjectives using the Stanford Dependency Parser
(version 2.0.4) (de Marneffe et al., 2006). We de-
termined the best subset by choosing an optimal
threshold for the (k = 81) most frequent modifiers
through cross validation. This gave us the second
feature for gradability.

Although the method was developed on
newswire text, we found that it worked surpris-
ingly well for our clinical corpus. We trained the
model on clinical notes and evaluated it on the
test set published by Hatzivassiloglou and Wiebe
(2000). Of the 453 adjectives in that gold standard
test set, we found that 61 adjectives (e.g. wealthy,
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Study Corpus Gradable Non-gradable Precision Recall F-Score

H & W(2000) 1987 WSJ 235 218 94.15 82.13 87.73
Our study Clinical notes 217 175 99.51 84.32 91.34

Table 1: Performance of gradable adjective identification on the test set from Hatzivassiloglou and Wiebe
(2000).

zesty) were not present in our corpus, resulting in a
total of 392 adjectives (217 gradable and 175 non-
gradable). Table 1 outlines (does not compare) the
performance of classification in the two studies.
Since the F-score of our model is reasonably high,
we use it to identify the gradable adjectives in our
corpus. In addition to the 392 adjectives present
in the test set, the model identifies 1,709 gradable
adjectives in our data. These were domain-specific
words such as therapeutic, retroperitoneal, ede-
matous, common adjectives such as acute, febrile,
gentle, pale, and also some interesting compo-
sitions such as well-nourished, low-normal, and
near-complete.

4 Usage characterization

Vagueness induced by gradable adjectives has
been studied by researchers in the past. We want to
investigate how frequently such language appears
in clinical notes, and if there are certain situations
where these terms are more likely to be used. In
the following sections, we show that not only do
gradable adjectives have a substantial presence in
clinical text, but there is also a definite pattern in
their usage.

4.1 Presence of gradable adjectives

Using the model described in the previous sec-
tion, we found all gradable adjectives present in
our corpus. The percentage of adjectives identi-
fied as gradable in the notes across the 18 nor-
malized note types was calculated. This percent-
age is fairly consistent across different note types,
µ = 30.85%, σ = 4.9%.

In addition to examining the distribution of
gradable adjectives across notes types, we per-
formed a finer analysis by calculating their per-
centage across different sections in a note. The
percentage of adjectives identified as gradable
across the 17 normalized sections was calculated.
Again, it if fairly consistent (µ = 31.45%, σ =
6.2%) across different sections.

4.2 Usage pattern

In this section, we present statistics that char-
acterize the usage of gradable adjectives in de-
scribing medical concepts of different semantic
types in clinical notes. The Unified Medical Lan-
guage System (UMLS) (Lindberg et al., 1993) is
a repository of multiple biomedical vocabularies
and standards, developed by the US National Li-
brary of Medicine. A major component of the
UMLS is the Semantic Network which assigns
a semantic type to every concept. A semantic
type is a high-level category (e.g., “Sign or Symp-
tom,” “Pharmacological Substance,” “Plant,” “En-
zyme”) analogous to named-entity types and there
are 133 such semantic types in the 2013AA ver-
sion of the UMLS.

MetaMap (Aronson, 2001) is a program that can
map words from free text documents to concepts
from the UMLS. Using the Stanford Dependency
Parser, we identified medical concepts that were
modified by a gradable adjective in our corpus
and looked up their semantic types. For example:
in extreme fatigue, the gradable adjective extreme
modifies the term fatigue which has the semantic
type “Sign or Symptom,” while in severe steno-
sis, the adjective severe modifies the term steno-
sis which has the semantic type “Disease or Syn-
drome.”

We hypothesized that gradable adjectives mod-
ify certain nouns more often than others. In order
to test this hypothesis, we calculated how often
nouns of a particular semantic type are modified
by gradable adjectives. These frequencies were
calculated for the three sets of clinical notes cor-
responding to three different diagnoses (CLL, PC,
and MRSA) in our corpus. Nouns from a certain
semantic types were very frequently described us-
ing gradable adjectives (e.g., “Finding,” “Thera-
peutic or Preventive Procedure,” “Disease or Syn-
drome”), and hence had high frequency values in
all three datasets. Similarly, nouns from a few se-
mantic types were never described by gradable ad-
jectives (e.g., “Reptiles,” “Professional Society”).
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Dataset CLL PC MRSA

CLL 1.00 0.93 0.90
PC 0.93 1.00 0.91
MRSA 0.90 0.91 1.00

Table 2: Spearman’s Correlation between clinical
notes for semantic type modification by gradable
adjectives.

We confirmed this by sampling each dataset into
five equal folds and repeating the frequency calcu-
lations. The observations for frequency variations
were consistent for every fold across each dataset.
We performed a simple add-one Laplace smooth-
ing to account for low frequency semantic types
across datasets. Since the size of the three datasets
were significantly different, we normalized the
frequencies by the sum of frequencies across all
semantic types within each dataset. The normal-
ized frequency values represent the probability of
a semantic type being modified by gradable adjec-
tives in a dataset. We computed the Spearman’s
correlation for these 133 probabilities across each
pair of datasets and found that there was a high
correlation between them (Table 2). This high cor-
relation across all three diagnoses suggests a defi-
nite pattern for the usage of gradable adjectives in
clinical text.

5 Probabilistic Modeling

Gradable adjectives are widely studied as im-
plicit or explicit measurements of certain quanti-
ties (Bartsch, 1975; Kennedy, 1999). Moreover,
they also participate in a scale. For example, the
adjectives (warm < hot < scorching) represent a
scalar relationship and implicitly measure temper-
ature. While judgments to associate an adjective
with extreme values are very strong, those for bor-
derline cases are difficult. In the above example,
certain values of temperature are definitely warm
and others are definitely considered hot (and yet
not scorching). But there is always a set of values
in between which can be either warm or hot. In
order to capture this intuition, we created a proba-
bilistic model using Bayes rule:

P (grad|num) =
P (num|grad) · P (grad)

P (num)
(1)

where grad represents the gradable term and num
the numerical value.

Figure 1: Probabilistic modeling of adjectives de-
scribing systolic function.

Clinicians frequently document their assess-
ments for a patient along with evidence to support
their claim, e.g., “Mild anemia, Hgb 8.2.”
This sentence has a medical concept “anemia” be-
ing described by a gradable adjective mild on the
basis of the measurement of a numerical value -
hemoglobin. For several medical concepts, we ex-
tracted using regular expressions, instances where
an assessment for a medical concept was made us-
ing a gradable term, along with a numerical ev-
idence to support the claim. Specifically, we in-
dexed all sentences using Lucene and searched for
ones containing the medical term (e.g. anemia)
and the quantity of interest (e.g. hemoglobin).
Finally, numerical values and adjectives were ex-
tracted using regular expressions. In the following
subsections, we demonstrate that we can ground
the meaning of gradable terms using the above
model.

5.1 Systolic Function

Systolic function is a measure of how well the
lower left pumping chamber of the heart sends
blood to the rest of the body. It is measured using
a numerical quantity called left ventricular ejec-
tion fraction (LVEF) which is documented in an
echocardiogram. There is variation among physi-
cians defining the precise threshold for a normal
ejection fraction (Sanderson, 2007). While normal
values range from 55 to 65, values less than 30
imply that the systolic function is severely com-
promised. We extracted LVEF values from the
echocardiogram reports and their corresponding
descriptions of systolic function. Posterior prob-
abilities P (gradable|LV EF ) were calculated us-
ing equation (1) which resulted in a plot as shown
in Figure 1.

From the 8,192 echocardiogram reports, we
found six gradable adjectives in association with
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LVEF values. While the adjectives severe, mild
and moderate are associated with systolic dys-
function, the adjectives low-normal, normal and
hyperdynamic are associated with systolic func-
tion. Although there is discussion in the clinical
community regarding qualitative descriptions for
ejection fraction (Radford, 2005), there is varia-
tion in these recommendations. Moreover, certain
terms though used frequently (e.g. low-normal)
are never a part of such guidelines.

An interesting observation can be made regard-
ing Figure 1, drawing an analogy from the concept
of WordNet dumbbells (Sheinman et al., 2012).
A WordNet dumbbell is a representation involv-
ing an antonym pair (e.g. small and large) as two
ends of a semantic scale with semantically similar
adjectives arranged in a radial fashion around each
adjective. The antonym acting as a centroid and its
synonyms as members of a cluster represent words
that most likely participate in the same scale. For
example, the antonym pair (small, large) results
in the dumbbell with clusters (small, tiny, pocket-
size, smallish) and (large, gigantic, monstrous,
huge) at the two ends. WordNet dumbbells have
been used in the past (Sheinman et al., 2013; de
Melo and Bansal, 2013) to group gradable adjec-
tives belonging to the same scale. It can be seen
that the analogous dumbbell consisting of (severe,
mild, moderate) and (low-normal, normal, hyper-
dynamic) can be constructed using the modified
terms systolic dysfunction and systolic function
respectively.

The model captures essential aspects of grad-
ability very well. The scalar relationships (severe
< moderate < mild) and (low-normal < normal
< hyperdynamic) can be inferred by imposing an
order on the mean values for the posterior dis-
tributions of these adjectives. Strong judgments
for extreme cases and uncertainty for borderline
cases can be observed in the form of flat peaks for
specific intervals and overlapping distributions for
mid-range values.

5.2 Anemia

Hemoglobin is a protein in the red blood cells
(RBCs) that contains iron and carries oxygen from
the lungs to the rest of the body. Anemia is a
blood disorder, operationally defined as a reduc-
tion in the hemoglobin content of blood caused by
a decrease in the RBCs below a reference inter-
val of healthy individuals. The range of normal

Figure 2: Probabilistic modeling of descriptions
for anemia.

hemoglobin values for the laboratories at our in-
stitution is from 11.7 to 15.5. We found the two
adjectives severe and mild to be most commonly
used for describing anemia. A number of notes
also mentioned anemia with no modifier at all.
Figure 2 shows the posterior probabilities calcu-
lated for the three modifications of anemia: mild,
no adjective, and severe using the model outlined
in equation 1.

It is interesting to note that when physicians re-
fer to anemia without an adjective, it is neither
severe nor mild, and has a value in between. As
with systolic function, we can infer the ordinal re-
lationship (severe anemia < anemia < mild ane-
mia), considering the mean values for the poste-
rior distributions of these adjectives. Also, strong
judgments for extreme values and uncertainty for
borderline cases are evident through flat peaks and
overlapping distributions respectively. We also
found the adjective moderate being used in our
data for describing anemia for hemoglobin values
between mild and severe. However, it had few oc-
currences and hence we did not include moderate
in our model. Other adjectives such as significant,
marked, slight and pernicious were also found in
the data but with low frequency counts.

5.3 Platelet count

Platelets (also known as thrombocytes) are color-
less blood cells that help the process of blood clot-
ting. There are about 150,000 to 450,000 platelet
per microlilter of blood in the human body (Erkurt
et al., 2012). While the condition resulting from
a lower than normal platelet count is known as
thrombocytopenia, the condition resulting from a
higher than normal platelet count is referred to
as thrombocytosis. Since the notion of low and
high counts is gradable, we treat equivalent de-
scriptions of thrombocytopenia and thrombocyto-
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Figure 3: Probabilistic modeling of descriptions
for variations in platelet count.

sis as gradable. In addition we also extracted in-
stances of clinical notes where the platelet count
was referred to as normal. Using these three de-
scriptions, we applied the Bayes rule explained in
Equation 1.

Figure 3 shows posterior probabilities calcu-
lated for these three descriptions of platelet count.
As with previous examples, we can infer the or-
dinal relationship (thrombocytopenia < normal <
thrombocytosis) by considering the mean values of
their posterior distributions.

5.4 Renal Function

Creatinine is a chemical made by the body and is
used to supply energy to the muscles. Creatinine
is removed from the body by the kidneys and re-
leased through urine. If kidney function (or re-
nal function) is not normal, creatinine level in the
body increases (Israni and Kasiske, 2011). Ab-
normal renal function is referred to through differ-
ent terminologies such as renal insufficiency, re-
nal failure, and renal dysfunction. The vagueness
introduced by the use of these gradable terms is
also evident in clinical literature. Hsu and Cher-
tow (2000) in their paper titled “Chronic renal con-
fusion: insufficiency, failure, dysfunction, or dis-
ease” propose a set of laboratory values to classify
patients as mild, moderate and advanced degrees
of chronic renal insufficiency to “facilitate com-
munication among nephrologists and other physi-
cians and provide a framework for comparison of
populations.” It should be noted that linguistic am-
biguity is not the only reason for this confusion
and also has medical explanations which are be-
yond the scope of discussion of our work.

This problem was acknowledged by the med-
ical community. More than 30 new definitions
were proposed (Bellomo et al., 2004) and a new
standard is now in place (Khwaja, 2012). How-

Figure 4: Probabilistic modeling of descriptions
for variations in creatinine.

ever, our data is older (from 2005 to 2010) and
has frequent occurrences of these terms. We
extracted instances for the gradable terms “nor-
mal renal function,” “renal failure,” “renal insuffi-
ciency,” “renal failure” and the corresponding cre-
atinine values mentioned by physicians in the text.
Further, we computed posterior probabilities for
P (gradable|creatinine) using our model (Figure
4). The range of normal creatinine values is be-
tween 0.60 to 1.10 for the laboratories at our in-
stitution. In comparison with other examples dis-
cussed so far, it can be seen from the plot that
there is a greater confusion in the use of these
terms. This is especially evident in the interval
[2,3]. Again, this confirms with the property of
uncertainty for borderline cases. However, an or-
dering (normal < dysnfunction < insufficiency <
failure) can still be inferred.

5.5 Evaluation

We evaluated the model to determine if it fits the
data well. Using leave one out cross validation,
we tested if the model was able to predict the ad-
jective for a given numerical value. The gradable
mentioned in each text extract was regarded as the
gold standard prediction label. While creating a
model, we ensured that there were at least three
data points for each measurement value of the nu-
merical quantity present in the data. This allowed
us to compute priors for all values in the data. In
practice, one would either need large amounts of
data or employ smoothing (Kneser and Ney, 1995)
to ensure prior calculations for all numerical val-
ues are possible. Accuracy is calculated across
all gradable terms for each medical concept as de-
scribed in previous sections (Table 3). The models
achieve fairly high accuracies which demonstrates
that our model fits the data well.
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Medical Number of Accuracy
concept data points (%)

Systolic function 10,201 90.4
Anemia 12,711 88.3
Platelet count 14,234 94.6
Renal function 16,309 74.8

Table 3: Evaluation of probabilistic models to pre-
dict gradable terms for numerical values in the
data.

6 Limitations and future work

We illustrated through examples that gradable
terms in clinical text can be effectively analyzed
through data using a simple probabilistic model.
The model is developed for cases where the use of
gradable terms is dependent on a single numerical
quantity. We included analysis of descriptions for
heart function and kidney function. Similar analy-
sis can be conducted for liver function which mea-
sures the amount of bilirubin in the body. Com-
mon tests such as body mass index, blood pres-
sure and heart rate can also be analyzed in this
way. Such a data-driven approach can help in cre-
ation of a standard terminology and avoid confu-
sions (Hsu and Chertow, 2000).

However, context sensitivity is an important
characteristic of gradable adjectives (Kennedy,
2007). Thus, “John is a tall boy” and “John is
a tall basketball player” convey different mean-
ings despite using the same gradable adjective for
the same person (van Rooij, 2011). Similarly, the
gradable description of a medical concept may not
always be dependent on a single numerical quan-
tity. For example, there is a slight variation in the
upper limit of normal (ULN) values for creatinine
with gender. The ULN for males is 1.3 while that
for females is 1.2 at our institution. Similarly, the
lower limit of normal for hemoglobin in males is
11.7 while that for females is 13.2. These varia-
tions are small in magnitude. However, this is a
problem in cases where the dependency on other
variables is much more pronounced. We illustrate
this through an example.

Bone Marrow Cellularity (BMC) is the volume
ratio of hematopoietic cells (blood cells that give
rise to other blood cells) and fat. Pathologists per-
form a bone marrow analysis and use the three
adjectives hypocellular, normocellular, and hyper-
cellular to describe the sample. However, BMC

Figure 5: Dependency of gradable terms for BMC
on age.

is largely dependent on age of the patient. It is
100% for newborn infants and reduces with age
in adults (Muschler et al., 2001). Therefore, the
notion of hypocellular, normocellular, and hyper-
cellular also varies with age. We extracted BMC
values and associated adjectives from our data.
Figure 5 shows the likelihood plot of BMC val-
ues against associated age of patients with three
different colors for the adjectives hypocellular,
hypercellular, and normocellular. Although the
three gradable descriptions are linearly separa-
ble, P (gradable|BMC) cannot be modeled using
Equation 1, which ignores the age of the patient.

Time is a very common variable that often plays
an important role in clinical assessments. This is
most evident in blood sugar values for diabetic
patients that vary with every hour depending on
times of food consumption. Temporal adjectives
are frequently found as descriptions of medical
concepts. Some of the commonly found tempo-
ral adjectives in our data include acute, chronic,
recent, progressive, worsening, stable, persistent,
and continued.

Clinical notes are created and read by differ-
ent individuals associated with the hospital. Vi-
tal decisions such as clinical trial recruitment, ad-
herence to treatment guidelines, etc. are made by
healthcare professionals based on their interpre-
tation of these clinical narratives. Introducing
automation in these processes is an active area
of NLP research (Demner-Fushman et al., 2009).
This decision making becomes challenging if lan-
guage used in the clinical notes is vague and does
not deliver a precise meaning. Our work is a small
step to illustrate that gradability and its associated
vagueness is an important aspect of clinical text
which can be modeled through data. Creating a
single model that can flexibly incorporate multiple
variables and yet capture the properties of grad-
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able adjectives can be an interesting line of re-
search for the future.

7 Related Work

The phenomenon of adjectival modification in
biomedical discourse has also been a subject of
interest. Through empirical observations, Chute
and Elkin (1997) classified frequent modifiers for
medical concepts into two types: clinical modi-
fiers (e.g., chronic, severe, acute) and administra-
tive qualifiers (e.g., history of, no evidence of, sta-
tus post). Bodenreider and Pakhomov (2003) ex-
tended this idea and compared adjectival modifica-
tions in biomedical literature and patient records.
They found that while patient records contain
markers for uncertainty (e.g., possible, probable)
and non-specific symptoms (e.g., low back pain,
discomfort), scientific articles are precise about at-
tributes of organisms or age-groups (e.g., human,
canine, neonatal).

Adjectives have been studied extensively in
computational linguistics. WordNet (Fellbaum,
1998) classifies adjectives into two broad cate-
gories: descriptive and relational. Descriptive
adjectives (e.g., big house, heavy bag) ascribe
the value of an attribute to a noun, while rela-
tional adjectives (e.g., atomic bomb, dental hy-
giene) do not. Among the various distinctions be-
tween descriptive and relational adjectives, rela-
tional adjectives are typically not gradable (Fell-
baum, 1998).

Although association between adjectives and
numerical quantities has been a topic of research
in some studies (Aramaki et al., 2007; Davidov
and Rappoport, 2010; Iftene and Moruz, 2010),
very few studies have investigated grounding the
meaning of adjectives to numerical quantities. de
Marneffe et al. (2010) investigated the problem of
interpreting implied answers to yes/no questions
when the response is not explicit. Specifically,
they investigated question-answer pairs in which
the question contains an adjective and the answer
contains a numerical measure. For example, pre-
dicting the correct yes/no answer in (1) involves
interpreting a numerical quantity (age) with re-
spect to the gradable adjective little.

1. Q. Are your kids little?
A. I have a 7 year-old and a 10 year-old.

The authors created logistic regression models for
each adjective by querying the web with appropri-
ate keywords (“little kids”) and its antonyms (“not

little kids”), so that both positive and negative in-
stances can be learned.

Narisawa et al. (2013) explore a closely related
problem of learning numerical common sense for
the task of RTE in Japanese text. They study a
broad set of cases that require semantic inference
over numerical expressions. They query the web
to gather instances of pairs of numerical quanti-
ties and corresponding contexts and propose two
approaches. The distribution based approach con-
cludes the numerical quantity to be large or small
if it appears in the top or bottom five percent of
the distribution generated for the numerical quan-
tity and normal if it is in between. The cue-based
approach relies on explicit textual cues (e.g., as
large as, only) for associating a judgment about a
numerical expression.

8 Conclusion

We empirically evaluated use of gradable adjec-
tives in clinical documents. We reimplemented a
previously published model for identifying grad-
able adjectives in newswire text and found that
it performs surprisingly well with our clinical
data. These adjectives have a substantial presence
in clinical notes across multiple types of docu-
ments, written by different healthcare profession-
als. Analysis of the frequencies of these adjec-
tives and their association with clinical concepts
from UMLS revealed that there is a specific pat-
tern for their usage. Finally, we showed that a
simple Bayesian model can be used effectively to
ground the meaning of gradable terms when they
are used to describe medical concepts involving
measurement of numerical quantities. Our data-
driven approach can help in development of clini-
cal standards in situations where there is a need to
establish a precise relationship between adjectives
and measurements.
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Abstract

The rapidly growing biomedical literature
has been a challenging target for natu-
ral language processing algorithms. One
of the tasks these algorithms focus on is
called named entity recognition (NER),
often employed to tag gene mentions.
Here we describe a new approach for
this task, an approach that uses graph-
based semi-supervised learning to train a
Conditional Random Field (CRF) model.
Benchmarking it on the BioCreative II
Gene Mention tagging task, we achieved
statistically significant improvements in F-
measure over BANNER, a widely used
biomedical NER system. We note that
our tool is transductive and modular in
nature, and can be integrated with other
CRF-based supervised NER tools.

1 Introduction

Detecting biomedical named entities such as genes
and proteins is one of the first steps in many
natural language processing systems that analyze
biomedical text. Finding relations between enti-
ties, and expanding knowledge bases are examples
of research that highly depend on the accuracy of
gene and protein mention tagging.

Named entity recognition is typically modelled
as a sequence tagging problem (Sha and Pereira,
2003). One of the most commonly used mod-
els for sequence tagging is a Conditional Random
Field (CRF) (Lafferty et al., 2001; Sha and Pereira,
2003).

Many popular and best performing biomedical
named entity recognition systems, such as BAN-
NER (Leaman et al., 2008), Gimli (Campos et al.,
2013) and BANNER-CHEMDNER (Munkhdalai
et al., 2015) use CRF as their core machine learn-
ing model built on the MALLET toolkit (McCal-
lum, 2002).

Inspired by the success of graph-based semi-
supervised learning methods in other NLP
tasks (Subramanya et al., 2010; Zhu et al., 2003;
Subramanya and Bilmes, 2009; Alexandrescu and
Kirchhoff, 2009; Liu et al., 2012; Saluja et al.,
2014; Tamura et al., 2012; Talukdar et al., 2008;
Das and Petrov, 2011), we integrated the graph
based semi-supervised algorithm of Subramanya
et al. (2010) and adapted their approach to im-
prove on the results from BANNER. We show
that our approach achieves a statistically signifi-
cant improvement in terms of F-measure on the
BioCreative II dataset for gene mention tagging.

Semi-supervised learning for gene mention tag-
ging is not without precedent. There has been
several semi-supervised approaches for the gene
mention task and they have always been more
successful than fully supervised approaches (Jiao
et al., 2006; Ando, 2007; Campos et al., 2013;
Munkhdalai et al., 2015).

Ando (2007) used a semi-supervised approach,
Alternative Structure Optimization or ASO, in the
BioCreative II gene mention shared task along
with other extensions, such as using a lexicon or
combining several classifiers. ASO ranked first
among all competitors in the shared task compe-
tition 2007. Ando reported usage of unlabeled
data as the most useful part of his system improv-
ing the F-measure of the baseline by 2.09 points
where the complete (winning) system had a to-
tal improvement of 3.23 points over the baseline
CRF (Ando, 2007). Jiao et al. (2006) used condi-
tional entropy over the unlabeled data combined
with the conditional likelihood over the labeled
data in the objective function of CRF (Jiao et al.,
2006). Munkhdalai et al. (2015) trained word rep-
resentations using Brown clustering (Brown et al.,
1992) and word2vec (Mikolov et al., 2013) on
MEDLINE and PMC document collections and
used them as features along with traditional fea-
tures in a CRF. Like many of these approaches we
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also use unlabeled data to augment our baseline
CRF model. In all these previous studies the un-
labelled data was orders of magnitude more than
labelled data and distinct from the test data.

In this paper we take a transductive approach
and use the test set as our unlabelled data. More-
over, our approach is orthogonal to all these ap-
proaches and can be used to augment many of
them. This approach can be easily implemented
as a post-processing step in any system that uses
a CRF model. Examples of such systems in-
clude Gimli (Campos et al., 2013) and BANNER-
CHEMNDNER (Munkhdalai et al., 2015). These
tools have achieved the highest F-scores in the lit-
erature after ASO (Ando, 2007). Our approach
relies on the extraction of label distributions from
the CRF and augments the decoding algorithm to
incorporate the new information about gene men-
tions from the graph-based learning approach we
describe in this paper.

2 Method

Like many previous studies (Leaman et al., 2008;
Munkhdalai et al., 2015; Campos et al., 2013),
we formulate the gene mention tagging prob-
lem as a word level sequence prediction problem,
where labels for each word in the input are either
Gene-Beginning, Gene-Inside, and Outside (not
a gene). This representation is called IOB (for
inside-outside-beginning). We applied a graph-
based semi-supervised learning (SSL) approach,
previously shown effective on a similar labelling
task, part-of-speech tagging, for gene mention tag-
ging. (Subramanya et al., 2010)

In graph-based SSL, a graph is constructed to
represent partially labelled data. Each node in the
graph represents a single word-level gene men-
tion tagging decision and the edges between the
nodes represent similarity between the nodes. The
goal is to associate probability distributions over
the IOB tags to all vertices. Label distributions
for vertices that appear in labelled data are esti-
mated based on the reference labels and propagate
to vertices for unlabelled data in the graph. These
label distributions are combined with the CRF de-
coding algorithm used for labelling the test data.
Graph-based SSL is categorized into inductive and
transductive approaches. In inductive settings (e.g.
Subramanya et al. (2010)), a model is trained and
can be used as-is for unseen data. In transduc-
tive settings however, the unlabelled data includes

test data. We took a transductive approach in con-
structing our graph on the union of train set and
test set as labelled and unlabelled data.

Since the graph is the cornerstone of the algo-
rithm, let us describe its construction and usage
before the overall algorithm.

2.1 Graph Construction

We use the following steps for constructing the
graph for the gene mention tagging task adapted
from the graph construction for part-of-speech
tagging described in Subramanya et al. (2010):

1. Each vertex represents a 3-gram type and the
middle word of this 3-gram is the word which
is tagged as a gene mention using the IOB
tags. The label distribution for this middle
word is learned during graph propagation and
subsequently combined with the CRF model
at test time.

2. A vertex is represented by a vector of point-
wise mutual information values between fea-
ture instances and its 3-gram type.

3. Edge weights represent the similarity be-
tween vertices and are obtained by comput-
ing the cosine similarity of feature vectors of
their two end vertices.

4. For each vertex only the K nearest neigh-
bours are kept (default = 10).

We considered several feature sets, namely con-
textual features (Table 1), simplified contextual
features (Table 2), all features from the base CRF
model, and the most informative features from the
base CRF model. We picked the simplified con-
textual features based on preliminary results using
cross-validation on our development set. To rep-
resent a vertex v with 3-gram w−1w0w1, we look
at all occurrences of its 3-gram in the text, con-
sider the larger context w−2w−1w0w1w2 and get
the lemmas of these words. v is represented by a
vector of point-wise mutual information values be-
tween all possible feature instances (e.g. all possi-
ble lemmas for w−2) and w−1w0w1.

We eliminated extremely frequent features (de-
fault > 10,000) to reduce the time complexity of
graph construction. This should not affect the
structure of the graph substantially because the
point-wise mutual information between a feature
and any given vertex decreases as the frequency
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Description Feature
3-gram + Context w−2 w−1 w0 w1 w2

3-gram w−1 w0 w1

Left Context w−1 w−2

Right Context w1 w2

Center Word w0

Trigram − Center Word w−1 w1

Left Word + Right Context w−1 w1 w2

Left Context + Right Word w−2 w−1 w1

Table 1: Complete set of contextual features.

Description Feature
Left Context Word w−2

Left Word w−1

Center Word w0

Right Word w1

Right Context Word w2

Table 2: Simplified set of contextual features.

of the feature increases leaving extremely frequent
features with relatively small weights.

2.2 Graph Propagation
In graph propagation we associate any given ver-
tex u with a label distribution Xu that represents
how likely we think each label is for that vertex.

The goal of graph-based SSL is to propagate
existing knowledge about the labels through the
graph. The initial knowledge about graph nodes is
provided by the labeled data and potentially some
prior knowledge. Figure 1 shows how graph prop-
agation can assign label distributions to unlabelled
vertices and change the label distributions coming
from labelled data.

Propagation is accomplished by optimizing an
objective function over the label distributions at
each node in the graph. The objective function
consists of three types of constraints:

1. For any labeled vertex u, the associated label
distribution Xu should be close to the refer-
ence distribution X̂u (obtained from labeled
data);

2. Adjacent vertices u and k should have similar
label distributions Xu and Xk;

3. The label distributions of all vertices should
comply with the prior knowledge, if such
knowledge exists, or be uniformly dis-
tributed, otherwise.

The following objective function represents
these three components:

C(X) =
∑
u∈L

||Xu − X̂u||22

+µ
∑
u∈V

∑
k∈N(u)

wu,k||Xu −Xk||22

+ν
∑
u∈V

||Xu − U ||22 (1)

where u and v are nodes in the graph, L is the
set of labelled vertices, V is the set of all vertices,
N(u) is the set of neighbours of u, U is the uni-
form distribution over all labels, and µ and ν are
weight constants for constraints 2 and 3, respec-
tively. We used Euclidean distance as the distance
metric.

While the first two terms in the objective func-
tion, and their corresponding constraints make in-
tuitive sense, the uniformity constraint needs fur-
ther explanation. The rationale behind using dis-
tance from uniform distribution is to avoid prefer-
ring a label over others in the absence of strong
evidence.

The objective function is optimized using
stochastic gradient descent. We implement the op-
timization algorithm for this as described in Sub-
ramanya et al. (2010):

X
(m)
i (y) =

γi(y)
ki

γi(y) =X̂i(y)δ(i ∈ L)

+
∑

k∈N(i)

wi,kX
m−1
k (y) + ν

1
Y

ki =δ(i ∈ L) + ν + µ
∑

k∈N(i)

wi,k

(2)

X
(m)
i andX(m−1)

i denote the label distributions
of vertex i in iterations m and m− 1, respectively,
δ(i ∈ L) is 1 if and only if i is a labeled vertex,
and Y is the number of labels.

2.3 Overall algorithm
Once propagated the label distributions through
the graph, we would need to combine what we
learned in the graph with the tagging results from
the CRF model. For that we use a self-training al-
gorithm, shown in Figure 2.
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On an input of a partially-labeled corpus, we
first train a CRF model in a supervised fashion on
the labeled data (crf-train, line 1); we then use this
trained CRF model to assign label probability dis-
tributions to each word in the entire (labeled + un-
labeled) corpus (posterior decode, line 4). As a
result, each n-gram token in the corpus has a la-
bel distribution (the posteriors). For each n-gram
type u (a vertex in the graph), we find all instances
(n-gram tokens) of u and average over the label
distributions of these instances to get a label dis-
tribution for u (token to type, line 5). Next, we
perform graph-propagation (i.e. we optimize the
objective function in equation 1) to learn the label
distributions for all vertices. Finally, we linearly
interpolate the trained CRF model and the label
distributions from the graph:

Xint(t) = αXCRF (t) + (1− α)XGraph(t) (3)

where t is a 3-gram token in a specific sen-
tence, XCRF (t) denotes the posterior probability
from the CRF model for the middle word in t,
XGraph(t) denotes the label distribution of the 3-
gram type t after graph propagationn, and α ∈
[0, 1] is the mixture parameter between the CRF
and graph models. The best label for all words
in the entire corpus is then found using Viterbi-
decoding for the CRF usingXint instead ofXCRF

(viterbi-decode, line 7). Viterbi decoding provides
us with the best label for every n-gram token in the
unlabeled corpus, which implies that our labeled
set has grown to include the unlabeled corpus. We
re-train the CRF on this expanded training set (crf-
train, line 8); and iterate until convergence.

Note that the steps indicated by lines 1, 4, and

Figure 2: Iterative semi-supervised training of
CRF with label distributions from the graph. (Sub-
ramanya et al., 2010).

8 work on the corpus whereas graph propagation
in line 6 works on the graph. So, the step in line 5
takes us from corpus to the graph, and the step in
line 7 takes us back from the graph to the corpus.

2.4 Integration with BANNER

BANNER (Leaman et al., 2008) is a well-known
open-source biomedical named entity recognizer
that is widely used. Many studies have used
BANNER for gene mention tagging (Li et al.,
2015; Hakala et al., 2015; Leaman et al., 2015;
Pyysalo et al., 2015; Li et al., 2015; Lee et al.,
2014; Leaman et al., 2013) and many have cited
it as a biomedical NER system with good perfor-
mance (Dai et al., 2015; Krallinger et al., 2015;
Luo et al., 2016; Gonzalez et al., 2016; Hebbring
et al., 2015).

BANNER uses CRF as its machine learning
core, and we used it as our base CRF in lines 1
and 8 in Figure 2. We also modified BANNER’s
source code in order to extract the posterior proba-

Figure 1: Neighbours of one vertex before and after Propagation. I,O,B stand for Inside-gene, Outside-
gene, Beginning-gene.
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Category Method Precision Recall F-Score
Baseline BANNER 86.27 85.57 84.90

Our methods
Graph-based SSL 88.98 82.95 85.86

Graph + postprocessing 89.36 82.95 86.04

More recent methods
BANNER-ChemDNER (2015) 88.02 86.08 87.04

Gimli (2013) 90.22 84.32 87.17

Best performing methods
(Ando, 2007) 88.48 85.97 87.21

in BioCreative II challenge
(Kuo et al., 2007) 89.3 84.49 86.83

(Huang et al., 2007) 84.93 88.28 86.57

Table 3: Graph-based SSL improves BANNER by increasing the precision.

bilities from the underlying MALLET CRF model
(line 4). These probabilities were used in lines 5
through 7 in Figure 2.

Furthermore, the lemmas we used as features in
our graph construction (see section 2.1) came from
BANNER’s lemmatizer.

BANNER also does some post-processing: it
discards all the mentions that contain unmatched
brackets. We ran our method with and without this
post-processing step and verified its utility in our
approach as well.

3 Experiments

We show improvements over BANNER on the
dataset of BioCreative II Gene Mention Tagging
Task. This data set contains 15,000 training sen-
tences and 5,000 test sentences. Annotations are
given by the starting character index and finishing
character index of the gene in the sentence (space
characters are ignored). Some sentences have al-
ternative annotations presented in a separate file.

The upper part of Table 3 shows the results
of BANNER; Graph-Based SSL without post-
processing; and Graph-Based SSL with post-
processing. The hyper-parameters of Graph-
Based SSL were chosen by cross-validation over
different train/test splits with different hyper-
parameters tested for each split (α = 0.02, µ =
10−6, ν = 10−4, and number of iterations =
2). Table 3 shows that the improvement we get
in F-measure is due to better precision which is
further boosted by dropping the candidates with
unmatched parentheses (which is our only post-
processing step).

The lower part of Table 3 puts our method in
context. Although our method is competitive with
these best performing methods in the literature,
it has not outperformed any of them other than
BANNER. Its precision however, is better than
all other methods with the exception of Gimli. It
would be interesting to integrate the graph-based
approach to the ones with CRF as their machine

Type Of error Number Examples
FN in both

BANNER and Graph
882 SST, R

FP in Graph 120
CD18, kinase, homeobox domain, transforming growth factor -
beta, GRK6, POZ/Zn, HPR, E1B 19

FP in BANNER 337
oxidase, dose Ara C, mouse amino acid sequence, Ann Arbor,
K1F, wild-type R. sphaeroides 2.4.1, SAS GLM, 1.6-kb cDNA,
SH2, E3 ubiquitin, Xp22.3

FN in BANNER 158
LDL, bZIP protein, SL1, NF-kappaB, Ig-like domain,
immunoglobulin genes, signal transducer and activator of
transcription 1, bcr, ACTH, GFR, wnt

FN in Graph 197
SH3A, EGF, VA1, CBP, Decidual/trophoblast prolactin-related
protein, CA 50

Table 4: Qualitative comparison by a human domain expert between BANNER and Graph Propagation.
FN: false negatives. FP: false positives.
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Figure 3: Precision and recall for different
train/test splits and hyper-parameter choices. Each
color represents a single train/test split. We in-
clude only the Pareto optimal points for each split.

learning core (BANNER-ChemdNER, Gimli, and
the approach of (Kuo et al., 2007)) to further test
the utility of the graph approach.

3.1 Qualitative analysis
To understand the differences between BANNER
and the graph propagation results, a human do-
main expert compared the errors occurring in their
respective outputs. Table 4 shows the number of
these errors as well as some examples.

These examples illustrate two important obser-
vations. First, there are examples of categories
more general than genes in both false positives and
false negatives for both systems. For example Ki-
nase is a functional group of proteins; POZ/Zn, Ig-
like domain, and SH2 are protein domains; and E3
ubiquitin and NF-kappaB are gene families. Anec-
dotal evidence suggests that this is due to presence
of similar annotations in the training/test data set.
For example the bZIP protein, a protein family,
and Ig-like domain, a gene/protein functional do-
main were both annotated as genes. This calls for
a better gene mention corpus annotated according
to more recent gene annotation guidelines. Sec-
ond, there are some hard to explain false positives
in BANNER. Examples include Ann Arbor, a city
in Michigan, SAS GLM, a type of statistical test,
and 1.6-kb cDNA, a molecular length. Our graph-
based approach has eliminated these false posi-
tives.

3.2 Cross validation study
We conducted extensive cross-validation experi-
ments using different train and test splits in or-
der to explore the hyper-parameter values and to

Figure 4: The same points as in Figure 3 shown
as the difference from the Banner scores for the
same train/test split. The origin in this graph is the
BANNER score. Each cluster of points in Figure 3
becomes a line in this graph.

detect trends in the values that were optimal for
this task. The results show that graph-propagation
consistently improves results over BANNER.

Figures 3 and 4 were created by running graph-
propagation over different train and test splits
with different hyper-parameter values for each
split. For each train/test split, we show only the
Pareto optimal points (for each choice of hyper-
parameters we include it in the graph only if the
performance is not dominated by another choice in
both recall and precision). Figure 3 illustrates two
points: 1) the precision and recall for the differ-
ent Pareto optimal points for each train/test split is
very similar, and 2) overall the different train/test
splits have similar precision and recall values. Fig-
ure 4 shows the performance for each train/test
split shown as the difference from the BANNER
scores for that split. It shows that the precision
scores of graph-propagation is always better than
the BANNER baseline, while recall is sometimes
worse. The F-scores for all train/test splits and for
all Pareto optimal points in each split is always
better than the BANNER baseline.

We can collect useful statistics about which
hyper-parameter values are the most useful in
graph-propagation in this task from the extensive
set of experiments described above: for different
train/test splits and for each split with different
hyper-parameter values. Figure 5 shows the num-
ber of times different hyper-parameter values have
appeared in the set of Pareto optimal points over
all the train/test splits.

The hyper-parameter α (see equation 3) con-
trols the interpolation between the BANNER pos-
terior probability over labels and the label distri-
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bution from the graph-propagation step. Higher
α values would prefer BANNER over graph-
propagation. Figure 5 shows that smaller α values
are preferred, which implies that the label distribu-
tion produced through graph-propagation is found
to be more useful than the label distribution pro-
duced by BANNER. We also investigated the two
extreme cases of α = 0 (only graph) and α = 1.0
(only BANNER followed by an extra Viterbi de-
coding step), and observed that both of these op-
tions were worse than the BANNER baseline.

In equation (1) higher ν values keep the label
distribution at each vertex of the graph closer to
the uniform distribution. Higher µ values would
allow adjacent vertices to have a greater influence
on the label distribution at the vertex. Figure 5
shows that, in our experiments, graph-propagation
is sensitive to the values of µ. Lower µ values
appear in Pareto optimal points more often. On the
other hand, Figure 5 shows that graph-propagation
is not as sensitive to different values of ν as long as
it is not too high (10−1). This might be due to our
setting, where about 73% of vertices are labelled.

We looked for strong correlations between ν
values, µ values, and number of iterations in graph
propagation and found none.

Finally, for different iteration numbers of graph-
propagation, we collected the frequency with
which each number appeared in the Pareto opti-
mal results. One iteration of graph-propagation
produced 68 Pareto optimal points, two iterations
produced 198 points, and three iterations pro-
duced 120 points in our experiments. This shows
that having more than one iteration of graph-
propagation can improve the results.

Our algorithm (Figure 2) has two levels of itera-
tions. One outer iteration (the while loop) and one

inner iteration in graph propagation. The numbers
mentioned above refer to this inner iteration. All
our results reported are for one outer iteration only.
Our experiments in this paper were in a trans-
ductive setting where the graph was constructed
over the test and training data. For this reason
we did not experiment extensively with more than
one outer iteration. In future work, we plan to
experiment with increasing the amount of unla-
beled data, and in this setting explore increasing
the number of outer iterations.

3.3 A note on scalability

The most time consuming step in our approach
was graph construction, where the bootleneck is
to compute the edge weights between any possi-
ble vertex pairs. We experimented with a naive
algorithm, where for every vertex pair the values
of feature vectors for shared features were consid-
ered, and the cosine similarity was computed. We
also implemented a variation on it, where the sim-
ilarities between all pairs sharing a specific feature
instance were computed, and the contributions of
individual feature instances were summed to give
the final similarity between any given pair. The
first algorithm was too slow as expected due to its
O(|V |2) time complexity; the second one was too
slow due to high frequency features. This is an
important issue since the graph needs to be con-
structed for our approach to work on a new dataset.

Apart from the graph construction, the graph
based approach is as scalable as CRF if a labeled
train set is available for the new domain, as the
CRF only needs to be trained on the new labelled
set. If we wish to adapt the method in a domain
where there is no labelled data in the target do-
main, there is no need for any training.
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4 Conclusion and future directions

Our results show that propagating labels from 3-
grams present in training set to 3-grams only ap-
pearing in the test set can significantly improve
BANNER, a well-known frequently used biomed-
ical named entity recognition system for the gene
mention tagging task. Our cross-validation study
shows the robustness of this improvement. We
also presented qualitative comparison by a human
domain expert. Our ideas for future work are cat-
egorized into three groups:

1. Adding more unlabelled data: The only un-
labelled data we included in the graph were the test
data. Since the success of semi-supervised learn-
ing methods is usually due to huge amount of un-
labelled data, we plan to use many more PubMed
abstracts to construct the graph. This however will
be challenging because the graph construction can
be time consuming as it was in our case due to high
frequency features.

2. Constructing a better graph: Contextual
features we used to construct our graph are only
one of the feature sets that have been shown use-
ful in gene mention tagging task. Other feature
sets include orthographic features, contextual fea-
tures learnt from neural networks, features from
parse trees. These features may also prove useful
in constructing a graph that represents the simi-
larity between gene mentions. Also, we can pre-
process the raw sentences to collapse some collo-
cations into one word so that the middle word in
the 3-gram vertices are more meaningful.

3. Improving the latest approach: Although
BANNER is one of the most frequently used
biomedical named entity recognition system, it is
not one with the best performance ever. Previous
approaches have improved BANNER in a variety
of ways, including semi-supervised learning. In
particular, Munkhdalia et al. have achieved an F-
measure of 87.04 by including word representa-
tions learnt from massive unlabelled data as fea-
tures (Munkhdalai et al., 2015) . We plan to test
our approach on their freely available system.
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Abstract

We consider the use of distant supervi-
sion for biological information extraction,
and introduce two understudied corpora of
this form, the Biological Expression Lan-
guage (BEL) Large Corpus and the Path-
way Logic (PL) Datum Corpus. Each
resource eschews annotation at the sen-
tence constituent level, and the PL corpus
requires synthesis of information across
multiple sentences to construct compos-
ite knowledge frames. Decomposing this
problem into feature induction for slot-
level attributes, followed by event assem-
bly over this space of features, we intro-
duce a novel, general-purpose pattern in-
duction procedure, evaluating it against
these two corpora, demonstrating its abil-
ity to induce effective detection against de-
pendency parses.

1 Introduction

Biological event and relation extraction have been
the focus of considerable study in recent years,
resulting in the availability of annotated cor-
pora (Kim et al., 2003; Pyysalo et al., 2007; Kim
et al., 2008; Thompson et al., 2009). In the interest
of replicability and progress on critical challenges,
such resources typically decompose the hard prob-
lem of factual understanding into several simpler
problems, such as entity recognition, binary rela-
tion detection, and co-reference resolution.

This methodology is subject to several criti-
cisms. The reliance on thorough annotation im-
poses overheads that prevent rapid progress. The
targeting of a fixed set of simplified, typically bi-
nary relations does justice neither to the complex-
ity of information expressed in a typical sentence,
nor to the biological processes under discussion.

And the methodology places a emphasis on pieces
of information amenable to expression in individ-
ual sentences, leaving untouched information that
can be assembled only through traversal of para-
graphs or complete documents.

Some of these limitations can be mitigated
through distant supervision, a technique deriving
noisy annotation through the heuristic alignment
of structured knowledge resources to texts (Craven
et al., 1999). The biological domain affords a
number of high-quality knowledge resources with
good coverage, making possible strongly compet-
itive distantly supervised solutions (Poon et al.,
2015). However, the distance between resource
and text is often not great in such work, which fo-
cuses on relations for which entity co-occurrence
in a sentence is strong evidence that the sentence
expresses the target relation.

In this paper we attempt to exploit two knowl-
edge resources, neither of which has received
much attention from the BioNLP community,
that increase this distance in interesting and dis-
tinct ways. The Biological Expression Language
(BEL) is a knowledge interchange format intended
to encode qualitative causal and correlative rela-
tions that supports nested knowledge frames. One
product of the OpenBEL initiative1 is the “Large
BEL Corpus,” which explicitly pairs a large num-
ber of literature excerpts with the BEL assertions
that each supports. The relation between sentence
and BEL statement is many-to-many, with no pro-
visions for aligning specific statement components
with specific sentence constituents.

The Pathway Logic (PL) project pursues high-
fidelity signaling pathway models centering on
Ras (Eker et al., 2004). Part of the effort involves
a manual curation of experimental results, which
has resulted in approximately 40K records, each

1http://www.openbel.org/
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containing a detailed formal representation of an
experiment and its outcomes. Such records, called
datums, retain pointers to the papers and figures
from which they were derived. In general, assem-
bling the rich information contained in a datum re-
quires traversing multiple sentences, both in figure
captions and paper bodies.

We view the problem of extracting composite
knowledge frames based on these attenuated su-
pervisory signals as having two parts. First, we
seek to generate a set of features highly indicative
of various aspects of the target frame (its type, var-
ious attributes, etc.). Second, we view the prob-
lem of assembling frames from the resulting en-
riched feature space as one of structured classi-
fication. Recent work on structured classifica-
tion lends confidence that such empirical assem-
bly models are possible in principle (Daum III et
al., 2009) and applicable to discourse-level event
extraction (Reschke et al., 2014).

In this paper we address the first problem, the
derivation of features for downstream extraction.
We treat this problem as one of sentence classi-
fication via pattern (or rule) set induction against
dependency parses. Compared with related work
involving rules in the BioNLP literature (Bunescu
et al., 2005; Bui et al., 2013; Huang et al., 2004;
Liu et al., 2011; Hunter et al., 2008; Valenzuela-
Escarcega et al., 2015; Peng et al., 2014), our ap-
proach exhibits some interesting features, partic-
ularly the eschewal of domain heuristics and the
nonreliance on constituent-level annotations. Our
work can be viewed as complementary to man-
ual rule writing, and we present evidence that our
learned patterns outperform rules written by hand.

Our contributions in this paper are twofold:

• We present and evaluate a novel, general-
purpose approach to the induction of classi-
fication and extraction patterns from depen-
dency parses.

• We evaluate this approach against two
BioNLP corpora that have received little at-
tention in the literature. Each corpus presents
an extraction problem of greater complexity
than can be addressed by current methods,
providing avenues toward models of greater
scope and biological fidelity.

The remainder of the paper is organized as fol-
lows. In the next section, we describe these two

data sources and the problems they pose. In Sec-
tion 3 we present our approach to pattern induc-
tion. Then, we describe and discuss our experi-
ments in Section 4. Finally, we compare our ap-
proach in Section 5 to related work.

2 Data

In this section we describe the BEL Large Corpus
and the PL Datum Corpus, against which we eval-
uate our approach.

2.1 OpenBEL
The Biological Expression Language
(BEL) is designed to capture rich qual-
itative biological relationships in con-
text. For example, the BEL statement
[p(HGNC:CCND1) =⇒ kin(p(HGNC:CDK4))]
expresses that “increased abundance of the
protein HGNC:CCND1 directly increases the
kinase activity of the abundance of the protein
HGNC:CDK4.” Here, the =⇒ symbol expresses
a causal directly increases relationship between
two BEL functions. Relationship types include
causal (e.g., increases) and correlative (e.g., asso-
ciation) relationships. BEL functions are defined
for abundances (e.g., protein or rna abundances),
modifications (e.g., phosphorylation), activities
(e.g., kinase or catalytic activity), processes
(e.g., angiogenesis), and transformations (e.g.,
translocation and cell secretion). Depending on
their definition, functions can be nested, accepting
entity or other functions as arguments.

The OpenBEL initiative distributes the ‘large
corpus.”2, a collection of ∼80k statements, ∼74k
of which are associated with natural language ev-
idence passages and a PubMed article ID. The re-
lationship between BEL statements and support-
ing sentences is many-to-many — some sentences
are used to support multiple BEL statements, and
whole paragraphs can be mustered in support of a
given statement. After sentence segmentation and
minor cleanup (e.g., removing inline comments
from curators), we obtained a total of∼40k unique
supporting evidence sentences. In terms of biolog-
ical content, the corpus contains independent ob-
servations (in human, mouse, and rat) not selected
to represent any specific biological process. Given
its size, this implies a lack of comprehensive cov-
erage for any specific biological domain.

2https://github.com/OpenBEL/
openbel-framework-resources/blob/latest/
knowledge/large_corpus.xbel.gz
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Figure 1: An example of a Pathway Logic datum.

2.2 Pathway Logic

Pathway Logic (PL) is an approach to model-
ing biological entities and processes based on
rewriting logic.3 PL models can include spe-
cific facts and general principles relating entities
and processes. PL is currently being used for
the analysis of signal transduction and metabolic
networks, including the STM model, a network
of protein interactions and modifications used by
the cell to transmit signals from its environment
to the nucleus. Using STM, PL is able to pre-
dict and explain the effect of interventions (re-
moval/inhibition/mutation of proteins) on down-
stream events.

In PL, reactions are curated by expert biolo-
gists from published experimental evidence (nor-
mally a Pubmed article). This experimental evi-
dence is captured in formal expressions called “da-
tums,” encoded in a structured syntax over a con-
trolled vocabulary, each representing one assay.
An example datum is shown in Figure 1. Each
datum captures, among other things, the protein(s)
that are observed (Subject), the assay (Assay), the
stimulus (Treatment), a result (Change), and the
cells and culture conditions that were used in the
assay (Environment).

Importantly, each datum also includes a refer-
ence to the figure in its source article containing
the experimental result. These references allow us
to link each datum to a small set of natural lan-
guage sentences, namely those in the caption of
the referenced figure or citing it in the paper body.
This alignment, along with any mentions of en-
tities listed in key datum roles, provides our su-
pervisory signal. Note that the datum corpus con-
sists primarily of PDF documents, necessitating a
somewhat noisy conversion and alignment. We
use a version of the PL knowledge base that con-
tains ∼39k unique datums sourced from figures in
∼2,000 Pubmed articles.

In Section 4 we benchmark our pattern induc-
3http://pl.csl.sri.com/

tion procedure against rule sets written by hand us-
ing the ODIN framework (Valenzuela-Escarcega
et al., 2015). We created these rules over a pe-
riod of several weeks while implementing a datum
extraction system evaluated under DARPA Big
Mechanism. This activity took place before the
work described here had begun. Rule authors had
full access to the datum corpus and possessed tools
that exploited the same sentence-to-datum align-
ment heuristics used in this paper’s experiments.
Thus, although we cannot claim to have produced
optimal manual rule sets, these sets can be viewed
as characteristic of what can be achieved with rea-
sonable effort. Of course, the two rule sources are
not mutually exclusive. We are currently extend-
ing the datum extraction system to use both man-
ual and automatically induced rules, and expect to
see improvements in both precision and recall.

3 Approach

3.1 The Setting

We frame our approach as a problem of Boolean
classification over dependency parses (more gen-
erally, graphs with multiply labeled nodes and
edges), where the positive class typically reflects
that a sentence communicates some information
we seek to detect. For conciseness, in the remain-
der of the paper we will refer simply to “parses”,
leaving the “dependency” modifier implied.

Formally, we are given data as a set of exam-
ples from (X,Y ), with Y = {0, 1} reflecting class
membership. Each member of X is a parse taking
the form (Vd, Ed), with Vd a set of vertices and Ed

a set of directed edges (vi, vj). In addition, we are
given two feature spaces, FV : Vd 7→ {0, 1} and
FE : Ed 7→ {0, 1}, that range over vertices and
edges, respectively, which represent things such as
a vertex word or the dependency label of an edge.

We seek to classify such parses using patterns,
which take the form (r, Vp, Ep, TV , TE , DE). As
with parses, the components Vp and Ep define a
tree, which in this case is rooted in the distin-
guished vertex r. DE denotes the direction of an
edge, taking the form DE : Ep 7→ {↑, ↓}. As this
implies, we allow pattern edges to traverse up or
down a parse.
TV and TE represent the types of vertices and

edges, respectively. The vertex type, TV : Vp 7→
{λ} ∪ FV , is intended to constrain compatibility
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(call it CV ) with parse vertices:

CV (vd, vp, TV ) =


1 : TV (vp) = λ ∨

(TV (vp))(vd) = 1
0 : otherwise

In other words, a null pattern vertex is compati-
ble with any parse vertex, while a feature pattern
vertex is compatible only with parse vertices for
which the feature tests true, i.e., that have that fea-
ture. Thus, a feature pattern vertex with type fthe

will match only parse vertices that correspond to
the word “the”, fNN only to nouns, etc.

Edge types, TE : Ep 7→ {λ, ∗} ∪ FE , are
analogous to vertex types. A pattern edge with
type famod will match only parse edges having the
“amod” dependency label. Edges with type “*”,
which we call Kleene edges, are explained in the
next section.

3.2 Matching

We say that a pattern matches a parse if we can
find a one-to-one alignment between pattern ver-
tices and a subset of parse vertices proceeding re-
cursively from the root node. This matching pro-
cedure is most easily described by means of a hy-
pothetical Boolean function MATCH that returns
true if a specified pattern vertex matches a speci-
fied parse vertex.

Algorithm 1 Procedure for matching patterns to
parses.

1: function MATCH(X, vd, P, vp)
2: (Vd, Ed)← X
3: (r, Vp, Ep, TV , TE , DE)← P
4: if not CV (vd, vp, TV ) then return false
5: for ep in Ep s.t. ep = (vp, v

′
p) do

6: Found = false
7: for ed, v

′
d in CandEdges(ep, Ed, vd) do

8: if TE(ep) = ∗ then
9: if KleeneMatch(X, ed, v

′
d, P, v

′
p) then

10: Found = true
11: else if TE(ep) = λ ∨ TE(ep)(ed) = 1 then
12: if Match(X, v′

d, P, v
′
p) then

13: Found = true
14: if not Found then return false
15: return true

MATCH, shown in Algorithm 1, can be broken
into three parts: a check for vertex compatibility
(Line 4); a check for edge (or edge-to-path) com-
patibility (Line 5–13); and a recursive call to align
unmatched pattern vertices (Lines 9 and 12). For
brevity, we assume the existence of two helper
functions. CANDEDGES (Line 7) merely selects

and returns all edges (with destination vertex) at-
tached to vd that are compatible with the direc-
tional restriction of ep. KLEENEMATCH (Line 9)
enumerates all nodes on any path in the direction
selected by ep, internally calling MATCH on each
until a match is found.

3.3 Induction

Linguistic variation usually ensures that no sin-
gle pattern can adequately account for the ways in
which target information is expressed. Therefore,
our objective is to learn a set of patterns covering
the forms observed in the training data. In pursuit
of this objective we follow a top-down set covering
procedure. At each step in this procedure, a single
pattern is learned from the training data, all posi-
tive parses matching the new pattern are removed
from the training set, and the process repeats. If
no positive parses remain, or if the algorithm fails
to induce a pattern, the process terminates.

Algorithm 2 Pattern induction procedure.
1: function INDUCE(T, V, α)
2: P ← {}
3: p← null vertex
4: while p′ ← Specialize(T, p, α) do
5: p← p′

6: s← Score(p, V )
7: P ← P ∪ {(p, s)}
8: T ← T − {(x, y)|y = 1 ∧Match(p, x)}
9: return (p, s) ∈ P with max s

10:
11: function SPECIALIZE(T, p, α)
12: E ← {}
13: for (x, y) ∈ T s.t. y = 1 do
14: M ← Matches(p, x)
15: for o1 · · · ok ∈ Extensions(M,x, α) do
16: E ← E ∪ {o1 · · · ok 7→ (0, 0)}
17: for (x, y) ∈ T do
18: M ← Matches(p, x)
19: for o1 · · · ok ∈ Extensions(M,x, α) do
20: if o1 · · · ok ∈ E then
21: E[o1 · · · ok][y] += 1

22: o1 · · · ok ← BestExtention(E)
23: if no best extension found then
24: return false
25: return p extended with o1

The procedure for inducing a single pattern is
presented as Algorithm 2. The top-level function
INDUCE (Line 1) subjects an initial pattern con-
taining a single null vertex (i.e., a pattern matching
any non-empty parse—Line 3) to a series of spe-
cializations selected by the function SPECIALIZE

(Line 4), and scores them against hold-out training
data V (Line 6). The score of a rule is its precision,
or (p+m)/(p+ n+ 2m), where p is the number
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of matching positive parses, n the number of neg-
ative, and m > 0 a smoothing parameter.

SPECIALIZE (Line 11) takes the training set
T , the pattern p in its current form, and an
integer “look-ahead” parameter α. The proce-
dure involves two passes over the training data,
one collecting a set of candidate extensions to p
(Lines 13–16), the other accumulating statistics
for those extensions (Lines 17–21), which, as im-
plied by Lines 16 and 21, are simple counts of the
number of positive and negative parses matching
each extension. These two steps assume the exis-
tence of two procedures: MATCHES (a straightfor-
ward variant of MATCH, Lines 14 and 18) returns
all alignments between p and x; and EXTENSIONS

(Lines 15 and 19), the behavior of which will be
described in the next section.

Extensions are sequences of specialization op-
erations o1 · · · ok, 1 ≤ k ≤ α. Once statistics
have been collected, the extension that best favors
positive examples at the expense of negative ones
is selected (Line 22). We use the “FOIL gain” in
making this determination (Quinlan, 1990):

y′ · (log(
y′

y′ + n′
)− log(

y

y + n
)) (1)

where y and n (respectively, y′ and n′) are the
number of positive and negative parses matched
by p (respectively, p′ formed by extending p). 4.
Importantly, once the best extension is identified,
only the first specialization operation in the se-
quence is applied (Line 25) In this way, some of
the greediness of the extension search is mitigated.

3.4 Specialization Operations

When considering specializations of a pattern, we
have as reference its alignment to some parse, each
vertex to some parse vertex, and each non-Kleene
edge to some parse edge. We generate extensions
by iterating over this alignment and collecting all
possible specialization operations supported by it.
Let us use vp (pattern) and vd (data) to represent
two vertices in an alignment (similarly ep and ed
for edges). We consider the following specializa-
tion operations (the oi in Algorithm 2):

• Specialize a null vertex. If vp is null, change
it to require a feature of vd. Because parse

4We experimented with several comparable objective
functions, including mutual information and kappa, and
found results to be largely insensitive to this choice

nodes may have multiple features, this opera-
tion in general generates multiple specializa-
tions.

• Specialize a null edge. Analogous to the pre-
vious item, but defined on edges. We cur-
rently only consider features based on depen-
dency labels, but others are possible in prin-
ciple.

• Add a null edge. If vd has edges to unaligned
parse vertices, add a null edge in the appro-
priate direction from vp to a new null vertex.

• Add a Kleene edge. Except for the type, the
conditions and effects of this operation are
identical to the previous item.

Because these operations are typically considered
in the context of a multi-step extension search, we
can align any newly introduced vertices and edges
to the parse, and consider further specializations
either to the current element or to any newly in-
troduced elements, up to the limit specified by α.
Being a hyperparameter that inversely affects ac-
curacy and running time, we set α manually to
maximize accuracy given practical constraints on
compute resources (α = 3 for experiments in this
paper).

Feature Description
Word Word associated with a vertex
POS Part-of-speech tag
NER The named entity type, if any
Cluster Cluster of a word derived

through distributional clustering

Table 1: Vertex feature types.

The specialization operations are defined in part
by the feature spaces available, particularly by the
vertex (word) feature space FV . Conceptually,
these features belong to an extensible set of types
at the lexical level. The types used in our experi-
ments are presented in Table 1.

Figure 2 shows an example pattern aligned to a
matching sentence. In addition to the words in the
sentence, the diagram also shows the associated
POS and NER tags (clusters are not shown). An
induced pattern matching the sentence is shown
below the horizontal line. The pattern has three
Kleene edges and one null edge. It has five
nodes: two matching the NER=PRO (protein) fea-
ture, one matching the word “phosphorylation”,
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Figure 2: An example of an automatically induced
pattern matching a sentence.

IL-2 IL-7 and IL-15 induced phosphorylation of Stat5
PRO PRO PRO PRO
NNP NNP CC NNP VBD NN IN NNP
λ PRO VBD phosphorylation PRO

ROOT

dobj nmod
case

cc
conj
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nsubj

**

*
λ

another matching POS=VBD, and another match-
ing any word.

3.5 Pattern Application
The output of the induction process is a set of pat-
terns scored for precision against hold-out data.
Our primary interest in these patterns is as feature
detectors used by some downstream process that
assembles composite events, but the set of patterns
can be used and evaluated as a stand-alone classi-
fication model. In this mode, the scores attached
to the rules enable us to estimate the precision of
matches against novel parses, and therefore to con-
trol precision and recall.

Multiple patterns may and often do match an
individual parse. In such cases we estimate the
precision of the ensemble match M as:

1−
∏
p∈M

(1− sp) (2)

where p is a pattern and sp is its estimated preci-
sion. This estimate essentially treats the individual
estimates as mutually independent.

4 Experiments

We evaluated our pattern induction procedure on
the BEL and PL corpora for its effectiveness in de-
tecting sentences expressing information needed
for composite knowledge frames.

4.1 BEL evaluation
We converted BEL statements into a set of
overlapping binary distinctions, called fragments,
each a possible abstraction of the statement.
Our objective is to convert each BEL extraction
into a large set of redundant simpler problems,
from which the original statement might be
reconstituted. For example, the BEL statement

“p(HGNC:CCND1) =⇒ kin(p(HGNC:CDK4))”
yields (among other fragments) “kin” (describes
kinase activity), “kin(p)” (kinase activity of
a protein), and “ =⇒ kin(p)” (kinase activity
of a protein resulting from unspecified cause).
Generating BEL fragments from fully specified
BEL statements proceeds by first abstracting
away any entity or numeric function arguments.
Then, fragments are generated for every subtree
in the abstract syntax tree of the statement. (We
distinguish between functions occurring in the
statement’s subject and object position, in other
words treating “subject” and “object” as a named
element of the syntax tree.) Additionally, a
fragment is generated for the relationship type and
all functions occurring anywhere in the statement.
Table 2 lists examples of BEL fragments with
the number of positive training set sentences
associated with each of them in the corpus.

BEL fragment no. pos. sentences
p =⇒ ? 8728
r 6355
p =⇒ bp 1737
c(p, p, p) 127
trans(p) =⇒ r 22

Table 2: Example BEL statement fragments (p =
proteinAbundance; r = rnaAbundance; bp =
biologicalProcess; trans = translocation; c =
complexAbundance).

From the ∼74,000 BEL statements associated
with validated evidence, this process generates
∼3k unique fragments, of which we retained
those associated with at least 20 sentences (re-
sulting in ∼400 unique fragments). For each
unique fragment, all sentences associated with
the fragment were labeled as positive, and all
other sentences were labeled as negative. Patterns
were then induced and evaluated on a 60/20/20%
train/validation/test split defined on each of the
sets. Note that the corpus sometimes associates
BEL statements with multiple sentences, e.g., and
entire paragraph, which means our labeling proce-
dure sometimes treats proximal sentences as posi-
tive, even though they may not directly instantiate
a target statement. The inductive procedure, which
assumes that the target class is a disjunction of mu-
tually exclusive cases, handles such “noise” well,
essentially failing to derive patterns from (i.e., ig-
noring) the superfluous “positive” examples.
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Figure 3: Scatterplot showing results of the ∼400
sentence classification experiments run on the
BEL corpus.
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We evaluate the induced rule ensembles by
calculating an idealized F1 score, identifying a
threshold for classification based upon the vali-
dation estimated precision of the ensemble match
(Eq. 2) that maximizes F1 on the test set. We
acknowledge that finding this threshold using test
data produces an overly-optimistic result, but do-
ing so provides us with an informative upper
bound. In practice, the threshld would be tuned
using an alternative validation set to prevent over-
fitting. The mean cardinality of the induced rule
ensembles was 7, with a total of 2991 rules (2402
unique) induced across the ∼400 fragments.

Results are plotted in Figure 3, with one dot per
classification experiment, each being an applica-
tion of the rule induction approach against a single
unique BEL statement fragment. For each experi-
ment, the F1 classification result is plotted against
the size of the positive training set. The plot also
contains a line showing the F1 results of a random
chance baseline. To calculate the baseline, we as-
sume a classifier that randomly labels sentences as
positive or negative with the same marginal prob-
abilities as observed in the training set.

4.2 Pathway Logic evaluation

We next conducted a set of experiments target-
ing classification of sentences associated with var-
ious PL datum fragments. In this case, we em-
ployed named entity resolution for proteins, label-

PL datum fragment Learned Written
phos & subject 0.54 0.37
ubiq & subject 0.53 0.41
GTP-assoc & subject 0.60 0.20
phos & treatment 0.48 0.35
ubiq & treatment 0.29 0.17
GTP-assoc & treatment 0.32 0.05

Table 3: F1 performance in the extraction of da-
tum fields by learned and hand-written rules.

ing parse nodes as to whether they refer to the
value of associated Subject or Treatment fields,
and restricting rules to necessarily include nodes
that match the protein mention. Results are shown
in Table 3. These experiments targeted the two da-
tum fields (subject and treatment) that correspond
to extractible entities, and focus on the three im-
portant assay types (phos, ubiq, and GTP-assoc)
for which we had written ODIN rules while im-
plementing our heuristic datum extractor.

4.3 Discussion

The results presented in Figure 3 clearly estab-
lish the effectiveness of the induced rule ensem-
bles at detecting the information conveyed in the
BEL statements. Not surprisingly, this effective-
ness increases with increased training data, though
there is considerable variation. We attribute this
variation to the indiscriminate way in which frag-
ments were generated. Presumably, some kinds
of information correspond more strongly to de-
tectible linguistic regularities than others. A brief
investigation informally confirmed our intuitions.
For example, a common but difficult fragment is
“complex(p, p) =⇒ ?” (about 0.17 F1), or,
roughly, “a complex between two proteins in-
creases some effect.” A key insight is that “ =⇒
?” corresponds to a large range of effects, and
these effects govern the form a sentence takes.
In contrast, the fact that a complex is the agent
is often expressed subtly, often requiring infer-
ence over multiple sentences. Note that the set
of classes we target deliberately overdetermine the
typical BEL statement, making it possible in prin-
ciple to reassemble many statements.

The results presented in Table 3 promise imme-
diate practical value. As described in Section 2.2,
the hand-written rules were used in a system ex-
tracting simplified datums. Although this sys-
tem produced very noisy outputs, we were able
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to show in an official evaluation that the extrac-
tions could be used to corroborate mechanistic
assertions extracted by other systems, increasing
baseline precisions of 50% to 80% at the strictest
corroboration levels. Based on these results, we
intend to supplement or replace the hand-written
rules with learned ones.

In the slightly longer term, it remains to vali-
date the second part of our hypothesis: that as-
sembly of information captured by these induced
patterns into composite frames (BEL statements
or PL datums) similarly can be realized. To this
end, we plan to explore the selection and use
of learned patterns as features, as well as alter-
native approaches to induction, such as boost-
ing. Experience has shown that contextualiz-
ing symbolic learning methods in this way yields
performance as strong as other leading learning
paradigm (Caruana and Niculescu-Mizil, 2006).

5 Related Work

Progress in biological information extraction
(BioIE) is measured against shared annotated cor-
pora that decompose the problem into entity ex-
traction and sentence-level relation detection (Kim
et al., 2003; Pyysalo et al., 2007; Kim et al., 2008;
Thompson et al., 2009). The BEL corpus has re-
cently joined the ranks of these shared corpora
as part of BioCreative, where early F1 scores on
the task of assembling complete BEL statements
average about 0.2, reflecting the difficulty of the
task (Fluck et al., 2015).

Corpora annotated for entities and pairwise re-
lations enable the application of machine learn-
ing, which has been shown to be as effective for
such problems (Bunescu et al., 2005). Perhaps
because of a relative wealth of structured knowl-
edge resources, there are several competitive rule-
based approaches to BioIE, involving both hand-
written rules (Hunter et al., 2008; Valenzuela-
Escarcega et al., 2015; Peng et al., 2014) and rules
induced or tuned from data. For the most part,
these rule learning approaches introduce domain-
specific heuristics that limit their generality. Bui
et al (2013) begin with a pre-specified library
of syntactic patterns, which are instantiated from
training data through a domain-specific procedure.
Huang et al (2004) heuristically simplify training
sentences, align them in pairs using a specialized
edit distance, derive a pattern from the alignment,
applying a series of heuristic checks to discard

problematic patterns. Liu et al (2011) presents
what is in some ways a generalization of this pro-
cedure, deriving a graph structure that is the union
of individual simplified parses. It is unclear how
the resulting extractor controls for overgeneration.

In contrast to these rather specific solutions,
Bunescu et al (2005) evaluate a number of ma-
chine learning approaches to BioIE problems,
finding them generally viable and noting that the
rule-based learners yield high precision. These
rule learners, which were drawn from a tradition of
general-purpose rule induction for IE (Ciravegna
and others, 2001; Soderland, 1997; Califf and
Mooney, 1999; Freitag, 2000; Freitag and Kush-
merick, 2000), notably make no or relatively mod-
est assumptions about syntax. We are aware of no
prior work applying such techniques to full depen-
dency or constituent parses.

The relaxations of the annotation requirement
that we explore in this paper (absence of phrase-
level annotations, distant supervision) have been
thoroughly studied in other contexts. An early
instance of the IE-as-classification idea was the
AutoSlog system (Riloff, 1996), which gave birth
to bootstrapping techniques commonly used for
many NLP problems (Riloff et al., 1999). Sim-
ilarly, distant supervision, pioneered in the bio-
logical domain (Craven et al., 1999), has matured
toward yielding performance comparable to com-
plete supervision on certain problems (Poon et al.,
2015). In contrast with such work, which focuses
on sentence-local targets, relatively little work has
been done on discourse-level distant supervision.
A counter-example is Reschke et al (2014), which
addresses event extraction at the document level,
showing promising results but leaving many unan-
swered questions.

6 Conclusion

We have presented two understudied corpora pro-
viding distant annotation for the extraction of
composite frames constituted from multiple sen-
tences, none of which are annotated at the con-
stituent level. We have argued for a two-phase
approach to the exploitation of these resources—
feature derivation and frame assembly—and pre-
sented a novel pattern induction procedure appli-
cable to the first phase. Experiments with the
two corpora demonstrate the procedure is effec-
tive, yielding patterns superior to those authored
by humans in a comparable pattern language.
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Abstract

Biomedical relations are often expressed
between entities occurring within the same
sentence through syntactic means. How-
ever, a significant portion of such relations
(in particular, causal relations) are ex-
pressed implicitly across sentence bound-
aries. Inferring these discourse-level rela-
tions can be challenging in the absence of
syntactic clues. In this paper, we present
a study of textual characteristics that con-
tribute to expression of implicit causal re-
lations across sentence boundaries. Focus-
ing on a chemical-disease relationship cor-
pus, we identify and investigate the contri-
bution of various features that can assist in
identifying such inter-sentential relations.
Using these features for supervised learn-
ing, we were able to improve previously
reported best results by more than 13%.
Our results demonstrate the usefulness of
the proposed features and the importance
of using a balanced dataset for this task.

1 Introduction

Causal associations between entities, events,
and processes are central to biomedical knowl-
edge (Mihăilă et al., 2013). Such associations ex-
tend from physical causation, such as gene-disease
relationships and adverse drug reactions, to rhetor-
ical causation between claims and their justifica-
tions. Detecting causal associations in biomed-
ical literature can assist in biocuration of path-
ways and databases, such as the Comparative Tox-
icogenomics Database (CTD)1, and support tasks
such as drug discovery and pharmacovigilance.
Recognizing this need, the recent BioCreative V
challenge included a task (CID) on extraction of

1http://ctdbase.org/

chemical-induced disease relationships from Med-
line abstracts (Wei et al., 2016).

Chemical-disease relationships that the CID
task focuses on are causal relationships in which
a chemical acts as the cause and a disease or an
adverse effect acts as the effect. In the simplest
case, these relationships can be expressed intra-
sententially through syntactic means. For exam-
ple, in the sentence below (taken from the CDR
corpus used in the CID task), the causal rela-
tionship between the drug tacrolimus and the dis-
ease myocardial hypertrophy is expressed explic-
itly with the causal trigger induce, which has the
drug mention as its subject and the disease men-
tion as its direct object.

(1) Thus, we conclude that tacrolimus induces
reversible myocardial hypertrophy.

Assuming that the named entities have been suc-
cessfully recognized by a named entity recogni-
tion (NER) system, lexical clues (the causal trig-
ger induce) and syntactic dependency path be-
tween the entities and the trigger can be used to
establish a causal link. However, not all causal
relationships are expressed intra-sententially, and
crucial information may be missed if the implicit,
discourse-level relationships are simply ignored.
For illustration, consider the discourse fragment
below.

(2) We investigated the efficacy and toxicity of
a 3-hour paclitaxel infusion in a phase II
trial in patients with inoperable stage IIIB
or IV NSCLC. . . . Hematologic toxicities were
mild: only one patient (2%) developed grade
3 or 4 neutropenia, while 29% had grade 1 or
2. Grade 1 or 2 polyneuropathy affected 56%
of patients while only one (2%) experienced
severe polyneuropathy. Similarly, grade 1
or 2 myalgia/arthralgia was observed in
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63.2% of patients, but only 14.3% experi-
enced grade 3 or 4. Nausea and vomiting
were infrequent, . . .

Limiting relation extraction to sentence level, we
would miss the causal relationships between the
drug paclitaxel and the adverse effects (neutrope-
nia, polyneuropathy, myalgia, arthralgia, nausea,
and vomiting). The difficulty of extracting im-
plicit, discourse-level relationships is due to sev-
eral factors. First, the role of syntax in expressing
relationships is limited; no syntactic dependency
exists between the entities. Secondly, discourse-
level phenomena, such as coreference, implicit ar-
gumentation, and rhetorical relations between sen-
tences play a larger role. Resolving such phe-
nomena could aid in identifying implicit relation-
ships; however, these are all challenging NLP
tasks in their own right. Thirdly, potential rela-
tionships between all entities occurring in the doc-
ument may need to be considered, which can lead
to a data sparsity/imbalance problem due to the
smaller number of relations expressed across sen-
tence boundaries.

In the biomedical domain, to our knowledge,
there is little research specifically focusing on im-
plicit, inter-sentential relations. In the GENIA
event corpus (Kim et al., 2008), one of the major
corpora for biomedical relation extraction, 7.8%
of all events cross sentence boundaries and the ma-
jority of these events (4.8%) are causal. In con-
trast to the text-bound and linguistically-motivated
annotation in the GENIA event corpus, the CDR
corpus annotation is not concerned with explicit
event triggers and implicit causal inferences are
annotated much more frequently, as illustrated in
the example above. 27.2% of all relations in the
corpus are expressed only at the discourse level;
that is, their arguments never co-occur within the
same sentence. Therefore, the CDR corpus pro-
vides a good opportunity to study implicit causal
relationships. While systems participating in the
CID task have addressed discourse-level relations
to some extent, only a few have explicitly re-
ported results on discourse-level relations. Among
these, the top-ranked system (CD-REST) (Xu et
al., 2016) incorporated a document-level classi-
fier, which uses entity and context-based features
as well as knowledge-based features. Knowledge-
based features, particularly those extracted from
the CTD database, proved to be the difference,
since this database provides manually curated re-

lationships between chemical and diseases.
In this paper, we aim to elucidate the tex-

tual characteristics that play a role in implicit,
discourse-level relations. While the CD-REST
system (Xu et al., 2016) demonstrates that cu-
rated knowledge about chemical-disease relation-
ships in structured resources can be used to great
advantage, we approach the problem purely as a
natural language processing task and specifically
focus on characteristics that can be derived from
the text, since presence of curated relationships
cannot be assumed for all relation extraction tasks
and therefore such an approach may not be gen-
eralizable. Based on the characteristics that are
discussed, we propose specific features that can
play a role in recognizing implicit relations, use
these features for supervised learning and investi-
gate their effect. To address the imbalance of the
data, we also experiment with different training
sizes. Our results show that the features we pro-
pose aided by a balanced training set can provide
state-of-the-art performance in recovering implicit
causal relationships and indicate that named entity
recognition has a significant impact on the perfor-
mance.

2 Related Work

In the general domain, Swampillai and Steven-
son (2011) used an SVM-based approach to
address inter-sentential relations in the MUC6
dataset. Adapting structural features used for
intra-sentential relation extraction (e.g., parse
trees) to the inter-sentential case and addressing
the data sparsity problem by hyperplane adjust-
ment, they were able to obtain comparable per-
formance to intra-sentential relation extraction. A
relevant research thread in semantic role label-
ing (SRL) is concerned with implicit arguments
of predicates. Gerber and Chai (2010) studied
implicit arguments of a small number of nomi-
nal predicates, such as price and shipping. Their
model used a variety of features such as VerbNet
classes and semantic roles for predicates and argu-
ments, sentence distance, predicate frequency, and
pointwise mutual information between arguments
to identify implicit arguments. The SemEval-
2010 Task 10: Linking Events and their Partic-
ipants in Discourse (Ruppenhofer et al., 2010)
addressed the same problem on a larger set of
event predicates. The participating systems per-
formed very poorly; however, more recent studies
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were able to improve results, by casting the prob-
lem as an anaphora resolution task (Silberer and
Frank, 2012) and by using the previously iden-
tified explicit arguments of a given predicate in
linking (Laparra and Rigau, 2013). Causal rela-
tions have also been studied in the general do-
main from a wide range of perspectives. For ex-
ample, Girju (2003) learned patterns indicating
causal relationships between noun phrases to im-
prove question answering. Other research focused
on causal relations between discourse segments
(rather than individual entities) and generally re-
ported poorer results on causal relations than other
types of discourse relations (Subba and Di Euge-
nio, 2009). It should be noted that most research
on implicit arguments and causal relations assume
the presence of explicit triggers (e.g., produce, as
a result).

In the biomedical domain, there is little work
that specifically addresses implicit arguments. Fo-
cusing on consumer health questions, Kilicoglu et
al. (2013) incorporated resolution of anaphora and
ellipsis to their question frame extraction pipeline
and reported an 18 point improvement in F1 score
due to implicit argument resolution. Coreference
resolution has been studied as a strategy to recover
implicit arguments and improve event extraction
and varying degrees of improvement due to coref-
erence resolution have been reported (Yoshikawa
et al., 2011; Miwa et al., 2012; Kilicoglu and
Bergler, 2012; Lavergne et al., 2015; Kilicoglu et
al., 2016).

Regardless of whether they are expressed im-
plicitly, a wide range of causal relations have
also been addressed in biomedical text. GE-
NIA event corpus (Kim et al., 2008) and BioIn-
fer corpus (Pyysalo et al., 2007) contain causal
relationships between genes/proteins (e.g., REG-
ULATION, POSITIVE REGULATION, and NEGA-
TIVE REGULATION), in addition to other relation
types. Causal relations in these corpora were of-
ten found to be more challenging to identify than
other relation types (Kim et al., 2012). In the
BioCause corpus (Mihăilă et al., 2013), causal-
ity was addressed as a discourse coherence rela-
tion and 850 causal discourse relations from full-
text journal articles on infectious diseases (94%
of which have explicit causal triggers) were anno-
tated. In the BioDRB corpus (Prasad et al., 2011),
a larger number of discourse relation types were
annotated, one of which is causality. Mihăilă and

Ananiadou (2014) focused on discourse causality
in BioCause and used a semi-supervised method
to recognize causal triggers and their arguments in
biomedical discourse. They did not address im-
plicit discourse causality.

BioCreative V CID task involved chemical-
disease relationships at the discourse level, even
though they were often not specifically addressed.
The top-ranked system (CD-REST) (Xu et al.,
2016) incorporated a discourse-level classifier,
which interestingly performed better than the
sentence-level classifier; however, most of the per-
formance gain was due to features extracted from
curated resources, particularly CTD. Similarly, the
next best system (Pons et al., 2016) used do-
main knowledge from various databases, and one
of better performing systems, UET-CAM (Le et
al., 2015), incorporated features from coreference
resolution into an intra-sentential relation classi-
fier. The present study diverges from these studies
by specifically addressing implicit, discourse-level
causality and focusing on textual characteristics.

3 Methods

In this section, we first describe the corpus
we used for analysis and experiments. Next,
we discuss the linguistic characteristics of inter-
sentential, implicit causal relationships. In the
following subsection, we describe our supervised
learning approach and features that we developed.
Finally, we discuss our evaluation.

3.1 CDR Corpus

For our analysis and experiments, we used the
CDR corpus that was used in the BioCreative V
CID task (Wei et al., 2016). This corpus consists
of 1,500 Medline abstracts, annotated with chem-
ical and disease mentions, normalized to MeSH
identifiers, and the abstract-level chemical-disease
causal relationships between the normalized enti-
ties. The corpus is split into three, one-third is
used for training, one-third for development, and
the rest for testing. Causal triggers have not been
annotated in the corpus. The distribution of chem-
ical/disease entities as well as that of the rela-
tions are given in Table 1. For our experiments,
we focused on relations that are solely expressed
across sentences (i.e., entity pairs co-occurring in
the same sentences are ignored). The statistics for
these relations are also given in Table 1. We did
not perform any named entity recognition or nor-
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Dataset # Diseases # Chemicals # Relations # Discourse-level Relations
Training 4,182 (1,965) 5,203 (1,467) 1,038 283
Development 4,244 (1,865) 5,347 (1,507) 1,012 246
Testing 4,244 (1,988) 5,385 (1,435) 1,066 320
TOTAL 12,670 (5,818) 15,935 (4,409) 3,116 849

Table 1: CDR corpus characteristics

malization and conducted our analysis and experi-
ments using the gold entities. For comparison, we
also used DNorm (Leaman et al., 2013) for disease
and tmChem (Leaman et al., 2015) for chemical
name recognition/normalization. On the test por-
tion of the corpus, DNorm achieves 81% F1 score
and tmChem achieves 91% F1 score.

3.2 Characteristics of implicit causal
relations

Focusing only on inter-sentential relations in the
training set, we examined the linguistic character-
istics that play a role in expressing them. We ex-
amine and exemplify some of the important char-
acteristics below.

3.2.1 Causal ordering of events
A significant portion of the implicit chemical-
disease relationships can be seen as inferences,
rather than explicit assertions. One minimal con-
dition for such causal inference is temporality: if
a chemical causes a disease in a patient, then the
chemical administration has to occur before the
manifestation of the disease. In biomedical ab-
stracts, language describing such event ordering
is present, particularly in descriptions of experi-
ments. An example, shortened from the original
text, is shown below, with relevant chemical and
disease mentions underlined.

(3) We report on a combination of everolimus
and tacrolimus in 24 patients . . . with ei-
ther myelodysplastic syndrome . . . or acute
myeloid leukemia . . . . All patients engrafted,
and only 1 patient experienced grade IV mu-
cositis. . . . Transplantation-associated mi-
croangiopathy . . . occurred in 7 patients . . . ,
with 2 cases of acute renal failure.

Similarly, case studies often involve language
describing a sequence of events that lead to a med-
ical problem. An example is given below.

(4) We present a case of a 5-year-old child with
cerebral palsy and seizure disorder, receiv-

ing clonidine for restlessness, who presented
for placement of a baclofen pump. With-
out the knowledge of the medical personnel,
the patient’s mother administered three doses
of clonidine during the evening before and
morning of surgery to reduce anxiety. Dur-
ing induction of anesthesia, the patient de-
veloped bradycardia and hypotension . . .

3.2.2 Coreference
The role of coreference in expressing implicit ar-
guments has been acknowledged (Silberer and
Frank, 2012). Anaphora relations can create ex-
plicit links between sentences and assist in resolv-
ing implicit arguments. In the following example,
the definite noun phrase this regimen and the per-
sonal pronoun it corefer with combination therapy
with pegylated interferon and ribavirin in the pre-
vious sentence. If these anaphora relations are re-
solved, the anaphoric expressions can simply be
substituted with the antecedent, simplifying the
problem to sentence-bound relation extraction.

(5) The current best treatment for HCV in-
fection is combination therapy with
pegylated interferon and ribavirin. Al-
though this regimen produces sustained
virologic responses (SVRs) in approximately
50% of patients, it can be associated with a
potentially dose-limiting hemolytic anemia.

Bridging (or associative) anaphora (Poesio et
al., 1997), a type of indirect coreference that is dis-
tinguished by relations such as hypernymy (is-a)
or meronymy (part-of), is also used considerably
to indicate implicit causal relations. In the follow-
ing example, the causal relation between ventric-
ular fibrillation and the chemicals sodium citrate
and disodium edetate can be identified, if we can
recognize that there is a meronymic relationship
between these chemicals and Renografin.

(6) Renografin contains the chelating agents
sodium citrate and disodium edetate,
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while Hypaque contains calcium dis-
odium edetate and no sodium citrate.
Ventricular fibrillation occurred significantly
more often with Renografin.

3.2.3 Document Topic as Implicit Argument
Since abstracts are relatively short, it is common to
have the main focus of the article mentioned only
once and referred to implicitly throughout the ab-
stract. For example, in an article investigating the
side effects of a drug, the drug name is often men-
tioned early on (in some cases, only in the title),
and the side effects of the drug are revealed later
in the abstract. In the following example, the log-
ical object argument of the predicate treatment is
uninstantiated, and this implicit argument refers to
the document topic, the drug CCNU (lomustine).

(7) CCNU (lomustine) toxicity in dogs: a ret-
rospective study (2002-07) . . . CCNU was
used most commonly in the treatment of lym-
phoma, mast cell tumour, . . . . Through-
out treatment, 56.9% of dogs experienced
neutropenia, 34.2% experienced anaemia
and 14.2% experienced thrombocytopenia.

3.2.4 Document Structure
The title and the abstract of an article need to con-
vey the gist of the study in a small, often predeter-
mined, number of words. To ensure that the con-
tent of the abstract is representative of the study,
some journals require the abstracts to conform to
a formal structure (structured abstracts), with sec-
tions such as Objective, Methods, and Results. Im-
portant findings are more likely to be reported in
the Results section, and implicit causal relation-
ships between entities in the Results section and
the main topics of the articles are frequent. In the
following example, desipramine is one of the main
topics of the article and the only mention of ven-
tricular arrhythmias is in the Results section.

(8) Effect of calcium chloride and 4-
aminopyridine therapy on desipramine
toxicity in rats . . . The incidence of
ventricular arrhythmias (p = 0.004) and
seizures (p = 0.03) in the CaCl2 group was
higher than the other groups.

3.3 Supervised learning of implicit causal
relationships

We formulate implicit causal relation extraction
as a binary classification task, where examples

consist of chemical-disease mention pairs whose
corresponding normalized entities do not co-occur
intra-sententially in the abstract. Positive exam-
ples are mention pairs that are causally related,
and negative examples are those that are not. We
used linear SVM (Fan et al., 2008) to train the bi-
nary classifier and empirically set the regulariza-
tion parameter C to 0.1. To address the imbalance
of the dataset (approximately 85% of all exam-
ples are negative), we trained the classifier with
varying number of negative examples (undersam-
pling). We selected negative examples from the
documents in proportion to the number of all ex-
amples extracted from the document.

The classifier uses features developed based
on the analysis presented in the previous sec-
tion as well as standard n-gram (unigram and bi-
gram) features. Features that proved predictive
are provided in Table 2 and illustrated on the de-
sipramine:ventricular arrhythmias pair from Ex-
ample (8). In Table 2, we also indicate whether the
feature or an approximation was used by the top-
performing system (Xu et al., 2016) in the CID
task. We distinguish between lexical, semantic,
and discourse features.

Lexical features are simple n-gram features ex-
tracted from the sentences of the target mentions.
We use unigrams and bigrams of the mentions as
well as those of sentences that the mentions appear
in.

Semantic features include conceptual knowl-
edge about the entities (their MeSH identifiers
and the MeSH identifiers of their ancestors in the
MeSH hierarchy) as well as other semantic infor-
mation that occur in the sentence context. For
this purpose, we use an existing dictionary of
causal predicates, previously compiled from sev-
eral corpora. The list consists of 201 predicates
and mainly includes triggers for regulatory events
(e.g., induce, effect, develop) as well as discourse
connectives that describe causal (e.g., as a result)
or temporal relations (e.g., before, after). We also
use a feature that indicates whether an experiencer
(e.g., patient, rats) is mentioned in the sentence
context. Finally, a binary feature indicates whether
any mention belonging to the opposing semantic
class occurs in the sentence (i.e., if the classified
example includes a chemical mention in the cur-
rent sentence, this feature is true if the current sen-
tence contains a disease mention).

Discourse features are mainly features based on

50



Feature Description CD-REST
Lexical features
F1 Uncased unigrams of the mentions X
F2 Uncased bigrams of the mentions X
F3 Uncased unigrams of the mention sentence(s)
F4 Uncased bigrams of the mention sentence(s)
Semantic features
F5 Uncased causal predicate lemmas preceding the chemical mention

({effect})
S

F6 Uncased causal predicate lemmas following the chemical mention (∅) S
F7 − F8 Same as F5 − F6, for the disease mention ({∅,∅}) S
F9 Whether the opposing semantic class in the mention pair exists in the sen-

tence (true)
F10 Whether an experiencer trigger exists in either mention sentence (true) X
F11 Disease MeSH identifier (D001145) X
F12 chemical MeSH identifier (D003891) X
F13 disease MeSH hypernyms ({D002318, D006331, D010335, D013568}) X
F14 chemical MeSH hypernyms ({D003984, D006571, D006575}) X
Discourse features
F15 chemical in focus (true) S
F16 disease in focus (false)
F17 normalized section name of the chemical (TITLE)
F18 normalized section name of the disease (RESULTS)
F19 main verb POS sequence in target and intervening sentences (NONE)
F20 whether the sentences of the mentions are adjacent (false) X
F21 the document contains sortal anaphors (true)
F22 MeSH descendant of the disease occurs in the document (true) X
F23 MeSH ancestor of the disease occurs in the document (true) X

Table 2: The features used by the binary classifier (S: a similar feature is used)

our analysis. To address causal ordering of events
by capturing tense information, we include a fea-
ture that concatenates the part-of-speech tags of
the main verbs of the mention sentences and those
of the sentences intervening between them (ignor-
ing title sentences). Adjacent sentences are of-
ten implicitly related, and therefore, we include
a binary feature that indicates whether the men-
tion sentences are adjacent. To address anaphora,
we include a binary feature that indicates whether
the abstract contains any sortal anaphors that can
refer to chemical or disease mentions (e.g., this
drug, the condition). We extracted this informa-
tion using the Bio-SCoRes tool (Kilicoglu and
Demner-Fushman, 2016). With regards to bridg-
ing anaphora, we use binary features that indicate
whether a MeSH ancestor or descendant of one
of the entities in the pair appear in the abstract,
addressing hypernymy. Whether the chemical en-

tity and the disease entity may be document topics
are also included as features. We simply included
all entities that appear in the title of the article as
document topics. To capture document structure,
we normalized the section names in structured ab-
stracts using the mappings curated at the NLM2.
If the abstracts are not structured, we simply used
TITLE or ABSTRACT as the normalized section
name.

Feature extraction presupposes a standard lin-
guistic processing pipeline (i.e., tokenization,
part-of-speech tagging, syntactic parsing). We
performed this processing using the Stanford
CoreNLP toolkit (Manning et al., 2014).

2http://structuredabstracts.nlm.nih.gov/Downloads/Structured-
Abstracts-Labels-110613.txt.
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3.4 Evaluation
In separate experiments, we used gold standard
entities and those recognized by DNorm (Leaman
et al., 2013) and tmChem (Leaman et al., 2015)
as the basis for relation extraction. Following the
CID baseline, we took simple abstract-level entity
co-occurrence as the baseline method. We also
compared our results to those reported with CD-
REST (Xu et al., 2016). This comparison is made
somewhat difficult by the fact that their discourse-
level classifier considers entities co-occurring in
the same sentences as candidates, as well. An-
other complicating factor in comparison is their
classifier’s use of curated knowledge-base fea-
tures. In particular, two features from CTD pro-
vide more than 18% improvement in their overall
F1 score using gold standard entities (from 56.7%
to 67.1%). For a fair comparison, we implemented
these CTD features and incorporated them into our
best model.

• CTD relation between the chemical and the
disease: null, inferred-association, therapeu-
tic, or marker/mechanism

• Whether the disease has a marker/mechanism
association with any chemical in CTD

In addition, we performed an ablation study to bet-
ter understand the contribution of various feature
sets. We used the standard evaluation metrics, pre-
cision, recall, and F1 score, to assess relation ex-
traction performance.

4 Results and Discussion

The results of implicit causal relation extraction
on the test set using the gold standard entities and
DNorm/tmChem entities are provided in Table 3.
The effect of CTD features on classification per-
formance is also shown. We obtained the highest
F1 score and recall when we undersampled nega-
tive examples to yield a 1:1 positive/negative sam-
ple ratio (balanced training)3. The highest preci-
sion was obtained in both cases when all available
data are used for training.

The improvement due to CTD features was less
dramatic than that found by Xu et al. (2016) but
still significant (more than 11% improvement with
the gold entities, from 66.1% to 73.7%). How-
ever, we believe that the results obtained with-
out CTD features are a better representation of the

3Not all the ratios we experimented with are shown.

state-of-the-art for implicit causal relation extrac-
tion from a purely NLP perspective. In this setting,
we obtained 66.1% F1 score with gold entities and
48.6% F1 score with DNorm/tmChem entities (in
italics).

In comparing our performance to that of CD-
REST, we find that our approach overall outper-
forms CD-REST. Using gold entities, CTD fea-
tures, and a balanced training set, we outper-
formed their system by more than 9% (67.3% vs.
73.7%). They have not used a balanced train-
ing set, so the difference with their reported sys-
tem is even wider (56.7% to 73.7%). Without
CTD features, we slightly outperformed their re-
ported results (66.1% vs. 64.9%), indicating that
our approach in some sense compensates for the
CTD knowledge and suggesting that it could sup-
port biocuration of these relationships. The per-
formance they reported with gold entities is some-
what higher than what we obtained with our im-
plementation of their features (64.9% vs. 56.7%);
however, it is worth pointing out that their clas-
sifier takes into account mention pairs that co-
occur in the same sentences, as well, which can
explain the difference to some extent. The small
differences in our implementation of their features
could also account for some of the difference. CD-
REST uses its own named entity recognition tool,
which outperforms the DNorm/tmChem combina-
tion, and this is partly reflected in the performance
difference between using DNorm/tmChem entities
with their features and their reported end-to-end
performance (50.2% vs. 56.8%).

To better understand the contribution of fea-
tures, we performed an ablation study in which we
removed a set of features, retrained our classifier,
and assessed the performance. The results of this
evaluation are shown in Table 4. In these experi-
ments, we used gold entities and a balanced train-
ing set and did not include CTD features. The re-
sults show that lexical and discourse features con-
tribute similarly to implicit causal relation extrac-
tion, while the contribution of semantic features is
much smaller. We observe that the effect of lexi-
cal features is to improve precision, whereas dis-
course features contribute significantly to recall,
with a minor degradation in precision.

While the discourse features we used were
overall successful, our attempts at using more
sophisticated discourse features have often re-
sulted in performance loss. For example, coref-
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Experiment Precision Recall F1

Using DNorm/tmChem entities
Baseline 20.3 67.3 31.2
Balanced training 46.9 50.5 48.6
Balanced + CTD features 56.4 54.9 55.6
Unbalanced 56.4 36.2 44.1
Using gold entities
Balanced 59.7 74.0 66.1
Balanced + CTD 68.0 80.3 73.7
Unbalanced 67.6 52.4 59.0
Our CD-REST implementation
Balanced + CTD w/ gold entities 70.1 64.8 67.3
Unbalanced + CTD w/ gold entities 79.4 44.1 56.7
Balanced + CTD w/ tmChem/DNorm entities 60.5 42.9 50.2
Reported CD-REST performance (Xu et al., 2016)
Using gold entities 68.4 61.8 64.9
End-to-end results 64.1 50.5 56.8

Table 3: Evaluation results

Experiment Precision Recall F1

All 59.7 74.0 66.1
-Lexical features 42.8 91.4 58.3
-Semantic features 58.6 73.7 65.3
-Discourse features 60.7 55.9 58.2

Table 4: Feature ablation results

erence emerged as an important aspect of implicit
causal relations, and it seemed that fully resolv-
ing disease/chemical coreference in the abstract
could improve the performance. We adapted the
Bio-SCoRes framework (Kilicoglu and Demner-
Fushman, 2016) to extract anaphora relations and
incorporated more sophisticated features based on
these relations into our classifier, such as whether
a mention corefers with an anaphor in the sen-
tence of the other mention in the pair (Example 5).
While this improved precision (59.7% to 66.2%),
the recall loss was more significant (74.0% to
62.9%), leading to a lower F1 score (64.5%). Sim-
ilar, unsuccessful features include a binary feature
indicating whether there is a potential bridging
anaphora that involves the chemical or the disease
mention itself. On the other hand, a simplistic dis-
course feature that indicates whether the document
contains any sortal anaphor at all improved the F1

score from 65.1% to 66.1%. Along the same lines,
using normalized structured abstract section labels
improved the classification performance. How-

ever, most abstracts are not structured, and our at-
tempts to automatically assign section labels using
the sentence position in the abstract in such cases
did not improve results.

The named entity recognition tools we used
have reported relatively high performance on the
test set (81% and 91% F1 scores for DNorm
and tmChem, respectively). However, the perfor-
mance difference when using these tools in com-
parison to using gold entities is relatively large;
gold entities yield more than 30% higher F1 on
average. This indicates that the relation extraction
performance is highly sensitive to entity recogni-
tion and normalization, and that even small perfor-
mance drop in this task can cause a major perfor-
mance drop in relation extraction.

Data sparsity is a well-known problem for
inter-sentential relation extraction (Swampillai
and Stevenson, 2011). To deal with this prob-
lem, we experimented with training various pos-
itive/negative sample ratios, and found that a bal-
anced training set led to superior overall perfor-
mance, at the expense of loss of precision. This
result is similar to that of Swampillai and Steven-
son (2011), which they achieved with hyperplane
adjustment.

There are several limitations to the study pre-
sented. First, we have not investigated the general-
izability of the approach to other relation types ex-
pressed implicitly. The GENIA event corpus, with
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its text-bound event triggers, presents an opportu-
nity to study implicit argumentation more widely
from a semantic role labeling perspective, even
though the number of relevant events in the corpus
is relatively small. Secondly, whether the method
can be extended to extracting relations from full-
text articles remains to be seen. Thirdly, there
are NLP methods that can provide more predic-
tive features that we have not attempted to in-
corporate into our models. For example, tempo-
ral ordering of events have been the subject of
much research recently, in both general (Cham-
bers et al., 2014) and clinical (Bethard et al., 2015)
domains, and tools based on these methods can
provide useful features to detect causal ordering
of events. Similarly, while our simple sentence
position-based heuristics to assign sections to un-
structured abstract sentences did not yield predic-
tive features, more advanced methods to classify
sentences into rhetorical categories (Agarwal and
Yu, 2009) could be beneficial.

5 Conclusion

We presented a method to extract implicit, inter-
sentential causal relationships from Medline ab-
stracts. The method incorporates lexical, seman-
tic, and discourse features and a simple undersam-
pling approach for data sparsity to achieve state-
of-the-art results. In this study, we specifically fo-
cused on implicit relationships across sentences,
since they are more challenging from an NLP
perspective, and future work involves combining
the proposed method with methods that extracts
sentence-bound, mostly explicit relationships. Im-
proving feature extraction and named entity recog-
nition/normalization are likely to be beneficial in
further improving the state-of-the-art in causal re-
lationship extraction. Joint learning of named enti-
ties and causal relationships could further improve
performance by preventing, to some extent, the
propagation of named entity recognition errors to
relation extraction step.
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Abstract

We propose an approach for biomedical
information extraction that marries the ad-
vantages of machine learning models, e.g.,
learning directly from data, with the ben-
efits of rule-based approaches, e.g., inter-
pretability. Our approach starts by train-
ing a feature-based statistical model, then
converts this model to a rule-based vari-
ant by converting its features to rules, and
“snapping to grid” the feature weights to
discrete votes. In doing so, our proposal
takes advantage of the large body of work
in machine learning, but it produces an in-
terpretable model, which can be directly
edited by experts. We evaluate our ap-
proach on the BioNLP 2009 event extrac-
tion task. Our results show that there is
a small performance penalty when con-
verting the statistical model to rules, but
the gain in interpretability compensates for
that: with minimal effort, human experts
improve this model to have similar perfor-
mance to the statistical model that served
as starting point.

1 Introduction

Due to the deluge of unstructured data, informa-
tion extraction (IE) systems, which aim to trans-
late this data to structured information, have be-
come ubiquitous. For example, applications of IE
range from parsing literature (Iyyer et al., 2016)
to converting thousands of cancer research pub-
lications into complex proteins signaling path-
ways (Cohen, 2015).

By and large, in academia most of these ap-
proaches are implemented using machine learning
(ML). This choice is warranted: generally, ML ap-
proaches, where the machine learns directly from

the data, perform better than approaches where hu-
man domain experts encode the structure to be ex-
tracted manually. For example, the top systems
in the BioNLP event extraction shared tasks have
consistently been ML-based approaches (Kim et
al., 2009; Kim et al., 2013). However, this is only
part of the story: most of these models cannot be
easily understood by their users, and, by and large,
cannot be modified without retraining. This “tech-
nical debt” of ML (Sculley et al., 2014) is better
understood in industry: Chiticariu et al. (2013)
report that 67% of large commercial vendors of
natural language processing (NLP) software focus
on rule-based IE, and an additional 17% on hy-
brid systems that combine rule-based and ML ap-
proaches.

In this paper we focus on interpretable models
for information extraction, i.e., models that: (a)
can be understood by human users, and (b) can be
directly edited and improved by these users. In
particular, we focus on deterministic, rule-based
models. Here, we introduce a novel approach to
generate such models, which maintains both the
advantages of ML such as learning from data, and
the benefits of interpretability such as allowing hu-
man domain experts to directly edit and improve
these models. Specifically, our contributions are:

(1) We introduce a simple strategy that converts
statistical models for IE to rule-based models. We
call the proposed algorithm SnapToGrid. Our ap-
proach works in three steps. First, we train a
statistical model for the task at hand. Here we
experiment with logistic regression, but the pro-
posed method is, in principle, independent of the
underlying statistical model. Further, our strat-
egy can operate over multiple classifiers that are
part of the same IE system (e.g., one classifier
to identify event triggers, and another to identify
event arguments). Second, we convert features
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to rules implemented in Odin, a modern declar-
ative rule language (Valenzuela-Escarcega et al.,
2016; Valenzuela-Escarcega et al., 2015). We
also discard most of the statistical information ac-
quired previously, by converting feature weights
to discrete votes, which guarantees interpretabil-
ity (hence the SnapToGrid name). Third, human
domain experts inspect and manually improve the
generated model, under certain time constraints.

(1) We evaluate our approach on the BioNLP 2009
core event extraction task, and demonstrate that
the resulting interpretable model has similar per-
formance to the statistical model that served as
starting point.

2 Approach

Our motivation for this work is to keep the human
domain expert in the loop when building IE sys-
tems. We show in Section 3 that this is beneficial,
even when the domain experts have limited time to
work on the task and no access to data other than
the model itself. To achieve this “human in the
loop” goal we propose the following three-step al-
gorithm:

1. Train a statistical model for the IE task at
hand (Section 2.1). The model may consist
of several statistical classifiers. For exam-
ple, for the BioNLP event extraction task, the
most common approach involves two classi-
fiers: one to identify event triggers, and a
following classifier to identify event partici-
pants. One restriction is that these classifiers
be feature-based classifiers, e.g., logistic re-
gression, rather than the classifiers based on
latent representations, e.g., neural networks.

2. Convert the statistical model into an inter-
pretable, rule-based model (Section 2.2):

(a) First, we convert the features to rules in
the Odin language.

(b) Then, we assign to each rules “votes”
for a given class, by “snapping to grid”,
i.e., converting to discrete values, the
weights computed by the above statisti-
cal model.

3. Domain experts edit the produced rule-based
model directly, aiming to improve its quality
with respect to both coverage and precision
(Section 2.3).

We detail this process in the rest of this section,
focusing on the BioNLP core event extraction task
as the domain of interest.

2.1 Step 1: Build Statistical Model

Our statistical model is inspired by the top per-
forming approach at the 2009 evaluation (Björne
et al., 2009). The approach is summarized in Fig-
ure 1. Similar to (Björne et al., 2009), our ap-
proach consists of two classifiers: the first clas-
sifier detects and labels event trigger words in the
input text; the second classifiers extracts and la-
bels relations between event triggers and potential
event participants, which can be either Protein en-
tities or other event triggers. Both classifiers are
implemented using multi-class logistic regression
(LR), but our conversion process (Steps 2 and 3)
is independent of the underlying statistical model,
so, in principle, other feature-based classifiers that
assign explicit weights to features could be used,
e.g., perceptron, or linear support vector machines.

The Trigger Classifier

The first classifier sequentially labels each word
in the input text as a trigger for a specific BioNLP
event class, or as Nil otherwise. We implemented
the following features:

Surface features: These features include the
original and lemmatized words, and the
presence of the word in a gazetteer of
known event triggers (constructed automati-
cally from the training data). These features
are generated for the word being classified, as
well as the words surrounding it inside a win-
dow of n tokens. We used two windows in
our experiments, with n = 1 and n = 4. Fur-
ther, bag-of-words features are generated for
the windows and for the sentence as a whole.

Syntactic features: These features capture the
syntactic dependencies (both incoming and
outgoing) directly connected to the token.
All syntactic information was represented us-
ing Stanford dependencies (De Marneffe and
Manning, 2008), and was generated using the
CoreNLP toolkit (Manning et al., 2014). For
each of these paths, we generate two different
versions: one containing just the label and di-
rection of the syntactic dependencies, and an-
other including also the destination words.
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Figure 1: Architecture of the statistical model for the BioNLP core event extraction task.

Entity features: These features encode the num-
ber of other entities surrounding the token,
both inside a window and in the sentence as a
whole.

The Event Participant Classifier
This classifier pairs all the triggers detected by the
previous classifier with other named entities (Pro-
teins in this case) or event triggers that occur in
the same sentence. These pairs are then classi-
fied into one of the possible participant relations,
or Nil indicating that there is no relation between
the pair. This classifier uses the following features:

Syntactic features: These features are based on
the shortest path connecting the two men-
tions (trigger and candidate participant) in the
Stanford syntactic dependency graph. Two
versions of the shortest path are used: a lex-
icalized one (capturing the words along the
path), and an unlexicalized one.

Surface features: These features include: the or-
der of the two mentions in text, their distance
in terms of tokens, the number of entities and
triggers in the sentence, the parts of speech
and words of the mentions, and the number
of triggers and entities between the mentions.

Consistency features: These features encode the
labels of the two mentions jointly, as well as
the labels of their superclasses. For example,
the features <Regulation, Phosphorylation>
and <Regulation, Event> are generated for
a relation between a Regulation event trigger
and a Phosphorylation trigger as its theme.
These feature capture selectional preferences
for arguments, e.g., the Theme of a regulation
event should be another event.

Graph features: The parent, children, and sib-
lings of the mentions in the syntactic depen-
dency graph.

Limitations
Not all of the above features can be represented
as rules in the current implementation of the cho-
sen rule language. Currently1, Odin rules capture
paths (over sequences or directed graphs) that are
anchored at both ends (e.g., from an event trig-
ger to an event argument) (Valenzuela-Escarcega
et al., 2015; Valenzuela-Escarcega et al., 2016).
Because of this, Odin cannot represent the follow-
ing information: bag-of-word features, syntactic
paths that are not anchored at both ends (such as
dependencies connected only to event trigger can-
didates), and features that count occurrences of to-
kens or entities in text. In Section 3 we analyze the
performance drop when such features are removed
from the model.

2.2 Step 2: Convert the Statistical Model to a
Rule-based Model

Once the statistical model is constructed, we em-
ploy the lossy process below to convert it to an
interpretable one.

Converting Features to Rules
First, we convert the features encoded in
the statistical model to rules in the Odin
language (Valenzuela-Escarcega et al., 2015;
Valenzuela-Escarcega et al., 2016). In general,
the features previously introduced consist of con-
junctions of information bits, each of which cor-
responds to a different rule fragment. For ex-
ample, for the classification of event participants,
one such conjunction captures the type of the ex-
pected trigger (e.g., Phosphorylation), combined

1As of June 2016
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-  name: phospho_event 
 label: Phosphorylation 
 pattern: | 
  trigger:Phosphorylation 

      theme:Protein = >nsubjpass 

1"Figure 2: Example of a rule for event participant
classification that is built from a single feature.
The feature captures the passive nominal subject
(nsubjpass) outgoing (>) from a Phosphoryla-
tion trigger and landing on a Protein. The bold font
indicates the rule output, i.e., the nominal subject
is the theme of a Phosphorylation event.

with the syntactic path that connects the trigger
with the participant candidate (e.g., an outgoing
passive nominal subject – nsubjpass), and a se-
mantic constraint for the type of named entity of
the participant (e.g., Protein). These are imme-
diately translatable to Odin rules, as illustrated in
Figure 2.

Importantly, the rules encode output informa-
tion as well, e.g., the recognized event partic-
ipant serves as a theme for a Phosphorylation
event in Figure 2. At this stage, this information
is exhaustively generated from all possible clas-
sifier labels (e.g., for the classification of event
participants these labels are the cartesian product
of {theme, cause} and possible event labels
{Phosphorylation, Binding, . . . }). Of
course, some of these outputs do not apply. For ex-
ample, it is highly unlikely that the rule shown in
Figure 2 produces the cause of a Regulation event.
We quantify the confidence in these outputs in the
next stage of the algorithm.

Converting Weights to Votes

Feature weights are unbounded continuous values
that are difficult to interpret and manually mod-
ify. For this reason, we would ideally prefer to
exclude them completely from the interpretable
model. Conceptually, this is simple: we could
use the weights to choose the most likely output
label for a rule (from the options generated pre-
viously), and discard them afterwards. However,
our early experiments demonstrated that this per-
forms poorly, because it forces the algorithm to ig-
nore the inherent ambiguity of language, which is
captured by the statistical model through weights.
For example, the trigger classifier learns that “re-
cruits” serves as trigger for two different events,
Binding and Localization, and, consequently, as-
signs different weights to the two labels based on
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Figure 3: Weights of the two classifiers converted
to votes (trigger classifier – top, participant clas-
sifier – bottom). Each histogram bin receives a
number of votes (positive or negative) equal to its
offset from 0.

the amount of evidence seen in training. During
inference, the most likely class is chosen by ag-
gregating the weights of all features that apply.

Given this observation, we chose to preserve
the weights, but convert them from the original
unbounded continuous values to discrete “votes”
(positive or negative) that are then used during in-
ference to resolve conflicts. This achieves two
things. First, we increase the interpretability of
the model: humans can now interpret these dis-
crete votes, which mimic a Likert scale (Likert,
1932). Second, by keeping and using these dis-
cretized votes, we preserve some of the statistical
power of the model. We show in Section 3 that
some performance is indeed lost in this conver-
sion, but the loss is small and the gain in inter-
pretability compensates for that.

The conversion from continuous weights to dis-
crete votes is a process similar to choosing the bins
in a histogram. In our case, we first construct a
histogram of all feature weights. Then, each his-
togram bin receives a number of votes equal to its
offset (positive or negative) from 0. For example,
all the weights in the second bin to the left of 0
receive two negative votes. Several methods have
been proposed for selecting the number of bins in
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a histogram, for example (Sturges, 1926; Doane,
1976; Freedman and Diaconis, 1981). Here, we
use the formula proposed by (Scott, 1979):

h = 3.5σ̂n−1/3 (1)

where h is the estimated bin width, n is the sample
size, and σ̂ is the estimated standard deviation. We
chose this formula because it gives a good com-
promise between retaining most of the informa-
tion in the weights while minimizing the number
of bins. The resulting binned weights for trigger
and relation features (generated using the BioNLP
2009 training corpus) are shown in Figure 3.

2.3 Step 3: Edit the Rule-based Model
The output of the previous two steps is a model
consisting of a set of rules. The association
between rules and output classes is measured
through votes that each matching rule gives to
each output label. The last step in our proposed
approach is to let human domain experts improve
this model by directly editing it. The experts had
complete freedom in the operations they were al-
lowed to do. For example, they could improve
the syntactic paths captured by the rules, or in-
crease/decrease the number of votes assigned to
a specific rule. The only constraints were: (a) they
were not allowed to look only at the learned rules
and not at the training data, and (b) they had to
complete the process within one hour. This setting
is of course artificial and unrealistic. We enforced
it in this work to demonstrate the interpretability
of the generated model.

3 Empirical Results

We analyze the performance of our approach on
the core event extraction dataset from the BioNLP
2009 shared task (Kim et al., 2009). All the results
reported in this section were measured on the de-
velopment partition of the dataset, which was not
used at all during training.2 To minimize overfit-
ting, we did not implement any feature selection
or other hyper parameter tuning process.

Table 2 lists the results of the complete statis-
tical model, i.e., using all features introduced in
Section 2.1, trained using L2-regularized LR. This
configuration generated 1,190,029 features with
non-zero weights. The table shows that this model

2The online scoring website, which would have allowed
us to also obtain scores on the official test partition, was down
due to updates during the development of this work.

Event Class Recall Precision F1
Gene expression 67.70 68.08 67.89
Transcription 57.32 50.00 53.41
Protein catabolism 71.43 68.18 69.77
Phosphorylation 68.09 68.09 68.09
Localization 69.81 74.00 71.84
Binding 31.85 25.57 28.37
Event Total 55.89 51.48 53.59
Regulation 17.16 33.33 22.66
Positive regulation 19.45 41.67 26.52
Negative regulation 14.29 36.36 20.51
Regulation Total 18.02 39.16 24.69
All Total 35.10 47.29 40.30

Table 1: Performance of the statistical model using
L2-regularized LR, and all available features.

Event Class Recall Precision F1
Gene expression 57.58 74.28 64.87
Transcription 40.24 57.89 47.48
Protein catabolism 61.90 86.67 72.22
Phosphorylation 51.06 82.76 63.16
Localization 47.17 92.59 62.50
Binding 18.15 34.62 23.81
Event Total 42.75 64.61 51.45
Regulation 8.28 40.00 13.73
Positive regulation 17.18 42.74 24.51
Negative regulation 7.14 40.00 12.12
Regulation Total 13.65 42.14 20.62
All Total 26.77 56.22 36.27

Table 2: Performance of the statistical model with
L2-regularized LR, using only features that can be
converted to rules.

achieved an overall F1 score of over 40 points,
which likely puts it in the top 5 or 6 (out of 24) sys-
tems that participated in the actual challenge.3 The
performance of this system could be further im-
proved by adding more features proposed in other
event extraction approaches (Miwa et al., 2010),
feature selection, hyper parameter tuning, etc.

For a fair comparison, we next trained the same
model but using only features that can be con-
verted to rules. As discussed, the features that
were removed include bag-of-word features and
features that count occurrences of tokens or enti-
ties in text. These results, summarized in Table 2,
show that the overall F1 score drops 4 points. This
suggests that rule languages need to be extended if
they are to have the same representational power
as feature-based models. Given that the focus of

3(Kim et al., 2009) report results on the official test par-
tition, which are not directly comparable with our results.
However, in the authors’ experience, the difference in scores
between the development and test partitions in this dataset
tend to be small. Since the 2009 evaluation, several works
have improved upon these results, with performance reach-
ing 58 F1 points, but using more complex methods, includ-
ing joint inference, coreference resolution, and domain adap-
tation (Miwa et al., 2012; Bui and Sloot, 2012; Venugopal et
al., 2014).
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Event Class Recall Precision F1
Gene expression 58.71 78.28 67.09
Transcription 37.80 55.36 44.93
Protein catabolism 61.90 86.67 72.22
Phosphorylation 46.81 84.62 60.27
Localization 56.60 88.24 68.97
Binding 16.13 33.33 21.74
Event Total 42.75 66.60 52.08
Regulation 8.88 65.22 15.62
Positive regulation 13.13 40.50 19.83
Negative regulation 8.16 55.17 14.22
Regulation Total 11.41 44.44 18.15
All Total 25.54 59.35 35.72

Table 3: Performance of the statistical model with
L1-regularized LR, using only features that can be
converted to rules.

this work is not on the design of rule-based lan-
guages for IE, we will use this latter model as the
starting point of our approach, ignoring (for now)
the performance penalty observed above.

Importantly, a system with more than 1 million
features is not interpretable. To address this, we
trained the same system using L1 regularization as
a form of feature selection. This reduced the num-
ber of features with non-zero weights by two or-
ders of magnitude: from over 1 million to 10,926.
The performance of this model is shown in Ta-
ble 3. The results demonstrate that this drastic re-
duction in the number of useful features came with
a small performance cost, of less than 1 F1 point.

Given this successful compression of the fea-
ture space, we next convert this L1-regularized
model to rules, using the approach discussed in
Section 2.2. The performance of the rule-based
model (before expert intervention!) is summa-
rized in Table 4. The table shows that the over-
all cost of “snapping to grid” the statistical model
is approximately 3 F1 points, which come from a
drop in recall. This happens because many fea-
ture weights associated with specific labels (such
as specific event triggers) have low values (due to
sparsity), and, after the discretization process, the
model can no longer prioritize these labels over the
Nil class. Interestingly, the same process yielded
a small increase in precision from 59% to 62%.

All in all, we consider a drop of 3 F1 points
for the gain of interpretability an acceptable trade-
off. To empirically demonstrate the value of in-
terpretability, we let two Linguistics PhD students
edit the generated rule-based model for one hour,
aiming to improve its generalization, robustness
to syntactic errors, and readability. The students
were familiar with the Odin language (Valenzuela-
Escarcega et al., 2015) so they could “read” the

Event Class Recall Precision F1
Gene expression 55.34 76.95 64.38
Transcription 28.05 53.49 36.80
Protein catabolism 57.14 85.71 68.57
Phosphorylation 40.43 90.48 55.88
Localization 45.28 88.89 60.00
Binding 12.90 33.33 18.60
Event Total 38.04 67.18 48.58
Regulation 5.33 75.00 9.94
Positive regulation 10.70 48.89 17.55
Negative regulation 5.61 55.00 10.19
Regulation Total 8.76 51.50 14.97
All Total 21.97 62.98 32.57

Table 4: Performance of the rule-based model be-
fore expert intervention.

model, and had a high-level understanding of the
BioNLP shared task (although they did not par-
ticipate in it). To guarantee that their recommen-
dations came from understanding the model rather
than other external factors, they were not given ac-
cess to the BioNLP dataset. Given the large num-
ber of rules at this point, the students tended to
randomly sample the rules in the model attempt-
ing to find repeated mistakes, rather than linearly
inspect the list of rules. Table 5 summarizes the
experts’ recommendations. As shown, several of
the experts’ suggestions involved removing or col-
lapsing rules, which reduced the number of rules
from 10,926 to 8,868.

Table 6 lists the performance of the resulting
model, after implementing the experts’ recom-
mendations. The table shows that most of the F1
loss has been recovered: the overall F1 score for
this system approaches 35 F1 points, and is less
than 1 F1 point behind the L1-regularized LR sta-
tistical model. In addition of reducing the number
of rules in the model, the experts’ recommenda-
tions increased recall by over 4%, which is more
than what was lost during the conversion to rules.
However, the precision of this configuration de-
creased by 11%, which we blame on the experts’
limited familiarity with the BioNLP task, and the
strict settings of the experiment (no access to data,
limited time). However, all in all, this experiment
demonstrates that the rule-based model produced
by the proposed approach is interpretable: the ex-
perts understood the model, and were able to im-
prove it, both with respect to its generalization
power and its readability.

Lastly, Figure 4 shows a learning curve for the
statistical model and the corresponding rule-based
model (before expert intervention). The curve
shows that the rule-based model follows closely
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Suggested Change Description
Generalization

Add
/conj_(and|or|nor)|dep|cc|nn|prep_of/{,2}
to the end of Theme paths.

This transformation adds an optional modifier depen-
dency to capture event participants when they appear
either as nominal heads or modifiers. For example, be-
cause of this transformation, the model handles both
these phrases similarly: “phosphorylation of MEK” and
“phosphorylation of the MEK protein”

Ensure that all syntactic paths end in appos?. This change handles optional apposition to increase rule
coverage. For example, in the sentence “we found that
A20 binds to a novel protein, ABIN”, the word ABIN is
an appositive for the word protein, so ABIN can serve
as an argument in the binding event.

Replace all specific named entities with their label. For example, in rules such as
[word=phosphorylates] (?=MEK) that
reference a specific protein, this replaces the specific
protein (MEK) with the label Protein. This improves
rule generalization and, at the same time, reduces the
total number of rules.

Make the >nn dependency optional in
Theme:Protein = >nsubjpass >nn.

The output of this transformation is similar to the first
suggested change, i.e., the same rule captures event par-
ticipants when they appear either as nominal heads or
modifiers.

Robustness
Replace agent with /ˆ(agent|prep_by)$/. This modification is designed to account for a common

parsing error of passive sentences, where agent de-
pendencies are incorrectly parsed as prep_by.

Change ccomp to /(c|x)comp/ and acomp to
/(a|x)comp/.

Parsers often confuse clausal and adjectival comple-
ments with open clausal complements. This transfor-
mation allows the rules to be robust to these errors.

Readability
Merge rules when possible, e.g.
prep_of, prep_of nn, prep_of appos
become prep_of (nn? appos | nn appos? nn?)?.

This transformation collapses rules to improve readabil-
ity.

Eliminate trigger rules that are not sufficiently discriminative
(e.g., (?<=[lemma="be"]) [tag=/ˆ(V|N|J)/).

Some uninformative rules survived feature regulariza-
tion but should be removed, as with the example rule
which looks for any verb, noun, or adjective preceded
by any conjugation of the verb “be”. These rules inflate
the grammar without adding discriminative power.

Do not use word constraints. Only use lemma and tag fea-
tures in trigger rules for simple events (other than transcription
and binding).

This modification prefers lexical constraints on lemmas,
because they generalize better than constraints on actual
words.

Remove redundant constraints. For example, in patterns like
[incoming=nsubj & tag=/ˆN/] the POS
tag is redundant because it is implicitly defined through
the incoming dependency (nominal subject).

Table 5: Representative examples of the rule changes suggested by linguistic experts.

the behavior of its statistical counterpart, with a
small penalty of 1-2 F1 points throughout. As dis-
cussed before, this performance loss can be miti-
gated through interventions by domain experts.

4 Related Work

Most of the biomedical IE systems in academia
rely on supervised machine learning. This in-
cludes the top performing system at the BioNLP
2009 shared task (Björne et al., 2009), as well as
several following approaches that improve upon
its performance (Miwa et al., 2010; McClosky et
al., 2012; Miwa et al., 2012; Bui and Sloot, 2012;
Venugopal et al., 2014).

However, rule-based approaches (Appelt et al.,

1993; Cunningham et al., 2002; Piskorski et al.,
2004; Li et al., 2011; Chang and Manning, 2014)
are preferable when the corresponding systems
have to be deployed for long periods of time,
during which they have to be maintained and
improved. This has been recognized in indus-
try (Chiticariu et al., 2013).

We bring together these two diverging direc-
tions by combining the advantages of ML with
the interpretability of rule-based approaches. By
representing the model as a collection of declara-
tive rules, experts can directly edit the model, thus
guaranteeing that the desired changes are actually
applied. This is in contrast with methods such as
active learning, in which the learning algorithm
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Event Class Recall Precision F1
Gene expression 60.39 70.49 65.05
Transcription 31.71 57.78 40.94
Protein catabolism 61.90 81.25 70.27
Phosphorylation 42.55 86.96 57.14
Localization 45.28 88.89 60.00
Binding 22.18 23.50 22.82
Event Total 43.74 54.31 48.46
Regulation 10.06 40.48 16.11
Positive regulation 12.80 44.89 19.92
Negative regulation 10.71 51.22 17.72
Regulation Total 11.91 45.17 18.86
All Total 26.27 51.71 34.84

Table 6: Performance of the rule-based model, af-
ter expert intervention.
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Figure 4: Learning curve showing the change in
F1 performance as a function of the amount of
training data. We compare the performance of
the L1-regularized logistic regression (shown us-
ing circles) with the rule-based model prior to the
expert intervention (shown using triangles).

presents the “human in the loop” with new ex-
amples to annotate (Thompson et al., 1999). Al-
though active learning may require less domain
expertise than our proposal, it generally does not
guarantee that the examples provided are actually
propagated in the model (the learning algorithm
may choose to override them with other data).

5 Conclusion and Future Work

We have proposed a simple approach that mar-
ries the advantages of machine learning models
for information extraction (such as learning di-
rectly from data) with the benefits of rule-based
approaches (interpretability, easier maintainabil-
ity). Our approach starts by training a feature-
based statistical model, then converts this model
to a rule-based variant by converting its features to
rules and its feature weights to discrete votes. In
doing so, our proposal learns from data similar to

other machine learning approaches, but produces
an interpretable rule-based model that can be di-
rectly edited by experts. Using the BioNLP 2009
event extraction task as a test bed, we show that
while there is a small performance penalty when
converting the statistical model to rules, the gain
in interpretability compensates for that.

In this work, we focused on building upon
feature-based classifiers, in particular logistic re-
gression, due to their potential extensions to dis-
tant supervision (DS), where training data is gen-
erated automatically by aligning a knowledge base
(KB) of known examples (e.g., known drug-gene
interactions) with text (e.g., scientific publica-
tions). Distant supervision has obvious applica-
tions to bioinformatics (Craven et al., 1999), but it
generally suffers from noise in the automatically-
generated annotations (Riedel et al., 2010). In fu-
ture work, we plan to combine our work with dis-
tant supervision by adapting our proposal to logis-
tic regression variants that are robust to the noise
introduced in DS (Surdeanu et al., 2012). This ex-
tension would make it possible to generate rules
even when no annotated examples are available, as
long as a suitable KB of known examples exists.

Another planned extension of this work focuses
on reducing the number of generated rules by
merging/collapsing similar paths into a single pat-
tern. This can be achieved by constructing a min-
imal deterministic acyclic finite-state automaton
(DAFSA) (Daciuk et al., 2000) with the paths that
are similar, and then converting the DAFSA into
a single pattern (Neumann, 2005). For example,
such approaches would collapse the two patterns:
dobj and dobj nn, into a single one: dobj
nn?. This is fundamental for the long-term main-
tainability of the rule-based model, because the
human experts would have to maintain consider-
ably fewer rules.

Lastly, we plan to improve the “snap to grid”
algorithm. Currently, the conversion of weights
to votes is implemented using Scott’s rule (Scott,
1979), which is one method among several avail-
able to choose a histogram’s bin size. Scott’s
method assumes that all bins have the same size,
which may not be the best solution if interpretabil-
ity is the goal. A potentially better approach is
to select the bin divisions in a way that retains as
much of the information contained in the weights
as possible, while minimizing the number of bins.
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Abstract

Extracting bio-entity relations has
emerged as an important task due to the
ever-growing number of bio-medical doc-
uments. In this paper, we present a simple
and novel representation for extracting
bio-entity relationships. The state-of-the-
art systems for such tasks rely on word
based representations and variations of
linguistic driven features. In contrast, we
model bio-text by the most basic character
based string representation with a family
of string kernels. This eliminates time
consuming parsing, issue of rare words
and domain specific pre-processing. This
simple representation makes our approach
fast and flexible for any bio-NLP dataset.
We demonstrate comparable performance
and faster computation time of our ap-
proach versus previous state-of-the-art
kernel methods.

1 Introduction
Relation extraction from biomedical documents

is an important task in knowledge representation
and inference. It helps to construct and enhance
structured knowledge-bases and in turn support
automatic question answering and decision mak-
ing. In today’s era of vast amount of information
collection and retrieval, the task of naming and
identifying the relations between annotated bio-
entities can become complex and time consuming.
This can be deducted from the fact that the MED-
LINE database has more than 22 million journal
articles related to biomedicine. Many state-of-
the art methods have been applied for the popu-
lar tasks of extracting protein-protein interaction
(PPI) and drug-drug interaction (DDI) as a part of
BioCreative shared task challenges (Segura Bed-
mar et al., 2011; Segura Bedmar et al., 2013;

Krallinger et al., 2008). While these methods
have achieved good performance, they mostly rely
on word-level features, are dependent on time-
consuming parsers or require domain knowledge
for pre-processing.

This paper uses characters instead of words
for bio-entity relation extraction. Characters are
the most fundamental building blocks in any lan-
guage. We propose to model bio-text using its
most basic character-based string representation.
Through a string kernel implementation, in the
framework of support vector machine (SVM),
we separate positive and negative interaction in-
stances to detect bio-entity relationships. This
basic representation is independent of parsers,
does not require domain-related pre-processing
and eliminates the rare words problem. It not
only performs comparable to other state-of-the-art
methods but also provides an exploration of new
and simple feature sets (complementary to exist-
ing features) that have not been previously studied
for bio-NLP shared tasks.

2 Related Work
Convolution-based kernel methods have been

used extensively in the tasks of PPI and DDI ex-
traction, and differ in the feature sets they ex-
plore. While the shallow linguistic (SL) ker-
nel (Giuliano et al., 2006) uses simple linguis-
tic features, others utilize more complex fea-
tures. Constituent parse tree-based kernels, like
subtree (ST) (Vishwanathan et al., 2004), sub-
set tree (SST) (Collins and Duffy, 2001), partial
tree (PT) (Moschitti, 2006) kernels, and spectrum
tree (SpT) (Kuboyama et al., 2007) kernel, use
subtree forms or path structures from constituent
parse trees. Another category of methods use de-
pendency parse tree-based features. This includes
edit distance and cosine similarity kernels (using
shortest paths) (Erkan et al., 2007), k-band short-
est path spectrum (kBSPS) (Tikk et al., 2010) (a

66



Kip1 binds to CDK2 

protein1 binds to protein2 

k=4 
or 

  Family of String Kernels  

ϕ 

Support Vector Machine 

Negative instance 

Positive instance 

g=9 

(1) Original Instance 

(2) Tokenization 

(3) Character-level features 

(4) Mapping of strings using k-mer 
      or g-mer level features into 
      numerical feature space 

(5) Binary classification using SVM 

b	   i	   n	   d	   s	   t	   o	   .	  .	  .	  .	  	  	  .	  .	  .	  .	  	  	  

Figure 1: End-to-end implementation of
character-based string kernels for bio-entity re-
lation detection.

k-band extension of shortest paths), all-path graph
(APG) kernel (Airola et al., 2008) (weighing dif-
ferently shortest paths), and Kim’s kernels (Kim
et al., 2008) (combines shortest path with differ-
ent lexical, part-of-speech and syntactic features).
Benchmark papers, such as (Tikk et al., 2010) and
(Tikk et al., 2013), have performed thorough com-
parative and error analyses of all these different
kernels. They concluded that APG, kBSPS and SL
kernels give the best performance. Therefore, we
use these three kernels as baselines in our experi-
mental comparisons. Some studies include a com-
bination of kernels and parsers for PPI extraction
task, e.g. (Miwa et al., 2009). Similarly, (Thomas
et al., 2013) implemented a two-step approach to
first detect general DDIs and then classify detected
DDIs into subtypes. For the general DDI task, they
used voting to combine kernels including APG,
subtree (ST), SST, SpT, and SL kernels.

All the above discussed methods suffer from
the rare words problem, and require time consum-
ing and domain specific pre-processing steps like
parsing to obtain lexical features, constituent and
dependency trees. Several recent studies have dis-
covered that character-based representation pro-
vides simple and powerful models for sentiment
classification (Zheng et al., 2015) and transition-
based parsing (Ballesteros et al., 2015). (Lodhi
et al., 2002) first used string kernels with charac-
ter level features for text categorization. However,
their kernel computation used dynamic program-
ming which is computationally intensive. Over
recent years, more efficient string kernel meth-
ods have been devised (Leslie and Kuang, 2004;

Corpus Task Sent. Pos Neg Total
MEDLINE DDI 1301 232 1555 1787
AIMed PPI 1955 1000 4834 5834
LLL PPI 77 164 166 330

Table 1: Statistics (number of sentences, pos-
itive, negative and total instances) of the MED-
LINE corpus about DDI and, AIMed and LLL cor-
pus about PPI extraction respectively.

Kuksa et al., 2009). Therefore, we apply a fam-
ily of state-of-the-art string kernels using sim-
ple character-based string representation for bio-
entity relation detection in this work.

3 Approach
Figure 1 shows our end-to-end implementation

of character-based string kernel approach for bio-
entity relation detection.

3.1 Character-level features
Without relying on any pre-processing, we di-

rectly use the instance sentences of bio-NLP
datasets as input to the string kernels. Here,
each instance (whole sentence) is viewed as one
long contiguous string comprised of characters. A
string kernel is then used to convert these strings
into a feature space (implicitly through kernel cal-
culation) that can be used as input for support vec-
tor machine (SVM) classification algorithm.

3.2 Family of string kernels
The key idea of string kernels is to apply a func-

tion φ(·), which maps strings of arbitrary length
into a vectorial feature space of fixed length. In
this space, a standard classifier such as SVM
(Vapnik, 1998) can then be applied. Kernel-
version of SVMs calculate the decision function
for an input sample x :

f(x) =
N∑
i=1

αiK(xi, x) + b (1)

where N is the total number of training samples.
String kernels (Leslie and Kuang, 2004; Kuksa et
al., 2009; Ghandi et al., 2014a), implicitly com-
pute an inner product in the mapped feature space
φ(x) as:

K(x, x′) = 〈φ(x), φ(x′)〉, (2)

where x = (s1, . . . , s|x|). x, x′ ∈ S. |x| denotes
the length of the string x. S represents the set of
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all strings composed of dictionary Σ. φ : S → Rm

defines the mapping from a sequence x ∈ S to a
m-dimensional feature vector.

The feature representation φ(·) plays a key role
in the effectiveness of string analysis since strings
cannot be readily described as feature vectors. We
have implemented the following string kernels on
the character representation.

Spectrum Kernel (SK): One classic represen-
tation is to represent a string as unordered set of
k-mers, that is, combinations of k adjacent char-
acters. A feature vector indexed by all k-mers
records the number of occurrences of each k-mer
in the current string. The string kernel using this
representation is called spectrum kernel (Leslie
et al., 2002), where the spectrum representation
counts the occurrences of each k-mer in a string.
Kernel scores between strings are then computed
by taking an inner product between corresponding
“k-mer - indexed” feature vectors:

K(x, x′) =
∑
γ∈Γk

cx(γ) · cx′(γ) (3)

where γ represents a k-mer, Γk is the set of all pos-
sible k-mers, and cx(γ) is the number of occur-
rences (with normalization) of k-mer γ in string
x. (Kuboyama et al., 2007) applied spectrum ker-
nel on the constituent parse tree features.

Mismatch Kernel (MK): The spectrum kernel
implementation is modified to include m number
of mismatches in the k-mers (Leslie and Kuang,
2004; Kuksa et al., 2009). Thus, for a given k-mer
γ in a string x, the (k,m)-neighborhood is gener-
ated. This consists of all k-length strings α from
dictionary Σk such that they differ from original
k-mer by at most m mismatches. The feature map
of mismatch kernel can be defined as:

φ(k,m)(γ) = (φα(γ))α∈Σk (4)

where φα(γ) = 1 if α ∈ (k,m)-neighborhood of
γ, otherwise φα(γ) = 0. A mismatch kernel with
m = 0 is essentially a spectrum kernel.

Wildcard Kernel (WK): For implementation of
wildcard kernel, the dictionary Σ is augmented
with a wildcard character ? (Leslie and Kuang,
2004). Thus, the feature space consists of set of
k-mers Γk obtained from Σ ∪ {?} that consists of
m occurrences of wildcard character (?). The fea-
ture map of wildcard kernel can be defined as:

φ(k,m,λ)(γ) =
∑

Γkinx

(φα(γ))α∈(Σ∪{?}) (5)

where φα(γ) = λm if γ matches α with m occur-
rences of character ?, otherwise φα(γ) = 0. Here
0 < λ ≤ 1.

Gapped k-mer based Kernel (GK): The previ-
ously described k-mer based string kernels gener-
ate extremely sparse feature vectors for even mod-
erately sized values of k, resulting in overfitting.
(Ghandi et al., 2014b) introduced a new feature
set, called gapped k-mers, resolving the sparsity
limitation with k-mer features. It is characterized
by two parameters; (1) g, size of a gapped instance
which is a segment of string including gaps and (2)
k, the number of non-gapped k-mers or positions
in each segment of size g. Thus, the number of
gaps d = g − k. The inner product in equation 3
includes sum over all gapped k-mers features:

K(x, x′) =
∑
γ∈Θg

cx(γ) · cx′(γ) (6)

where γ represents a k-mer, Θg is the set of all
possible g-mers in the given data.

3.3 Classification
Once the kernel matrix K is calculated, we

input it into an SVM classifier as an empirical
feature map using SVM light (Joachims, 1999;
Schölkopf and Burges, 1999). SVM maximizes
the margin between the positive and negative in-
stances of bio-entity interactions in the kernel de-
fined feature space.

4 Experiment Setup
Datasets We demonstrate the benchmark imple-
mentations of our approach on three datasets with
different sample sizes. They include MEDLINE
corpus from the DDI extraction task (Segura Bed-
mar et al., 2011; Segura Bedmar et al., 2013), and
the AIMed and LLL corpus from the PPI extrac-
tion task (Krallinger et al., 2008). 1. The details of
the datasets have been presented in Table 1.

Baselines We selected SL (Giuliano et al.,
2006), APG (Airola et al., 2008), and kBSPS

1We use the same format as used in previous studies, that
is, each interaction is represented as a separate input instance.
Thus, a sentence about multiple interactions is represented as
multiple instances. The protein name entities are replaced by
special tokens. See details in (Tikk et al., 2010)
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Corpus Task kBSPS APG SL SK (k) MK (k,m) WK (k,m) GK (g, k)
MEDLINE DDI - 82.3 78.9 82.1 (7) 82.7 (7,3) 83 (7,3) 82.4 (7,4)
AIMed PPI 75.1 84.6 83.5 75.6 (8) 74.9 (10,5) 75.2 (10,5) 75.4 (8,6)
LLL PPI 84.3 83.5 81.2 67.9 (7) 77.9 (7,3) 78.4 (8,5) 78.1 (7,5)

Table 2: Using AUC score to compare four character-based string kernels with APG, kBSPS and SL
baselines. The best performing kernel parameters are also presented. AUC scores for APG and SL
kernels for MEDLINE corpus have been reported in (Thomas et al., 2013), while scores of all three
baseline kernels for AIMed and LLL corpus are reported in (Tikk et al., 2010).

Corpus Task kBSPS APG SL SK MK WK GK
MEDLINE DDI 169.13 169.13 5.2 0.4 2.6 3.1 2.6
AIMed PPI 254.15 254.14 7.82 76.8 79.5 78 41.3
LLL PPI 10 10 0.3 0.2 1.3 1 0.2

Table 3: Comparing the kernel computation time (in seconds) for all four character-based string kernels
versus the estimated parsing times of state-of-the-art baselines reported from (Tikk et al., 2010).

(Tikk et al., 2010) kernels as baselines for com-
paring with character-based string kernels. These
kernels are the top-performing approaches, as re-
ported by(Tikk et al., 2010; Tikk et al., 2013) and
(Luo et al., 2016).

Parameters We ran all our string kernels across
multiple kernel parameter settings as follows: (1)
SK : k = {6, 7, 8, 9, 10}, (2) MK,WK : k =
{6, 7, 8, 9, 10} and m = {1, .., k− 1}, and (3) GK
: g = {6, 7, 8, 9, 10} and k = {1, ..., g−1}. These
string kernels were implemented using gkmsvm
(Ghandi et al., 2014a) tool. The character level
dictionary, Σ = {a, ..., z, 0, 1, ...9} (size=36), is
consistent for all the datasets and kernels.

Evaluation Metrics We performed 10-fold doc-
ument level cross-validation on each selected cor-
pus and calculated the AUC score (area under the
receiver operating characteristic curve) for perfor-
mance evaluation. (Tikk et al., 2010) confirmed
that AUC score is more stable to parameter mod-
ifications and less sensitive to the ratio of pos-
itive/negative pairs in the corpus than F-score.
Hence, AUC score is our choice for performance
metric. We also recorded the kernel calculation
times (in seconds) for all four string kernels.

5 Results
Table 2 summarizes the performance evalua-

tion. The AUC scores for APG and SL kernels for
MedLine corpus have been reported in (Thomas et
al., 2013), while scores of all baseline kernels for
AIMed and LLL corpus are reported in (Tikk et

al., 2010). Our string kernel approaches, with sim-
ple character features, (WK,MK, and GK), outper-
form the baseline kernels (Table 2) on the Med-
Line corpus. For the AIMed corpus, SK, GK, and
WK give higher AUC score than the baseline kB-
SPS kernel. Our methods give reasonable perfor-
mance for LLL corpus as well, however not as
good as the three baseline kernels. The parameters
giving the best AUC performance are also reported
(Table 2). Our representation is complementary
and can be plugged into state-of-the-art baselines
to further improve their systems.

Table 3 presents the kernel computation time
comparison of all four character-based string ker-
nels versus the baselines. We compare this with
the estimated parsing times. For the baseline ker-
nels, these have been reported and calculated in
(Tikk et al., 2010). Unlike baseline kernels, we
use character level features directly and thus do
not need the parsing step.

6 Discussion
We have proposed a simple and novel char-

acter representation for bio-entity relation detec-
tion task. We implement a family of string ker-
nels on such simple features extracted directly
from instances of PPI and DDI extraction task
datasets. This eliminates time-consuming and
domain-specific pre-processing steps, making our
approach fast and flexible for any bio-NLP dataset.
Hence, our work opens new avenues to explore
different and simpler feature sets at the character
level.
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Abstract

Entity disambiguation in the biomedical
domain is an essential task in any text min-
ing pipeline. Much existing work shares
one limitation, in that their model training
prerequisite and/or runtime computation
are too expensive to be applied to all am-
biguous entities in real-time. We propose
an automatic, light-weight method that
processes MEDLINE abstracts at large-
scale and with high-quality output. Our
method exploits MeSH terms and knowl-
edge in UMLS to first identify unambigu-
ous anchor entities, and then disambiguate
remaining entities via heuristics. Exper-
iments showed that our method is 79.6%
and 87.7% accurate under strict and re-
laxed rating schemes, respectively. When
compared to MetaMap’s disambiguation,
our method is one order of magnitude
faster with a slight advantage in accuracy.

1 Introduction

Motivation
The ever-growing volume of biomedical literature
is published at a phenomenal pace. While the
rich information buried in this literature can be
extracted via text mining, entity recognition and
entity disambiguation – both early tasks in a text
mining pipeline – remain challenging. The ideal
solution must not only address the quality of the
results, but also cope with the sheer volume of
textual input. Moreover, the solution should be
able to tackle the full spectrum of entities without
limiting its scope to narrow specializations such
as genes, chemicals, and diseases. For informa-
tion extraction tasks such as relation mining and
knowledge base construction, it is crucial to go
beyond merely recognizing entities and strive for

precise entities via disambiguation. In this work,
we focus on the entity disambiguation task, and
propose a solution that attempts to balance quality
with high throughput while addressing all entities.

Most existing biomedical entity disambiguation
methods that do address all entities cannot be ap-
plied in practice to a large corpus for several rea-
sons. The methods based on machine learning
(such as Jimeno-Yepes (2016), Chen et al. (2013),
Savova et al. (2008), Stevenson et al. (2008)) must
identify in advance the exhaustive list of all am-
biguous entity names. Where the training is super-
vised, labeled examples must be obtained, either
by expensive manual annotation or by automatic
curation (Jimeno-Yepes and Aronson, 2010). Fi-
nally, models – in general, one model per ambigu-
ous entity name – must be trained prior to the dis-
ambiguation at runtime. All these setup costs ren-
der the methods impractical when all ambiguous
entity names must be addressed. Alternative meth-
ods by Zheng et al. (2015) and Agirre et al. (2010)
generate, at runtime, an entire instance of the prob-
lem customized per input text. MetaMap (Aron-
son and Lang, 2010), the de facto standard soft-
ware tool, disambiguates amongst all entity types
but the software is too slow for large-scale usage.

Approach and contributions

We present an automatic and light-weight method
that disambiguates all entities in an indexed doc-
ument by exploiting the indexing as well as do-
main knowledge. Specifically, the indexed docu-
ments are MEDLINE abstracts, which are the bulk
of scientific literature in the biomedical domain.
As for domain knowledge, the method draws upon
UMLS (Unified Medical Language System). We
choose MEDLINE abstracts and UMLS as our
corpus and knowledge base for this work, respec-
tively, because our method can then leverage the
following unique characteristics of these biomedi-
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cal resources:

• MEDLINE abstracts are a large corpus in-
dexed with rich, manually assigned MeSH
(Medical Subject Heading) terms; we safely
consider all MeSH terms to be accurate. In
addition, since abstracts are very compactly
written, their content rarely strays away from
the biomedical domain. In other words, non-
biomedical entities occur only rarely.

• UMLS is the authoritative and comprehen-
sive knowledge base of the biomedical domain
covering all aspects of the domain, with a vast
collection of entities plus their lexical varia-
tions, semantic types, and inter-relationships.

• MeSH terms are themselves a crisp ontology
that is already part of UMLS.

Putting these together: All the entities found
in a MEDLINE abstract are of a biomedical na-
ture, and all of them can be disambiguated to some
canonical entity in UMLS. Therefore, given an ab-
stract, its MeSH terms as ground truth, and all the
text mentions in the abstract, the method first iden-
tifies unambiguous entities that we shall call an-
chors. The remaining text mentions are then dis-
ambiguated using heuristics based on linguistic-
semantic patterns and knowledge base assets.

Under the best setting, our method achieves an
average of 79.6% and 87.7% accuracy using the
strict and relaxed rating schemes, respectively. To
the best of our knowledge, this is the first work in
the biomedical domain that evaluates all text men-
tions found in an abstract. In terms of through-
put, our method processes 240k abstracts contain-
ing 24.5m text mentions in 400 minutes. We also
present evaluations against established gold stan-
dards via a comparison to MetaMap.
The code is available as an open source project at

http://resources.mpi-inf.mpg.de/d5/bebe/.

2 Related Work

In the biomedical domain, the terms entity disam-
biguation and word sense disambiguation are of-
ten used interchangeably, since the distinction be-
tween entity and sense is not always clear-cut. As
mentioned in the Introduction, machine learning-
based methods, both supervised and unsupervised,
dominate existing works that address all entity
types. Domain knowledge is a popular ingredi-
ent as well. The most recent work by Jimeno-
Yepes (2016) combines word embeddings with

long short term memory in a recurrent neural net-
work model. The construction of a custom knowl-
edge graph is the backbone of a collective infer-
ence approach by Zheng et al. (2015), where the
approach disambiguates multiple entities simulta-
neously. Chen et al. (2013) applies active learning
to support vector machine (SVM). Personalized
PageRank is studied by Agirre et al. (2010), rely-
ing on and comparing different subsets of UMLS.
Four further methods are compared by Jimeno-
Yepes and Aronson (2010). In terms of evalua-
tion, two gold standards, NLM WSD (Weeber et
al., 2001) and MSH WSD (Jimeno-Yepes et al.,
2011), are available.

When it comes to disambiguating only specific
or highly specialized entities, a large body of work
exists. To name a few representative specializa-
tions, there are works that disambiguate between
species of genes (Harmston et al., 2012; Wang et
al., 2010); chemicals (Batista-Navarro et al., 2015;
Leaman et al., 2015); diseases (D’Souza and Ng,
2015); entities in clinical notes (Kang et al., 2012);
and coarse entity types (Siu and Weikum, 2015;
Jindal and Roth, 2013; Cohen et al., 2011).

3 Methodology

The input to the proposed method is a MED-
LINE abstract and its MeSH terms. We use a
fast dictionary-based entity recognition tool (Siu
et al., 2013) to identify all longest text mentions
that match UMLS entity names. (In this work,
we use only the license level 0 subset of UMLS,
but the proposed method works the same way for
larger subsets.) Then the method proceeds in two
phases: Phase 1 identifies unambiguous anchors
amongst the text mentions. Phase 2 applies heuris-
tics to disambiguate the remaining text mentions.

Unambiguous anchors

In phase 1, the method identifies anchors – given
a text mention, the method determines if there is
one UMLS entity that underlies this text mention
unambiguously. A text mention may become an
anchor in two ways:

• MeSH term (MESH): Recall that we assume
MeSH terms are accurate ground truth. Fol-
lowing a strategy similar to Jimeno-Yepes et
al. (2011), this heuristic identifies text men-
tions that are also MeSH terms for the abstract.

• Only one UMLS match (ONE): Recall that
we assume UMLS has complete coverage of
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warm water

cold water

POS: adjective       anchor:
        warm temperature
    (Natural Phenomenon)

candidates:
  ✔ cold temperature (Natural Phenomenon)
  ✗  cold (Disease or Syndrome)
  ✗  cold therapy (Therapeutic Procedure)
  ✗  cold sensation (Physiologic Function)

POS: adjective

Figure 1: The linguistic-semantic pattern heuristic

all biomedical entities. A text mention that
matches only a single UMLS entity is there-
fore considered unambiguous.

We pin down the anchors so that their underlying
entities are considered correctly disambiguated.

Heuristics

In phase 2, the method disambiguates any remain-
ing, non-anchor text mentions. Recall that the
entity recognition tool already provides multiple
matching UMLS entities to such a text mention.
Taking these UMLS entities as candidates, select
one candidate using one or more heuristics:

• Singular/plural (SP): Since abstracts are very
short documents, we assume that, within one
abstract, text mentions sharing the same sur-
face string also share the same entity. There-
fore, singular (e.g. diet) and plural (diets)
forms of the same word should refer to the
same entity. In UMLS, when the plural form is
a unique entity (C0012155), that same entity is
extended to the singular form, and vice versa.

• Linguistic-semantic pattern (PAT): Figure 1
depicts this heuristic via the example of two
bigrams, warm water and cold water. When
one word (water) appears in both bigrams in
the same position, and when the other words
(warm and cold) have the same part-of-speech,
warm and cold ought to share the same lin-
guistic function and some analogous meaning.
Since warm is an anchor, take its UMLS se-
mantic type (Natural Phenomenon), and pick
for cold a candidate with the same type (cold
temperature the Natural Phenomenon).

• Co-occurring semantic types (CO): The intu-
ition behind this heuristic is that objects of the
same semantic type often co-occur in the same

abstract. For instance, an abstract mentioning
different fish species naturally also mentions
the word fish. However, the candidates for
fish belong to different UMLS semantic types
(Fish, Gene or Genome, Organic Chemical
(for fish extract), and Molecular Biology Re-
search Technique (for Fluorescence in situ Hy-
bridization)). When the entities in the abstract
exhibit a predominant semantic type, pick the
candidate with the same type.

• Ranked preferences of dictionary sources
(RANK): UMLS comes with a pre-defined
preference list of dictionary sources; more
specifically, the source attributes have numeri-
cal ranks in the MRRANK table. When a text
mention matches multiple candidates, each
candidate’s dictionary source leads to a cor-
responding rank number. This heuristic picks
the candidate with the best rank. Under this
heuristic, for instance, HIV the virus is pre-
ferred over HIV the vaccine.

• Prior probability (PRIOR): Thanks to the het-
erogeneous nature of UMLS, the listing of en-
tity names contains much redundancy. Specif-
ically, a single entity name is listed separately
for each dictionary’s contribution. A more
popular meaning of the word (e.g. cat the ani-
mal) appears in more rows of the MRCONSO
table than a less popular meaning (CAT the
scan procedure). The prior probability distri-
bution of candidates is thus estimated based on
counts of entity name occurrences. Our prior
work (Siu and Weikum, 2015) shows that esti-
mated prior probabilities contribute to enrich-
ing disambiguation contexts 72% of the time.
Here, the heuristic picks the candidate with the
highest prior probability.

4 Results and Discussion

Ablation study of heuristics

We used disjoint sets of MEDLINE abstracts
published in 2014 as the development and test
datasets. The test dataset, in particular, con-
sists of 20 randomly selected abstracts; in total,
2,549 text mentions were recognized. Two anno-
tators evaluated all the recognized text mentions,
including the anchors, rating the candidates as
“completely correct”, “partially correct”, or “com-
pletely wrong”. The inner-annotator agreement,
calculated as Cohen’s kappa, was 0.64, which in-
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Anchors Non-anchors All text mentions
Heuristic(s) Strict Relaxed Strict Relaxed Strict Relaxed

MESH 16.0% 16.9% not
applicable

8.9% 9.4%
ONE 83.3% 85.0% 46.5% 47.5%
MESH + ONE 90.3% 93.0% 50.4% 51.9%

MESH + ONE + CO

remains at
90.3% 93.0%

47.2% 72.3% 71.3% 83.9%
MESH + ONE + PAT 7.8% 9.9% 53.9% 56.3%
MESH + ONE + PRIOR 53.9% 68.9% 74.2% 82.4%
MESH + ONE + RANK 63.2% 77.9% 78.5% 86.3%
MESH + ONE + SP 18.6% 22.1% 58.6% 61.7%

Successive filtering remains at
90.3% 93.0%

66.2% 79.0% 79.6% 86.8%
Majority voting 64.3% 81.1% 78.8% 87.7%

Table 1: Contribution of different heuristics to accuracy

dicates mostly substantial agreement. The pres-
ence of fine shades of the same underlying en-
tity in UMLS prompted the “partially correct” an-
notation choice. For instance, children exists as
two separate entities with the semantic types Age
Group and Family Group, and the exact distinc-
tion is difficult even for human judges. We there-
fore present results in two rating schemes: Under
the strict rating scheme, only “completely correct”
annotations count as correct; under the relaxed
scheme, both “completely correct” and “partially
correct” annotations count as correct.

Table 1 shows the accuracy and the contribu-
tion of each heuristic. We experimented with two
types of ensembles, namely majority voting and
applying heuristics as successive filters similar to
D’Souza and Ng (2015). Under the relaxed rating
scheme, majority voting consistently performed
better. The best ensemble used, as expected, all
heuristics to reach 87.7% accuracy. Under the
strict rating scheme, on the other hand, succes-
sive heuristic filters consistently performed better.
The best ensemble scored 79.6% accuracy using
the following order of heuristics: MESH, ONE,
SP, RANK, PRIOR, PAT, CO. On average, 56% of
all text mentions in an abstract were anchors.

Comparison with MetaMap and other datasets
We compared the best setting of our method with
MetaMap (version 2016 with disambiguation) us-
ing the aforementioned custom test dataset as well
as 3 other datasets: NLM WSD (Weeber et al.,
2001), EBI disease corpus (Jimeno et al., 2008),
and a subset of the CRAFT corpus (Bada et al.,
2012) that provides UMLS entity IDs in abstracts.
Table 2 shows the accuracy for both systems.
(The MSH WSD dataset (Jimeno-Yepes et al.,
2011) was not used here because it was essentially
constructed with the MESH heuristic; using the

Custom Custom NLM EBI CRAFT
strict relaxed WSD disease subset

Our method 79.6% 87.7% 39.9% 87.3% 38.8%
MetaMap 68.1% 76.1% 33.7% 78.4% 33.0%

Table 2: Comparison of accuracy between our
method and MetaMap

dataset would not offer further insight.)
In terms of accuracy, both systems showed anal-

ogous trends for each dataset, though our proposed
method outperformed MetaMap by 5% to 11%.
Both systems performed poorly over the NLM
WSD and CRAFT datasets due to their wide va-
riety of highly ambiguous entity names. The dis-
ambiguation module in MetaMap is known to be a
weaker module in the system (Aronson and Lang,
2010), while our method’s heuristics are too sim-
plistic for sophisticated cases. The same rationale
explains why accuracy in EBI disease corpus was
high, because disease names are much less am-
biguous in general. In terms of speed, our system
and MetaMap processed 600 and 11 abstracts per
minute, respectively, on the same linux machine
with 8 Intel Xeon 2.4GHz CPUs and 48GB RAM.

5 Conclusions and Future Work

We present a large-scale, high-quality, and auto-
matic method that disambiguates entities in MED-
LINE abstracts by exploiting MeSH terms as well
as applying heuristics based on linguistic cues and
knowledge assets in UMLS. Not only is the pro-
posed method one order of magnitude faster than
MetaMap, the overall accuracy is also slightly su-
perior to that of MetaMap. Therefore we further
propose our method as a viable alternative for real-
time processing. We plan to harness the outputs
of this work for future investigation on biomedical
entity disambiguation.
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Abstract

In this paper, we report a knowledge-based
method for Word Sense Disambiguation
in the domains of biomedical and clini-
cal text. We combine word representa-
tions created on large corpora with a small
number of definitions from the UMLS to
create concept representations, which we
then compare to representations of the con-
text of ambiguous terms. Using no re-
lational information, we obtain compara-
ble performance to previous approaches
on the MSH-WSD dataset, which is a
well-known dataset in the biomedical do-
main. Additionally, our method is fast
and easy to set up and extend to other do-
mains. Supplementary materials, includ-
ing source code, can be found at https:
//github.com/clips/yarn

1 Introduction

Word Sense Disambiguation (WSD) is a procedure
in which an ambiguous term or concept is assigned
a single sense appropriate for that context, and is
an important step in the creation of a semantic rep-
resentation of a document (Ide and Véronis, 1998).
While performing WSD will benefit most natural
language processing applications, disambiguation
of concepts is a critical component of applications
operating on clinical and biomedical text, in which
the same word can denote differing concepts, and
may thus elicit radically different responses.

Compounding this problem of ambiguity is the
fact that clinical text, in general, is noisier than
other domains, and contains a large variety of ab-
breviations, some of which may be specific to a
single hospital or physician. Additionally, there is a
marked absence of large volumes of annotated clini-
cal text, even for English, which presents a problem

for supervised approaches to Word Sense Disam-
biguation. For other languages, such as Dutch,
there exist no freely available annotated corpora of
clinical text.

A first step towards solving this problem could
be the use of distributed representations. Where a
more traditional word representation, such as a TF-
IDF bag-of-words (BoW) representation, carries
frequency information, distributed representations
encode semantic information. A big advantage to
using these representations is that they can be gen-
erated from large corpora of unlabeled text, and
can be trained on very large corpora in a reason-
able amount of time. These representations, es-
pecially when trained using neural architectures
such as word2vec (Mikolov et al., 2013), have
been shown to improve performance on a variety
of tasks when compared to more traditional BoW
representations.

We hypothesize that these kinds of distributional
representations are well-suited for WSD in the clin-
ical and biomedical domain because of the lack
of training data, and the large terminological va-
riety. We present a knowledge-based approach to
Word Sense Disambiguation which creates concept
representations by combining definitions from the
Unified Medical Language System (UMLS) with
distributed representations. We test our hypothesis
on the MSH-WSD, which is a well-known dataset
for WSD in the biomedical domain.

2 Related Research

All knowledge-based methods we review use
the Unified Medical Language System® (UMLS)
Metathesaurus® (Bodenreider, 2004) as a knowl-
edge base, possibly augmented with external
sources, such as MeSH®-indexed abstracts. Gen-
erally speaking, the UMLS contains two separate
information sources that are suitable for use in dis-
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ambiguation: the concept unique identifier (CUI),
which is a unique label for each concept, and the
semantic type (ST), which is a set of 135 broad
labels such as “Animal” or “Chemical”. In gen-
eral, a word is only considered disambiguated if
the correct CUI can be selected; hence, as McInnes
and Pedersen (2013) note, approaches based on se-
mantic types are not able to disambiguate between
approximately 12% of concepts, as some concepts
with the same surface form have an identical ST,
but a different CUI.

In terms of approaches using ST, Humphrey et
al. (2006) create one vector for each semantic type
by creating a BoW representation of all words that
denote that semantic type. For each ambiguous
term, a target word vector is created by taking a
window of words from the right and left of the term.
The concept which is associated with the ST with
the lowest cosine distance is then taken to be the
correct sense of the term. Similarly, Alexopoulou
et al. (2009) create a method which finds the closest
concept based on a combination of co-occurrence
with other semantic types and ontological similarity
through is-a relationships.

Closest to our approach is the machine read-
able dictionary (MRD) approach (McInnes, 2008;
Jimeno-Yepes et al., 2011), which uses definitions
from the UMLS to create concept vectors by creat-
ing BoW representations of concepts using all defi-
nitions of the concept and those of related concepts.
This BoW representation contains TF-IDF values
where D is the number of concepts in which a word
appears, thereby reducing the influence of general
words which occur in many concepts. These rep-
resentations are then compared to the vectorized
contexts of the ambiguous terms using cosine dis-
tance. A refinement of MRD, called second-order
co-occurrence MRD (2-MRD) (McInnes, 2008), re-
places each word in a definition by a vector which
contains TF-IDF values of co-occurrence counts,
thereby associating each word with a context.

McInnes and Pedersen (2013) introduce
UMLS::SenseRelate, an approach which is based
on Pedersen et al. (2004)’s WordNet::SenseRelate.
In this system, each possible sense for an ambigu-
ous term is assigned a distance-weighted score
based on the concepts of the terms surrounding it,
where the concepts of the surrounding terms are
determined using UMLS::Similarity (McInnes et
al., 2009).

Jimeno-Yepes and Berlanga (2015) present so-

Medline Mimic-III Bioasq
Corpus size 920,081 13,097,844 -
Vocabulary 196,960 71,663 1,701,632
Dimension 320 320 200

Table 1: The number of words in the corpus, the
resulting vocabulary size, and the dimension of the
resulting vectors.

called step models, which calculate the probabil-
ity of a word occurring with a certain concept by
considering the number of times a word occurs
in the definitions of that concept and its related
concepts. It then steps through the UMLS-defined
ontology of concepts, and refines the probabilities
for each word and each concept based on the rela-
tions within the ontology.

Finally, Chen et al. (2014) present an approach
for general WSD which uses word embeddings
coupled with WordNet (Fellbaum, 1998) as a re-
source to perform sense disambiguation, and which
creates sense-specific word embeddings from these
sense-disambiguated word representations.

3 Materials

3.1 Test Corpus
We use the MSH-WSD corpus (Jimeno-Yepes et
al., 2011), which consists of a set of 203 ambigu-
ous terms, each associated with multiple concepts,
to evaluate our approach. Of the 203 terms in the
corpus, 106 are regular terms, 88 are acronyms, and
9 can be acronyms and regular terms. For each of
these concepts, up to 100 MeSH abstracts were re-
trieved, resulting in a set of 37,888 abstracts. In our
approach, all abstracts were pre-processed using
the tokenizer from the Pattern package (De Smedt
and Daelemans, 2012), and all stop words were
removed using the English stop word list from
scikit-learn (Pedregosa et al., 2011).

3.2 Word vectors
We evaluate our approach using three sets of vec-
tors: The first set was trained on a small set of
Medline abstracts1, and a second set of vectors
created on the entirety of the MIMIC-III corpus
of clinical notes (Johnson et al., 2016). For both
sets, we used the word2vec implementation from
gensim (Řehůřek and Sojka, 2010), using skip-
gram with negative sampling, a frequency cutoff

1The specific IDs of these abstracts are available in the
online appendix.
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of 5 and a negative sampling of 15. Additionally,
we used a third set of vectors, available from the
BioASQ organisers2, which was trained on a much
larger set of Medline abstracts.3 The model statis-
tics are visualized in Table 1.

4 Approach

Similar to the 2-MRD approach detailed above, our
approach creates concept vectors by replacing each
word in every definition by the vector representa-
tion of that word. This creates an M ×n matrix for
each definition, where M is the dimensionality of
the word vectors, and n the number of words con-
tained in that definition. Following this, for each
definition, we then obtain a single vector of dimen-
sionality M by applying a compositional function
to the matrix, thereby obtaining so-called definition
vectors, which represent the entire meaning of the
definition in one vector. Each concept can then be
represented by a M×d matrix, where d is the num-
ber of definitions that a concept has in the UMLS.
Finally, we apply a second composition function
to this matrix, thereby obtaining a single vector of
dimensionality M which represents the combined
meaning of all definitions for that concept, i.e. a
concept vector.

For each abstract in the test corpus, we first lo-
cate each ambiguous term through a simple lookup.
For each located term in the abstract we create a
vector representation by retrieving all words in a
window of size w surrounding the ambiguous term,
and replacing the words by their vectors. Note
that this window does not include the ambiguous
term itself. These collections of vectors are then
combined into M -dimensional vectors using the
same composition function as above. This is done
separately for each term occurrence within a single
document, creating a M × x matrix, where x is
the number of times the ambiguous term occurs
in a single document. These are then combined
in an M -dimensional term vector using the same
composition we used for the concepts, above. A
schematic representation of our model is given in
Figure 1.

Because all concept and term vectors are created
using the same distributed vectors and composi-
tional functions, the vector space in which they are

2Available on the BioASQ website.
3While we concede that the BioASQ corpora might contain

abstracts from the MSH dataset, it does not contain any explicit
labeled information that might be used in disambiguation.

Figure 1: Our model represents a concept by re-
placing all words W in a definition D by their
vectors, and then composing these into a definition
vector with a function f(x). For each concept, all
definition vectors D are then composed into a con-
cept vector C using a second composition function
f(x).

placed is also comparable. Hence, for each am-
biguous word we encounter, we can use the cosine
distance between the abstract vector of the am-
biguous utterance and each possible sense of that
word to determine the correct sense. This makes
our approach very similar to the Lesk family of
approaches (Lesk, 1986).

In terms of composition function we experi-
mented with elementwise multiplication, averaging
and summation, all of which are unordered com-
positional functions (Mitchell and Lapata, 2008).
In addition, it is worth noting that there’s still a
lively debate whether ordered composition actually
leads to better results for estimating document-,
or sentence-level meaning, when compared to un-
ordered composition (Iyyer et al., 2015; Socher et
al., 2013).

5 Results

The accuracy scores obtained by our models using
the different word vectors are displayed in Table
2. med, mim and bio denote the vectors created
on the small Medline corpus, the Mimic-III corpus
and the BioASQ vectors, respectively. We consider
both a constrained and an unconstrained version
of the task. For each word, the constrained ver-
sion of the task only considers the senses present
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med mim bio MRD 2-MRD 0-step 2-step r-step UMLS::SenseRelate
Accuracy C 0.80 0.69 0.84 0.81 0.78 0.82 0.86 0.89 0.75
Accuracy U 0.72 0.63 0.75 - - - - - -

Table 2: Results using constrained (C) and unconstrained (U) terms.

Term Accuracy
DE 0.31

Hemlock 0.4
Brucella Abortus 0.46

WT1 0.46
Murine Sarcoma Virus 0.47

Table 3: The 5 lowest-performing terms.

in the MSH-WSD dataset as possible targets. The
unconstrained version considers all concepts which
are denoted by the ambiguous term in the 2015AB
version of the UMLS as possible targets. The term
cortex, for example, only has 2 concepts asso-
ciated with it in the MSH-WSD dataset, while in
the 2015AB UMLS release it can denote 5 separate
concepts. Because the unconstrained version of the
task considers all words, it therefore gives a better
indication of real-life performance.

Accuracy C and U denote that the scores were ob-
tained in the constrained settings and unconstrained
setting, respectively. All reported scores use a win-
dow size of 6, which was optimized on a randomly
selected set of 20 terms from the MSH-WSD set.
Varying the window size had negligible results: all
window sizes over 6 had comparable results, and
increasing the window size over 30 causes a (small)
decline in results. This is in line with McInnes and
Pedersen (2013), who report a positive effect of
window size that quickly tapers off for window
sizes > 10. Concerning the composition functions,
summation and averaging as first and second or-
der composition function worked best, while using
element-wise multiplication did not work well in
any case. Where possible, we display the self-
reported scores from the relevant papers on the
same dataset.

A first thing to note is the large difference in
accuracy when changing the set of word repre-
sentations, especially the difference between the
Medline vectors and the vectors derived from the
Mimic-III corpus. It is currently unclear what
causes these performance differences, although it
is likely that the small vocabulary, caused by the
noisiness of the clinical data in the MIMIC-III cor-

pus, reduces performance. Compared to previous
approaches, our approach outperforms the MRD,
2-MRD, and UMLS::SenseRelate approaches, but
does not manage to improve on the scores of the
step models. Recall, however, that the step models
largely rely on relationships in the UMLS ontology
to estimate concept relatedness.

To compare how our models improved when in-
cluding relation information, we also experimented
with adding definitions of related concepts, i.e. con-
cepts which had a sibling, parent or child rela-
tionship to each concept. In contrast to patterns
observed in earlier work, this did not have a sig-
nificant, and often a detrimental, effect on perfor-
mance. Note that this makes our model entirely
independent of the actual UMLS hierarchy, and
more flexible as a result, as we only use the map-
pings from definition to CUI for disambiguation,
and no other information, such as relations or se-
mantic type. In addition, our system is also fast:
on a consumer-grade laptop, our approach takes 10
seconds to vectorize and disambiguate all abstracts
in the MSH dataset, not taking into account the
time it takes to load the embeddings into memory.

Our approach obtains an accuracy of > 90% on
103 terms, showing that it is able to disambiguate
a large variety of terms. For some terms, how-
ever, the performance was below random guessing.
These are shown in Table 3. The pattern of er-
rors is quite clear: Our approach has trouble with
disambiguation if the definitions of the concepts
themselves are lexically very similar. As an exam-
ple, on the term Hemlock our approach performs
below chance level because one of the concepts
denotes a family of poisonous plants, while the
other reports a tree, also called hemlock, the de-
scription of which mentions that it is explicitly not
poisonous. We expect these kinds of problems to
be alleviated with the addition of more data.

6 Conclusion and future work

In this paper we presented a novel approach to
WSD in the biomedical domain which achieves
comparable performance to existing methods with-
out incorporating relational information from an

80



ontology. This makes the approach easily transfer-
able to other languages, for which such ontologies
might not exist, and to other domains. The large
variation in accuracy when changing sets of word
embeddings also raises interesting prospects for
improvement; better word representations will lead
to an improvement in our approach without modify-
ing the approach itself. Additionally, we would like
to experiment with different composition functions
for composing the definition and concept vectors.
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Abstract

Document classification is an important
and common application in natural lan-
guage processing. Scaling classification
approaches to many targets faces a bot-
tleneck in acquiring gold standard labels.
In this work, we develop and evaluate
a method for using informed topic mod-
els to noisily label documents, creating a
noisy but usable set of labels for train-
ing discriminative classifiers. We inves-
tigate multiple ways to train this noisy
classifier, and the best performing method
uses Wikipedia-seeded topic models to ap-
proximately label training instances with-
out any supervision. We evaluate these
methods on the classification task as well
as in an active learning setting, in which
they are shown to improve learning rates
over traditional active learning.

1 Introduction

Document classification is a standard task in ma-
chine learning and natural language processing
which has been studied extensively (Joachims,
1999; Sebastiani, 2002). For many instances of
this problem, standard supervised machine learn-
ing methods are now sufficient, so that any given
document classification problem may be consid-
ered an application or engineering task rather than
an interesting research problem. Recent work re-
lated to this problem has come mainly from the
machine learning community and has focused on
a generalization of the task called multi-label clas-

sification, in which each instance has multiple cat-
egories that must be predicted (Tsoumakas and
Katakis, 2007; Read et al., 2011). That work has
been concerned with the problem of how to best
make use of correlations between the different la-
bels, and using that information to perform the
classifications non-independently.

In contrast, the work here is concerned with the
more practical problem of obtaining these labels,
and particularly the issue that ad hoc classification
targets require obtaining supervised training data
from scratch. This problem may arise in any ap-
plication area of natural language processing, but
in the clinical domain this problem is potentially
more pressing because expert annotators (physi-
cians) are expensive and traditional cost-saving
approaches such as crowdsourcing are not always
viable due to privacy concerns.

A common use case for clinical document clas-
sification is physicians mining patient notes for
diseases, then using genetic samples of that “vir-
tual cohort” to do phenotype-genotype correlation
studies. Billing codes have high recall but vary-
ing precision depending on the disease. Thus, ma-
chine learning and NLP applied to the narrative
text in the clinical record are now often used as a
solution to this problem.

Our approach to this task is to use the unsuper-
vised method of topic modeling, specifically La-
tent Dirichlet Allocation (LDA), which can learn
word probabilities for semantically coherent top-
ics, and by providing informed priors, we can steer
topics to categories of interest and use these word
lists like features in a classifier. As a first step, we
take advantage of the crowd-sourced knowledge
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contained in Wikipedia to build a representation
of the category of interest. We then use this cate-
gory representation as an informed prior to LDA.
This informed LDA algorithm then finds the top-
ics that best satisfy the data given the priors, in-
cluding both informed topics and traditional unin-
formed topics. In particular, we are able to guide
the topic model to learn separate topics for similar
categories if that is required by the categories we
are interested in for classification.

The ability to extract pre-specified topics of
varying granularity is interesting on its own, as it
could be used for more guided data explorations
of the kind that LDA is already in use for. But we
can also use the output of this process to gener-
ate classifiers, by treating the occurrence of these
topics in a document as a noisy label for that doc-
ument. Given these noisy labels, we can immedi-
ately train a classifier, which performs much better
than chance, without seeing a single gold standard
training example.

Finally, we show that this has potential appli-
cations to active learning by using our noisy clas-
sifier’s certainty estimates to select training exam-
ples, rather than first annotating a random seed set.
This method results in faster learning rates than
passive learning, standard active learning, and a
baseline method that uses the Wikipedia-trained
priors directly.

2 Background

2.1 Topic Modeling with Latent Dirichlet
Allocation

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is a probabilistic unsupervised method for
grouping tokens into a set of corpus-wide clusters.
By setting parameters that constrain each docu-
ment to use a subset of the clusters, frequently co-
occurring words tend to get placed into the same
clusters, and since distributionally similar words
are often semantically similar, the result is that the
clusters are often semantically coherent topics.

A document in LDA is represented as a bag of
words. Each document has a probability distribu-
tion across K topic indices, and each topic is a
global probability distribution across V words in
the vocabulary. This leads to a generative story
where the topic distribution for a document is
drawn from a Dirichlet distribution, and each word
is generated by first drawing a topic from the topic
distribution, then drawing a word from the word

distribution indexed by that topic. One common
inference method for LDA is to use Markov Chain
Monte Carlo sampling, which is an iterative algo-
rithm where each variable of interest is sampled
probabilistically. In LDA, the standard sampling
algorithm is derived by integrating out the topic
and word distributions from the joint probability,
so that the only random variable left to sample is
the topic assignment for each word. Each topic as-
signment is typically randomly initialized, then at
each iteration a topic is sampled from the sampling
equation (from Griffiths and Steyvers (2004)):

p(zi = j|z−i,w) ∝ nwi
−i,j + β

n
(·)
−i,j + |V |β

· ndi
−i,j + α

ndi
−i,· + Tα

(1)
where i indexes words in the corpus and j is an
index into K topics. The first factor represents the
probability of the given word being selected for
this topic (nwi

−i,j is the count of the word at po-
sition i in topic j). The second factor represents
the probability of topic j being selected for a word
in this document (ndi

−i,j is the count of words in
the same document as wi with topic j). α and β
are the hyper-parameters from the Dirichlet priors
used to draw the probability distributions. While
the Dirichlet distribution accepts a vector of hyper-
parameters the size of the output distribution, in
most work these hyper-parameters are symmetri-
cal, and are set using intuition or experimentation.
Low values of these parameters (≤ 1) encourage
sparse distributions, and sparsity constraints give
rise to the clustering behavior typical of LDA.

One limitation of standard LDA in practice is
that it will not always make fine-grained distinc-
tions, even if they are known to exist in the data.
For example, in the 20 Newsgroups data set (de-
scribed in Section 4.2), there are different topics
for baseball and hockey, which share quite a bit of
terminology (teams, games, scores, etc.) but users
may wish or expect them to be separate. Run-
ning standard topic modeling on this corpus with
number of topics K = 25 using the Mallet topic
modeling framework (McCallum, 2002), we ob-
serve that one topic seems to have merged base-
ball and hockey terminology (top words in that
topic: game, team, year, play, games, hockey, sea-
son, players, ca, win, league, baseball, nhl). Sim-
ply increasing the number of topics may solve the
problem but will also have the general effect of
making categories more specific, which may ad-
versely affect other topics. This problem can also
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be addressed by hierarchical models, in which top-
ics that are higher in some hierarchy tend to model
more general terms and lower topics are more spe-
cific. Hierarchical topic models (Blei et al., 2003)
make use of a nested Chinese Restaurant Process
where a word is a sample from a mixture between
all the topics in a path from the root to a leaf node
in a topic tree. Higher-level nodes will tend to
be on more paths, and will thus be sampled more
often and contain higher probability words. This
method can then, for example, run on text with-
out stop words removed and recover them as the
top level of the hierarchy. One might imagine
that for the baseball and hockey example, a hierar-
chical model would recover a higher-level sports
topic with lower level topics specific to baseball
and hockey.

Another method, Pachinko Allocation
Model (Li and McCallum, 2006), general-
ized hierarchical topic models so that the topic
hierarchy did not need to be a tree. This retains
a hierarchy with higher and lower nodes corre-
sponding to more or less general topics, but also
allows for different words to be generated by
different topic paths. While these hierarchical
models have attractive properties, they are signif-
icantly more complex than standard LDA, which
means they have more parameters, may take
longer to train, and still may not recover topics of
interest to a user.

Some relevant recent work in topic modeling
has explored the importance of the prior values α
and β. Wallach et al. (2009) developed optimiza-
tion procedures for α and β and found that opti-
mization of the document-topic prior α led to im-
proved results, as measured by perplexity on held-
out data. Jagarlamudi et al. (2012) found that pri-
ors on both α and β allowed them to incorporate
information into the LDA inference, though they
found that a more complex model structure was
necessary to properly incorporate the information,
which requires a more complex inference proce-
dure.

Other relevant topic modeling work involves
the augmentation of LDA-style models for la-
beling documents with multiple topics. Labeled
LDA (Ramage et al., 2009) creates a topic for each
label in a multi-label setting, and takes advantage
of gold standard labels to learn topic distributions
for each label. In the author-topic model (Rosen-
Zvi et al., 2004), a document is generated by a set

of authors, and an author is a distribution over top-
ics. While both models are relevant to the multi-
label classification problem, they both require gold
standard labels, and we suspect that given gold
standard labels discriminative classifiers will be
superior.

3 Methods

Building on this existing work in topic modeling,
we propose an extension to the LDA model that is
able to find specific topics of interest, with mini-
mal human effort. We call this method informed
LDA, and the following sections will describe the
method and how it can be used to train classifiers.

3.1 Building Informed Priors

We first build models for each of the target labels
we are interested in. For this work, we use top-
ics from two corpora, the 20 Newsgroups dataset
mentioned above, as well as the 2008 i2b2 Chal-
lenge dataset1, a set of 730 clinical discharge sum-
maries labeled for multiple obesity-related dis-
eases. Table 2 shows the 14 i2b2 labels we used
for this work.

To build these models, we retrieved the
Wikipedia article closest in meaning to each la-
bel. For most labels, there was an article with the
exact title or a very similar title. We tokenized the
articles and then TF-IDF (term-frequency/inverse
document frequency) weighting was applied to
these tokens (for the clinical articles we used an
IDF derived from a sub-index of Wikipedia arti-
cles containing clinically relevant articles). The
purpose of the TF-IDF reweighting is to down-
weight commonly occurring words like those rep-
resenting broad terms (especially in the clinical
data, terms like ”disease” ”surgery” are not as in-
formative as they are generally).

While in the present work the step of identify-
ing the relevant Wikipedia article required a small
amount of manual effort, there are many ways that
it could be automated – for example, by querying
Wikipedia or the Web with the category name and
performing token counts over multiple retrieved
articles. Performing this step manually and ob-
taining high quality models of each category al-
lows for a purer evaluation of the more technically
challenging downstream steps.

1The i2b2 Challenge datasets are publicly available with
a Data Use Agreement at https://i2b2.org/NLP/DataSets/.
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3.2 Informed LDA
The standard LDA sampling equation, Equation 1,
has a single value of α and β, assuming symmetric
Dirichlet priors. A simple extension of the sam-
pling equation for arbitrary priors can be obtained
by vectorizing ~α and ~β:

p(zi = j|z−i,w) ∝ nwi
−i,j + βwi

n
(·)
−i,j +

∑|V |
i′=1 βi′

·

ndi
−i,j + αj

ndi
−i,· +

∑K
j′=1 αj′ (2)

Since each article has a different length, the
prior vectors are first normalized so that all in-
formed priors have equal strength. The ~β parame-
ters are then filled in by these normalized weights.
For token values that are not in the article, we use
a default value of 0.01 in the prior.

To do inference using this model, we modi-
fied the source code of Mallet (McCallum, 2002),
allowing for arrays of priors and modifying the
sampling equation as described above. The num-
ber of topics K was set to 30, as this value gave
reasonable results during preliminary experiments
with standard LDA. This means that, in contrast
to methods like Labeled LDA, not all topics are
associated with a label – 16 of our topics were in-
formed and the remaining 14 are uninformed, al-
lowing the model to fit other topics in the data that
we may not be currently interested in.

3.3 Creating a Bronze Standard
After running inference on the informed LDA
model, the output of interest is the empirical es-
timates of document-topic probability – frequen-
cies of each topic in each document. For exam-
ple, the output may say that in document 0, the
topic for asthma accounted for 3% of the tokens.
Our goal is to use these values to assign noisy la-
bels to each document for the value of that cluster
category. We call this set of labels a bronze stan-
dard, in contrast to the gold standard of expert-
generated labels.2

There are many ways one might go about con-
verting topic frequencies to labels. For binary
classification, as in the i2b2 data, one could set a
threshold value and give all documents with topic
frequencies above that threshold a positive label.

2Silver standard is already used to describe huge automat-
ically labeled datasets (Rebholz-Schuhmann et al., 2010).

Possible thresholds include 0 and 1/K. We found
that thresholds allowed for too much variation, and
led to some severely skewed label distributions, so
that the next stage classifier may have only a few
positive examples to work with. Even if this ap-
proximates a true distribution, it is probably not
enough data points to find a signal in the features,
and so the resulting classifier probably will not be
useful.

Another option is, for each informed topic, sort
all documents by that topic’s frequency, and then
split the data at the median frequency value into
the true and false classes, so that the classifier gets
training data with no skew in its distribution. We
found that this method was the most reliable across
labels and does not require fitting any parameter.

For multi-way classification, as in the 20 News-
groups data, we use as the bronze label the topic
whose document-topic probability was the maxi-
mum of all the informed topics. To simplify fur-
ther, this is just the topic that accounts for the
greatest number of words in the document.

3.4 Building a Classifier
However bronze labels are obtained, they can now
be used in the typical way to train a classifier. The
feature representation may also be varied. We will
describe classifier settings in detail in the Evalua-
tion, but we experimented with a variety of classi-
fiers. The representation used here is bag of words
for a document.

3.5 Active Learning with Bronze and Gold
Labels

While this technique may have value as a low-cost
low-accuracy classifier, we suspect that it might
have additional value as an input to other systems.
One such potential application is as an input to an
active learning-based annotation system, as a way
of obtaining gold standard labels to achieve op-
timal classification performance. Active learning
is an annotation technique that has a classifier in
the loop – instead of labeling examples randomly,
examples are selected for labeling based on some
notion of usefulness, such as classifier uncertainty
(see Settles (2010) for an excellent overview of
active learning). To initialize the active learning
classifier, however, a small set of “seed” examples
are randomly selected to be labeled.

Here, instead of using a seed set, we use our un-
supervised classifiers from the start of the annota-
tion process. Using this bronze-trained classifier,
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we get a probability distribution across categories
for every instance in the training data. We use
uncertainty sampling to select the next instance,
which in the two-class case means selecting the
instance whose classification probability is closest
to 0.5. The bronze standard label is then replaced
with the gold standard label (simulating annota-
tion of the instance) and the classifier is re-trained.
This process repeats until every instance in the
training data has its gold label uncovered. To test
this method experimentally (as in Section 4), we
would also have a set of held out data, and every
time we train a classifier we would evaluate it on
this held out data.

The active learning method just described dif-
fers from standard active learning in that there is
no longer a breakdown into initial seed set and
a pool set from which examples are drawn, but
rather we have a mixed gold/bronze training set.
Since the gold labels are more reliable, we give
them a higher weight relative to the bronze labels,
so the classifier can treat them differently.

4 Evaluation

To evaluate the effectiveness of this method, we
will start with one brief qualitative evaluation to
inspect the topics found, and then proceed to two
quantitative evaluations. The first evaluation at-
tempts to get a preliminary look at how the in-
formed LDA method works on topics that are su-
perficially similar, to gauge how adding informa-
tion can guide the model to make difficult distinc-
tions. The first quantitative evaluation is a sim-
ple set of unsupervised classification experiments.
We build a bronze standard for the 20 Newsgroups
and i2b2 data sets, then train classifiers for each
category and evaluate the classifier. The second
quantitative evaluation examines the use case of
active learning. Our experiment uses the unsuper-
vised classifiers from the previous experiment to
evaluate whether active learning can be made even
faster by using those classifiers to select examples
at the start of the active learning procedure, when
the gold standard training data is still quite small.

4.1 Qualitative Inspection of Similar Topics

Table 1 shows the results of inspecting a few
sports-related topics from the 20 Newsgroups cor-
pus. This is to simply see if this method can ad-
dress the issue discussed in Section 2, the con-
flation of similar topics. The first column shows

LDA Baseball Hockey
game year team
team baseball game
year hit hockey
play san play

games win canada
hockey team games
season season toronto
players runs nhl

ca league cup
win game players

league won division
baseball lost season

nhl games gary

Table 1: Comparison of topic words in similar top-
ics with standard LDA (first column) and informed
LDA (last two columns).

the words in a sports-related topic using standard
LDA. It clearly finds words related to both hockey
and baseball, with no other topics containing any
significant amount of hockey or baseball content.

In contrast, the last two columns show the in-
formed topics for baseball and hockey using in-
formed LDA. In addition to the sport names there
are additional terms that are discriminative, in-
cluding hit, runs, and wins (a pitching statistic)
for baseball, and canada, nhl, and cup for hockey.
Informed LDA also did not have any other topics
containing significant amount of hockey or base-
ball content. This kind of evaluation is of limited
use, but it does verify that the algorithm is able to
find closely aligned topics.

4.2 Experimental Configuration

The data sets used for evaluation are the 20 News-
groups data set3 and the 2008 i2b2 Challenge data
set described above. The 20 Newsgroups data
set contains around 11,000 training documents,
partitioned into 20 topics, which are used as la-
bels for the documents. These include labels such
as alt.atheism for atheism-related conversations,
sci.crypt for cryptography-related discussions, and
so forth. While each document may have multiple
“topics” in the strict semantic sense, it will have
one topic label – in other words, a classifier must
choose a single category from 20 possibilities.

The 2008 i2b2 Challenge data consists of clin-

3This data set can be downloaded here:
http://qwone.com/ jason/20Newsgroups/
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ical discharge summaries from patients at an obe-
sity clinic. This data contains 730 notes in the
training set, with each note being labeled for 16
disease categories, with both textual and intuitive
labels.4 We use the more challenging intuitive la-
bel set, which did not require explicit confirmation
of a diagnosis in the text. We discard two labels,
hypertriglyceridemia and venous insufficiency, af-
ter preliminary work on the training set indicated
that those two labels could not be learned satisfac-
torily even with fully supervised approach. The
likely cause of the difficulty is that these two cate-
gories contained the fewest number of positive ex-
amples, an important issue but one we will have
to reserve for future work. In contrast to the 20
Newsgroups data, in the i2b2 data the labels are
not mutually exclusive, so we frame the task as 14
binary classification problems.

We used the Weka machine learning
toolkit (Hall et al., 2009) during develop-
ment, and evaluated many different classifiers on
both datasets, including Adaboost, support vector
machines, logistic regression, and naive bayes.
We use the Adaboost algorithm (Freund and
Schapire, 1996) with decision stumps as the weak
learner for the i2b2 data. For the 20 Newsgroups
data we used a support vector machine with
linear kernel for the classification experiment and
switched to Naive Bayes for the active learning
experiments for speed reasons. Besides being
relatively accurate, using boosting with decision
trees has the beneficial property that the models it
builds have some degree of transparency, which
clinical researchers appreciate.

For the first experiment we evaluate the effec-
tiveness of informed LDA on generating labels
that can train a classifier. We compare first to
a random labeling baseline (labeled RandL), that
generates a random labeling, trains a classifier
with those labels, and then uses it to classify the
training set. This is not intended to be a com-
petitive baseline, as much as it is a check to set
a lower bound on what kind of performance we
would get if informed LDA labeling had no signal
whatsoever. We also compare to a standard ran-
dom classifier (RandC) which is based on a recall
of 0.5 and a precision of the category’s prevalence.
This baseline is important for the binary classi-
fier to make sure our classifier is learning more

4In actuality, not every note is labeled for every category,
but most are.

than just how to do random guessing based on our
evenly split labels. In the main experimental con-
dition (Bronze), we use informed LDA to gener-
ate a bronze standard label set for the training data
as described in Section 3.3, train a classifier with
those labels and evaluate it on those same exam-
ples from the training set. The upper bound we
compare against is a 5-fold cross-validation of the
training set using gold labels.

The next experiment examines the usefulness of
these unsupervised classifiers in an augmented ac-
tive learning scheme described in Section 3.5. We
use the two baselines of passive learning and stan-
dard active learning. The passive learning baseline
is equivalent to just plotting a learning curve for a
machine learning problem with random ordering
of the instances. The active learning baseline uses
an initial seed set of 25 examples from within the
pool set. We use uncertainty sampling to select
the next example, which uses the example which
has the smallest difference in probability estimates
between the two most likely classes.

The condition we are testing is labeled Bronze.
This condition does not use a seed set, but starts
with a classifier trained on the entire bronze-
labeled pool set. Learning proceeds by finding ex-
amples in the pool set that the current iteration of
the classifier is uncertain about and uncovering the
gold label (i.e. simulating annotation). This means
that, in the active learning curve, the x-axis, which
traditionally indicates the size of the training data
used to train the classifier, now indicates the num-
ber of gold instances in the training data (the re-
maining instances still have bronze labels).

We give gold and bronze instances different
weights to reflect varying quality of the labels.
This weight is used in calculating the cost func-
tion during training – a higher weight on gold la-
bels means the classifier will try harder to get gold-
labeled instances correct. Here we use a weight of
0.1 for bronze-labeled instances and a weight of
1.0 for gold-labeled instances.

4.3 Results

Table 2 shows the results of the 14 binary classi-
fiers on the i2b2 data. The random labeling gives
rise to a classifier that never obtains an F1 score
better than 0.11. The bronze labeling, performs
much better than the RandL classifier, with a low
performance of 0.26 (for depression) and a high
performance of 0.83 (for diabetes). The bronze-

88



Category RandL RandC Bronze CV
Asthma 0.02 0.20 0.47 0.91
CAD 0.05 0.54 0.66 0.91
CHF 0.07 0.50 0.75 0.86
Depression 0.07 0.29 0.26 0.77
Diabetes 0.06 0.58 0.83 0.95
Gallstones 0.02 0.22 0.33 0.83
GERD 0.04 0.33 0.39 0.77
Gout 0.05 0.21 0.42 0.88
HC 0.08 0.51 0.56 0.83
HTN 0.06 0.62 0.67 0.96
OA 0.10 0.26 0.27 0.66
Obesity 0.07 0.46 0.56 0.97
OSA 0.02 0.22 0.28 0.91
PVD 0.11 0.25 0.37 0.76

Table 2: F1 scores for traditional supervised clas-
sifier (CV) vs. unsupervised classifier trained us-
ing informed LDA (Bronze), classifiers trained
with random labels (RandL), and a classifier that
makes random guesses (RandC). (CAD=Coronary
Artery Disease, CHF=Congestive Heart Fail-
ure, GERD=Gastroesophageal Reflux Disease,
HC=Hypercholesterolemia, HTN=Hypertension,
OA=Osteoarthritis, OSA=Obstructive Sleep Ap-
nea, PVD=Peripheral Vascular Disease)

RL RC Bronze CV
Accuracy 0.05 0.05 0.64 0.85

Table 3: Multi-way classifier accuracy on the 20
Newsgroups dataset using random labels (RL),
a random classifier (RC), bronze labels obtained
from informed LDA (Bronze) and a supervised
cross-validation (CV).

trained classifier also outperforms the RandC ran-
dom classifier in 13 out of 14 categories, by an av-
erage of approximately 12 points F1 score. Cross-
validation using the gold standard can be very ac-
curate, ranging from 0.66 to 0.96.

There are a few interesting things to point out
from these results. First, our analysis of the er-
rors shows that the classifiers trained by the bronze
labeling did not systematically favor either preci-
sion or recall. A linear regression with the Gold
score as the independent variable and the Bronze
score as the dependent variable shows that the
Gold score is a statistically significant predictor of
the Bronze score (p = 0.01), but with so few data

Active Learning
Disease Passive Active Bronze
Asthma 469.6 486.1 500.1
CAD 455.5 462.7 469.6
CHF 415.3 422.3 435.1
Depression 371.7 414.5 410.4
Diabetes 491.7 503.2 510.8
Gallstones 400.7 450.8 457.0
GERD 317.3 350.0 360.2
Gout 477.4 506.1 519.1
HC 372.4 389.4 398.9
Hypertension 460.1 476.2 465.1
Osteoarthritis 305.6 328.7 349.9
Obesity 490.4 501.9 502.0
OSA 463.6 487.7 495.8
PVD 363.0 390.9 372.2
Average Curve 451.0 473.8 479.8

Table 4: Performance of augmented active learn-
ing on 14 categories from the 2008 i2b2 Challenge
data .

Passive Active Bronze
ALC 7203 7469 7678

Table 5: Performance of augmented active learn-
ing on 20-way classifier for 20 Newsgroups data.
Unit is Area Under the Learning curve (ALC).

points the exact nature of this effect is not clear.
Table 3 shows the results of the three classifiers

on the Newsgroups data. For this multi-category
experiment we use accuracy as the metric instead
of F1 score. Here the accuracy of the RandL and
RandC are both quite low, at 0.05. Bronze label-
ing can train a classifier that attains an accuracy of
0.64. The Gold labeling gives us an approximate
ceiling performance of 0.85.

Table 4 shows the area under the active learning
curve (ALC) for 14 categories in the i2b2 data un-
der three conditions. Both the active learning and
the bronze-augmented active learning outperform
passive learning on all 14 categories. In 11 of the
14 categories the bronze-augmented version is su-
perior to traditional active learning. We also aver-
aged the curves together and computed the average
learning curve, for which the bronze-augmented
algorithm is again optimal.

Figure 1 shows the average learning curve
across i2b2 category labels. The x-axis has been
truncated at 100 instances to clarify the region
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Figure 1: Average active learning curve across 14
disease categories.
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Figure 2: Active learning plot for 20 Newsgroups
data.

where there is a clear distinction. Qualitatively,
the distinction between passive and active is quite
clear – this much is not surprising, given previous
success in active learning. While the bronze curve
shows an advantage up to maybe 30 instances, it
quickly converges with the active curve.

Table 5 shows the Area Under the Learning
curve (ALC) results of active learning on the 20
Newsgroups data. Active learning again beats pas-
sive learning, and the augmented version using
bronze labels performs best. The learning curves
for all three conditions are in Figure 2, truncated
to 5000 examples to highlight the area showing the
most difference. Here the bronze label-based ver-
sion of active learning seems to have a clearer ad-
vantage than in the i2b2 corpus.

4.4 Discussion and Future Work

One aspect that deserves further mention is that of
class prevalence and skew. The decision to assign
bronze labels on the i2b2 corpus with an even class
distribution was vastly superior to any threshold-
ing that was attempted. However, we should note
that in the i2b2 data we used, the prevalence is rel-
atively high for most categories. Diabetes, for ex-
ample, is present in 70% of the patients here, while
gout is present in 13%.

Evaluating unsupervised methods on super-

vised tasks is tricky. Our experiments here fo-
cused on the training set of each corpus rather
than following the default train/test splits. Our pri-
mary concerns here were evaluating whether this
method had any promise at all, and that it was
applicable to more than one corpus. One could
argue that future work should develop and tune
the methods on the training data and then evalu-
ate them on the test set. However, the very nature
of this method breaks the traditional training/test
model because tuning on the training data is al-
ready cheating relative to how the method would
actually be applied on unlabeled data.

We are not sure that this problem has any per-
fect solutions, but we suggest that evaluating on as
many different corpora as possible will be the best
validation for this method. In this work, we tried
to do that by starting on i2b2 data and then moving
to the 20 Newsgroups data. Doing this helped us
understand how informed priors need to be modi-
fied based on the size of the corpus.

One sticking point to portability with this
method is the choice of classifier. We could have
chosen a single classifier to stick with across cor-
pora but then if one is particularly weak for a given
corpus (e.g., SVM performed poorly on i2b2), it is
less clear how much credit to assign the bronze la-
bels for the performance. One possible solution
to this issue is to require a much smaller sample
of gold-labeled validation set if validated perfor-
mance is strictly necessary.

One final point is that the classifier trained on
bronze training labels probably would not gener-
alize to a new corpus very well. This is not much
of a problem, because the idea of the method is
that for a new corpus one should generate new
bronze labels using informed LDA on that data set.
This does raise the question of what the difference
would be between two classifiers trained on dif-
ferent corpora but with the same topic label, and
whether there is some way of extracting additional
information from comparing the decisions of these
different classifiers on new data.

5 Conclusion

This work has shown that informed topic models
seeded with topic information from Wikipedia can
be used to train classifiers that perform much bet-
ter than random. These classifiers are given no
gold standard information and yet obtain results
that may be useful in some applications. We show
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that in active learning this method can improve
learning rate for many categories. This method
may be beneficial in domains where a large num-
ber of classifiers are required and state of the art
performance is not necessary.
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dra Udupa. 2012. Incorporating lexical priors into
topic models. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 204–213. Associ-
ation for Computational Linguistics.

Thorsten Joachims. 1999. Making large scale svm
learning practical. In B. Schlkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods -
Support Vector Learning. Universität Dortmund.

Wei Li and Andrew McCallum. 2006. Pachinko allo-
cation: Dag-structured mixture models of topic cor-
relations. In Proceedings of the 23rd international
conference on Machine learning, pages 577–584.
ACM.

Andrew McCallum. 2002. Mallet: A machine learning
for language toolkit.

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled LDA: a su-
pervised topic model for credit attribution in multi-
labeled corpora. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language

Processing: Volume 1 - Volume 1, EMNLP ’09,
pages 248–256, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine Learning, 85(3):333–359.

Dietrich Rebholz-Schuhmann, Antonio José Jimeno
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Abstract

Extracting information from mental health
records can be useful for large-scale clini-
cal studies (e.g., to predict medication ad-
herence or to understand medication ef-
fects) in this clinical specialty largely un-
derserved by the Natural Language Pro-
cessing (NLP) community. Vocabular-
ies that contain medical terms for specific
clinical use-cases, such as signs, symp-
toms, histories, social risk factors, are
valuable resources for the development of
NLP systems that aid clinicians in ex-
tracting information from text. Substance
abuse is an important variable for many
clinical use-cases, but, to our knowledge,
there are no publicly available vocabular-
ies that cover these types of terms. In this
study, we apply and combine three meth-
ods for generating vocabularies related to
substance abuse. We propose a simple and
systematic method to generate highly rel-
evant vocabularies and evaluate these vo-
cabularies with respect to size and content,
as well as coverage and relevance when
applied to authentic psychiatric notes.

1 Introduction

Information about a mental health patient’s clin-
ical condition is documented routinely in mental
health records, mostly in the form of free-text. Ex-
tracting information from these documents can be
useful for large-scale clinical studies to develop
new treatment alternatives, to understand disease
progression and medication effects, etc. Vocabu-
laries that contain relevant terms for specific clini-
cal use-cases are useful resources for the develop-
ment of Natural Language Processing (NLP) sys-
tems that aid clinicians in extracting information

from text.
In this study, we focus on the problem of auto-

mated vocabulary generation, specifically, to auto-
mate the generation of relevant synonyms and re-
lated terms, focusing on substance abuse, an area
not well-studied. Specifically, we aim to:

1. compare, assess, and combine three different
automated vocabulary generation methods

2. determine vocabulary coverage and relevance
in substance abuse sections from authentic
psychiatric clinical notes, and

3. generate a publicly available vocabulary with
substance abuse terms

Our goal is to develop efficient vocabulary gen-
eration methods that can be used in larger NLP
pipelines for new clinical use-cases, where domain
experts with minimal-to-no NLP background can
develop tailored solutions for new problems.

1.1 Treatment Management for Acute
Anxiety

Patients with depression and anxiety disorders ad-
mitted for hospital care commonly receive med-
ications for the management of acute anxiety on
an as-needed basis (Curtis and Capp, 2003; Stein-
Parbury et al., 2008). These may include benzo-
diazepines, antihistamines, antipsychotic medica-
tions, and others. Although these treatments can
reduce a patient’s acute distress level, they often
have adverse effects. Apart from class-specific
side-effects (e.g., oversedation related to benzodi-
azepines), as-needed anxiolytics may also impair
response to psychotherapy and impede long-term
recovery (Curran, 1986; Curran and Birch, 1991;
Westra et al., 2004; Mystkowski et al., 2003; Otto
et al., 2005).

In an effort to better understand the effect of as-
needed anxiolytic medications on a patient’s abil-
ity to manage their anxiety during and after psy-
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chiatric hospitalization, one of the authors (BK)
has undertaken a large-scale retrospective study.
The study aims to determine whether anxiolytic
use correlates with poorer outcomes for psychi-
atric inpatients being treated for depression and
anxiety, such as prolonged hospitalization or in-
creased risk of readmission. This study involves a
large cohort (n=about 3000) of patients admitted
to several psychiatric hospitals in the same univer-
sity system. Because the effects of anxiolytic use
on the outcomes of interest are likely modulated
by a number of other variables, such as her history
of substance use disorders, the study requires the
coding of almost 30 variables for each patient, all
of which must be abstracted from free-text clinical
notes.

1.2 Treatment Variables from Clinical Texts

NLP approaches could accelerate the coding pro-
cess for this data set, while also providing the
foundation for future studies with similar aims.
Although research in clinical NLP has matured
over the last decades, and there are several pub-
licly available clinical text processing pipelines
and modules e.g., cTAKES (Savova et al., 2010),
MedLee (Friedman et al., 1994), and pyConText
(Chapman et al., 2011), adapting and refining
these resources to fit the information needs for
specific use-cases is not straightforward.

Furthermore, although there have been a few
efforts in the NLP community to address men-
tal health-related use-cases, e.g., understanding
a patient’s suicidal ideations from suicide notes
(Pestian et al., 2010) and detecting signals of
post-traumatic stress disorder (PTSD), depression,
bipolar disorder, and seasonal affective disorder
(SAD) from tweets (Coppersmith et al., 2014),
NLP for mental health is still in its early stages.

In this study, we focus on substance abuse as it
relates to patients suffering from depression and
anxiety disorders. As a first step toward encoding
substance abuse variables from clinical text, our
domain expert (BK) had manually listed a number
of terms thought to be relevant to substance abuse.
However, these select keywords may not identify
all relevant reports due to the variable use of syn-
onyms, abbreviations, acronyms, and misspellings
in clinical texts. To assist our domain expert in
identifying all relevant patient reports, one initial
solution involves automatically extending the ini-
tial set of keywords with relevant synonyms and

related terms, also known as vocabulary expan-
sion, and marking identified terms for further re-
view. The domain expert (or an NLP module)
must then review the report and infer the labels as-
signed to each substance abuse variable, e.g., from
the context of the identified mention “etoh” in the
sentence “history of ETOH abuse,” assign a label
current, past, both or none for the variable Alco-
hol.

2 Related Research

The creation of useful domain-specific vocabular-
ies requires a balance between identifying enough
terms for adequate coverage (vocabulary expan-
sion) while pruning terms with limited or no utility
(vocabulary reduction).

2.1 Vocabulary Expansion

In the biomedicine domain, common vocab-
ulary expansion methods include dictionary-
based (e.g., using terminologies and edit-
distances), rule-based (e.g., leveraging
orthographic/morphological/lexico-syntactic pat-
terns and grammars), machine learning/statistical-
based (e.g., applying feature-engineering and
transitional states to identify term boundaries),
and hybrid approaches (e.g., integrating combi-
nations of the former approaches) (Krauthammer
and Nenadic, 2004).

In the clinical domain, vocabulary expansion ef-
forts have included several of these approaches.
The Unified Medical Language System, UMLS
(Lindberg et al., 1993), has been an influential
and important resource for vocabulary develop-
ment in this domain. Grabar et al. (2009) use
the UMLS and other available terminologies to
generate synonyms through a compositional anal-
ysis along with syntactic dependency informa-
tion, resulting in high precision (Grabar et al.,
2009). Parts of the UMLS have also been en-
hanced by synonym substitution methods using
WordNet (Fellbaum, 1998) and a set of constraints
on the number of generated synonyms, result-
ing in a 10% increase of valid terms related to
GI endoscopic examinations in the Minimal Stan-
dard Terminology (Huang et al., 2010) Zeng et
al. (2012) demonstrated that synonym expan-
sion from the UMLS, topic modeling with Latent
Dirichlet Allocation and predicate-based query ex-
pansions achieved higher average recalls and aver-
age F-measures when compared with the baseline
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keyword query for retrieving relevant texts from
the United States Veteran Affair’s Corporate Data
Warehouse (Zeng et al., 2012). Henrikson et al.
applied a semi-automatic and language-agnostic
method for identifying synonyms of SNOMED
CT preferred terms using a distributional similar-
ity technique and a large clinical corpus (Henriks-
son et al., 2013).

2.2 Vocabulary Reduction

However, many terms from controlled vocabular-
ies like the UMLS and SNOMED CT are not
found in biomedical or clinical texts. Hettne et al.
(2010) conducted experiments for the building of
a medical lexicon using the UMLS Metathesaurus
(Hettne et al., 2010). Specifically, they applied
term suppression and term rewriting techniques to
filter out or discard terms which are considered ir-
relevant or unlikely to occur in biomedical texts.
As a result, a more representative lexicon was pro-
duced for medical concept recognition. Wu et
al. (2012) conducted a large-scale corpus analy-
sis that leveraged the UMLS Metathesaurus term
characteristics to determine which terms general-
ized across multiple data sources including Mayo
Clinic clinical notes and i2b2/VA 2010 NLP Chal-
lenge notes, resulting in a set of filtering rules
that reduced significantly the size of the original
Metathesaurus lexicon (Wu et al., 2012).

Similar to these studies, we aim to assess the
utility of terms leveraged from a controlled vo-
cabulary plus a large corpus of notes, and ap-
ply various automatic learning approaches to iden-
tify relevant terms specifically aimed at an under-
served clinical domain. Although some NLP re-
search has addressed the annotation and automatic
recognition of variables for substance abuse and its
subtopics including Tobacco, Alcohol, and Drug
Abuse (Yetisgen et al., 2016; South et al., 2015;
Uzuner et al., 2008), to our knowledge, no one has
investigated the generation of substance abuse lex-
icons using our particular term recognition meth-
ods for utility in the psychiatric domain.

3 Methods and Materials

In this preliminary study (IRB 68896), we aimed
to develop a useful methodology for expand-
ing and reducing domain-specific vocabularies to
the most relevant related terms to improve man-
ual patient record review. Our methodology in-
cludes three approaches for vocabulary expansion:

one ontology-based and two corpus-based (one
rule-based using linguistic information and one
context-based using neural networks). As a base-
line, we used a vocabulary of seed terms defined
by a domain expert (BK). Our method also in-
cludes an evaluation of characteristics to inform
vocabulary reduction: 1) size and content of the
generated vocabularies, and 2) coverage and rele-
vance as it relates to authentic data1. For the lat-
ter, we used a set of psychiatric clinical notes, de-
scribed below.

3.1 Baseline vocabulary
A set of predefined terms related to substance
abuse was used as the baseline vocabulary. These
terms were manually generated by a domain ex-
pert (psychiatrist, BK) for the purpose of iden-
tifying relevant terms from psychiatry notes in
relation to specific variables, e.g., term=opioids,
category=Opiates, variable label={none, current,
past, both}. In total, this substance abuse vocab-
ulary contains 91 terms in 8 categories including
e.g., Alcohol, Cocaine and Current Smoking Sta-
tus.2 We reference this approach as the Baseline.

3.2 Ontology-based vocabulary expansion
To identify relevant synonyms in the UMLS, we
searched for each term in the Baseline vocabu-
lary using Knowledge Author (KA) (Scuba et al.,
2014). This approach is referenced as UMLS.

3.3 Corpus-based vocabulary expansion
Although ontology-based vocabulary expansion
approaches can generate many relevant terms,
most terms may not be used in practice in clini-
cal texts. A corpus-based approach can be used to
identify potentially missed terms and validate the
use of ontology-generated synonyms. We used the
free-text notes from the entire MIMIC II database
(Saeed et al., 2011), which contains clinical doc-
umentation for >30000 patients, for two corpus-
based vocabulary expansion approaches using: 1)
linguistic resources in combination with transfor-
mation rules and corpus-based frequency informa-
tion, and 2) contextual information from a neural
network model. Only alphanumeric tokens were

1Further details and information about this work, in-
cluding evaluation script and supplementary material, is
available here: http://toolfinder.chpc.utah.edu/
content/vocabulary-expansion-and-
reduction-algorithms-vera.

2A subset of a larger vocabulary defined for other vari-
ables, e.g. Education, Suicidal Ideation and Homelessness.
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used, and all words were converted to lower-case.
We included both 1- and 2-token words (uni-and
bi-grams) in our methods.

Linguistic and rule-based approach generates
lexical variants by querying each seed term (e.g.,
“alcohol abuse”) in WordNet after which four
steps are applied on each generated WordNet
synonym: 1) term reordering (“abuse alcohol”),
2) inflection generation (“alcohol abused”), 3)
abbreviation generation (“aa”) and 4) typographic
error generation (“alchol abuse”). Each generated
term variant was then checked against the MIMIC
II corpus and candidate terms occurring >15
times were kept (Conway and Chapman, 2012).
We reference this approach as WNLing.

Neural network approach leverages a word2vec
(Mikolov et al., 2013) neural network bigram
model for the generation of context-based related
terms. We built a model using a window parameter
of 5, discarded words occurring < 15 times, and
set the vector dimensionality to 400. Each term in
the baseline vocabulary was then queried to find
the most similar uni- or bigrams with a similarity
score >= 0.5.3 This approach is called word2vec.

3.4 Evaluation data set
We randomly sampled 100 psychiatric clinical
notes (from a total of approx. 2500) from the
University Hospital, University of Utah, Salt Lake
City, collected for the purpose of extracting infor-
mation related to as-needed anxiolytic use. From
each note, sections more likely to contain informa-
tion about substance abuse (e.g., PSYCHIATRIC
HISTORY AND PHYSICAL and PSYCHIATRIC
H&P) were extracted for matching terms from
each vocabulary.

3.5 Evaluation
We performed a quantitative evaluation from two
perspectives: 1) vocabulary size and content, to
understand characteristics of the generated vocab-
ularies, and 2) vocabulary coverage and relevance,
to understand their applicability on authentic data.

3.5.1 Vocabulary size and content
Each new vocabulary was generated from the list
of terms in the Baseline vocabulary4. We calcu-

3We used the gensim package (Řehůřek and Sojka, 2010)
to build this model.

4Note that some terms in the Baseline vocabulary were
not found in the generated models, Table 7 in Supplement:
http://toolfinder.chpc.utah.edu/sites/
default/files/psychiatry_substance_use_

lated the number of terms in each generated vo-
cabulary, the number of added terms as compared
to the other vocabularies, as well as the total num-
ber of all terms (set union) and the total number
of shared terms (set intersection) between the gen-
erated resources. Note that the vocabularies may
contain unigrams that are parts of larger n-grams
(multi-word tokens e.g., “alcoholics” as a part of
“alcoholics anonymous”). Each unique term was
counted separately.

3.5.2 Vocabulary coverage and relevance
Each term in each generated resource was matched
against the evaluation data to calculate number of
terms found and frequencies of occurrence. A sim-
ple string matching procedure was employed in
each substance abuse section using regular expres-
sions, where a match was counted if a term5 was
found between a word boundary (“\b”).

As this evaluation data set is not manually an-
notated for substance abuse-related terms, we in-
stead calculated approximations for both precision
(positive predictive value) and recall (sensitivity)
by comparing the terms generated from each ap-
proach to terms generated by all four approaches.

To calculate these versions of precision and re-
call for each approach, relevant and correct terms
(true positives, TP) were defined as the set union
of the pairwise intersection sets between all four
approaches, i.e. all terms that were found by at
least two approaches. Missed terms (false neg-
atives, FN) were defined as the terms not gener-
ated by a specific approach but generated by one
(or more) combination of other approaches. Spuri-
ous terms (false positives, FP) were defined as the
number of terms found by a specific approach, but
not any other approaches.

Precision and recall were then calculated
from these results for each approach (preci-
sion=TP/(TP+FP) and recall=TP/(TP+FN)), re-
spectively. Note that this approximation ought to
be analyzed with caution - it only gives results in
relation to the terms that the vocabularies gener-
ate (there is no knowledge about potentially rele-
vant terms outside of these vocabularies). Since
the vocabulary approaches are rather different, we
believe that this evaluation does give a hint to-
wards what could be expected to at least be rele-
vant terms, and illustrates the relationship between

related_terms_supplement.pdf.
5excluding English stopwords from the nltk

(http://www.nltk.org/) package.
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the employed approaches. This evaluation also
permits us to learn common terms learned by mul-
tiple approaches and contemplate which combina-
tions should be presented back to the domain ex-
pert for expanding the initial query.

4 Results

We report characteristics of the vocabularies in
terms of size and content, and we report on vo-
cabulary coverage and relevance when applied to
the evaluation data.

Vocabulary size
Baseline 91
UMLS 863
WNLing 1253
word2vec 1758

Table 1: Size of each vocabulary (number of
unique terms).

4.1 Vocabulary size and content

The number of terms in each vocabulary (Base-
line, UMLS, WNLing and word2vec) is reported
in Table 1. Excluding the Baseline, the word2vec
model generated the most terms (n=1758), while
UMLS generated the fewest (n=863). In total,
3661 unique terms were generated (Baseline ∪
UMLS ∪WNLing ∪ word2vec).

Figure 1: Venn diagram: number of terms in the
generated vocabularies from the three approaches:
UMLS, WordNet with linguistic heuristics (WN-
ling), and word2vec.

One term from the Baseline vocabulary was not
found by any of the other approaches (substance
use history). For the corpus-based approaches,
there were also some terms in the Baseline vocab-
ulary that were not present in the models generated
from the MIMIC II corpus6.

Forty-three terms were shared between all four
vocabularies (Baseline ∩ UMLS ∩ WNLing ∩
word2vec)7. and eleven additional terms (a total
of 54) were shared between the three approaches
(UMLS ∩ WNLing ∩ word2vec): addictions, al-
coholic beverage, alcoholic drink, amphetamines,
beer, benzodiazepines, drug abuse, ethanol, ethyl
alcohol, glass, and substances.

Figure 1 shows a Venn diagram with the results
from the three vocabulary expansion approaches
(UMLS, WNLing, word2vec). In total, 163 terms
were shared between at least two approaches (182
in total when including the Baseline vocabulary).
Among these 163 terms, added terms as compared
to the Baseline vocabulary include misspelling
variants (morpine, coccaine), inflections (smokers,
addictions) in addition to new, potentially relevant
terms such as narcotic, etoh, codeine. The propor-
tion of shared terms for each pairwise vocabulary
combination roughly reflects the sizes of the vo-
cabularies, e.g. word2vec ∩ WNLing (n=64) >
UMLS ∩WNLing (n=11).

4.2 Vocabulary coverage

Vocabulary u tot min max avg

Baseline 37 416 1 11 4
UMLS 49 536 2 11 5
WNLing 85 828 2 18 8
word2vec 104 786 1 21 7

Table 2: Number of terms found in the evaluation
data. u = number of unique terms found irrespec-
tive of frequency, tot = total number of term occur-
rences found, min, max, avg = minimum, maxi-
mum and average number of terms per section.

The number of matched terms (unique and total)
in the 100 random substance abuse sections from
each vocabulary is shown in Table 2. The sections
contain in total 4036 words8 (min=4, max=192,
avg=40). We observed an average of 4 (Baseline)
to 8 (WNLing) substance abuse terms (min: 1;

6Table 7 in Supplement.
7Table 1 in Supplement.
8Counted using a simple whitespace tokenizer
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max: 21) in each substance abuse section using
the different vocabularies, Table 2.

The proportion of observed unique terms found
in the substance abuse sections varied from about
5-7% for UMLS, WNLing, and word2vec com-
pared to about 41% for the Baseline. As the size
of the vocabularies increased, so did the total num-
ber of term occurrences (about 7.5 to 11 fold).

A comparison of the coverage between the gen-
erated vocabularies is depicted in the Venn dia-
gram in Figure 2. Overall, the number of matched
terms is higher for the larger vocabularies (WN-
Ling, word2vec) and the proportion of shared
terms is also higher. Twenty-eight terms are
shared between all three new vocabularies, and 52
terms are shared between at least two vocabularies
(16+28+2+6).

To evaluate the approximated precision and re-
call, we use the union of each pairwise intersection
of all vocabularies (including the Baseline), which
resulted in 57 unique terms9.

Figure 2: Venn diagram: number of unique terms
from the generated vocabularies found in the eval-
uation data: UMLS, WordNet with linguistic
heuristics (WNling), and word2vec.

As expected, the Baseline approach resulted
in the highest approximated macro-and micro-
precision (0.97/0.998), Table 3. In con-
trast, the vocabulary-based approaches resulted
in the highest macro-and micro-recall (0.91/0.98:
word2vec). The fact that the micro-results are
higher for the two corpus-based approaches indi-
cates that these two approaches generate term vari-

9Table 2 in Supplement.

ants that are also more frequent in the evaluation
data set.

4.3 Vocabulary relevance
To analyze relevance, the 20 most frequent terms
found by each approach is presented in Table 4,
along with information about which vocabulary
the term was found in. Nine of these terms were
found in all vocabularies. Two terms were not
clearly relevant to substance abuse (last, years).
The three most frequent terms, that were found
in all 100 substance abuse sections, are uni- and
bi-gram variants of the same term (substance use,
substance and use).

Vocabulary
Macro Micro

P R P R
Baseline 0.97 0.63 0.998 0.67
UMLS 0.77 0.67 0.78 0.68
WNLing 0.55 0.82 0.69 0.93
word2vec 0.5 0.91 0.77 0.98

Table 3: Results: approximated precision and re-
call, macro (per unique term) and micro (per term
occurrence). The number of relevant (and correct)
terms is defined as the set union of all pairwise in-
tersections.

The Baseline vocabulary included e.g. the term
packs but not its singular inflection pack, which
turned out to be more frequent (pack freq=18 as
opposed to packs freq=610. and found by the two
corpus-based approaches WNLing and word2vec.
Each approach also resulted in a number of po-
tentially relevant terms that were not found in
any of the other approaches, e.g. amphetamine
abuse (UMLS), withdrawal (WNLing), demerol
(word2vec)11.

5 Discussion and Conclusion

We present a simple and systematic approach for
automated vocabulary generation (expansion and
reduction) in the domain of substance abuse, ap-
plied and evaluated on a set of substance abuse
sections from authentic psychiatric notes. Three
vocabularies were generated from a set of seed
terms using publicly available resources (ontolo-
gies, software, and corpora) and combined to: 1)
generate a substance abuse vocabulary of highly
relevant terms and 2) characterize and analyze

10Table 2 in Supplement.
11Tables 3–6 in Supplement.
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term Baseline UMLS WNLing word2vec freq
substance use x 100
substance x x x x 100
use x 100
alcohol x x x x 62
history x 41
drug x x 40
abuse x x x 40
tobacco x x x x 35
marijuana x x x x 32
smokes x x x x 27
drug use x x 26
drug abuse x x x 23
illicit drug x 22
last x 21
cocaine x x x x 21
cigarettes x x x x 19
pack x x 18
years x 15
heroin x 15
smoking x x x x 14

Table 4: 20 Most frequent terms from the union set of all vocabularies that were found in the evaluation
data. Presence of term in each respective vocabulary is marked with ”x”. Note that unigrams could be a
substring of an n-gram in each vocabulary (e.g. substance and substance use in the UMLS vocabulary).

coverage and relevance in an authentic psychiatric
dataset.

Through our definition of an approximated pre-
cision and recall, we observed that the baseline
and ontology-based approaches resulted in the
highest approximated precisions, suggesting these
methods are useful for identifying the most rele-
vant related terms. This finding is not surprising
because the list was vetted by a domain expert and
core to the set of terms for all four approaches.
In contrast, the vocabulary-based approaches re-
sulted in the highest recalls suggesting these meth-
ods are useful for identifying potentially new re-
lated terms.

The denominator for calculating these results
was based solely on a combination of the four
generated vocabularies, which only illustrates re-
lations between approaches. Interestingly, the
ontology-based approach (UMLS) resulted in
moderate performance for both precision and re-
call. We hypothesize that this result occurs be-
cause although the UMLS provides a notable num-
ber of unique terms, these terms do not frequently
occur in clinical text due to term characteristics

(e.g., inclusion of semantic type and special char-
acters) and concept granularity (use of chemical
nomenclature for specific drugs). In future work,
we will apply methods to filter based on these
characteristics similar to (Hettne et al., 2010; Wu
et al., 2012; Demner-Fushman et al., 2010) to ad-
dress these and other challenges with knowledge
authoring leveraging noisy resources.

The baseline vocabulary was biased to more
specific terms of substance abuse usage includ-
ing terms for substances (alcohol, marijuana,
tobacco, cocaine, and cigarettes). Both the
ontology- and corpus-based approaches identi-
fied more general terms for substance abuse and
drug usage as well as terms related to linguis-
tic/semantic attribute information (e.g. drink-
ing heavily, rarely drinks, quit smoking). In fu-
ture work, we will develop methods for learning
these patterns to infer these attribute information.
These methods will then be placed into a larger
infrastructure called the Information Extraction-
Visualization pipeline (IE-Viz) to aid domain ex-
perts with no-to-minimal NLP experience in de-
veloping NLP systems for domain-specific use
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cases.
A preliminary manual analysis of the result-

ing list of relevant terms (true positives) revealed
that a clear majority of the resulting terms were
related to substance abuse - only one term was
obviously problematic (years). The false posi-
tives, on the other hand, were in many cases ac-
tually relevant and correct terms (e.g. ecstasy
from the word2vec model), although the WNLing
model also produced a number of irrelevant terms
(e.g. charges). To assess our approximated cov-
erage and relevance metrics, we will conduct a
manual assessment of the performance of this ap-
proach with respect to true coverage, i.e. analyze
which terms were missed, as well as correctness
for found terms to determine how well our approx-
imated precision and recall corresponds to the ac-
tual precision and recall of terms from this evalua-
tion data set. Moreover, we will assess the relation
between terms and categories.

We aim to extend our vocabulary expansion and
reduction methods. Most importantly, we have
only performed one iteration, using domain expert
curated terms, to create the final list of terms. This
list could be extended by performing a number
of iterations on the resulting list, thereby generat-
ing a richer and more comprehensive set of terms.
Moreover, we plan to utilize additional publicly
available resources, e.g. relevant Wikipedia pages.
Once these methods have been integrated into our
NLP pipeline, we will extend our experiments to
the other psychiatric variables from our data set,
e.g., social risk factors of Homelessness, Educa-
tion level, Abuse as a Child, Suicide attempts/Self
Harm, and new clinical use-cases such as the de-
tection of bleeding events associated with antico-
agulant medication usage by patients with high-
risk of stroke.

5.1 Limitations

Our preliminary study evaluation has several lim-
itations including an evaluation using a small data
set and calculation of term matches without con-
sideration of term overlap (unigrams/multi-word
token counts). We aim to extend our evaluation
data set and calculate the effect of term matching
criteria in follow up work.

Some of our vocabulary expansion methods
have limitations and might be improved. Specif-
ically, word2vec and similar approaches generate
related terms that could be a relatedness of se-

mantic types other than synonyms (antonyms, hy-
ponyms, etc.), which is well-known. However, we
believe co-occurrence of these terms may correlate
with variable terms and perhaps subsequent labels,
e.g., alcohol occurring with smoking, which may
help with extraction efforts in our NLP pipeline
downstream. WNLing abbreviation methods can
generate many false positives. Although we re-
duced some false positives with a stopword check,
we could leverage medical acronym and abbrevia-
tion dictionaries such as the Medilexicon12 and the
STANDS4 network13 to further reduce false posi-
tives. Moreover, we believe that combining these
types of approaches can be a useful way of limit-
ing the impact of each method’s disadvantages.

Finally, our thresholds were chosen rather ar-
bitrarily; therefore, we will experiment with de-
termining the effect of similarity scores and word
count thresholds, as well as the use of larger n-
grams.

5.2 Contribution

To our knowledge, this study is the first system-
atic study of terms related to substance abuse gen-
erated from publicly available resources and the
combinations of these approaches, and then eval-
uated on authentic psychiatric notes. The gener-
ated vocabularies can be used to automate parts
of the variable encoding process for the ongoing
study on treatment management of hospital ad-
mitted patients with depression and anxiety disor-
ders, as well as other clinical use-cases where sub-
stance abuse information is of importance. This
work represents a first step in a larger framework
to empower domain experts, in this case psychia-
trists, to develop queries and apply NLP methods
to identify and extract substance abuse and other
variables from large clinical data sets to support
mental health research.
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Abstract

Although advanced text mining methods
specifically adapted to the biomedical do-
main are continuously being developed,
their applications on large scale have been
scarce. One of the main reasons for this
is the lack of computational resources and
workforce required for processing large
text corpora.

In this paper we present a publicly avail-
able resource distributing preprocessed
biomedical literature including sentence
splitting, tokenization, part-of-speech tag-
ging, syntactic parses and named entity
recognition. The aim of this work is to
support the future development of large-
scale text mining resources by eliminating
the time consuming but necessary prepro-
cessing steps.

This resource covers the whole of PubMed
and PubMed Central Open Access sec-
tion, currently containing 26M abstracts
and 1.4M full articles, constituting over
388M analyzed sentences. The re-
source is based on a fully automated
pipeline, guaranteeing that the distributed
data is always up-to-date. The resource
is available at https://turkunlp.
github.io/pubmed_parses/.

1 Introduction

Due to the rapid growth of biomedical literature,
the maintenance of manually curated databases,
usually updated following new discoveries pub-
lished in articles, has become unfeasible. This
has led to a significant interest in developing au-
tomated text mining methods specifically for the
biomedical domain.

∗These authors contributed equally.

Various community efforts, mainly in the form
of shared tasks, have resulted in steady improve-
ment in biomedical text mining methods (Kim et
al., 2009; Segura Bedmar et al., 2013). For in-
stance the GENIA shared tasks focusing on ex-
tracting biological events, such as gene regula-
tions, have consistently gathered wide interest and
have led to the development of several text mining
tools (Miwa et al., 2012; Björne and Salakoski,
2013). These methods have been also succes-
fully applied on a large scale and several biomed-
ical text mining databases are publicly available
(Van Landeghem et al., 2013a; Franceschini et al.,
2013; Müller et al., 2004). Although these re-
sources exist, their number does not reflect the
vast amount of fundamental research invested in
the underlying methods, mainly due to the non-
trivial amount of manual labor and computational
resources required to process large quantities of
textual data. Another issue arising from the chal-
lenging text preprocessing is the lack of mainte-
nance of the existing databases which in effect
nullifies the purpose of text mining as these re-
sources tend to be almost as much out-of-date as
their manually curated counterparts. According to
MEDLINE statistics1 806,326 new articles were
indexed during 2015 and thus a text mining re-
source will miss on average 67 thousand articles
each month it hasn’t been updated.

In this paper we present a resource aiming
to support the development and maintenance of
large-scale biomedical text mining. The resource
includes all PubMed abstracts as well as full ar-
ticles from the open access section of PubMed
Central (PMCOA), with the fundamental lan-
guage technology building blocks, such as part-of-
speech (POS) tagging and syntactic parses, readily
available. In addition, recognition of several bio-

1https://www.nlm.nih.gov/bsd/bsd_key.
html

102



logically relevant named entities, such as proteins
and chemicals is included. Hence we hope that
this resource eliminates the need of the tedious
preprocessing involved in utilizing the PubMed
data and allows swifter development of new infor-
mation extraction databases.

The resource is constructed with an automated
pipeline which provides weekly updates with the
latest articles indexed in PubMed and PubMed
Central, ensuring the timeliness of the distributed
data. All the data is downloadable in an easily
handleable XML format, also used by the widely
adapted event extraction system TEES (Björne
and Salakoski, 2015). A detailed description of
this format is available on the website.

2 Data

We use all publicly available literature from
PubMed and PubMed Central Open Access sub-
set, which cover most of the relevant literature and
are commonly used as the prime source of data in
biomedical text mining knowledge bases.

PubMed provides titles and abstracts in XML
format in a collection of baseline release and sub-
sequent updates. The former is available at the end
of each year whereas the latter is updated daily.
As this project was started during 2015, we have
first processed the baseline release from the end
of 2014 and this data has then been extended with
the new publications from the end of 2015 base-
line release. The rest of the data up to date has
been collected from the daily updates.

The full articles in PMC Open Access subset
(PMCOA) are retrieved via the PMC FTP service.
Multiple types of data format are provided in PM-
COA, including NXML and TXT formats which
are suitable for text processing. We use the pro-
vided NXML format as it is compatible with our
processing pipeline. This service does not provide
distinct incremental updates, but a list of all in-
dexed articles updated weekly.

3 Processing Pipeline

In this section, we discuss our processing pipeline
as shown in Figure 1. Firstly, both PubMed and
PMCOA documents are downloaded from NCBI
FTP services. For the periodical updates of our
resource this is done weekly — the same inter-
val the official PMCOA dataset is updated. From
the PubMed incremental updates we only include
newly added documents and ignore other updates.

As the PMCOA does not provide incremental up-
dates, we use the index file and compare it to the
previous file list to select new articles for process-
ing.

Even though the PubMed and PMCOA docu-
ments are provided in slightly different XML for-
mats, they can be processed in similar fashion. As
a result, the rest of the pipeline discussed in this
section is applied to both document types.

Both PubMed XML articles and PMCOA
NXML full texts are preprocessed using publicly
available tools2 (Pyysalo et al., 2013). These tools
convert XML documents to plain text and change
character encoding from UTF-8 to ASCII as many
of the legacy language processing tools are inca-
pable of handling non-ASCII characters. Addi-
tionally, all excess meta data is removed, leaving
titles, abstracts and full-text contents for further
processing. These documents are subsequently
split into sentences using GENIA sentence split-
ter (Sætre et al., 2007) as most linguistic analyses
are done on the sentence level. GENIA sentence
splitter is trained on biomedical text (GENIA cor-
pus) and has state-of-the-art performance on this
domain.

The whole data is parsed with the BLLIP con-
stituent parser (Charniak and Johnson, 2005), us-
ing a model adapted for the biomedical domain
(McClosky, 2010), as provided in the TEES pro-
cessing pipeline. The distributed tokenization and
POS tagging are also produced with the parser
pipeline. We chose to use this tool as the perfor-
mance of the TEES software has been previously
evaluated on a large-scale together with this pars-
ing pipeline (Van Landeghem et al., 2013b) and it
should be a reliable choice for biomedical relation
extraction. Since dependency parsing has become
the prevalent approach in modeling syntactic rela-
tions, we also provide conversions to the collapsed
Stanford dependency scheme (De Marneffe et al.,
2006).

The pipeline is run in parallel on a cluster com-
puter with the input data divided into smaller
batches. The size of these batches is altered along
the pipeline to adapt to the varying computational
requirements of the different tools.

3.1 Named Entity Recognition

Named entity recognition (NER) is one of the fun-
damental tasks in BioNLP as most of the cru-

2https://github.com/spyysalo/nxml2txt
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Entity type Our system State-of-the-art system References
Precision/Recall/F-score Precision/Recall/F-score

Cell line 89.88 / 84.36 / 87.03 91.67 / 85.47 / 88.46 (Kaewphan et al., 2016)
Chemical 85.27 / 82.92 / 84.08 89.09 / 85.75 / 87.39 (Leaman et al., 2015)
Disease* 86.32 / 80.83 / 83.49 82.80 / 81.90 / 80.90 (Leaman et al., 2013)
GGP** 74.27 / 72.99 / 73.62 90.22 / 84.82 / 87.17 (Campos et al., 2013)
Organism 77.15 / 80.15 / 78.63 83.90 / 72.60 / 77.80 (Pafilis et al., 2013)

Table 1: Evaluation of the named entity recognition for each entity type on the test sets, measured with
strict entity level metrics. Reported results for corresponding state-of-the-art approaches are shown for
comparison.
* The evaluation of the best performing system for disease mentions is the combination of named entity
recognition and normalization.
** The official BioCreative II evaluation for our GGP model results in 84.67, 84.54 and 84.60 for preci-
sion, recall and F-score respectively. These numbers are comparable to the listed state-of-the-art method.

cial biological information is expressed as rela-
tions among entities such as genes and proteins.
To support further development on this dataset, we
provide named entity tagging for five entity types,
namely diseases, genes and gene products (GGPs),
organisms, chemicals, and cell line names. Al-
though several tools with state-of-the-art perfor-
mance are available for these entity types (Lea-
man et al., 2015; Leaman and Gonzalez, 2008), we
have decided to use a single tool, NERsuite3, for
all types. NERsuite is based on conditional ran-
dom field classifiers as implemented in the CRF-
suite software (Okazaki, 2007). Having a sin-
gle tool for this processing step instead of using
the various state-of-the-art tools is critical for the
maintainability of the processing pipeline. NER-
suite was selected as several biological models are
readily available for this software (Kaewphan et
al., 2016; Pyysalo and Ananiadou, 2014) and as
it supports label weighting (Minkov et al., 2006)
unlike many other NER tools.

For cell line names we use a publicly available
state-of-the-art model (Kaewphan et al., 2016),
whereas for the other entity types we train our
own models with manually annotated data from
GENETAG (Tanabe et al., 2005), CHEMDNER
(Krallinger et al., 2015), SPECIES (Pafilis et al.,
2013) and NCBI disease (Doǧan et al., 2014) cor-
pora for GGPs, chemicals, organisms and dis-
eases, respectively. All these corpora are com-
prised of biomedical articles and should thus re-
flect well the text types seen in PubMed.

All used corpora provide the data divided to
training, development and test sets in advance, the

3http://nersuite.nlplab.org/

SPECIES corpus being an exception. For this cor-
pus we do our own data division with random sam-
pling on document level, for each taxonomy cate-
gory separately. For each entity type, the C2 value,
as well as the label weights are selected to opti-
mize the F-score on the development set. For the
training of the final models used in the resource,
we use the whole corpora, i.e. the combination of
training, development and test sets.

Detailed performance evaluations for all entity
types are shown in Table 1. We evaluate NERsuite
in terms of precision, recall and F-score against the
test data using “strict matching” criteria, i.e. only
consider the tagged entities correct if they are per-
fectly matched with the gold standard data. These
results may not be directly comparable to the re-
sults reported in other studies as relaxed evalua-
tion methods are sometimes used. However, we
can conclude that our system is on par with the
methods published elsewhere and the limitation of
using a single tool does not have a significant neg-
ative impact on the overall performance.

4 Data Statistics

During the time of writing this paper the dataset
included 25,512,320 abstracts from PubMed and
1,350,119 full articles from PMCOA, resulting in
155,356,970 and 232,838,618 sentences respec-
tively. These numbers are not identical to the ones
reported by NCBI for couple of reasons. Firstly,
at the moment, we do not process the deletion up-
dates nor do we remove the old versions of PM-
COA articles if they are revised, i.e. our dataset
may include articles, which have been retracted
and an article may be included multiple times if

104



Entity type Occurrences Most common entity spans
Cell line 6,967,903 HeLa, MCF-7, A549, HepG2, MDA-MB-231
Chemical 153,285,486 glucose, N, oxygen, Ca2+, calcium
Disease 105,416,758 tumor, cancer, HIV, breast cancer, tumors
GGP 190,543,270 insulin, GFP, p53, TNF-alpha, IL-6
Organism 69,962,111 human, mice, mouse, HIV, humans

Table 2: Occurrence counts and the most frequent entity spans for all entity types in the whole data set.

Downloading and filtering

Text cleaning

Sentence splitting

Tokenization, part-of-speech tagging,
parsing

Named entity recognition

Figure 1: The main processing steps of the
pipeline. First, the articles are downloaded from
the source and filtered to prevent reprocessing old
documents. The documents are then converted to
plain text format. This text data is split to inde-
pendent sentences, tokenized and tagged with POS
labels and syntactic dependencies. In addition,
named entity recognition for several entity types
is carried out.

the content has been modified. We plan to take the
deletions into account in near future. Secondly,
the external tools in our pipeline may occasion-
ally fail, in which case some of the articles are
not processed. Since the pipeline processes the in-
put data in batches, a critical error may lead to a
whole batch not being processed. We are currently
improving the pipeline to automatically reprocess
the failed batches with the problematic articles ex-
cluded to minimize the loss of data.

Running the parsing pipeline, including tok-
enization, POS tagging and conversion to the col-
lapsed Stanford scheme, is the most time consum-
ing part of the whole pipeline. Execution of this

step has taken 84,552 CPU hours (9.6 CPU years)
for the currently available data.

Unfortunately we do not have exact processing
time statistics for named entity recognition and
thus estimate its computational requirements by
extrapolating from a smaller test run. Based on
this experiment NER has demanded 4,100 CPU
hours thus far. The text preprocessing and sen-
tence splitting steps are negligible and thus the
overall processing time required is approximately
10 CPU years.

In total, our processing pipeline has detected
526,175,528 named entities. GGPs are the most
common entities, covering 36.2% of all entity
mentions, whereas the cell lines are the most infre-
quent, forming only 1.3% of the data. The entity
type specific statistics along with the most com-
mon entity spans are listed in Table 2.

5 Future Work

Our future efforts will focus on expanding the cov-
erage of supported entity types to mutations and
anatomical entities (Wei et al., 2013; Pyysalo and
Ananiadou, 2014), deepening the captured infor-
mation of biological processes and bringing text
mining one step closer to extracting a realistic
view of biological knowledge.

As many of the NER training corpora include
only abstracts and are limited to specific domains,
the generalizability of the trained NER models to
full articles and to the wide spectrum of topics
covered in PubMed is not clear. Thus we wish to
assess how well these models perform on large-
scale datasets and analyze how their performance
could be improved on out-of-domain documents.

We plan to also include entity normalization for
all supported types, but as we wish to minimize
the number of individual tools in the processing
pipeline, we are developing a generic approach
suitable for most entity types.
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6 Conclusions

We have introduced a new resource which pro-
vides the basic linguistic analyses, essential in
the development of text mining knowledge bases,
for the whole of PubMed and PubMed Central
Open Access section, thus drastically reducing the
amount of required preprocessing efforts.

In addition, we provide named entity tagging
for several biologically relevant entity types and
show that the models we have used are compara-
ble to the state-of-the-art approaches, although our
focus has been on retaining the processing pipeline
as simple as possible for easier maintenance.

The resource is periodically updated with an au-
tomated pipeline, and currently includes over 26M
documents fully parsed with 526M named entity
mentions detected. The data is available for down-
load in XML format.
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2013. Gimli: open source and high-performance
biomedical name recognition. BMC bioinformatics,
14(1):54.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine N-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
ACL’05, pages 173–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Marie-Catherine De Marneffe, Bill MacCartney, and
Christopher D Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of LREC, volume 6, pages 449–454.
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Abstract

Temporal relation extraction is important
for understanding the ordering of events
in narrative text. We describe a method
for increasing the number of high-quality
training instances available to a temporal
relation extraction task, with an adaptation
to different annotation styles in the clinical
domain by taking advantage of the Unified
Medical Language System (UMLS). This
method notably improves clinical tempo-
ral relation extraction, works beyond fea-
turizing or duplicating the same informa-
tion, can generalize between-argument sig-
nals in a more effective and robust fashion.
We also report a new state-of-the-art result,
which is a two point improvement over the
best Clinical TempEval 2016 system.

1 Introduction

Temporal relation extraction is important for under-
standing ordering of events from a narrative text.
Recent years have seen annotated corpora created
for temporal information extraction, from newspa-
per text (Pustejovsky et al., 2003; Verhagen et al.,
2007; Verhagen et al., 2010; UzZaman et al., 2013),
to clinical narratives (Savova et al., 2009; Sun et
al., 2013; Styler et al., 2014), all with the aim of de-
veloping systems for building event timelines from
textual descriptions of events. Such narrative time-
lines are important for information extraction tasks
such as question answering (Kahn et al., 1990),
clinical outcomes prediction (Schmidt et al., 2005;
Lin et al., 2014), and the identification of temporal
patterns (Zhou and Hripcsak, 2007) among many.

In a typical supervised approach to the temporal
relation extraction task, argument pairs consist of
pairs of events or temporal expressions. Corpora
differ in their syntactic annotation of such expres-

sions. For example, the THYME corpus, consisting
of oncology, pathology and radiology notes, anno-
tated only event headwords (Styler et al., 2014),
while the i2b2 corpus, consisting of discharge sum-
maries, annotated entire noun phrases as events
(Sun et al., 2013). As a result, it is necessary to
account for these differences when implementing a
generalizable relation extraction system.

However, the annotations of the temporal rela-
tions between the events remain unaffected by the
choice of headwords or phrases for the event an-
notation. For example, in a relation between the
temporal expression yesterday and the event severe
lower abdominal pain, if the argument had been
the head word pain it still would have been an in-
stance of the same temporal relation. Thus, we can
automatically create additional training examples
by varying the extent of headword expansion. For
example, the relation between yesterday and severe
lower abdominal pain can automatically generate
four valid relations of the same type where the sec-
ond arguments are pain, abdominal pain, and lower
abdominal pain.

In this paper, we describe an automatic method
that generates more temporal training instances by
semantically expanding gold medical events based
on a clinical ontology, the Unified Medical Lan-
guage System (UMLS) (Lindberg et al., 1993). It
bridges the gap between different syntactic anno-
tations of events in clinical corpora. We show that
this method is superior to representing the same
information as additional features, that it differs
from plain upsampling, and that the primary mech-
anism of improvement is in the better representa-
tion of between-argument features. Our method
can be viewed as a new form of data augmenta-
tion, akin to the generation of image variants for
vision recognition (Krizhevsky et al., 2012) or the
generation of word substitutions for information
extraction (Kolomiyets et al., 2011).
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Figure 1: Example expansion of the event “scan”

2 Method

First, the text was scanned for any medical concepts
from the UMLS Metathesaurus (http://www.
nlm.nih.gov/research/umls/), a collec-
tion of concepts from different biomedical termi-
nologies. Apache cTAKES (http://ctakes.
apache.org) was used to extract such UMLS
concepts. Next, we use these UMLS concepts
and gold standard events to expand relation argu-
ments. For a gold standard event e annotated by
the headword, we define EXPAND(e) as the set
of UMLS entities whose spans cover e. If e is
involved in a temporal relation r, we assume u
(u ∈ EXPAND(e)) is involved in the same relation
and therefore we generate a new temporal relation
that is identical to r but with the event e replaced
by a UMLS entity u. Figure 1 shows an example
of expanding the gold event “scan” to its covering
UMLS entities and generating related relations.

We differentiate temporal relations into event-
time and event-event, and expand relations as de-
tailed in Algorithm 1 and Algorithm 2, respectively.
For event-event, we ensure the event spans do not
overlap after expansion. Our event-time model clas-
sifies all relations – CONTAINS, BEFORE, OVER-
LAP, BEGINS-ON, ENDS-ON and NONE, while
our event-event model classifies only CONTAINS

and NONE relations due to the very low inter-
annotator agreement for the other relation types
in our evaluation corpus (Styler et al., 2014). For
both models, NONE is used to indicate that there is
no relation between a pair of arguments.

Algorithm 1 Expansion for event-time relations
1: Given a gold-standard annotated event-time relation

r(e,t), where e is an event, t is a temporal expression,
r ∈ {CONTAINS, BEFORE, . . . , NONE}

2: for UMLS entity u ∈ EXPAND(e) do
3: Create relation r′(u, t), r′ ← r
4: Add r′ to training data
5: end for

Algorithm 2 Expansion for event-event relations
1: Given a gold-standard annotated event-event

relation r(ea,eb), where ea, eb are events,
r ∈ {CONTAINS, NONE}

2: for UMLS entity ua ∈ EXPAND(ea) do
3: if not overlaps(span(ua), span(eb)) then
4: Create relation r′(ua, eb), r′ ← r
5: Add r′ to training data
6: end if
7: end for
8: for UMLS entity ub ∈ EXPAND(eb) do
9: if not overlaps(span(ea,ub)) then

10: Create relation r′(ea, ub), r′ ← r
11: Add r′ to training data
12: end if
13: end for

3 Experiments

3.1 Dataset

We tested our event expansion technique on a pub-
licly available clinical corpus: the colon cancer set
of the THYME corpus (Styler et al., 2014) used
in SemEval 2015 Task 6 (Bethard et al., 2015)
and SemEval 2016 Task 12: Clinical TempEval
(Bethard et al., 2016). It contains 600 documents
(400 oncology notes and 200 pathology notes) of
200 colon cancer patients. The gold standard an-
notations contain events (including both medical
and general events, all annotated by head words),
temporal expressions (e.g. tomorrow, postopera-
tive, and March-11-2009), and temporal relations.
We used the same training/development/test split
as Clinical TempEval. The development set was
used for testing research questions and building
final models. Once the models were deemed final-
ized, they were rebuilt on the combined training
and development sets and tested on the test set.

3.2 Models

We built two within-sentence temporal-relation
classification models, one for event-time relations
and one for event-event relations. We paired every
gold event with every gold time expression within
the same sentence to form candidate instances for
the event-time classifier. We paired all gold events
within a sentence to form candidates for the event-
event classifier. For training, gold relations were
also expanded by calculating the closure sets of all
possible relations in a clinical document.

We use the LIBLINEAR (Fan et al., 2008) L2-
regularized L2-loss dual SVM as the learning algo-
rithm for both models. Our features for event-time
and event-event models are shown in Table 1.
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Feature Description EE ET
Tokens the first and the last word of each concept, all words covered by a concept as a bag,

bag-of-words around each concept for a window of [-3, 3], bag-of-words between two
concepts, and the number of words between two concepts

Part-of-speech tags the POS tags of each concept as a bag
Event attributes all event-related attributes such as polarity, modality, and type
UMLS feature UMLS semantic types as features
Dependency path the dependency path between two concepts and the number of dependency nodes in-

between
Overlapped head if two concepts share the same head word
Temporal attributes the class type of a time expression, e.g. Date, Time, Duration, etc.
Special words Any words from the time lexicon developed by NRCC (Cherry et al., 2013a) that the

concepts or the context in-between contain
Nearest flag if the event-time pair in question is the closest among all pairs in the same sentence
Conjunction feature if there is any conjunction word between the arguments

Table 1: Features used for event-event (EE) and event-time (ET) classifiers

3.3 Research questions

We investigate the following questions:

1. Can the effect of the UMLS expansion tech-
nique be replicated using additional features?
One may wonder if adding instances via UMLS
expansion is isomorphic to adding more features
that capture the UMLS information. To answer
this question, we find all covering UMLS enti-
ties, but instead of creating new instances, ex-
tract token features from these entities and add
those to the other features for the instance.

2. Is it better to expand to the longest UMLS en-
tity or to expand to all possible spans? In our
Figure 1 example, the longest UMLS entity
covering “scan” is “CT-scan of abdomen and
pelvis”. But we could also create instances for
the UMLS entities “scan”, “CT-scan” and “CT-
scan of abdomen”. We also compare against
a purely linguistic expansion to the immediate
enclosing noun phrase (NP).

3. Is the improvement due to the replication of in-
stances? Our expansion technique creates many
similar relations, and in cases where a UMLS
entity has the same span as a gold event, the
technique creates true duplicate instances. For
example, the relation CONTAINS(scan, March
11) is duplicated in Figure 1. Thus we also
compare our UMLS-informed expansion of in-
stances to simple duplication of instances1.

4. Which types of features benefit most from the
expansion? There are three groups of token

1In SVM classification, duplicating training instances can
affect the cost penalty by altering the number of instances
within the margin. It is thus critical to tune cost parameter C
for all experiments, which we do on development data.

features: within each argument, between the ar-
guments, and the preceding and following three
words (context) of an argument. We test the
performance one feature group at a time, with
and without the event expansion.

We test all research questions by training on the
training set and testing on the development set with
token-based features for the event-time relations.
Note that expansion is applied only to the training
set, not to the development or test set.

3.4 Evaluation

For results on the development set, we calculate
closure-enhanced precision, recall and F1-score
(UzZaman and Allen, 2011) on just the within-
sentence relations (since that’s what our models
are able to predict). Precision is the percentage
of system-generated relations that can be verified
in the transitive closure of the gold standard rela-
tions. Recall is the percentage of gold standard
relations that can be found in the transitive clo-
sure of the system-generated relations. The final
F1-score is the harmonic mean of the transitive-
closure-processed precision and recall.

For results on the test set, we used the official
Clinical TempEval evaluation scripts so that our
results are directly comparable with the outcomes
of Clinical TempEval 2016 (Bethard et al., 2016).
These scripts use similar definitions of closure-
enhanced precision, recall and F1-score, but evalu-
ate only CONTAINS relations in oncology notes.

4 Results on the development set

Question 1 is answered by the first two rows of Ta-
ble 2: adding token features representing expanded
UMLS entities does not achieve the same perfor-
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P R F #instances Settings
0.587 0.538 0.561 8423 no Expansion
0.466 0.455 0.460 8423 UMLS as features
0.578 0.533 0.555 16846 duplicate instances
0.580 0.534 0.556 25269 triple instances
0.605 0.557 0.580 9506 longest UMLS
0.592 0.592 0.592 10705 expand to NPs
0.654 0.591 0.621 12966 all UMLS

Table 2: Results on the development set. No expan-
sion vs. encoding UMLS as features; duplicating
and triplicating training instances; expand to the
longest UMLS span, expand to the immediate en-
closing NP vs. expand to all UMLS spans.

P R F #instances Settings
0.359 0.155 0.217 8423 (A) no expansion
0.582 0.206 0.304 12966 (A) with expansion
0.087 0.116 0.099 8423 (B) no expansion
0.600 0.546 0.572 12966 (B) with expansion
0.587 0.254 0.355 8423 (C) no expansion
0.648 0.264 0.375 12966 (C) with expansion

Table 3: Results on the development set. Compari-
son of improvement for feature groups: (A) words
covered by the arguments; (B) words in between
the arguments; (C) words around the arguments.

mance as UMLS expansion, and in fact decreases
performance. Question 2 is addressed in the last
three rows: expanding to all possible UMLS spans
works better than expanding only to the longest
span or to the immediate enclosing NP. Expand-
ing to NPs achieved the second best result, sug-
gesting that when a domain-specific ontology is
unavailable, expansion via syntax might provide a
viable alternative. Question 3 is answered by rows
1, 3 and 4: when the cost parameter is properly
tuned, doubling or tripling instances (rows 3 and 4)
does not improve performance over no expansion
(row 1). Question 4 is addressed by Table 3: fea-
tures extracted between the two arguments achieve
the biggest gain from our expansion method.

5 Results on the test set

Once the parameters were fine-tuned, we trained
both event-time and event-event models on the com-
bined training and developments sets, and tested
them on the test set. All features described in Ta-
ble 1 are used. The first two rows of Table 4 eval-
uate both event-event and event-time models, the
next two rows evaluate only the event-time model,
and the last two rows evaluate only the event-
event model. Statistical significance is computed
via Wilcoxon signed-rank tests over document-by-
document comparisons, as in (Cherry et al., 2013b).

P R F Settings P-value
0.635 0.549 0.589 (1) no Expansion 0.117
0.669 0.534 0.594 (1) with Expansion
0.673 0.291 0.407 (2) no Expansion
0.708 0.287 0.408 (2) with Expansion
0.594 0.252 0.354 (3) no Expansion
0.628 0.243 0.351 (3) with Expansion

Table 4: Results on the test set with all features. (1)
Evaluate both Event-Time and Event-Event mod-
els; (2) Evaluate Event-Time model only; (3) Eval-
uate Event-Event model only. See Section 3.4 for
explanation for why shaded scores are different
from their counterparts in Table 2.

6 Discussion

Our experiments show our method is helpful for the
event-time model, and not harmful for the event-
event model. We hypothesize that the multiple in-
stances capture the important surrounding context
between arguments and allow more generalization
over it. For the example in Figure 1, the most im-
portant features are “performed on.” Our method
weeds out less discriminative features by strength-
ening the important contextual signals that appear
across many different entity boundaries. This is
supported by the results of Table 3 (B). We sus-
pect that the small improvement seen on the test
data may be a result of the additional development
examples canceling the benefit of augmented exam-
ples. This suggests that this method may be most
effective in tasks with limited training instances.

Event-event relations are more complicated, first
in that they have lower annotation quality than
event-time relations (see Table 5 from (Styler et
al., 2014)). And while almost every temporal ex-
pression in a sentence is important, not all events in
a sentence are, creating many potential “distractor”
events (e.g., showed) in the context of the clinical
domain. We performed some exploratory exper-
iments (not shown), restricting the data to only
adjacent medical events in notes with high inter-
annotator agreement, and saw significant perfor-
mance improvements. But further study is needed
to generalize this to all event-event relations.

With the presented method, our temporal relation
system achieved F1 of 0.594, a two percentage-
point improvement over the best Clinical Temp-
Eval 2016 system’s F1 of 0.573 (Bethard et al.,
2016). Our results also suggest that gains may be
possible in the general domain by using syntactic
constituents for expansion. The method is avail-
able open source at the temporal module of Apache
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cTAKES2 (Savova et al., 2010).
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Abstract

We propose a document retrieval method
for question answering that represents
documents and questions as weighted cen-
troids of word embeddings and reranks
the retrieved documents with a relax-
ation of Word Mover’s Distance. Using
biomedical questions and documents from
BIOASQ, we show that our method is com-
petitive with PUBMED. With a top-k ap-
proximation, our method is fast, and easily
portable to other domains and languages.

1 Introduction

Biomedical experts (e.g., researchers, clinical doc-
tors) routinely need to search the biomedical lit-
erature to support research hypotheses, treat rare
syndromes, follow best practices etc. The most
widely used biomedical search engine is PUBMED,
with more than 24 million biomedical references
and abstracts, mostly of journal articles.1 To im-
prove their performance, biomedical search en-
gines often use large, manually curated ontolo-
gies, e.g., to identify biomedical terms and expand
queries with related terms.2 Biomedical experts,
however, report that search engines often miss rel-
evant documents and return many irrelevant ones.3

There is also growing interest for biomedical
question answering (QA) systems (Athenikos and
Han, 2010; Bauer and Berleant, 2012; Tsatsaro-
nis et al., 2015), which allow their users to specify
their information needs more precisely, as natural
language questions rather than Boolean queries,

1See http://www.ncbi.nlm.nih.gov/pubmed.
2PUBMED uses UMLS (http://www.nlm.nih.gov/

research/umls/). See also the GoPubMed search engine
(http://www.gopubmed.com/).

3Malakasiotis et al. (2014) summarize the findings of in-
terviews that investigated how biomedical experts search.

and aim to produce more concise answers. Docu-
ment retrieval is particularly important in biomed-
ical QA, since most of the information sought re-
sides in documents and is essential in later stages.

We propose a new document retrieval method.
Instead of representing documents and questions
as bags of words, we represent them as the cen-
troids of their word embeddings (Mikolov et al.,
2013; Pennington et al., 2014) and retrieve the
documents whose centroids are closer to the cen-
troid of the question. This allows retrieving rele-
vant documents that may have no common terms
with the question without query expansion. Using
biomedical questions from the BIOASQ competi-
tion (Tsatsaronis et al., 2015), we show that our
method combined with a relaxation of the recently
proposed Word Mover’s Distance (WMD) (Kusner
et al., 2015) is competitive with PUBMED. We also
show that with a top-k approximation, our method
is particularly fast, with no significant decrease
in effectiveness. Given that it does not require
ontologies, term extractors, or manually labeled
training data, our method could be easily ported
to other domains (e.g., legal texts) and languages.

2 The proposed method

The word embeddings and document centroids are
pre-computed. For each question, its centroid is
computed and the documents with the top-k near-
est (in terms of cosine similarity) centroids are re-
trieved (Fig. 1). The retrieved documents are then
optionally reranked using a relaxation of WMD.

2.1 Centroids of documents and questions

In the simplest case, the centroid ~t of a text t is
the sum of the embeddings of the tokens of t di-
vided by the number of tokens in t. Previous
work on hierarchical biomedical document clas-
sification (Kosmopoulos et al., 2016) reported im-
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Figure 1: Illustration of the proposed method.

proved performance when the IDF scores of the to-
kens are also taken into account as follows:

~t =

|V |∑
j=1

~wj · TF(wj , t) · IDF(wj)

|V |∑
j=1

TF(wj , t) · IDF(wj)

(1)

where |V | is the vocabulary size (approx. 1.7 mil-
lion words, ignoring stop words), wj is the j-th
vocabulary word, ~wj its embedding, TF(wj , t) the
term frequency of wj in t, and IDF(wj) the inverse
document frequency of wj (Manning et al., 2008).
We use the 200-dimensional word embeddings
of BIOASQ, obtained by applying WORD2VEC

(Mikolov et al., 2013) to approx. 11 million ab-
stracts from PubMed.4 The IDF scores are com-
puted on the 11 million abstracts.

2.2 Document retrieval and reranking
Given a question with centroid ~q, identifying the
documents with the k nearest centroids requires
computing the distance between ~q and each docu-
ment centroid, which is impractical for large doc-
ument collections. Efficient approximate top-k al-
gorithms, however, exist. They divide the vector
space into subspaces and use trees to index the in-
stances in each subspace (Arya et al., 1998; In-
dyk and Motwani, 1998; Andoni and Indyk, 2006;
Muja and Lowe, 2009). We show that with an
approximate top-k algorithm, document retrieval
is very fast, with no significant decrease in per-
formance. The top-k retrieved documents di are
ranked by decreasing (cosine) similarity of their
centroids to ~q. We call this method Cent when the

4The skipgram model of WORD2VEC was used, with hier-
archical softmax, 5-word windows, and default other param-
eters. See http://participants-area.bioasq.
org/info/BioASQword2vec/ for further details.

simple (no IDF) centroids are used, and CentIDF

when the IDF-weighted centroids (Eq. 1) are used.
The top-k documents are optionally reranked

with an approximation of the WMD distance. WMD

measures the total distance the word embeddings
of two texts (in our case, question and document)
have to travel to become identical. In its full form,
WMD allows each word embedding to be partially
aligned (travel) to multiple word embeddings of
the other text, which requires solving a linear pro-
gram and is too slow for our purposes. Kusner et
al. (2015) reported promising results in text classi-
fication using WMD as the distance of a k-NN clas-
sifier. They also introduced relaxed, much faster
WMD versions. In our case, the first relaxation
(RWMD-Q) sums the distances the word embed-
dings ~w of the question q have to travel to the clos-
est word embeddings ~w′ of the document d:

RWMD-Q(q, d) =
∑
w∈q

min
w′∈d

dist(~w, ~w′) (2)

Following Kusner et al., we use the Euclidean dis-
tance as dist(~w, ~w′). Similarly, the second relaxed
form (RWMD-D) sums the distances of the word
embeddings of d to the closest embeddings of q. If
we set dist(~w, ~w′) = 1 if w, w′ are identical and 0
otherwise, RWMD-Q counts how many words of q
are present in d, and RWMD-D counts the words of
d that are present in q. Kusner et al. found the max-
imum of RWMD-Q and RWMD-D (RWMD-MAX) to
be the best relaxation of WMD. In our case, where
q is much shorter than d, RWMD-Q works much
better, because d contains many irrelevant words
that have no close counter-parts in q, and their
long distances dominate in RWMD-D and RWMD-
MAX.5 We call CentIDF-RWMD-Q and CentIDF-
RWMD-D the CentIDF method with the additional
reranking by RWMD-Q or RWMD-D, respectively.

3 Experiments

3.1 Data
We used the 1,307 training questions and the gold
relevant PUBMED document ids of the fourth year
of BIOASQ (Task 4b).6 The questions were writ-
ten by biomedical experts, who also identified the

5We do not report results with RWMD-MAX reranking, be-
cause they are as bad as results with RWMD-D.

6The questions and gold document ids are available from
http://participants-area.bioasq.org/. The
1,307 questions are all the training and test questions of the
previous years of BIOASQ, which were available to the par-
ticipants of the fourth year. We use all the 1,307 questions for
testing, since our method is unsupervised.
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Figure 2: Mean Interpolated Precision at 11 recall
points, for k (documents to retrieve) set to 1,000.

gold relevant documents using PUBMED, and re-
flect real needs (Tsatsaronis et al., 2015). We pass
each question to our methods (after tokenization
and stop-word removal) or the PUBMED search
engine (hereafter PubMedSE), which performs its
own tokenization and query expansion.7

The document collection that we search con-
tains approx. 14 million article abstracts and titles
from the November 2015 PUBMED dump, which
was also used in the fourth year of BIOASQ.8 Our
methods view each document as a concatenation
of the title and abstract of an article.9 The titles
and abstracts have an average length of approx. 13
and 143 tokens, respectively. When comparing
against PubMedSE, we ignore documents returned
by PubMedSE that are not in the dump, but this is
very rare and does not affect the results.

3.2 Experimental results
Figures 2–4 show Mean Interpolated Precision
(MIP) at 11 recall levels, Mean Average Interpo-
lated Precision (MAIP), Mean Average Precision
(MAP), and Normalized Discounted Cumulative
Gain (nDCG).10 Roughly speaking, MAIP is the
area under the MIP curve, MAP is the same area
without interpolation, and nDCG is an alternative

7We use relevance ranking (not recency) in PubMedSE.
8The dump is available from https://www.nlm.

nih.gov/databases/license/license.html.
The 14 million articles do not include approx. 10 million
articles for which only titles are provided. There are hardly
any title-only gold relevant documents, and PubMedSE very
rarely returns title-only documents.

9It is unclear to us if PUBMED also searches the full texts
of the articles, which may put our methods at a disadvantage.

10All measures are widely used (Manning et al., 2008). We
use binary relevance in nDCG, as in the BIOASQ dataset.
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Figure 3: MAIP and MAP scores, for k (documents
to retrieve) set to 1,000.

to MAIP. Unless otherwise stated, the number of
retrieved documents is set to k = 1,000.

Figure 2 shows that Cent performs much worse
than CentIDF. At low recall, CentIDF is as good
as PubMedSE, but PubMedSE outperforms CentIDF

at high recall. Reranking the top-k documents
of CentIDF by RWMD-Q has a significant impact,
leading to a system (CentIDF-RWMD-Q) that per-
forms better or as good as PubMedSE up to 0.7 re-
call. Reranking the top-k documents of PubMedSE

by RWMD-Q (PubMedSE-RWMD-Q) also improves
the performance of PubMedSE. Reranking the
top-k documents of CentIDF by RWMD-D (or
RWMD-MAX, not shown) leads to much worse re-
sults (CentIDF-RWMD-D), for reasons already ex-
plained.11 Similar conclusions are reached by ex-
amining the MAIP, MAP, and nDCG scores.

Keyword-based information retrieval may miss
relevant documents that use different terms
than the question, even with query expan-
sion. PubMedSE retrieves no documents for
35% (460/1307) of our questions.12 Further ex-
periments (not reported), however, indicate that
PubMedSE has higher precision than CentIDF-
RWMD-Q, when PubMedSE returns documents, at
the expense of lower recall. Hence, there is scope
to combine PubMedSE with our methods. As a
first, crude step, we tested a method (Hybrid) that
returns the documents of CentIDF-RWMD-Q when
PubMedSE retrieves no documents, and those of

11The same holds when the top-k documents of PubMedSE
are reranked by RWMD-D or RWMD-MAX (not shown).

12The experts that identified the gold relevant documents
used simple keyword, Boolean, and advanced PubMedSE
queries, whereas we used the English questions as queries.
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Figure 4: nDCG@k, for k = 20 and k = 100.

System Search Reranking Total

CentIDF-RWMD-Q
47.41

(±1.22)
14.45

(±6.15) 61.86

ANN-CentIDF-RWMD-Q
0.36

(±0.04)
14.24

(±6.06) 14.60

Table 1: Average times (in seconds) over all the
questions of the dataset (k = 1000).

PubMedSE-RWMD-Q otherwise. Hybrid had the
best results in our experiments; the only excep-
tion was its nDCG@100 score, which was slightly
lower than the score of CentIDF-RWMD-Q.

Table 1 shows that an approximate top-k algo-
rithm (ANN) in CentIDF-RWMD-Q (ANN-CentIDF-
RWMD-Q) reduces dramatically the time to obtain
the top-k documents, with a very small decrease in
MAIP, MAP, and nDCG scores (Figures 3 and 4).13

We also compared against the other participants
of the second year of BIOASQ; the participant re-
sults of later years are not yet available.14 The
official BIOASQ score is MAP; MIP, MAIP, and
nDCG scores are not provided. Our best method
was again Hybrid (avg. MAP over the five batches
of the second year 16.18%). It performed over-
all better than the BIOASQ ‘baselines’ (best avg.
MAP 15.60%) and all eight participants, except for
the best one (avg. MAP 28.20%). The best sys-
tem (Choi and Choi, 2014) used dependency IR

models (Metzler and Croft, 2005), combined with
UMLS and query expansion heuristics (e.g., adding

13We use Annoy (https://github.com/spotify/
annoy), 100 trees, 1,000 neighbors, search-k = 10 · |trees| ·
|neighbors|. Times on a server with 4 Intel Xeon E5620 CPUs
(16 cores total), at 2.4 GHz, with 128 GB RAM.

14We used the evaluation platform of BIOASQ (http://
participants-area.bioasq.org/oracle).

the titles of the top-k initially retrieved documents
to the query). The ‘baselines’ are actually very
competitive; no system beat them in the first year,
and only one was better in the second year. They
are PubMedSE, but using BIOASQ-specific heuris-
tics (e.g., instructing PubMedSE to ignore types of
articles the experts did not consider). Our system
is simpler and does not use heuristics; hence, it can
be ported more easily to other domains.

4 Other related work

Kosmopoulos et al. (2016) reports that a k-NN

classifier that represents articles as IDF-weighted
centroids (Eq. 1) of 200-dimensional word embed-
dings (200 features) is as good at assigning seman-
tic labels (MeSH headings) to biomedical articles
as when using millions of bag-of-word features,
reducing significantly the training and classifica-
tion times. To our knowledge, our work is the first
attempt to use IDF-weighted centroids of word em-
beddings in information retrieval, and the first to
use WMD to rerank the retrieved documents. More
elaborate methods to encode texts as vectors have
been proposed (Le and Mikolov, 2014; Kiros et
al., 2015; Hill et al., 2016) and they could be used
as alternatives to centroids of word embeddings,
though the latter are simpler and faster to compute.

The OHSUMED dataset (Hersh et al., 1994) is
often used in biomedical information retrieval ex-
periments. It is much smaller (101 queries, ap-
prox. 350K documents) than the BIOASQ dataset
that we used, but we plan to experiment with
OHSUMED in future work for completeness.

5 Conclusions and future work

We proposed a new QA driven document retrieval
method that represents documents and questions
as IDF-weighted centroids of word embeddings.
Combined with a relaxation of the WMD distance,
our method is competitive with PUBMED, without
ontologies and query expansion. Combined with
PUBMED, it performs better than PUBMED on its
own. With a top-k approximation, it is fast, and
easily portable to other domains and languages.

We plan to consider alternative dense vector en-
codings of documents and queries, textual entail-
ment (Bowman et al., 2015; Rocktäschel et al.,
2016), and full-text documents, where it may be
necessary to extend RWMD-Q to take into account
the proximity (density) of the words of the (now
longer) document the query words are mapped to.
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Abstract

This paper evaluates the difference be-
tween human pathway curation and cur-
rent NLP systems. We propose graph anal-
ysis methods for quantifying the gap be-
tween human curated pathway maps and
the output of state-of-the-art automatic
NLP systems. Evaluation is performed on
the popular mTOR pathway. Based on
analyzing where current systems perform
well and where they fail, we identify pos-
sible avenues for progress.

1 Introduction

Biological pathways encode sequences of biologi-
cal reactions, such as phosphorylation, activations
etc, involving various biological species, such as
genes, proteins etc., in response to certain stim-
uli or spontaneous at times (Aldridge et al., 2006;
Kitano, 2002). Studying and analyzing pathways
is crucial to understanding biological systems and
for the development of effective disease treatments
and drugs (Creixell et al., 2015; Khatri et al.,
2012). There have been numerous efforts to re-
construct detailed process-based and disease level
pathway maps such as Parkinson disease map (Fu-
jita et al., 2014), Alzheimers disease Map (Mizuno
et al., 2012), mTOR pathway Map (Caron et al.,
2010), and the TLR pathway map (Oda and Ki-
tano, 2006)). Traditionally, these maps are con-
structed and curated by expert pathway curators
who manually read numerous biomedical docu-
ments, comprehend and assimilate the knowledge
in them and construct the pathway.

Manual curation of pathways is rather challeng-
ing given the ever increasing barrage of scientific
publications. It is basically common place in this
community that manual curation is not sufficient
(Baumgartner et al., 2007). Consequently, Auto-

TEES
ST2SBML
ANNOTAT

Biologist

mTOR
papers

NLP system

SBML model

SBML model

==?

Figure 1: Comparing human pathway curation to
NLP extraction.

mated Pathway Curation has been an active area
of research - particularly in the BioNLP commu-
nity (Miwa et al., 2012; Valenzuela-Escárcega et
al., 2015). It is also the goal of large scale research
efforts such as DARPA’s Big Mechanism Project
(Cohen, 2015).

NLP systems have shown to perform well in
BioNLP competitions (Nédellec et al., 2013; Ohta
et al., 2013; Ananiadou et al., 2010), but so far we
do not have systems that automatically assemble
and curate pathways of the scope and complexity
of, for example, the mTOR pathway. This paper
investigates why this is the case. We measure the
state of the art by closing the gap between NLP
representations and biological networks, then we
apply graph theory and in particular graph match-
ing to quantify how much overlap there is between
the NLP output and the information that humans
assemble (see also Figure 1). The evaluation is
performed on the popular mTOR pathway.

This paper starts by introducing our approach,
followed by a description of data sets and evalua-
tion results. We conclude by discussing where cur-
rent system seem to fail and how to make progress.
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Figure 2: Example sentence with NLP event rep-
resentations extracted.

Figure 3: Phosphorylation reaction.

2 Bridging the Gap

In this paper, we close the representational
gaps between current NLP systems and human-
generated pathways, measure the overlap and an-
alyze possible shortcomings of current systems.
Evaluation is performed on the popular, hand-
curated mTOR pathway map (Caron et al., 2010).
Experts have curated and assembled the informa-
tion from 522 papers into one large map using
CellDesigner (Funahashi et al., 2008) - a soft-
ware for modeling but also executing mechanistic
models of pathways. CellDesigner represents in-
formation using a heavily customized XML-based
SBML format (Hucka et al., 2003).

mTOR has been published along with a list of
the 522 papers used to build the map. This al-
lows us to treat the same papers with state-of-the-
art NLP extraction systems. Here we used one
of the most successful NLP systems around - the
TURKU event extractions system (Björne, 2014,
TEES). TEES has won 1st place in BioNLP 2009
ST, 2011 ST and DDI 2011 (Björne et al., 2012).
The system integrates various NLP techniques to
extract events from text. Processing roughly pro-
ceeds as follows 1) A number of external tools de-
tect protein names and parse the sentences. 2) The
event detector detects trigger words such as verbs,
which is followed by detection of interactions. 3)
Complex events are constructed. 4) The system
detects modifiers such as negation and specula-
tion.

NLP systems typically operate on something
called the standoff format. From a sentence such
as in Figure 2, standoff containing entities and
events will be extracted. These in principle cor-
respond to biological species and reactions. We
translate the NLP representation into SBML path-

ways and perform additional annotation (Spranger
et al., 2015) of species and reactions. For the sen-
tence in Figure 2, the extracted SBML is visual-
ized in Figure 2.

Datasets
We compared 3 different sets of data all related to
mTOR pathway.

MTOR-HMN is a mTOR pathway map manu-
ally constructed by human expert pathway cura-
tors. (Caron et al., 2010). The pathway is encoded
in a dialect of SBML used by CellDesigner (Fu-
nahashi et al., 2008). We convert the CellDesigner
format into pure SBML and annotate reactions and
species further by automatically assigning reaction
types and gene/protein identifers (see description
below).

MTOR-ANN consists of 57 abstracts of scien-
tific papers from Pubmed related to the mTOR-
pathway map. The data set was human-annotated
for NLP system training (Ohta et al., 2011, Cor-
pus annotations (c) GENIA Project1). This cor-
pus gives an idea of the potential performance of
a machine with human-level NLP extraction capa-
bilities. Annotated NLP entities and events were
used to create SBML representations and further
annotated using various tools (discussed below).

MTOR-NLP consists of 522 full text papers
mentioned in the mTOR pathway map. Paper
pdfs were downloaded automatically and trans-
lated into raw txt files using CERMINE (Tkaczyk
et al., 2015). We managed to extract text from 501
papers. The 501 papers were processed using the
Turku Event Extraction System mentioned earlier.
From the extracted NLP events we created SBML
representations of pathway maps for each text us-
ing (Spranger et al., 2015). The SBML was further
annotated using various tools (discussed below)
and, finally, loaded into a single pathway map.

Notice that MTOR-ANN and MTOR-NLP are
different in how they are constructed and conse-
quently what kind of conclusion we can draw from
them. MTOR-ANN is a human-annotated dataset
which contains much less data than MTOR-NLP.
However, because it is human-annotated it allows
us to evaluate a human-level performance extrac-
tion systems. So we cannot expect that MTOR-
ANN is able to reconstruct everything in MTOR-

1http://nactem.ac.uk/GENIA/current/Other-
corpora/mTOR-Pathway-Events/

120



HMN (recall). However, as we will argue in this
paper, we might expect that what is extracted in
MTOR-ANN does occur in MTOR-HMN (high
precision).

The following table shows number of species,
reactions and edges between them for the different
datasets.

Dataset # species # reactions # edges
MTOR-HMN 2242 777 2457
MTOR-ANN 2457 857 2343
MTOR-NLP 292049 100130 203042

Annotation
Annotation SBO Reactions in datasets MTOR-
HMN, MTOR-ANN and MTOR-NLP were auto-
matically annotated using Systems Biology On-
tology (SBO) (Le Novère, 2006) and Gene Ontol-
ogy (GO) terms. SBO provides a class hierarchy
of reactions. Reactions can be of a certain type.
For instance, NLP systems often identify regula-
tion events. Regulation reactions form a hierar-
chy. For instance, positive regulation is a subclass
of regulation reactions. Phosphorylation reactions
are a subclass of conversion reactions.

All reactions in MTOR-HMN, MTOR-ANN,
and MTOR-NLP are annotated using SBO/GO
(coverage 100%). SBO/GO annotations are com-
puted using different approaches. For MTOR-
ANN and MTOR-NLP we used an automated an-
notation system that is also used to convert NLP
event representations to SBML (Spranger et al.,
2015). For MTOR-HMN, we used annotations
provided by humans extended by automatic an-
notations. Automatic annotations were deduced
by examining the reactants and products of reac-
tions. For example, if a phosphoryl group is added
the reaction is annotated using the SBO term for
phosphorylation. Notice, in MTOR-HMN each
reaction can be annotated with multiple SBO/GO
terms. For instance, a single reaction can be an-
notated as phosphorylation and activation. This
is not the case for MTOR-ANN and MTOR-NLP
where each reaction corresponds to exactly one
SBO/GO term.

Annotation Entrez Gene Species in all three
datasets were annotated using the gene/protein
named entity recognition and normalization soft-
ware GNAT (Hakenberg et al., 2011) - a publicly
available gene/protein normalization tool. GNAT
returns a set of Entrez Gene identifiers (Maglott et
al., 2005) for each input string. Species were an-
notated using all returned Entrez Gene identifiers
for a particular species (organism human). We

MTOR-
HMN

MTOR-
ANN

MTOR-
NLP

activation 72 104 16485
association 210 204 21055
conversion 171 0 0
deacetylation 1 0 0
dephosphorylation 28 14 0
deubiquitination 13 0 0
dissociation 43 55 0
gene expression 4 40 18810
localization 0 16 474
negative regulation 33 99 10723
phosphorylation 85 241 25406
protein catabolism 24 18 1080
regulation 0 0 4832
transcription 78 8 1265
translation 23 1 0
transport 87 53 0
ubiquitination 13 4 0

Table 1: Reaction types extracted and annotated
for various data sets. All reactions are annotated
with their most specific type. Numbers are non-
cumulative. For instance, the 171 conversion op-
erations in MTOR-HMN are only annotated with
the general conversion (SBO:182) and not more
specific reaction types.

call the set of Entrez Gene identifiers returned by
GNAT for each species Entrez Gene signature.

# species coverage # Entrez ids
MTOR-HMN 2242 90% 538
MTOR-ANN 2457 87% 317
MTOR-NLP 292049 83% 4194

3 Species

Pathways contain many references to the same
protein or gene. We measured the number of
unique genes and proteins in each dataset using
various ways of identifying (normalizing) genes
and proteins in a particular dataset.

MTOR-
HMN

MTOR-
ANN

MTOR-
NLP

# species 2242 2457 291218
# names 582 359 27928
# appr names 568 316 4517
# Entrez signatures 443 201 6220

The first row repeats the number of species per
data set. The second row condenses the species
names by removing prefixes such as “phospho-
rylated” and other adjectives irrelevant for deter-
mining the actual biological entity. The third row
shows what happens when we reduce the names
further by using a Levenshtein-based string dis-
tance with a cutoff point of 90. The last row mea-
sures how many different unique Entrez Gene id
signatures there are. Each species is annotated
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with a set of Entrez Gene ids. The set of the En-
trez Gene identifiers for each species is taken as a
signature.

The numbers show the degree of redundancy or
reuse of species within each pathway. They also
suggest that there are far more species implicated
in MTOR-NLP than there are in MTOR-HMN. In
other words, human annotators of mTOR have se-
lected 568 species and not the 4517 found by the
NLP systems (approx names).

Unique Species Overlap To better understand
species identification we can measure the overlap
of MTOR-ANN and MTOR-NLP with MTOR-
HMN based on the unique species. Here we con-
sider names equal (nmeq), names approximately
equal (appeq), Entrez Gene id signature equal (en-
teq) and Entrez Gene id signature overlap (entov).
The focus is on unique items.

precision recall f-score
MTOR-HMN/MTOR-ANN
nmeq 20.89 12.89 15.94
appeq 27.30 15.64 19.88
enteq 45.27 20.54 28.26
entov 83.08 55.53 66.57
MTOR-HMN/MTOR-NLP
nmeq 0.96 45.88 1.87
appeq 1.59 51.20 3.08
enteq 4.60 64.56 8.58
entov 58.04 99.55 73.33

The rows nmeq show precision and recall for
unique species names in MTOR-NLP with respect
to MTOR-HMN. Precision is low - meaning that
only a small percentage of unique species names
in MTOR-NLP actually appear in MTOR-HMN.
On the other hand, recall is higher. This shows
that the few correctly identified species in MTOR-
NLP overlap with large parts of MTOR-HMN
species. Less than a percent of unique species
names in MTOR-NLP cover 46% of species in
MTOR-HMN. What is interesting is that MTOR-
ANN does not fair too great on precision either.
79% of the unique annotated names do not ap-
pear in MTOR-HMN. Especially the annotated
version dataset MTOR-ANN, lets us conclude that
many species mentioned in papers actually do
NOT make it into the pathway or at least not as
mentioned in the papers. These analyses point to
the fact that researchers building pathways select
species. In other words, pathway curation is not
just extraction, but active selection and, in fact,
identification of species with proteins and genes
known to the scientist.

Complex Species MTOR-HMN pathway con-
tains a lot of complex species - i.e. species that
contain other species. There are 351 complex
species with a total of 1192 total constituents. 16
complexes are part of other complexes. Together
this accounts for more than 70% of the species in
MTOR-HMN. In other words, this is important in-
formation. Both MTOR-NLP and MTOR-ANN
do not provide information about complexes ex-
plicitly. However, for this paper complexes are es-
sentially treated like any other species.

4 Reactions

We first measured how many unique reaction types
there are for each of the datasets.

# reactions # SBO/GO
terms

# SBO/GO
signatures

MTOR-HMN 777 15 29
MTOR-ANN 857 13 13
MTOR-NLP 100130 9 9

MTOR-HMN contains 777 reactions with 12
SBO/GO terms, i.e. reaction types. MTOR-ANN
contains 12 and MTOR-NLP slightly less. Each
reaction can have multiple SBO/GO terms associ-
ated with it. We call this the SBO/GO signature
of a reaction. For instance, a particular reaction
can be typed as phosphorylation and activation. Its
signature are then the SBO/GO terms for these 2
reactions. The table shows that this actually only
happens in MTOR-HMN. Human annotators are
free to combine various reactions into a single re-
action if they see fit. There is no replication of this
in the automated data.

Unique Reaction Signature Overlap We then
measured how much unique signatures overlap
across the different datasets. We checked three
different measures: 1) sboeq requires that both sig-
natures are the same, 2) sboov requires that the in-
tersection of the signatures overlaps - i.e. is not
empty - and 3) sboisa requires that there is at least
one SBO/GO term in each signature that relate in
a is a relationship in the SBO reaction type hierar-
chy. For instance, if there is a phosphorylation re-
action and a conversion reaction, then sboisa will
match because phosphorylation is a subclass of
conversion according to the SBO type hierarchy.
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precision recall f-score
MTOR-HMN/MTOR-ANN
sboeq 69.23 31.03 42.86
sboov 45.51 50.19 47.74
sboisa 92.31 93.10 92.70
MTOR-HMN/MTOR-NLP
sboeq 55.56 17.24 26.32
sboov 77.78 68.97 73.11
sboisa 88.89 79.31 83.83

MTOR-ANN catches 1/3 of the reaction
SBO/GO signatures directly and up to 93%
when we allow for overlap sbo is a relationship.
MTOR-NLP only directly includes 1 out of 5 re-
action signatures. However, the overlap is higher
when allowing for reaction SBO/GO signatures to
overlap and individual SBO terms to be in a is a
relationship.

These results also show that there are reactions
in MTOR-NLP and MTOR-ANN that are not part
of MTOR-HMN (see also Table 2)

From this preliminary data, we can immediately
identify an important difference between human
annotation and automated NLP event extraction.
Human annotators combine multiple reactions into
a single reaction representation to condense infor-
mation.

5 Networks - Connectedness

Ultimately we are interested in networks of reac-
tions and species. Studying the output of NLP sys-
tems it becomes immediately clear that the result
of these systems differs from hand-curated data in
an important aspect: connectedness. To show this
we measured isolation of species and networks
(reactions cannot be isolated for structural reasons
in SBML).

# isolated networks # isolated species
MTOR-HMN 4 6
MTOR-ANN 475 632
MTOR-NLP 83,093 110,490

In MTOR-HMN there are 4 separate subgraphs
(no connection between them). 3 of them are
modeling mistakes by human curators. Basically
MTOR-HMN is one connected network. On the
other hand, MTOR-ANN and MTOR-NLP consist
of numerous unconnected networks. Each of them
is quite small as the following data shows.

We measured min, max, mean and median num-
ber of species and reactions in each connected
component subgraph.

dataset min mean median max
MTOR-ANN 1 3.00 1.0 24
MTOR-NLP 1 2.02 1.0 215

Results show that subgraphs in MTOR-ANN
and MTOR-NLP on average contain between 2
and 3 species and reactions. So very often there
will be a single reaction in a subgraph plus some
reactant and maybe a product. On the other hand
MTOR-HMN consists of essentially one large
connected graph. So here is another fundamen-
tal difference: human modelers compose a single
large graph, as opposed to just extracting single
reactions.

6 Networks - Overlap

Arguably the most important question is how
much overlap there is between disconnected reac-
tions extracted by MTOR-ANN/MTOR-NLP with
MTOR-HMN. For this, we measure subgraph iso-
morphisms of MTOR-ANN and MTOR-NLP sub-
graphs with the MTOR-HMN graph. We mea-
sured max overlap and allow multiple hits for
each subgraph from MTOR-ANN and MTOR-
NLP with parts of MTOR-HMN. We compare dif-
ferent strategies for node (species and reactions)
and edge matching.

Species matching We investigated name
matches (nmeq), approximate name matches
(appeq), Entrez Gene signature equal (enteq)
and Entrez Gene signature overlaps (entov) and
combinations thereof. For example, appeq/enteq
matches two species if either their names match
approximately OR their Entrez Gene signatures
are equal. appeq/entov matches two species
if their names match approximately OR their
Entrez Gene signatures overlap. Since there
is no information on complexes in MTOR-
ANN/MTOR-NLP, we also allowed matches not
only on the complex itself but also on its con-
stituents (wc). So a link present in MTOR-NLP
between some protein and its phosphorylated ver-
sion, will match if a link is present in a complex
that contains that protein in MTOR-HMN.

Reaction matching Reaction matching relies on
SBO/GO signatures. We checked with signa-
tures equal (sboeq), signatures overlapping over-
lap (sboov) and signatures overlapping with indi-
vidual SBO terms in is a relationship (sboisa).

Edge matching We only allowed strict edge
matching. So if an edge marks a reactant, then it
has to be a reactant in MTOR-HMN. Same holds
for product and modifier.
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MTOR-HMN MTOR-NLP

mTORC2

mTOR
Rictor
Sin1.1
mLST8

activation

mTOR

mTORC2

activated mTOR
Rictor

mLST8
Sin1.1

positively regulated mTOR

activation

Insulin/IGF

Figure 4: Example of a successful match (nmeq,
sboeq). Black - matched nodes and edges, grey
not mached context. Insulin/IGF is a modifier of
this reaction. It is not captured by MTOR-NLP.
Modifiers are less frequently detected than reac-
tants and products.

MTOR-HMN MTOR-NLP

activation, phosphorylation

activated phosphorylated phosphorylated SGK1

phosphorylation

phosphorylated SGK1

phosphorylated SGK1 SGK1activated PDK1

Figure 5: Example of a successful match (appeq,
sbois) with a reaction that has multiple reaction
types.

MTOR-HMN MTOR-NLP

5'cap-eIF4F-eIF4B-eIF3-PABP

PABP
eIF3

m7GTP
mRNA
eIF4G

activated eIF4A
eIF4E
eIF4B

bound eIF4E

association

association

5'cap-eIF4F-eIF4B-eIF3

eIF3
m7GTP
mRNA
eIF4G

activated eIF4A
eIF4E
eIF4B

eIF4E

PABP

Figure 6: Example of a successful match
(appeq/wc, sboeq) but ultimately incorrect map-
ping. It is not eIF4E that gets bound but the whole
complex of 5’cap-eIF4F-eIF4B-eIF3 that includes
eIF4E.

The final point to note for the results of match-
ing is that we removed isolated nodes (which are
always species) from MTOR-ANN and MTOR-
NLP, because here we are really interested in
graph structure.

Network overlap results Table 2 shows preci-
sion and recall for max overlap of different match-
ing strategies (see also Figures 4 to 6). The ta-
ble shows results for MTOR-ANN and MTOR-
NLP successively. In general the first rows (nmeq,
sboeq) represent very strict matching strategies.
The last row (appeq/entov/wc, sbois) shows results
for the most “relaxed” strategy.

Let us first analyze the performance of MTOR-
NLP. The automated NLP system is able to re-
trieve roughly 9% of all edges given the strictest
matching strategy. This means that 1 in 10 edges
in the NLP extracted dataset actually appears as is
in the human curated data (MTOR-HMN). Also,
if we look at the most relaxed matching strategy
appeq/entov/wc, sbois, we find that roughly 2 of
3 edges and 3 of 4 nodes (species and reactions)
in the human curated MTOR have something to
do with the NLP extracted data. In particular,
the conversion and regulation reactions play a part
in the 20 percentage points jump from 45.59 to
65.04 for edges from appeq/entov/wc, sboov to
appeq/entov/wc, sboisa matching. Conversion and
regulation are super classes for a whole range of
reactions (conversion: phosphorylation etc; regu-
lation: activation, inactivation etc).

Matching strategies that allow for matching
complex constituents always have a higher re-
call and precision performance than their non
constituent matching counterparts. For instance,
nmeq, sboeq matches almost 20 percentage
points less edges than nmeq/wc, sboeq (MTOR-
HMN/MTOR-NLP). This increase in performance
of constituent matching points to the fact that
human modelers often attribute reactions to the
whole complex. For instance, a phosphorylation
may be acting on a constituent of a complex but
the human modeler chooses to connect the reac-
tion with the whole complex. These matching
strategies do account for that and therefore are able
to improve the numbers (in some cases) consider-
ably.

Reactions in MTOR-HMN are sometimes in-
corporating various reaction types. In MTOR-
ANN and MTOR-NLP, on the other hand, each
reaction only has a single type. Reaction match-

124



ing strategies sboov and sboisa account for that
by looking at overlaps. This means that reac-
tions in MTOR-ANN and MTOR-NLP will match
with a reaction MTOR-HMN if the reaction type
signatures intersection is not empty. In reality
this means that the reaction in MTOR-ANN or
MTOR-NLP has to be an element of the reaction
in MTOR-HMN.

Lastly, let us take a look at MTOR-
HMN/MTOR-ANN. MTOR-ANN contains
much less data than MTOR-NLP but the reason
we include it here is because MTOR-ANN
consists of human annotated data. It therefore
gives an idea about the limits of the annotation
data and the limits of human annotation. If all
of the problems discussed so far are purely a
problem of the NLP system, then MTOR-ANN
should do better than MTOR-NLP in terms of
precision but not in terms of recall. Recall will
be low because the MTOR-ANN consists of less
data. However, we would expect high precision
numbers. Interestingly, data shows that even
for NLP-ANN precision is low. With relaxed
matching strategies appeq/enteq/wc, sboisa and
appeq/entov/wc, sboisa, we see some substantial
recall 20% (remember NLP-ANN is only ab-
stracts). Nevertheless precision for edges is only
1 in 10 and for nodes about the same.

Caveats There are number of issues that need
to be taken into account when analyzing these
results. For instance, SBO/GO term annotation
for MTOR-HMN is not perfect, as can be seen
from the large number of conversion operations.
Similarly, Entrez Gene id normalization has its
problems, especially when dealing with complex
species. Lastly, reaction signature overlap does
not count reactions with multiple reaction types
as separate. We are currently working on dealing
with each of these issues. Some will arguably im-
prove performance, others decrease precision and
recall numbers. We are confident though that the
general trends in the results will uphold.

7 Discussion

The last section quantitatively demonstrated dif-
ferences between extraction and curation. Cura-
tion involves processes such as annotation, selec-
tion and, in particular, composition (of subgraphs
into a large graph). The next paragraphs summa-
rize the most important problems.

MTOR-HMN/MTOR-ANN
nodes edges

prec rec prec rec
nmeq, sboeq 1.22 1.93 0.94 1.30
nmeq, sboov 1.52 2.72 1.15 1.91
nmeq, sboisa 3.15 4.00 2.43 2.65
nmeq/wc, sboeq 3.48 8.60 2.77 6.76
nmeq/wc, sboov 3.78 9.34 2.99 7.45
nmeq/wc, sboisa 5.59 12.21 4.44 9.73
appeq, sboeq 1.44 2.22 1.11 1.47
appeq, sboov 1.81 3.11 1.37 2.12
appeq, sboisa 3.93 4.50 2.99 2.89
appeq/wc, sboeq 3.85 8.90 3.07 7.04
appeq/wc, sboov 4.22 9.74 3.33 7.77
appeq/wc, sboisa 6.67 12.85 5.25 10.22
appeq/enteq, sboeq 2.74 3.02 2.13 1.95
appeq/enteq, sboov 3.19 3.86 2.43 2.65
appeq/enteq, sboisa 5.81 5.78 4.48 3.74
appeq/enteq/wc, sboeq 9.78 13.69 8.15 10.99
appeq/enteq/wc, sboov 10.48 15.37 8.66 12.54
appeq/enteq/wc, sboisa 14.67 23.88 11.95 19.90
appeq/entov, sboeq 8.85 10.33 7.34 7.41
appeq/entov, sboov 9.41 12.01 7.73 8.79
appeq/entov, sboisa 13.59 19.53 11.01 14.73
appeq/entov/wc, sboeq 9.78 13.69 8.15 10.99
appeq/entov/wc, sboov 10.48 15.37 8.66 12.54
appeq/entov/wc, sboisa 14.67 23.88 11.95 19.90

MTOR-HMN/MTOR-NLP
nodes edges

prec rec prec rec
nmeq, sboeq 6.31 13.25 5.84 8.67
nmeq, sboov 7.26 17.40 6.67 11.48
nmeq, sboisa 9.85 27.73 8.88 17.50
nmeq/wc, sboeq 9.83 40.19 9.21 31.14
nmeq/wc, sboov 10.82 44.34 10.08 34.43
nmeq/wc, sboisa 14.48 58.58 13.30 46.68
appeq, sboeq 6.56 14.04 6.07 9.24
appeq, sboov 7.53 18.69 6.92 12.37
appeq, sboisa 10.39 30.35 9.35 19.41
appeq/wc, sboeq 10.27 40.83 9.63 31.62
appeq/wc, sboov 11.28 45.53 10.52 35.33
appeq/wc, sboisa 15.24 60.85 13.98 48.43
appeq/enteq, sboeq 9.33 18.44 8.64 12.21
appeq/enteq, sboov 11.06 23.63 10.16 15.71
appeq/enteq, sboisa 15.94 37.22 14.28 24.50
appeq/enteq/wc, sboeq 21.40 49.73 20.11 40.58
appeq/enteq/wc, sboov 23.59 55.66 22.06 45.95
appeq/enteq/wc, sboisa 32.88 75.33 30.18 65.04
appeq/entov, sboeq 20.18 44.44 18.90 34.88
appeq/entov, sboov 22.35 50.32 20.83 39.97
appeq/entov, sboisa 31.34 69.85 28.65 57.51
appeq/entov/wc, sboeq 21.40 49.73 20.11 40.58
appeq/entov/wc, sboov 23.59 55.66 22.06 45.95
appeq/entov/wc, sboisa 32.88 75.33 30.18 65.04

Table 2: Results of matching MTOR-ANN and
MTOR-NLP with MTOR-HMN. Results are al-
ways precision/recall.
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Species Normalization There has been a lot of
work on this topic (Van Landeghem et al., 2013;
Wei et al., 2015b; Sohn et al., 2008; Doğan et
al., 2014; Hakenberg et al., 2011) provide impres-
sive performance. But there is the problem of how
to use the information provided by tools such as
GNAT. GNAT, for instance, returns hypotheses of
possible identifiers. It is then up to subsequent sys-
tems to use this information and reject certain hy-
potheses based on other information in the text.

Complex formation Identification of com-
plexes is missing from NLP extraction systems.
To the best of our knowledge, there is very little
work on extraction of complexes and their par-
ticipants from text (except generally in terms of
Named Entity Recognition). However, complexes
are extremely important for the mTOR pathway.
For a large part the pathway consists of complexes
that form and subsequently modify other reac-
tions. Not being able to extract such information is
a significant disadvantage for automated systems.

Composition of pathways The NLP system
produces pathway maps that consist of scattered
reactions without integrating them into one. The
human map on the other hand is all about a single
network of reactions. Composition is a combina-
torial problem constrained by cues in the Natural
Language as well as biology. This paper proposed
a number of matching strategies. These strategies
are not only useful for measuring the state-of-the-
art. For instance, matching of species based on En-
trez Gene normalization could be useful in path-
way composition.

Understanding levels of detail of representation
A fundamental problem in pathway curation is that
information can be represented on different levels
of specificity. For instance, it might be sufficient to
capture phosphorylation instead of capturing the
exact sites or the number of phosphoryl groups
added. Often human modelers make various ab-
stractions and conceptualizations of the same un-
derlying biological process. Final pathway maps
are affected by prior knowledge of the curator and
this shapes the pathway that a human produces.
The problem then becomes how to build machines
that can extract knowledge on various levels of ab-
straction.

It is important to realize that these issues are not
just a problem of more data or more precise an-
notation. Current NLP systems are good at clas-

sifying strings and their relations but they have no
notion of the underlying processes (in this case the
biological processes involved). The learning sig-
nal of NLP systems is annotated text and it is not
the human-curated biological model. The human
as an expert in Systems Biology reading the text
will pick out relevant detail and try to build a con-
sistent overall model based on the information in
the various texts. The NLP system relies on in-
formation detected in the text without any actual
notion of what the text actually means, i.e. with-
out building an internal model and integrating it
with prior information.

8 Conclusion

To the best of our knowledge, this paper is the first
to evaluate automated pathway extraction systems
by measuring the difference between automated
systems and human curation. We believe this kind
of analysis is crucial to make progress towards the
ultimate goal of complete automation of pathway
curation. The contribution of this paper is twofold:
1) we propose a number of measures that can be
used to quantify the state-of-the-art; 2) we identify
a number of areas where progress can improve the
state-of-the-art measurably.

This paper is part of a larger trend in NLP to
move from event extraction to knowledge base
creation (Kim et al., 2015) and construction of bi-
ologically relevant networks (Rinaldi et al., 2016).
It is therefore perfectly aligned with people trying
to automatically build mechanistic dynamic path-
way models (Cohen, 2015) that could ultimately
have a big scientific impact (Kitano, 2016).
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Abstract

Studies have shown that Twitter can be
used for health surveillance, and personal
experience tweets (PETs) are an important
source of information for health surveil-
lance. To mine Twitter data requires a
relatively balanced corpus and it is chal-
lenging to construct such a corpus due
to the labor-intensive annotation tasks of
large data sets. We developed a bootstrap
method of finding PETs with the use of
the machine learning-based filter. Through
a few iterations, our approach can effi-
ciently improve the balance of two class
dataset with a reduced amount of anno-
tation work. To demonstrate the useful-
ness of our method, a PET corpus related
to effects caused by 4 dietary supplements
was constructed. In 3 iterations, a cor-
pus of 8,770 tweets was obtained from
108,528 tweets collected, and the imbal-
ance of two classes was significantly re-
duced from 1:31 to 1:3. In addition, two
out of three classifiers used showed im-
proved performance over iterations. It is
conceivable that our approach can be ap-
plied to various other health surveillance
studies that use machine learning-based
classifications of imbalanced Twitter data.

1 Introduction

As defined by the Merriam-Webster Dictionary,
surveillance is the act of carefully watching some-
one or something. In the health field, the WHO de-
fines that public health surveillance is the continu-
ous, systematic collection, analysis and interpreta-
tion of health-related data needed for the planning,
implementation, and evaluation of public health
practice. Information directly reported by patients

is of significant importance, and having an effi-
cient way of obtaining and analyzing this data is
very important. Because of mobile phones and
other technologies, patients are inclined to post in-
formation on the web. This represents a great op-
portunity for those concerned with health surveil-
lance if they can only mine the data. As such, the
critical issue is where and how to obtain and ana-
lyze this health surveillance data.

Nowadays, social media has become a nat-
ural platform through which people communi-
cate and share their thoughts, opinions, and ex-
periences. Topics of communication span to a
broad range from politics to entertainment to hob-
bies. Many people are also willing to discuss
their personal experiences related to their health
problems and treatments on social media. Stud-
ies have shown that general purpose social me-
dia such as Twitter can be used for surveillance
of health-related issues (Dredze, 2012). Examples
include: affluenza pandemics (Chew and Eysen-
bach, 2010; Signorini et al., 2011; Collier et al.,
2011; Bilge et al., 2012; Nagel et al., 2013; Gesu-
aldo et al., 2013; Broniatowski et al., 2013; Fung
et al., 2013; Nagar et al., 2014), Haitian cholera
outbreak (Chunara et al., 2012), Ebola outbreak
(Odlum and Yoon, 2015), nonmedical use of a
psychostimulant drug (Adderall) (Hanson et al.,
2013), drug abuse (Chary et al., 2013), smoking
(Sofean and Smith, 2012), suicide risks (Jashinsky
et al., 2014), migraine headaches (Nascimento et
al., 2014), pharmaceutical product safety (Freifeld
et al., 2014; Coloma et al., 2015; Jiang and Zheng,
2013; Sarker et al., 2015), disease outbreaks dur-
ing festivals (Yom-Tov et al., 2014), detection of
Schizophrenia (McManus et al., 2015), foodborne
illness (Harris et al., 2014), and even dental pains
(Heaivilin et al., 2011).

A common challenge identified in these types
of studies is the difficulty in separating the useful
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or ''on-topic'' tweets from the majority of the ir-
relevant tweets. This poses the challenge of find-
ing the tweets that can help to perform the heath
surveillance tasks while ignoring the rest.

Twitter is a micro blogging platform on
which messages of up to 140 characters can be
posted. Despite the shortness of the messages,
the size of Twitter user pool may still mean that
a lot of information can be posted. As such, for
any given topic, there may be a good number of
on-topic tweets and a much larger set of off-topic
tweets. As a result, one of the key questions to
address is how to obtain the relevant data.

In this study, the term personal experience
tweet (PET) is used to describe the tweets that
are relevant to the analysis. PETs, therefore, are
tweets that describe a person’s encounters, obser-
vations, and important events related to his or her
life. In the case of health surveillance, such ex-
perience can be related to changes of a person’s
health, an illness, a disease, or a treatment. In
other words, if any of the above affects an individ-
ual it signifies a personal experience. For example,
if a medicine causes a person to vomit or improves
the person’s sleeping behavior, then the person is
said to have some experience with the medicine.
Personal experience tweets (PETs) are an impor-
tant source of information for health surveillance
using Twitter data.

Given the sheer volume of daily posts, Twit-
ter data are known to contain a significant amount
of irrelevant off-topic posts (e.g. news, sales pro-
motions, spam, etc.). This can easily result in col-
lections of Twitter data with a significant bias to-
ward the irrelevant posts. For example, in a study
of 2 billion tweets collected from May 2009 to Oc-
tober 2010, Bian and colleagues (Bian et al., 2012)
found only 489 on-topic tweets for the 5 medicines
being studied in clinical trials. As can be seen,
from this study discovering on-topic tweets can be
a challenge in research problem. Given all the pre-
viously stated issues, obtaining relevant data and
constructing a relatively balanced corpus can be
challenging and a good collection process must be
implemented. This paper will discuss the data col-
lection process, the automatic filtering approach,
the annotation, and results of the analysis of the
corpus. Issues related to class imbalance are also
discussed.

Specifically, this study addresses the follow-
ing research questions: (1) can an automated filter-

ing algorithm help to speed up manual annotation
of a PET corpus and (2) can the automated filter-
ing approach help to address the class imbalance
issues inherent in Twitter data?

2 Related Work

There have been many studies that validate the use
of general purpose social media such as Twitter
for surveillance of health related issues. Many of
these surveillance activities involve using the in-
formation reported by the patients who share their
personal health experience on social media. Ef-
forts have been made to construct health-related
Twitter corpora (Paul and Dredze, 2012; Collier et
al., 2011; Ginn et al., 2014).

Using Mechanical Turk, Dredze’s group
(Paul and Dredze, 2012) created a corpus of 5,128
tweets classified as related to health or unrelated to
health. The results showed only 36.1% of the la-
beled tweets were health related. It is unclear how
the tweets were selected into the corpus.

Collier and colleagues (Collier et al., 2011)
created a 5,283 tweets corpus related to influenza
from 225,000 tweets collected from March 2010
to April 30th, 2010. These tweets in 5 classes were
selected using hand built patterns which were un-
explained by the authors, and annotated by a sin-
gle annotator. For each of the 5 classes, the ra-
tio of negative tweets to positive tweets was 2.52,
1.16, 1.95, 7.19 and 2.53 respectively, indicating
that there were more negative tweets than positive
ones in each class.

In studying adverse drug reactions from Twit-
ter data, Ginn et al. (Ginn et al., 2014) col-
lected 187,450 tweets over 6 months with 74 care-
fully selected drug names. 71,571 tweets were
retained after removing those containing URLs,
which were considered as advertisements. Out of
71,571 tweets, 10,822 were randomly chosen with
a cap of 300-500 per drug. The 10,822 tweets were
manually annotated by three annotators. Among
10,822 tweets, only 1,200 (11%) tweets contain
adverse drug reactions (ADRs), showing the im-
balance ratio of 1:8. The authors also reported
a Kappa inter-annotator agreement metric with a
value of 0.69.

3 Methodology

The purpose of health surveillance is to monitor
the status of health conditions. To track health in-
formation using Twitter data, a data set of Twit-

129



ter texts is needed. With this dataset, a methodol-
ogy can be devised to identify the effects in the
text. The challenge is in discovering the rele-
vant tweets. Our initial inspection of tweets col-
lected using 4 dietary supplement names showed
that many of the tweets were not personal expe-
rience tweets relevant to the work. Manual an-
notation is an expensive process, especially when
using large datasets which contain very few on-
topic samples. Therefore, an automated filtering
tool was needed to address these issues. One of
the purposes of this study is to speed up the pro-
cess of annotation. Many studies have used man-
ual or rule-based approaches for annotation. How-
ever, these approaches are time consuming. In this
paper, a machine learning-based approach is pro-
posed to try to filter out off-topic tweets.

Inspired by the bootstrap method, we devel-
oped an iterative approach of creating Twitter cor-
pus. It starts with a small set of annotated tweets
(seed). In each iteration, the annotated tweets (in
the training set which is the corpus) are used to re-
train classifiers, and the predicted tweets of PET
class from the trained classifiers are annotated and
added to the training set, in an attempt to obtain a
less imbalanced corpus.

In this section, we present our method of find-
ing personal experience tweets and its application
in constructing a PET corpus related to the effects
caused by 4 dietary supplements. An automated
filter was used to try to remove irrelevant samples
before the data set was given to annotators. A de-
scription of the creation of the PET corpus using
this filter is also presented and discussed. The next
few sections of the paper describe in more detail
the various considerations and methodology used
to create the corpus.

3.1 Corpus Construction Procedure

This study was done with the help of two annota-
tors, who were graduate students majoring in biol-
ogy and computer information technology. They
independently labeled the same tweets with per-
sonal experience tags if they contained the name of
any supplements and stated the experiencing of us-
ing the supplements. Below are examples of PET
tweets.
Example 1:
1. melatonin gives me some messed up dreams..
or i just have awful dreams and melatonin makes
me remember them. either way i dont like it.

Example 2:
2. look into St. John’s Wort. Actually helps calm
me down at night to sleep. always had the same
issues.

First, a small number of tweets were ran-
domly selected as a training set and were anno-
tated manually by annotators. This was a single
non-repetitive step to create a seed set. Next, three
classifiers were trained using this training set and
then used to classify a test set with more tweets,
yielding a PET set and a non-PET set. The PET
set was then labeled by annotators, and annotated
tweets were added to the training set (corpus).
Classifiers were retrained with the updated corpus
and then used on a new batch of test data. These
steps repeated until a relatively balanced corpus
was achieved.

Although investigating and annotating only
the predicted PET class significantly reduce the
effort needed for annotation, it could potentially
introduce bias undermining the representation of
non-PET (majority) tweets. To compensate this
potential bias, we intentionally added a small
number of non-PET tweets to the training set in
each iteration (Step 06 below).
The above steps are summarized in the following
algorithm.

Algorithm ConstructTweetCorpus()
Input: A set of tweets T, balance ratio β,

accuracy δ
Output: A tweet corpus T
01: Randomly choose a small collection of n

tweets from T as a training set denoted by T
02: Annotate T
03: Train classifiers with T
04: Do while balance ratio of T < β and/or

accuracy of classifiers < δ
05: Select a collection of l new tweets

from T as test set denoted by Tl

06: Classify Tl using trained
classifiers, yielding a predicted PET
set Ty and non-PET set Tn.

07: Annotate Ty, yielding T ′
y

08: Select m tweets randomly from predicted
non-PET set Tn and annotate them,
yielding T ′

n

09: Add T ′
y and T ′

n to the training set T,
yielding a new training set:
T ← T + T ′

y + T ′
n

10: Train classifier(s) with T
11: Loop
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12: Return T

where l is greater than m. β is the balance ratio,
the ratio between the number of PET and non-PET
tweets, δ is the expected accuracy. The value of m
is only a fraction of the number of tweets in the
newly predicted PET class (Step 06). Both l and
m can be constants. The accuracy of a classifier is
measured by the ROC Area and /or F-measure.

3.2 Dataset

Using the above algorithm, we constructed a PET
corpus related to 4 dietary supplements: Echi-
nacea, Melatonin, St. John’s Wort, and Valerian.
A total of 108,528 tweets were collected from May
30, 2014 to December 8, 2014, through the use of
Twitter REST API. The supplement names were
used as keywords to perform Twitter searches.
The breakdowns of the collected Twitter data are:
9,210 tweets for Echinacea, 81,915 for Melatonin,
3,176 for St. John’s Wort, and 14,227 for Vale-
rian. The collected Twitter data were preprocessed
to remove retweets and non-English tweets.

3.3 Features

Two types of features were used by the machine
learning-based filter: metadata and textual. Meta-
data features are features about the tweet itself but
not the text. They include user id and Twitter
client application. Textual features are the ones
extracted directly from the 140 character Twitter
text. Most of the tweets collected were unrelated
to personal experience. They were usually mar-
keting or promotion tweets or just facts of what
a supplement does. According to a study of 106
million tweets with 4262 trending topics, Kwak et
al. (2010) found that the majority of the messages
were news specific. In another study, Krieck and
colleagues found that news information normally
repeats official information and has no contribu-
tion to the early detection of disease outbreaks
(Krieck et al., 2011).

It has been observed that personal pronouns
appear frequently in social media posts related
to personal experiences (Elgersma and de Rijke,
2008; Jiang and Zheng, 2013). Personal pronouns
were considered as a feature to classify personal
and impersonal sentences (Li et al., 2010).

Our observation revealed that words or
phrases commonly used in one class but not in the
opposite class may contribute to the accurate pre-
diction of PET and non-PET tweets. These words

or phrases were found in both tweet texts and Twit-
ter user names - unlike the Twitter screen name, a
Twitter user name can be a phrase. For example,
online stores may use in their names terms such as
shop, store, and market. Presence of any of such
words can provide classifiers a hint to identify pro-
motional tweets.

A client application is the software applica-
tion a Twitter author uses to post Twitter messages.
Westman and colleagues observed that personal
tweets were more often posted from the Twitter
website (Westman and Freund, 2010).
The followings are the features used in this study.
1. Occurrences of automatically categorized

frequent terms in username in PET class.
2. Occurrences of automatically categorized

frequent username in non-PET class
3. Count of URLs in a tweet
4. Count of emotion words in a tweet
5. Count of unique words in a tweet
6. Total word count of a tweet
7. Occurrences of frequent words in PET class
8. Occurrences of frequent words in non-PET

class
9. Count of pronouns in a tweet
10. Count of personal pronouns in a tweet
11. Count of first person pronouns in a tweet
12. Count of second person pronouns in a tweet
13. Count of third person pronouns in a tweet
14. Count of singular proper nouns in a tweet
15. Count of automatically categorized frequent

terms in PET class
16. Count of automatically categorized frequent

terms in non-PET class
17. Occurrences of frequent terms in Twitter user

name
18. Client application used to post the tweet
19. Twitter user id

3.4 Classifiers

For filtering the off-topic tweets, three classifiers
were used: decision tree (J48), KNN (IB1) and,
neural network (Multilayer Perceptron, MLP).
Neural networks are known for deriving mean-
ing from complex and imprecise data. Decision
trees are simple to understand, interpret and, eas-
ily handle feature interaction. KNN is simple and
robust for noisy data. For evaluation purposes,
both ROC metrics and F-measure were used for
the reason that F-measure is not an appropriate
measure of performance when the data are imbal-
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anced (Chawla, 2009). Weka (Hall et al., 2009)
which contains the implementation of all three al-
gorithms was used in our study. It is well under-
stood that not all classifiers perform the same way.
The majority rule was used to determine the out-
come of classification. That is, if outputs of two
or more classifiers were PET, then the tweet was
considered a PET tweet.

4 Results

Using a seed of 3,176 tweets (Run 0), our algo-
rithm had gone three iterations with the test sets
shown below. In each iteration (Run 1 through
Run 3), the size of training set (corpus) increased
as more annotated tweets were added.

Iteration Training
Set

Test
Set

# Predicted
PET

Tweets

# Non-PET
Tweets
Added

Run 1 3,176 9,210 94 31
Run 2 3,301 14,277 386 128
Run 3 3,815 81,915 3,721 1,235

Table 1: Dataset size over iterations. It shows the
number of tweets in the training set, test set, pre-
dicted PET set, and added non-PET set in each it-
eration.

The final annotated data set consisted of
8,770 number of tweets which are available
at https://github.com/medeffects/
supplement-corpus/ . Of these, 2,067 were
PET tweets and 6,703 non-PET tweets.

4.1 Inter-Annotator Agreement

Inter-annotator agreement metrics are helpful to
establish the subjectivity of an annotation scheme.
The annotation task was performed by 2 annota-
tors. Two labels were used for the annotation:
PET and non-PET. As shown in the table below,
the average agreement was 85.4 %. Correcting for
expected chance agreement, kappa and the other
metrics still provide a reasonable score to assess
the annotation consistency. The result indicates
that the task of finding personal experience tweets
does have a level of subjectivity. These values can
later be useful to define an expected upper bound-
ary on the PET classification task.

4.2 Corpus Class Balance

As stated earlier, the corpus was built in iterations
(or runs). Each iteration used a larger training set
that consisted of more examples of PET tweets.

kappa 0.624
alpha 0.624
Average Agreement 0.854
π 0.624
S 0.806

Table 2: Inter-annotator agreement for metrics

As such, it can be noticed that with each itera-
tion more PET tweets were added to the corpus as
shown in Table 3, leading to a more balanced dis-
tribution of PET and non-PET tweets. This result
is beneficial for this study since the goal of it is
to find as many personal experience tweets which
can later be used to associate effects with dietary
supplements for health surveillance.

Iteration PET Non-PET Ratio
Run 0 98 3,078 1:31
Run 1 145 3,156 1:22
Run 2 256 3,559 1:14
Run 3 2,067 6,703 1:3

Table 3: Corpus class balance over iterations

4.3 Classifier Performance

In addition to studying the overall performance of
classifiers collectively, we also collected perfor-
mance data of each individual classifier on predict-
ing PET tweets, and they are shown in the figure
below.

Figure 1: ROC area over iterations

4.4 Feature Ranking

One important aspect in this study is to deter-
mine what features helped to automatically detect
personal experience tweets. As indicated previ-
ously, most of these 19 features by classifiers were
extracted from the tweet text using natural lan-
guage processing techniques. To perform the fea-
ture analysis, the Chi-Square ranking method was
used. The top ranked features are occurrences of
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Figure 2: F-Measure over iterations

automatically categorized frequent terms in user-
name in PET class, occurrences of automatically
categorized frequent username in non-PET class,
occurrences of frequent words in PET class, occur-
rences of frequent words in non-PET class, pro-
noun count, personal pronoun count, first person
pronoun count, URL count, Twitter client and user
id.

4.5 Prediction Precision

The overall performance of the PET classifiers was
measured with the training sets. The PET classi-
fiers are the filter used to identify relevant tweets
for human annotation. The actual performance of
the filter should be measured against the predic-
tion using the test data. Given that only predicted
PET tweets were annotated –that is, only true pos-
itive and false positive figures were available, pre-
diction precision was measured. Precision is a ra-
tio between actual PET tweets and predicted PET
tweets in the same predicted PET set, a perfor-
mance measurement of classifiers when perform-
ing predictions.

Table 4 shows that the precision falls within
the range of 0.28 - 0.49. This indicates that for
every 100 predicted samples (tweets), between 28
and 49 may be actual PETs.

# PET Tweets
Iteration Predicted Actual Precision

Run 1 94 46 0.49
Run 2 386 107 0.28
Run 3 3,721 1,597 0.43

Table 4: Prediction precision over iterations

5 Discussions

The amount of work on annotation can be signif-
icant when constructing a corpus that requires ex-
amination of large sets of data. In this study, if

we were to annotate 108,528 tweets, it would take
annotators a significant amount of their time to do
so. However, using our proposed method, two an-
notators only needed to annotate 8,770 tweets (=
initial seed tweets plus predicted PET tweets and
added non-PET tweets in each iteration. Refer to
Table 1). If it takes an average of one minute to
annotate a single tweet and each annotator spends
8 hours a day on annotation, it will take an anno-
tator 226 days to complete annotation of 108,528
tweets, but 18 days for 8,770 tweets. This repre-
sents a significant reduction of annotation time.

By some estimates, the obtained kappa score
shown in Table 2 may be considered low which
implies that the text is highly subjective and dif-
ficult to annotate. This suggests that finding per-
sonal experience tweets is highly subjective. Per-
sonal experience, in the context of this paper, is
text expressed by a person and that is of a very per-
sonal nature. The difficulty may lie in the fact that
there is not set lexicon to define personal experi-
ence. In contrast, emotion text detection, which is
also considered subjective, does have its own lex-
icon (i.e happy words vs. sad words).

As can be seen in Table 3, our approach is
also efficient in improving the class balance of the
corpus. With only 3 iterations, the ratio of the
number of PET tweets to that of non-PET tweets
had come down from 1:31 to 1:3, a 10-fold im-
provement.

The performance of individual classifiers on
predicting PET tweets with the training data either
remained the same level or improved over itera-
tions. For ROC Area (Figure 1), both IB1 and J48
improved, and MLP remained the same. For F-
Measure (Figure 2) which is not an appropriate in-
dicator of performance when data are imbalanced,
all three classifiers had improved. In addition, it is
noted that the multilayer perceptron (MLP) classi-
fier has the best accuracy in predicting PETs.

Although values of ROC Area and F-
Measure are quite promising, when it came to pre-
dict the unlabeled data (test set), 3 classifiers could
only predict PET tweets with 28% to 49% pre-
cision. This implies that if the classifiers are to
be used to predict PETs on new sets of unlabeled
tweets, only 28% to 49% of tweets in the predicted
PET set may be actual PET tweets.

Our result of feature ranking suggests that be-
tween metadata and textual features, textual fea-
tures contribute the most to overall classification
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accuracy. And the best performing features are
the ones related to the frequency of terms used
in either tweet text or the user name - that is, the
most frequent terms in a class that are infrequent
in the opposite class. This approach is sometimes
commonly referred to as the Gramulator type ap-
proach.

6 Conclusion

We proposed a bootstrap method to construct
tweet corpus from noisy Twitter data. Through
a few iterations, our approach can help con-
struct quickly a tweet corpus with closely balanced
classes, without a significant amount effort on an-
notation. It is conceivable that our approach can
be applied to other health surveillance studies that
use machine learning-based classifications of im-
balanced social media data.
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Abstract

Word embeddings have been successfully
exploited in systems for NLP tasks, such
as parsing and text classification. It is intu-
itive that word embeddings created from a
larger corpus would provide a better cover-
age of vocabulary. Meanwhile, word em-
beddings trained on a corpus related to the
given task or target domain would more ef-
fectively represent the semantics of terms.
However, in some emerging domains (e.g.
bio-surveillance using social media data),
it may be difficult to find a domain corpus
that is large enough for creating effective
word embeddings. To deal with this prob-
lem, we propose novel approaches that
use both word embeddings created from
generic and target domain corpora. Our
experimental results on sentence classifi-
cation tasks show that our approaches sig-
nificantly improve the performance of an
existing convolutional neural network that
achieved state-of-the-art performances on
several text classification tasks.

1 Introduction

Word embeddings (i.e. distributed vector re-
presentation) represent words using dense, low-
dimensional and real-valued vectors, where each
dimension represents a latent feature of the
word (Turian et al., 2010; Mikolov et al., 2013;
Pennington et al., 2014). It has been empir-
ically shown that word embeddings could cap-
ture semantic and syntactic similarities between
words (Turian et al., 2010; Mikolov et al., 2013;
Pennington et al., 2014; Levy and Goldberg,
2014). Importantly, word embeddings have been
effectively used for several NLP tasks (Turian
et al., 2010; Collobert et al., 2011; Segura-
Bedmar et al., 2015; Limsopatham and Collier,
2015a; Limsopatham and Collier, 2015b; Muneeb

et al., 2015). For example, Turian et al. (2010)
used word embeddings as input features for sev-
eral NLP systems, including a traditional chunk-
ing system based on conditional random fields
(CRFs) (Lafferty et al., 2001). Collobert et
al. (2011) used word embeddings as inputs of a
multilayer neural network for part-of-speech tag-
ging, chunking, named entity recognition and se-
mantic role labelling. Limsopatham and Col-
lier (2016) leveraged semantics from word em-
beddings when identifying medical concepts men-
tioned in social media messages. Kim (2014)
showed that using pre-built word embeddings, in-
duced from 100 billion words of Google News us-
ing word2vec (Mikolov et al., 2013), as inputs of a
simple convolutional neural network (CNN) could
achieve state-of-the-art performances on several
sentence classification tasks, such as classification
of positive and negative reviews of movies (Pang
and Lee, 2005) and consumer products, e.g. cam-
eras (Hu and Liu, 2004).

The quality of word embeddings (e.g. the abil-
ity to capture semantics of words) highly depends
on the corpus from which they are induced (Pen-
nington et al., 2014). For instance, when induced
from a generic corpus, such as Google News, the
vector representation of ‘tissue’ would be simi-
lar to the vectors of ‘paper’ and ‘toilet’. How-
ever, when induced from medical corpora, such
as PubMed1 or BioMed Central2, the vector of
‘tissue’ would be more similar to those of ‘cell’
and ‘organ’. Hence, word embeddings induced
from the corpus related to the task or target do-
main are likely to be more useful. Meanwhile, it
is intuitive that the more training documents used,
the more likely that more vocabulary is covered.
Recent studies (e.g. (Faruqui et al., 2015; Xu et
al., 2014; Yu and Dredze, 2014)) have attempted
to improve the quality of word embeddings by

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.biomedcentral.com/
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Figure 1: CNN for sentence classification.

enhancing the learning algorithm or injecting an
existing knowledge-base, e.g. WordNet (Miller,
1995) or UMLS semantic network3. Pennington
et al. (2014) incorporated aggregated global word
co-occurrence statistics from the corpus when in-
ducing word embeddings. Xu et al. (2014) and
Yu and Dredze (2014) exploited semantic knowl-
edge to improve the semantic representation of
word embeddings. Nevertheless, in some emerg-
ing domains, e.g. detecting adverse drug reactions
(ADR) reported in social media, existing knowl-
edge resources or corpora may not be large enough
for creating effective embeddings.

In this work, we investigate novel approaches
to incorporate both generic and target domain
embeddings in CNN for sentence classification.
We hypothesise that using both generic and
target domain embeddings further improves the
performance of CNN, since it can benefit from
both the good coverage of vocabulary from the
generic embedding, and the effective semantic
representation of the target domain embedding.
This would enable CNN to perform effectively
without requiring new target domain embeddings
induced from a large amount of domain docu-
ments specifically related to individual tasks. We
thoroughly evaluate our proposed approaches us-
ing an ADR tweet classification task (Ginn et al.,
2014). In addition, to show that our approaches
are effective for different target domains, we also
evaluate them using a movie review classification
task (Pang and Lee, 2005). Our experimental
results show that our approaches significantly
improve the performance in term of accuracy over
an existing strong baseline that uses only either
the generic or the target domain embeddings.

2 CNN for Sentence Classification

CNN has been used to model sentences in differ-
ent NLP tasks, such as sentence classification and

3https://semanticnetwork.nlm.nih.gov/

sentence matching (Collobert and Weston, 2008;
Kim, 2014; Kalchbrenner et al., 2014; Hu et al.,
2014). In this work, we adapt the CNN model
of Kim (2014) to exploit both generic and tar-
get domain word embeddings, because of its sim-
plicity and effectiveness. The model architecture
of Kim (2014) is shown in Figure 1. In particu-
lar, for a given input sentence of length n words
(padded where necessary), we create a sentence
matrix S ∈ Rd×n, where each column is the d-
dimensional vector (i.e. embedding) xi ∈ Rd of
each word in the sentence:

S =

 | | | |
x1 x2 ... xn

| | | |

 (1)

The CNN with max pooling architecture (Col-
lobert et al., 2011; Kim, 2014) is then used for
modelling the sentence. Specifically, a convolu-
tion operation using a filter w ∈ Rd×h is applied
to a window of h words to extract a feature ci from
a window of words xi:i+h−1 as follows:

ci = f(w · xi:i+h−1 + b) (2)

where f is an activation function, such as tanh
or rectifier linear unit (ReLU) (Nair and Hinton,
2010), and b ∈ R is a bias.

The filter w is convolved over the sequence of
words represented in the sentence matrix S to cre-
ate a feature matrix C. In order to capture the most
important features, max pooling is applied to take
the maximum value of each row in the matrix C:

cmax =

max(C1,:)
...

max(Cd,:)

 (3)

This fixed sized vector cmax forms a fully con-
nected layer, before passing to a softmax function
for classification. Note that multiple filters (e.g.
using different window sizes) can be used to ex-
tract features for the fully connected layer.

3 Modelling the Combination of Word
Embeddings

We investigate two approaches to model the com-
bination of generic and target domain word em-
beddings in the described CNN architecture.

3.1 Vector Concatenation
The first approach (namely, vector concatenation)
is to concatenate vectors from the two embeddings
when generating the sentence matrix S (i.e. at the
input layer). In particular, each word vector xi in
the sentence matrix S becomes the concatenation
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of the vectors from both generic and target domain
embeddings corresponding to that word. This al-
lows the filter w to learn the importance of each
dimension of both embeddings4.

3.2 Combining when Forming the Fully
Connected Layer

The second approach (namely, fully connected
layer combination) models the combination of the
word embeddings when forming the fully con-
nected layer before applying softmax for classi-
fication. Indeed, we apply the convolution oper-
ation (i.e. the convolutional layer in Figure 1) on
two different sentence matrices, each of which is
created using either the generic or the target do-
main embeddings. Then, the extracted features
are concatenated at a single fully connected layer
before applying softmax. This enables the model
to learn the importance of each feature from both
embeddings directly, before allowing the softmax
to take into account the extracted features. Intu-
itively, this approach should be more effective than
the first approach, as it allows more parameters to
be learned directly based on the effectiveness of
the word vectors from each of the embeddings.

4 Experimental Setup

4.1 Test Collection

To evaluate our approaches, we use two different
test collections, which represent domain-specific
tasks where existing target domain documents for
training word embeddings may be limited. First,
the adverse drug reaction (ADR) tweet collec-
tion (Ginn et al., 2014) contains 5,250 Twitter
messages5 that can be classified as ADR and non-
ADR discussions. Second, the movie review col-
lection (Pang and Lee, 2005)6 consists of 10,662
sentences that can be classified as having a posi-
tive or a negative meaning. On average, a sentence
contains 20 terms. For both collections, we re-
port the performance based on the accuracy mea-
sure (Pang and Lee, 2005; Ginn et al., 2014), and
use paired t-test (p < 0.05) to measure the signifi-
cant difference between the performance achieved
by the proposed approaches and the baselines.

4The size of the filter w ∈ Rd∗×h depends on the dimen-
sion d∗ of the concatenated vectors.

5We have a smaller dataset than the original paper because
some tweets can no longer be accessed via Twitter API.

6https://www.cs.cornell.edu/people/
pabo/movie-review-data

4.2 Pre-trained Word Embeddings

As a representative of generic word embeddings,
we use the publicly available 300-dimension em-
beddings (vocabulary size of 3M) that were in-
duced from 100 billion words from Google News
using word2vec7, which has been shown to be ef-
fective for several tasks (Baroni et al., 2014; Kim,
2014). For target domain embeddings, we use
the skip-gram model from word2vec (using de-
fault parameters) to create 300-dimension word
embeddings from two different publicly available
corpora, which are considerably smaller than the
Google News. Specifically, the first corpus, rep-
resenting the target domain corpus of the ADR
tweet classification task, contains 854M words
from 119k medical articles from BioMed Cen-
tral. The vocabulary size is 1.3M. For the movie
review classification task, we use 24M words of
28k movie reviews from the IMDb archive8 for in-
ducing the target domain embedding (vocabulary
size of 63k). In addition, we use a vector of ran-
dom values sampled from [−0.25, 0.25] to represent
a word that does not exist in any embedding.

4.3 Hyper-parameters and Training Regime

We set the hyper-parameters of CNN in our ap-
proaches and the baselines following Kim (2014),
whose system achieved state-of-the-art perfor-
mances on several sentence classification tasks, in-
cluding the movie review classification task eval-
uated in this paper. Indeed, we use ReLU as acti-
vation functions, and use the filter w with the win-
dow size (h) of 3, 4 and 5, each of which with 100
feature maps. We also apply dropout (dropout rate
0.5) (Srivastava et al., 2014) and L2 regularisation
of the weight vectors at the fully connected layer.

We conduct experiments using 10-fold cross
validation. The CNN model is trained over a
mini-batch of size 50 by back-propagation. The
stochastic gradient decent is performed using
Adadelta update rule (Zeiler, 2012) to minimise
the negative log-likelihood of correct predictions.

5 Experimental Results

We compare the performance of our approaches,
i.e. vector concatenation (Section 3.1) and fully
connected layer combination (Section 3.2), with
that of the effective CNN model of Kim (2014)
(denoted, simple CNN). Note that we use the static

7https://code.google.com/p/word2vec/
8Downloaded from http://www.cs.cornell.

edu/people/pabo/movie-review-data/
polarity_html.zip.
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Approach Word Embeddings
Accuracy

ADR Tweets Movie Review
Simple CNN (Kim, 2014) Random 87.97 72.41
Simple CNN (Kim, 2014) Generic 88.47 80.56∗

Simple CNN (Kim, 2014) Domain 88.75∗ 80.88∗

Vector Concatenation Generic+Domain 88.85∗ 81.29∗

Vector Concatenation Random+Random 87.96 72.28
Vector Concatenation Generic+Generic 88.76 80.69
Vector Concatenation Domain+Domain 88.88 80.61
Fully Connected Layer Combination Generic+Domain 89.74∗◦• 81.59∗◦•
Fully Connected Layer Combination Random+Random 88.61 72.57
Fully Connected Layer Combination Generic+Generic 89.47 80.54
Fully Connected Layer Combination Domain+Domain 89.21 80.81

Table 1: The accuracy performance of the proposed approaches and the simple CNN baselines (Kim,
2014). Significant differences (p < 0.05, paired t-test) compared to the simple CNN baselines with the
Random, Generic and Domain word embeddings, are denoted ∗, ◦ and •, respectively.

variant of the CNN model, which does not al-
low the input embeddings to be updated during
training, as we aim to investigate the performance
when using original embeddings9. In addition
to the pre-trained embeddings described in Sec-
tion 4.2, we use 300-dimension randomly gener-
ated word embeddings, as an alternative baseline.

Table 1 reports the accuracy performance of our
approaches and the simple CNN baselines on the
ADR tweet and movie review classification tasks.
We first compare the effectiveness of the simple
CNN baselines when applied with different word
embeddings. For both tasks, the simple CNN
with the target domain word embeddings (accu-
racy 88.75% and 80.88%) outperforms the sim-
ple CNN with either the generic (accuracy 88.47%
and 80.56%) or the random (accuracy 87.97% and
72.41%) word embeddings. The performance dif-
ferences between using the target domain and the
random word embeddings are statistically signifi-
cant (p < 0.05) for both tasks. These results show
the importance of target domain embedding for the
simple CNN on the classification tasks.

Next, we discuss the performance of our
two proposed approaches. As shown in Ta-
ble 1, Fully Connected Layer Combination
(Generic+Domain) performs better than all of the
other approached reported in this paper for both
the ADR tweet (accuracy 89.74%) and movie re-
view (accuracy 81.59%) classification tasks. Im-
portantly, it significantly (p < 0.05) outperforms
the simple CNN baselines that use either the ran-
dom, generic or target domain word embeddings
for both tasks. Meanwhile, Vector Concatena-
tion (Generic+Domain) also outperforms all of
the simple CNN baselines. These support our hy-

9The performances of both Kim’s and our approaches will
further improve, if we allow the embeddings to be updated.

pothesis that exploiting both the generic and tar-
get domain word embeddings further improves the
performance of CNN for sentence classification.

To further support that our approaches are ef-
fective because of exploiting both generic and tar-
get domain embeddings rather than because of al-
lowing the model to learn more parameters, we
compare our approaches with another set of base-
lines that use either the generic, target domain, or
random embedding twice in both of our proposed
approaches. We observe that Fully Connected
Layer Combination (Generic+Domain) outper-
forms all of its corresponding baselines, e.g. Do-
main+Domain, for both tasks. The same trends of
performance are also observed for the vector con-
catenation approach, excepting that Vector Con-
catenation (Domain+Domain) marginally outper-
forms Vector Concatenation (Generic+Domain)
on the ADR tweet classification task.

6 Conclusions

We have shown the potential of incorporating
generic and target domain embeddings in CNN
for sentence classification. This provides an al-
ternative method for exploiting generic word em-
beddings for a given task, where existing domain
knowledge or corpora for creating word embed-
dings are limited, as well as avoiding inducing new
word embeddings from a large number of target
domain documents for individual tasks. We pro-
posed two approaches that modelled the combina-
tion of the two embeddings at the input layer and
the fully connected layer of a CNN model. Our
experimental results conducted on the ADR tweet
and movie review classification tasks showed that
both approaches significantly improved the perfor-
mance over a strong CNN baseline.
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Abstract 

Term normalization is frequently used in in-

formation retrieval task to reduce variant 

word forms to a common form. The most 

general term normalization technique used 

in practice is stemming, however it has been 

found to not be completely reliable.  Here 

we present PubTermVariants, a high-quality 

data-driven resource of term variant pairs 

that can improve search results in PubMed. 

For a given pair, we consider two terms to 

be variants if they stem to the same form, 

pass the hypergeometric test, and pass the 

morpho-semantic test. We perform manual 

evaluation of a subset of PubTermVariants 

that confirms the high quality of the candi-

date pairs. We further present experiments 

that demonstrate their usefulness for Pub-

Med search. 

1 Introduction 

Information retrieval, and biomedical text pro-

cessing in general, profoundly depend on sensitive 

techniques for term normalization. Frequently, the 

link between a query and a document is not estab-

lished because they use different forms of a term. 

These differences may be morphological (related by 

derivation or inflection) variations of a word, (e.g. 

autoimmune, autoimmunities, autoimmunity), syn-

onyms (e.g. kidney disease and renal disease), ab-

breviations, etc. It is to the problem of 

morphological term variations that we wish to give 

attention here. Specifically, the goal of this study is 

to find pairs of string variants that have the same 

meaning and when used interchangeably benefit 

PubMed search. 

Stemming (Porter 1980) is frequently used for the 

string normalization task to conflate different forms 

of a word that have the same meaning. This has been 

found useful in the task of information retrieval and 

has been shown to yield small improvements on typ-

ical test collections (Hull 1996, Hollink, Kamps et 

al. 2004, Manning, Raghavan et al. 2009, Moral, de 

Antonio et al. 2014). Since stemming is not com-

pletely reliable, different methods have been ap-

plied in an attempt to improve the final results of 

stemming such as limiting the results to forms found 

together in a lexicon (Krovetz 1993). This latter ap-

proach however is quite limiting and (Xu and Croft 

1998) developed a method that uses a mutual infor-

mation measure of the co-occurrence of two word 

forms to estimate how related they are and to put 

them in the same equivalence class if the infor-

mation is above a threshold. This is done with the 

aim of improving the equivalence classes of forms 

with a common stem produced by the original ap-

plication of the stemmer.  

A study of morpho-semantic relationships in 

Medline (Wilbur and Smith 2013) identifies mor-

phologically related tokens in Medline by using 

character n-grams as features and then computes the 

probability that two strings are related based on the 

context. This approach infers the morphological re-

latedness of two strings in a way more general than 
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stemming, but based on certain substrings of char-

acters on which they match. 

We take what we would describe as a more prag-

matic approach. We define two terms to be variants 

of each other if they can be used interchangeably at 

the query stage. With the goal to obtain a reliable 

list of variants, we first find pairs of terms that stem 

to the same form and have common document in 

which they appear. We then apply the hypergeomet-

ric (HG) test (Larson 1982) to decide whether the 

observed co-occurrence for a particular pair of 

terms is above random. For the pairs that pass the 

HG test, we compute the morpho-semantic similar-

ity score following (Wilbur and Smith 2013) and 

only retain the pairs that score above the threshold. 

When all these conditions hold, we view the two 

forms as a good candidate term variant pair. We be-

lieve this is a less aggressive and clearly safer way 

to use stemming for query expansion that results in 

a conservative list of term variants.  

In the next section we provide more details on 

how we generate term variants. We then present the 

results of manual evaluation of a randomly selected 

set of candidate term variant pairs. Further we de-

scribe two experiments that reveal how PubMed 

document retrieval is affected when term variants 

are used. In these experiments we consider both 

zero-result and nonzero-result queries.  

2 Computing Term Variants 

Stemming. To begin our processing, we first ex-

tracted space-separated tokens that appeared in ten 

or more PubMed articles. We stemmed every token 

with the Porter stemmer (Porter 1980) and collected 

pairs of tokens with the same stem. This process re-

sulted in 201,219 unique pairs of tokens.  

The Hypergeometric Test. Here we used the hy-

pergeometric distribution and the p-value test for 

every pair of words in a group. Let 𝑵𝒔 and 𝑵𝒕 be the 

number of documents in Medline that contain terms 

s and t respectively, let 𝑵 be the size of Medline, 

and 𝑵𝒔𝒕 be the number of documents in Medline 

containing both terms s and t. The random variable 

Y representing a number of documents containing 

both terms s and t is a hypergeometric random vari-

able with parameters 𝑵𝒔, 𝑵𝒕 and N (Larson 1982) if 

s is randomly assigned to the  𝑵𝒔 documents. The 

probability distribution of Y is: 

𝑷(𝒚) = (
𝑵𝒕

𝒚
) (

𝑵 − 𝑵𝒕

𝑵𝒕 − 𝒚
) (

𝑵

𝑵𝒔

)⁄ . 

From 𝑁𝑠𝑡 we compute the p-value, i.e. the proba-

bility of the observed 𝑁𝑠𝑡 or a higher frequency aris-

ing by chance as follows: 

p-value = ∑ 𝑷(𝒚).

𝐦𝐢𝐧(𝑵𝒔,𝑵𝒕)

𝒚=𝑵𝒔𝒕

 

The p-value reflects the significance of two 

words co-occurring in 𝑁𝑠𝑡 documents given the fre-

quencies of individual words and the size of the da-

tabase. A low p-value indicates that the co-

occurrence of the two words in not likely to be by 

chance, but because the words are closely related. 

By applying the HG test to these pairs at the 0.01 

level, we obtain 124,548 word pairs that we will re-

fer to as set StemHG.  

The Morpho-Semantic Analysis. Finally, we 

make use of the study of morpho-semantic relation-

ships in Medline (Wilbur and Smith 2013). For a 

candidate pair of strings the approach assigns a 

probability that the strings are semantically related. 

Using every candidate pair from the above 124,548 

pairs, we retain only the pairs for which the proba-

bility of being related is 0.9 or higher. This analysis 

results in a collection of 82,216 term variant pairs 

that we will refer to as PubTermVariants. There are 

about 109,725K unique terms in PubTermVariants, 

since a term may be paired with multiple variants. 

Because of the HG and the morpho-semantic tests, 

the relationships between term variants are not tran-

sitive.  

In the next section we confirm that this collection 

is of high quality by manual evaluation of a random 

sample and present experiments designed to demon-

strate their usefulness.  

3 Experimental Evaluation and Results 

We evaluate the quality of PubTermVariants by per-

forming manual evaluation of random pairs sam-

pled from the collection. The manual evaluation 

reveals the high quality of the variants in the collec-

tion. Our further experiments are designed to prove 

their usefulness for PubMed search. 

3.1 Manual Evaluation 

Here we report a manual analysis of PubTermVari-

ants with the goal to confirm that two variants are 
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indeed word forms that carry the same meaning and 

can be safely interchanged in a query. 

As mentioned earlier, PubTermVariants is a col-

lection of 82,216 candidate term variant pairs. In ad-

dition to PubTermVariants we have 42,332 term 

pairs in the set StemHG\PubTermVariants that po-

tentially may be enriched in term variants. We be-

lieve that the quality of term variants in 

PubTermVariants is attributable to the effect of in-

dependently applying different statistical methods.  

We assessed the quality of proposed term variant 

pairs by manually evaluating 200 random pairs from 

PubTermVariants, as well as 200 random pairs from 

StemHG\PubTermVariants. The 400 pairs were 

shuffled and each pair presented to two annotators. 

Eight annotators reviewed 100 pairs each, so that 

each pair was evaluated by two different people. 

The annotators involved in the manual evaluation 

all have backgrounds in biomedical information re-

trieval. 

A web-based tool was developed to carry out this 

evaluation process and this tool was designed to 

show the term pair, two PubMed abstracts that con-

tained one variant but not the other, and one Pub-

Med abstract that contained both word forms. The 

annotators were asked to judge whether the two 

word forms could be used interchangeably. This de-

cision was made by judging the displayed abstracts 

and deciding whether all of them should be retrieved 

regardless of which term is being used. 

 At this round pairs of annotators agreed on 329 

of 400 instances considered. All individual evalua-

tions were compared and each pair of annotators 

met separately to discuss the discrepancies on the 

remaining 71 pairs. This was later followed by a 

meeting where all annotators were present, and all 

remaining cases were discussed. The annotation ex-

periment found that 89% of pairs in PubTermVari-

ants were true variants of the same concept, while 

only 81.5% of pairs in StemHG\PubTermVariants 

were true variants, presented in Table 1.  

We further examined the quality of term variants 

as a function of token length, as shown in Figures 1 

and 2. We find that tokens of length 3 are typically 

abbreviations and therefore not good term variant 

candidates in the absence of context. For example, 

a pair of terms ohd and ohds is labeled negative, be-

cause, while ohd/ohds could be used interchangea-

bly as singular and plural forms of the abbreviation 

for “occupational health departments”, ohds may 

also stand for “hydroxylase deficiency syndrome”. 

Consequently, of 22 pairs from PubTermVariants 

that were labeled negative 12 pairs include 3 letter 

abbreviations. We also observe that the distribution 

of errors in StemHG\PubTermVariants is more uni-

form as a function of string length. 

3.2 Effect of Term Variants on PubMed 

Search. 

With the goal to understand the usefulness of these 

term pairs in a real-world setting, we examined the 

queries in PubMed logs and performed the follow-

ing analyses: 

1. We analyzed zero-result queries and identi-

fied real user queries that could have re-

turned results by using PubTermVariants. 

2. We analyzed a subset of result-producing 

queries and identified the difference in the 

result set had PubTermVariants been used. 

 

Table 1. Results of manual annotation of 200 ran-

dom pairs from PubTermVariants and 200 pairs 

from StemHG\PubTermVariants. 89% of pairs in 

PubTermVariants and 81.5% of pairs in 

StemHG\PubTermVariants were found to be true 

variants. 

 

Figure 1. The quality of term variants as a function 

of token length in PubTermVariants. 

 PubTerm-

Variants 

StemHG\Pub-

TermVariants 

Total 

Positives 178(89%) 163(81.5%) 341 

Negatives 22(11%) 37(18.5%) 59 

Total 200 200 400 
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Figure 2. The quality of term variants as a function 

of token length in StemHG\PubTermVariants. 
 

For these experiments we collected PubMed log 

data for 2015. We find that about 76% of PubMed 

queries contain a term from PubTermVariants. 

Effect of using PubTermVariants on zero-result 

queries 

Some PubMed queries do not produce a result. We 

call these queries zero-result queries. We ask 

whether using PubTermVariants could lead to re-

sults being retrieved for these queries.  

In order to answer this question we chose a ran-

dom day of PubMed logs in 2015. We preprocessed 

the data and kept only multi-term queries that con-

tained alphanumeric characters, dashes and com-

mas. We also removed queries that did not contain 

a term from PubTermVariants. For each query, we 

verified that if a term variant is removed, the query 

consisting of the remaining tokens retrieved a set of 

PubMed articles. This set contained 55,496 unique 

queries.  

For each of these queries, we replaced a term with 

its variant from the PubTermVariants list. Since 

some terms have multiple variants, this process re-

sulted in 110,103 queries which are now used to 

query PubMed and report results. We call the use of 

the term variants successful if at least one of the var-

iant queries resulted in a successful search. For ex-

ample, term monoubiquitination is mapped in our 

collection to terms monoubiquitin, monoubiqui-

tinate, monoubiquitinated, and monoubiquitinates. 

For a given query hdm2 monoubiquitination, one 

substitution to hdm2 monoubiquitinated is found to 

be successful, and so we call that substitution suc-

cessful. Articles were retrieved for 8.83% (4,902 

queries) of the original 55,496 queries. This per-

centage, however, represents a lower bound of suc-

cess because for every query only one term was 

considered for replacement. Queries can have sev-

eral candidate terms for replacement. 

Effect of using PubTermVariants on result-pro-

ducing queries 

Since PubMed is quite successful at producing rele-

vant results for most queries, we wanted to examine 

the effect of the variants in PubTermVariants on 

these searches. For this experiment we randomly se-

lected 1,000 user queries that contained a term listed 

in PubTermVariants and where the number of Pub-

Med results for each of these queries was between 1 

and 20. For each of these queries we produced only 

one variant query so that the original term variant 

was replaced with one of its paired variants in the 

PubTermVariants list, randomly selected. The re-

sulting variant queries were used to query PubMed 

and we retrieved results for 480 of these queries. We 

compared the results set for the original user queries 

with their variant queries and found that the average 

number of results for the original queries was 6.8, 

however, if we combine the results with the results 

of the variant queries this number increases to 8.5. 

Furthermore, 38% variant queries retrieve addi-

tional relevant PubMed articles without overwhelm-

ing the search results. Similar to the zero result case, 

this percentage represents a lower bound. 

4 Conclusions 

We presented a high-quality list of biomedical term 

variants which we call PubTermVariants. The Pub-

TermVariants resource is generated in a data-driven 

way by applying two statistical tests to pairs of to-

kens that stem to the same form. Both, the hyperge-

ometric and the morpho-semantic tests, provide a 

useful tool for deciding whether terms in the pair are 

related or not.  

PubTermVariants provides a clean and reliable 

high-quality collection of terms that can be used in-

terchangeably in PubMed queries. The manual ex-

amination revealed that 89% of the pairs are true 

variants, and removing three letter tokens results in 

higher quality. Our experiments on PubMed log 

data demonstrated that some zero-result queries that 

contain a term variant can return results by applying 

a substitution from PubTermVariants. Our other ex-
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periments revealed that when a term variant is ap-

plied to create a variant query, in 38% of the cases 

the result set was enriched with articles which were 

not present in the initial request, thus increasing re-

call. 

PubTermVariants is available for other 

applications of biomedical term variants from 

ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/PubTermVari

ants/pairs.txt.gz.  
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Abstract

Causal precedence between biochemical
interactions is crucial in the biomedi-
cal domain, because it transforms collec-
tions of individual interactions, e.g., bind-
ings and phosphorylations, into the causal
mechanisms needed to inform meaning-
ful search and inference. Here, we an-
alyze causal precedence in the biomedi-
cal domain as distinct from open-domain,
temporal precedence. First, we describe
a novel, hand-annotated text corpus of
causal precedence in the biomedical do-
main. Second, we use this corpus to inves-
tigate a battery of models of precedence,
covering rule-based, feature-based, and la-
tent representation models. The highest-
performing individual model achieved a
micro F1 of 43 points, approaching the
best performers on the simpler temporal-
only precedence tasks. Feature-based and
latent representation models each outper-
form the rule-based models, but their per-
formance is complementary to one an-
other. We apply a sieve-based architec-
ture to capitalize on this lack of overlap,
achieving a micro F1 score of 46 points.

1 Introduction

In the biomedical domain, an enormous amount
of information about protein, gene, and drug in-
teractions appears in the form of natural language
across millions of academic papers. There is a
tremendous ongoing effort (Nédellec et al., 2013;
Kim et al., 2012; Kim et al., 2009) to extract indi-
vidual chemical interactions from these texts, but
these interactions are only isolated fragments of
larger causal mechanisms such as protein signal-
ing pathways. Nowhere, however, including any

database, is the complete mechanism described in
a form that lends itself to causal search or infer-
ence. The absence of such a database is not for
lack of trying; Pathway Commons (Cerami et al.,
2011) aims to address the need, but its authors esti-
mate it currently covers 1% of the literature due to
the high cost of annotation1. This issue only grows
more pressing with the yearly growth in biomedi-
cal publishing, which presents an otherwise insur-
mountable challenge for biomedical researchers to
query and interpret.

The Big Mechanism program (Cohen, 2015)
aims to construct exactly such large-scale mecha-
nistic information by reading and assembling pro-
tein signaling pathways that are relevant for can-
cer, and exploit them to generate novel explana-
tory and treatment hypotheses. Although prior
work (Chambers et al., 2014; Mirza, 2016) has
addressed the challenging area of temporal prece-
dence in the open domain, the biomedical domain
presents very different data and, consequently, re-
quires novel techniques. Precedence in mech-
anistic biology is causal rather than temporal.
Though event temporality is crucial to understand-
ing electronic health records for individual pa-
tients (Bethard et al., 2015; Bethard et al., 2016),
its contribution to the understanding of biomolec-
ular reactions is less clear as these events and pro-
cesses may repeat in extremely short cycles, con-
tinue without end, or overlap in time. At any level
of abstraction, causal precedence encodes mech-
anistic information and facilitates inference over
spotty evidence. For the purpose of this work,
precedence is defined for two events, A and B, as

A precedes B if and only if the output of
A is necessary for the successful execu-
tion of B.2

1Personal communication.
2See the “precedes” examples in Table 1.
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Very little annotated data exists for causal
precedence, especially efforts focusing on signal-
ing pathways. BioCause (Mihăilă et al., 2013),
for instance, is centered on connections between
claims and evidence and contains only 51 an-
notated examples of causal precedence3. Our
work4 offers three contributions in aid of auto-
matically extracting causal ordering in biomedical
text. First, we provide and describe a dataset of
real text examples, manually annotated for causal
precedence. Second, we analyze the efficacy of
a battery of different models in automatically de-
termining precedence, built on top of the Reach
automatic reading system (Valenzuela-Escárcega
et al., 2015a; Valenzuela-Escárcega et al., 2015c)
and measured against this novel corpus. In partic-
ular, we investigate three classes of models: (a)
deterministic rule-based models inspired by the
precedence sieves proposed by Chambers et al.
(2014), (b) feature-based models, and (c) mod-
els that rely on latent representations such as long
short-term memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997). Our analysis indi-
cates that while independently the top-performing
model achieves a micro F1 of 43, these models are
largely complementary with a combined recall of
58 points. Lastly, we conduct an error analysis
of these models to motivate and inform future re-
search.

2 A Corpus for Causal Precedence in the
Biomedical Domain

Our corpus annotates several types of relations
between mentions of biochemical interactions.
Following common terminology promoted by
the BioNLP shared tasks, we will interchange-
ably use “events” to refer to these interactions.
To generate candidate events for our planned
annotations, we ran the Reach event extrac-
tion system (Valenzuela-Escárcega et al., 2015a;
Valenzuela-Escárcega et al., 2015c) over the full
text5 of 500 biomedical papers taken from the

3These are marked in the BioCause corpus as
Causality events with Cause and Effect argu-
ments. The remaining 800 annotations are claim-evidence
relations.

4The corpus, tools, and system introduced in this
work are publicly available at https://github.com/
myedibleenso/this-before-that

5We chose to ignore the “references”, “materials”, and
“methods” sections, which generally do not contain mech-
anistic information.

Relation Example

E1 precedes E2 A is phosphorylated by B.
Following its phosphorylation, A
binds with C.

E2 precedes E1 A is phosphorylated by B.
Prior to its phosphorylation, A binds
with D.

Equivalent The phosphorylation of A by B.
A is phosphorylated by B.

E1 specifies E2 A is phosphorylated by B at Site 123.
A is phosphorylated by B.

E2 specifies E1 A is phosphorylated by B.
A is phosphorylated by B at Site 123.

Other B does not regulate C when C is
bound to A.

None A phosphorylates B.
A ubiquitinates C.

Table 1: The seven inter-event relation labels an-
notated in the corpus. The “precedes” labels are
causal. Subsumption is captured with the “speci-
fies” labels.

Open Access subset of PubMed6. The events ex-
tracted by Reach are biochemical events of two
types: simple events such as phosphorylation that
modify one or more entities (typically proteins),
and nested events (regulations) that have other
events as arguments.

To improve the likelihood of finding pairs of
events with a relevant link, we filtered event pairs
by imposing the following requirements for inclu-
sion in the corpus:

1. Event pairs must share at least one partic-
ipant. This constraint is based on the obser-
vation that interactions that share participants
are more likely to be connected.

2. Event pairs must be within 1 sentence of
each other. Similarly, discourse proximity in-
creases the likelihood of two events being re-
lated.

3. Event pairs must not share the same type.
This helps to maximize the diversity of the
dataset.

4. Event pairs must not already be contained
in an extracted Regulation event. For ex-
ample, we did not annotate the relation be-
tween the binding and the phosphorylation
events in “The binding of X and Y is inhibited

6http://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/
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by X phosphorylation”, because it is already
captured by most state-of-the-art biomedical
event extraction systems.

After applying these constraints, only 1700
event pairs remained. In order to rapidly anno-
tate the event pairs, we developed a browser-based
annotation UI that is completely client-side (see
Figure 3). Using this tool, we annotated 1000
event pairs for this work; 84 of these were dis-
carded due to severe extraction errors. The an-
notations include the event spans, event triggers
(i.e., the verbal or nominal predicates that indicate
the type of interaction such as “binding” or “phos-
phorylated”), source document, minimal senten-
tial span encompassing both event mentions, and
whether or not the event pair involves coreference
for either the event trigger or the event partici-
pants. For events requiring coreference resolution,
we expanded the encompassing span of text to also
capture the antecedent. Note that domain-specific
coreference resolution is a component of the event
extraction system used here (Bell et al., 2016).

When describing the relations between these
event pairs, we refer to the event that occurs first
in text as Event 1 (E1) and the event that follows
as Event 2 (E2). Each (E1, E2) pair was assigned
one of seven labels: “E1 precedes E2”, “E2 pre-
cedes E1”, “Equivalent”, “E1 specifies E2”, “E2
specifies E1”, “Other”, or “None”. Table 1 pro-
vides examples for each of these labels. We con-
verged on these labels because they are fundamen-
tal to the assembly of causal mechanisms from a
collection of events. Collectively, the seven labels
address three important assembly tasks: equiva-
lence, i.e., understanding that two event mentions
discuss the same event, subsumption, i.e., the two
mentions discuss the same event, but one is more
specific than the other, and, most importantly,
causal precedence, the identification of which is
the focus of this work. During the annotation pro-
cess, we came across examples of other relevant
phenomena. We grouped these instances under the
label “Other” and leave their analysis for future
work.

Though simplified, the examples in Table 3 il-
lustrate that this is a complex task sensitive to lin-
guistic evidence. For example, the direction of the
precedence relations in the first two rows in the ta-
ble changes based on a single word in the context
(“prior” vs. “following”).

In terms of the distribution of relations, causal

Figure 1: The distribution of assembly relation la-
bels both within and across sentences.

Figure 2: The distribution of event pairs involving
coreference across assembly relations.

precedence pairs appear more frequently within
the same sentence, while cases of the subsump-
tion (“specifies”) and equivalence relations are far
more common across sentences (see Figure 1).
Coreference is involved in 10–15% of the in-
stances for each relation label (see Figure 2).

The annotation process was performed by two
linguists familiar with the biomedical domain. To
minimize errors, the annotation task was initially
performed together at the same workstation.7 On
a randomly selected sample of 100 event pairs, the
two annotators had a Cohen’s kappa score (Cohen,
1960) of 0.82, indicating “almost perfect” agree-
ment for the precedes labels (Landis and Koch,
1977).

3 Models of Causal Precedence

We have developed both deterministic, inter-
pretable models and automatic, machine-learning
models for detecting causal precedence in our
dataset. Importantly, the models covered in this
work focus solely on causal precedence, which is
the most complex relation annotated in the dataset
previously introduced. Thus, for all experiments
discussed here, we reduce these annotations to
three labels: “E1 precedes E2”, “E2 precedes E1”,
and Nil, which covers all the other labels in the

7Similar to pair programming.
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Figure 3: Browser-based tool for annotating assembly relations in text. An annotation instance consists
of a pair of event mentions. The annotator assigns a label to each pair of events using the number keys
and navigates from annotation to annotation using the arrow keys. E1 refers to the event in the pair
that appears first in the text. The event span is formatted to stand out from the surrounding text. The
“Paper” field provides the annotator with easy access to the full text of the source document for the
current annotation instance. Annotations can be exported to JSON and reloaded via a local storage cache
or through file upload.

corpus.

Model Rules

Intra-sentence 29
Inter-sentence 5
Reichenbach 8

Table 2: Few rules defined each deterministic
model of precedence compared with the number
of features for the machine learning models.

3.1 Deterministic Models

The deterministic models are defined by a small
number of hand-written rules using the Odin event
extraction framework (Valenzuela-Escárcega et
al., 2015b). The number of rules for each model
is shown in Table 2, and sharply contrast with the
92,711 features introduced later (Table 3) that are
used by our machine-learning models. In order to
avoid overfitting, all of the deterministic models
were created without reference to the annotation
corpus, using general linguistic expertise and do-
main knowledge.

Intra-sentence ordering Within sentences,
syntactic regularities can be exploited to cover a
large variety of grammatical constructions indi-
cating precedence relations. Rules defined over
dependency parses (De Marneffe and Manning,
2008) capture precedence in sentences like those
in (1) and (2) as well as many others.

(1) [The RBD of PI3KC2B binds HRAS]after ,
when [HRAS is not bound to GTP]before

(2) [The ubiquitination of A]before is followed
by [the phosphorylation of B]after

Other phrases captured include: “precedes”, “due
to”, “leads to”, “results in”, etc.

Inter-sentence ordering Although syntax oper-
ates over single sentences, cross-sentence time ex-
pressions can indicate ordering, as shown in Ex-
amples (3) and (4). We exploit these regularities
as well by checking for sentence-initial word com-
binations.

(3) [A is phosphorylated by B]before. As a
downstream effect, [C is . . . ]after

(4) [A is phosphorylated by B]before. [C is then
. . . ]after

Other phrases captured include: “Later”, “In re-
sponse”, “For this”, and “Ultimately”.

Verbal tense- and aspect-based (Reichenbach)
ordering Following Chambers et al. (2014), we
use deterministic rules to establish precedence be-
tween events that have certain verbal tense and as-
pect. These rules are derived from linguistic anal-
ysis of tense and aspect by (Reichenbach, 1947;
Derczynski and Gaizauskas, 2013). Example (5)
illustrates a case in which we can accurately in-
fer order just from this information. Because has
been phosphorylated has past tense and perfective
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aspect, this model concludes that it precedes share
(present tense, simple aspect) and thus the binding
of histone H2A.

(5) These [PTIP] proteins also share the
ability to bind histone H2A (or H2AX
in mammals) that has been phosphory-
lated. . . .

The logic determining which tense-aspect com-
binations receive which precedence relations is
identical to CAEVO, which is possible because it
is open source8. However, CAEVO operates over
annotations that include gold tense and aspect val-
ues, whereas this model additionally detects tense
and aspect using Odin rules before applying this
logic.

3.2 Feature-based Models

Most instances of causal precedence cannot be
captured with deterministic rules, because they
lack explicit words, phrases, or syntactic struc-
tures that unambiguously mark the relation. Using
a combination of the surface, syntactic, and tax-
onomic features outlined in Table 3, we trained a
set of statistical classifiers to detect causal prece-
dence relations between pairs of events in our cor-
pus. For training and testing purposes, we treated
any instance not labeled as either “E1 precedes
E2” or “E2 precedes E1” as a negative example.
We examined the following statistical models: a
linear kernel SVM (Chang and Lin, 2011), logis-
tic regression (Fan et al., 2008), and random for-
est9 (Surdeanu et al., 2014). For the SVM and lo-
gistic regression (LR) models, we also compared
the effects of L1 and L2 regularization.

3.3 Latent Representation Models

Due to the complexity of the task and variety
of causal precedence instances encountered dur-
ing the annotation process, it is unclear whether
a linear combination of engineered features is
sufficient for broad coverage classification. For
this reason, we introduce a latent feature repre-
sentation model using an LSTM (Hochreiter and
Schmidhuber, 1997; Bergstra et al., 2010; Chol-
let, 2015) to capture underlying semantic features
by incorporating long-distance contextual infor-
mation and selectively persisting memory of pre-
vious event pairs to aid in classification.

8https://github.com/nchambers/caevo
9Abbreviated as RF

The basic architecture is shown in Figure 5. The
input to this model is the provenance of the rela-
tion, i.e., the whole text containing the two events
and the text in between. Formally, this is repre-
sented as a concatenated sequence of 200 dimen-
sional vectors where each vector in the sequence
corresponds to a token in the minimal sentential
span encompassing the event pair being classified.
Intuitively, this LSTM “reads” the text from left
to right and outputs a classification label from the
set of three when done. We consider two vari-
ations of this model: the basic model (LSTM)
with the vector weights for each token uninitial-
ized and a second form (LSTM+P) where the vec-
tors are initialized using pre-training. In the pre-
training configuration, the vector weights are ini-
tialized using word embeddings generated by a
word2vec (Mikolov et al., 2013; Řehůřek and So-
jka, 2010) model trained on the full text of over
1 million biomedical papers taken from the Open
Access subset of PubMed. Because the corpus
is only 1000 annotations, it was thought that pre-
training could improve prediction of causal prece-
dence and guide the model with distributional se-
mantic representations specific to this domain.

Building on this simple blueprint, we designed
a three-pronged “pitchfork” (FLSTM) where the
span of E1, the span of E2, and the minimal sen-
tential span encompassing E1 and E2 each serve as
a separate input, allowing the model to explicitly
address each of them as well as discover how these
three inputs relate to one another. This architec-
ture is shown in Figure 6. Each input feeds into its
own LSTM and corresponding dropout layer be-
fore the three forks are merged via a concatena-
tion of tensors. Like the basic model, one version
of the “pitchfork” is trained with vector weights
initialized using the pre-trained word embeddings
(FLSTM+P).

4 Results

We summarize the performance of all these mod-
els on the dataset previously introduced in Table 4.
We report results using micro precision, recall,
and F1 scores for each model. With fewer than
200 instances of causal precedence occurring in
1000 annotations, training and testing for both the
feature-based classifiers and latent feature mod-
els was performed using stratified 10-fold cross
validation. For the latent feature models, train-
ing was parameterized using a maximum of 100
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Feature Description

Event

Event labels The taxonomic labels Reach assigned to the event (e.g. phosphorylation→ Phosphorylation, AdditiveEvent, . . . ).

Event trigger The predicate signaling an event mention (ex. “phosphorylated”, “phosphorylation”).

Event trigger + label A concatenation of the event’s trigger with the event’s label.

token n-grams with
entity replacement

n-grams of the tokens in the mention span, where each entity is replaced with the entity label (ex. “the ABC
protein”→ “the PROTEIN”). If an entity is shared between pairs of events, replace it with the label SHARED.

token n-grams with
role replacement

n-grams of the tokens in the mention span, where each argument is replaced with the argument role (ex. “A inhibits
the phosphorylation of B”→ “CONTROLLER inhibits the CONTROLLED”)

Syntactic path from
trigger to args

Variations of the syntactic dependency path from an event’s trigger to each of its arguments (unlexicalized path,
path + lemmas, trigger→ argument role, trigger→ argument label, etc.).

Event-Event
(surface)

Interceding tokens
(n-grams)

n-grams (1-3) of the tokens between E1 and E2.

Event-Event
(syntax)

Cross-sentence
syntactic paths

A concatenation of the syntactic path from the sentential ROOT to an event’s trigger (see the example in Figure 4).

Trigger-to-trigger
syntactic paths
(within sentence)

the syntactic path from the trigger of E1 to the trigger of E2

Shortest syntactic
paths

The shortest syntactic path between E1 and E2 (restricted to intra-sentence cases).

Syntactic distance The length of each syntactic path (restricted to intra-sentence cases).

Coreference

Event features for
anaphors

Whether or not an event mention is resolved through coreference. For cases of coreference, generate the Event
features prefixed with “coref-anaphor” for the text labeled “E1-anaphor” in the following example:

(6) [A binds with B]E1-antecedent

(7) [This interaction]E1-anaphor precedes the [phosphorylation of C]E2

Resolved arguments Which arguments, if any, were resolved through coreference. For example:
[The mutantTHEME binds with BTHEME]E1 → THEME:resolved

Table 3: An overview of the primary features used in the feature-based classifier, grouped into four
classes: Event – features extracted from the two participating events, in isolation; Event-Event (surface)
– features that model the lexical context between the two events; Event-Event (syntax) – features that
model the syntactic context between the two events; and Coreference – features that capture coreference
resolution information that impact the participating events.

In addition, binding of nucleotide-free Ras to PI3KC2β inhibits its lipid kinase activity. The PI3KC2β and Ras
complex may then translocate to distal sites such as early endosomes (EE) where ITSN1 then binds to PI3KC2β
leading to the release of nucleotide-free Ras and activation of the lipid kinase activity of PI3KC2β.

IN NN , NN IN JJ NN TO NN PRP$ NN NN NN .
In addition , binding of nucleotide-free Ras to PI3KC2beta inhibits lipid kinase activity .

root
nsubj

THEME

THEME

NN MD RB VB TO JJ NNS JJ IN JJ NNS NN RB VBZ TO NN
. . . complex may then translocate to distal sites such as early endosomes . . . ITSN1 then binds to PI3KC2beta . . .

root

prep to prep such as rcmod

THEME

THEME

ROOT >NSUBJ + ROOT >PREP TO >PREP SUCH AS >RCMOD

Figure 4: Generation procedure for the cross-sentence syntactic path feature. For each event in a pair, we
find the shortest syntactic path originating from the sentential root node leading to a token in the event’s
trigger. The two syntactic paths are then joined using the + symbol to form a single feature.
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Input
(tokenized text)

Embeddings
(optional pre-trained weights)

Dropout
(50%)

Dense
(dim. 3)

Softmax

concatenated vectors

Figure 5: Architecture for the basic latent feature
model using the minimal sentential span encom-
passing events 1 and 2 as input.

Input 1
E1 tokenized

text

Embeddings

LSTM

Dropout

Input 2
Encompassing

tokenized text

Embeddings

LSTM

Dropout

Input 3
E2 tokenized

text

Embeddings

LSTM

Dropout

Merge
(concat)

Dropout

Dense

Softmax

Figure 6: Modified architecture for a latent feature
model with three-pronged input: the text of event
1 (left), the minimal sentential span encompassing
events 1 and 2 (middle), and the text of event 2
(right).

epochs with support for early stopping through
monitoring of validation loss10. Weight updates
were made on batches of 32 examples and all folds
completed in fewer than 50 epochs.

The table also includes a sieve-based ensemble
system, which performs significantly better than
the best-performing single model. In this archi-
tecture, the sieves are applied in descending order

10The validation set used for each fold came from a differ-
ent class-balanced fold.

of precision, so that the positive predictions of the
higher precision sieves will always be preferred
to contradictory predictions made by subsequent,
lower-precision sieves. Figure 7 illustrates that as
sieves are added, the F1 score remains fairly con-
stant, while recall increases at the cost of preci-
sion.

Model p r f1

Intra-sentence 0.5 0.01 0.01
Inter-sentence 0.5 0.01 0.01
Reichenbach 0 0 0

LR+L1 0.58 0.32 0.41
LR+L2 0.65 0.26 0.37
SVM+L1 0.54 0.35 0.43
SVM+L2 0.54 0.29 0.38
RF 0.62 0.25 0.36

LSTM 0.40 0.25 0.31
LSTM+P 0.39 0.20 0.26
FLSTM 0.43 0.15 0.22
FLSTM+P 0.38 0.22 0.28

Combined 0.38 0.58 0.46*

Table 4: Results of all proposed causal models,
using stratified 10-fold cross-validation. The com-
bined system is a sieve-based architecture that ap-
plies the models in decreasing order of their pre-
cision. The combined system significantly outper-
forms the best single model, SVM with L1 regu-
larization, according to a bootstrap resampling test
(p = 0.022).

Despite some obvious patterns noted in Table 1,
the deterministic models perform the worst due in
large part to their rarity in the corpus. An anal-
ysis of this result is given in Section 5. Over-
all, our top-performing model was the linear ker-
nel SVM with L1 regularization. In all cases, the
feature-based classifiers outperform the latent fea-
ture representations, suggesting that in cases such
as this where little data is available, feature-based
classifiers capitalizing on high-level linguistic fea-
tures are able to better generalize and thus outper-
form latent feature models. However, as our dis-
cussion in Section 5.1 will show, our combined
model demonstrates that the latent and feature-
based models are largely complementary.
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Figure 7: The performance of the sieve-based
combined model varies with each model added.

5 Discussion

Overall, results are promising, particularly in light
of the conscious choice to omit (causal) regulation
reactions from this task, as they are already cap-
tured by the Reach reading system.

However, the deterministic models created so
far have extremely low recall, such that it is diffi-
cult even to determine their precision. An analysis
of the Reichenbach model reveals one source of
this low coverage. In short, although writers could
describe causal mechanisms using temporal indi-
cators such as tense and aspect, temporal descrip-
tion is rare enough in this domain not to be repre-
sented in our randomly sampled database. Table
5 illustrates the lack of overlap with informative
tense-aspect combinations; a single tense is used
per passage, and no perfective aspect is used.

E1↓, E2→ past pres. fut.
simple perf. simple perf. simple perf.

past simple 69 0 38 0 0 0
perf. 0 0 0 0 0 0

pres. simple 49 0 134 0 1 0
perf. 0 0 0 0 0 0

fut. simple 0 0 0 0 0 0
perf. 0 0 0 0 0 0

Table 5: Event tense and aspect for events contain-
ing verbs in the present study. Highlighted cells
are tense-aspect combinations that are informa-
tive for establishing temporal precedence, follow-
ing Chambers et al. (2014). All but one event pair
fall outside of these informative combinations, and
that exceptional pair was a false positive case.

Similarly, the time expressions required by the
deterministic intra- and inter-sentence precedence
rules are rare enough to make them ineffective on
this sample.

5.1 Model overlap

As Chambers et al. (2014), Mirza (2016), and
many other algorithms have shown, models can be
applied sequentially in “sieves” to produce higher-
quality output. Ideally, each model in a sieve-
based system will capture different portions of
the data through a mixture of approaches, distin-
guishing this method from more naive ensembles
in which the contributions of a lone component
would be washed out. Figure 8 details this ob-
servation by showing the coverage difference be-
tween the models described here.

4

3

9

4

1

16

2

2

13

3
14 0

1

6

6

LSTM LSTM+P

FLSTM FLSTM+P

(a) Overlap of true positive predictions made by LSTM mod-
els. Though in Table 4 the models appear to perform simi-
larly, the learned representations are largely distinct and com-
plementary in their coverage.

4334 472

Feature-basedLatent

Rules

(b) Similarly, the overlap between the feature-based models
and the latent models was low overall.

Figure 8: The overlap of true positives among the
investigated models was low.

5.2 Error analysis

We performed an analysis of the false positives
shared by all feature-based classifiers, in addition
to the false negatives shared by all models. Here
we limit our discussion to only the most promi-
nent characteristic shared by the majority of false
positives.
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Discourse information More than half of the
false positives share contrastive discourse fea-
tures, suggesting that a model of discourse could
improve classifier discrimination. Example (8)
demonstrates such a contrastive structure, which
whereas introduces a clause (and event) that
is contrasted and therefore both temporally and
causally distinct from the following clause (and
event). The existence of regular cues like whereas
indicates that a feature to explicitly model these
structures is possible.

(8) Whereas [PRAS40 inhibits the mTORC1
activity via raptor]E1, DEPTOR was
identified to interact directly with
mTOR in both [mTORC1 and mTORC2
complexes]E2

6 Related Work

Though focused on temporal ordering, Cham-
bers et al. (2014) adopt a sieve-based approach,
with high-precision deterministic sieves preced-
ing and constraining lower-precision, higher-recall
machine learning sieves. As with our system, the
deterministic sieves were linguistically motivated,
and had the additional advantage of operating over
time expressions (during, Friday, etc.) as well as
events, the former of which are typically lacking
in the biomedical domain.

Mirza (2016) implemented a hybrid sieve-based
approach for causal relation detection between
events that includes a set of causal verb rules
and corresponding syntactic dependencies and a
feature-based classifier. However, both of these
works focus on open-domain texts. To our knowl-
edge, we are the first to investigate causal prece-
dence in the biomedical domain.

7 Conclusion

These are the first experiments regarding au-
tomatic annotation of causal precedence in the
biomedical domain. Although the dearth of tem-
poral expressions and other regular linguistic cues
make the task especially difficult in this domain,
the initial results are promising, and demonstrate
that a sieve-based system of the models tested here
improves performance over the top-performing in-
dividual component. Both the annotation cor-
pus and the models described here represent large
steps toward linking automatic reading to a larger,
more informative biological mechanism.
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Abstract

Identification of the certainty of events
is an important text mining problem. In
particular, biomedical texts report medical
conditions or findings that might be fac-
tual, hedged or negated. Identification of
negation and its scope over a term of in-
terest determines whether a finding is re-
ported and is a challenging task. Not much
work has been performed for Spanish in
this domain.

In this work we introduce different algo-
rithms developed to determine if a term
of interest is under the scope of negation
in radiology reports written in Spanish.
The methods include syntactic techniques
based in rules derived from PoS tagging
patterns, constituent tree patterns and de-
pendency tree patterns, and an adaption
of NegEx, a well known rule-based nega-
tion detection algorithm (Chapman et al.,
2001a). All methods outperform a sim-
ple dictionary lookup algorithm developed
as baseline. NegEx and the PoS tagging
pattern method obtain the best results with
0.92 F1.

1 Introduction

Text mining and natural language processing
(NLP) techniques have been applied to the
biomedical domain for a long time. Automatic
identification of relevant terms in medical reports
is a preliminary step for indexing and for search
tools and it is useful for clinical, educational and
research purposes.

A clinical condition mentioned in a biomedical
text does not necessarily mean that a factual condi-
tion is reported, since the term or terms referring to
the condition could be under the scope of negation

or epistemic modality markers (hedges). For ex-
ample, in ”no lymphadenopathies were detected”,
”no ... were detected” indicates that the medical
condition (”lymphadenopathy”) is negated.

We refer to language constructions that denote
negations as negations or triggers and to medical
conditions and observations made about a partic-
ular illness in medical examinations as findings or
terms of interest.

According to (Chapman et al., 2001b), many of
the medical conditions described in unstructured
texts in medical health records are negated. For
this reason, the detection of negations in texts of
the biomedical domain is an important task in the
field of NLP, called BioNLP. Scope of negation
has also received attention in other domains (Wie-
gand et al., 2010; Potts, 2011; Wor, 2010).

In this work we implement five techniques: 1)
a simple approach, used as baseline, that deter-
mines if a finding is negated based on the pres-
ence of a negation term and a finding in the same
sentence. The negation term is detected by dictio-
narylookup of negation terms; 2) an adaptation of
NegEx to Spanish; the use of negation rules that
were created based on 3) PoS tagging patterns, 4)
constituent tree patterns, and 5) dependency tree
patterns. Our goal is to decide which of the imple-
mented methods is the best to automatically detect
negations of important findings tagged in radiol-
ogy reports written in Spanish.

Our methods are applied to Spanish and to a
particular domain: radiology. This domain (and
particularly our dataset) has the characteristic of
having short reports, with usually short sentences,
using informal language, containing non-standard
abbreviations, and with highly noisy text. As far
as we know, of our methods only NegEx has been
implemented for Spanish and our implementation
obtains better results. Using a Spanish dataset
presents some challenges: we had to build a cor-
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pus and annotate it, syntactic parsing tools are
less developed for languages other than English,
and translations needed for the development of the
work incorporates errors.

Experiments were performed over a dataset pre-
pared from a set of ultrasonography reports written
in Spanish, that have been previously tagged auto-
matically with a tool based on RadLex1, a specific
radiology lexicon. A fragment of a tagged ultra-
sonography report in Spanish and its translation to
English can be seen below: ”Pancreas: tamano
y ecoestructura normal. Retroperitoneo vascu-
lar: sin <finding>alteraciones</finding>. No se
detectaron <finding>adenomegalias </finding>.
(...)”(”Pancreas: normal size and echotexture.
Vascular retroperitoneum: without <finding>
changes </ finding>. No <finding> lym-
phadenopathies </finding> were detected.(...) ”).

The rest of the paper is organized as follows.
Section 2 presents previous work in the detection
of negation terms in the medical domain. In Sec-
tion 3 we present our main contributions, by ex-
plaining the methods and datasets used. Section
4 shows the results of evaluating each of the al-
gorithms with the testing dataset. Finally, Discus-
sions, Conclusion and Future Work are presented.

2 Previous work

The use of information retrieval techniques for au-
tomatically indexing narrative medical reports and
creating terminological resources has been present
at least since mid-late 90s (Aronson et al., 1994;
Rindflesch and Aronson, 1994; Sundaram, 1996).

In order to determine if a finding mentioned
in a narrative medical report is under the scope
of negation, (Chapman et al., 2001a) developed
NegEx, a simple algorithm based on regular ex-
pressions that obtained very good results for En-
glish. Several methods were built upon this simple
algorithm. (Wu et al., 2011) developed a word-
based radiology report search engine based in a
modification of NegEx. (Harkema et al., 2009)
developed ConText, based in NegEx, employing
a different definition for the scope of triggers and
adopting it to different type of medical reports.
NegEx has been adapted to Swedish (Skeppst-
edt, 2011), French (Deléger and Grouin, 2012),
Dutch (Afzal et al., 2014), and Spanish for clin-
ical records written in that language (Costumero
et al., 2014) and radiology reports (Stricker et al.,

1http://www.radlex.org/

2015). The NegEx lexicon has been extended for
Swedish, French and German (Chapman et al.,
2013).

Syntactic methods have also been used. (Huang
and Lowe, 2007) construct manually grammar
rules using Part of Speech tagging in order to de-
tect negations in radiology reports. (Uzuner et al.,
2009) compare a NegEx extension with a machine
learning technique that uses lexical and syntactic
information using two corpora of discharge sum-
maries and one of radiology reports. (Mehrabi
et al., 2015) use dependency parsing to reduce
NegEx False Positives. (Sohn et al., 2012) ap-
plies techniques of dependency parsing to detect
negations. Therefore he compiles negation rules
derived from the dependency paths.

Finally, machine learning techniques are also
used for the negation detection task. (Cruz Dı́az
et al., 2010) compare these techniques to a regular
expression-based method. (Morante and Daele-
mans, 2009) use them in order to establish the
scope of negation in biomedical texts. (Rokach et
al., 2008) perform automatic negation identifica-
tion in clinical reports by means of extracting au-
tomatically regular expressions and patterns from
annotated data and using them to create a learning
method.

Several challenges have been performed on this
topic. CoNLL 2010 Shared Task: Learning to
Detect Hedges and Their Scope in Natural Lan-
guage Text (Farkas et al., 2010), 2010 i2b2 NLP
challenge, focused on the negation and uncertainty
identification (Uzuner et al., 2011) and SEM 2012
Shared Task: Resolving the Scope and Focus of
Negation(Morante and Blanco, 2012).

3 Methods

In this section we introduce the different methods
developed to detect negations in radiology reports
written in Spanish. The idea underlying syntac-
tic techniques is to identify patterns of negations,
manually compile negation rules, and use them
to determine if a finding is under the scope of a
negation or not. These methods used rules that
were elaborated based on: 1) PoS tag patterns,
2) constituent tree (or shallow parsing) patterns of
of the sentences and 3) dependency tree patterns
(paths obtained from the dependency parsing of
sentences). Rules were evaluated with the testing
dataset.

Our methods only take into account the sen-
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tence where the term of interest appears in order
to determine whether it is negated or not, i.e. it
does not use information of other sentences.

3.1 Dictionary lookup algorithm

This simple algorithm developed is based on the
lookup in the text of a list of negations marked by
the expert radiologist as usual negation terms used
in radiology reports. Sentences containing tagged
findings where a negation appears (in any order)
are tagged as Negated, and those with findings and
without negations are tagged as Affirmed. This
algorithm will be used as baseline.

3.2 The NegEx algorithm

NegEx algorithm for negation detection takes as
input medical records with tagged findings and
looks for phrases (triggers) that are mostly used
to denote negation, for example ”no signs of”. It
checks if the phrase is applied to negate the find-
ing or disease using rules that take into account
the distance among the finding and the negation
phrase.

The set of triggers provided by the NegEx
tool2 was translated using automatic translation3

(since translation is an expensive task and we are
not experts in the domain) and revised by two
non-domain experts. Those triggers that were
not correctly translated were eliminated or cor-
rected. Given that English lacks grammatical gen-
der, while Spanish has two (male and female), ad-
ditional trigger instances were generated due to
inflectional properties (for example from ”no” to
”ningún” ”ninguna”). NegEx triggers are divided
into: pseudo negation phrases, negation terms,
termination terms and conjunction terms. A la-
bel is used to classify each trigger in one of these
groups. Triggers were classified according to their
use.

This implementation differs from others (Cos-
tumero et al., 2014; Stricker et al., 2015) (and is
part of our contribution) mainly in that:

• tests were performed with two different trig-
ger sets: 1) NegEx translated triggers (de-
scribed in previous paragraph). A total of 210
translated triggers were obtained. 2) triggers
obtained by combining translated triggers, a

2https://code.google.com/p/negex/.
3Google Translate https://translate.google.com/

set of bi and trigrams4, and a list of triggers
provided by a physician expert in the radiol-
ogy domain (a total of 350 triggers),

• some end of scope triggers were added,

• coordinated negations, that were not taken
into account in the English, nor in the Span-
ish versions were included as a trigger (ni -
nor-) and NegEx algorithm was modified to
include this term.

3.3 POS tagging patterns

Tags were assigned to each word of the sentence
in order to determine the Part of Speech with the
use of Freeling analyzer (Carreras et al., 2004). A
small set of sentences were used to define negation
patterns based on PoS tags. Patterns defined were:

• no +...+ verb + ...+ <finding>

• no +...+ <finding>

• sin +...+ <finding>

• sin +...+ <finding> +...+ ni +...+ <finding>

• no +...+ <finding> +...+ ni +...+ <finding>

• no +...+ verb +...+ <finding> +...+ ni +...+
<finding>

where ”...” denotes zero or more words. The
algorithm looks for these patterns in PoS tagged
sentences. If a pattern occurs, the sentence is
labeled as Negated indicating that the finding is
under the scope of negation. For example: For
”no se detectaron adenomegalias” we would have
”RN P00CN000 VMIS3P0 FINDING”, that satis-
fies the pattern ”no +...+ verb + ...+<finding>”.

RN represents ”no”. The words ”sin” (without)
and ”ni” (nor) do not have specific negation tags
(they are tagged as preposition and conjunction).
That is why we look for these words directly in
the text, instead of looking for some specific tag
that represents them.

4Bi and trigrams were obtained from the 85600 report
dataset (see Data subsection). Those, whose first word was
no, were selected and the resulting were manually analyzed
in order to discard those that did not correspond to triggers.
94 triggers were obtained.
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3.4 Constituent tree patterns
Shallow parsing identifies the constituents of a
sentence. We use this technique to manually elab-
orate patterns based on the phrase constituents
avoiding the use of word distance to determine
negation scope. Following patterns were used
(patterns and phrase constituents5 are shown):

1) no... verb... <finding>

/ neg
S - grup-verb
\ sn→grup-nom-mp→ w-ms→<finding>

2) without <finding>

S - grup-sp-> prep->sin
\ sn→grup-nom-mp→w-mp→<finding>

3) no <finding>

S - neg
\ sn→grup-nom-mp→w-mp→<finding>

4) no ... verb ... <finding> nor ... <finding>

/ neg
/ grup-verb

S − sn→grup-nom-mp→w-mp→<finding>
\ coord
\ sn→grup-nom-mp→w-mp→<finding>

5) <finding>: no

/ sn→grup-nom-ms→w-ms→<finding>
S - no-c→:
\ neg

Three steps were performed to obtain patterns
from the constituent tree: 1) the finding is replaced
by ”finding” and using Freeling the shallow pars-
ing tree is obtained. 2) the tree structure is repre-
sented in an array. 3) the array is used to check
whether the sentence satisfies one of the patterns
previously discovered. For example, in order to
check if a sentence satisfies pattern 1, it is verified
if node with label S has as children a node with

5neg stands for ”no”, grup-verb for ”ver-
bal syntagma”, sn for nominal syntagma. See
https://github.com/iknow/FreeLing/blob/master/doc/

grammars/esCHUNKtags for further references.

label neg, a node with label grup-verb and a node
with label sn (in this order), and if node with la-
bel sn has as child a node with label grup-nom-ms,
which also has as child a node with label w-ms and
this has as child the node with content finding.

3.5 Dependency tree patterns

Dependency parsing allows us to know the syntac-
tic structure of a phrase. The method is based on
syntactic context and does not take into account
word distance to determine negation scope. Nega-
tion patterns are manually created based on syn-
tactic dependency paths in the following way:

1. a small set of sentences containing all known
type of negations (no, ni, sin) (no, nor, with-
out) were parsed with a MATE dependency
parser (Bohnet et al., 2013)6. A parse tree
was obtained for each sentence (see Fig. 1),

2. negation terms were located automatically
and an algorithm was developed in order to
retrieve the path in the dependency tree be-
tween the negation term and the finding pre-
viously tagged,

3. paths were analyzed and a set of patterns that
imply negation of findings was manually de-
veloped, and

4. patterns obtained in the previous step were
tested with the testing dataset.

Figure 1: Example of a dependency parser tree for
a sentence of the form of Pattern 1 (P1).

Patterns detected were following:

6The model was obtained as indicated in (Arias et al.,
2014).
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• P1: sentences of the form ”no se detectaron
adenomegalias” (The Spanish structure of
this particular sentence corresponds to NEG
(no) verb finding). The negation has a depen-
dency relation with a word that the finding
depends on.

• P2: sentences of the form ”retroperito-
neo vascular: sin alteraciones” (vascu-
lar retroperitoneum: without alterations)
(anatomical part: NEG (sin) <finding>).
The finding depends of ”sin”.

• P3: sentences like ”via biliar no dilatada”
(bile duct not delated) (anatomical part NEG
<finding>, where NEG is ”no”).

• P4: sentences of the form ”No se de-
tectaron colecciones ni liquido libre” (nei-
ther collections nor free liquid has been de-
tected) (NEG(no) verb <finding> NEG(ni)
<finding>).

Data
Two datasets were used. The analysis dataset to
infer the patterns of each of the proposed methods
used and the test dataset to test the methods and
compare their results.

Our original dataset is composed of about
85600 reports of ultrasonography studies per-
formed in a public hospital. Reports are written in
Spanish in non-structured format. They are brief
(approximately five lines each) and they state what
was found in the study performed on the patient.
Text is noisy, characterized by frequent typos, ab-
breviations, sentences which are not syntactically
well-formed and there is lack of punctuation in
some cases.

The process to obtain both datasets was the fol-
lowing: An algorithm was used in order to au-
tomatically detect terms of interest (findings in
the radiology domain) in the reports (Cotik et al.,
2015). Then, a sentence tokenization was per-
formed using NLTK (Loper and Bird, 2002). Only
sentences with findings are selected (randomly) to
create analysis and testing datasets. Finally, those
sentences were annotated as containing negation
with scope over the term of interest (Negated) or
not (Affirmed). For the creation of the testing
dataset a set of sentences were randomly selected
and the following steps were performed: 1) we
verified manually that sentences were neither the

same (among them) nor very similar, 2) segmenta-
tion issues -e.g. different sentences that were not
separated by the tokenizer- were corrected, 3) sen-
tences with findings tagged by the algorithm and
that were not considered actual findings by the
annotators were eliminated and replaced by new
ones. The analysis set is composed of 979 sen-
tences and the testing set of 1000 sentences.

Findings detection
There are various inventories that serve as a basis
to detect relevant terms in medical reports. Some
of them are ICD107, a standard diagnostic ter-
minology for epidemiology, health management
and clinical purposes; and SNOMED CT8, a clin-
ical health terminology ontology -all of them in-
cluded in UMLS (Unified Medical Language Sys-
tem)9 Metathesaurus-; and RadLex10, a lexicon
centered only on radiology terms. SNOMED CT
and ICD-10 are available in Spanish, RadLex is
only available in English and in German. Pre-
vious implementations vary the type of inventory
used to detect terms (UMLS, adaptations of ICD-
10 and MeSH11, among others). The information
extraction algorithm we used to detect findings is
based on the appearance of RadLex pathological
terms in the reports. RadLex was chosen because
it is the only lexicon specifically developed for
the radiology domain, which is the domain under
study. It has the disadvantage that no Spanish ver-
sion has been developed, so it had to be translated
from English. The translation is not an easy task,
since, particularly, in the medical domain, there
exist terms that are used differently in Spanish and
in English.

Annotations
Working with languages different than English
has, among others, the difficulty of the lack of data
and tools. In this case we do not have a Gold Stan-
dard for validating the reliability of the new model.
Annotating is an expensive task, and domain ex-
perts are not always available. The datasets build
had to be annotated. The analysis dataset was an-
notated by two non-experts and the testing dataset

7http://apps.who.int/classifications/icd10/browse/2016/en
8http://www.ihtsdo.org/snomed-ct
9http://www.nlm.nih.gov/research/umls/. UMLS is a set

of files and software that bring together many health and
biomedical vocabularies and standards to enable interoper-
ability between computer systems.

10http://rsna.org/RadLex.aspx
11http://www.ncbi.nlm.nih.gov/mesh
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by an expert of the radiology domain and two non-
experts.

All sentences (with previously tagged findings)
were annotated as Affirmed if it is possible to infer
that the finding is present in the patient, Negated
if the finding is absent, Probable if it is not cer-
tain that the finding is present, but it probably is,
and Doubt if the finding corresponds to the past
or if it is not clear for the annotator if the find-
ing is present or not. For results evaluation Proba-
ble annotations were considered as Affirmed, since
physicians are interested in retrieving them, and
sentences categorized as Doubt were replaced by
other sentences (that were also annotated). In the
cases where there was no agreement among an-
notators, usually the radiology-expert criteria was
respected. In case of doubt the annotation criteria
was revised by the annotators and the annotation
was done according to the results of this process.

In both cases, the annotation process was per-
formed in two stages, so that we could revise
the annotation criteria. Some annotated sentences
were overlapped, with the objective to calculate
the Inter Rater Agreement (IRA) between annota-
tors to measure their level of agreement. As mea-
sure for that goal we calculated Cohen’s Kappa co-
efficient (Cohen, 1960).

Figure 2 shows the number of sentences anno-
tated by each annotator individually and by more
than one annotator in the testing dataset. Kappa
coefficient (κ) was calculated for two sets: 1) 100
sentences annotated by non-expert annotator 1 and
radiology domain expert (annotator 3), and 2) 100
sentences annotated by non-expert annotator 2 and
annotator 3. Table 1 shows κ measure for the test-
ing dataset. κ measure for the analysis dataset had
similar results.

Figure 2: Number of sentences annotated by dif-
ferent annotators in the testing dataset.

annotators κ

A1 and A3 0.97
A2 and A3 0.96

Table 1: IRA of expert/non-experts annotation in
the testing dataset. A1 and A2 are computer sci-
ence experts (not medical, nor linguistic experts),
A3 is a radiology expert.

4 Results

Table 2 shows the performance of our NegEx
adaptation and our syntactic methods to Spanish
compared to the baseline. We show the best re-
sult of NegEx (obtained from the trigger set built
from a combination of translated triggers, bi and
trigrams and a list of terms suggested by the ra-
diology expert). F1 using NegEx only with trans-
lated triggers was similar: 0.91 (81 TP, 76 FP, 144
FN and 699 TN). Results of NegEx with the orig-
inal triggers (translated) and without the addition
of coordinated negations (and tested with another
dataset) can be seen in (Stricker et al., 2015).

Precision, Recall and F1 measure are the usual
measures in the field and here are based on the
interpretation of finding real negations. F1 mea-
sure balances precision -how many findings iden-
tified as negated, are actually negated- and re-
call -proportion of the negated findings that were
retrieved-. Accuracy is the rate of correctly classi-
fied sentences. True Positive (TP) refers to terms
negated by the Gold Standard and correctly pre-
dicted by the methods. See Table 4 for the mean-
ing of False Positive (FP), True Negative (TN) and
False Negative (FN).

5 Discussion

All algorithms outperform dictionary lookup, our
baseline algorithm. This makes sense, since the
baseline does not take negation scope into account.
For example in ”ectasia pielica izquierda sin cam-
bio de diametro postmiccional” what is negated
(cambio de diametro postmiccional) is not the
finding (ectasia). The baseline algorithm detects
the negation (sin) and assumes wrongly that the
finding is negated. This scope problem is solved
in the rest of the algorithms developed.

Constituent tree patterns and dependency tree
patters were tested assuming that they would per-
form better than PoS tagging patterns and NegEx
in the detection of the negation scope, since in

161



Algorithm Pattern NegEx POS Constituent Dependency
Matching (adapted Tagging Tree Tree
(baseline) to Spanish) Patterns Patterns Patterns

TP 201 220 219 200 194
FP 107 31 31 19 61
FN 24 5 6 25 31
TN 668 744 744 756 714
Accuracy 0.87 0.96 0.96 0.96 0.91
Precision 0.65 0.88 0.88 0.91 0.77
Recall 0.89 0.98 0.97 0.89 0.86
F1 0.75 0.92 0.92 0.90 0.81

Table 2: Performance of different algorithms with testing dataset composed by 1000 sentences.

Algorithm NegEx NegEx NegEx
(Costumero et al., 2014) (Stricker et al., 2015) (adapted)

F1 0.74 0.67 0.73

Table 3: Performance of different implementations of NegEx with (Costumero et al., 2014) dataset

predicted Neg predicted Aff
actual Neg TP FN
actual Aff FP TN

Table 4: actual stands for Gold Standard annota-
tion, predicted for algorithms output.

these two methods we have not to consider fixed
windows of words between the negation and the
term of interest (as we do consider in NegEx) or
each word that forms the sentence (as we do in
our PoS tagging method). Nevertheless NegEx
and the PoS Tagging based method have better re-
sults (not very different from constituent tree pat-
terns). We understand that two factors influence
these results: 1) the sentences of the reports are
usually in our case relatively short (average: 14
words, longest: 74 words). This explains why
having fixed windows of 6 words might be good
enough for our data and suggests that we do not
need to use more complex methods, that are in-
dependent of the length of the sentence and that
do not fix word distance. That is, the linear anal-
ysis performed by PoS tagging patterns might be
enough for these sentences. Dependency and con-
stituent parsing, that perform an analysis based on
the sentence structure, might be left for the most
complex sentences. 2) MATE, the tool used to
do the dependency parsing was trained based on a

general language12 that includes documents of the
medical domain, but that is not restricted to it13.

Regarding NegEx, another implementation was
tried with a very reduced trigger set, in order to
try to do it domain independent (see Table 3). F1
is similar when tested with our test set (0.91 in-
stead of 0.92), and it is also similar (0.73) to F1
obtained by (Costumero et al., 2014) (0.74) and
better than F1 obtained by (Stricker et al., 2015)
(0.67) when tested with Costumero’s dataset. This
demonstrates that our NegEx implementation with
a reduced trigger set could be used for data differ-
ent that radiology reports.

Further analysis of results shows that: 1) the ad-
dition of a line of code to NegEx algorithm allows
us to handle complex negations. E.g. in ”no se
detectaron finding1 ni finding2” (”finding 1 and
finding 2 were not detected”), when ”finding2” is
the term of interest. Those kinds of negations are
also handled correctly by the patterns built from
our syntactic methods, but in some cases nega-
tions are much more complex and are not correctly
parsed by the dependency parsing algorithm. 2)
Sometimes, negations are not affecting the term of
interest, but a modifier of it and the algorithm tags
the term of interest as negated. For example, in
”pancreas: no visible por abundante gas” (”pan-
creas: not visible due to abundant gas”). The

12https://www.iula.upf.edu/corpus/corpusuk.htm
13Besides, the area of documents in the medical domain is

broad and the ones used differ from radiology reports.
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trigger ”no” (”not”) is applied to ”visible” (”visi-
ble”), but the term of interest is ”gas” (”gas”). 3)
Constituent tree patterns method has shown to fail
where there are no punctuation signs. This shows
that the characteristics of the noisy text makes the
success of syntactic techniques more complicated.

NegEx shows to perform better than a previ-
ous implementation for radiology reports in Span-
ish (Stricker et al., 2015) and similar than an
implementation for general medical texts also in
Spanish (Costumero et al., 2014) (see Section 5).
Our Pos-Tagging results and the ones reached by
(Huang and Lowe, 2007) for radiology reports in
English are similar. They obtain 0.90 recall, 0.97
precision and 0.93 F1, while we obtain 0,88 recall,
0,97 precision and 0,92 F1. (Sohn et al., 2012) re-
sults for negation detection in clinical texts in En-
glish using dependency parsing are also similar to
our dependency parser results. They obtain 0.74
recall, 0.97 precision and 0.84 F1, while we obtain
0.77, 0.86 and 0.81 for each of these measures.
Nevertheless, it is not easy to compare results with
existing papers, since languages and corpora are
not the same.

6 Conclusion

Considering the different methods implemented
for the detection of negations of terms of inter-
est in radiology reports written in Spanish, NegEx
has good results, but only considers partially the
negation scope over the target term (since it is cal-
culated based on a fixed-size window of words).
Among the pattern methods tested, PoS tags al-
lows us to study the ordering of words in phrases
containing negations and to elaborate patterns
based on them. But they are dependent on each
word of the sentence. Based on a reduced dataset
it is not easy to model all type of forms that
sentences with negated findings may have. Con-
stituent and dependency tree pattern methods dif-
fer from the PoS tagging method in that the whole
structure of the sentence is used. Constituent tree
method segments the sentence in syntactic related
groups. These cases do not have to take so many
detail into account and are easier to build. Both
methods differ in that the second takes into ac-
count the dependence among each type of word
in the sentence. Dependencies are modeled in a
tree and each edge is labeled with the relation that
exists among the words.

Detection negation in medical reports is a chal-

lenging task as it is characterized by short sen-
tences and informal language often noisy. Fur-
thermore, tools for Spanish in general are less de-
veloped than in other languages even more in this
specific subdomain. For example, the availabil-
ity of a large corpus of annotated medical reports
(and specifically those in the radiology domain)
would enable to have a better behavior of all lan-
guage related tools (in particular POS tagging as
well as constituent/dependency parsers). RadLex,
is a comprehensive lexicon of radiology terms that
was chosen to detect findings due to its adequacy
to our domain of interest. Its translation to Spanish
was made locally but unfortunately includes some
errors, such as the order of resulting words and
issues derived from ambiguity. All these issues
made negation detection more difficult.

The high IRA obtained among the annotations
performed by the specialist and two non-specialist
could imply that this particular type of reports
of short sentences could be annotated by non-
specialists in the domain. We consider this is an
important result, given the scarcity of resources.

We consider that having short sentences (ours
have an average of 14 words) may contribute to
the fact that NegEx and PoS tagging methods have
similar results than the constituent tree method and
better results than dependency tree method. An
analysis should be performed with more complex
sentences in order to test what happens in those
cases. The effectiveness of syntactic techniques
depends on the compliance of the text to the lan-
guage grammatical rules. The results obtained
support this asseveration.

7 Future Work

We are currently working in analyzing improve-
ments to the dependency parser patterns and we
are performing a further analysis of results, eval-
uating alternative methods (voting method, where
the classification (Affirmed/Negated) is based on
the tag received by most of the methods) and eval-
uating the possibility of implementing a hybrid
methodology -taking the best of NegEx and syn-
tactic methods- that reduces errors in order to ob-
tain better F1.

We would like to extend our work for dealing
with hedges and we plan to continue using these
methods for other type of medical reports written
in Spanish.
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rat Marimón, Alba Milà, Jorge Vivaldi, Muntsa
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Mowery, and Louise Deléger. 2013. Extending the
NegEx Lexicon for Multiple Languages. In Pro-
ceedings of the 14th World Congress on Medical and
Health Informatics, pages 677–681, Copenhagen,
Denmark.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement, 20(1):37–46.

Roberto Costumero, Federico López, Consuelo
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Abstract

The quality of word embeddings depends
on the input corpora, model architec-
tures, and hyper-parameter settings. Us-
ing the state-of-the-art neural embedding
tool word2vec and both intrinsic and ex-
trinsic evaluations, we present a compre-
hensive study of how the quality of em-
beddings changes according to these fea-
tures. Apart from identifying the most
influential hyper-parameters, we also ob-
serve one that creates contradictory re-
sults between intrinsic and extrinsic eval-
uations. Furthermore, we find that bigger
corpora do not necessarily produce better
biomedical domain word embeddings. We
make our evaluation tools and resources
as well as the created state-of-the-art
word embeddings available under open li-
censes from https://github.com/
cambridgeltl/BioNLP-2016.

1 Introduction

As one of the main inputs of many NLP meth-
ods, word representations have long been a ma-
jor focus of research. Recently, the embedding
of words into a low-dimensional space using neu-
ral networks was suggested (Bengio et al., 2003;
Collobert and Weston, 2008; Turian et al., 2010;
Mikolov et al., 2013b; Pennington et al., 2014).
These approaches represent each word as a dense
vector of real numbers, where words that are se-
mantically related to one another map to similar
vectors. Among neural embedding approaches,
the skip-gram model of Mikolov et al. (2013a) has
achieved cutting-edge results in many NLP tasks,
including sentence completion, analogy and senti-
ment analysis (Mikolov et al., 2013a; Mikolov et
al., 2013b; Fernández et al., 2014).

Although word embeddings have been studied
extensively in recent work (e.g. Lapesa and Ev-
ert (2014)), most such studies only involve general
domain texts and evaluation datasets, and their re-
sults do not necessarily apply to biomedical NLP
tasks. In the biomedical domain, Stenetorp et al.
(2012) studied the effect of corpus size and do-
main on various word clustering and embedding
methods, and Muneeb et al. (2015) compared two
state-of-the-art word embedding tools: word2vec
and Global Vectors (GloVe) on a word-similarity
task. They showed that skip-gram significantly
out-performs other models and that its perfor-
mance can be further improved by using higher
dimensional vectors. The word2vec tool was also
used to create biomedical domain word represen-
tations by Pyysalo et al. (2013) and Kosmopoulos
et al. (2015).

Given that word2vec has been shown to achieve
state-of-the-art performance that can be further
improved with parameter tuning, we focus on
its performance on biomedical data with differ-
ent inputs and hyper-parameters. We use all
available biomedical scientific literature for learn-
ing word embeddings using models implemented
in word2vec. For intrinsic evaluation, we use
the standard UMNSRS-Rel and UMNSRS-Sim
datasets (Pakhomov et al., 2010), which enable
us to measure similarity and relatedness sepa-
rately. For extrinsic evaluation, we apply a neural
network-based named entity recognition (NER)
model to two standard benchmark NER tasks,
JNLPBA (Kim et al., 2004) and the BioCreative II
Gene Mention task (Smith et al., 2008).

Apart from showing that the optimization of
hyper-parameters boosts the performance of vec-
tors, we also find that one such parameter leads to
contradictory results between intrinsic and extrin-
sic evaluations. We further observe that a larger
corpus does not necessarily guarantee better re-
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Corpus Total tokens
PubMed 2,721,808,542

PMC 7,959,548,841
PubMed + PMC 10,681,357,383

Table 1: Corpus statistics

sults in our tasks. We hope that our results can
serve as a reference for researchers who use neu-
ral word embeddings in biomedical NLP.

2 Materials and Methods

2.1 Corpora and Pre-processing
We use two corpora to create word vectors: the
PubMed Central Open Access subset (PMC) and
PubMed. PMC is a digital archive of biomedi-
cal and life science literature, which contains more
than 1 million full-text Open Access articles. The
PubMed database has more than 25 million cita-
tions that cover the titles and abstracts of biomedi-
cal scientific publications. A version of PMC arti-
cles is distributed in text format1 whereas PubMed
is distributed in XML. Thus, we use a PubMed
text extractor2 to extract title and abstract texts
from the PubMed source XML. Both PubMed and
PMC were pre-processed with the Genia Sentence
Splitter (GeniaSS) (Sætre et al., 2007), which is
optimized for bio-medical text. We further tok-
enize the sentences with the Tree bank Word Tok-
enizer provided by the NLTK python library (Bird,
2006). The corpus statistics are shown in Table 1.

2.2 Word vectors
Factors that affect the performance of word repre-
sentations include the training corpora, the model
architectures, and the hyper-parameters. To assess
the effect of corpora, we generate three variants of
each set of word vectors: one from PubMed, one
from PMC, and one from the combination of the
two (PMC-PubMed). To study how preprocess-
ing affects word vectors, we create vectors from
the original text corpora, lower-cased variants, and
variants where sentences are shuffled in random
order. We further generate two sets of vectors, one
by applying the skip-gram model and one apply-
ing the CBOW model, built with the default hyper-
parameter values of word2vec. We first evaluate
these vectors to determine the better-performing
model architecture. Using the better model, we

1http://www.ncbi.nlm.nih.gov/pmc/
tools/ftp/#Data_Mining

2https://github.com/spyysalo/pubmed

Parameters Values
neg 1 / 2 / 3 / 5 / 8 /10 / 15

samp 0 / 1e-1 / 1e-2 / 1e-3 / 1e-4
1e-5 / 1e-6 / 1e-7 / 1e-8 / 1e-9

min-count 0 / 5 / 10 / 20 / 50 / 100 / 200
400 / 800 / 1000 / 1200 / 2400

alpha 0.0125 / 0.025 / 0.05 / 0.1
dim 25 / 50 / 100 / 200 / 400 / 500 / 800
win 1 / 2 / 4 / 5 / 8 / 16 / 20 / 25 / 30

Table 2: Hyper-parameters and tested values.
Default values shown in bold.

then build vectors by varying values of one hyper-
parameter (Table 2) and keeping others as default.
We repeat the process for every hyper-parameter
under examination. We then report the results of
these sets of vectors in our intrinsic and extrinsic
evaluations.

2.3 Hyper-parameters
We test the following key hyper-parameters:

Negative sample size (neg): the representation
of a word is learned by maximizing its predicted
probability to co-occur with its context words,
while minimizing the probability for others. How-
ever, the normalisation of this probability involves
a denominator deriving from co-occurrences be-
tween words and all their contexts in the corpus,
which is time-consuming to compute. To address
this issue, negative sampling only calculates the
probability with reference to a set number of other
randomly chosen negative words (neg).

Sub-sampling (samp): Sub-sampling refers to
the process of reducing occurrences of frequent
words. It selects words appearing with a ratio
higher than the threshold samp, and ignores each
occurrence with a given probability. The process
is used to minimise the effect of non-informative
frequent words in training. Very frequent words
(e.g. in) are less informative because they co-occur
with most words in the corpus. For example, a
model can benefit more from seeing an occurrence
of p16 with CDKN2 than an instance of the fre-
quent co-occurrence of p16 with in.

Minimum-count (min-count): The minimum-
count defines the minimum number of occurrences
required for a word to be included in the word vec-
tors. This parameter allows control the over the
size of the vocabulary and, consequently, the re-
sulting word embedding matrix.

Learning Rate (alpha): neural networks are
trained by gradually updating weight vectors
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Vector Token
PMC-PubMed (Pyysalo et al.) 5,487,486,225 (total)

PMC (Pyysalo et al.) 2,591,137,744 (total)
PubMed (Pyysalo et al.) 2,896,348,481 (total)

PubMed (Kosmopoulos et al.) 1,701,632 (distinct)

Table 3: Baseline word vectors

along a gradient to minimize an objective func-
tion. The magnitude of these updates is controlled
by the learning rate.

Vector dimension (dim): The vector dimension
is the size of the learned word vector. While a
higher dimension tends to capture better word rep-
resentations, their training is more computation-
ally costly and produces a larger word embedding
matrix.

Context window size (win): The size of the con-
text window defines the range of words to be in-
cluded as the context of a target word. For in-
stance, a window size of 5 takes five words before
and after a target word as its context for training.

We refer to Mikolov et al. (2013a) and Levy et
al. (2015) for further details regarding these pa-
rameters.

2.4 Baseline Vectors

As baselines, we include the biomedical domain
vectors created by Pyysalo et al. (2013) and Kos-
mopoulos et al. (2015). Their corpus statistics are
shown in Table 3. All of these vectors are built
with the skip-gram model with the default param-
eter values (see Table 2).

2.5 Intrinsic Evaluation

A standardized intrinsic measure for word repre-
sentations in the biomedical domain is the UMN-
SRS word similarity dataset (Pakhomov et al.,
2010). We use its UMNSRS-Sim (Sim) and
UMNSRS-Rel (Rel) subsets as our references.
They have 566 and 587 word pairs for measuring
similarity and relatedness (respectively) whose de-
gree of association was rated by participants from
the University of Minnesota Medical School. In
UMNSRS, the human evaluation on every word
pair is converted to a score to determine its de-
gree of similarity, a higher score implying a more
similar pair. The range of the score is on an ar-
bitrary scale. While UMNSRS provides scores to
determine the degree of similarity for each word
pair, we will measure this by calculating the co-
sine similarity score for each word pair using the

learned word vectors. Afterwards, we compare
the two scores using Spearman’s correlation co-
efficient (ρ), which is a standard metric to com-
pare ranking between variables regardless of scale
in word similarity task. We systematically ignore
words that appear only in the reference but not in
our models.

2.6 Extrinsic Evaluation

Given that the ultimate evaluation for word vectors
is their performance in downstream applications,
we also assess the quality of the vectors by per-
forming NER using two well-established biomed-
ical reference standards: the BioCreative II Gene
Mention task corpus (BC2) (Smith et al., 2008)
and the JNLPBA corpus (PBA) (Kim et al., 2004).
Both of these corpora consist of approximately
20,000 sentences from PubMed abstracts manu-
ally annotated for mentions of biomedical entity
names. Following the window approach architec-
ture with word-level likelihood proposed by Col-
lobert and Weston (2008), we apply a tagger built
on a simple feed-forward neural network, with a
window of five words, one hidden layer of 300
neurons and a hard sigmoid activation, leading to
a Softmax output layer. Our word vectors are used
as the embedding layer of the network, with the
only other input being a low-dimensional binary
vector of word surface features.3 To emphasize the
effect of the input word vectors on performance,
we avoid fine-tuning the word vectors during train-
ing as well as introducing any external resources
such as entity name dictionaries. While this causes
the performance of the method to fall notably be-
low the state of the art, we believe this minimal
approach to be an effective way to focus on the
quality of the word vectors as they are created by
the tool (word2vec).4 For parameter selection, we
estimate the extrinsic performance of word vec-
tors on the development sets of the two corpora
using mention-level F-score. For the final exper-
iment with selected parameters we apply the test
sets and evaluation scripts of the two tasks in ac-
cordance with their original evaluation protocols.

3For example, whether a word starts or contains a capital
letter or number. For detailed reference, we make our imple-
mentation openly available.

4It is an interesting question for future work whether the
findings from our extrinsic evaluation apply also to state-of-
the-art taggers.
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PMC-PubMed PMC PubMed
Model Sim Rel Sim Rel Sim Rel

SG 0.54 0.488 0.507 0.453 0.446 0.497
CBOW 0.435 0.409 0.348 0.351 0.449 0.446
SG-S 0.555 0.515 0.54 0.49 0.551 0.502
SG-L 0.542 0.457 0.502 0.424 0.552 0.47
SG-SL 0.543 0.47 0.52 0.459 0.56 0.481
CBOW-S 0.415 0.403 0.434 0.424 0.43 0.414
CBOW-L 0.452 0.404 0.447 0.41 0.461 0.425
CBOW-SL 0.461 0.422 0.45 0.39 0.471 0.426

Table 4: Intrinsic evaluation results for vectors
with different pre-processing: Original Text,

Sentence-shuffled (S), lowercased (L), and both
(SL)

PMC-PubMed PMC PubMed
Model BC2 PBA BC2 PBA BC2 PBA
SG 60.86 61.89 59.48 62.11 61.00 62.52
CBOW 55.11 56.97 54.93 58.10 54.25 58.48
SG-S 59.81 62.13 59.23 62.30 60.75 62.11
SG-L 60.52 62.19 59.93 61.64 60.51 62.64
SG-SL 61.33 62.58 60.23 62.05 61.11 61.65
CBOW-S 51.84 56.78 54.22 58.02 52.82 57.97
CBOW-L 53.72 57.09 54.57 57.51 52.65 57.41
CBOW-SL 52.89 57.15 52.63 56.80 53.21 58.41

Table 5: Extrinsic evaluation results for vectors
with different pre-processing: Original text,

Sentence-shuffled (S), lowercased (L), and both
(SL)

3 Results

3.1 Skip-grams vs. CBOW

Tables 4 and 5 (first 2 rows) show results compar-
ing the skip-gram and CBOW models with default
hyper-parameter values in intrinsic and extrinsic
evaluation, respectively. In general, the skip-gram
vector shows better results than CBOW in both
the word similarity task and in entity mention tag-
ging. In CBOW, the representations of a group of
context words are learned through predicting one
focus word, with the prediction back-propagated
averaged over all context words. By contrast, in
skip-gram, the representation of a focus word is
learned by predicting every other context word in
the window separately, with the prediction error
of each context word back-propagated to the tar-
get word. This may allow better vectors to be
learned as a focus word is trained over more data,
but with less smoothing over contexts. Our result
is consistent with that of many previous studies,
including that of Muneeb et al. (2015), who com-
pared model architectures on different vector di-
mensions and reported that skip-gram outperforms
CBOW in biomedical domain tasks.
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Figure 1: Average intrinsic and extrinsic
evaluation results for negative sampling

(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
neg Sim Rel Sim Rel Sim Rel
1 0.52 0.483 0.453 0.405 0.505 0.483
2 0.545 0.493 0.489 0.439 0.511 0.475
3 0.539 0.488 0.506 0.447 0.532 0.482
5 0.538 0.487 0.498 0.444 0.54 0.494
8 0.545 0.501 0.497 0.446 0.543 0.507
10 0.543 0.494 0.517 0.459 0.553 0.499
15 0.542 0.498 0.514 0.457 0.542 0.491

Table 6: Intrinsic evaluation results for number of
negative samples (default = 5)

From Tables 4 and 5, we see that most vectors
benefit from lower-casing and shuffling the corpus
sentences. Since in word2vec, the learning rate
is decayed as training progresses, text appearing
early has a larger effect on the model. Shuffling
makes the effect of all text (roughly) equivalent.
On the other hand, lower-casing ensures that same
word but different cases, such as protein, Pro-
tein and PROTEIN are normalised (indexed as one
term) for training. Although the shuffled-lower
vectors perform better, in the following, we report
further results based on the unshuffled-text vector
to preserve the comparability of results.

3.2 Hyper-Parameters

We next show that four out of the six hyper-
parameters only improve performance notably in
the intrinsic task but not the extrinsic one, while
one boosts figures in both tasks to a great extent.
Lastly, one of them shows opposite effects on in-
trinsic and extrinsic evaluations.
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PMC-PubMed PMC PubMed
neg BC2 PBA BC2 PBA BC2 PBA
1 60.78 62.29 59.90 61.52 60.80 61.71
2 60.41 62.03 59.44 60.49 59.59 62.63
3 59.37 62.42 59.55 62.02 60.52 62.45
5 60.37 61.90 59.44 62.12 60.44 62.56
8 60.90 62.19 59.49 62.55 60.23 62.68
10 59.65 62.80 59.58 61.61 61.53 62.03
15 61.09 61.52 59.92 60.98 60.12 63.18

Table 7: Extrinsic evaluation results for number
of negative samples (default = 5)
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Figure 2: Average intrinsic and extrinsic results
for sub-sampling (0 = None)

(Unit: ρ: dashed line, F-score: solid line)

3.2.1 Negative Sampling, Sub-sampling,
Min-count and Learning Rate

Intuitively, larger values of the neg parameter
could be expected to benefit the training process
by providing more (negative) examples, but we
can only see a benefit in the intrinsic result (Fig-
ure 1). The performance of word vectors on the
intrinsic task generally improves as neg increases
from 1 to 8 (Table 6), whereas extrinsic task per-
formance remains approximately the same (Ta-
ble 7). We refer to Levy et al. (2015) for further
analysis of the effect of the skip-gram parameter
in a general domain context.

Regarding sub-sampling, a lower threshold
gives more words a probability of being down-
sampled. From Figure 2, it appears that also sub-
sampling has a large effect on the intrinsic task,
where most figures increase substantially before
samp = 1e-6 (Table 8). After samp = 1e-7, fig-
ures in both measures drop dramatically. While
some extremely frequent words (e.g. the) are ef-
fectively non-informative, other common words
may be important for modeling word meaning.
Thus, when the sub-sampling threshold decreases

PMC-PubMed PMC PubMed
samp Sim Rel Sim Rel Sim Rel
None 0.529 0.476 0.465 0.419 0.514 0.451
1e-1 0.542 0.496 0.476 0.42 0.507 0.46
1e-2 0.521 0.464 0.471 0.418 0.513 0.471
1e-3 0.545 0.5 0.497 0.442 0.545 0.494
1e-4 0.56 0.506 0.521 0.459 0.578 0.54
1e-5 0.594 0.542 0.55 0.507 0.589 0.546
1e-6 0.601 0.558 0.511 0.491 0.546 0.528
1e-7 0.519 0.475 0.401 0.37 0.336 0.306
1e-8 0.09 0.055 0.074 -0.016 -0.061 -0.146
1e-9 -0.074 -0.166 -0.076 -0.183 0.078 0.147

Table 8: Intrinsic evaluation results for
sub-sampling (default = 1e-3)

PMC-PubMed PMC PubMed
samp BC2 PBA BC2 PBA BC2 PBA
None 60.46 61.76 58.83 61.35 60.51 62.00
1e-1 61.31 60.99 59.60 62.45 60.47 62.69
1e-2 60.01 62.51 59.86 61.63 60.29 62.92
1e-3 60.30 61.99 59.78 61.95 59.87 62.57
1e-4 60.93 62.73 59.87 60.91 60.51 62.22
1e-5 60.58 61.39 60.35 61.26 58.98 62.60
1e-6 60.00 61.67 57.94 60.31 59.02 61.35
1e-7 57.52 61.17 57.04 59.70 52.44 57.34
1e-8 47.35 50.41 44.22 47.23 31.23 32.15
1e-9 33.09 33.13 32.30 32.68 27.40 28.70

Table 9: Extrinsic evaluation results for
sub-sampling (default = 1e-3)
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Figure 3: Average intrinsic and extrinsic
evaluation results for min-counts

(Unit: ρ: dashed line, F-score: solid line)

continuously, a substantial amount of informative
frequent words are downsampled, leading to an in-
effective learning of the representation.

Words occurring fewer than min-count times
will be completely removed from the corpus, re-
sulting in fewer words in the word vectors. From
Figure 3, most of the results show limited effect
for this parameter, excepting a notable increase for
PubMed vectors in the intrinsic task (Table 10).
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PMC-PubMed PMC PubMed
min-count Sim Rel Sim Rel Sim Rel

0 0.543 0.498 0.512 0.444 0.505 0.462
5 0.534 0.485 0.492 0.437 0.544 0.494
10 0.536 0.487 0.528 0.485 0.557 0.521
20 0.531 0.499 0.531 0.492 0.574 0.531
50 0.551 0.523 0.535 0.49 0.581 0.534

100 0.546 0.508 0.553 0.502 0.578 0.534
200 0.547 0.513 0.536 0.49 0.591 0.538
400 0.555 0.522 0.543 0.479 0.598 0.531
800 0.55 0.492 0.55 0.467 0.603 0.517
1000 0.551 0.503 0.529 0.443 0.622 0.515
1200 0.56 0.506 0.531 0.452 0.601 0.499
2400 0.565 0.485 0.517 0.405 0.616 0.504

Table 10: Intrinsic evaluation results for
min-count (default = 5)

PMC-PubMed PMC PubMed
min-count BC2 PBA BC2 PBA BC2 PBA

0 61.04 62.03 59.73 61.92 59.74 63.41
5 60.56 61.83 59.75 61.80 60.52 62.98
10 60.42 62.48 60.22 61.50 60.56 62.98
20 60.64 62.92 60.24 62.17 60.67 62.56
50 61.32 62.17 59.58 62.06 59.41 62.59

100 60.59 62.37 58.76 61.47 59.90 62.30
200 59.87 61.39 58.97 61.82 60.00 62.53
400 59.75 62.08 59.95 61.04 60.42 61.62
800 59.35 61.79 59.53 61.75 57.88 61.79
1000 59.98 62.08 58.54 60.98 58.67 62.16
1200 59.26 62.34 58.75 60.74 58.34 61.66
2400 59.49 62.44 58.58 61.54 57.11 60.70

Table 11: Extrinsic evaluation results for
min-count (default = 5)

However, our intrinsic evaluations, following the
standard protocol, ignore words that are excluded
by min-count. Hence, for PubMed vectors, when
min-count = 400, only about half of the assess-
ment items are used in intrinsic evaluation. This
implies that the result in min-count > 400 only
reflects the representation of frequent words. By
contrast, as the out-of-vocabulary rate in extrinsic
tasks is about 2.6%, its influence is less notable.

The learning process will be unstable if the
learning rate is too large and will be slow if it
is too small. From table 12 and table 13, alpha
= 0.05 appears to be an optimal value, for which
most of the vectors have their best or second best
results in both evaluations.

3.2.2 Vector Dimension (dim)
The effect of vector dimension on our vectors is
notable in all tasks (Figure 5). In Tables 14 and 15,
we see a large improvement in all evaluations
when the vector dimension grows. Although the
improvement for extrinsic measures stops when
dim > 200, it is evident that an increase from low
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Figure 4: Average intrinsic and extrinsic
evaluation results for learning rate

(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
alpha Sim Rel Sim Rel Sim Rel

0.0125 0.511 0.468 0.442 0.401 0.508 0.475
0.025 0.538 0.492 0.492 0.441 0.543 0.493
0.05 0.55 0.501 0.516 0.46 0.584 0.532
0.1 0.542 0.504 0.511 0.46 0.583 0.543

Table 12: Intrinsic evaluation results for learning
rate (default = 0.025)

PMC-PubMed PMC PubMed
alpha BC2 PBA BC2 PBA BC2 PBA

0.0125 60.03 61.41 60.24 62.04 60.57 63.29
0.025 59.57 61.86 59.86 62.16 59.83 62.68
0.05 59.80 62.86 59.54 61.25 60.77 62.65
0.1 60.41 62.38 60.40 61.94 60.30 62.64

Table 13: Extrinsic evaluation results for learning
rate (default = 0.025)
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Figure 5: Average intrinsic and extrinsic
evaluation results for vector dimension

(Unit: ρ: dashed line, F-score: solid line)

dim gives a very substantial improvement.
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PMC-PubMed PMC PubMed
dim Sim Rel Sim Rel Sim Rel
25 0.426 0.38 0.385 0.346 0.466 0.438
50 0.508 0.461 0.452 0.407 0.534 0.494
100 0.537 0.491 0.509 0.459 0.543 0.491
200 0.552 0.504 0.511 0.459 0.551 0.495
400 0.562 0.505 0.518 0.469 0.534 0.477
500 0.553 0.507 0.511 0.447 0.531 0.47
800 0.544 0.479 0.51 0.448 0.51 0.45

Table 14: Intrinsic evaluation results for vector
dimension (default = 100)

PMC-PubMed PMC PubMed
dim BC2 PBA BC2 PBA BC2 PBA
25 56.33 59.14 55.38 58.06 55.77 60.26
50 59.03 61.38 57.24 61.40 57.57 61.75
100 60.81 62.39 60.84 62.17 60.38 62.88
200 61.22 63.04 60.13 62.27 61.24 62.68
400 61.17 61.57 60.18 61.61 60.54 62.50
500 60.89 62.21 60.81 62.38 61.03 62.36
800 61.00 62.30 60.43 62.34 60.59 62.92

Table 15: Extrinsic evaluation results for vector
dimension (default = 100)
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Figure 6: Average intrinsic and extrinsic
evaluation results for window size

(Unit: ρ: dashed line, F-score: solid line)

3.2.3 Context Window Size (win)
We find contradictory results from changing the
size of the context window parameter (Figure 6).
All three sets of vectors show a notable increase
in the intrinsic measures when the context win-
dow size grows (Table 16). However, the ex-
trinsic evaluation shows the opposite pattern (Ta-
ble 17): all results in extrinsic tasks have an early
perofmance peak with a narrow window (e.g. win
= 1), followed by a gradual decrease when win-
dow size increases. One possible explanation may
be that a larger window emphasizes the learning
of domain/topic similarity between words, while
a narrow context window leads the representa-

PMC-PubMed PMC PubMed
win Sim Rel Sim Rel Sim Rel
1 0.419 0.377 0.342 0.302 0.425 0.387
2 0.488 0.43 0.422 0.374 0.493 0.454
4 0.528 0.477 0.485 0.425 0.53 0.478
5 0.545 0.494 0.496 0.412 0.55 0.497
8 0.562 0.516 0.544 0.487 0.581 0.536
16 0.589 0.535 0.556 0.506 0.597 0.557
20 0.66 0.558 0.562 0.513 0.619 0.574
25 0.6 0.543 0.582 0.531 0.61 0.568
30 0.605 0.541 0.571 0.522 0.627 0.584

Table 16: Intrinsic evaluation results for context
window size (default = 5)

PMC-PubMed PMC PubMed
win BC2 PBA BC2 PBA BC2 PBA
1 61.28 62.23 60.18 62.44 60.93 62.70
2 60.81 61.74 60.83 61.59 61.11 63.01
4 61.29 62.45 60.43 61.43 60.74 62.86
5 59.87 62.25 60.08 62.51 59.47 62.80
8 59.52 61.83 58.78 61.26 60.40 62.74
16 59.82 61.41 59.40 61.30 60.18 62.62
20 59.54 60.80 59.92 60.92 60.02 61.76
25 58.86 60.86 58.91 61.41 58.98 62.79
30 57.83 61.28 57.61 60.53 59.22 62.83

Table 17: Extrinsic evaluation results for context
window size (default = 5)

Parameter Setting
Corpus PubMed

Architecture skip-gram
neg 10
dim 200

alpha 0.05
samp 1e-4
win 2, 30

min-count 5

Table 18: Settings selected for comparative
evaluation

tion to primarily capture word function (Turney,
2012). It is possible that for intrinsic evaluation
datasets such as UMNSRS it is more important
to model topical rather than functional similarity.
Conversely, it is intuitively clear that for tasks such
as named entity recognition the modeling of func-
tional similarity such as co-hyponymymy is cen-
trally important. For further discussion on the ef-
fect of the context window size parameter, we re-
fer to Hill et al. (2015) and Levy et al. (2015).

3.3 Comparative evaluation

Based on the parameter selection experiments cov-
ering three corpora (PMC, PubMed and both), var-
ious preprocessing options (normal-text, sentence-
shuffled text, lower-cased text), two model archi-
tectures (skip-gram vs. CBOW) and six hyper-
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Sim Rel BC2 PBA
PubMed, win 2 (ours) 0.56 0.507 76.89 64.13
PubMed, win 30 (ours) 0.652 0.601 75.51 63.15
Pyysalo et al. (PMC-PubMed) 0.523 0.48 77.01 63.6
Pyysalo et al. (PMC) 0.453 0.396 75.48 63.66
Pyysalo et al. (PubMed) 0.549 0.506 76.47 63.66
Kosmopoulos et al. (BioASQ) 0.589 0.509 75.51 62.85

Table 19: Intrinsic and extrinsic evaluation with
comparison to baseline vectors

parameters, we selected the best-performing op-
tions for comparative evaluation against the base-
line vectors (Table 18). Since the size of the con-
text window (win) showed contradictory results
between the intrinsic and extrinsic tasks, we cre-
ated vectors for two different values of this param-
eter. Note that for this comparative evaluation we
use the test sets and test evaluation scripts of the
two extrinsic tasks.

Table 19 summarizes the results of the compara-
tive evaluation. For our intrinsic tasks, our vectors
with win = 30 show the best performance, clearly
outperforming the baselines as well as our other-
wise identically created vectors with win = 2. This
further supports the suggestion that a higher con-
text window facilitates the learning of domain sim-
ilarity for the intrinsic task. For extrinsic tasks,
while the difference to the baselines is smaller,
our vectors with win = 2 show the best results for
JNLPBA and the second best in BC2GM, while
the vectors with win = 30 are clearly less compet-
itive.

The comparative evaluation on test set data thus
confirms the indications from parameter selection
that the context window size has opposite effects
on the intrinsic and extrinsic metrics and indicates
that our experiments have succeeded in creating a
pair of word embeddings that show state-of-the-art
performance when applied to tasks appropriate for
each.

3.4 Discussion

In this study, we have created vectors with
PubMed, PMC and the combination of the two
with a large variety of different model, prepro-
cessing and parameter combinations. While in
theory a larger corpus is expected to benefit the
learning of word representations, we find that
in many cases this does not hold, in particular
with the combination of PubMed and PMC show-
ing lower results than PubMed alone. We offer
two possible explanations for this surprising find-

ing, which contradicts some prior in-domain re-
sults. First, we used PMC texts recently intro-
duced by PubMed Central using an incompletely
documented extraction process, and preliminary
examination suggests that the proportion of non-
prose text in this material may be quite high, po-
tentially affecting learning. An alternative expla-
nation may be that the word2vec implementation
has a (somewhat hidden) “reduce-vocab” function
that triggers rare-word removal when the size of
the corpus crosses certain thresholds: the larger
the corpus size, the more aggressive the trimming.
Preliminary results suggests that this functional-
ity may have affected PMC-PubMed, our largest
corpus, to a larger extent than the other corpora.
We leave the resolution of this question for future
work.

4 Conclusion and future work

In this study, we show how the performance of
word vectors changes with different corpora, pre-
processing options (normal text, sentence-shuffled
text, lower-cased text), model architectures (skip-
gram vs. CBOW) and hyper-parameter settings
(negative sampling, sub sample rate, min-count,
learning rate, vector dimension, context window
size). For corpora, sentence-shuffled PubMed
texts appear to produce the best performance, ex-
ceeding that of the notably larger combination
with PMC texts.

For hyper-parameter settings, it is evident that
performance can be notably improved over the de-
fault parameters, but the effects of the different
hyper-parameters on performance are mixed and
sometimes counterintuitive. We have previously
found a similar result in general domain work
(with Wikipedia text) (Chiu et al., 2016).

Several directions remain open for future work.
First, in addition to tuning individual parameters
in isolation, we can study the effect of tuning two
or more parameters simultaneously. In addition,
the number of training iterations was not consid-
ered in the experiments here, and careful tuning
of this parameter both separately and jointly with
associated parameters such as alpha may offer fur-
ther opportunities for improvement.
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Abstract

For many types of high-dimensional data,
such as natural language corpora, the vast
majority of extracted variables or features
are essentially noise. Culling such fea-
tures can not only reveal important pat-
terns, but also improve the performance of
supervised and unsupervised machine al-
gorithms. Most research on feature selec-
tion has focused on the statistical measures
used to rank features. Meanwhile, little
work has been done developing techniques
for identifying the optimal subset of fea-
tures without repeatedly training models.
However, developing such techniques is
important, as they can significantly de-
crease computation time while providing
a way to determine the features that char-
acterize the classes within a data set, in-
dependent of how the data may be clas-
sified in the future. Here we introduce a
novel method based on information forag-
ing that works in conjunction with exist-
ing feature ranking methods to automati-
cally determine a subset of important fea-
tures. The method is demonstrated on sim-
ulated and linguistic data from psychiatric
interviews. We show that the method is
able to accurately determine the features
that characterize the classes within both
data sets. The method is fast, simple, and
independent of any method of classifying
the data, and can be extended to any high-
dimensional data set.

1 Background

For many types of high-dimensional data, such
as natural language corpora, gene microarrays,
and images, the vast majority of extracted vari-

ables or features are essentially noise (Yu and Liu,
2004). Culling such features can not only reveal
important patterns, but also improve the perfor-
mance of supervised and unsupervised machine
algorithms (Guyon and Elisseeff, 2003; Saeys et
al., 2007). For example, Pestian et al. (Pestian
et al., 2016) have recently used natural language
processing (NLP) and supervised machine learn-
ing methods to automatically distinguish suici-
dal from non-suicidal patients using words and
phrases from psychiatric interviews (Pestian et al.,
2016). In that work, identifying which types of
words and phrases were most discriminative not
only improved classification performance, but also
provided important insights into the language of
those at risk of suicide.

Feature selection is usually done in the context
of optimizing machine learning models, and so
feature selection techniques are divided into three
categories by how they relate to the search over
such models: filter, wrapper, and embedded meth-
ods (Blum and Langley, 1997; Saeys et al., 2007).
Filter methods rank features using a statistical
measure of relevance (Forman, 2003; Yang and
Pedersen, 1997). Typically, lower-ranked features
are removed prior to training a machine learning
model. By contrast, in wrapper methods, the opti-
mal feature subset is identified by repeatedly train-
ing a model on multiple feature subsets and eval-
uating its performance (Kohavi and John, 1997).
The search for an optimal model is “wrapped” in
the feature subset search. Finally, in embedded
methods the feature search is performed in con-
junction with the model search. For example, the
number of parameters can be incorporated as a
regularization term to be minimized in the objec-
tive function (Weston et al., 2003).

Most research on feature selection has focused
on the statistical measures used to rank features
(Forman, 2003; Yang and Pedersen, 1997). Mean-
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while, little work has been done developing tech-
niques for identifying the optimal subset of fea-
tures without repeatedly training models (Koller
and Sahami, 1996; Ding and Peng, 2005). How-
ever, developing such techniques is important, as
they can significantly decrease computation time
while providing a way to determine the features
that characterize classes within a data set, inde-
pendent of any classification method.

Here we introduce a novel method based on in-
formation foraging that works in conjunction with
existing feature ranking methods to automatically
determine a subset of important features. Infor-
mation foraging is a behavioral model for maxi-
mizing the rate of attaining valuable information
(Pirolli and Card, 1999). It assumes that useful
information exists in a patchy structure, where the
diminishing return of a continued search in a patch
must be balanced with the time cost of moving to
a new patch.

The utility of our approach is best demonstrated
with an example of a typical feature selection ap-
proach for text classification. Suppose a large
data set of text documents is divided into multiple
classes. We want to classify documents into the
correct categories using word frequencies. Typi-
cally, a text data set may contain many thousands
of unique words, most of which have no discrim-
inative power (Scott and Matwin, 1999). Fea-
ture selection is used to determine the features that
best discriminate between the classes, thereby op-
timizing classifier performance. A univariate fil-
ter method, such as information gain (Fano and
Wintringham, 1961) for discrete data, or Analy-
sis of Variance (ANOVA) (Michel et al., 2008)
for continuous variables, may be applied to rank
the features by their discriminative power. A sub-
set of top-ranked features are then chosen based
on some ad-hoc threshold, or by using a wrapper
method, where classifiers are built using various
sets of top ranked features. The classifier with the
best performance then determines the best feature
subset. Classifier performance is evaluated using
some flavor of bootstrapping, potentially making
this method computationally expensive.

In this scenario, the optimal number of features
is defined by both the method of ranking features
and the classifier; there is no ’objective’ determi-
nation of which features characterize the classes.

From a computational perspective, no matter
how efficient the subset search strategy, a wrap-

per or embedded method which entails training
models will be more costly than a univariate filter
subset selection which runs in O(N) time. Other
work on filter-only methods for subset selection
has been primarily multivariate, identifying cor-
relations between variables and eliminating re-
dundant ones. Hall and Smith (Hall and Smith,
1997) used Pearson’s correlation for forward se-
lection filtering, with good results on fairly low-
dimensional data. Others (Koller and Sahami,
1996; Yu and Liu, 2004; Ding and Peng, 2005)
have used Markov blanket filtering to iteratively
remove redundant features via backward elimina-
tion. These generally have a complexity of O(N2).

In this work, we show the proposed foraging-
based feature selection leads to performance gains
comparable to wrapper methods on a text classi-
fication task, while running in linear time. In ad-
dition, the algorithm is useful simply for the ob-
jective identification of a relevant feature subset,
since it is deterministic and entirely independent
of the choice of learning algorithm. Further, the
method is not tied to a particular feature ranking
method, but rather it simply provides a method of
determining the optimal number of features given
a ranking method.

2 Theory

The method of selecting the number of features
is based on the Holling’s Disk equation (Holling,
1959), which has been used to explain the for-
aging behavior of both animals (Stephens, 1990;
Stephens and Krebs, 1986) and humans (Winter-
halder and Smith, 1992). It has also been use-
ful in understanding information foraging (e.g., in
web searches (Pirolli, 2007)). The equation is de-
pendent on three variables: the time spent gather-
ing energy from a certain food type i (tWi), the
amount of time it takes to travel to that food type
1/λi, and the energy gained from that food type
(gi(tWi)). The overall rate of gain for k food
sources is then

R(k) =
∑k

i=1 λigi(tWi)
1 +

∑S
i=1 λitWi

. (1)

Given S food types, the optimal diet is then found
through an algorithm suggested by (Stephens and
Krebs, 1986). In this algorithm, the profitability
of the food type, given by gi(tWi)/tWi, is ranked
so that g1(tW1)/tW1 > g2(tW2)/tW2 > ... >
gS(tWS)/tWS . Food types are added until the rate
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of gain for a type of top k food types is greater than
the k + 1 food type; that is, until

R(k) > gk+1/tWk+1. (2)

For our purposes, feature subset selection is
modeled as a diet optimization task, where fea-
tures are represented by food types, and a diet is a
subset of features. Each feature or food type added
to the diet may add gain in terms of the informa-
tiveness of the feature, but entails cost in terms of
sparseness.

In the present work, the gain is defined by the
informativeness obtained from feature i, which is
broadly defined by any parametrization of the sta-
tistical differences between classes. As the class
differences for a given feature will be defined in
this work as a p-value, we choose two definitions
of informativeness which increase with the differ-
ences between classes: 1 − pX and 1/pX , where
pX is defines as the p-value from either the KS-
tests or ANOVA. The time between food types is
taken as the mean number of data points between
appearances of feature i (Jones, 1987), where
each data point equals one time unit. The time
spent gathering energy from a food type is arbi-
trarily set to unity for all i (tWi = 1); λi is defined
as

λi =
Sum of Non− ZeroFrequencies for Feature i

TotalDataPoints
. (3)

This is the same equation as the reciprocal of the
mean time between failures, where “failures” are
taken to be non-zero feature frequencies.

3 Experiments

The method is demonstrated on two kinds of data:
simulated data sets and a linguistic data set from a
clinical trial.

The goal of the simulated experiments is to
show that the method is able to accurately identify
subsets of features with inter-class statistical dif-
ferences. In these experiments, the performance
of the algorithm is evaluated based on its ability
to accurately identify these subsets. The goal of
demonstrating the method on clinical trial data is
to evaluate the method within a more realistic con-
text of a wrapper method applied to linguistic data.
Evaluating the method’s performance on such data
also illustrates its behavior on data containing re-
dundant and correlated features.

Each simulated data set is comprised of data
points from two classes. (The number of data

are kept small to reflect the small sample sizes
typically found in clinically annotated NLP data
sets (Hutton, 2012).) The data from the first class
(class A) are generated from a Gaussian distribu-
tion with mean 0 and standard deviation σ. The
data from the second class (class B) are generated
from two Gaussian distributions; f × 100% of the
features are generated with mean 1 and standard
deviation σ, while the rest of the features are gen-
erated in the same fashion as those from class A,
with mean 0 and standard deviation σ. In this way,
f × 100% of the features are generated with inter-
class differences.

The performance of the algorithm is then eval-
uated as a function of the definition of gain, spar-
sity of the data (s), the total number of features
(F ), number of features with statistical differences
(f ), and statistical differences between features
(parameterized by σ). The gain is define in four
ways: as 1-p-value from the Kolmogorov-Smirnov
test (Darling, 1957) (1 − pKS), 1-p-value from
ANOVA (Fisher, 1992) (1−pANOV A), and the re-
ciprocal of the KS and ANOVA p-values (1/pKS

and 1/pANOV A, respectively). The influence of λi

is also studied by setting it to its empirical value
and to unity. When they are not being varied, the
default values for F , s, σ and f are: 1, 000, 0.5,
0.2 and 0.5, respectively.

The data from the clinical trial are derived from
the Suicide Thought Markers study (Pestian et al.,
2016). In this study, three hundred seventy-nine
adults and adolescents from Cincinnati Childrens
Hospital Medical Center (CCHMC), University of
Cincinnati (UC), and Princeton Community Hos-
pital (PCH) were enrolled during the course of
the study between October 2013 and March 2015.
Participants were evenly divided into three sub-
ject groups: suicidal, patients with mental illness,
and controls. Suicidal subjects consisted of pa-
tients who presented in the Emergency Depart-
ment (ED) with suicidal ideation or behaviors; the
mental illness group was not suicidal, but had a
mental health diagnosis; and the control group had
no mental illness diagnosis and was not suicidal.

Subjects were then asked five open-ended, ubiq-
uitous questions (UQs) (Pestian, 2010; Pestian et
al., 2015): Do you have hope?, “Do you have any
fear?”, “Do you have any secrets?”, “Are you an-
gry?”, and “Does it hurt emotionally?”. These
questions were intended to stimulate conversation
for language sampling, and would later form the
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basis of the training sample for the machine learn-
ing algorithm. The interviews were transcribed
and the subjects words were extracted in a system-
atic way.

For classification purposes, each subject was
characterized by (1) their subject group and (2)
a vector of word (1-gram) frequencies. Due to
the extreme variability of word frequencies and in-
terview lengths, the frequencies were normalized
to smooth the frequency distributions and lessen
the classifiers sensitivity to interview length. The
word frequencies were therefore logarithmically
(log(x+1)) transformed to smooth the frequencies,
and further L2-normalized at the subject level as
to base the classification on relative word frequen-
cies.

Only suicidal and control patients are used in
the present work. To test the method on various
sizes and types of data, the data are split three
ways: patients from CCHMC (pediatric patients),
patients from PCH and UC (adults patients), and
patients from all three hospitals. In the end, 2,471,
4,788, and 5,457 unique words were extracted
over 84, 169, and 253 suicidal and control subjects
from CCHMC, PCH and UC, and all hospitals, re-
spectively.

The number relevant of features are then eval-
uated using the method presented in this work,
and a wrapper method whereby the performance
of Support Vector Machine (SVM) classifiers are
evaluated using LOO cross-validation. Note the
classifications here are simplified versions of the
classifications in (Pestian et al., 2016); for in-
stance, the features here are not partitioned based
on the questions.

4 Results

Figure 1 show the F1 scores for selecting features,
varying the total number of features (F), the matrix
sparsity (s), σ, and the fraction of features with
statistical differences. The method is able to de-
termine the features with significant features of a
large parameter space when 1 − pX defines the
gain. On the other hand, when the reciprocal p-
values are used, the method fails spectacularly, in-
dicating that pX must be bounded or it must pos-
sess a more direct statistical interpretation. This
aside, performance is, to a degree, invariant to
the type of statistic used; the KS test p-value per-
forms better when the matrix is sparse, while the
ANOVA p-value works better when the statistical

differences are small. This may be less of a re-
flection on the method, and more to do with the
KS test’s ability to detect differences in small data
samples, and ANOVA’s ability to detect statistical
differences when the distributions are Gaussian.
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Figure 1: The F1 score for identifying the features
in simulated as a function of F , s, σ, and f . These
scores are evaluated using varying definitions of
gain: 1/pANOV A (squares), 1/pKS (circles), 1 −
pANOV A (triangles), and 1− pKS (diamonds).

Figure 2 shows the same plots with the mean
time between patches set to unity (λi = 1). The
two sets of figures look nearly identical indicating
that λi does not play a significant role in determin-
ing the number of features.

Figure 3 shows the area under the cross-
validated receiver operating curve (AROC) of the
SVM classifier as a function of the number of top-
ranked features. The number of features deter-
mined by our method, along with the correspond-
ing AROC, are circled on these plots. In these
plots, the relevant number of features are the min-
imal number of features that optimize classifier
performance. When the KS test p-values are used
for the gain, the method is unable to predict the
optimal features. However, the oscillating perfor-
mance as the number of features increase indicate
the KS test may not be the best choice for feature
ranking for this data set. In contrast, the ANOVA
p-value is more stable, leading to more monotonic
curves, and the method is better able to determine
the optimal number of features.
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Figure 2: The plots in 1 with the mean time be-
tween patches set to unity (λi = 1).

5 Discussion

The results from simulated data indicate there is
some flexibility in the definition of informative-
ness, as long as the statistic gives a proper rank-
ing of features and the statistic is bounded and/or
possesses some statistical meaning. The results
from real data reflect this conclusion, showing the
method performs better when the feature ranking
is more accurate. The decrease in classifier per-
formance does not occur until a large number of
features are introduced as input to the classifier,
which is not shown in the figures. The focus of
this study, however, is to determine whether or not
the method presented is able to cull superfluous
features; the point at which ’gain’ in classification
performance levels off clearly coincides with the
number of features predicted by the method when
the ANOVA method is used for feature ranking.

The bad performance of the method when the
reciprocal of the p-values are used for the gain,
indicates that the gain must be bounded in some
way, or that the statistic must have a more direct
statistical interpretation. In contrast, the simulated
results suggest the method is fairly insensitive to
the choice of λi, which parametrizes the sparsity
of the feature.

Also, although the method is essentially built
for univariate data, the performance on real data
was good despite the inevitable redundancies and
correlations of the features, provided the informa-
tiveness measure properly ranked the features.
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Figure 3: The top plot shows the cross-validated
performance of an SVM classifier as a function of
the number of top features ranked according to the
KS test p-value (top) and ANOVA p-value (bot-
tom) for the CCHMC (diamonds), UC+PCH (cir-
cles), and combined data sets (squares). The num-
ber of features determined by our method, along
with the corresponding AROCs, are circled.

6 Conclusions

We have presented a simple, fast, and effective
method of determining the number of features that
characterize classes within a data set where the
features are univariate. We have also show it to be
useful in determining the features in a linguistic
data set, despite the features’ inherent redundan-
cies and correlations.

While the method was show to properly iden-
tify features that characterize features with inter-
class statistical differences, its performance is bet-
ter when the statistic is able to effectively rank
the features in terms of statistical relevance. We
have also shown that it performs better when p-
values are used, as opposed to their reciprocal,
showing the definition of informativeness is im-
portant. Whether this is because a p-value is a
bounded positive number less than 1 or because
it has a direct statistical interpretation merits ex-
ploration. For instance, the question remains,
could any statistic that effectively rank features
be inserted into a softmax function and be used
to parameterize gain? Also, the method would
doubtlessly perform better if correlations and re-
dundancies were somehow accounted for, possibly
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by grouping correlated features.
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Abstract

Time-sensitive communication of critical
imaging findings like pneumothorax or
pulmonary embolism to referring physi-
cians is important for patient safety. How-
ever, radiology findings are recorded in
free-text format, relying on verbal com-
munication that is not always successful.
Natural language processing can provide
automated suggestions to radiologists that
new critical findings be added to a follow-
up list. We present a pilot assessment
of the feasibility of an automated crit-
ical finding suggestion system for radi-
ology reporting by assessing suggestions
made by the pyConTextNLP algorithm.
Our evaluation focused on the false alarm
rate to determine feasibility of deploy-
ment without increasing alert fatigue. py-
ConTextNLP identified 77 critical findings
from 1,370 chest exams. Review of the
suggested findings demonstrated a 7.8%
false alarm rate. We discuss the errors,
which would be challenging to address,
and compare pyConTextNLP’s false alarm
rate to false alarm rates of similar systems
from the literature.

1 Introduction

The communication of critical imaging findings
from the radiologist to the referring physician
is a key factor in providing efficacious patient
care (Lakhani et al., 2012). Currently, the most
common form of communication is a physician-
to-physician telephone conversation, initiated by
the radiologist at the time of image interpreta-
tion. This process is tedious, inefficient, and er-
ror prone. A missed communication can result in
progressed disease, hospital readmission, and even

death. In the United States, the American College
of Radiology suggests three hallmarks of effective
methods of communication: a) supporting the or-
dering provider in providing optimal patient care,
b) using methods that are tailored to satisfy the
need for timeliness, and c) implementing methods
to minimize risk of communication errors (Ameri-
can College of Radiology, 2014). Critical findings
may result in death or severe morbidity and require
urgent or emergent attention (Larson et al., 2014).
These critical test results are often documented in
free-text imaging notes. Natural language process-
ing (NLP) can automatically extract, track, and re-
port these findings in a timely manner to support
patient safety efforts.

2 Related Work

Machine learning and ruled-based NLP techniques
have been used to detect critical information from
radiology reports to support timely communica-
tion.

Yetisgen-Yildiz et al. created a machine-
learning based text-processing pipeline that lever-
ages a maximum entropy model to identify and
classify sentences conveying clinically impor-
tant follow-up recommendations concerning un-
expected findings (Yetisgen-Yildiz et al., 2013).
Pham et al. developed an NLP pipeline to detect
and classify mentions of thromboembolic disease
from angiography and venography reports. They
used naive Bayes’ feature selection then support
vector machines and maximum entropy for clas-
sification (Pham et al., 2014). Esuli et al. de-
veloped two novel methods for extracting radio-
logical findings from reports: a cascaded, two-
stage ensemble of taggers generated by linear-
chain conditional random fields (LC-CRFs) and
a confidence-weighted ensemble method combin-
ing standard LC-CRFs and the two-stage method
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(Esuli et al., 2013).
Rule-based approaches have also been used to

address critical finding detection. Lafourcade et
al. created a linguistic-based algorithm to detect
semantic relations between radiological findings
(Lafourcade and Ramadier, 2016). Lakhani et
al. developed an algorithm with finding-specific
negation dictionaries to identify nine critical find-
ings in impression sections and demonstrated a
mean false alarm rate of 4% (Lakhani et al., 2012).
Lacson et al. adapted and compared performance
of two NLP systems—A Nearly New Informa-
tion Extraction system (ANNIE) and Information
for Searching Content with an Ontology-Utilizing
Toolkit (iSCOUT)—to identify pulmonary nod-
ules, pneumothorax, and pulmonary embolus
with overall false alarm rates of 4% (ANNIE) and
10% (iSCOUT) (Lacson et al., 2012).

In this study, we applied a simple NLP system
that leverages regular expressions by extending the
lexicon for critical findings. We addressed a larger
set of critical findings than in prior studies and
evaluated not only the accuracy of the NLP sys-
tem, but the appropriateness of generating a sug-
gestion for critical finding communication.

Our long-term goal is to develop a communica-
tion system that identifies a variety of critical find-
ings from radiology exams, facilitates appropriate
communication of the findings to referring clini-
cians, and supports radiologist follow-up regard-
ing the communicated findings. The short-term
goal of this study is to build upon prior work by 1)
adapting an NLP algorithm to automatically iden-
tify critical findings in radiology reports and sug-
gest them to the radiologist for communication to
referring physicians, 2) assessing the false alarm
rate of the critical findings suggestion system, and
3) characterizing the errors generated by the sys-
tem to determine feasibility of deploying the sug-
gestion system in a radiology clinic. In this paper,
we limit our analysis to imaging of the chest.

3 Methods and Materials

3.1 Data Set

In this IRB-approved study, we obtained all radi-
ology reports from Oct-Dec 2013 generated by a
large medical center in the United States. We ex-
cluded non-diagnostic exams (e.g., interventional
procedures), as well as reports generated from ser-
vices other than radiology, and reports with empty
impressions sections, resulting in 54,459 exams.

Mentions of critical findings in radiology reports
are not common. Only 14,815 of the 54,479 re-
ports (27%) contained critical finding expressions
from our original knowledge base. Only a small
portion of critical finding expressions would be
expected to be observations of a new critical find-
ing, because the majority are negated or chronic
findings. For instance, from previous studies, we
found that approximately 90% of pulmonary em-
bolism mentions in radiology reports are negated.

From the 14,815 reports with critical finding
expressions, we selected approximately half of
the reports (7,176) for annotation. We built a
Flask1 web application for document-level anno-
tation of the reports. Annotators used the tool
to assign the following attributes to each finding
mentioned in a report: Existence (definite negated
existence, probable negated existence, ambivalent
existence, probable existence, definite existence)
and Historicity (new, chronic, historical) (Patel et
al., 2016).

We annotated 39 critical findings occurring
within abdomen/pelvis, chest, extremity, neuro,
and spine exams. Eighteen of these critical find-
ings were relevant to the chest: aneursym, aor-
tic dissection, cancer, ectasia, epiglottitis, frac-
ture, free air, infarct, inflammation, mediasti-
nal emphysema, pneumonia, pneumothorax,
pulmonary embolism, retropharyngeal abscess,
ruptured aneurysm, splenic infarct, tension
pneumothorax, and thrombosis.

With supervision by an attending radiologist
(Author MH), two medical students (Authors NP,
EN) independently annotated the impression sec-
tions of reports for any of 39 critical findings un-
til acceptable agreement level between annotators
was reached (>0.70). Each annotator then anno-
tated reports independently, completing two-thirds
of the 7,176 reports for a total 4,786 annotated re-
ports.

From the full set of 7,176 reports, we sampled
only reports from chest exams for this study, pro-
viding a development and test set of 1,538 chest
exam reports. We randomly selected 168 anno-
tated exams as a development set and further ex-
tended pyConTextNLP’s knowledge base by re-
viewing pyConTextNLP’s disagreements with the
annotations. We then tested on the remaining blind
set of 1,370 reports.

We split the impression section into sen-

1http://flask.pocoo.org/
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tences using the Python text processing package
TextBlob2 then applied pyConTextNLP 3 to iden-
tify acute, positive critical findings.

3.2 Developing an automated critical findings
suggestion system with pyConTextNLP

3.2.1 pyConTextNLP
We adapted an existing NLP algorithm, pyCon-
TextNLP, to identify critical findings and their at-
tributes from radiology imaging reports (Chap-
man et al., 2011). pyConTextNLP is an exten-
sion of the NegEx (Chapman et al., 2001) and
ConText (Harkema et al., 2009) algorithms and
relies on user-defined knowledge bases of targets
(e.g., critical finding terms such as “pulmonary
embolism”), modifiers (e.g., existence terms such
as “may represent”), and lexical terms (e.g., “but”)
that terminate the scope of the modifiers.

3.2.2 Adapting and refining pyConTextNLP
The pyConTextNLP GitHub repository has a num-
ber of database files that have been created for
previous projects4. We modified existing knowl-
edge bases by comparing our automated classifi-
cations using pyConTextNLP against the annota-
tor classifications. First, we reviewed false nega-
tive findings in the development set and added new
terms to the knowledge base. The number of false
negatives in the development set was small. To
address potential alert fatigue from false alarms,
we then focused our development on evaluating
false positives in the development set. An acute,
positive critical finding was defined as a mention
of a critical finding with the following attributes:
Historicity-new and Existence-probable or definite
existence. If there was more than one mention of a
given finding in a report, we assigned the report
the same value as that of the most positive and
most new mention. In reviewing the classifica-
tions, we examined the entire pyConTextNLP doc-
ument for the report so that we could determine if
the classification error occurred due to the knowl-
edge base, classification rules, or algorithm imple-
mentation. Modifications to the code and knowl-
edge bases were made iteratively to improve pos-
itive predictive performance compared to the an-
notations. Changes to pyConTextNLP primarily

2https://textblob.readthedocs.org/
3https://pypi.python.org/pypi/

pyConTextNLP
4https://github.com/chapmanbe/

pyConTextNLP/tree/master/KB

consisted of modifying synonyms and variants for
critical findings and corresponding attributes.

3.3 Evaluating pyConTextNLP
We ran pyConTextNLP over the test set and
flagged documents with acute, positive critical
findings for review. A radiologist (Author MH)
was provided the flagged findings and their as-
sociated imaging report then asked the question,
“Would you include this critical finding in a list
of findings to communicate to the referring physi-
cian?” This question goes beyond analyzing accu-
racy of pyConTextNLP’s annotations to the more
stringent question of whether the finding should
be communicated to another physician, which de-
pends not only on accurate identification of the
finding, but also on contextual information. We
calculated precision (Eq. 1) and false alarm rate
(Eq. 2) where FP (false positive) = rejected sug-
gestion and TP (true positive) = accepted sugges-
tion.

precision =
TP

(TP + FP )
(1)

false alarm rate = 1− precision (2)

4 Results

Our primary goal was to assess the false alarm rate
of the critical findings suggestion system and to
characterize the errors generated by the system.

In total, we detected 77 findings requiring crit-
ical communication. These findings came from
only five of our 18 categories. The most prevalent
flagged findings were pneumothorax and pneu-
monia (Table 1).

Table 1: Distribution of flagged critical findings
critical finding count (%)
pneumothorax 38 (49%)
pneumonia 29 (38%)
fracture 6 (8%)
cancer 3 (4%)
aneursym 1 (1%)
total 77 (100%)

Of the 77 observed critical findings, we ob-
served 6 false positives, resulting in a false alarm
rate of 7.8% and precision of 92.2%. Of the six
false positives three were cancer, two were pneu-
monia, and one was an aneurysm.
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5 Discussion and Conclusion

Our false alarm rate (7.8%) resides within the false
alarm rates (4%-10%) reported by (Lacson et al.,
2012), demonstrating promising results. Our false
alarm analysis revealed several challenges for the
task of critical finding identification.

For cancer, all three cases identified by pyCon-
TextNLP were considered chronic by the radiolo-
gist. One report requires coreference resolution to
determine that the tumor was not new: “Now with
multiple nodular lesions within the bilateral lungs,
demonstrating both enlarging of previously seen
nodules, and development of new nodules. This is
consistent with metastatic melanoma to the lung
parenchyma.” The other two reports didn’t con-
tain explicit linguistic cues indicating chronicity:
the radiologist inferred from context that the find-
ings were chronic. One report described two lung
lesions consistent with metastases then described
another finding, “lytic t11 lesion,” that should be
correlated with a prior MRI. In the other report,
a separate finding was described as unchanged:
“a small right apical pneumothorax persists, and
when allowing for differences in angulation, this is
either unchanged or slightly increased.” The men-
tion of a previous exam, even though not directly
in reference to the metastases or pneumothorax,
implied that the findings were identified previ-
ously. pyConTextNLPs regular-expression-based
algorithm cannot address coreference or inference.

For aneursym, error resolution would require
either mapping different findings to different lev-
els of severity or dropping the general synonym
of “dilation” for an aneurysm: “mild dilatation
of the main pulmonary artery, suggestive of pul-
monary arterial hypertension.” Identifying new
cases of pneumonia poses similar challenges: two
of 29 reports flagged with a new pneumonia were
false positives. One was due to a missed negation,
due to an implementation issue related to pruning
targets: “no focal consolidation to suggest pneu-
monia.” In the second, pneumonia was considered
present, but as a side effect of cancer and not an in-
fection that should be included in a critical finding
follow-up list.

Limitations of this study include review by
a single radiologist and only evaluating false
alarms. Based on our iterative development, py-
ConTextNLP also missed valid critical findings,
and a follow-up study will evaluate annotated re-
ports to quantify and characterize false negatives.

Successful critical finding identification relies
on negation detection, ignoring findings that are
mentioned as the reason for exam, accurate differ-
entiation of acute vs chronic findings, and model-
ing of uncertainty indicated by explicit cues (e.g.,
“may represent”) as well as by linguistic vari-
ants used to describe the observation (e.g., “patchy
opacity” vs. “pneumonia”). With a false posi-
tive rate of 7.8%, we believe pyConTextNLP could
feasibly be deployed to suggest critical findings
for communication to referring physicians without
inducing alert fatigue or irritating radiologists with
obvious errors. However, we will formally assess
this hypothesis and determine how referring physi-
cians would like to be presented with system rec-
ommendations in future user studies. Future work
will also include assessment of false negatives, ex-
tension and evaluation of all 39 critical findings
across all report types, and evaluation of execution
speed and work flow integration.
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Abstract 

Detecting phenotype descriptors in text 
and linking them to ontology concepts is 
a challenging task. Current state-of-the 
art concept recognizers struggle with 
several issues due the variety of human 
expressiveness. Here we present initial 
results of creating a dictionary of lexical 
variants for the Human Phenotype Ontol-
ogy. This work is a smaller but important 
part of a larger project with a goal to im-
prove recall in phenotype concept recog-
nizers.  

1 Introduction 

Phenotype descriptions (i.e., the composite of 
one’s observable characteristics/traits) are im-
portant for our understanding of genetics. These 
descriptions enable the computation and analysis 
of a varied range of issues related to the genetic 
and developmental bases of correlated characters 
(Mabee et al., 2007). Scientific literature con-
tains large amounts of phenotype descriptions, 
usually reported as free-text entries.  

Concept Recognition (CR) is the identification 
of entities of interest in free text and their resolu-
tion to ontological concepts with the aim of lev-
eraging structured knowledge from unstructured 
data. Linking from the literature to ontologies 
such as the Human Phenotype Ontology (HPO) 
has gained a substantial interest from the text 
mining community (e.g., Uzuner et al., 2012; 
Morgan et al., 2008). Although phenotype CR is 
similar to other tasks such as gene and protein 
name normalization, it has its specific domain 

issues and challenges (Groza et al., 2015). In 
contrast to gene and protein names, phenotype 
concepts are characterized by a wide lexical var-
iability. As a result, simple methods like exact 
matching or standard lexical similarity usually 
lead to poor results.  Additional challenges in 
performing CR on phenotypes include the use of 
abbreviations (e.g., defects in L4-S1) or of meta-
phorical expressions (e.g., hitchhiker thumb).  

Consequently, phenotype CR is an ongoing re-
search area with a demand for improvement. For 
example, systems such as OBO Annotator 
(Taboada et al., 2014), NCBO Annotator 
(Jonquet et al., 2009) and Bio-Lark (Groza et al., 
2015) have been evaluated with maximum preci-
sion, recall and F-score values of 0.65, 0.49 and 
0.56 respectively (Groza et al., 2015).  

Here we present initial results of experiments 
designed to address the lexical variability of 
phenotype terms. We generate a dictionary of 
lexical variants for all HPO tokens. When com-
pleted, such a dictionary will help improve, in 
particular, the low recall of phenotype CR sys-
tems.  

Generating lexical variants for HPO tokens is 
a fairly challenging task. For example, grouping 
similar words with classical similarity metrics 
such as the Levenshtein distance (even when us-
ing a high threshold) might group words with 
different meaning like zygomatic (a cheek bone) 
and zygomaticus (cheek muscle) into one lexical 
cluster. On the other hand, less similar words 
with same meaning like irregular nouns (e.g. 
phalanx, phalanges, or femur, femora) might be 
grouped into different clusters. Here, we experi-
ment with the NLM Lexical Variant Generator 
(LVG) (The Lexical Systems Group, 2016) to 
generate lexical variants.  
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2 Methods 

To generate the dictionary of lexical variants, we 
extracted all concept names and their synonyms 
from the HPO. The text was then tokenized and a 
cluster of lexical variants was created for each 
token. Tokens with overlapping lexical variants 
were merged into one cluster. We manually ana-
lyzed the clusters for their quality and coverage, 
and performed a preliminary automatic evalua-
tion. In addition, we identified those parts of 
phenotype terms that display the largest lexical 
variability. For the latter, we used the following 
two additional ontologies: Foundational Model 
of Anatomy (FMA) (Rosse and Mejino, 2003), 
and the Phenotype and Trait Ontology (PATO) 
(Gkoutos et al., 2009).  Details of data and meth-
ods used are described in the following sections. 

2.1 The Human Phenotype Ontology 

The HPO’s primary goal is to offer a tool that 
allows large-scale computational analysis of the 
human phenotype (Köhler et al., 2014). The HPO 
is often used for the annotation of human pheno-
types and has repeatedly been adopted in bio-
medical applications aiming to understand con-
nection between phenotype and genomic varia-
tions. Some examples of using the HPO are ap-
plications such as linking human diseases to an-
imal models (Washington et al., 2009), describ-
ing rare disorders (Firth et al., 2009), or inferring 
novel drug indications (Gottlieb et al., 2011).  

Most terms in the HPO contain descriptions of 
clinical abnormalities and additional sub-
ontologies are provided to describe inheritance 
patterns, onset/clinical course and modifiers of 
abnormalities.  

Below is an example of part of a term in the 
OBO format: 

 
id: HP:0000260 
name: Wide anterior fontanel 
def: "Enlargement of the anterior fontanelle with respect to age-
dependent norms." [HPO:curators] 
synonym: "Large anterior fontanel" EXACT [] 
… 
xref: UMLS:C1866134 "Wide anterior fontanel" 
is_a: HP:0000236 ! Abnormality of the anterior fontanelle 
property_value: HP:0040005 "Enlargement of the `anterior fonta-
nelle` (FMA:75439) with respect to age-dependent norms." 
xsd:string {xref="HPO:curators"} 

 
Terms in HPO usually follow the Entity-

Quality formalism where they combine anatomi-
cal entities with qualities (Mungall et al., 2007) 
For instance, in the above example, anterior fon-
tanelle describes an anatomical entity with the 
quality wide. Entities can usually be grounded in 

ontologies such as the FMA, while qualities usu-
ally belong to the PATO. It is assumed that rich 
lexical variability comes from the quality part of 
phenotype terms – due to their wide spread usage 
in common English. 

For this study, we used the OBO versions of 
the HPO Apr 2016 and the PATO Nov 2015 on-
tologies, and the FMA OWL version 3.2.1.  

2.2 Pre-processing text in ontologies 

We extracted labels and synonyms for all HPO, 
PATO and FMA terms. The OWL API (Horridge 
and Bechhofer, 2011) was used for parsing. 

After a manual inspection of a random subset 
of names and synonyms, we developed a simple 
tokenizer that broke each name and synonym 
into series of lower case tokens. The following 
characters were removed: . / ( ) ‘ > < : ; and the 
space and backslash characters were then used as 
delimiters. We ignored numbers and short tokens 
(< 3 characters). The final set contained 8,098 
HPO; 1,959 PATO and 8,502 FMA tokens. 

2.3 Generating clusters of lexical variants 

We use the NLM Lexical Variant Generator 
(LVG), 2016 release (The Lexical Systems 
Group, 2016) to create lexical variants for the 
HPO tokens. LVG is a suite of utilities that can 
generate, transform, and filter lexical variants 
from the given input. Its intention is to create 
robust indexes and to transform user queries into 
retrievable entries from those indexes. Although 
LVG focuses on biomedical terms, it is not spe-
cialized for phenotype domain. 

There are more than 60 functions (flow com-
ponents) in LVG and each function has a set of 
parameters. In this work, the following two func-
tions were used with the LVG Java API: 
- Generating inflectional variants (IVs), which 

include the singular and plurals for nouns, 
the various tenses of verbs, the positive, su-
perlative and the comparative of adjectives 
and adverbs.  

- Generating derivational variants (DVs), 
which are terms that are related to the origi-
nal term but do not necessarily, share the 
same meaning. Often, the derivational vari-
ant changes syntactic category from the orig-
inal term. Only DVs with the same prefix as 
the original token (i.e., first two characters) 
were considered. 

Both IVs and DVs can be generated with two 
methods: a) using an internal dictionary, and b) 
using a set of predefined rules. When generating 
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lexical variants, we experimented with the fol-
lowing three configurations (Cs): 
- C1: Generating IVs using the dictionary. 
- C2: Generating IVs DVs using the diction-

ary. 
- C3: Generating IVs and DVs using the dic-

tionary first, and using the set of rules for 
those tokens that did not have any variants in 
the dictionary.  

Generating lexical variants for HPO tokens 
can be described with the following algorithm: 
 
Generate lexical variants for HPO:   
 
N: number of HPO terms 
Hi: single HPO term  
S: set of names and synonyms for an HPO term 
T: set of unique tokens 
M: number of tokens 
Tj: single token 
IDj: set of dictionary based IVs for Tj 
DDj: set of dictionary based DVs for Tj 
IRj: set of rule based IVs for Tj 
DRj: set of rule based DVs for Tj 
V: sets of lexical variants 
Vk: single set of lexical variants, where 0 < k < 4 
C: sets of clusters 
Ck: single set of clusters, where 0 < k < 4 

For i = 1 to N do: 
   Extract name/synonyms for Hi and save them into S 
   Tokenize S and save unique tokens into T 
Initialize C1, C2 and C3 
For j = 1 to M do: 
   Initialize V1, V2 and V3 

Generate dictionary based inflectional variants for 
Tj and save them into IDj 

   If IDj is empty then do: 
Generate rule based inflectional variants for Tj 
and save them into IRj 

Generate dictionary based derivational variants for 
Tj and save them into DDj 
If DDj is empty then do: 

Generate rule based derivational variants for Tj 
and save them into DRj 

V1 = IDj  
V2 = IDj + DDj 
V3 = IDj + DDj + IRj + DRj 
For k = 1 to 3 do: 

If a cluster in Ck has a variant from Vk then do: 
Put variants from Vk into the existing cluster 

Else do: 
Create a cluster from Vk in Ck 

 
2.4 Inspecting/evaluating lexical clusters 

For each configuration we calculated the cover-
age of extended tokens (i.e., the number of to-

kens for which at least one variant was found), 
and manually inspected lexical variants for 10 
randomly selected tokens. In addition, we in-
spected clusters for the following two specific 
tokens of interest that are known to be problem-
atic in phenotype CR: phalanx and shortening. 
The former is an irregular noun that changes to 
phalanges in plural form, while the latter repre-
sents a participle that is usually not correctly 
normalized for our need. For example, we would 
expect short and shortening in the same cluster 
(short finger vs. shortening of the finger). We 
also inspected variants for zygomatic and zygo-
maticus that should not be in the same cluster. 

In addition to the manual inspection, we also 
performed a preliminary automatic evaluation of 
the clusters. The HPO has been integrated into 
Unified Medicine Language System (UMLS) 
Metathesaurus (Humphreys et al., 1998) since 
the 2015AB version (Dhombres et al., 2015). 
This potentially gives new synonyms for the 
HPO terms. The synonyms can contain lexical 
variants of the HPO term tokens. For example, 
acute promyelocytic leukemia, does not contain 
any synonyms in the HPO. However, UMLS 
contains the synonyms acute promyelocytic leu-
kaemia. Similarly, ascending aortic aneurysm 
has no HPO synonyms, while we can find aneu-
rysm of ascending aorta in UMLS. Therefore, 
we developed an algorithm for counting those 
HPO terms that increased the coverage of tokens 
in UMLS synonyms for these terms (e.g., the 
above two terms would be counted). 

As mentioned in section 2.1, it is assumed that 
most tokens with rich lexical variability are asso-
ciated with the quality part of HPO terms. To test 
this assumption, we finally examined coverage 
of the HPO tokens in the FMA and the PATO. 
We then analyzed lexical cluster sizes for these 
tokens. In case the assumption is true, we expect 
the cluster sizes of PATO tokens (i.e. quality) 
larger than tokens found in FMA (i.e. entity).  

3 Results and discussion 

Table 1 summarizes the number of variants, 
the number of clusters, the average number of 
variants in each cluster and the number of tokens 
with no variants (NV) for different configura-
tions.   
Table 1: Results summary for each configuration 

 #Variants #Clusters Average	 #NV 
C1 13,471 6,355 2.12	 877 
C2 18,080 5,620 3.22	 877 
C3 29,602 6,480 4.57	 0 
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The same tokens with no variants were found 
using only the dictionary in C1 and C2, which 
implies that these tokens are not covered with 
LVG’s dictionary. After the manual examination 
of generated clusters we can identify some ex-
amples of tokens without generated variants as 
follows: spelling errors (e.g., accesory, dermiti-
tis), latin words (e.g., ambiguus), chemical com-
pounds (e.g., 23-diphosphoglycerate), abbrevia-
tions (eg., gnrh, pirc),  roman numbers (e.g., xii, 
xiii), and ordinal numbers (e.g., 1st, 2nd). Using 
the rule-based approach in C3 generated variants 
for these tokens. 

Examining the clusters showed that C1 gener-
ated several disjoint clusters that should be 
merged. Some examples are tokens like abdomen 
and abdominal, abnormal and abnormality, ex-
ternal and externally, and yellow and yellowish. 
As for the tokens of our particular interest, phal-
anx contained the following variants in the same 
cluster: phalange, phalanges, phalanx, and phal-
anxes; while shortening was clustered with the 
following variants: shorten, shortened, shorten-
ing, and shortenings and was missing words like 
short, shorter and shortest. Variants for zygomat-
ic and zygomaticus were in separated clusters in 
all three approaches. 

According to Table 1, the C2 approach gener-
ated more variants distributed into less clusters 
when compared to C1. Manual examination re-
vealed that several disjoint clusters from previ-
ous paragraph merged into larger clusters (ab-
domen and abdominal, abnormal and abnormali-
ty, and external and externally). The phalanx 
cluster gained a new variant phalangeal, which 
was previously in a different cluster. There was 
no change in the shortening cluster.  

Clusters in C3 extended tokens with no vari-
ants in LVG’s dictionary with rule generated 
terms. However, variants for tokens like spelling 
errors or ordinal numbers were incorrect. For 
example, accesory would be extended with vari-
ants like accesoryed and accesoryer. In addition, 
participles were not in correct clusters (e.g., 
shortening). Unfortunately, terms like brachyme-
somelia or trichromacy were also extended with 
wrong variants. This implies that rules defined in 
LVG might not be appropriate for phenotype 
terms and we must define our own rules. This 
investigation is left for future work.  

 Testing with UMLS, we found that 6,580 
(62%) of the HPO terms contained UMLS syno-
nyms. 16% of these terms increased the coverage 
of synonym tokens with new lexical variants, 
which indicates that the generated dictionary 

does include quality variants. We plan to investi-
gate the results in depth in the future.   

When testing the coverage of HPO tokens in 
the PATO and the FMA, we found that 10% and 
26% of the HPO tokens can also be found in the 
PATO and the FMA respectively. Figure 1 
shows ratios for different lexical cluster sizes of 
the overlapping tokens created with the C2 ap-
proach (minimum/maximum size of 1 and 11 
respectively). One can notice that the PATO to-
kens tend to form larger clusters, which indicates 
that these tokens have more lexical variants 
compared to the FMA tokens. This confirms the 
assumption from Section 2.1, that the quality part 
of phenotype term offers more lexical variability 
than the entity part.   

 

 
Figure 1: Distribution of lexical cluster sizes for those 
HPO tokens that were also found in the PATO/FMA.  

4 Conclusion 

In this paper we presented initial results for cre-
ating a dictionary of lexical variants of all tokens 
in the Human Phenotype Ontology. This task is a 
part of bigger project with aim to improve phe-
notype concept recognition. Using the NLM 
Lexical Variant Generator, we experimented 
with three configurations where different combi-
nations of inflectional and derivational variants 
were used to extend original HPO token space. 
We examined the clusters and performed a pre-
liminary automatic evaluation of these clusters. 
We also identified parts of phenotype terms that 
are likely to express more lexical variability.  

In the future, we are planning to perform a de-
tailed analysis of the generated clusters and im-
prove the automatic evaluation. As seen in the 
results section, there are some phenotype tokens 
that are not covered in external dictionaries such 
as LVG. We will try to identify patterns of these 
tokens and see how we can extend them with 
lexical variants. In addition, we will improve the 
quality of generated clusters with removing in-
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correct variants (e.g., results of spelling errors), 
or tokens that are actually not phenotypes.  

Focus of our future work will be the quality 
part of phenotype terms, since we showed that 
quality tokens display larger lexical variability 
than entity tokens. In addition, we have not man-
aged to automatically generate clusters for all 
participles.  

Reference 
Ferdinand Dhombres, Rainer Winnenburg, James T. 
Case, and Olivier Bodenreider. 2015. Extending the 
coverage of phenotypes in SNOMED CT through 
post-coordination. In Studies in Health Technology 
and Informatics, volume 216, pages 795–799. 

Helen V. Firth, Shola M. Richards, A. Paul Bevan, 
Stephen Clayton, Manuel Corpas, Diana Rajan, 
Steven Van Vooren, Yves Moreau, Roger M. Pettett, 
and Nigel P. Carter. 2009. DECIPHER: Database of 
Chromosomal Imbalance and Phenotype in Humans 
Using Ensembl Resources. American Journal of 
Human Genetics, 84(4):524–533. 

Georgios V. Gkoutos, Chris Mungall, Sandra D̈olken, 
Michael Ashburner, Suzanna Lewis, John Hancock, 
Paul Schofield, Sebastian K̈ohler, and Peter N. 
Robinson. 2009. Entity/quality-based logical 
definitions for the human skeletal phenome using 
PATO. In Proceedings of the 31st Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society: Engineering the 
Future of Biomedicine, EMBC 2009, pages 7069–
7072. 

Assaf Gottlieb, Gideon Y Stein, Eytan Ruppin, and 
Roded Sharan. 2011. PREDICT: a method for 
inferring novel drug indications with application to 
personalized medicine. Molecular systems biology, 
7(496):496. 

Tudor Groza, S. Kohler, Sandra Doelken, Nigel 
Collier, Anika Oellrich, Damian Smedley, Francisco 
M. Couto, Gareth Baynam, Andreas Zankl, Peter N. 
Robinson, Sebastian Köhler, Sandra Doelken, Nigel 
Collier, Anika Oellrich, Damian Smedley, Francisco 
M. Couto, Gareth Baynam, Andreas Zankl, and Peter 
N. Robinson. 2015. Automatic concept recognition 
using the Human Phenotype Ontology reference and 
test suite corpora. Database, 2015(0):bav005–bav005. 

Matthew Horridge and Sean Bechhofer. 2011. The 
OWL API: A Java API for OWL ontologies. Semantic 
Web, 2(1):11–21. 

Betsy L. Humphreys, Donald a. B. Lindberg, Harold 
M. Schoolman, and G. Octo Barnett. 1998. The 
Unified Medical Language System: An Informatics 
Research Collaboration. Journal of the American 
Medical Informatics Association, 5(1):1–11. 

 

Clement Jonquet, Nigam H Shah, H Cherie, Mark a 
Musen, Chris Callendar, and Margaret-Anne Storey. 
2009. NCBO Annotator : Semantic Annotation of 
Biomedical Data. Iswc:2–3. 

Sebastian Köhler, Sandra C. Doelken, Christopher J. 
Mungall, Sebastian Bauer, Helen V. Firth, Isabelle 
Bailleul-Forestier, Graeme C M Black, Danielle L. 
Brown, Michael Brudno, Jennifer Campbell, David R. 
Fitzpatrick, Janan T. Eppig, Andrew P. Jackson, 
Kathleen Freson, Marta Girdea, Ingo Helbig, Jane A. 
Hurst, Johanna Jähn, Laird G. Jackson, et al. 2014. 
The Human Phenotype Ontology project: Linking 
molecular biology and disease through phenotype 
data. Nucleic Acids Research, 42(D1). 

Paula M. Mabee, Michael Ashburner, Quentin Cronk, 
Georgios V. Gkoutos, Melissa Haendel, Erik 
Segerdell, Chris Mungall, and Monte Westerfield. 
2007. Phenotype ontologies: the bridge between 
genomics and evolution. Trends in Ecology and 
Evolution, 22(7):345–350. 

Alexander A Morgan, Zhiyong Lu, Xinglong Wang, 
Aaron M Cohen, Juliane Fluck, Patrick Ruch, Anna 
Divoli, Katrin Fundel, Robert Leaman, Jörg 
Hakenberg, Chengjie Sun, Heng-hui Liu, Rafael 
Torres, Michael Krauthammer, William W Lau, 
Hongfang Liu, Chun-Nan Hsu, Martijn Schuemie, K 
Bretonnel Cohen, et al. 2008. Overview of 
BioCreative II gene normalization. Genome biology, 9 
Suppl 2(SUPPL. 2):S3. 

Chris Mungall, Georgios Gkoutos, Nicole 
Washington, and Suzanna Lewis. 2007. Representing 
phenotypes in OWL. In CEUR Workshop 
Proceedings, volume 258. 

Cornelius Rosse and José L V Mejino. 2003. A 
reference ontology for biomedical informatics: The 
Foundational Model of Anatomy. Journal of 
Biomedical Informatics, 36(6):478–500. 

M. Taboada, H. Rodriguez, D. Martinez, M. Pardo, 
and M. J. Sobrido. 2014. Automated semantic 
annotation of rare disease cases: a case study. 
Database, 2014(0):bau045–bau045. 

NLM The Lexical Systems Group. 2016. Lexical 
Tools, 2016, 
https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg
/2016/web/index.html, accessed June 2016. 

Özlem Uzuner, Brett R South, Shuying Shen, and 
Scott L DuVall. 2012. 2010 i2b2/VA challenge on 
concepts, assertions, and relations in clinical text. 
Journal of the American Medical Informatics 
Association : JAMIA, 18(5):552–6. 

Nicole L. Washington, Melissa A. Haendel, 
Christopher J. Mungall, Michael Ashburner, Monte 
Westerfield, and Suzanna E. Lewis. 2009. Linking 
human diseases to animal models using ontology-
based phenotype annotation. PLoS Biology, 7(11). 

190



Proceedings of the 15th Workshop on Biomedical Natural Language Processing, pages 191–195,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Applying deep learning on electronic health records in Swedish
to predict healthcare-associated infections

Olof Jacobson
Department of Computer

and Systems Sciences, (DSV)
Stockholm University

P.O. Box 7003, 164 07 Kista
olofja@kth.se

Hercules Dalianis
Department of Computer

and Systems Sciences, (DSV)
Stockholm University

P.O. Box 7003, 164 07 Kista
hercules@dsv.su.se

Abstract

Detecting healthcare-associated infections
pose a major challenge in healthcare. Us-
ing natural language processing and ma-
chine learning applied on electronic pa-
tient records is one approach that has been
shown to work. However the results indi-
cate that there was room for improvement
and therefore we have applied deep learn-
ing methods. Specifically we implemented
a network of stacked sparse auto encoders
and a network of stacked restricted Boltz-
mann machines. Our best results were ob-
tained using the stacked restricted Boltz-
mann machines with a precision of 0.79
and a recall of 0.88.

1 Introduction

Healthcare-associated infections pose a major
problem today within healthcare. In Sweden
over ten percent of all in-patients suffer from
Healthcare-associated infection (HAI). In Europe,
this estimates to three million affected patients per
year of which about 50,000 die, (Humphreys and
Smyth, 2006).

HAI is defined as “an infection occurring in a
patient in a hospital or other healthcare facility in
whom the infection was not present or incubat-
ing at the time of admission.” HAI causes patients
to suffer while their healthcare periods are pro-
longed, it also lays an economic burden on the so-
ciety. The Swedish National Board of Health and
Welfare estimates that HAIs prolong the length of
a patients stay at the hospital by an average of 4
days, (Burman, 2006).

A number of tools, using the electronic pa-
tient record of the patient to detect and predict
HAI, have been developed. Freeman et al. (2013)
contain a nice overview of over 44 different ap-

proaches, however the authors have not distin-
guished the technology behind the systems, only
the accuracy of each system. Ehrentraut et al.
(2014) have focused on describing the different
systems in a more technical way, most systems
use rules to detect HAI, but some few systems are
using machine learning based approaches. Three
classification algorithms, SVM, Random Forest
and Gradient Tree Boosting algorithms, have been
used but no attempt has been made using Deep
Learning.

In order to distinguish between different types
of documents a classifier may be required to rec-
ognize abstract concepts in the text. This is made
difficult through the nature of human language.

The concepts themselves may not be directly
mentioned in the text or may be abbreviated. For
example Pat was op. two days ago, meaning The
patient was operated two days ago, or Patient has
fever meaning that a patient had fever (a symptom)
and might have a infection (disease) that needs to
be treated. For example Penomax was given to
pat, meaning that a patient had an infection or had
a suspected infection and therefore were given an
antibacterial drug for profylactic reasons.

Deep learning architectures transform input
data using several non-linear operations. Theoreti-
cally such transformations may enable a system to
learn high level abstractions in the data, (Bengio,
2009). Deep learning systems are thereby interest-
ing candidates for text classification tasks.

2 Previous research

A number of different methods have been used to
detect healthcare associated infections using elec-
tronic patient records (EPRs). These range from
manual methods, methods that use the structured
fields of the EPRs, the clinical free text, as well
as methods using both. Automatic methods have
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used rules as well as machine learning methods.
Proux et al. (Proux et al., 2009; Proux et al., 2011)
describe a rule based system for French patient
records. Tanushi et al. (2015) describe another
rule based system for Swedish patient records.

Tanushi et al. detected urinary tract infections
on 1,867 care episodes and they obtained a pre-
cision of 0.98, a specificity of 0.99 and negative
predictive value 0.99, but a recall (sensitivity) of
0.60. One approach used machine learning based
systems as SVM and Random Forest on the Stock-
holm EPR Detect-HAI Corpus in (Ehrentraut et
al., 2014), where the authors obtained the best re-
sults using Random Forest with precision 0.83, re-
call 0.87 and F-score 0.85. In one other approach
using GTB Gradient Tree Boosting the authors ob-
tained a precision of 0.80, a recall of 0.94 and an
F1-score of 0.86, (Ehrentraut et al., 2016).

Deep learning has already been successfully
used for natural language tasks. Wiriyathammab-
hum et al. (2012) applied a deep belief network for
word sense disambiguation and found that it had
better performance than many shallow machine
learning architectures including SVMs. They
showed that deep learning could be successfull
even with few instances and high dimensionality
of the data.

3 Materials and Methods

3.1 Materials

We have been using data from the Swedish Health
Record Research Bank, (Dalianis et al., 2015)
that contain over 2 million patient records from
over 800 clinical units covering the year 2006-
2014. and specifically a subset called Stock-
holm EPR Detect-HAI Corpus1, (Ehrentraut et al.,
2014), that contains 213 patient records written
in Swedish that were classified by two different
domain experts. The domain experts have re-
viewed and classified each record both separately
and jointly and finally decided on the Gold Stan-
dard. The two classes into which the records were
divided were patients that suffered from HAIs at
some point during the time period covered by the
record, and patients that did not. In general, the
patient records describe patients that are very ill,
see Table 1, for details on the corpus. Each record
contains both free text but also structured fields as

1This research has been approved by the Regional Ethical
Review Board in Stockholm (Etikprövningsnämnden i Stock-
holm), permission number 2012/1838-31/3.

body temperatures, microbiological answers and
drug prescriptions. The records of HAI positive
patients are generally longer than those of patients
not suffering from HAIs. This imbalance was not
addressed by the methodology of the study.

HAI non-HAI
Number of records 128 85
Patient ages [years] 2 - 93 2 - 92
Total number of tokens 1,034,760 230,226
Time in hospital [days] 2 - 144 3 - 93
Total time in hospital [days] 3975 941

Table 1: A table detailing some statistics of the
Stockholm EPR Detect-HAI Corpus. Tokens re-
fer to space separated sequences of characters.
HAI (Healthcare-associated Infection), non-HAI
(no Healthcare-associated Infection)

3.2 Methods
The task of classifying texts through machine
learning methods generally involve preprocessing
and transforming the text to a numerical represen-
tation. Some sort of feature selection may then be
used before the actual machine learning system at-
tempts to classify the data.

The performance of the implemented systems
were tested using a 10-fold cross validation. In
each training fold a grid search, validated using 5-
fold cross validation, was used to select the hyper
parameters of the classifiers.

The varied parameters for the stacked sparse
auto encoder were, the number of hidden layers
and the sparsity parameter. The number of nodes
in each hidden layer was set to be the mean of
the number of nodes in the layers immediately be-
fore and after. For the stacked restricted Boltz-
mann machines the gridsearch was performed over
several different network topologies with varying
number of hidden layers and nodes in the hidden
layers. The gridsearch was also performed over
the learning rate in this case. All of the program-
ming in this study was carried out in Python.

3.2.1 Preprocessing
The text of the patient records was preprocessed
according to the following steps. First all char-
acters not corresponding to Swedish letters, white
space, or digits were removed from the corpus.
Since accents were inconsistently used, they were
removed from all letters in the corpus. The re-
maining text was converted to lowercase and all
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stop words were removed using a stop word list
from Python’s natural language toolkit (NLTK)2.
Lowercase conversion and stop word removal are
standard preprocessing techniques that simplify
the corpus and are usually assumed to not affect
the classification (Uysal and Gunal, 2014). Stem-
ming has been shown to work well for many tasks.
Specifically for Swedish, that has a rich morphol-
ogy, it has been shown that stemming improves the
results for information retrieval tasks, (Carlberger
et al., 2001). Therefore the text in the patient
records was stemmed using the Python Snowball
stemmer3 for Swedish.

3.2.2 Conversion to numerical representation
In this study two different models for converting
the records into numerical vectors were used. One
of these models was a bag of words model where
the tf-idf scores for the individual words in the
patient records were calculated. Only the 1,000
most common words in the whole corpus were
considered. Principal component analysis (PCA)
was used to generate acompleted only the enco-
dine tf-idf representation with reduced dimension-
ality, 99% of the variance was retained.

The other model used for conversion was
the word2vec tool in Python’s gensim package
(Řehůřek and Sojka, 2010) using the skip-gram
model, through which each word in a record could
be converted into a vector. A record was repre-
sented by taking the mean of all such vectors in
the record.

3.2.3 Artificial neural networks
Artificial neural networks is a biologically in-
spired type of machine learning architecture. The
basic building blocks of these networks are in-
spired by the biological neuron and are usually re-
ferred to as nodes (Marsland, 2009).

The nodes are connected to other nodes form-
ing a network which can be trained by various
methods to perform different tasks (Amaral et al.,
2013). In this study two different types of neural
networks were used. Stacked sparse auto encoders
and stacked restricted Boltzmann machines.

3.2.4 Stacked sparse auto encoders
A stacked sparse auto encoder is a neural network
technology which consists of several sparse auto

2Accessing Text Corpora and Lexical Resources,
http://www.nltk.org/book/ch02.html

3Swedish Snowball stemming algorithm,
http://snowball.tartarus.org/algorithms/swedish/stemmer.html.

encoders. An auto encoder is a type of neural
network that first encodes and then decodes in-
put data. Auto encoders are trained to reproduce
the data sent through them (Bengio, 2009). The
cross entropy cost function was used for the auto
encoders in this study. When the sparse auto en-
coders were stacked, each encoder was trained to
reproduce the encoded data of the previous en-
coder. This unsupervised training constituted the
pretraining phase of the network. After the pre-
training was completed only the first half of the
auto encoders, responsible for the encoding, was
used in the resulting network. A softmax classifier
was appended to the last auto encoder and the net-
work was trained in a supervised manner through
back propagation.

3.2.5 Stacked restricted Boltzmann machines

A restricted Boltzmann machine (RBM) is a spe-
cial case of the more general Boltzmann machine.
An RBM consists of one layer of visible nodes
and one layer of hidden nodes. Nodes in the hid-
den layer are only allowed to connect to nodes in
the visible layer (Bengio, 2009). One notable dif-
ference between auto encoders and RBMs is that
RBMs have binary activation of the hidden layer
nodes during the training phase. In the imple-
mented stacked RBM topology the RBMs were
trained to reproduce data input on the visible layer
through the means of persistent contrastive diver-
gence (Tieleman, 2008). The stack of RBMs was
created in a similar way to the previously de-
scribed stack of auto encoders. Each RBM was
trained on the hidden layer activations of the pre-
vious RBM. A softmax classifier was appended at
the end of the network and was trained in a super-
vised manner on the hidden layer representations
of the previous RBM. Unlike the stack of auto
encoders, the whole network was not fine tuned
through supervised training.

4 Results

The results are presented in Table 2 where the
acronyms used are the following: SSAE, Stacked
Sparse Auto Encoder classifier. SRBM, Stacked
Restricted Boltzmann Machine classifier and tf-
idf, the tf-idf representation of the data was used.
PCA, a version of the tf-idf data that had its di-
mensionality reduced through Principal Compo-
nent Analysis was used. And finally word2vec, the
word2vec representation of the data was used.
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Precision Recall F1-score
SSAE tf-idf 0.78 0.78 0.78
SSAE PCA 0.71 0.80 0.75
SSAE word2vec 0.78 0.84 0.81
SRBM tf-idf 0.79 0.88 0.83
SRBM word2vec 0.66 0.91 0.77

Table 2: The classification results for the differ-
ent machine learning methods and preprocessing
techniques.

The highest F1-score was obtained for the
stacked restricted Boltzmann machines and that
classifier also had the highest precision. The
word2vec version of the data gave lower F1-score
than the regular tf-idf data when the SRBM classi-
fier was used but a higher F1-score for the SSAE
classifier. The dimensionality reduced version of
the tf-idf data gave a slightly higher recall, and a
lower precision as compared to the regular data.

5 Discussion

Deep learning models are computationally expen-
sive to train. This is a disadvantage compared to
simpler models. The disadvantage can in many
cases be motivated by an increase in classification
performance. However that was not observed in
this study.

We could see that the SRBM with the tf-idf data
gave the best results of our approaches. The results
were comparable to those obtained by Ehrentraut
et al. (2014), however they were slighly lower than
the results presented by Ehrentraut et al. (2016). It
was surprising that the classification accuracy for
the word2vec representation of the data was higher
than for the tf-idf version, for the SSAE classifier.
The SRBM classification accuracy was lower for
the word2vec representation than for the tf-idf rep-
resentation. No appealing explanation was found
for the difference.

In many cases the gridsearch parameter opti-
mization preferred few layers in the neural net-
works. This implies that deeper architectures did
not help the classifier identify useful abstract pat-
terns in the data. This could be due to the cho-
sen data representations that may not have retained
some of the important features of the original data.
The lack of training data may also have been con-
tributing to the non efficacity of deeper architec-
tures, since such architectures typically require a
lot of training data. In this study the ratio of the

number of features, and the number of training ex-
amples, may simply have been too large to enable
the networks to learn abstract patterns.

6 Conclusion

The classification results were comparable to what
has been obtained using more conventional clas-
sifiers in previous studies. The SRBM architec-
ture using the bag of words, tf-idf data was the
most successfull classifier in this study, see Ta-
ble 2. SRBM gave a precision of 0.79, a recall of
0.88, and an F1-score of 0.83. These results were
slightly lower than those of the best classifier in
previous studies, which had a precision of 0.80, a
recall of 0.94 and an F1-score of 0.86 (Ehrentraut
et al., 2016). The word2vec representations scored
worse than the bag of words model for the SRBM
classifier while giving better scores for the SSAE
classifier. The PCA version of the tf-idf data with
reduced dimensionality gave worse classification
results than the regular data.

In the future we would like to try out a wider
range of preprocessing methods, similar the ones
tried out by Ehrentraut et al. (2014), to detect
negated symptoms or diseases, so called negation
detection, for example to perform negation detec-
tion, or remove negations, or to carry out stop word
filtering and finally filtering out infection specific
terms to see if that will improve our results.
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infektioner - ett kunskapsunderlag. Stockholm:
Swedish National Board of Health and Welfare.
ISBN, 595547553, (In Swedish).

194



Johan Carlberger, Hercules Dalianis, Martin Hassel,
and Ola Knutsson. 2001. Improving precision in in-
formation retrieval for Swedish using stemming. In
Proceedings of NODALIDA ’01 - 13th Nordic Con-
ference on Computational Linguistics.

Hercules Dalianis, Aron Henriksson, Maria Kvist,
Sumithra Velupillai, and Rebecka Weegar. 2015.
Health bank - a workbench for data science appli-
cations in healthcare. In Proceedings of the CAiSE-
2015 Industry Track co-located with the 27th Con-
ference on Advanced Information Systems Engineer-
ing - CAiSE 2015, pages 1–18, Stockholm, Sweden,
June. CEUR.

Claudia Ehrentraut, Maria Kvist, Elda Sparrelid, and
Hercules Dalianis. 2014. Detecting healthcare-
associated infections in electronic health records:
Evaluation of machine learning and preprocessing
techniques. In Sixth International Symposium on
Semantic Mining in Biomedicine (SMBM 2014),
Aveiro, Portugal, October 6-7, 2014, pages 3–10.
University of Aveiro.

Claudia Ehrentraut, Markus Ekholm, Hideyuki
Tanushi, Jörg Tiedemann, and Hercules Dalianis.
2016. Detecting hospital acquired infections: A
document classification approach using support
vector machines and gradient tree boosting. Health
Informatics Journal, To be published.

Rachel Freeman, Luke S. P. Moore, Laura Garcı́a
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Abstract
Natural language processing is being
pressed into use to facilitate the selection
of cases for medical research in electronic
health record databases, though study in-
clusion criteria may be complex, and the
linguistic cues indicating eligibility may
be subtle. Finding cases of first episode
psychosis raised a number of problems for
automated approaches, providing an op-
portunity to explore how machine learn-
ing technologies might be used to over-
come them. A system was delivered that
achieved an AUC of 0.85, enabling 95% of
relevant cases to be identified whilst halv-
ing the work required in manually review-
ing cases. The techniques that made this
possible are presented.

1 Introduction

The epidemiology of first episode psychosis (FEP)
is the central tenet on which psychiatric research
builds an understanding of psychotic disorder, and
accurate estimates of incidence rates of psychosis
are important to measure the burden of the disease
in the population (Baldwin et al., 2005; Hogerzeil
et al., 2014). Yet challenges recruiting patients
with FEP and variation in incidence rates are
widely reported (Patel et al., 2003; Borschmann
et al., 2014; Kirkbride et al., 2006). Sampling
methods used for estimating incidence of psy-
chosis may contribute to some of the reported
challenges. For example, some previous stud-
ies have used a first contact sampling frame e.g.
first hospital admission or ’first early interven-
tion’ (i.e. patients presenting to early-phase psy-
chosis services). However these methods of iden-
tifying cases do not take into account individu-
als who may already be receiving treatment for

non-psychotic disorder but who later manifest psy-
chotic symptoms (Hogerzeil et al., 2014). Elec-
tronic health records can help alleviate these prob-
lems, whereby clinical information is screened us-
ing a diagnostic instrument to identify symptoms
of psychosis within a defined period and conse-
quently classify new FEP cases. An example of
such an endeavour is work being carried out at
the Institute of Psychiatry and South London &
Maudsley (SLaM) NHS Trust using the Biomed-
ical Research Centre Clinical Records Interactive
Search (CRIS) to identify FEP cases in the CRIS-
First Episode Psychosis study (Bourque, 2015).
To summarize this work, psychiatric experts man-
ually coded data in the free-text of clinical records
between 1st May 2010 and 30th April 2012 for
patients presenting to SLaM with compliance for
psychotic disorder using a psychiatric diagnos-
tic tool. Whilst the screening of clinical records
sampling method comprehensively identifies cases
and reduces risk of underestimation, this approach
raises resource and efficiency challenges. For ex-
ample, review of clinical records requires expert
level resource (such as a psychiatrist or psychi-
atric nurse) for annotation, which can be very ex-
pensive. On average approximately 80-100 indi-
vidual clinical records were screened per week by
each annotator. It is clear that manual screening of
electronic records is resource-intensive and time-
consuming.

With these challenges in mind, advances in nat-
ural language processing technology have been
drawn on in this work to apply techniques to iden-
tify and classify FEP cases based on the data gen-
erated from the manual screen (Bourque, 2015).
An automated screening application has the po-
tential to improve the efficiency of the FEP case
identification task, reducing the burden of manual
screening as well as saving time and money. Such
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an approach may also provide a methodological
advantage in identifying FEP cohorts who may
be followed up longitudinally to answer important
questions about outcomes following their experi-
ence of psychosis. The use of natural language
processing has potential implications for service
planning and evaluation for patients with FEP.

CRIS contains both the structured information
and the unstructured free text from the SLaM
EHR. The free text consists of 20 million text field
instances containing correspondence, patient his-
tories and notes describing encounters with the pa-
tient. These free text fields contain much infor-
mation of value to mental health epidemiologists.
clinicians often record vital information in the tex-
tual portion of the record even when a structured
field is designated for this information. For ex-
ample, a query on the structured fields for Mini
Mental State Examination scores (MMSE, a score
of cognitive ability) in a recent search returned
5,700 instances, whereas a keyword search over
the free text fields returned an additional 48,750
instances. Previous research has noted that free
text is convenient, expressive, accurate and under-
standable (Meystre et al., 2008; Rosenbloom et
al., 2011), making it appealing for clinical record
data entry despite the greater research value of
structured data. Powsner et al (1998) observe that
structured data is more restrictive, whereas Green-
halgh (2009) comments that free text is tolerant of
ambiguity, which supports the complexity of clini-
cal practice; a particularly relevant factor, perhaps,
in psychiatry. Medical language is often hedged
with ambiguity and probability, which is difficult
to represent as structured data (Scott et al., 2012).
For these reasons, the diagnosis structured field in
the patient record is of only minor utility in iden-
tifying FEP cases. On the other hand, the free
text field may often not give a clear initial opin-
ion of the diagnosis. The understanding of this
episode as a first episode of psychosis may in-
stead unfold over time; for example, an unclear
episode may be more conclusively identified as
psychotic in the light of subsequent episodes, or
ruled out as psychosis through the finding of or-
ganic causes. Furthermore the records we are in-
terested in are those that record the initial psy-
chotic episode, rather than subsequent ones in a
patient already diagnosed, though the language
surrounding the event may be extremely similar.
The task therefore presents challenges for NLP.

1.1 Previous Research

Previous work has attempted to identify rele-
vant cases for research in patient records, and
has tended to make use of keyword search and
rule-based approaches, though a body of work
exists on statistical case classification. Ford et
al (2016) note that making use of the free text
information consistently improves accuracy com-
pared with structured fields only, but there is lit-
tle to distinguish the success of rule-based and
machine learning approaches to case classifica-
tion. Of the 67 studies they reviewed, 23 used a
data-driven approach to classification, with logis-
tic regression being the most popular choice, but
with all of the better known classification algo-
rithms represented. Features on which the clas-
sification took place are often bespoke gazetteers,
though various established biomedical informa-
tion extraction systems are used as a preparatory
step, most notably cTAKES (Savova et al., 2010),
MetaMap (Aronson, 2001) and HITEx (Zeng et
al., 2006). Bag-of-words representations and char-
acter n-grams are common. Systems often include
some form of assertion and/or negation detection,
such as NegEx (Chapman et al., 2001). The stud-
ies cover a variety of general medical conditions,
and results vary, with recalls (sensitivities) and
precisions (positive predictive values, or PPVs)
typically between around 50% and the high 90s.
A further study not included by Ford et al uses
word trigrams to achieve a good result in detecting
patients with acute lung injury (Yetisgen-Yildiz et
al., 2013). Given the varied task conditions, it
is difficult to generalize about what constitutes a
good result.

Several studies are of more specific relevance
to psychiatry. Castro et al (2014) report an AUC
of 0.82 classifying patients based on their record
according to bipolar status, and an AUC of 0.93
for classifying individual notes (subdocuments)
within the patient record, a result they achieved us-
ing HITEx for feature generation, along with a be-
spoke gazetteer, and logistic regression (LASSO)
for classification. Among previous work, theirs
is perhaps the most comparable to the study pre-
sented here, in particular the classification of the
entire case, rather than the individual note, since
this is a closer parallel to this work, in which a
portion of the patient record covering a window of
many subdocuments is used to classify the whole
case. Bellows et al (2014) focus on terms rather

197



than classifying the whole case to identify binge
eating disorder diagnoses. They provide an accu-
racy figure with no kappa, and a sensitivity (re-
call) without a specificity or a PPV (precision) so
it is hard to compare their outcome with other sim-
ilar work. Perlis et al (2012) have had some suc-
cess using bespoke text features and logistic re-
gression to classify patients with major depressive
disorder according to their current status, achiev-
ing AUCs in the range of 0.85 to 0.88. Huang et
al (2014) classify depression patients according to
disease severity, and predict 12 month outcomes.
Seyfried et al (2009) provide technological sup-
port for manual depression case identification, but
do not include automated classification.

The approaches used here are in keeping with
previous work, whilst applying the techniques to
a novel domain with new challenges. Linking to
a medical ontology has not been done here since
existing vocabularies do not provide a good cov-
erage of terms relevant in this case, but a con-
textualizer was utilized (discussed in more detail
below) to distinguish mentions being experienced
by the patient, now, from, for example, those hav-
ing been experienced by a family member or in
the past. Sentence classification has not been used
in preference to whole case classification because
first episode psychosis diagnoses are so very rarely
clearly stated.

2 Data

The manual case identification is described else-
where (Bourque, 2015). In brief, a three stage
screening of clinical records was conducted by
three clinically trained researchers (a psychiatrist,
a medical doctor and a psychiatric nurse), and a
research assistant, overseen by a principal investi-
gator.

Firstly, SQL commands were used to retrieve
anonymised information for all persons present-
ing to all adult mental health services serving
the population of interest. Search criteria were
weekly search period, service location (i.e. all
SLaM services in Lambeth and Southwark), age-
range and symptom terms (e.g. psychos*; psy-
chot*, delusion*, voices, hallucinat* paranoia).
Once retrieved, individual patient records were
screened and reviewed by the aforementioned re-
searchers using a validated diagnostic screening
tool, namely, the Item Checklist Group of the
Schedule of Clinical Assessment of Neuropsychi-

atry SCAN (WHO, 1994), to identify first episode
psychosis cases. Individuals were included as
cases if they were: resident in the London bor-
oughs of Lambeth or Southwark; aged 18-64 years
(inclusive); experiencing psychotic symptoms of
at least one day duration during the study periods
and scored at least 2 or more for psychotic symp-
toms as assessed using the SCAN. This screening
process described above enabled the assignment
of population at risk into three categories i.e. FEP
cases, no psychosis and excluded.

Secondly, two primary researchers (a psychi-
atric nurse and a psychiatrist) reviewed all the in-
cluded cases from the first stage screen to ensure
cases met all inclusion criteria. An inter-rater reli-
ability test was carried out between the two experts
and Cohen’s Kappa coefficient of 0.77 (p=<0.01)
was achieved. Finally, discrepant or ambiguous
cases were resolved by consensus with the princi-
pal investigator.

In total, 9109 individual clinical records were
screened, of whom 560 screened positive and were
FEP cases, 5234 screened negative for psychosis
(but remain at risk and allocated to re-evaluation)
and 3315 were excluded (because of evidence of
any of the following: previous psychosis, organic
psychosis, not resident, too young or too old). In
the work described below, these 9109 records were
split into a tuning set (two thirds of the total) and
a test set (the remainder).

3 Experiments

In order to facilitate further identification of rel-
evant cases, a case classification application was
created using GATE (Cunningham et al., 2013),
since this technology provides a wide variety of
different information extraction tools that can be
used to create features for machine learning, as
well as an integration of LibSVM’s (Chang and
Lin, 2011) support vector machine and various of
the Mallet (McCallum, 2002) and Weka (Hall et
al., 2009) algorithms, and has been in use at SLaM
for several years.

Due to the challenging nature of the data, sys-
tematic exploration of available tools was required
to produce a good result. This work focuses on
three algorithms; support vector machines (SVMs,
in particular LibSVM), and Weka’s Random For-
est and JRip. In the course of experimentation,
many algorithms were tried, but these three have
been chosen as the focus here because they formed

198



good practical propositions, both in terms of accu-
racy of classification and speed, and being diverse,
provide insight into the ways that different tech-
niques interact with algorithm choice.

The work is presented here in two parts. Feature
selection and parameter tuning is discussed, show-
ing how these can be used to improve the accuracy
of the classifiers. Then the problem of bias against
the minority class is explored. Since the cases to
be identified are by far the minority, and the pri-
ority is finding as many of them as possible, op-
timizing overall accuracy was not sufficient. The
second section, therefore, addresses this issue, and
concludes with an assessment of the utility of con-
fidence scores for providing fine-grained control
over the level of recall achieved.

All experimental software is available to down-
load1. A Docker file is provided that builds the ex-
perimental environment, with an entrypoint script
running the complete experiment set presented in
this paper, generating the results shown. The data
is however highly confidential and therefore can-
not be shared.

3.1 Feature Selection and Parameter Tuning

Early experiments used a feature set including
word bigrams and unigrams (trigrams lead to an
very high dimensionality of problem, and previ-
ous experience has shown that they are likely to
overfit all but the largest of corpora, which our
9109 cases, whilst sizeable for an expert-annotated
set of complex cases, is not) as well as pres-
ence of terms in a comprehensive gazetteer pro-
vided by a medical expert. This gazetteer cov-
ered symptoms relevant to psychosis, and was
further supplemented with a speculative term set
relevant to diagnosis and treatment, such as the
phrase “first episode [of] psychosis” or phrases
relevant to sectioning and hospital admission.
ConText (Harkema et al., 2009) was applied to
these gazetteer mentions to add information about
whether it is the patient that is experiencing the
observation or another individual, for example a
family member; whether they are stated as expe-
riencing or not experiencing it (e.g. “no evidence
of psychosis”); and whether the finding is noted
in the present or past (e.g. “had previously ex-
perienced auditory hallucinations”). Note that the
phrase “first episode psychosis” or “first episode

1http://www.dcs.shef.ac.uk/˜genevieve/bionlp-docker-
fep.zip

of psychosis”, whilst telling, is extremely rare, oc-
curring only a couple of times in the whole corpus.
A typical case record progresses all the way from
first presentation through to treatment and man-
agement with minimal discussion of the diagnosis.

In addition to these features, there are some
structured data fields associated with the cases, in-
cluding diagnosis, as well as demographic infor-
mation such as gender, ethnicity and date of birth.
A number of quite detailed diagnosis categories
correspond to psychosis of the type we are inter-
ested in. Diagnosis fields (of which there are sev-
eral) are utilized to differing extents by clinicians,
and may be empty or out of date. Furthermore, di-
agnosis does not help us to identify that this record
describes a first episode of psychosis. However,
diagnosis fields are an obvious feature to include.

GATE was used to create feature representa-
tions of the tuning instances, which were then
exported in ARFF format, in order to experi-
ment with feature extraction techniques available
in Weka but not in GATE. Weka’s CfsSubsetEval
was used with BestFirst feature selection, as this
is a pragmatic option. However due to time con-
straints, this was impractical over the very large
dimensionalities necessitated by the inclusion of
unigram and bigram features. Instead feature se-
lection was performed without including n-grams.
Results are presented for the feature set including
unigrams in order to contrast the overall perfor-
mance, but the feature set across which feature se-
lection was performed was limited to the feature
set without n-grams.

Feature selection provides an insight into the
data. Note that a feature not being selected does
not imply it is of no utility in separating the cases,
since it may be redundant in conjunction with a
better feature. Note also that the feature selection
methods employed may not be congruent with the
algorithms we then go on to use, since some al-
gorithms may be able to, for example, combine
features differently to produce useful information.
Nonetheless it is interesting to note what seems
to help to separate the cases. Listed here are the
features strongly selected, being found valid over
three out of three folds of the data. Below that,
the features presented were found valid in two out
of three folds. All selected gazetteer features are
positive mentions experienced by the patient in the
present, as ascertained using ConText.

• Validated in 3/3 folds
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– Null or empty values in the follow-
ing structured fields; borough, ethnicity,
gender, postcode, first primary diagno-
sis

– Age
– First primary diagnosis:
∗ bipolar, hypomanic (F31.0)
∗ bipolar, unspecified (F31.9)
∗ severe depressive w/psychotic

symptoms (F32.3)
– Text features, presence of gazetteer

terms; “olanzapine”, “risperidone”, “au-
ditory hallucinations”, “voices”, “para-
noid”, “psychotic”, “psychosis”

• Validated in 2/3 folds

– First primary diagnosis
∗ bipolar (F31)
∗ organic delusional schizophrenia-

like disorder (F06.2)
∗ organic mood disorder (F06.3)

– Text features, presence of gazetteer
terms; “aripiprazole”, “quetiapine”,
“persecutory”, “schizophrenia”

Reflecting on these features, it is interesting
that the absence of some structured information,
for example an empty value for postcode, enables
some separation of the cases. It may be that first
episodes of psychosis, perhaps because they often
present under troubled circumstances, tend to ar-
rive in the system via a different route that has
some systematic differences to more routine cases,
resulting in these differences in the case record. It
is unsurprising that diagnosis fields are of value,
being likely to assist both in finding positive cases
and ruling out negative ones (e.g. organic causes).
Furthermore, antipsychotic drugs and the more
telling of symptoms appear prominently, as do
terms such as “psychosis”, that suggest a postu-
lated diagnosis. It is also interesting that only a
small number of features is selected, the majority
being redundant.

Next, the impact feature selection has on accu-
racy with regards to the three algorithms is inves-
tigated. Firstly, the SVM is tuned. Then, feature
scaling (normalization) and cost are considered in
conjunction with feature selection. The cost pa-
rameter of an SVM refers to the importance at-
tached to creating a classifier that correctly clas-
sifies the training instances. A high cost results

in a better fit to the training data, though may po-
tentially overfit. A low cost may result in a weak
classifier that hasn’t made the best use of the train-
ing data.

Feature normalization describes a process
whereby numeric features are brought into a sim-
ilar statistical distribution with each other, for ex-
ample by scaling them all to have the same mean
and variance. In this case, age is a numeric feature
with a very different range than the nominal fea-
tures that otherwise dominate. Nominal features
are expanded out to one dimension per value and
assigned counts, which for many fields such as di-
agnosis fields, amount to ones and zeroes for pres-
ence or absence. The greater magnitude of the age
feature in no way reflects its greater importance,
yet vector space algorithms may attach more im-
portance to larger values. In this work, this is rel-
evant to the SVM. The other two algorithms used
here are unaffected by the magnitude of numeric
features.

Table 1 shows a sample of the results obtained
from evaluating using three-fold cross-validation
on the tuning corpus with the large feature set in-
cluding unigrams, and table 2 shows a sample of
the results obtained from evaluating using three-
fold cross-validation on the tuning corpus with
the reduced feature set. We can see that where
the larger feature set is used, including unigrams,
cost and feature normalization have an important
role to play in getting a competitive result. At
lower costs, feature normalization is detrimental,
but once cost comes into the right range, it helps.
However, on the reduced feature set, obtaining a
good result is far easier. Feature normalization
does not have much impact any more, and cost,
whilst an important parameter to tune, is less crit-
ical. This result emphasizes the potential value
of selectiveness with features to the SVM, whilst
highlighting the role that cost tuning and feature
normalization may play in working with a less op-
timal feature selection.

Having tuned the SVM, this was now compared
to the other two algorithms with regards to fea-
ture selection. GATE was used to produce a new
ARFF file of the tuning instances with the reduced
feature set, in addition to the full set with and
without unigrams, which were then evaluated in
Weka using threefold cross-validation. Adapting
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Cost Feat Norm? Accuracy Kappa
1 No 66.3% 0.2496
10 No 70.4% 0.3809
1000 No 74.2% 0.4937
1 Yes 59.86% 0
10 Yes 60.0% 0.0068
1000 Yes 79.6% 0.5629

Table 1: Parameter tuning on the large feature tun-
ing set including unigrams.

Cost Feat Norm? Accuracy Kappa
1 No 81.8% 0.6244
10 No 82.2% 0.6392
1000 No 78.6% 0.5802
1 Yes 76.2% 0.4682
10 Yes 77.8% 0.5105
1000 Yes 81.9% 0.6368

Table 2: Parameter tuning on the reduced feature
tuning set.

our GATE application to utilize the features iden-
tified as being more useful resulted in an approxi-
mation that captures the spirit of what was learned,
rather than an exact match, for practical reasons.
The GATE Learning Framework machine learning
integration 2 makes it easier to simply include the
diagnosis field, for example, having shown itself
to be of value, rather than picking the diagnoses of
interest.

Feature selection wasn’t performed on the fea-
ture set that included unigrams, so therefore we are
interested to see results on this set to get a heuristic
feel for whether unigrams are of value, although
one can’t rule out that had feature selection been
performed on the unigrams, some of them would
have been found to be of utility. We proceed there-
fore with three datasets; the full feature set includ-
ing unigrams (419531 features), the full feature set
without unigrams (3256 features) and the reduced
set of 2027 features. Note that the reason the re-
duced feature sets number thousands despite the
list being short as above is that a nominal feature
is expanded out to a number of numeric (count)
features equivalent to one per unique value found
in the training set. Table 3 shows the impact of
feature set reduction on the results obtained with
each algorithm.

In all cases, reducing features results in an im-
2https://github.com/GenevieveGorrell/gateplugin-

LearningFramework

Algorithm Feature set Acc. Kappa
SVM Full+uni 79.6% 0.5629
SVM Full 81.4% 0.6254
SVM Reduced 81.9% 0.6368
JRip Full+uni 81.3% 0.6234
JRip Full 81.5% 0.6296
JRip Reduced 82.0% 0.6349
Rand. Forest Full+uni 66.46% 0.2385
Rand. Forest Full 81.5% 0.6136
Rand. Forest Reduced 82.2% 0.6274

Table 3: Trying different feature sets with different
algorithms.

provement, marginal for SVM and JRip but sub-
stantial for Random Forest, indeed being required
to bring the result obtained up to a competitive
standard. The main improvement comes from the
removal of unigrams. A further contribution of
feature reduction lies in the speed gains obtained
at training time. The SVM was trained using a
cost of 1000 with feature scaling included. We can
see that whilst the algorithms respond differently
to feature reduction, using the smaller set there is
no very clear winner among them.

3.2 Class Balancing

Having focused evaluation so far around classifi-
cation accuracy, the question of how effective our
classifiers are at obtaining a high sensitivity (re-
call) on first episode psychosis cases has not yet
been considered. The goal of the work is to enable
medical researchers to obtain a sample of positive
cases with little cost in the way of missing any,
whilst reducing the amount of time they spend re-
jecting negative cases. Finding as near as possi-
ble to all of the relevant cases is the main priority.
Precision needs to be high enough to justify the ex-
ercise, but there is much more flexibility regarding
how high is good enough. A classifier that is tuned
to produce as high an overall accuracy as possi-
ble will tend to favour the dominant class, since
in the case of uncertainty, assigning to the domi-
nant class will tend to be right more often than it
is wrong. Therefore some innovation must be in-
troduced to counteract this.

Early experimentation focused on the weights
parameter on the support vector machine. Figure 1
gives the ROC curve thus obtained, using three-
fold cross-validation on the tuning corpus. The
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Figure 1: ROC curve for SVM negative class
down-weighting

Figure 2: Precision and recall vary with SVM
class weighting

AUC (area under the curve) is 0.87. For a recall
of 0.944, this gives a specificity of 0.535, which
equates roughly to halving the number of cases re-
quired to be viewed, at a cost of missing one in 20
cases. It is clear from the graph of precision and
recall against weight in figure 2 that the weights
parameter provides an effective option for increas-
ing recall of the positive cases to the required level.

Unfortunately this parameter is not available or
relevant to the other two algorithms, and also did
not transfer easily to the larger training set used to
prepare the final application. Further experimenta-
tion instead focused on creating a balanced train-
ing set that would not penalize the minority class.
A balanced training set should lead to a fairer clas-
sifier for many algorithms, which aim to minimize
the number of misclassified points. Table 4 shows
results obtained using Weka to sample the tuning
set fairly across classes, having first taken out one
third for testing. No replacement of instances was
opted for, and the dataset was reduced to 20%,

Algorithm Conds Prec Rec F1
SVM 0.05 0.244 0.760 0.370
SVM No 0.544 0.358 0.432
SVM Yes 0.286 0.675 0.402
JRip No 0.508 0.258 0.343
JRip Yes 0.226 0.783 0.351
Rand. Forest No 0 0 0
Rand. Forest Yes 0.306 0.725 0.431

Table 4: Class balancing interacts with algorithm
choice.

this being large enough to ensure that all positive
cases were included, thus thinning the negatives
and creating an effect that could be broadly repli-
cated back in GATE by removing some of the neg-
ative cases. Separating out a test set is necessary to
ensure that the result obtained is indicative of what
might be obtained on a naturalistic sample. Had
cross-validation been used on an artificially bal-
anced set, the result would have been misleading.
The first line in the table gives the most compara-
ble result for weight tuning in SVM (“conds” in
this case gives the weight assigned to the negative
classes), for comparison. Below that, “conds” in-
dicates whether or not class balancing was used on
the training data. We see that for SVM and JRip,
class balancing allows recall of the positive class
to be improved whilst retaining a broadly similar
F1. For Random Forest, class balancing allows
us to find the positive cases where previously they
were not found at all, and produces a competitive
model.

A further option for altering the precision/recall
balance lies in making use of the confidence scores
provided by the algorithms. However different al-
gorithms are differently able to provide a sensi-
tive and informative confidence score. Confidence
scores are made use of in this work to provide
the medical researchers with an ordered list of
cases to review, leaving the power in their hands to
progress as far down the list as provides them with
the recall they require. This does not negate the
need for a classifier tuned to the needs of the task.
An appropriately tuned classifier can be expected
to give a better F1 for a certain recall than one ob-
tained simply by applying a confidence threshold
to a mistuned one. A Random Forest model was
trained in GATE using the full tuning set, but with
the negative instances thinned to 1 in 13, roughly
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Figure 3: ROC curve based on Random Forest
confidence scores in GATE.

balancing the classes. Figure 3 gives a ROC curve
based on confidence scores assigned on the test set
(AUC 0.85). In keeping with previous results, a
recall is obtained of in excess of 95% for a speci-
ficity of 0.53, halving the number of cases required
to be viewed, by setting the confidence threshold
at 0.2. For a recall of almost 0.8, only around a
quarter of cases would need to be viewed (speci-
ficity 0.77).

4 Conclusion

This paper presents work on a challenging psychi-
atry domain case classification application. The
goal was to facilitate medical researchers’ collec-
tion of a (further) sample of cases describing a first
episode of psychosis, by learning a model from
9109 cases already manually classified. This clas-
sification problem, requiring the highest level of
domain expertise to accomplish manually, proves
challenging for natural language processing tech-
niques. The problem is complicated by the sub-
tlety of distinction between the positive and nega-
tive cases; for example, psychotic episodes that are
not the first, and those with organic causes are neg-
ative instances, although the language surrounding
their case is very similar to the positive cases. Fur-
thermore the sample with which we are working is
already selected on the basis of psychosis-related
keyword search, meaning that the NLP work is re-
quired to offer value over and above that. Feature
normalization proves essential to making the sup-
port vector machine competitive on the task. Fea-
ture selection is generally beneficial, in particular
making Random Forest competitive, and allowing

a much smaller feature space to be used. Since the
task is to identify the minority class with a high
recall, an important part of task success focused
on tuning the algorithms in favour of the positive
class. This was accomplished by thinning the neg-
ative instances in the training set. Attempts to use
the weights parameter with the SVM were com-
plicated by the apparent sensitivity of this param-
eter to variations in the task conditions. The final
GATE application achieves an AUC of 0.85, a re-
sult that compares favourably with previous simi-
lar work despite the additional challenges, and al-
lows medical researchers to select their own recall
based on the confidence score of the Random For-
est algorithm, for example halving the number of
cases they are required to examine with a loss of
only 5% of positive cases. No one machine learn-
ing algorithm notably excelled in this work; suc-
cess might be attributed to an exceptional training
set, both in terms of size and quality, and the freely
available machine learning technologies that pro-
vided a solution to the problems that arose.
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Abstract

In recent years extracting relevant infor-
mation from biomedical and clinical texts
such as research articles, discharge sum-
maries, or electronic health records have
been a subject of many research efforts
and shared challenges. Relation extrac-
tion is the process of detecting and classi-
fying the semantic relation among entities
in a given piece of texts. Existing models
for this task in biomedical domain use ei-
ther manually engineered features or ker-
nel methods to create feature vector. These
features are then fed to classifier for the
prediction of the correct class. It turns
out that the results of these methods are
highly dependent on quality of user de-
signed features and also suffer from curse
of dimensionality. In this work we focus
on extracting relations from clinical dis-
charge summaries. Our main objective is
to exploit the power of convolution neu-
ral network (CNN) to learn features auto-
matically and thus reduce the dependency
on manual feature engineering. We eval-
uate performance of the proposed model
on i2b2-2010 clinical relation extraction
challenge dataset. Our results indicate
that convolution neural network can be a
good model for relation exaction in clin-
ical text without being dependent on ex-
pert’s knowledge on defining quality fea-
tures.

1 Introduction

The increasing amount of biomedical and clin-
ical texts such as research articles, clinical tri-
als, discharge summaries, and other texts created

∗Part of this work was done while Sunil Kumar Sahu was
doing internship at Excelra Knowledge Solutions Pvt Ltd, Hy-
derabad, Telangana, India.

by social network users, represents immeasurable
source of information. Automatic extraction of
relevant information from these resources can be
useful for many applications such as drug reposi-
tioning, medical knowledge base creation etc. The
performance of concept entity recognition systems
for detecting mention of proteins, genes, drugs,
diseases, tests and treatments has achieved suffi-
cient level of accuracy, which gives us opportunity
for using these data to do next level tasks of natural
language processing (NLP). Relation extraction is
the process of identifying how given entities are
related in considered sentence or text. As given
in the example sentence [S1] below, the entities
Lexix and congestive heart failure are related by
treatment administered medical problem relation.
These relations are important for other upper level
NLP tasks and also in biomedical and clinical re-
search (Shang et al., 2011).

[S1]: He was given Lexix to prevent him from
congestive heart failure .

Relation extraction task in unstructured text
has been modeled in many different ways. co-
occurrence based methods due to their simplicity
and flexibility are most widely used methods in
biomedical and clinical domain. In co-occurrence
analysis it is assumed that if two entities are com-
ing together in many sentences, their must be a re-
lation between them (Bunescu et al., 2006; Song
et al., 2011). Quite obviously this method can
not differentiate types of relations and suffers from
low precision and recall. To improve its results,
different statistical measures such as point wise
mutual information, chi-square or log-likelihood
ratio has been used in this approach (Stapley and
Benoit, 2000).

Rule based methods are another commonly
adapted methods for relation extraction task
(Thomas et al., 2000; Park et al., 2001; Leroy
et al., 2003). Rules are created by carefully ob-
serving the syntactic and semantic patterns in rela-
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tion instances. Bootstrapping method (Xu, 2008)
is used to improve the performance of rule based
methods. Bootstrapping uses small number of
known relation pair of each relation type as a seed
and use these seeds to search patterns in huge
unannotated text (Xu, 2008) in iterative fashion.
Bootstrapping method generates lots of irrelevant
patterns too, which can be controlled by distantly
supervised approach. Distantly supervised method
uses large knowledge base such as UMLS or Free-
base as an input and extract patterns from huge
corpus for all pair of relations present in knowl-
edge base (Mintz et al., 2009; Riedel et al., 2010;
Roller and Stevenson, 2014). The advantage of
bootstrapping and distantly supervised methods
over supervised methods is that they do not re-
quire lots of manually labeled training data which
is generally very hard to get.

Feature based methods use sentences with pre-
defined entities to construct feature vector through
feature extraction (Hong, 2005; Minard et al.,
2011b; Rink et al., 2011). Feature extraction is
mainly based on linguistic and domain knowl-
edge. Extracted feature vectors are used to de-
cide correct class of relation present between enti-
ties in the sentence through any classification tech-
niques. Kernel methods are extension of feature
based methods which utilize kernel functions to
exploit rich syntactic information such as parse
trees (Zelenko et al., 2003; Culotta and Sorensen,
2004; Qian and Zhou, 2012; Zeng et al., 2014).
State of the art results have been obtained by these
class of methods.

However, the performance of feature and ker-
nel based methods are highly dependent on suit-
able feature set selection, which is not only te-
dious and time consuming task but also require do-
main knowledge and is dependent on other NLP
systems. Often such dependencies make many
existing work less reproducible simply because
of absence of the full and finer details of fea-
ture extraction. Further often these methods lead
to huge number of features and may get affected
from curse of dimensionality issues (Bengio et al.,
2003; Collobert et al., 2011). Another issue faced
by these methods is feature extraction will have
to be adjusted according to the data source. As
discussed earlier we are having multiple but di-
verse information resources such as research arti-
cles, discharge summaries, clinical trials outcome
etc. While in one hand multiple sources bring

more information but the other hand it makes it
challenging to extract meaningful information au-
tomatically simply because of diverse nature of the
data source. For example, sentences in research ar-
ticles are well formed and likely to use only well
accepted technical terms. But sentences in clini-
cal discharge summaries may not be well formed
sentences instead it could be fragmented sentences
with lots of acronyms or terms used only locally.
Similarly social media articles may use slang or
terms which are not technically used. This makes
it difficult for above discussed methods.

Motivated by these issues, this work aims to
exploit recent advances in machine learning and
NLP domains to reduce such dependencies and
utilize convolutional neural network to learn im-
portant features with minimal manual dependen-
cies. Convolution neural network has shown to
be a powerful model for image processing, com-
puter vision (Krizhevsky et al., 2012; Karpathy
and Fei-Fei, 2014) and subsequently in natural
language processing it has given state of the art
results in different tasks such as sentence classifi-
cation (Kim, 2014; Kalchbrenner et al., 2014; Hu
et al., 2014; Sharma et al., 2016), relation classifi-
cation (Zeng et al., 2014; dos Santos et al., 2015)
and semantic role labeling (Collobert et al., 2011).

In this paper we propose a new framework for
extracting relations among problem, treatment and
test in clinical discharge summaries. In particu-
lar we use data available under clinical relation
extraction task organized by Informatics for Inte-
grating Biology and the Bedside (i2b2) in 2010 as
part of i2b2/VA challenge (Uzuner et al., 2011).
Extracting relations in clinical texts is more chal-
lenging compared to research articles as it contains
incomplete or fragmented sentences, and lots of
acronyms. Current state of the art methods heav-
ily depend on manual feature engineering and use
hundreds of thousands of features (Minard et al.,
2011b; Rink et al., 2011). Our result indicates the
proposed model can outperform the current state
of the art models by using only a small fraction
of features. However the main observation is the
features used in our model is easy to replicate and
adapt as per the data source compared to the fea-
ture sets generally used in these tasks.

2 Related Research

i2b2 organized a shared task in 2010 (Uzuner
et al., 2011). In this challenge discharge sum-

207



Figure 1: CNN model for relation extraction.

maries from three different sources were anno-
tated for extracting relations among clinical enti-
ties such as problem, treatment and test. Most of
the participants in this challenge used support vec-
tor machine (SVM) with manually designed fea-
tures (Uzuner et al., 2010). Model proposed by
Rink et al. (2011) had first place in this task, which
used six classes of features namely, context fea-
tures, similarity features, nested related relation
features, Wikipedia features, single concept fea-
tures and vicinity features. They formulated the
relation extraction task as a multiclass classifica-
tion problem and SVM with linear kernel were
used for classification.

For extracting relation among disease and treat-
ment, Rosario and Hearst (2004) used various
graphical and neural network models. They used
variety of lexical, semantic and syntactic features
for classification and found that semantic features
were contributing most among all. The dataset
used in this study was relatively smaller and was
prepared from biomedical research articles. Li et
al. (2008) proposed kernel methods for relation
extraction between entities in MEDLINE R© arti-
cles. They modified the tree kernel function by
incorporating trace kernel to capture richer contex-
tual features for classifying the relation. Their re-
sults shows that tree kernel outperform other ker-
nel methods such as word and sequence kernels
for the considered task.

Conditional random field (CRF) has been used
for relation extraction between disease treatment
and gene by (Bundschus et al., 2008). In this ex-
periment setting, they did not assume that entities
were given, instead their model also predicted en-

tities and its type. They developed two variants of
CRF both modeled relation extraction task as se-
quence labeling task. Recently Bravo et al. (2015)
proposed a system for identifying association be-
tween drug disease and target in EU-ADR dataset
(van Mulligen et al., 2012) and named it BeeFree.
BeeFree usese combination of shallow linguistic
kernel and dependency kernel for identifying rela-
tions.

In contrast to above methods recently there are
few work applying convolution neural network
based models (Zeng et al., 2014; dos Santos et
al., 2015) for relation classification in SemEval
2010 relation classification dataset (Hendrickx et
al., 2009). Convolution neural network used in
this models are using constant length filters, and
word embedding and distance embedding as fea-
tures. Our model leverage on the linguistic fea-
tures also and we considered relation extraction
task in clinical notes which is much more infor-
mal, rich with acronyms and number of samples
for each relations are not stable (Uzuner et al.,
2011).

3 CNN for Clinical Relation Extraction

The proposed model based on CNN is first sum-
marized in the next section. Subsequent sections
describe it in more detail.

3.1 Model Architecture

The proposed model architecture is shown in the
figure 1, which takes a complete sentence with
mentioned entities as an input and outputs a proba-
bility vector corresponding to all possible relation
types. Each feature is having vector representation
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which is initialized randomly except word embed-
ding feature. For word embedding, we used pre-
trained word vector (TH et al., 2015) learned on
Pubmed articles using word2vec tool (Mikolov et
al., 2013b).

Embedding layer maps every feature value with
its corresponding feature vectors and concatenate
them. In order to get local features from each part
of the sentence we have used multiple filters of dif-
ferent lengths (Kim, 2014) in all possible continu-
ous n-gram of the sentence, where n is the length
of filter (We have shown four filters with constant
length three in the figure 1). We use max pool-
ing over time to get global features through all fil-
ters. Here time indicates filter running over the
length of the sentence. Pooled features are then
fed to fully connected feed-forward neural net-
work to make inference. In the output layer we use
softmax classifier with number of outputs equal to
number of possible relations between entities.

3.2 Feature Layer

We represent each word in the sentence with 6
discrete features namely word itself (W), distance
from the first entity (P1), distance from the second
entity (P2), parts of speech tag of the word (PoS),
chunk tag of the word (Chunk) and entity type (T).
Each feature is briefly described below:

1. W : Exact word appeared in the sentence.

2. P1: Distance from the first entity in terms
of number of words (Collobert and Weston,
2008). For instance in our earlier example
[S1] He is at −3 distance and prevent is at
+2 distance away from the first entity Lexis.
This value would be zero for all words which
is a part of the first entity.

3. P2: Similar to P1 but considers distance from
the second entity.

4. PoS: Parts of speech tag of the considered
word. We use genia tagger1 to obtain pos tag
of each word.

5. Chunk: Chunk tag of considered word.
Again we use genia tagger to obtain chunk
tag of each word.

6. T : Type of the considered word. For exam-
ple, it would be entity type such as B−Prob,

1http://www.nactem.ac.uk/GENIA/tagger/

I − Prob etc. for entity word and Other for
rest words following the BIO tagging conven-
tion.

This way a word w ∈ D1 × D2 × .....D6, where
Di is the dictionary for ith local features.

3.3 Embedding Layer
In lookup or embedding layer each feature value
is mapped to its vector representation using fea-
ture embedding matrix. Lets say M i ∈ Rn×N is
the feature embedding matrix for ith local feature
(here n represents dimension of feature embed-
ding and N is number of possible values or size
of the dictionary for ith local feature). Each col-
umn of M i is vector of corresponding value of ith

features. Mapping can be done by taking product
of one hot vector of feature value with its embed-
ding matrix (Collobert and Weston, 2008). Sup-
pose a

(i)
j is the one hot vector for jth feature value

of ith feature then:

f
(i)
j = M i a

(i)
j (1)

xi = f
(i)
1 ⊕ f

(i)
2 ....⊕ f

(i)
6 (2)

Here ⊕ is concatenation operation so xi ∈
R(n1+....n6) is feature vector for ith word in sen-
tence and nk is dimension of kth feature. For word
embedding we used pre-trained word vector ob-
tained after running word2vec tool (Mikolov et al.,
2013b; Mikolov et al., 2013a) on huge Pubmed
open source articles (TH et al., 2015). Other fea-
ture matrix were initialized randomly at the begin-
ning. Since number of elements in all feature dic-
tionary except word dictionary (D1) are not huge,
we assume that while training these vectors will
get sufficient updation.

3.4 Convolution Layer
We apply convolution on text to get local features
from each part of the sentence (Collobert and We-
ston, 2008). Consider x1x2.....xm is the sequence
of feature vectors of a sentence, where xi ∈ Rd is a
vector obtained by concatenating all feature vector
of ith word. Let xi:i+j represents concatenation of
xi.....xi+j feature vectors. Suppose there is a filter
parameterized by weight vector w ∈ Rcd where c
is the length of filter (in figure 1 filter length is
three). Then output sequence of convolution layer
would be

hi = f(w · xi:i+c−1 + b) (3)
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Where i = 1, 2, . . . m − c + 1, . is dot product, f
is rectify linear unit (ReLu) function and b ∈ R is
biased term. w and b are the learning parameters
and will remain same for all i = 1, 2, . . . m−c+1.

3.5 Max Pooling Layer
Output of convolution layer length (m−c+1) will
vary based on number of words m in the sentence.
We applied max pooling (Collobert and Weston,
2008) over time to get fixed length global features
for whole sentence. The intuition behind using
max pooling is to consider only most useful fea-
ture from entire sentence.

z = max
1≤i≤(m−c+1)

[hi] (4)

We have just explained the process of extracting
one feature from a whole sentence using one fil-
ter. In figure 1 we extracted four features using
four filters of the same length three. In our experi-
ment we use multiple such filters of variable length
(Kim, 2014; Yin and Schtze, 2015). The objective
of using different length filter is to accommodate
context in varying window size around words.

3.6 Fully Connected Layer
The output of max pooling layer is sequence z
came with different filters. We call this global fea-
ture because it came by taking max over entire sen-
tence. To make classifier over extracted global fea-
ture, we used fully connected feed forward layer.
Suppose zi ∈ Rl is output of max pooling layer for
entire filters then output of fully-connected layer
would be

o(i) = W ozi + bo (5)

Here W o ∈ R[r]×l and bo ∈ R[r] are parameters of
neural network and [r] denotes number of classes.

3.7 Softmax Layer
In output layer we used softmax classifier for
which objective function would be minimization
of

Li = − log

(
eo

(i)
yi∑

∀j eo(i)

j

)
(6)

for ith sentence. Here yi is correct class of relation
for ith instance.

3.8 Implementation
We experiment with filter lengths in two different
experiment settings. In first, we use 100 different
filters of a fixed length in the convolutional layer,

while in another set of experiments we use vary-
ing length filters, but used 100 different filters for
each varying length. So, in the first setting, we
obtain 100 features after max pooling, while in
the second, we obtain 100 times number of differ-
ent length filter features. For regularization (Sri-
vastava et al., 2014), we follow (Kim, 2014) and
use dropout technique in output of max pooling
layer. Dropout prevents co-adaptation of hidden
units by randomly dropping few nodes. We set
this value to 0.5 during training and 1 while test-
ing. We use Adam technique (Kingma and Ba,
2014) to optimize our loss function. Entire neu-
ral network parameters and feature vectors are up-
dated while training. We have implemented the
proposed model in Python language using tensor-
flow package (Abadi et al., 2015) and will make it
available on request. Results of each filter length
were explained in results section. Dimension of
word vector is set to 50 and rest all feature embed-
ding size is kept to 5.

4 Dataset and Experimental Settings

In recent years several challenges have been or-
ganized to automatically extract information from
clinical texts (Uzuner et al., 2007; Uzuner et al.,
2008; Uzuner et al., 2011; Uzuner et al., 2010;
Sun et al., 2013). i2b2 has released dataset for
clinical concept extraction, assertion classifica-
tion and relation extraction as a part of i2b2-2010
shared task challenge. This dataset was collected
from three different hospitals and was manually
annotated by medical practitioners for identify-
ing problems, treatments and test entities, and
eight relation types among them. These relations
were: treatment caused medical problems (TrCP),
treatment administered medical problem (TrAP),
treatment worsen medical problem (TrWP), treat-
ment improve or cure medical problem (TrIP),
treatment was not administered because of med-
ical problem (TrNAP), test reveal medical prob-
lem (TeRP), Test conducted to investigate med-
ical problem (TeCP), Medical problem indicates
medical problems (PIP). (Uzuner et al., 2011) has
given the exact definition of each relation type.

While during the challenge original dataset had
394 documents for training and 477 documents for
testing but when we downloaded this dataset from
i2b2 website we got only 170 documents for train-
ing and 256 documents for testing. After prelim-
inary experiment we found that we did not have
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Name Number instances
TeCP 503
TrCP 525
PIP 2202

TrAP 2616
TeRP 3052

No Relation 55600

Table 1: Relation types and number of instances
of i2b2 dataset (partial)

enough training samples for all relation classes
present in the dataset, therefore we decided to re-
move 3 relation classes along with their instances
(TrWP (132 instances), TrIP (202 instances) and
TrNAP (173 instances)). Statistics of the dataset is
shown in the Table 1.

For extracting relations among entities we con-
sidered all sentences having more than one enti-
ties in each discharge summary to check whether
any relation exists between them or not. In our ex-
periment we assume that entities and their types
are already known like other existing works (Rink
et al., 2011; Minard et al., 2011a; Minard et al.,
2011b). We created data sample for every pair of
entities present in the sentence and labeled it with
the existing relation type. For example in sen-
tence [S2] (all continuous bold phrases are enti-
ties) entity pairs (“her white count”, “elevated”)
label would be “TeRP”, for entity pair (“her g-
csf”, “elevated”) label would be “TrNAP” and for
(“her white count”, “her G-CSF”) label would be
”None”.

[S2]: Her white count remained elevated de-
spite discontinuing her G-CSF .

5 Results and Discussion

5.1 Influence of filter lengths
We combined the training and testing data and per-
formed five-fold cross-validation on the available
limited i2b2 dataset for all our evaluations. First
we evaluate the influence of filter lengths. We ex-
periment with selection of filter length using all
features. Results as average of five-fold experi-
ment are shown in the Table 2.

In case of single filter, the results indicate in-
creasing the size of filter length generally tends to
improve the performance. Using only single filter
the best performance with F1 score as 70.43% was
obtained by using filter length of 6. However fur-
ther increasing the filter length did not improve the

Filter length Precision Recall F Score
[3] 74.54 64.29 68.44
[4] 74.90 65.50 69.19
[5] 76.17 64.68 69.61
[6] 76.05 66.56 70.43
[7] 76.76 64.49 69.23

[3,4] 74.96 64.65 68.91
[3,5] 74.66 66.81 70.10
[4,5] 74.90 68.20 70.91
[4,6] 76.34 67.35 71.16
[5,6] 76.08 65.31 69.77

[3,4,5] 75.83 65.10 69.30
[4,5,6] 76.12 65.68 70.15

[2,3,4,5] 74.99 65.19 69.34
[3,4,5,6] 75.88 65.98 70.13

Table 2: Comparative performance of the pro-
posed model using filters of different lengths sep-
arately and together. Each of the models used
all features (WV+P1+P2+PoS+Chunk+Type) and
100 filters for each filter length.

result. Intuitively it also seems that selection of ei-
ther of too small or too large filter length may not
be a good option. Filter length gives the window
size to capture context features. One can expect
that too small filter length (window size) may not
capture enough good context feature and too big
filter length may include noise or irrelevant con-
texts.

Further, we used multiple filters to see whether
it improves the result. Results indicate that combi-
nation of small and mid-length filter size is per-
haps the better choice. For example, combina-
tion of filter lengths 3 and 4 together did not im-
prove the performance compared to the single fil-
ter length of 3 or 4. On the other hand combination
of filter lengths 3 and 5, and 4 and 5 improved the
performance compared to use of single filters of
either length. It can be seen, the best result with F1
score as 71.16% is obtained by using filter lengths
of 4 and 6 together. But adding more than two
filters did not lead to performance improvement.

5.2 Classwise Performance

We took the best combination of filter lengths and
looked at the classwise performance. Results are
described in the Table 3.

We see from the results that as number of train-
ing examples (see Table 1) increases, performance
of the model also improves. The relation class
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Name Precision Recall F Score
TeCP 63.48 43.67 50.56
TrCP 63.60 43.67 56.44
PIP 67.32 63.30 64.92

TrAP 73.49 65.83 69.23
TeRP 82.74 79.88 81.25

Table 3: Class wise performance with all features
(filter size : [4,6] each with 100 filters)

TeRP has the maximum number of training exam-
ples and the model obtained quite a good F1 score.
On the other hand, the model could not perhaps
able to learn well for the relation classes TeCP and
TrCP having relatively lesser number of training
examples.

5.3 Contribution of Each Features

In order to investigate the contribution of each fea-
ture in final result we gradually include one feature
in our model and compared the performance. Ta-
ble 4 shows the obtained results. First we use only
random vector (RV) representation along with en-
tity types (T) (first row in the table) as a baseline
for our comparison. Adding position features (2nd
row) lead to approximately 15% increase in recall,
7% in precision and 11.7% in F1 score. How-
ever including PoS and Chunk features although
improved recall and F1 score by 4.3% and 1.3%
but precision was decreased by 3.6%. In the sec-
ond set of experiments, we first use pre-trained
word vectors along with entity types (4th row)
and later repeated the similar experiments as pre-
viously. Here again, inclusion of position features
improved the recall by more than 14% and F1
score by around 11%. This clearly indicates word
position relative to the entities of interest plays im-
portant role in deciding their influence in the con-
text. Further including PoS and Chunk features
also led to performance improvement.

Name P R F
RV + T 67.21 52.97 57.87

+(P1+P2) 71.86 60.69 64.66
+(PoS+Chunk) 69.25 63.34 65.52

WV + T 70.75 59.17 63.82
+(P1+P2) 75.54 67.69 70.97

+(PoS+Chunk) 76.34 67.35 71.16

Table 4: Contribution of each features (filter size :
[4,6] each with 100 filters)

5.4 Comparison with Feature Based Method
We could not compare our results directly with the
state of the art results obtained on the i2b2 dataset
as we did not have the complete dataset. We build
a linear SVM classifier using similar features as
defined in earlier studies (Rink et al., 2011) as a
baseline for comparison. The following features
are used for each entity pair instance:

• Any word between relation arguments

• Any PoS tags between relation arguments.
We used genia tagger for PoS

• Any bigram between relation arguments

• Word preceding first and second argument

• Any three words succeeding the first and sec-
ond arguments

• Sequence of chunk tags between relation ar-
guments. We used genia tagger for chunk
tag

• String of words between relation arguments

• First and second argument type (problem,
treatment and test)

• Order of argument type appeared in sentence

• Distance between two arguments in terms of
number of words

• Presence of only punctuation sign between
arguments.

This way we prepared attribute-value and numer-
ical features for each instances. Table 5 shows
the comparison of best results obtained by the
proposed model and SVM based model. Linear
SVM classifier with different cost parameter C
was implemented using scikit learn (Pedregosa et
al., 2011). Here again results shown are average
over the 5-folds.

Name P R F
CNN (FL=[4,6]) 76.34 67.35 71.16

SVM (Linear, C=0.01) 72.23 57.75 58.96
SVM (Linear, C=0.1) 73.75 64.18 67.35
SVM (Linear, C=1) 73.17 64.18 67.32

Table 5: Comparative performance of SVM and
CNN with filter length [4,6] each with 100 filters

Based on the results, We can make following
observations:
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• Instead of SVM, other classifier could have
been also used. We decided to use SVM as
SVM based model with similar features ob-
tained the best performance in the 2010 chal-
lenge.

• In any case we still would have to define huge
number of features and only few of them
would have non-zero values in any given
sample or instance.

• The proposed model with limited number of
features (75 * number of words in the sen-
tence; 5 dimensional vector for 5 features
other than word embedding, which is 50 di-
mensional vector) still gave the better perfor-
mance.

• Consistent with our observations in the sec-
tion 5.1, too many features trying to cap-
ture more contexts adversely affect the per-
formance of classifier. If we look at the fea-
tures defined above it includes features which
try to capture context of all possible window
size between the mentioned entities.

6 Conclusion

In this work we present a new framework based on
CNN for extracting relations among clinical en-
tities in clinical texts. The proposed model has
shown better performance by using only a small
fraction of features compared to the SVM based
baseline model. Our results indicate that CNN
is able to learn global features which can capture
contextual features quite well and thus helps in im-
proving the performance.
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