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Abstract

Argument mining integrates many distinct
computational linguistics tasks, and as a
result, reporting agreement between anno-
tators or between automated output and
gold standard is particularly challenging.
More worrying for the field, agreement
and performance are also reported in a
wide variety of different ways, making
comparison between approaches difficult.
To solve this problem, we propose the
CASS technique for combining metrics
covering different parts of the argument
mining task. CASS delivers a justified
method of integrating results yielding con-
fusion matrices from which CASS-κ and
CASS-F1 scores can be calculated.

1 Introduction

To calculate the agreement, or similarity, between
two different argumentative structures is an im-
portant and commonly occurring task in argument
mining. For example, measures of similarity are
required to determine the efficacy of annotation
guidelines via inter-annotator agreement, and to
compare test analyses against a gold standard,
whether these test analyses are produced by stu-
dents, or automated argument mining techniques
(cf. (Moens, 2013; Peldszus and Stede, 2013)).

To find the the similarity of automatic and man-
ually segmented texts and what impact these seg-
ments have on agreement between annotations for
an overall argument structure, is a complex task.
Similar to these problems is the task of evaluat-
ing the argumentative structure of annotations us-
ing pre-segmented text. Despite the relative ease
of manually analysing these situations, arguments
with long relations can easily make this task com-
plex.

Commonly to find the agreement of manual
annotators or the effectiveness of an automatic
solution, two scores are given, Cohen’s kappa
(Cohen, 1960), which takes into account the ob-
served agreement between two annotators and the
chance agreement, giving an overall kappa value
for agreement, and F1 score (Rijsbergen, 1979),
which is the harmonic mean of the precision and
recall of an algorithm. The way in which these
scores are utilised can over penalise differences in
argumentative structures. In particular, if used in-
correctly, Cohen’s kappa can penalise doubly (pe-
nalise for segmentation and penalise segmentation
in argumentative structures) if not split into sepa-
rate tasks or penalise too harshly when annotations
have only slight differences, again if the calcula-
tion is not split by argumentative structure. When
using the F1 score the same problems arise with-
out split calculations.

To combat these issues this paper introduces
two advances: first, the definition of an overall
score, the Combined Argument Similarity Score
(CASS), which incorporates a separate segmen-
tation score, propositional content relation score
and dialogical content relation score; and second,
the deployment of an automatic system of compar-
ative statistics for calculating the agreement be-
tween annotations over the two steps needed to
ultimately perform argument mining: manual an-
notations compared with manual annotations (cor-
pora compared with corpora) and automatic anno-
tations evaluated against a gold standard (automat-
ically created argument structures compared with
a manually annotated corpus).

2 Related Work

Creating the CASS technique and an automatic
system to calculate it, is based on theories estab-
lished in linguistics and computational linguistics.
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In (Afantenos et al., 2012), a discourse graph is
considered and split into discourse units and rela-
tions, to calculate agreement using F1 score. This
gives what is described as a “brutal estimation”
which gives an underestimation of the agreement.
To combat this it is suggested that reasoning over
the structures is needed.

In (Artstein and Poesio, 2008) a survey is given
of agreement values in computational linguistics.
Different measures of the statistics both Cohen’s
kappa and Krippendorff’s alpha (Krippendorff,
2007) along with other variations are considered
for different tasks. On the task of segmentation, it
is noted that kappa in any form does not account
for near misses (where a boundary missed by a
word or two words) and that instead other mea-
sures (see Section 4) should be considered. On
the topic of relations and discourse entities, again
kappa in its various forms and alpha are consid-
ered. For both relations and discourse entities the
kappa score is low overall because partial agree-
ment is not considered. Instead the idea of a par-
tial agreement coefficient is introduced as being
applicable.

In (Habernal and Gurevych, 2016), Krippen-
dorff’s unitized alpha (αU ) is proposed as an eval-
uation method, to take into account both labels and
boundaries of segments by reducing the task to a
token level. The αU is calculated over a contin-
uous series of documents removing the need for
averaging on a document level, but is dependent
on the ordering of documents where the error rate
of ordering is low.

Finally, in (Kirschner et al., 2015) meth-
ods for calculating inter-annotator agreement are
specified: adapted percentage agreement (APA),
weighted average and a graph based technique
(see also Section 3.2).

APA takes the total number of agreed annota-
tions and divides it by the total number of anno-
tations, on a sentence level of argument but not
corrected for chance. Chance is taken into ac-
count, when performing the weighted average. A
weight is provided for the distance between related
propositions when the distance is not greater than
six. Meaning any relation with a distance greater
than six is discounted. This is justified with only
5% of relations having a distance greater than two.
Chance is accounted for by using this weighted av-
erage for multi-annotator kappa and F1 score. Fi-
nally, a graph based approach is defined, where the

distance between nodes is taken for each annota-
tion with each node distance as a fraction. The dis-
tance is added, then multiplied by the overall num-
ber of edges giving a normalised score for both
annotations, not considering the direction or types
of relations or any unconnected propositions. The
harmonic mean is then taken to provide the agree-
ment between the annotations.

Results are also provided when considering re-
lation types for weighted average and nodes with
distance less than six for inter-annotator agree-
ment on propositional content nodes for a pre-
segmented text.

If we consider the papers submitted to the 2nd
workshop on argumentation mining, we can see
there is an inconsistency in the area when cal-
culating inter-annotator agreement and overall ar-
gument mining results. To calculate the agree-
ment between annotators, three papers used Co-
hen’s kappa (cf. (Bilu et al., 2015; Carstens and
Toni, 2015; Sobhani et al., 2015)), three papers
used inter-annotator agreement as a percentage (cf.
(Green, 2015; Nguyen and Litman, 2015; Kiesel
et al., 2015)), two used precision and recall (cf.
(Sardianos et al., 2015; Oraby et al., 2015)) and
three others used different methods (cf. (Kirschner
et al., 2015; Yanase et al., 2015; Reisert et al.,
2015)). To calculate the results of argument min-
ing, four papers used accuracy (cf. (Bilu et al.,
2015; Kiesel et al., 2015; Nguyen and Litman,
2015; Yanase et al., 2015)) and five papers used
precision, recall and F1 score (cf. (Lawrence and
Reed, 2015; Sobhani et al., 2015; Park et al., 2015;
Nguyen and Litman, 2015; Peldszus and Stede,
2015)) with one paper using a macro-averaged F1.
What is required in the area of argument mining is
a coherent model to give results for both annotator
agreement but also the results of argument mining.

In the area of text summarization, Recall-
Oriented Understudy for Gisting Evaluation
(ROUGE) (Lin, 2004) was created exactly for the
purpose of having a coherent measure to allow
systems in the Document Understanding Confer-
ence (DUC) to be evaluated. In creating the CASS
technique we aim to emulate ROUGE, and provide
consistency in the area of argument mining.

3 Foundation

3.1 Representing Argument

Arguments in argument mining can be represented
in many forms which is particularly important for
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the development of the CASS technique, as this
score must be applicable to different ways of rep-
resenting argument.

Scheme for Argumentative Microtexts. In
(Peldszus and Stede, 2013) an annotation scheme
was defined which was incorporated in a corpus
of 122 argumentative microtexts (Peldszus and
Stede, 2015). In this annotation scheme an argu-
ment is defined as a non-empty premise, that is a
premise which holds some form of relation which
supports a conclusion. Graphically this is repre-
sented by proposition nodes and support relations,
with support relations represented as an arrow be-
tween the node and its conclusion.

The scheme defined builds on and extends the
work of (Freeman, 2011). Support relations are
defined in the most basic way, as an argument
in the form of premise and conclusion. This
accompanied by attack relations where rebutting
is defined for when an argument is attacked di-
rectly and undercutting when a premise is at-
tacked. Counter attacks then allow rebuttals of an
attack support, the undercutting of an attack sup-
port and a counter consideration argument. Each
microtext is pre-segmented to avoid bias from an-
notators segmenting text in their own style, with
rules defined in the scheme which allow annota-
tors to change the segmentation.

Internet Argument Corpus (IAC). Argument
data is also represented use quote-response pairs
(QR pairs) in the IAC (Walker et al., 2012). The
IAC provides 390,704 individual posts automati-
cally extracted from an Internet forum. Each post
is related to a response which is provided through
a tree structure of all the posts on the forum.

QR pairs work with a pre-defined segmentation
which can allow annotators to identify relations
between a quote (post) and a response. Relations
can be on a number of levels with the most ba-
sic of these, agree and disagree, to the more com-
plex, sarcasm where an annotator decides if a re-
sponse is of sarcastic manner using their own in-
tuition where a formal definition or annotation is
near impossible without being present during the
vocalisation of the point.

Argument Interchange Format (AIF). Argu-
ment data can also be represented according to
the AIF (Chesñevar et al., 2006) implemented in
the AIFdb1 database (Lawrence et al., 2012). The

1http://www.aifdb.org

AIF was developed as a means of describing ar-
gument networks that would provide a flexible,
yet semantically rich, specification of argumenta-
tion structures. Central to the AIF core ontology
are two types of nodes: Information- (I-) nodes
(propositional contents) and Scheme (S-) nodes
(relations between contents). I-nodes represent
propositional information contained in an argu-
ment, such as a conclusion, premise etc. A subset
of I-nodes refers to propositional reports specif-
ically about discourse events: these are L-nodes
(locutions).

S-nodes capture the application of schemes of
three categories: argumentative, illocutionary and
dialogical. Amongst argumentative patterns there
are inferences or reasoning (RA-nodes), conflict
(CA-nodes) and rephrase (MA-nodes). Dialogical
transitions (TA-nodes) are schemes of interaction
or protocol of a given dialogue game which de-
termine possible relations between locutions. Il-
locutionary schemes are patterns of communica-
tive intentions which speakers use to introduce
propositional contents.2 Illocutionary connections
(YA-nodes) can be either anchored (associated, as-
signed) in locutions or in transitions. In the first
case (see e.g. asserting, challenging, question-
ing), the locution provides enough information to
reconstruct illocutionary force and content. Illo-
cutionary connections are anchored in a transi-
tion when we need to know what a locution is
a response to and to understand an illocution or
its content. AIFdb Corpora allows for operation
with either an individual NodeSet, or any group-
ing of NodeSets captured in a corpus. By integrat-
ing closely with the OVA+ (Online Visualisation
of Argument) analysis tool (Janier et al., 2014),
AIFdb Corpora allows for the rapid creation of
large corpora compliant with AIF.

AIFdb provides the largest publicly available
dataset comprising multiple corpora of analysed
argumentation; and in addition AIF works as an
interlingua facilitating translation from other rep-
resentation languages with both the IAC and Mi-
crotext corpora in AIF format, for example. For
both of these reasons, we have used AIF for our
examples here (although the CASS technique it-
self is largely independent of annotation scheme).

2Illocutionary schemes are based on illocutionary forces
defined in (Searle, 1969; Searle and Vanderveken, 1985).
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Figure 1: Segmentation boundaries and mass for first and second annotators.

3.2 Comparing Analysis

Calculating the inter-annotator agreement of man-
ual analysis, can be problematic when using tra-
ditional methods such as Cohen’s kappa. In
(Kirschner et al., 2015, p.3), the authors highlight
this challenge: “as soon as the annotation of one
entity depends on the annotation of another entity,
or some entities have a higher overall probability
for a specific annotation than others, the measures
may yield misleadingly high or low values. (...)
Therefore, many researchers still report raw per-
centage agreement without chance correction.”

In the comparative statistics module we look to
extend the solution in (Kirschner et al., 2015) in
seven ways, by: (i) Calculating the segmentation
differences between two annotations; (ii) Calculat-
ing propositional content relations using confusion
matrices, accounting for all the nodes within an
argument map and accounting for a differing seg-
mentation; (iii) Calculating dialogical content re-
lations (if they are contained in an argument map)
using confusion matrices, accounting for all the
nodes within an argument map and accounting for
a differing segmentation; (iv) Defining the CASS
technique to allow calculation scores to be com-
bined; (v) Allowing the use of any metric for the
CASS technique, which uses a confusion matrix,
to give consistency to the area of argument mining;
(vi) Providing results for not just inter-annotator
agreement, but also, the comparison of manually
annotated corpora against corpora automatically
created by argument mining; (vii) Allowing the
comparison of analysis given in different annota-
tion schemes but migrated to AIF (e.g. compare
text annotated in IAC to the annotation scheme
from the Microtext corpus).

4 Comparative Statistics: Segmentation

Comparative statistics can provide for a number
of cases with two main motivations: evaluation of
automatic annotations against manual gold stan-
dards, and comparison of multiple manual annota-
tions. The calculation is given between two sepa-
rate annotations3 A1 and A2 available in two sepa-

3Throughout this paper A is used to denote annotation, l
denotes a locution, p a propositional content node, ta a tran-

rate corpora in AIFdb.
To account for a differing segmentation which

does not doubly penalise the argument structure,
the agreement calculation involves smaller sub-
calculations which can give an overview of the
full agreement between annotators. Segmentation
agreement considers the number of possible seg-
ments on which two annotators agree. A segmen-
tation which differs between annotations can have
a substantial effect on argument structure, such as
the assignment of relations between proposition.
An example is provided in Figure 1where segmen-
tation is given for a first annotator (S1) and a sec-
ond annotator (S2). In this case the two annota-
tions give segments which resemble very similar
mass(the number of words in a segment), however,
more boundaries are placed in S2 when compared
to S1 with a difference in granularity and a bound-
ary misplaced by a word.

Three techniques are provided to tackle this
problem with each recognising that a near miss
(two segments that differ by a small margin, e.g.
a word) should not be as heavily penalised as a
full miss on the placement of segment boundaries.
Performing the same calculation with F1 score or
Cohen’s kappa would result in a heavily penalised
segmentation.

The Pk statistic (Beeferman et al., 1999), in-
volves sliding a window of length k (where k is
half the average segment size) over the segmented
text. For each position of the window, the words at
each end of the window are taken and the segment
in which they lie is considered.

The WindowDiff statistic (Pevzner and Hearst,
2002), takes into account situations in which Pk
fails. In Pk false negatives are penalised more than
false positives, thus the agreement value could be
unfair. The WindowDiff statistic remedies this
by taking into account the number of reference
boundaries and comparing this to the number of
hypothesised boundaries.

The segmentation similarity statistic
(S)(Fournier and Inkpen, 2012), again takes
into account perceived failings of the Pk and Win-
dowDiff statistics. Where both WindowDiff and
Pk use fixed sized windows, which can adversely

sition node and ra a propositional content relation.
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Figure 2: Propositional Content Relations for an
annotation from AIFdb with first and second an-
notators.4

affect the outcome of an agreement calculation, S
proposes that a minimum edit distance, scaled to
the overall segmentation size, is considered. This
edit distance allows near misses to be penalised
but not to the same degree as a full miss.

5 Comparative Statistics: Propositional
Relations

To compare relations it is important to calcu-
late the agreement between each of the individ-
ual items which are annotated within an argument
analysis. By providing calculations for individual
items in an annotation we take into account that
segmentation’s may differ but do not penalise on
this basis.

In the case of analysis with a differing seg-
mentation, we use a guaranteed matching formula.
This formula makes use of the Levenshtein dis-
tance (Levenshtein, 1966), where each locution or
proposition in an annotation is compared with ev-
ery locution or proposition in a second annotation.
The Levenshtein distance for each comparison is
taken and normalised, this is extended by using
the position of words within the annotations taken
from the original text. The position of words in
the original text is important to correctly match
propositions and locutions and therefore a propo-
sition or locution which does not have matching
positional words cannot be a match. In this situa-
tion the Levenshtein distance is increased (moved
to zero) to account for a non-match. Each calcula-
tion taken is then stored in a matrix. The matrix is
then traversed to find the smallest distance (high-
est value between zero and one), selecting the pair
of locutions or propositions. This is continued un-
til all nodes are matched or there are no matches
which can be made, thus giving a Pareto optimal

4Numbered nodes represent propositions in the overall
text and arrows represent support relations.

solution, a solution for which any match between
propositions and locutions makes those individ-
ual matches consistent without making any other
match worse and vice-versa.

An agreement calculation is given for all propo-
sitional content relations (support and attack rela-
tions). This calculation is based on the location
of support and attack nodes within an analysis and
the nodes to which they are connected. For a full
agreement between annotators, a support or attack
node must be connected between two propositions
pi, p j, with these propositions being a match in
A1 and A2. A support or attack node also has
full agreement when one annotation is more fine
grained but holds the same propositional content
as the other annotation. For example, if annota-
tion A1 contains a support node which begins its
relation in pbc and gives a relation between pbc
and pa, then this is the same as if A2 had a sup-
port node with two separate propositions, pb and
pc and related to pa. This notion is extended when
considering Figure 1 and Figure 2.

The differing segmentation in Figure 1 has
an effect on the comparison between propo-
sitions. When considering propositions, non-
identical propositions lead to a near zero similar-
ity on support relations between these annotations.
This is however an unintuitive approach to take,
as the overall argumentative structure is penalised
doubly (if we consider the segmentation and argu-
mentative structure as different tasks) by the dif-
fering segmentation.

This is demonstrated in Figure 2 where the two
annotators agree that there is a convergent argu-
ment been nodes four and five in annotation 1 and
nodes five and seven in annotation 2. Extending
this is proposition two of both annotations, where
in annotation 1, proposition two is connected to
four and five by a convergent argument. Yet in
annotation 2, proposition 2 is a separate support
relation. In the first instance of a convergent argu-
ment, splitting the segmentation calculation from
the propositional relation calculation gives a fair
representation of the argument structure without
penalising for segmentation doubly.

In the second instance of a convergent argu-
ment and a separate support relation, there is a
slight disagreement between the annotators. De-
spite both annotators agreeing that proposition two
connects to the same node (propositions six in an-
notation 1 and eight in annotation two being the
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Figure 3: Full AIF IAT diagram for the annotation from the first annotator.

same node) a disagreement is shown because of
the connection type if we consider Cohen’s kappa
or F1 score purely. Two options are available
when calculating the similarity for this situation,
either a similarity of zero is given or two sepa-
rate calculations could be used with agreement on
a premise conclusion basis but no agreement on
the type of argument, thus giving a penalty.

To provide a confusion matrix all the possible
node pairs to which a propositional content rela-
tion could be connected have to be considered.
Any node pairs which both annotators have not
connected are then counted and all nodes which
are matched are counted, giving the observed
agreement. All node pairs which the annotators
do not agree upon are also counted.

6 Comparative Statistics: Dialogical
Relations

Dialogical relations consider only the dialogue of
an argument with the intentions of the speaker
noted. A differing segmentation in various anal-
ysis can lead to low kappa or F1 scores. By split-
ting dialogical relations into a separate calculation
it removes the double penalty assigned by segmen-
tation. When comparing dialogical relations again
we use the Levenshtein distance as described in
Section 5.

A calculation is provided for illocutionary con-
nections (YA) anchored in TAs or in Locu-
tions. This calculation involves multiple cate-
gories, meaning a multiple category confusion ma-
trix, due to the large number of possible YA-node
types which can be chosen by annotators. An
agreement is observed when both annotators select
the same illocutionary connections. When A1 con-

tains a YA-node which is anchored in li and when
A2 contains the same YA anchored in li, then an
agreement is observed. This also holds for TA’s.
The overall calculation then involves a confusion
matrix where all disagreements are observed when
YA nodes do not match. If we consider Figures 3
and 4 we can see between both annotations that
there are a difference of four YA nodes.

A second calculation for YA-nodes, checking
the agreement on the propositional content nodes
in which they anchor and to where they are an-
chored (locution or TA), is also given. This calcu-
lation involves a multiple category confusion ma-
trix. An example of when agreement is observed is
when A1 contains p j anchored in a YA and the YA
anchored in li and in A2 the same structure with
p j and li is observed with the same YA node. The
multi-category confusion matrix is calculated with
disagreements observed when propositions and lo-
cutions do not match. When considering Figures 3
and 4 we see an example of agreement between the
annotators on propositions 1, 2 and 3. Proposition
4, in Figure 3 and proposition 5, in Figure 4 also
match and the same for proposition 5, in Figure 3
and proposition 7, in Figure 4. Disagreements are
then observed with propositions 4 and 6 in Fig-
ure 4.

Three separate calculations are also given for
TA-nodes. The first concerns the position of a
TA node within locutions. Agreement is observed
when A1 contains a TA which is anchored in li and
anchors l j and A2 contains the same TA anchored
in li and anchoring l j. For the final calculation all
possible locution pairs are considered to give val-
ues for agreements on TA placement, agreements
on non-TA placement and disagreements on TA
placement. In the examples Figures 3 and 4 there
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Figure 4: Full AIF IAT diagram for the annotation from the second annotator. Differences from Figure 3
are highlighted.

is a agreement between the annotators on TA 1,
2 and TA 3 in Figure 3 and TA 6, in Figure 4. A
second calculation is then given for pairs of propo-
sitional content nodes and TA-nodes. When p j is
anchored in tai for A1 and the same structure is
observed in A2 for the same propositional content
node then there is agreement between the annota-
tors. The overall confusion matrix is calculated by
considering all pairs of TA-nodes and propositions
and all disagreements between annotators. A third
and final calculation is given for TA-nodes anchor-
ing propositional content relations. For A1 if rai

is anchored finally in tai and ra j is anchored fi-
nally in ra j, in A2 then agreement is observed. The
overall confusion matrix is calculated by consid-
ering all possible pairs of TA’s and propositional
content relations. In Figures 3 and 4 agreement is
observed only on inference 1 in Figure 3 and infer-
ence 4 in Figure 4. This provides a small penalty
between the annotations for the added inference 2
in Figure 4, where earlier in Section 5 no penalty
was given.

7 Aggregating into the CASS technique

Sections 4, 5 and 6 provide calculations for seg-
mentation, propositional content relations and di-
alogical content relations. We have defined CASS
which incorporates all of these calculation figures
to provide a single figure for the agreement be-
tween annotators or a manual analysis and an au-
tomatic one, using both propositional content rela-
tions and dialogical content relations.

M = ∑
P+∑D

n
(1) CASS = 2

M∗S
M+S

(2)

In equation 1 the arithmetic mean, M, is the the
sum of all propositional content calculations, P,
plus the sum of all dialogical content calculations,
D, over the total number of calculations made, n.
We use this figure along with the segmentation
similarity score to perform the harmonic mean and
provide an overall agreement figure normalised
and taking into account any penalties for segmen-
tation errors. Equation 2 gives the CASS tech-
nique as the arithmetic mean, M, combined with
the segmentation similarity, S.

The CASS technique allows for any consis-
tent combination of scores to be used as either
the propositional content calculations or dialogical
calculations. That is to say that the CASS tech-
nique is not solely dependent on Cohen’s kappa,
or F1 score and can instead be substituted for any
other overall measure. For the purpose of this ex-
ample we will use the Cohen’s kappa metric, as
both annotations were annotated manually. We
also use the S statistic for segmentation similar-
ity as it handles the errors in Pk and WindowDiff
statistics more effectively.

We sum both kappa scores giving an arithmetic
mean, M, of 0.43. The S score, 0.95, is then
combined with M in equation 2 to give an over-
all CASS of 0.59. scores this gives a fair rep-
resentation of the overall agreement between the
two annotators. In Table 1 the CASS technique
is compared with Cohen’s kappa and F1 score,
where both scores do not take into account the
slight difference in argument structure and there-
fore penalise this.
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Method Overall Score
Cohen’s κ 0.44
CASS-κ 0.59
F1 score 0.66
CASS-F1 0.74

Table 1: Scores are provided for Cohen’s kappa
and F1 score, for both segmentation and structure,
and CASS with S for segmentation and both kappa
and F1 for structure.

Figure 5: Screenshot of the comparative statistics
module within Argument Analytics.

7.1 Extending Relation Comparisons

The CASS technique and comparative statistics
module caters for the creation of confusion matri-
ces for each calculation, allowing for the adaption
of the overall results. This allows kappa, accu-
racy, precision, recall and F1 score all to be cal-
culated, but, other metrics can also be considered
for evaluating automatic analyses when using the
CASS technique. Balanced accuracy (Brodersen
et al., 2010), allows the evaluation of imbalanced
datasets. When one class is much larger than the
other Balanced Accuracy takes this into account
and lowers the score appropriately. Informedness
(Powers, 2011), gives the probability that an au-
tomatic system is making an informed decision
when performing classification. A select set of
metrics are part of the comparative statistics mod-
ule, although, no metric is ruled out from this, al-
lowing any metric employing a confusion matrix
to use the CASS technique.

7.2 Deployment
Comparative statistics (see Figure 5) is part of the
Argument Analytics suite which is to be publicly
accessible at http://analytics.arg.tech/. It
provides a suite of techniques for analysing sets
of AIF data, with components ranging from the
detailed statistics required for discourse analysis
or argument mining, to graphic visual represen-
tations, offering insights in a way that is acces-
sible to a general audience. Modules are avail-
able for: viewing simple statistical data, which
provides both an overview of the argument struc-
ture and frequencies of patterns such as argumen-
tation schemes; dialogical data highlighting the
behaviour of participants of the dialogue; and real-
time data allowing for the graphical representation
of a developing over time argument structure.

8 Conclusions

Despite the widespread use of Cohen’s kappa and
F1 score in reporting agreement and performance,
they present two key problems when applied to
argument mining. First, they do not effectively
handle errors of segmentation (or unitization); and
second, they are not sensitive to the variety of
structural facets of argumentation. These two
problems lead to kappa and F1 underestimating
performance or agreement of argument annota-
tion.

The CASS technique allows for the integration
of results for segmentation with those for struc-
tural annotation yielding coherent confusion ma-
trices from which new CASS-κ and CASS-F1
scores can be derived. CASS is straightforward
to implement, and we have shown that it can be
included in web-based analytics for quickly calcu-
lating agreement or performance between online
datasets. CASS offers an opportunity for increas-
ing coherence within the community, aiding it to
emulate the academic success of other subfields of
computational linguistics such as summarization;
and its subsequent deployment offers a simple way
of applying it to future community efforts such as
shared tasks and competitions.
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