
Proceedings of the 10th Web as Corpus Workshop (WAC-X) and the EmpiriST Shared Task, pages 115–119,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

bot.zen @ EmpiriST 2015 - A minimally-deep learning PoS-tagger
(trained for German CMC and Web data)

Egon W. Stemle
EURAC research

Bozen-Bolzano, Italy
egon.stemle@eurac.edu

Abstract

This article describes the system that par-
ticipated in the Part-of-speech tagging
subtask of the EmpiriST 2015 shared
task on automatic linguistic annotation of
computer-mediated communication / so-
cial media.

The system combines a small assertion
of trending techniques, which implement
matured methods, from NLP and ML to
achieve competitive results on PoS tag-
ging of German CMC and Web corpus
data; in particular, the system uses word
embeddings and character-level represen-
tations of word beginnings and endings in
a LSTM RNN architecture. Labelled data
(Tiger v2.2 and EmpiriST) and unlabelled
data (German Wikipedia) were used for
training.

The system is available under the APLv2
open-source license.

1 Introduction

Part-of-speech (PoS) tagging is an essential pro-
cessing stage for virtually all NLP applications.
Subsequent tasks, like parsing, named-entity
recognition, event detection, and machine trans-
lation, often utilise PoS tags, and benefit (directly
or indirectly) from accurate tag sequences. How-
ever, frequent phenomena in computer-mediated
communication (CMC) and Web corpora such as
emoticons, acronyms, interaction words, iteration
of letters, graphostylistics, shortenings, address-
ing terms, spelling variations, and boilerplate (An-
droutsopoulos, 2007; Bernardini et al., 2008;
Beißwenger, 2013) deteriorate the performance of
PoS-taggers (Giesbrecht and Evert, 2009; Baldwin
et al., 2013).

To this end, the EmpiriST shared task (ST) in-
vited developers of NLP applications to adapt their
tokenisation and PoS tagging tools and resources
for the processing of written German CMC and
Web data (Beißwenger et al., 2016). The ST
was divided into two subtasks, tokenisation and
PoS tagging, and for each subtask two data sets
were provided (see Subsection 4.1.3). The sys-
tems were evaluated by the organisers on raw data
for the tokenisation subtask, and on unlabelled
but pre-tokenised data for the PoS tagging subtask
(both on the same approx. 14,000 tokens).

We participated in the PoS tagging subtask of
the ST with our new minimally-deep learning
PoS-tagger: We combine word2vec (w2v) word
embeddings (WEs) with a single-layer Long Short
Term Memory (LSTM) recurrent neural network
(RNN) architecture; strictly speaking, w2v is shal-
low. Therefore we call the combination with a
single hidden layer minimally-deep. The sequence
of unlabelled w2v representations of words is ac-
companied by the sequence of n-grams of the word
beginnings and endings, and is fed into the RNN
which in turn predicts PoS labels.

The paper is organised as follows: We present
our system design in Section 2, the implementa-
tion in Section 3, and its evaluation in Section 4.
Section 5 concludes with an outlook on possible
implementation improvements.

2 Design

Overall, our design takes inspiration from as far
back as Benello et al. (1989) who used four pre-
ceding words and one following word in a feed-
forward neural network with backpropagation for
PoS tagging, builds upon the strong foundation
laid down by Collobert et al. (2011) for a NN ar-
chitecture and learning algorithm that can be ap-
plied to various natural language processing tasks,

115



and ultimately is a variation of Nogueira dos San-
tos and Zadrozny (2014) who trained a NN for PoS
tagging, with character-level and WE representa-
tions of words.

2.1 Word Embeddings

Recently, state-of-the-art results on various lin-
guistic tasks were accomplished by architectures
using neural-network based WEs. Baroni et al.
(2014) conducted a set of experiments comparing
the popular w2v (Mikolov et al., 2013a; Mikolov
et al., 2013b) implementation for creating WEs to
other distributional methods with state-of-the-art
results across various (semantic) tasks. These re-
sults suggest that the word embeddings substan-
tially outperform the other architectures on seman-
tic similarity and analogy detection tasks. Subse-
quently, Levy et al. (2015) conducted a compre-
hensive set of experiments and comparisons that
suggest that much of the improved results are due
to the system design and parameter optimizations,
rather than the selected method. They conclude
that ”there does not seem to be a consistent signif-
icant advantage to one approach over the other”.

Word embeddings provide high-quality low di-
mensional vector representations of words from
large corpora of unlabelled data, and the repre-
sentations, typically computed using NNs, encode
many linguistic regularities and patterns (Mikolov
et al., 2013b).

2.2 Character-Level Sub-Word Information

The morphology of a word is opaque to WEs, and
the relatedness of the meaning of a lemma’s differ-
ent word forms, i.e. its different string representa-
tions, is not systematically encoded. This means
that in morphologically rich languages with long-
tailed frequency distributions, even some WE rep-
resentations for word forms of common lemmata
may become very poor (Kim et al., 2015).

We agree with Nogueira dos Santos and
Zadrozny (2014) and Kim et al. (2015) that sub-
word information is very important for PoS tag-
ging, and therefore we augment the WE repre-
sentations with character-level representations of
the word beginnings and endings; thereby, we
also stay language agnostic—at least, as much
as possible—by avoiding the need for, often lan-
guage specific, morphological pre-processing.

2.3 Recurrent Neural Network Layer

Language Models are a central part of NLP. They
are used to place distributions over word se-
quences that encode systematic structural proper-
ties of the sample of linguistic content they are
built from, and can then be used on novel content,
e.g. to rank it or predict some feature on it. For a
detailed overview on language modelling research
see Mikolov (2012).

A straight-forward approach to incorporate
WEs into feature-based language models is to
use the embeddings’ vector representations as fea-
tures. Having said that, WEs are also used in neu-
ral network architectures, where they constitute
(part of) the input to the network.

Neural networks (NNs) consist of a large num-
ber of simple, highly interconnected process-
ing nodes in an architecture loosely inspired
by the structure of the cerebral cortex of the
brain (O’Reilly and Munakata, 2000). The nodes
receive weighted inputs through these connections
and fire according to their individual thresholds
of their shared activation function. A firing node
passes on an activation to all successive connected
nodes. During learning the input is propagated
through the network and the output is compared
to the desired output. Then, the weights of the
connections (and the thresholds) are adjusted step-
wise so as to more closely resemble a configura-
tion that would produce the desired output. After
all input cases have been presented, the process
typically starts over again, and the output values
will usually be closer to the correct values.

RNNs are NNs where the connections between
the elements are directed cycles, i.e. the networks
have loops, and this enables them to model se-
quential dependencies of the input. However, reg-
ular RNNs have fundamental difficulties learn-
ing long-term dependencies, and special kinds of
RNNs need to be used (Hochreiter, 1991); a very
popular kind is the so called long short-term mem-
ory (LSTM) network proposed by Hochreiter and
Schmidhuber (1997).

3 Implementation

We maintain the implementation in a source
code repository at https://github.com/
bot-zen/. The version tagged as 0.9 com-
prises the version that was used to generate the
results submitted to the ST. The version tagged
as 1.0 is identical at its core but comes with ex-

116



plicit documentation on how to download and in-
stall external software, and how to download and
pre-process required corpora.

Our system feeds WEs and character-level sub-
word information into a single-layer RNN with a
LSTM architecture.

3.1 Word Embeddings
We incorporates w2v’s original C implementa-
tion for learning WEs1 in an independent pre-
processing step, i.e. we pro-compute the WEs.
Then, we use gensim2, a Python tool for unsuper-
vised semantic modelling from plain text, to load
the data, and to extract the vector representations
of the embedded words as input to our NN.

3.2 Character-Level Sub-Word Information
Our implementation uses a one-hot encoding with
a few additional features for representing sub-
word information. The one-hot encoding trans-
forms a categorical feature into a vector where the
categories are represented by equally many dimen-
sions with binary values. We convert a letter to
lower-case and use the sets of ASCII characters,
digits, and punctuation marks as categories for the
encoding. Then, we add dimensions to represent
more binary features like ’uppercase’ (was upper-
case prior to conversion), ’digit’ (is digit), ’punctu-
ation’ (is punctuation mark), whitespace (is white
space, except the new line character; note that this
category is usually empty, because we expect our
tokens to not include white space characters), and
unknown (other characters, e.g. diacritics). This
results in vectors with more than a single one-hot
dimension.

3.3 Recurrent Neural Network Layer
Our implementation uses Keras, a minimalist,
highly modular NNs library, written in Python and
capable of running on top of either TensorFlow
or Theano (Chollet, 2015). In our case it runs
on top of Theano, a Python library that allows to
define, optimize, and evaluate mathematical ex-
pressions involving multi-dimensional arrays ef-
ficiently (The Theano Development Team et al.,
2016).

The input to our network are sequences of the
same length as the sentences we process. During
training we group sentences of the same length

1https://code.google.com/archive/p/
word2vec/

2https://radimrehurek.com/gensim/

into batches. Each single word in the sequence
is represented by its sub-word information and
two WEs that come from two sources (see Sec-
tion 4). Unknown words, i.e. words without a WE,
are mapped to a randomly generated vector repre-
sentation once, and this representation is reused
later. In Total, each word is represented by 1, 800
features: two times 500 (WEs), and ten times 80
for two 5-grams (word beginning and ending). (If
words are shorter than 5 characters their 5-grams
are zero-padded.)

This sequential input is fed into a LSTM layer
that, in turn, projects to a fully connected out-
put layer with softmax activation function. We
use categorical cross-entropy as loss function and
backpropagation in conjunction with the RM-
Sprop optimization for learning. At the time of
writing, this was the Keras default—or the explic-
itly documented option to be used—for our type
of architecture.

4 Case Study

We used our implementation to participate in the
EmpiriST 2015 shared task. First, we describe the
corpora used for training, and then the specific sys-
tem configuration(s) for the ST.

4.1 Training Data for w2v and PoS Tagging

4.1.1 Tiger v2.2 (PoS)
Tiger v2.23 is version 2.2 of the TIGERCor-
pus (Brants et al., 2004) containing German news-
paper texts. The corpus was semi-automatically
PoS tagged, and is one of the standard corpora
used for German PoS tagging. It contains 888,238
tokens in 50,472 sentences. For research and eval-
uation purposes, the TIGERCorpus can be down-
loaded for free.

4.1.2 German Wikipedia (w2v)
de.wiki’154 are user talk pages (messages from
users to users, often questions and advice), article
talk pages (questions, concerns or comments re-
lated to improving a Wikipedia article), and article
pages of the German wikipedia from 2015, made
available by the Institut für Deutsche Sprache5.
The corpus contains 2 billion tokens (talk:379m,

3http://www.ims.uni-stuttgart.de/
forschung/ressourcen/korpora/tiger.html

4http://www1.ids-mannheim.de/kl/
projekte/korpora/verfuegbarkeit.html#
Download

5http://www.ids-mannheim.de

117



article talk:447m, article:1,1bn) in 79 million sen-
tences (talk:15m, article talk:17m, article:47m), is
well-sized for w2v, and also (partly) resembles or
target data. It is available under the CC BY-SA
3.06 license.

4.1.3 EmpiriST 2015 Data (PoS and w2v)

empirist7 is the CMC and Web data made avail-
able by the organizers of the ST. It contains data
samples from different CMC genres and samples
from text genres on the Web. The training cor-
pus contains 10,053 tokens and was PoS tagged
by two annotators (unclear cases were decided by
a third person). The trial corpus contains around
3,600 tokens (2,100 CMC8, 1,500 Web) and was
PoS tagged by one annotator (without systematic
error checks). See Beißwenger et al. (2016) for
more details.

4.2 EmpiriST 2015 shared task

For the ST we used one overall configuration for
the system, but we used three different corpus con-
figurations for training. Consequently, we partic-
ipated in the ST with three runs: we used PoS
tags from empirist (run 1), from Tiger v2.2 (run
2), and from both (run 3). For w2v we trained
a 500-dimensional skip-gram model on empirist
that ignored all words with less than 3 occurrences
within a window size of 10; it was trained with
negative sampling (value 5) and erroneously9 also
with hierarchical softmax. We also trained a 500-
dimensional continuous bag-of-words model on
de.wiki’15 that ignored all words with less than 25
occurrences within a window size of 10; it was
trained with negative sampling (value 3) and erro-
neously also with hierarchical softmax.

6Creative Commons Attribution-ShareAlike 3.0 Un-
ported, i.e. the data can be copied and redistributed, and
adapted for any purpose, even commercially. See http://
creativecommons.org/licenses/by-sa/3.0/
for more details.

7https://sites.google.com/site/
empirist2015/home/shared-task-data

8For evaluation during the development phase we used
empirist-trial. Unfortunately, we found out only later that the
CMC part of the trial data is also part of the training data,
i.e. for the CMC data our evaluation data was identical with
the training data.

9According to w2v’s author, technically negative
sampling and hierarchical softmax can be combined
but one should avoid combining them (see https:
//groups.google.com/forum/#!topic/
word2vec-toolkit/WUWad9fL0jU).

We had forgotten to deactivate an option in a data process-
ing script.

The rational behind training the two models dif-
ferently was that according to w2v author’s ex-
perience10 a skip-gram model ”works well with
small amount[s] of the training data, [and] rep-
resents well even rare words or phrases”, and a
cbow model is ”several times faster to train than
the skip-gram, [and has] slightly better accuracy
for the frequent words”. The other w2v parame-
ters were left at their default settings11.

To optimize the system’s output we ran a sim-
ple grid search for three parameters: the hidden
LSTM layer’s size, the dropout value for the pro-
jections from the LSTM to the output layer during
training, and the number of epochs during training.
The found values were size:1024, dropout:0.1,
epochs:20.

CMC Web
(1) empirist 81.03 86.97
(2) Tiger v2.2 73.56 89.73
(3) empirist+Tiger v2.2 85.42 90.63
Winning Team 87.33 93.55

Table 1: Official results of our PoS tagger for the
three runs on the EmpiriST 2015 shared task data.

5 Conclusion & Outlook

We presented our submission to the EmpiriST
2015 shared task, where we participated in the
PoS tagging sub-task with fair results on the CMC
data and adequate results on the Web data. Still,
our implementation, albeit following state-of-the
art designs and methods, is quite unpolished, and
can certainly gain performance with more detailed
tuning. For example, adding special sequence start
and sequence stop symbols to the input is typi-
cally done as a pre-processing step, which might
improve the results at the beginning and the end
of sentences; or we might gain some performance
by adding additional hidden layers to enable the
network to learn more intermediate abstractions.
A more profound design change could also help,
e.g. Recurrent Memory Network are a novel recur-
rent architecture that have been shown to outper-
form LSTMs on some language modelling tasks.
Finally, for learning the word embeddings we

10https://groups.google.com/d/
msg/word2vec-toolkit/NLvYXU99cAM/
E5ld8LcDxlAJ

11-sample 1e-3 -iter 5 -alpha 0.025 for
skip-gram and -alpha 0.05 for continuous bag-of-words

118



could use different corpora, or selectively ex-
tract parts from large web-corpora resembling—
as much as possible—the type of data that is to be
tagged.

References
Jannis K. Androutsopoulos. 2007. Neue Medien –

neue Schriftlichkeit? Mitteilungen des Deutschen
Germanistenverbandes, 1:72–97.

Timothy Baldwin, Paul Cook, Marco Lui, Andrew
MacKinlay, and Li Wang. 2013. How noisy social
media text, how diffrnt social media sources? In
Proceedings of the Sixth International Joint Confer-
ence on Natural Language Processing, pages 356–
364, Nagoya, Japan, October. Asian Federation of
Natural Language Processing.

Marco Baroni, Georgiana Dinu, and German
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 238–247. Association for Computa-
tional Linguistics.

Michael Beißwenger, Sabine Bartsch, Stefan Evert,
and Kay-Michael Würzner. 2016. EmpiriST 2015:
A Shared Task on the Automatic Linguistic Anno-
tation of Computer-Mediated Communication, So-
cial Media and Web Corpora. In Proceedings of
the 10th Web as Corpus Workshop (WAC-X), Berlin,
Germany.

Michael Beißwenger. 2013. Das Dortmunder
Chat-Korpus: ein annotiertes Korpus zur Sprachver-
wendung und sprachlichen Variation in der
deutschsprachigen Chat-Kommunikation. LINSE -
Linguistik Server Essen, pages 1–13.

Julian Benello, Andrew W. Mackie, and James A. An-
derson. 1989. Syntactic category disambiguation
with neural networks. Computer Speech & Lan-
guage, 3(3):203–217, July.

Silvia Bernardini, Marco Baroni, and Stefan Evert.
2008. A WaCky Introduction. In Wacky! Working
papers on the Web as Corpus, pages 9–40. GEDIT,
Bologna, Italy.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszko-
reit. 2004. TIGER: Linguistic Interpretation of a
German Corpus. Research on Language and Com-
putation, 2(4):597–620.

Franois Chollet. 2015. Keras: Deep Learning library
for Theano and TensorFlow. https://github.
com/fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (almost) from
Scratch. Journal of Machine Learning Research,
12:2493–2537.

Eugenie Giesbrecht and Stefan Evert. 2009. Is Part-
of-Speech Tagging a Solved Task? An Evaluation of
POS Taggers for the German Web as Corpus. Web
as Corpus Workshop (WAC5).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780, November.

Sepp Hochreiter. 1991. Untersuchungen zu dy-
namischen neuronalen Netzen. diploma thesis, TU
München.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-Aware Neural Lan-
guage Models. CoRR, abs/1508.0.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed Repre-
sentations of Words and Phrases and their Composi-
tionality. CoRR, abs/1310.4546, October.

Tomáš Mikolov. 2012. Statistical Language Models
Based on Neural Networks. Ph.D. thesis, Brno Uni-
versity of Technology.

Cı́cero Nogueira dos Santos and Bianca Zadrozny.
2014. Learning Character-level Representations for
Part-of-Speech Tagging. In Proceedings of the
31st International Conference on Machine Learning
(ICML-14), pages 1818–1826.

Randall C. O’Reilly and Yuko Munakata. 2000. Com-
putational Explorations in Cognitive Neuroscience
Understanding the Mind by Simulating the Brain.
MIT Press.

The Theano Development Team, Rami Al-Rfou,
Guillaume Alain, Amjad Almahairi, and et al.
2016. Theano: A Python framework for fast
computation of mathematical expressions. CoRR,
abs/1605.02688.

119


