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Abstract

Multi-sense word embeddings (MSEs)
model different meanings of word forms
with different vectors. We propose two
new methods for evaluating MSEs, one
based on monolingual dictionaries, and the
other exploiting the principle that words
may be ambiguous as far as the postulated
senses translate to different words in some
other language.

1 Introduction

Gladkova and Drozd (2016) calls polysemy “the
elephant in the room” as far as evaluating embed-
dings are concerned. Here we attack this problem
head on, by proposing two methods for evaluating
multi-sense word embeddings (MSEs) where pol-
ysemous words have multiple vectors, ideally one
per sense. Section 2 discusses the first method,
based on sense distinctions made in traditional
monolingual dictionaries. We investigate the cor-
relation between the number of senses of each
word-form in the embedding and in the manu-
ally created inventory as a proxy measure of how
well embedding vectors correspond to concepts in
speakers’ (or at least, the lexicographers’) mind.

The other evaluation method, discussed in Sec-
tion 3, is bilingual, based on the method of
Mikolov et al. (2013b), who formulate word trans-
lation as a linear mapping from the source lan-
guage embedding to the target one, trained on a
seed of a few thousand word pairs. Our pro-
posal is to perform such translations from MSEs,

with the idea that what are different senses in the
source language will very often translate to differ-
ent words in the target language. This way, we can
use single-sense embeddings on the target side and
thereby reduce the noise of MSEs.

Altogether we present a preliminary evaluation
of four MSE implementations by these two meth-
ods on two languages, English and Hungarian:
the released result of the spherical context clus-
tering method huang (Huang et al., 2012); the
learning process of Neelakantan et al. (2014) with
adaptive sense numbers (we report results using
their release MSEs and their tool itself, calling
both neela); the parametrized Bayesian learner
of Bartunov et al. (2015) where the number of
senses is controlled by a parameter α for seman-
tic resolution, here referred to as AdaGram; and
jiweil (Li and Jurafsky, 2015). MSEs with
multiple instances are suffixed with their most im-
portant parameters, i.e. the learning rate for Ada-
Gram (a = 0.5); the number of multi-prototype
words and whether the model is adaptive (NP) for
release neela; and the number of induced word
senses (s = 4) for our non-adaptive neela runs.

Some very preliminary conclusions are offered
in Section 4, more in regards to the feasibility of
the two evaluation methods we propose than about
the merits of the systems we evaluated.

2 Comparing lexical headwords to
multiple sense vectors

Work on the evaluation of MSEs (for lexical re-
latedness) goes back to the seminal Reisinger and
Mooney (2010), who note that usage splits words
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more finely (with synonyms and near-synonyms
ending up in distant clusters) than semantics. The
differentiation of word senses is fraught with diffi-
culties, especially when we wish to distinguish ho-
mophony, using the same written or spoken form
to express different concepts, such as Russian mir
‘world’ and mir ‘peace’ from polysemy, where
speakers feel that the two senses are very strongly
connected, such as in Hungarian nap ‘day’ and
nap ‘sun’. To quote Zgusta (1971) “Of course it
is a pity that we have to rely on the subjective in-
terpretations of the speakers, but we have hardly
anything else on hand”. Etymology makes clear
that different languages make different lump/split
decisions in the conceptual space, so much so that
translational relatedness can, to a remarkable ex-
tent, be used to recover the universal clustering
(Youna et al., 2016).

Another confounding factor is part of speech
(POS). Very often, the entire distinction is lodged
in the POS, as in divorce (Noun) and divorce
(Verb), while at other times this is less clear,
compare the verbal to bank ‘rely on a financial
institution’ and to bank ‘tilt’. Clearly the for-
mer is strongly related to the nominal bank ‘fi-
nancial institution’ while the semantic relation
‘sloping sideways’ that connects the tilting of
the airplane to the side of the river is some-

what less direct, and not always perceived by
the speakers. This problem affects our sources
as well: the Collins-COBUILD (CED, Sinclair
(1987)) dictionary starts with the semantic distinc-
tions and subordinates POS distinctions to these,
while the Longman dictionary (LDOCE, Bogu-
raev and Briscoe (1989)) starts with a POS-level
split and puts the semantic split below. Of the
Hungarian lexicographic sources, the Comprehen-
sive Dictionary of Hungarian (NSZ, Ittzés (2011))
is closer to CED, while the Explanatory Dictio-
nary of Hungarian (EKSZ, Pusztai (2003)), is
closer to LDOCE in this regard. The corpora we
rely on are UMBC Webbase (Han et al., 2013) for
English and Webkorpusz (Halácsy et al., 2004) for
Hungarian. For the Hungarian dictionaries, we
relied on the versions created in Miháltz (2010);
Recski et al. (2016). We simulate the case of
languages without a machine-readable monolin-
gual dictionary with OSub, a dictionary extracted
from the OpenSubtitles parallel corpus (Tiede-
mann, 2012) automatically: the number of the
senses of a word in a source language is the num-
ber of words it translates to, averaged among many
languages. More precisely, we use the unigram
perplexity of the translations instead of their count
to reduce the considerable noise present in auto-
matically created dictionaries.

Resource 1 2 3 4 5 6+ Size Mean Std

CED 80,003 1,695 242 69 13 2 82,024 1.030 0.206
LDOCE 26,585 3,289 323 56 11 1 30,265 1.137 0.394
OSub 58,043 14,849 2,259 431 111 25 75,718 1.354 0.492

AdaGram 122,594 330,218 11,341 5,048 7,626 0 476,827 1.836 0.663
huang 94,070 0 0 0 0 6,162 100,232 1.553 2.161
neela.30k 69,156 0 30,000 0 0 0 99,156 1.605 0.919
neela.NP.6k 94,165 2,967 1,012 383 202 427 99,156 1.101 0.601
neela.NP.30k 71,833 20,175 4,844 1,031 439 834 99,156 1.411 0.924
neela.s4 574,405 0 0 4,000 0 0 578,405 1.021 0.249

EKSZ 66,849 628 57 11 1 0 121,578 1.012 0.119
NSZ (b) 5,225 122 13 3 0 0 5,594 1.029 0.191
OSub 159,843 9,169 229 3 0 0 169,244 1.144 0.199

AdaGram 135,052 76,096 15,353 5,448 6,513 0 238,462 1.626 0.910
jiweil 57,109 92,263 75,710 39,624 15,153 5,997 285,856 2.483 1.181
neela.s2 767,870 4,000 0 0 0 0 99,156 1.005 0.072
neela.s4 767,870 0 0 4,000 0 0 99,156 1.016 0.215

Table 1: Sense distribution, size (in words), mean, and standard deviation of the English and Hungarian
lexicographic and automatically generated resources
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Table 1 summarizes the distribution of word
senses (how many words with 1,. . . ,6+ senses) and
the major statistics (size, mean, and variance) both
for our lexicographic sources and for the automat-
ically generated MSEs.

While the lexicographic sources all show
roughly exponential decay of the number of
senses, only some of the automatically gener-
ated MSEs replicate this pattern, and only at
well-chosen hyperparameter settings. huang
has a hard switch between single-sense (94%
of the words) and 10 senses (for the remain-
ing 6%), and the same behavior is shown by the
released Neela.300D.30k (70% one sense, 30%
three senses). The English AdaGram and the
Hungarian jiweil have the mode shifted to two
senses, which makes no sense in light of the dic-
tionary data. Altogether, we are left with only two
English candidates, the adaptive (NP) neelas;
and one Hungarian, AdaGram, that replicate the
basic exponential decay.

The figure of merit we propose is the correlation
between the number of senses obtained by the au-
tomatic method and by the manual (lexicographic)
method. We experimented both with Spearman ρ

Resources compared n ρ

LDOCE vs CED 23702 0.266
EKSZ vs NSZ (b) 3484 0.648

neela.30k vs CED 23508 0.089
neela.NP.6k vs CED 23508 0.084
neela.NP.30k vs CED 23508 0.112
neela.30k vs LDOCE 21715 0.226
neela.NP.6k vs LDOCE 21715 0.292
neela.NP.30k vs LDOCE 21715 0.278
huang vs CED 23706 0.078
huang vs LDOCE 21763 0.280
neela.s4 vs EKSZ 45401 0.067
jiweil vs EKSZ 32007 0.023
AdaGram vs EKSZ 26739 0.086
AdaGram.a05 vs EKSZ 26739 0.088

neela.30k vs huang 99156 0.349
neela.NP.6k vs huang 99156 0.901
neela.NP.30k vs huang 99156 0.413
neela.s4 vs jiweil 283083 0.123
AdaGram vs neela.s4 199370 0.389
AdaGram vs jiweil 201291 0.140

Table 2: Word sense distribution similarity be-
tween various resources

and Pearson r values, the entropy-based measures
Jensen-Shannon and KL divergence, and cosine
similarity and Cohen’s κ. The entropy-based mea-
sures failed to meaningfully distinguish between
the various resource pairs. The cosine similari-
ties and κ values would also have to be taken with
a grain of salt: the former does not take the ex-
act number of senses into account, while the lat-
ter penalizes all disagreements the same, regard-
less of how far the guesses are. On the other
hand, the Spearman and Pearson values are so
highly correlated that Table 2 shows only ρ of
sense numbers attributed to each word by differ-
ent resources, comparing lexicographic resources
to one another (top panel); automated to lexico-
graphic (mid panel); and different forms of auto-
mated English (bottom panel). The top two values
in each column are highlighted in the last two pan-
els, n is the number of headwords shared between
the two resources.

The dictionaries themselves are quite well cor-
related with each other. The Hungarian values
are considerably larger both because we only used
a subsample of NSZ (the letter b) so there are
only 5,363 words to compare, and because NSZ
and EKSZ come from the same Hungarian lexico-
graphic tradition, while CED and LDOCE never
shared personnel or editorial outlook. Two En-
glish systems, neela and huang, show percep-
tible correlation with a lexical resource, LDOCE,
and only two systems, AdaGram and neela,
correlate well with each other (ignoring different
parametrizations of the same system, which of
course are often well correlated to one another).

2.1 Parts of speech and word frequency

Since no gold dataset exists, against which the re-
sults could be evaluated and the errors analyzed,
we had to consider if there exist factors that might
have affected the results. In particular, the better
correlation of the adaptive methods with LDOCE
than with CED raises suspicions. The former
groups entries by part of speech, the latter by
meaning, implying that the methods in question
might be counting POS tags instead of meanings.

Another possible bias that might have influ-
enced the results is word frequency (Manin, 2008).
This is quite apparent in the release version of the
non-adaptive methods huang and neela: the
former expressly states in the README that the
6,162 words with multiple meanings “roughly cor-

85



Resources compared n ρ

CED vs POS 42532 0.052
LDOCE vs POS 28549 0.206
OSubvs POS 48587 0.141
EKSZ vs POS 52158 0.080
NSZ vs POS 3532 0.046
huang vs POS 98405 0.026

AdaGram vs freq 399985 0.343
huang vs freq 94770 0.376
CED vs freq 36709 0.124
LDOCE vs freq 27859 0.317
neela.s4 vs freq 94044 0.649
neela.NP.30k vs freq 94044 0.368
neela.NP.6k vs freq 94044 0.635
UMBC POS vs freq 136040 -0.054

Table 3: Word sense distribution similarity with
POS tag perplexity (top panel) and word frequency
(bottom panel)

respond to the most frequent words".
To examine the effect of these factors, we mea-

sured their correlation with the number of mean-
ings reported by the methods above. For each
word, the frequency and the POS perplexity was
taken from the same corpora we ran the MSEs on:
UMBC for English and Webkorpusz for Hungar-
ian. Table 3 shows the results for both English
and Hungarian. The correlation of automatically
generated resources with POS tags is negligible:
all other embeddings correlate even weaker than
huang, the only one shown. From the English
dictionaries, LDOCE produces the highest corre-
lation, followed by OSub; the correlation with
CED, as expected, is very low. The Hungarian dic-
tionaries are around the level of CED.

In comparison, the correlation between sense
numbers and word frequency is much more evi-
dent. Almost all English resources correlate with
the word frequency by at least 0.3 (the notable ex-
ception being CED which is the closest to a gold
standard we have); furthermore, the highest cor-
relation we measured are between two versions of
neela and the word frequency. Adding to this
the low correlation of the gold CED against the
other resources (see Table 2), it appears the multi-
prototype embeddings included in the study were
trained to assign more vectors to frequent words
instead of trying this for truly polysemous ones.

To disentangle these factors further, we per-
formed partial correlation analysis with the ef-

fect of frequency (or its log) or POS perplexity
removed. Recall that LDOCE and CED origi-
nally correlated only to ρ = 0.266. After remov-
ing POS, we obtain 0.545, removing frequency
yields 0.546, and removing log frequency brings
this up to 0.599. Full discussion would stretch
the bounds of this paper, but on select embeddings
such as neela.NP.6k correlations with CED im-
prove from a negligible 0.093 to a respectable
0.397 if POS, and an impressive 0.696 if log fre-
quency is factored out.

3 Cross-linguistic treatment of concepts

Since monolingual dictionaries are an expensive
resource, we also propose an automatic evaluation
of MSEs based on the discovery of Mikolov et al.
(2013b) that embeddings of different languages
are so similar that a linear transformation can map
vectors of the source language words to the vectors
of their translations.

The method uses a seed dictionary of a few
thousand words to learn translation as a linear
mapping W : Rd1 → Rd2 from the source (mono-
lingual) embedding to the target: the translation
zi ∈ Rd2 of a source word xi ∈ Rd1 is approxi-
mately its image Wxi by the mapping. The trans-
lation model is trained with linear regression on
the seed dictionary

min
W

∑
i

||Wxi − zi||2

and can be used to collect translations for the
whole vocabulary by choosing zi to be the near-
est neighbor of Wxi.

We follow Mikolov et al. (2013b) in using
different metrics, Euclidean distance in training
and cosine similarity in collection of translations.
Though this choice is theoretically unmotivated, it

jelentés
értelmezés

jelentés
tanulmány

meaning
interpretation

report
memorandum

Figure 1: Linear translation of word senses. The
Hungarian word jelentés is ambiguous between
‘meaning’ and ‘report’. The two senses are identi-
fied by the “neighboring” words értelmezés ‘inter-
pretation’ and tanulmány ‘memorandum’.
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seems to work better than more consistent use of
metrics; but see (Xing et al., 2015) for opposing
results.

In a multi-sense embedding scenario, we take
a multi-sense embedding as source model, and a
single-sense embedding as target model. We eval-
uate a specific source MSE model in two ways re-
ferred as single, and multiple.

The tools that generate MSEs all provide fall-
backs to singe-sense embeddings in the form of
so called global vectors. The method single can
be considered as a baseline; a traditional, single-
sense translation between the global vectors and
the target vectors. Note that the seed dictionary
may contain overlapping translation pairs: one
word can have multiple translations in the gold
data, and more than one word can have the same
translation. In the multiple method we used the
same translation matrix, trained on the global vec-
tors, and inspected the translations of the different
senses of the same source word. Exploiting the
multiple sense vectors one word can have more
than one translation.

Two evaluation metrics were considered, lax
and strict. In lax evaluation a translation is taken
to be correct if any of the source word’s senses are
translated into any of its gold translations. In strict
evaluation the translations of the source word are
expected to cover all of its gold translations. For
example if jelentés has two gold translations, re-
port and meaning, and its actual translations are
‘report’ and some word other than ‘meaning’, then
it has a lax score of 2, but a strict score of 1.

The quality of the translation was measured by
training on the most frequent 5k word pairs and
evaluating on another 1k seed pairs. We used
OSub as our seed dictionary. Table 4 shows
the percentage of correctly translated words for
single-sense and multi-sense translation.

embedding lax strict

AdaGram 800 a.05 m100
s 26.0% 21.7%
m 30.5% 25.1%

AdaGram 800 a.01 m100
s 12.8% 10.8%
m 24.4% 21.0%

jiweil
s 39.1% 32.2%
m 9.7% 8.3%

Table 4: Hungarian to English translation. Target
embedding from Mikolov et al. (2013a)

4 Conclusions

To summarize, we have proposed evaluating word
embeddings in terms of their semantic resolution
(ability to distinguish multiple senses) both mono-
lingually and bilingually. Our monolingual task,
match with the sense-distribution of a dictionary,
yields an intrinsic measure in the sense of Chiu
et al. (2016), while the bilingual evaluation is ex-
trinsic, as it measures an aspect of performance
on a downstream task, MT. For now, the two
are not particularly well correlated, though the
low/negative result of jiweil in Table 1 could
be taken as advance warning for the low perfor-
mance in Table 4. The reason, we feel, is that
both kinds of performance are very far from ex-
pected levels, so little correlation can be expected
between them: only if the MSE distribution of
senses replicates the exponential decay seen in
dictionaries (both professional lexicographic and
crowdsourced products) is there any hope for fur-
ther progress.

The central linguistic/semantic/psychological
property we wish to capture is that of a concept,
the underlying word sense unit. To the extent stan-
dard lexicographic practice offers a reasonably ro-
bust notion (this is of course debatable, but we
consider a straight correlation of 0.27 and and a
frequency-effect-removed correlation of 0.60 over
a large vocabulary a strong indication of consis-
tency), this is something that MSEs should aim at
capturing. We leave the matter of aligning word
senses in different dictionaries for future work, but
we expect that by (manual or automated) align-
ment the inter-dictionary (inter-annotator) agree-
ment can be improved considerably, to provide a
more robust gold standard.

At this point everything we do is done in
software, so other researchers can accurately
reproduce these kinds of evaluations. Some glue
code for this project can be found at https:
//github.com/hlt-bme-hu/multiwsi.
Whether a ‘gold’ sense-disambiguated dictionary
should be produced beyond the publicly available
CED is not entirely clear, and we hope workshop
participants will weigh in on this matter.
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