
Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 75–80,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Pynini: A Python library for weighted finite-state grammar compilation

Kyle Gorman
Google, Inc.

111 8th Avenue, New York, NY 10011

Abstract

We present Pynini, an open-source library
for the compilation of weighted finite-
state transducers (WFSTs) and pushdown
transducers (PDTs) from strings, context-
dependent rewrite rules, and recursive tran-
sition networks. Pynini uses the OpenFst
library for encoding, modifying, and apply-
ing WFSTs and PDTs. We describe the de-
sign of this library and the algorithms and
interfaces used for compilation, optimiza-
tion, and application, and provide two il-
lustrations of the library in use.

1 Introduction

Weighted finite-state transducers (WFSTs) are
widely used in speech and language applications.
The hypothesis space for tasks like automatic
speech recognition (ASR) and optical character
recognition can be be represented as a compact,
efficiently searchable cascade of WFSTs (Mohri
et al., 2002). Manually-generated grammatical re-
sources such as pronunciation lexicons and phono-
logical rules are also naturally represented as finite-
state transducers. One advantage of an end-to-end
WFST formulation in complex natural language
problems like speech recognition is that WFSTs
make it easy to combine “big data” statistical com-
ponents like languagemodels and “small batch” re-
sources like hand-written grammars. For instance,
WFST ASR models may be augmented with a se-
ries of weighted rewrite rules modeling pronuncia-
tion variation (Hazen et al., 2005) to reduce word
error rate, or composed with an WFST which re-
stores punctuation and capitalization to improve
transcript readability (Shugrina, 2010).

2 Existing WFST libraries

There are a number of publicly available WFST li-
braries, most of them open-source. Roughly speak-
ing, these libraries can be divided into three groups.
First, libraries like Carmel (Knight and Graehl,
1998) and OpenFst (Allauzen et al., 2007) pro-
vide efficient implementations of key algorithms
for combining, optimizing, and searching WFSTs.
However, such libraries provide little support for
users who wish to compile a lexicon or a list of
grammatical rules into a WFST, so that even ba-
sic grammar-building tasks may be a challenge. A
second group of libraries, including HFST (Lindén
et al., 2013), Lextools (Sproat, 1995), Kleene
(Beesley, 2012), and Thrax (Roark et al., 2012),
focus on grammar compilation operations and rely
upon the aforementioned libraries for core WFST
algorithms. Finally, a third group of libraries, in-
cluding Foma (Hulden, 2009) and XFST (Beesley
and Karttunen, 2003), provide algorithms and
compilation routines for finite-state transducers,
though neither supports weighted transducers re-
quired by many real-world applications.

2.1 DSL-and-compiler interfaces

Table 1 summarizes key features of eight libraries
which provide some form of grammar compilation
support. Among these libraries, the most common
interface is a compiler for a library-specific declar-
ative, domain-specific language (DSL). There are
some advantages for using a domain-specific lan-
guage here; for instance, they allow for remarkably
terse grammars. However, in our experience, DSL-
and-compiler interfaces may also be a substantial
impediment to rapid development.
First, these domain-specific languages all make

extensive the use of novel operators; e.g., sev-
eral employ $ as a unary prefix operator denoting
the containment of an WFST. Any new language

75



XFST Lextools Carmel Foma Kleene Thrax HFST Pynini

Gratis No Yes Yes Yes Yes Yes Yes Yes
Libre No No Yes Yes Yes Yes Yes Yes
Weighted transducers No Yes No No Yes Yes Yes Yes
CDRR compilation No Yes No Yes Yes Yes Yes Yes
PDT compilation No No No No No Yes No Yes
Python bindings No No No Yes No No Yes Yes

Table 1: Key features of eight publicly available libraries for compilation of finite-state grammars.

comes with a learning curve, but the use of novel
operators (with unfamiliar precedence) may make
the curve particularly steep.
More generally, these DSLs lack the libraries,

programming constructs, and tooling present in
popular domain-general programming languages.
A user who wishes to compile a pronunciation lex-
icon from data stored in an XML file, for exam-
ple, has little choice but to write a script in some
domain-general programming language to rewrite
the XML data into a library-specific format sup-
ported by the compiler.

2.2 Introducing Pynini

We propose an alternative approach to this prob-
lem. We do not introduce yet another compet-
ing DSL-and-compiler standard, nor do we at-
tempt to expose a DSL to another programming
language, as do Foma and HFST, both of which
provide basic Python bindings. Rather we make
WFST algorithms and compilation routines “first-
class citizens” of an existing domain-general multi-
paradigm programming language. The result is a
Python extension called Pynini (named in honor of
Pāṇini, the renown Sanskrit grammarian). Pynini
takes advantage of Python’s substantial standard li-
brary, expressive syntax, and tools for debugging,
linting, and interactive development.
Pynini is distributed freely as part of the Open-

Grm toolkit under the Apache 2.0 license.

2.3 Outline

In what follows, we describe the design and imple-
mentation of the Pynini library, focusing on com-
pilation and optimization routines (§3). We then
present two examples illustrating the use of the li-
brary (§4–5), and then conclude with future direc-
tions for this project.

3 Design of the library

3.1 Software architecture
Pynini is based on OpenFst (Allauzen et al., 2007),
an efficient weighted finite-state transducer library
written in C++ 11.1 At the lowest level, OpenFst
provides a set of classes (representingWFSTs) and
functions (representing WFST algorithms) tem-
plated on the semiring of the input FST(s).
A second layer, the OpenFst scripting API,

uses virtual dispatch, function registration, and
dynamic loading of shared objects to provide a
common interface shared by FSTs of different
semirings. OpenFst also includes a Python exten-
sion module, pywrapfst, which exposes the en-
tire scripting API with little additional “syntactic
sugar”.2
Pynini extends this architecture at all three lev-

els. It is implemented with C++ template functions
(some of which are shared with Thrax), a semiring-
independent scripting interface, and a Python mod-
ule which extends pywrapfst.

3.2 Compilation
Pynini provides a Python class called Fst, which
represents a mutable WFST with a user-specified
semiring (by default, the tropical semiring). The
epsilon_machine function creates a one-state
FST that accepts only the empty string. The
acceptor function compiles a string into a (de-
terministic, epsilon-free) FSA. The user may spec-
ify how the arcs of the resulting FSA are to be la-
beled; by default, each arc in the FSA corresponds
to a byte in the input string, but the string may
also be interpreted as a UTF-8-encoded string—in
which case each arc label corresponds to a code-
point in the Unicode Basic Multilingual Plane—or
according to a user-provided symbol table. As in

1At time of writing Pynini depends on OpenFst 1.5.3.
2For more information on these APIs, visit http://

openfst.org.

76



Thrax, a string enclosed in square brackets are in-
terpreted as a single generated symbol rather than
as sequences of bytes or codepoints.
Nearly all Pynini functions permit a string to be

passed in place of an Fst, in which case acceptor
then is used to compile the string. One such
function is transducer, which takes two FSA
(or string) arguments and compiles a transducer
that represents their cross-product. The union of
many such string pairs can be compiled using the
string_file and string_map functions. The
former reads pairs of strings from a tab-separated
values (TSV) file, whereas the latter extracts string
pairs from a Python dictionary, list, or tuple. Both
functions produce a compact prefix tree represen-
tation of a map (or multimap) such as a pronuncia-
tion dictionary.
The cdrewrite function performs compilation

of context-dependent rewrite rules (CDRRs) us-
ing an algorithm due to Mohri and Sproat (1996).
The replace function compiles FSTs from recur-
sive transition networks (RTNs; Woods 1970). An
RTN is specified as a single root FST followed by
a set of one or more replacement FSTs, each of
which is passed as a keyword argument where the
keyword represents the replacement’s correspond-
ing nonterminal. If an RTN contains any recursive
replacements—i.e., if any FST in the RTN con-
tains its nonterminal either directly or indirectly—
it lacks a finite expansion and therefore cannot be
compiled into an FST, but it can be compiled as a
pushdown transducer (PDTs; Allauzen and Riley
2012) using the pdt_replace function.
Major functions for constructing FSTs are

shown in Figure 1.

3.3 Visualization

Pynini provides several techniques for visualizing
FSTs. Invoking Python’s print statement on an
Fst prints the FST’s arc list, and the drawmethod
renders an FST as a GraphViz3 image. It is also
possible to iterate over the states, arcs, and paths of
an FST using the states, arcs, and paths meth-
ods, respectively.

3.4 Algorithms

All of the major WFST algorithms supported by
OpenFst can be invoked via module-level func-
tions which return an Fst instance (or raise an ex-
ception in the case of run-time failure). A subset of

3http://graphviz.org

OpenFst WFST algorithms, including closure, in-
version, and projection, operate destructively (i.e.,
they mutate their input in-place), and can also be
invoked by calling the appropriate instancemethod
on an Fst object. All destructive operations return
their mutated input so as to allow chaining.

3.5 Optimization

Core FST operations such as composition, concate-
nation, and union tend to introduce many redun-
dant arcs and states, and therefore it is desirable
(and in some cases necessary) to optimize FSTs
during grammar compilation. OpenFst provides
four algorithms for this task: epsilon-removal, arc-
sum mapping (which merges identically-labeled
multiarcs), determinization, and minimization.
However, there are complex restrictions on the ap-
plication of these algorithms, making manual opti-
mization something of a challenge.
Pynini provides an instance method optimize

which applies these four procedures, subject to
these algorithmic restrictions and the properties of
the input FST. For instance, the minimization algo-
rithm is guaranteed to find a minimal FST only in
the case that the input is deterministic, and while
any acyclic FST over a zero-sum-free semiring is
determinizable, this is not necessarily true of FSTs
with weighted cycles (Mohri, 2009). Therefore,
if an FST is not known to be deterministic and
weighted-cycles-free, the optimization routine per-
forms both determinization and minizimation on
the FST while it is encoded as if it were an un-
weighted acceptor (Allauzen et al., 2004).

4 Sample grammar: Finnish harmony

Koskenniemi (1983) provides a number of
manually-compiled FSTs modeling Finnish mor-
phophonological patterns. One of these concerns
the well-known pattern of Finnish vowel harmony.
Many Finnish suffixes have two allomorphs
differing only in the backness specification of
their vowel. For example, the adessive suffix is
usually realized as -llä [lːæː] except when the
preceding stem contains one of u, o, and a and
there is no intervening y, ö, or ä; in this case, it
is -lla [lːɑː]. For example, käde ‘hand’ has an
adessive kädellä, whereas vero ‘tax’ forms the
adessive verolla because the nearest stem vowel
is o (Ringen and Heinämäki, 1999). Figure 2 pro-
vides a Pynini function (make_adessive) which
generates the appropriate form of a noun stem.

77



a = epsilon_machine()
b = acceptor("Red Leicester")
c = transducer("Tilsit", "Never at the end of the week, sir")
d = string_map({"Stilton": "Sorry", "Gruyère": "No"})
e = replace("[COLOR] [CHEESE]",

COLOR=union("Blue", "Red", "White"),
CHEESE=union("Leicester", "Stilton", "Vinney", "Windsor"))

Figure 1: Examples of various FST construction functions in Pynini.

It first concatenates the stem with an abstract
representation of the suffix, and then composes
the result with a context-dependent rewrite rule
adessive_harmony.

5 Sample application: T9 decoding

T9 (short for “Text on 9 keys”; Grover et al. 1998)
is a patented predictive text entry system. In T9,
each character in the “plaintext” alphabet is as-
signed to one of the 9 digit keys (0 is usually re-
served to represent space) of the traditional 3x4
touch-tone phone grid. For instance, the message
GOHOME is entered as 4604663. Since the result-
ing “ciphertext” may be highly ambiguous—this
sequence could also be read as GO HOOD, not to
mention many nonsensical expressions—a hybrid
language model/lexicon is used for decoding.
Figure 3 shows T9 encoding and decoding in

Pynini. The first line reads in an language model
represented as a weighted finite-state acceptor.4
The second line reads in the encoder table from
a string_file, a text file in which each line
contains an alphabetic character and its corre-
sponding digit key. By computing the concate-
native closure of this map, we obtain an FST
(T9_ENCODER) which can encode arbitrarily-long
plaintext strings.
The k_best function first applies a ciphertext

string (a bytestring of digits) to the inverted en-
coder FST (T9_DECODER) via composition and
output-projection. This creates an intermediate lat-
tice of all possible plaintexts consistent with the
T9 ciphertext. This is then scored by—that is,
composed with—the character LM. Finally, we
generate the k shortest paths (i.e., the k highest-
probability plaintexts) in the lattice. In the exam-
ple given in the figure, the shortest path here is in

4The language model used here is an 8-gram character lan-
guage model with Witten-Bell smoothing, trained on theWall
St. Journal portion of the Penn Treebank using OpenGrm-
NGram (Roark et al., 2012). This is somewhat different than
the language models used in mobile phone T9 systems.

fact identical to the plaintext.

6 Conclusions

We have described and illustrated the design and
implementation of an expressive and extensible
open-source library for weighted finite-state gram-
mar compilation. In future work, we hope to ex-
ploit this library to improve the user experience for
developers of grammars and ofWFST applications
more generally.

Acknowledgements

Thanks to all those who provided valuable in-
put during the design of Pynini. Richard Sproat
originally suggested to me the idea of developing
a Python based finite-state grammar library, dis-
cussed many design issues, and contributed the
path iteration algorithm. Cyril Allauzen, Steven
Bedrick, Myroslava Dzikovska, Mark Epstein,
Toby Hawker, Michael Riley, and Ke Wu also pro-
vided a lot of useful input. To obtain Pynini, visit
http://pynini.opengrm.org.

References
Cyril Allauzen and Michael Riley. 2012. A push-

down transducer extension for the OpenFst library.
In CIAA, pages 66–77.

Cyril Allauzen, Mehryar Mohri, Michael Riley, and
Brian Roark. 2004. A generalized construction of in-
tegrated speech recognition transducers. In ICASSP,
pages 761–764.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In CIAA, pages 11–23.

Kenneth R. Beesley and Lari Karttunen. 2003. Finite
state morphology. CSLI, Stanford, CA.

Kenneth R. Beesley. 2012. Kleene, a free and open-
source language for finite-state programming. In
10th International Workshop on Finite State Meth-
ods and Natural Language Processing, pages 50–54.

78



back_vowel = u("u", "o", "a")
neutral_vowel = u("i", "e")
front_vowel = u("y", "ö", "ä")
vowel = u(back_vowel, neutral_vowel, front_vowel)
archiphoneme = u("A", "I", "E", "O", "U")
consonant = u("b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q",

"r", "s", "t", "v", "w", "x", "z")
sigma_star = u(vowel, consonant, archiphoneme).closure()
adessive = "llA"
intervener = u(consonant, neutral_vowel).closure()
adessive_harmony = (cdrewrite(t("A", "a"), back_vowel + intervener, "",

sigma_star) *
cdrewrite(t("A", "ä"), "", "", sigma_star)).optimize()

def make_adessive(stem):
return ((stem + adessive) * ur).stringify()

Figure 2: Finnish adessive suffix harmony, implemented with context-dependent rewrite rules.

LM = Fst.read("charlm.fst")
T9_ENCODER = string_file("t9.tsv").closure()
T9_DECODER = invert(T9_ENCODER)

def encode_string(plaintext):
return (plaintext * T9_ENCODER).stringify()

def k_best(ciphertext, k):
lattice = (ciphertext * T9_DECODER).project(True) * LM
return shortestpath(lattice, nshortest=k, unique=True).paths()

pt = "THE SINGLE MOST POPULAR CHEESE IN THE WORLD"
ct = encode_string(pt)
for (_, opath, _) in k_best(ct, 5):
print opath

Figure 3: T9 encoding and decoding with a character LM.

79



Dale L. Grover, Martin T. King, andCliffordA.Kushler.
1998. Reduced keyboard disambiguating computer.
US Patent 5,818,437.

Timothy J. Hazen, I. Lee Hetherington, Han Shu, and
Karen Livescu. 2005. Pronunciation modeling us-
ing a finite-state transducer representation. Speech
Communication, 46(2):189–203.

Mans Hulden. 2009. Foma: A finite-state compiler
and library. In EACL, pages 29–32.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

KimmoKoskenniemi. 1983. Two-level morphology: A
general computational model for word-form recog-
nition and production. Ph.D. thesis, University of
Helsinki.

Krister Lindén, Erik Axelson, Senka Drobac, Sam
Hardwick, Juha Kuokkala, Jyrki Niemi, Tommi A.
Pirinen, and Miikka Silfverberg. 2013. HFST: A
system for creating NLP tools. In SCFM, pages 53–
71.

Mehryar Mohri and Richard Sproat. 1996. An efficient
compiler for weighted rewrite rules. In ACL, pages
231–238.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech and Lan-
guage, 16(1):69–88.

Mehryar Mohri. 2009. Weighted automata algorithms.
InManfred Droste, Werner Kuich, and Heiko Vogler,
editors,Handbook of weighted automata, pages 213–
254. Springer, New York.

Catherine O. Ringen and Orvokki Heinämäki. 1999.
Variation in Finnish vowel harmony: An OT ac-
count. Natural Language and Linguistic Theory,
17(2):303–337.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012.
TheOpenGrm open-source finite-state grammar soft-
ware libraries. In ACL, pages 61–66.

Maria Shugrina. 2010. Formatting time-aligned ASR
transcripts for readability. In NAACL, pages 198–
206.

Richard Sproat. 1995. Lextools: Tools for finite-state
linguistic analysis. Technical Report 11522-951108-
10TM, Bell Laboratories.

William A. Woods. 1970. Transition network gram-
mars for natural language analysis. Communications
of the ACM, 13(10):591–606.

80


