
ACL 2016

The 54th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the SIGFSM Workshop on
Statistical NLP and Weighted Automata

August 12, 2016
Berlin, Germany

c©2016 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-13-5 / 1-945626-13-5

ii

Preface

The past 20 years have seen a fundamental paradigm shift in the field of automated natural language
processing: though long dominated by rule-based techniques, the vast majority of contemporary
approaches are now based on statistical models. This trend can be observed not only in traditional
tasks such as machine translation or morphological analysis, but also in new research areas such as topic
modelling. The reasons for such a paradigm shift can be attributed above all to the steadily growing
pool of large, high-quality manually annotated training material as well as the availability of suitable
statistical methods and easily accessible implementations thereof.

The purpose of the Workshop on Statistical Natural Language Processing and Weighted Automata
(StatFSM) was to bring together researchers interested in statistical natural language processing,
automata theory and application. We are pleased to say that the program of the workshop reflected
in this proceedings volume met these expectations.

These proceedings contain the contributions presented at the StatFSM workshop held on August 12,
2016 in conjunction with ACL 2016 in Berlin, Germany. The workshop was a meeting of the ACL
Special Interest Group on Finite-State Methods (SIGFSM). In total, 12 papers (seven long and five
short papers) were submitted to a doubly blind refereeing process. Each paper was reviewed by three
members of the program committee, which consisted of highly esteemed researchers from the field of
automata theory and applications. In the end, 9 papers were selected for presentation at the workshop,
and those contributions are included in this volume. They discuss topics ranging from weighted finite-
state transducers to weighted tree automata and to devices on even more complicated structures. In
addition, the contributions strike the right balance between purely theoretic foundational investigations
as well as considerations and solutions to problems entirely motivated from practice.

The workshop would not have been possible without the help of a lot of support. First, we would like
to thank the program committee members for providing their expertise and valuable feedback during the
review process. We also want to express our gratitude to JASON EISNER for his inspiring keynote lecture.
The constant efforts of the ACL administration and the local organizers made this workshop possible.
Last but not least we want to thank the authors and the participants who above all others have made this
workshop a success.

Bryan Jurish
Andreas Maletti

Uwe Springmann
Kay-Michael Würzner

iii

Organizers:

Bryan Jurish, Berlin-Brandenburg Academy of Sciences and Humanities, Germany
Andreas Maletti, University of Stuttgart, Germany
Uwe Springmann, Ludwig-Maximilians-Universität München, Germany
Kay-Michael Würzner, Berlin-Brandenburg Academy of Sciences and Humanities, Germany

Program Committee:

Borja Balle, Lancaster University, UK
Francisco Casacuberta, Instituto Tecnológico de Informática, Spain
Simon Clematide, University of Zurich, Switzerland
Gregory Crane, University of Leipzig, Germany
Frank Drewes, Umeå University, Sweden
Jason Eisner, Johns Hopkins University, Baltimore, MD, USA
Colin de la Higuera, Nantes University, France
Mans Hulden, University of Colorado, Boulder, CO, USA
Krister Lindén, University of Helsinki, Finnland
Kevin Knight, University of Southern California, CA, USA
Marcus Eichenberger-Liwicki, University of Kaiserslautern, Germany
Stoyan Mihov, Bulgarian Academy of Sciences, Sofia, Bulgaria
Mark-Jan Nederhof, University of St Andrews, UK
Michael Riley, Google Inc., USA
Martin Reynaert, Tilburg University, The Netherlands
Brian Roark, Google Inc., USA
Richard Sproat, Google Inc., USA
Heiko Vogler, Dresden University of Technology, Germany
Bruce Watson, Stellenbosch University, South Africa

Invited Speaker:

Jason Eisner, Johns Hopkins University, Baltimore, MD, USA

v

Table of Contents

Equivalences between ranked and unranked weighted tree automata via binarization
Toni Dietze .1

Adaptive importance sampling from finite state automata
Christoph Teichmann, Kasimir Wansing and Alexander Koller . 11

Transition-based dependency parsing as latent-variable constituent parsing
Mark-Jan Nederhof . 21

Distributed representation and estimation of WFST-based n-gram models
Cyril Allauzen, Michael Riley and Brian Roark . 32

Learning transducer models for morphological analysis from example inflections
Markus Forsberg and Mans Hulden . 42

Data-driven spelling correction using weighted finite-state methods
Miikka Silfverberg, Pekka Kauppinen and Krister Lindén . 51

EM-training for weighted aligned hypergraph bimorphisms
Frank Drewes, Kilian Gebhardt and Heiko Vogler . 60

On the correspondence between compositional matrix-space models of language and
weighted automata

Shima Asaadi and Sebastian Rudolph . 70

Pynini: A Python library for weighted finite-state grammar compilation
Kyle Gorman . 75

vii

Conference Program

Friday, August 12, 2016

09:00–10:30 Welcome and keynote

09:00–09:30 Opening
Organizers

09:30–10:30 Probabilistic models of related strings
Jason Eisner

10:30–11:00 Morning break

11:00–12:30 Weighted tree automata

11:00–11:30 Equivalences between ranked and unranked weighted tree automata via
binarization
Toni Dietze

11:30–12:00 Adaptive importance sampling from finite state automata
Christoph Teichmann, Kasimir Wansing and Alexander Koller

12:00–12:30 Transition-based dependency parsing as latent-variable constituent parsing
Mark-Jan Nederhof

12:30–14:00 Lunch break

ix

Friday, August 12, 2016 (continued)

14:00–15:30 Weighted finite-state transducers

14:00–14:30 Distributed representation and estimation of WFST-based n-gram models
Cyril Allauzen, Michael Riley and Brian Roark

14:30–15:00 Learning transducer models for morphological analysis from example inflections
Markus Forsberg and Mans Hulden

15:00–15:30 Data-driven spelling correction using weighted finite-state methods
Miikka Silfverberg, Pekka Kauppinen and Krister Lindén

15:30–16:00 Afternoon break

16:00–17:30 Various weighted automata

16:00–16:30 EM-training for weighted aligned hypergraph bimorphisms
Frank Drewes, Kilian Gebhardt and Heiko Vogler

16:30–17:00 On the correspondence between compositional matrix-space models of language
and weighted automata
Shima Asaadi and Sebastian Rudolph

17:00–17:30 Pynini: A Python library for weighted finite-state grammar compilation
Kyle Gorman

x

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 1–10,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Equivalences between Ranked and Unranked Weighted Tree Automata
via Binarization

Toni Dietze
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden, Germany

toni.dietze@tu-dresden.de

Abstract

Encoding unranked trees to binary trees,
henceforth called binarization, is an im-
portant method to deal with unranked
trees. For each of three binarizations
we show that weighted (ranked) tree au-
tomata together with the binarization are
equivalent to weighted unranked tree au-
tomata; even in the probabilistic case. This
allows to easily adapt training methods
for weighted (ranked) tree automata to
weighted unranked tree automata.

1 Introduction

When dealing with trees, tree grammars, and for-
mal languages of trees, a restriction to binary trees
is often beneficial, e.g. for improved generaliza-
tion when generating grammars from treebanks,
or for reduced parsing complexity. A binarization
maps any (unranked) tree to a binary tree such that
the original tree can be reconstructed from the re-
sult.

In this paper we investigate three different bi-
narizations inspired by Matsuzaki et al. (2005,
Fig. 6). For each of these binarizations we show
that a weighted unranked tree language is rec-
ognizable by a weighted unranked tree automa-
ton (wuta) iff the binarization of the language is
recognizable by a weighted tree automaton (wta).
This even holds with restriction to probabilistic
automata. To support this result we show that
for any R≥0-weighted finite state automaton with
the sum of weights of all words being 1, there
is an equivalent probabilistic finite state automa-
ton. This implies that the class of weighted string
languages recognizable by probabilistic finite state
automata is closed under reversal.

These results suggest that by adding binariza-
tion to training methods for wta we effectively

get training methods for wuta. Alterations to the
weights and the state behaviour while training then
carry over to wuta. This also gives an explanation
for why the performance of the training by Mat-
suzaki et al. (2005) is rather independent from the
used binarization.

Related Work. Fülöp and Vogler (2009) give an
overview over wta, and Droste and Vogler (2011)
introduced wuta. For the unweighted case bina-
rizations (also called encodings) were investigated
by, e.g., Comon et al. (2007, Section 8.3). Their
first-child-next-sibling encoding is similar to our
left-branching binarization. Their extension en-
coding is also used to define stepwise tree au-
tomata (Carme et al., 2004). A stepwise tree au-
tomaton is defined like a (ranked) tree automa-
ton. It accepts an unranked tree, if it accepts the
extension encoding of the tree while the automa-
ton is interpreted as a (ranked) tree automaton.
Högberg et al. (2009, Lemmas 4.2 and 6.2) ex-
tend this connection to the weighted case and show
that weighted stepwise tree automata and wuta are
equally powerful.

Our results for weighted and for probabilistic
finite state automata are a special case of renor-
malization of weighted or of probabilistic context-
free grammars (Abney et al., 1999; Chi, 1999;
Nederhof and Satta, 2003). We provide alternative
proofs for this special case.

2 Preliminaries

LetA andB be sets, andR ⊆ A×B a relation. By
R(a) we denote the set {b ∈ B | (a, b) ∈ R} for
every a ∈ A. The inverse relation of R is defined
by R−1 = {(b, a) | (a, b) ∈ R}. Occasionally we
identify a function f : A → B with the relation
{(a, f(a)) | a ∈ A}.

An alphabet is a finite, non-empty set. LetΣ be
an alphabet. The set of words over Σ is denoted

1

by Σ∗. The length of a word w ∈ Σ∗ is denoted
by |w|. The empty word, denoted by ε, is the word
of length 0. The set of unranked trees over Σ, de-
noted by UΣ , is the smallest set U such that for
every σ ∈ Σ, k ∈ N, and t1, . . . , tk ∈ U we
have σ(t1, . . . , tk) ∈ U . We abbreviate σ() ∈ UΣ

by σ. Let t = σ(t1, . . . , tk) ∈ UΣ . We call σ
the root symbol of t. The root rank of t is defined
by rk(t) = k. The set of positions of t is recur-
sively defined by pos(t) = ε ∪ ⋃i∈{1,...,k}{iρ |
ρ ∈ pos(ti)}. Let ρ ∈ pos(t). The subtree of t
at ρ is recursively defined by t|ρ = t if ρ = ε and
t|ρ = ti|ρ′ if ρ = iρ′. The symbol of t at ρ, de-
noted by t(ρ), is defined as the root symbol of t|ρ.
The rank of t at ρ is defined as rk(t|ρ).

Let S be a non-empty set (of sorts). An S-
sorted alphabet is a family Σ = (Σ(s) | s ∈ S)
of pairwise disjoint sets such that their union is
non-empty and finite. For families of sets we of-
ten use the same identifier for denoting the fam-
ily and the union of its members. Let Σ be an
(S×S∗)-sorted alphabet. The family of (S-sorted)
trees over Σ, denoted by TΣ = (T(s)

Σ | s ∈ S),
is defined as the smallest family (T (s) | s ∈ S)
such that for every (s0, s1 . . . sk) ∈ (S × S∗), for
every σ ∈ Σ(s0,s1...sk), for every t1 ∈ T (s1), . . . ,
tk ∈ T (sk), we have σ(t1, . . . , tk) ∈ T (s0). If S
is a singleton, this is equivalent to the usual defi-
nition of ranked trees. Note that TΣ ⊆ UΣ , so all
notions for unranked trees are also valid for sorted
trees. Also note that, for sorted trees, the symbol
at a position determines the rank at this position;
therefore we will use rk also for symbols from Σ.

A commutative semiring is an algebraic struc-
ture < = (R,+, ·, 0, 1) such that (R,+, 0) and
(R, ·, 1) are commutative monoids, · is distribu-
tive over +, and 0 is annihilating w.r.t. ·. We
often write < instead of R. Let A be a set and
f : A → < be a mapping. The support of f is
defined by supp(f) = {a ∈ A | f(a) 6= 0}.

In the following we will define devices to asso-
ciate weights with sorted trees, words, or unranked
trees. We will use weights from an arbitrary com-
mutative semiring. Therefore, if we use addition,
multiplication, 0, and 1, then these are operations
from that semiring. We will call two such devices
equivalent, if their (yet to define) semantics J·K is
the same.

Definition 1 (wsta). Let S be a set of sorts and
< be a commutative semiring. An <-weighted
S-sorted tree automaton (<-S-wsta) is a tuple

(Q,Σ, I,∆) where
• Q is an S-sorted alphabet (of states),
• Σ is an (S×S∗)-sorted alphabet (of terminals),
• I : Q→ < is a mapping (root weights), and
• ∆ = (∆(σ) : Q(s0) × . . . × Q(sk) → < |

(s0, s1 . . . sk) ∈ S × S∗, σ ∈ Σ(s0,s1...sk)) is
a family of mappings (transition weights).

Let M = (Q,Σ, I,∆) be an <-S-wsta. The
size of M is defined by size(M) = supp(I) +∑

σ∈Σ supp(∆(σ)). For some s ∈ S, we callM
s-rooted, if for every s′ ∈ S\{s} and q ∈ Q(s′) we
have that I(q) = 0. We define the relation runM
that contains (t, r), if t ∈ TΣ , r : pos(t) → Q,
and for every ρ ∈ pos(t) we have r(ρ) ∈ Q(s0),
if t(ρ) ∈ Σ(s0,s1...sk), i.e., the sorts of states and
terminals at the same position match. We say that
r is a run ofM on t.

Definition 2 (semantics of wsta). Let M =
(Q,Σ, I,∆) be an <-S-wsta and t ∈ TΣ . The
weight of t under M is defined by JMK(t) =∑

r∈runM(t)JMK(t, r) where

JMK(t, r) = I(r(ε))

·
∏

ρ∈pos(t)

∆(σ)(r(ρ), r(ρ1), . . . , r(ρk))

and σ = t(ρ) and k = rk(σ).

Note: If S is a singleton set, then S-wsta are
equivalent to weighted tree automata over ranked
alphabets (Fülöp and Vogler, 2009). The sorts just
add syntactic restrictions that will help us in the
following.

Definition 3 (wfsa). Let < be a commutative
semiring. An <-weighted finite state automaton
(<-wfsa) is a tuple (P,Σ, J,Π, F) where
• P is an alphabet (of states),
• Σ is an alphabet (of terminals),
• J : P → < is a mapping (initial weights),
• Π : P × Σ × P → < is a mapping (transition

weights), and
• F : P → < is a mapping (final weights).

By wfsa(<, Σ) we denote the set of all <-
wfsa with terminal alphabet Σ. Let N =
(P,Σ, J,Π, F) be an <-wfsa. The size of N is
defined by size(N) = supp(J) + supp(Π) +
supp(F). We define the relation runN that con-
tains (w, r), if w ∈ Σ∗ and r : {0, . . . , |w|} → P .
We say that r is a run of N on t.

Definition 4 (semantics of wfsa). Let N =
(P,Σ, J,Π, F) be an <-wfsa and w =

2

w1 . . . wk ∈ Σ∗ for some k ∈ N. The
weight of w under N is defined by JN K(w) =∑

r∈runN (w)JN K(w, r) where

JN K(w, r) = J(r(0))

·
(∏
i∈{1,...,|w|}

Π(r(i− 1), wi, r(i))
)

· F (r(|w|)).

Definition 5 (wuta). Let < be a commutative
semiring. An <-weighted unranked tree automa-
ton (<-wuta) is a tuple (Q,Σ, I,∆) where
• Q is an alphabet (of states),
• Σ is an alphabet (of terminals),
• I : Q→ < is a mapping (root weights), and
• ∆ : Q×Σ → wfsa(<, Q) is a mapping.
Let M = (Q,Σ, I,∆) be an <-wuta. The
size of M is defined by size(M) = supp(I) +∑

q∈Q,σ∈Σ size(∆(q, σ)). The number of states of
M is defined as |Q| plus the numbers of states
of all wfsa in the image of ∆. We define the re-
lation runM that contains (t, r), if t ∈ UΣ and
r : pos(t)→ Q. We say that r is a run ofM on t.

Definition 6 (semantics of wuta). Let M =
(Q,Σ, I,∆) be an <-wuta. Let t ∈ UΣ . The
weight of t under M is defined by JMK(t) =∑

r∈runM(t)JMK(t, r) where

JMK(t, r) = I(r(ε))

·
∏

ρ∈pos(t)

J∆(r(ρ), σ)K(r(ρ1) . . . r(ρk))

and σ = t(ρ) and k = rk(t|ρ).

By exploiting distributivity it is easy to find
the following equivalent formulation. Let PM
be the set of all states of all wfsa in the image
of ∆. We define the relation ex-runM that con-
tains (t, e), if t ∈ UΣ and e = (r, s) where r ∈
runM(t) and s : pos(t)→ ⋃

n∈N PM
{0,...,n} such

that s(ρ) ∈ run∆(r(ρ),t(ρ))(r(ρ1) . . . r(ρ rk(t|ρ)))
for every ρ ∈ pos(t). We say that e is an ex-
tended run of M on t. We have JMK(t) =∑

e∈ex-runM(t)JMK(t, e) where

JMK(t, (r, s)) = I(r(ε)) ·
∏

ρ∈pos(t)

Jρ(s(ρ)(0))

·
(rk(t|ρ)∏

i=1

Πρ

(
s(ρ)(i− 1), r(ρi), s(ρ)(i)

))
· Fρ

(
s(ρ)(rk(t|ρ))

)

and (Pρ, Q, Jρ, Πρ, Fρ) = ∆(r(ρ), t(ρ)). A sim-
ilar result was stated by Droste and Vogler (2011,
Def. 6.7 and Obs. 6.8).

3 Equivalences via Binarizations

In this section we will present three different sur-
jective mappings h : TΓ → UΣ where Σ is an
alphabet and Γ is a sorted alphabet with the max-
imum rank of a symbol being 2. We call h a bi-
narization and we binarize a tree by using h back-
wards. Note that this allows several representa-
tions for a single unranked tree. Occasionally we
also say that t′ is a binarization of t if t′ ∈ TΓ and
t = h(t′).

We show that wsta together with any of the pre-
sented binarizations and wuta are equally pow-
erful; more formally for every wuta M there is
a wsta M′ and vice versa such that JMK(t) =∑

t′∈h−1(t)JM′K(t′) for every t ∈ TΣ .

3.1 Left-branching Binarization

Our first binarization is inspired by the LEFT

binarization of Matsuzaki et al. (2005, Fig. 6).
It is similar to first-child-next-sibling encoding
(Comon et al., 2007, Sec. 8.3.1). It transforms
an unranked branch into a sequence of branches
growing rightwards (cf. Figure 1).

Let Σ be an alphabet and let S = {T,H}
be a set of sorts. Intuitively, T will be the sort
for trees and H will be the sort for hedges (se-
quences of trees). Based on Σ and assuming
CONS, NULL /∈ Σ, we define the (S × S∗)-sorted
alphabet Γ by Γ (T,H) = Σ, Γ (H,TH) = {CONS},
Γ (H,ε) = {NULL}.

There is a unique homomorphism h from the S-
sorted term algebra over Γ into the S-sorted al-
gebra ((A(s) | s ∈ S), (θσ | σ ∈ Γ)) where
A(T) = UΣ , A(H) = (UΣ)∗,

∀σ ∈ Σ : θσ(t1 . . . tk) = σ(t1, . . . , tk),

θCONS(t0, t1 . . . tk) = t0t1 . . . tk,

θNULL() = ε.

Figure 1 (ignoring the states for now) illustrates
h. Note that h is a bijection, where h(ξ′)(ρ) =
ξ′(12ρ1−11 · · · 12ρn−11) for every ξ′ ∈ T(T)

Γ and
ρ = ρ1 · · · ρn ∈ pos(h(ξ′)).

Now letM′ = (Q′, Γ, I ′, ∆′) be a T-rooted <-
S-wsta andM = (Q,Σ, I,∆) be an <-wuta such
that Q and the state sets of the wfsa defined by ∆
are pairwise disjoint. We say thatM andM′ are

3

σ

CONS

α

NULL

p5

q 1
CONS

γ

CONS

α

NULL

p8

q4

NULL

p7

p6

q 2

CONS

β

NULL

p9

q3

NULL

p4

p
3

p
2

p1

q0

h7−→
f

σ

α

q1

γ

α

q4

q2

β

q3

q0

p1
p2 p3

p4

p5
p6 p7

p8

p9

Figure 1: Trees with runs of related wsta and wuta.

JMK(t, e)
= I(r(ε)) ·

∏
ρ∈pos(t)

Jρ(s(ρ)(0))

·
(rk(t|ρ)∏

i=1

Πρ

(
s(ρ)(i− 1), r(ρi), s(ρ)(i)

)) · Fρ(s(ρ)(rk(t|ρ))
)

= I ′(r(ε)) ·
∏

ρ∈pos(t)

∆′(t(ρ))(r(ρ), s(ρ)(0))

·
(rk(t|ρ)∏

i=1

∆′(CONS)(s(ρ)(i− 1), r(ρi), s(ρ)(i))
)

·∆′(NULL)(s(ρ)(rk(t|ρ)))

(by definition of related)

= I ′(r′(ε)) ·
∏

ρ∈pos(t),

ρ′=12ρ1−11···12
ρ|ρ|−1

1,
k=rk(t|ρ)

∆′(t
′(ρ′))(r′(ρ′), r′(ρ′1))

·
(k∏
i=1

∆′(t
′(ρ′12i−1))(r′(ρ′12i−1), r′(ρ′12i−11), r′(ρ′12i))

)
·∆′(t′(ρ′12k))(r′(ρ′12k))

(by definition of h and f)

= I ′(r′(ε)) ·
∏

ρ∈pos(t′)

∆′(t
′(ρ))(r′(ρ), r′(ρ1), . . . , r′(ρ rk(t′|ρ)))

(by commutativity of · and definition of h)

= JM′K(t′, r′)
Figure 2: Showing that JMK(t, e) = JM′K(t′, r′) for proof of Theorem 7, where (t, e) = f(t′, r′),
(r, s) = e, and (Pρ, Q, Jρ, Πρ, Fρ) = ∆(r(ρ), t(ρ)) for every ρ ∈ pos(t).

4

related, if Q′(T) = Q, Q′(H) is the union of the
state sets of all wfsa defined by ∆, and for every
σ ∈ Σ, q0, q ∈ Q, and p, p′ ∈ P we have

I ′(q) =

{
I(q) if q ∈ Q,
0 otherwise,

∆′(σ)(q0, p) = J(p),

∆′(CONS)(p, q, p′) = Π(p, q, p′),

∆′(NULL)(p) = F (p),

where (P,Q, J,Π, F) = ∆(q0, σ). Note thatM′
is T-rooted.

Theorem 7. If M and M′ are related, thenJM′K(t) = JMK(h(t)) for every t ∈ TΓ .

Proof. Assume that M and M′ are related. Fig-
ure 1 shows an example tree and its image under
h. Moreover it shows a run and its image under
the function f : runM′ → ex-runM that is de-
fined as follows: For every (t′, r′) ∈ runM′ and
ρ ∈ pos(h(t)) we let ρ′ = 12ρ1−11 · · · 12ρ|ρ|−11
and define f(t′, r′) = (h(t′), (r, s)) where r(ρ) =
r′(ρ′) and s(ρ)(i) = r′(ρ′12i) for every i ∈
{0, . . . , rk(t|ρ)}. Note that f is a bijection.

Let (t′, r′) ∈ runM′ and (t, e) = f(t′, r′). In
Figure 2 we show that JMK(t, e) = JM′K(t′, r′).
This immediately implies that JMK(t) =JM′K(t′). q.e.d.

It is easy to see that a wuta and a wsta have the
same size and number of states, if they are related.

3.2 Right-branching Binarization
Our second binarization is based on the RIGHT bi-
narization of Matsuzaki et al. (2005, Fig. 6).

In comparison to left-branching binarization we
make the following changes. We define Γ by
Γ (T,H) = Σ, Γ (H,HT) = {SNOC}, and Γ (H,ε) =
{NULL}. To define h we replace the definition of
θCONS by θSNOC(t1 . . . tk, tk+1) = t1 . . . tktk+1.
In the definition for related, we just replace CONS

by SNOC and reverse the wfsa, i.e. we interchange
J and F and swap the states in transitions. The-
orem 7 still holds with these changes; the proof
works analogously.

3.3 Mixed Binarization
We now have a look at a binarization where the
direction of growth may be flipped at arbitrary po-
sitions from rightwards to leftwards; cf. CENTER-
PARENT and CENTER-HEAD binarization of Mat-
suzaki et al. (2005, Fig. 6). For this purpose,

let S = {T,H,H}. Based on Σ and assuming
FLIP, CONS, NULL, SNOC, NULL /∈ Σ, we define the
(S × S∗)-sorted alphabet Γ by

Γ (T,H) = Σ, Γ (H,HT) = {FLIP},
Γ (H,ε) = {NULL}, Γ (H,TH) = {CONS},
Γ (H,ε) = {NULL}, Γ (H,HT) = {SNOC}.

There is a unique homomorphism h from the S-
sorted term algebra over Γ into the S-sorted al-
gebra ((A(s) | s ∈ S), (θσ | σ ∈ Γ)) where
A(T) = UΣ , A(H) = A(H) = (UΣ)∗, and

∀σ ∈ Σ : θσ(t1 . . . tk) = σ(t1, . . . , tk),

θCONS(t0, t1 . . . tk) = t0t1 . . . tk,

θFLIP(t1 . . . tk, tk+1) = t1 . . . tktk+1,

θSNOC(t1 . . . tk, tk+1) = t1 . . . tktk+1,

θNULL() = θNULL() = ε.

Unfortunately, this homomorphism is just surjec-
tive, but not bijective. That means, there may be
several possible binarizations of an unranked tree.
Given a wsta M′ we will construct a wuta M,
such that the weight of an unranked tree t underM
is the sum of weights of all binarizations h−1(t)
underM′.

Figure 4 shows an unranked node with the three
subtrees t1, t2, t3 and Figure 3 shows one possible
binarization with the binarized subtrees t′1, t′2, t′3.
Note that in Figure 3 the rightmost subtree t′3 is
attached to the node labeled FLIP, yet this node is
located in the middle of the tree. Therefore, if we
follow the path from the root to the leaf labeled
NULL, we find t′1, t′3, and t′2 in this order. For the
indicated run, we find the states in the order p0, p1,
p3, p2.

Conversely, in the unranked case we find the
subtrees in the order t1, t2, t3. This is indicated
by the arrow in Figure 3. Therefore, in a run of a
wfsa from the constructed wuta, we have to pass
along the information that we visited the state p1,
because we need it at the rightmost subtree t3. Ad-
ditionally, since each transition of the wfsa deals
with one subtree, but the NULL node has no sub-
trees, we have to guess a child and pass on this
guess in the state. The constructed run is depicted
in Figure 4.

Construction 8. For this construction, we use Σ,
Γ , and S as defined above.

Let M′ = (Q′, Γ, I ′, ∆′) be a T-rooted
<-S-wsta. We construct the <-wuta M =

5

σ

CONS

t′1

q1

FLIP

SNOC

NULL

p2

t′2

q2

p3

t′3

q3

p1

p0

q0

Figure 3: A binarization of Figure 4. The arrow
indicates the processing order of the constructed
wuta (cf. Construction 8). Note that the arrow
touches p1 twice.

(Q′(T), Σ, I,∆) where, for every q0 ∈ Q′(T) and
σ ∈ Σ, we set I(q0) = I ′(q0) and ∆(q0, σ) =
(P,Q′(T), J,Π, F) where P = Q′(H) ∪ {p̄q,s |
p̄ ∈ Q′(H), q ∈ Q′(T), s ∈ Q′(H)}, and for ev-
ery p, r, s ∈ Q′(H), p̄, r̄ ∈ Q′(H), and q, q′ ∈ Q′(T)

we set

J(p) = ∆′(σ)(q0, p),

Π(p, q, r) = ∆′(CONS)(p, q, r),

Π(s, q, r̄q,s) = ∆′(NULL)(r̄),

Π(p̄q′,s, q, r̄q,s) = ∆′(SNOC)(r̄, p̄, q′),

F (p̄q,s) = ∆′(FLIP)(s, p̄, q),

F (p) = ∆′(NULL)(p).

Every other weight is set to 0.

Theorem 8. ForM andM′ from Construction 8,
we have JMK(t) =

∑
t′∈h−1(t)JM′K(t′) for every

t ∈ TΣ .

Proof. Analogously to the proof of Theorem 7, we
define a function f : runM′ → ex-runM. Fig-
ures 3 and 4 visualize this mapping. Note in con-
trast to h that f is injective.

By construction of M, we have thatJM′K(t′, r′) = JMK(f(t′, r′)) for every t′ ∈ TΓ

and r′ ∈ runM′(t′). For every (t, e) not in the
image of f we have JMK(t, e) = 0.

h7−→
f

σ

t1

q1

t2

q2

t3

q3

q0

p0
p1 p2 q2,p1

p3 q3,p1

Figure 4: Unranked node with three subtrees.

All in all we have

JMK(t) =
∑

e∈ex-runM(t)

JMK(t, e)
=

∑
e∈ex-runM(t)∩im(f)

JMK(t, e)
=

∑
e∈ex-runM(t)∩im(f)

JM′K(f−1(t, e))

=
∑

t′∈h−1(t)

∑
r′∈runM′ (t′)

JM′K(t′, r′)
=

∑
t′∈h−1(t)

JM′K(t′). q.e.d.

In Construction 8, the number of states of a sin-
gle wfsa of M is in O(|Q′|3) and its size is in
O(|Q′|2 · size(M′)). Since there is a wfsa for
every state and terminal of M, the number of
states ofM is in O(|Q′|4 · |Σ|) and its size is in
O(|Q′|3 · |Σ| · size(M′)). Note that Π and F are
the same for every constructed wfsa, so it might be
beneficial to share them in an implementation.

For the other direction, i.e. when constructing
a wsta given a wuta such that Theorem 8 holds,
note that trees resulting from left-branching and
right-branching binarization may also result from
mixed binarization (modulo different node labels).
Therefore the results from the previous sections
can be applied.

4 The Probabilistic Case

For this section, we consider the semiring of non-
negative reals with addition and multiplication.
Note that every element different from 0 has an
inverse with respect to multiplication. We will use
this fact later on. Since our semiring is fixed, we
will not mention it anymore in this section.

If we only consider weights between 0 and
1, and some additional conditions are met, these
weights can be intuitively interpreted as probabil-
ities. With this idea in mind we start with investi-
gating wfsa since they form the core of wuta.

6

4.1 Probabilistic Automata

A wfsa N = (P,Σ, J,Π, F) is called
• out-probabilistic, if for every p ∈ P we have
F (p) +

∑
σ∈Σ,p′∈P Π(p, σ, p′) = 1,

• semi-probabilistic, if it is out-probabilistic and∑
p∈P J(p) = 1,

• convergent, if
∑

w∈Σ∗JN K(w) is finite,
• consistent, if this sum is 1,
• probabilistic, if it is semi-probabilistic and con-

sistent, and
• reduced, if for every state p ∈ P there is a word
w ∈ Σ∗, a run r ∈ runN (w), and an index
i ∈ {0, . . . , |w|} such that JN K(w, r) > 0 and
r(i) = p.

These notions are strongly influenced by Dupont
et al. (2005). If a semi-probabilistic wfsa is re-
duced, then it is consistent and, hence, probabilis-
tic (Dupont et al., 2005, cf. Def. 9 and Prop. 2).
Note that you can construct an equivalent reduced
wfsa from any wfsa by removing those states p
that violate the above condition. These states can
be effectively determined.

Related Work For the remainder of this section
we investigate a special case of renormalization
of weighted or of probabilistic context-free gram-
mars (Abney et al., 1999; Chi, 1999; Nederhof and
Satta, 2003). We restrict our investigations to wfsa
and give alternative proofs.

In the following, we give an alternative view on
wfsa by using matrices. Let A be a matrix. The
matrix entry in the i-th row and the j-th column
is denoted by (A)i,j . If A has just a single row or
column, we write (A)i for the entry in the i-th col-
umn or row, respectively. A matrix with just a sin-
gle entry is identified with this entry. A diagonal
matrix is a matrix that has non-zero entries only
on its diagonal. For some vector X , by diag(X)
we denote the diagonal matrix that has the entries
of X on its diagonal. The identity matrix, denoted
by Id, is diag(1 . . . 1); the dimensions of Id will
always be clear from the context.

Let (P,Σ, J,Π, F) be a wfsa. We may assume
w.l.o.g. that P = {1, . . . , |P |}. We will interpret
J as a 1×|P |matrix, F as a |P |×1 matrix, and we
will write Π(σ) for the |P |× |P |matrix defined as
(Π(σ))p,p′ = Π(p, σ, p′) for every σ ∈ Σ, p, p′ ∈
P .

Observation 9. Let N = (P,Σ, J,Π, F) be a
wfsa and w = w1 . . . wk ∈ Σ∗. The weight of

p p

π1

π2

π3

π4

π5

π6

π1 · x

π2 · x

π3

π4

x
−1 · π5

x−1 · π6

Figure 5: Changing weights π1, . . . , π6 at state p
of a wfsa with a positive real x.

w under N can be alternatively calculated by

JN K(w) = J ·
(|w|∏
i=1

Π(wi)
)
· F .

The idea of the next lemma is to locally change
weights of a wfsa without changing its semantics.
For this purpose, the weights of “incoming” tran-
sitions (including initial weights) of some state p
are scaled by some factor x while the weights of
“outgoing” transitions (including final weights) of
p are scaled by x−1. Weights of transitions from
p to p itself do not change. Figure 5 visualizes
this idea. Lemma 10 applies this idea to all states
simultaneously.

Lemma 10. Let N = (P,Σ, J,Π, F) be a wfsa
and let X ∈ (R>0)|P |. Construct the wfsa

N ′ = (P,Σ, J · diag(X), Π ′, diag(X)−1 · F)

withΠ ′(σ) = diag(X)−1·Π(σ)·diag(X) for every
σ ∈ Σ. The wfsa N and N ′ are equivalent.

Proof. Let w ∈ Σ∗. If we calculate JN ′K(w) as
presented in Observation 9, it is easy to see that for
every factor diag(X) there is the adjacent factor
diag(X)−1 and vice versa. q.e.d.

Construction 11. Let N = (P,Σ, J,Π, F) be
a convergent and w.l.o.g. reduced wfsa, and let
A =

∑
σ∈Σ Π

(σ). Then Id−A is invertible and
an out-probabilistic wfsa N ′ equivalent to N can
be constructed by applying Lemma 10 to N with
X = (Id−A)−1 · F .

Theorem 11. For every convergent wfsa there is
an equivalent out-probabilistic wfsa.

Proof. Note that
∑

w∈Σ∗JN K(w) =
∑

j∈N J ·Aj ·
F . Hence, for every p, p′ ∈ P and i, k ∈ N we

7

have

∞ >
∑
j∈N

J ·Aj · F (by convergence)

≥
∑
j≥i+k

J ·Aj · F =
∑
j∈N

J ·Ai ·Aj ·Ak · F

≥
∑
j∈N

(J ·Ai)p · (Aj)p,p′ · (Ak · F)p′

= (J ·Ai)p ·
(∑
j∈N

(Aj)p,p′
)
· (Ak · F)p′ .

Since N is reduced, there are i, k ∈ N such that
(J · Ai)p > 0 and (Ak · F)p′ > 0; therefore∑

j∈N(Aj)p,p′ < ∞ for every p, p′ ∈ P . Hence,∑
j∈NA

j is a converging Neumann series. This
implies that the inverse of Id−A exists and is
equal to this sum; this seems to be a well known
result in the field of functional analysis; e.g. cf.
Heuser (2006, Thm. 12.4).

Now we need a vector X to apply Lemma 10
such that the resulting wfsa is out-probabilistic,
i. e., diag(X)−1 · A · diag(X) · (1 . . . 1)T +
diag(X)−1 · F = (1 . . . 1)T. This equation
can easily be transformed into (Id−A) ·X = F .
Since Id−A is invertible, the equation is solved
by X = (Id−A)−1 · F .

It remains to be shown that every entry of X
is strictly positive. Recall that every entry of A
is non-negative and that for every p ∈ P there is
a j ∈ N such that (Aj · F)p > 0. This implies
that every entry of (Id−A)−1 =

∑
j∈NA

j is non-
negative and that every entry of X = (

∑
j∈NA

j) ·
F is strictly positive. q.e.d.

Theorem 12. For every consistent wfsa there is an
equivalent probabilistic wfsa.

Proof. Since consistency implies convergence we
can apply Construction 11 and obtain N ′ =
(P,Σ, J ′, Π ′, F ′). By Lemma 10 N ′ is consis-
tent. It remains to be shown that N ′ is also semi-
probabilistic. By Construction 11 N ′ is already
out-probabilistic, so we just have to show that∑

p∈P J
′(p) = 1.

For p ∈ P , let Np = (P,Σ, Jp, Π ′, F ′) where
Jp is the 1 × |P | matrix where (Jp)p = 1 and
every other entry is 0. Obviously Np is semi-
probabilistic. Let N ′p be the equivalent reduced
wfsa that is created from Np just by removing
states. It is easy to see that N ′p is also semi-
probabilistic. Since N ′p is semi-probabilistic and

reduced, it is also consistent, hence, by equiva-
lency, also Np is consistent. That means

1 =
∑
w∈Σ∗

JNpK(w) =
∑
w∈Σ∗

Jp ·
(|w|∏
i=1

Π ′(wi)
)
· F ′

=
∑
w∈Σ∗

((|w|∏
i=1

Π ′(wi)
) · F ′)

p
.

Since p was chosen arbitrarily, we have 1 =∑
w∈Σ∗JN ′K(w) = J ′ · (1 . . . 1)T. q.e.d.

Corollary 13. The class of weighted languages
recognizable by probabilistic wfsa is closed under
reversal.

Proof. A wfsa can easily be reversed by transpos-
ing the transition matrices and interchanging ini-
tial and final weights. The corollary follows by
Theorem 12. q.e.d.

Related Work. Paz (1971, Chapter III, Sec-
tion A, Theorem 1.8) presents the same result for
his probabilistic automata, which are slightly dif-
ferent from our probabilistic wfsa. His construc-
tion requires an exponential number of states in
comparison to the given automaton. Our defi-
nition of probabilistic wfsa allows the presented
construction, which does not change the state set
at all. Paz’ construction can be easily adapted to
our case, yet it is unclear if our construction can
also be adapted to his case.

4.2 Probabilities and Tree Automata

The notions probabilistic, semi-probabilistic, con-
vergent, consistent, and reduced can be easily gen-
eralized to wsta and wuta. Note that in the tree
case semi-probabilistic and reduced do not gener-
ally imply consistent. We now investigate what
happens to these properties when constructing a
wuta given a wsta or vice versa as presented in
Section 3.

If the input is reduced, so is the output, except
in case of mixed binarization when going from
wsta to wuta; yet the output can easily be re-
duced. In case of left-branching binarization, if
the input is semi-probabilistic, the output is also
semi-probabilistic. Note that in any case, if the
input is semi-probabilistic and reduced, then the
wfsa in the wuta are consistent. Hence, in case of
right-branching binarization, if the input is semi-
probabilistic and reduced, the output is reduced

8

and by Theorem 12 we can find an equivalent au-
tomaton that is also semi-probabilistic. In case of
mixed binarization the direction from wuta to wsta
is subsumed by the previous cases. Starting with a
semi-probabilistic and reduced wsta, we can apply
Construction 8, reduce the wfsa in the wuta with-
out breaking consistency, and apply Theorem 12,
ending up with a semi-probabilistic and reduced
wuta.

Theorems 7 and 8 imply that if the input is con-
vergent or even consistent, so is the output. Hence
in the previous paragraph we may replace semi-
probabilistic by probabilistic and the statements
still hold.

5 Outlook: Implications on Training
Methods

For each of three binarizations we have shown that
wsta together with a binarization are equally pow-
erful to wuta.

Our results suggest training methods for wuta:
By binarizing a wuta, training the resulting wsta,
and undoing the binarization, it is possible to
use training algorithms designed for wsta also on
wuta. The training may even alter the state be-
haviour, e.g. by splitting or merging states; cf. e.g.
Matsuzaki et al. (2005) and Petrov et al. (2006).
Merging (for example two) states q1 and q2 to a
new state q means to replace every occurrence of
q1 and q2 by q; the state set, the initial weights and
the transition weights have to be adapted appro-
priately. The opposite direction is the splitting of
a state q into (for example two) new states q1 and
q2, which means to replace every occurrence of q
by q1 or q2 in every possible combination, e.g., if
there is a transition with two occurrences of q be-
fore splitting, then there are four transitions with
different occurrences of q1 and q2 after splitting.
Note that q, q1, and q2 need to have the same sort,
otherwise there would be incompatibilities with
the sorts of the (unchanged) terminals after split-
ting or merging.

These results formally explain why the perfor-
mance of the training by Matsuzaki et al. (2005)
is rather independent from the used binariza-
tion. Note that they used probabilistic context-free
grammars with latent annotations (pcfg-la) while
we used wsta, but it is easy to see that both for-
malisms are equally powerful. Additionally our
binarizations use different node labels and intro-
duced additional unary nodes as well as NULL and

NULL; but again this does not change the power of
the formalism. Note that while changing latent an-
notations for pcfg-la it is not necessary to deal with
sorts, because a latent annotation is always consid-
ered together with the terminal1 it is attached to.

References
Steven Abney, David McAllester, and Fernando

Pereira. 1999. Relating probabilistic grammars
and automata. In Proceedings of the 37th Annual
Meeting of the Association for Computational Lin-
guistics on Computational Linguistics, ACL ’99,
page 542–549, Stroudsburg, PA, USA. Association
for Computational Linguistics. DOI: 10.3115/
1034678.1034759.

Julien Carme, Joachim Niehren, and Marc Tommasi.
2004. Querying unranked trees with stepwise tree
automata. In Vincent van Oostrom, editor, Rewrit-
ing Techniques and Applications, volume 3091 of
Lecture Notes in Computer Science, page 105–118.
Springer Berlin Heidelberg. DOI: 10.1007/
978-3-540-25979-4_8.

Zhiyi Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160, March. URL: http://dl.acm.
org/citation.cfm?id=973215.973219.

Hubert Comon, Max Dauchet, Remi Gilleron, Christof
Löding, Florent Jacquemard, Denis Lugiez, Sophie
Tison, and Marc Tommasi. 2007. Tree automata
techniques and applications, October. URL: http:
//tata.gforge.inria.fr/.

Manfred Droste and Heiko Vogler. 2011. Weighted
logics for unranked tree automata. Theory of Com-
puting Systems, 48(1):23–47. DOI: 10.1007/
s00224-009-9224-4.

Pierre Dupont, François Denis, and Yann Esposito.
2005. Links between probabilistic automata and
hidden Markov models: probability distributions,
learning models and induction algorithms. Pattern
Recognition, 38(9):1349–1371. Grammatical In-
ference. DOI: 10.1016/j.patcog.2004.03.
020.

Zoltán Fülöp and Heiko Vogler, 2009. Hand-
book of Weighted Automata, chapter Weighted Tree
Automata and Tree Transducers, pages 313–403.
Springer Berlin Heidelberg, Berlin, Heidelberg.
DOI: 10.1007/978-3-642-01492-5_9.

Harro Heuser. 2006. Funktionalanalysis / The-
orie und Anwendung. Teubner, fourth edi-
tion. URL: https://www.springer.com/
9783835100268.
1We stick to the notion of terminal as it is used in this

paper. In the context of pcfg-la, nullary terminals are called
terminal symbols while the other terminals are called non-
terminal symbols.

9

Johanna Högberg, Andreas Maletti, and Heiko Vogler.
2009. Bisimulation minimisation of weighted au-
tomata on unranked trees. Fundamenta Informati-
cae, 92(1-2):103–130, January. DOI: 10.3233/
FI-2009-0068.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2005. Probabilistic CFG with latent annotations.
In Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics, ACL ’05,
pages 75–82, Stroudsburg, PA, USA. Association
for Computational Linguistics. DOI: 10.3115/
1219840.1219850.

Mark-Jan Nederhof and Giorgio Satta. 2003. Proba-
bilistic parsing as intersection. In 8th International
Workshop on Parsing Technologies, page 137–148.

Azaria Paz. 1971. Introduction to Proba-
bilistic Automata. Academic Press. URL:
http://www.sciencedirect.com/
science/book/9780125476508.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the As-
sociation for Computational Linguistics, ACL-44,
pages 433–440, Stroudsburg, PA, USA. Association
for Computational Linguistics. DOI: 10.3115/
1220175.1220230.

10

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 11–20,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Adaptive Importance Sampling from Probabilistic Tree Automata

Christoph Teichmann
University of Potsdam

Kasimir Wansing
Leipzig University

{chriteich|akoller}@uni-potsdam.de
kasimir.wansing@uni-leipzig.de

Alexander Koller
University of Potsdam

Abstract

We present a general importance sampling
technique for approximating expected val-
ues based on samples from probabilistic fi-
nite tree automata. The algorithm uses the
samples it produces to adapt rule probabil-
ities for the automaton in order to improve
sample quality.

1 Introduction

Natural language processing (NLP) often re-
quires the computation of expected values
EG(T) [f(T)] =

∑
t∈LA G(T = t)f(t) where

the random variable T takes values from the lan-
guage LA of a probabilistic regular tree automaton
(pRTA)A, f measures a quantity of interest andG
is a probability distribution on LA. A tree automa-
ton provides a natural generalization of acyclic hy-
pergraphs and latent variable grammars that are
often used in natural language processing to ex-
press e.g. a parse chart or all the ways a word
could be decomposed into morphemes. For dif-
ferent choices of G and f we obtain e.g. (Li and
Eisner, 2009):

Feature Expectations for conditional random
fields.

Kullback-Leibler Divergence to compare the
predictions of different probability models.

Expected Loss for minimum risk decoding.

Log-Likelihood for predicting the next word in
language models.

Gradients of those quantities for optimization.

Exact computation of these values is feasible
if LA is small or additional assumptions can be
made, e.g. if the expected value is defined via

semiring operations on the automaton defining LA
(Li and Eisner, 2009).

Li and Eisner (2009) give an exact semiring so-
lution if two key assumptions can be made. First
the definition of the probability G(T) must de-
compose into smaller derivation steps along the
rules of A. Second the number of rules of A can-
not be too large, as they must all be visited. The
first assumption is violated when e.g. non-local
features (Huang, 2008) are used to define prob-
abilities or when probabilities are defined by re-
current neural nets that use hidden states derived
from whole subtrees (Socher et al., 2013; Dyer
et al., 2016). The second assumption is violated
when e.g. tree automata are used to represent parse
charts for combinatorially complex objects like in
graph parsing (Groschwitz et al., 2015).

When semiring techniques are not applicable, it
is necessary to use approximation techniques. One
popular technique is the use of Monte Carlo meth-
ods, i.e. sampling. It is often based on Markov
Chain Monte Carlo (Gamerman and Lopes, 2006)
or Particle Monte Carlo (Cappé et al., 2007) ap-
proaches and requires minimal knowledge about
the expected value being approximated. In this
work we develop an importance sampler based on
pRTAs which can be used to approximate expected
values in settings where exact solutions are infea-
sible. One can efficiently sample from a pRTA
making it a suitable tool for generating proposals
for importance sampling, as we show in Section
3.2.

Good performance of importance sampling re-
quires choosing rule probabilities for the pRTA
to closely approximate the target distribution.
One can attempt to derive rule probabilities that
achieve this by analyzing the target distribution a
priori or by using a proposal that is known to be
a good fit (Dyer et al., 2016). We present a tech-
nique for self-adaption in Section 4 that allows the

11

sampler to learn a good proposal distribution on
its own. Following recent advances in adaptive
importance sampling (Ryu and Boyd, 2014; Douc
et al., 2007) our technique picks the best possible
rule probabilities for the pRTA according to an ap-
propriate quality measure.

Both the generation of proposals from a pRTA
and the adaption procedure we propose allow for a
lazy implementation that only needs to visit states
seen when drawing a sample. Therefore our algo-
rithm can deal with very large automata.

2 Tree Automata

A signature Σ is a set of functors, for which any
l ∈ Σ is assigned a positive integer as an arity
denoted by rank (l). A well formed tree over Σ
has the form l(t1, . . . , trank(l)) where l ∈ Σ and
each ti is also a well formed tree.

2.1 Regular Tree Automata
A probabilistic regular tree automaton (pRTA)
(Comon et al., 2007) is a tuple A =
〈Σ, Q,R, qS , θ〉 with Σ a signature, Q a finite
set of states and qS ∈ Q the start state. R
is a finite set of rules that have the form q0 →
l(q1, . . . , qrank(l)) with each qi taken from Q and
l from Σ.

The rules in R are mapped one to one to inte-
gers in [1, |R|] so that we can say, e.g. ri is the
i-th rule. θ ∈ R|R| is a vector of parameters for
the rules and θi is the parameter for ri. We call the
values of θ parameters because we use them in-
directly to derive probabilities. By using a vector
θ and defining probabilities indirectly, we deviate
from standard notation for pRTA. We do this in or-
der to more easily express the optimization prob-
lem we will later have to solve during adaption.
For a rule r = q → l(. . .) we call lhs(r) = q
the left hand side of r and use sis (r) to denote the
set of rules with the same left hand side as r. For
pRTAA with parameters θ we define the probabil-
ity P qA(R = ri) of using a rule ri given a state q as
0 if lhs(ri) 6= q and otherwise as:

eθi∑
rj∈sis(r) e

θj
(1)

The probabilities sum to 1 for q if there is at
least one rule r with lhs(r) = q and therefore θ
can take any value in R|R|. We shorten P (X =
x1, . . . |Y1 = y1, . . .) to P (x1, . . . |y1, . . .) if ran-
dom variables are clear from the context.

As an example for a pRTA we will use Aex =
〈{l, l′}, {q0}, {r1 = q0 → l(q0, q0), r2 = q0 →
l′()}, q0, 〈1, 2〉〉. By our definition P q0Aex(r1) =
e1

e1+e2
.

2.2 Derivations

At the core of our paper are derivations for a
pRTA A, which are easily sampled. They are
well formed trees for a signature ΣR that is de-
rived by using the rules of A as functors with
rank (q0 → l(q1, . . .)) = rank (l). A derivation
d for A must have a rule r with lhs(r) = qS as
its root functor and any node in d with a functor
of the form q0 → l(q1, . . . , qn), must have an i-th
child with a root functor of the form qi → l′(. . .).
For Aex one derivation is dex = r1(r2, r2).

We say a derivation maps to a tree t, denoted by
m(d) = t, if replacing all the rules in d by their
functor produces t. For Aex we have m(dex) =
l(l′, l′). The set of derivations from a pRTA A that
map to a tree t is denoted as ∆t

A.
The language of A is LA = {t|∆t

A 6= ∅}.
If |∆t

A| ≤ 1 for every t then A is said to be
unambiguous. Assuming unambiguous automata
simplifies most of our discussion and we do so
throughout. Therefore we can denote the single
derivation for a tree t as dt. Many tree automata
used in NLP, e.g. parse charts, are unambiguous.
An extension to the ambiguous case is straightfor-
ward but laborious and is left for future work.

We denote by R(d) the multi-set of all the rules
that occur in the derivation d, e.g. R(dex) =
{r1, r2, r2}. For A = 〈Σ, Q,R, qS , θ〉 we define
the joint probability PA(T = t,D = d) of a
derivation d and a tree t as 0 if m(d) 6= t and
otherwise as:

∏
r∈R(d)

P
lhs(r)
A (r) (2)

Lack of ambiguity implies PA(t) = PA(t, dt).

2.3 Sampling Derivations

For almost all Monte Carlo techniques it is of great
importance that one can efficiently generate pro-
posals and compute their probability. This is very
easy for pRTAs which is why we use them here.
One can draw a sample 〈t, d〉 from PA(T,D) if
it is possible to sample rules given their left hand
state. Begin with a tree consisting of only the
start state qS . Until we have a derivation we re-
place the leftmost state ql in our tree with a rule

12

ql → l(q1, . . . , qn) drawn according to P qlA (R)
and make q1, . . . , qn its children. This produces
a derivation d and tree t given by m(d). Note
that the probability of generating any derivation-
tree pair 〈t, d〉 this way is given by the multipli-
cation of rule probabilities matching the definition
of PA(T,D). For our case this means that we can
also sample PA(t).

The sampling of derivations can fail in three
ways. First, there may be states for which there are
no rules to expand them. The sampling procedure
we have outlined is undefined when such a state
is reached. Secondly, it is possible that a pRTA is
deficient1 (Nederhof and Satta, 2006). This means
that there is a non-zero probability that the sam-
pling procedure we have outlined keeps expand-
ing without ever stopping. Finally the number of
rules for a single state might be so large that it is
impossible to iterate over them efficiently to select
one for a sample. The techniques for solving these
problems are outside the scope of this paper and
we therefore make three additional assumptions in
addition to our condition that a pRTA A is unam-
biguous:

1. For every state q inA there is at least one rule
r with lhs(r) = q.

2. A is cycle free, i.e. no state can be expanded
to reach the same state. This restricts us to
finite tree languages and removes the possi-
bility of deficiency.

3. For each state q inAwe can efficiently list all
the rules r with lhs(r).

3 Importance Sampling

3.1 Problem Setting
The formulation for the problem we want to solve
is as follows. We have access to some pRTAA, the
language LA of which is the domain over which
we are trying to compute an expected value. We
are also given a probability function G(T) defined
over LA and some function f , which measures
some quantity of interest, e.g. the number of times
a certain functor occurs as a leaf in a tree, whether
a constituent appears in a parse tree or the count
of a feature used for training a model. We want
to compute the value of EG(T) [f(T)]. Note that
many problem domains in NLP can be expressed
as the language of a pRTA as they can express

1Also called inconsistent.

charts that occur e.g. in context free parsing and
also graph parsing (Groschwitz et al., 2015).

Li and Eisner (2009) give an algorithm for this
problem that computes the expected frequency of
seeing every rule in LA under G and then exactly
computes EG(T) [f(T)] rule by rule. The algo-
rithm they present is not applicable if G does not
decompose according to the rules of the A or if A
is too large to compute expectations efficiently. It
can also be the case that we cannot compute G(T)
and instead have to use a proportional function
g(t) with G(t) = g(t)

Z where Z is some normal-
ization constant. This is the case if we are using
e.g. a discriminate model that defines probabilities
based on global normalization such as Conditional
Random Fields (Lafferty et al., 2001). It also hap-
pens whenever we are only interested in the prob-
ability of a tree given an observation, e.g. when
we want to know the probability of a parse tree
given an observed sentence for EM training. If g
is defined using non-local features (Huang, 2008)
or using e.g. recurrent neural network structures
(Dyer et al., 2016; Vinyals et al., 2014), then it is
often infeasible to compute either Z or G.

The algorithm by Li and Eisner (2009) also re-
quires f to decompose with the rules of A, which
may not be the case if we are computing e.g. com-
plex losses in loss aware training (Gimpel and
Smith, 2010).

There are therefore situations in which we need
a sampling algorithm that uses A to generate an
approximation for E g(T)

Z

[f(T)] using only evalu-

ations of g and f on single trees. This algorithm
should work without computing Z or visiting all
rules of A.

3.2 Solution with Importance Sampling

Importance sampling (Robert and Casella, 2004)
is a well known technique based on the following
fundamental equalities that hold for any set L and
auxiliary probability distribution P (T):2

EG(T) [f(T)] =
∑
t∈L

G(t)f(t)
P (t)

P (t) (3)

= EP (T)

[
G(T)f(T)
P (T)

]
(4)

On this basis we can approximate any expected
value we are interested in by generating indepen-
dent samples s = t1, . . . , tn from P , defining:

2We assume P (t) 6= 0 for all t ∈ L

13

S〈t1,...,tn〉 [h(ti)] =
1
n

n∑
i=1

h(ti) (5)

and using Ss
[
G(ti)f(ti)
P (ti)

]
as our approximation.

Under mild conditions the law of large numbers
tells us that this approximation will almost surely
become arbitrarily close to the correct value as the
number of samples increases.

As stated before, we might be unable to com-
pute the normalizer Z to derive G from g. We can
also estimate Z from samples. Note that:

Z =
∑
t∈L

g(t)
P (t)

P (t) (6)

= EP (T)

[
g(T)
P (t)

]
(7)

and we can estimate Z in a similar way to how
we estimate EG(T) [f(T)]. In practice Z is esti-
mated from the same sample s used to compute
Ss
[
G(ti)f(ti)
P (ti)

]
. For a sample s = t1, . . . , tn from

P we therefore approximate EG(T) [f(T)] through
the self normalized importance sampling estimate
(Cappé et al., 2004) defined by :

Snorm
s

[
g(ti)f(ti)
P (ti)

]
=

n∑
i=1

f(ti)g(ti)
∑n

j=0
P (tj)
g(tj)

P (t)

(8)

If Pn is the probability of generating a sample
s = t1, . . . , tn through independent draws from
P then EPn(S)

[
Snorm
S

[
g(ti)f(ti)
PA(ti)

]]
may not equal

EG(T) [f(T)] as nested estimates can create sys-
tematic bias. But the law of large numbers ensures
that Z converges to its true value with increasing
n and the self normalized importance sampling es-
timate converges on EG(T) [f(T)].

If we want to use importance sampling over a
set of trees then we need a way to specify P that
allows us easy sampling and evaluation of P (t)
for any tree t. As we saw in Section 2 pRTAs meet
these requirements. Therefore we will usePA with
respect to some unambiguous pRTA A as our pro-
posal distribution. It must be true that L ⊆ LA and
such an automaton is usually given by the problem
setting, e.g. one would directly use a parse chart
when computing expected values over parses. We
draw samples from PA and compute an approxi-
mation according to equation 8. Note that this al-
gorithm does not require us to know much about

f or g, we only have be be able to evaluate them
both on the trees that occur in our sample, which
will usually cover a small fraction of LA. Most
importantly g and f do not need to decompose for
any sub-parts of t, as is often required in dynamic
programming based techniques.

While the technique we have outline works no
matter how we set rule probabilities for A, the
term:

G(ti)f(ti)
PA(ti)

(9)

may be become comparatively small when
PA(ti) >> G(ti) so ti contributes almost nothing
to the estimate. It may also become relatively large
if PA(ti) << G(ti) which can lead to a single ti
“dominating” the sample, again allowing other tj
almost no contribution. In both cases we will have
to draw much more samples to obtain a good es-
timate (Robert and Casella, 2004). Therefore we
would prefer PA to not be too different from G.
Choosing rule weights to set PA to be close to G
through analysis of G may be difficult and would
have to be solved for every new problem instance.
Therefore we develop an algorithm that automati-
cally adapts PA to improve sample quality.

4 Proposal Optimization

In this section we will discuss how to learn the
auxiliary distribution PA. We will use one out of a
familyAθ of pFTAs with the form 〈Σ, Q,R, qS , θ〉
for which Σ, Q, R and qS are fixed and we only
adjust θ. We write θ(i) with i ∈ N to denote a
fixed choice for the parameters. Aθ(i) denotes the
member of the family with θ = θ(i). As in other
recent research on adaptive importance sampling
(Lian, 2011; Douc et al., 2007; Gu et al., 2015)
we try to find a θ(i) that minimizes a measure for
how bad the fit between PA

θ(i)
and G is. A natural

measure from information theory is the Kullback-
Leibler Divergence between PAθ and G:

DKL(G||PAθ) = EG(T)

[
log
(
G(T)
PAθ(T)

)]
(10)

If we subtract G(t)log (G(t)) – which does not
vary with θ – and replace G(t) = g(t)

Z with just
g(t) we do not change the values of θ for which
minima are obtained. A simpler function with the
same minima would therefore be:

14

o (θ) =
∑
t∈LA

−g(t)

 ∑
ri∈R(dt)

θi − log

 ∑
rj∈sis(ri)

eθj

+
‖θ‖2
2λ

(11)

∂o
(
θ(n)

)
∂θk

=
∑
t∈LA

−g(t)

 ∑
ri∈R(dt)

1(i = k)− P lhs(ri)A
θ(n)

(rk)

+
θ
(n)
k

λ
(12)

o〈θ(n),k〉(t) = −g(t)

 ∑
ri∈R(dt)

1(i = k)− P lhs(ri)A
θ(n)

(rk)

 (13)

∑
t∈LA

−g(t) (log (PAθ(t))) (14)

Note that this function is no longer dependent
on the complicated normalization constant Z and
we can therefore ignore Z for our optimization al-
gorithm. We will attempt to find the optimal θ it-
eratively. To ensure that any estimate PA

θ(i)
as-

signs nonzero weight to any tree in LA we add a
regularization term to our objective. As a result
we are going to attempt to find parameters θ that
minimize the objective function given by (11). λ
is a configuration parameter used to trade off be-
tween fitting G and spreading out rule probabili-
ties evenly. Note that unambiguous automata are
important to derive this convex objective function.

4.1 Optimization

Like Ryu and Boyd (2014) we use stochastic gra-
dient descent (SGD) (Bottou, 1998). In SGD we
attempt to find a minimum for o (θ) by generat-
ing a series θ(1), . . . , θ(m) of approximations to a
stationary point according to:

θ(n+1) = θ(n) −
(
α(n) �∇o

(
θ(n)

))
(15)

Here ∇o
(
θ(n)

)
is an approximation of the gra-

dient of o (θ) at the point θ(n), α(n) is a vector of
pre-set learning rates and � denotes element-wise
multiplication of the two arguments to the oper-
ator. If we can efficiently obtain an estimate for
∇o
(
θ(n)

)
then we can run SGD for a number of it-

erations and optimize θ. Standard derivative rules
show that the kth dimension of ∇o

(
θ(n)

)
takes

the form given by (12), where 1(x) is 1 if x is
true and 0 otherwise. Note that, if we ignore the
contribution of the regularization term, the gradi-
ent becomes smaller the more the probability of
a rule given its left hand side matches the same

Given G,f , Aθ and population size ps

1. set θ(1) = 0

2. for n ∈ [1,m] do:

(a) generate a sample of trees
s(n) = tn1 , . . . , t

n
ps from PA

θ(n)

(b) estimate gradient∇o
(
θ(n)

)
k

as

Ss(n)

[
o〈θ(n),k〉(ti)
PA

θ(n)
(ti)

]
+
θ
(n)
k

λ

(c) generate learning rates α(n)

(d) set θ(n+1) according to (15)

3. compute an importance estimate for
EG(T) [f(T)].

Algorithm 1: The adaptive importance sampling
algorithm for pRTAs.

value according to G(T). Intuitively this means
that the rule weights adapt to match the expected
frequency of a rule given its parent which is rem-
iniscent of the use of expected rule counts in the
technique of (Li and Eisner, 2009).

The gradient is a sum over a fairly simple func-
tion of trees and we can denote the “contribution”
from a single tree t to a gradient dimension k by
o〈θ(n),k〉(t) given by (13). We therefore use the it-
erative procedure given in Figure 1 for to chose a
good Aθ(n) and produce an estimate.

For the last step in our algorithm we can gen-
erate an additional final sample from Aθ(m) . A
more efficient use of computation resources is to
use all the samples s(n) to create m importance
sampling estimates for EG(T) [f(T)] and then take
a weighted average. The use of a weighed aver-
age is due to the fact that early values for θ(n) are

15

likely to be of poorer quality than the final ones
and there might be less merit to their contribution.
The number of iteration steps m, the number ps
of samples drawn in each iteration and the learn-
ing rates α(n) must be specified externally. The
parameters that need to be configured are usually
much easier to set than values for θ, e.g. ps and m
should simply be set as large as computationally
feasible for optimal performance.

At first it may seem as if Step 2d requires us to
adjust all parameters of the automaton at the same
time. This would make it expensive to apply our
algorithm to large automata. However we can add
the gradient contribution of the regularization in a
lazy fashion as in Carpenter (2008). This means
that we only update rules seen in the sample. The
regularization also forces parameters that have not
been updated for a while towards 0, allowing us
to remove these from explicit storage. As a result
we can sample with very large pRTAs as proposal
distributions.

4.2 Convergence

Before we give evaluation results we should make
some statements on the convergence behavior of
our algorithm. By the law of large numbers we
can state:

Theorem 1. In Algorithm 1 we almost surely

have for each n: lim
ps→∞ Snorm

s(n)

[
g(ti)f(ti)
PA

θ(n)

]
=

EG(T) [f(T)].

Estimates will converge to EG(T) [f(T)] as
stated by Theorem 1 even if SGD did not improve
the fit between PAθ and G. But it would be reas-
suring if we could show that the θ(n) tend towards
a minimum for o (θ) as n increases towards infin-
ity. This can be shown by standard convergence
conditions for SGD. The objective function given
by equation 11 is actually strictly convex. This is
the case because the square norm is strictly convex
and a logarithm over a sum of exponentials is con-
vex. All other terms in the formula are either con-
stant or linear in θ and therefore also convex. The
following conditions ensure convergence to an op-
timal setting of θ (for details see Bottou (1998)):

1. For every dimension k and sample size ps:

EP ps
Aθ

(n)
(S)

[
Ss(n)

[
o〈θ(n),k〉(ti)
PA

θ(n)
(ti)

]]

equals ∇o
(
θ(n)

)
k

2. o (θ) is bounded from below.

3. For every dimension k it is true that α(n)
k >

0 for all n and
∑∞

n=0(α(n)
k)2 < ∞,∑∞

n=0 α
(n)
k =∞.

4. The second moment of our estimate for
∇o
(
θ(n)

)
is bounded by a linear function of

‖θ(n)‖2.

Condition 3 depends only on the α which may
be chosen by the user to be i.e. 1

n to meet the re-
quirement. Condition 2 is true as the Kullback-
Leibler Divergence is never smaller than 0 and the
same is true for the Euclidean norm. Condition 4
can be verified by inspecting the gradient and not-
ing that LA is finite by the assumptions we made
in Section 2 and that all the terms in the sum are
bounded by either 1,-1 or θ(n). Condition 1 can be
verified by simple algebra from our exposition of
importance sampling. As a result we can state:

Theorem 2. For Algorithm 1 we almost surely
have:

lim
n→∞ θ

(n) = argmin
θ

o (θ)

This means that the rule probabilities converge
towards values that are optimal as measured by the
Kullback-Leibler Divergence.

5 Evaluation

We created an implementation of our ap-
proach in order to investigate its be-
havior. It, along with all evaluation
data and documentation, is available via
https://bitbucket.org/tclup/alto/
wiki/AdaptiveImportanceSampling
as part of Alto, an Interpreted Regular Tree
Grammar (Koller and Kuhlmann, 2011) toolkit.
We encourage readers to use the sampler in their
own experiments. In this section we will evaluate
the ability of our algorithm to learn good proposal
weights in an artificial data experiment that
specifically focuses on this aspect. This will show
whether the theoretical guarantees correspond to
practical benefits. In future work we will evaluate
the algorithm in End-to-End NLP experiments to
see how it interacts with a larger tool chain.

5.1 Evaluation Problem

We tested our approach by computing a constant
expected value EG(T) [1]. The ratio 1∗G(T)

PAθ (T) be-

16

γ=0.5
 l=20
 k=500

E
st

im
at

ed
 V

al
ue

0

0,5

1

1,5

2

Estimation Round
0 20 40 60 80 100

γ=0.1
 l=20
 k=500

E
st

im
at

ed
 V

al
ue

0,25

0,5

1

1,5

1,75

2

Estimation Round
0 20 40 60 80 100

γ=0.5
 l=30
 k=500

E
st

im
at

ed
 V

al
ue

0

0,5

1

1,5

2

Estimation Round
0 20 40 60 80 100

γ=0.5
 l=20
 k=2000

E
st

im
at

ed
 V

al
ue

0

0,5

1

1,5

2

Estimation Round
0 20 40 60 80 100

γ=0.1
 l=20
 k=2000

E
st

im
at

ed
 V

al
ue

0

0,5

1

1,5

2

Estimation Round
0 20 40 60 80 100

γ=0.5
 l=30
 k=2000

E
st

im
at

ed
 V

al
ue

0

0,5

1

1,5

2

Estimation Round
0 20 40 60 80 100

Figure 1: Convergence plots for different problem settings.

comes 1 if PAθ perfectly matches G and a sin-
gle sample would suffice for an exact estimate.
Therefore any error in the estimate is directly due
to a mismatch between G and PAθ . We defined
G through a pRTA with the same structure as the
automaton we are sampling from. Therefore it is
possible for PAθ to exactly match G. If we were
told the correct parameters for θ then we would
obtain a perfect sample in the first step and a good
sample should be generated if the SGD steps suc-
cessfully move θ from 0 to the values defining G.

The parameters for G were randomly chosen
so that the resulting probabilities for rules given
their left hand sides where distributed according
to a symmetric Dirichlet Distribution. This is a
good model for probability distributions that de-
scribe natural language processes (Goldwater et
al., 2011). The symmetric Dirichlet Distribution
is parametrized by a concentration parameter γ.
The rule weights become more likely to be con-
centrated on a few of the rules for each left hand
side as γ goes toward 0. Therefore many trees will
be improbable according to G.

We obtain a complete evaluation problem by
giving the structure of the automata used. As
stated, we use the same automaton to specify G
and Aθ save for θ which we initialize to be 0

for all entries. We chose a structure similar to
a CKY parse chart for the underlying rules and
states (Younger, 1967). Given a length parameter
l ∈ N we added to the automaton all states of the
form 〈i, j〉with 0 ≤ i < j ≤ l. The automaton has
all rules of the form 〈i, i + 1〉 → i() and all rules
〈i, j〉 → ∗(〈i, h〉, 〈h, j〉) with 0 ≤ i < h < j ≤ l
and ∗ an arbitrary functor. Therefore the parame-
ters for our evaluation problems are l and γ.

A central concern in making SGD based algo-
rithms efficient is the choice of α(n). We use an
adaptive strategy for configuring the learning rates
(Duchi et al., 2010; Schaul et al., 2012). These
schemes usually have convergence proofs that re-
quire much stricter conditions than “vanilla” SGD
and we therefore cannot claim that θ(n) will con-
verge with these approaches, but in practice they
often perform well. Concretely, we use the tech-
nique for setting learning rates that was introduced
by Duchi et al. (2010) which uses α′ and divides
it by the sum of all the gradient estimates seen
so far to obtain the learning rate for each dimen-
sion. α′ is fixed ahead of time – we chose 0.5 and
we found that values between 1.0 and 0.1 could
be used interchangeably to obtain the best perfor-
mance. We set the regularization parameter λ in
our objective o (θ) to 100 for comparatively weak

17

regularization.

5.2 Evaluation Results

Figure 1 plots the convergence behavior of the al-
gorithm for different problem settings with fixed
parameters l and γ. The upper row shows experi-
ments with 500 samples and the lower uses 2000
samples. Each plot gives results for a single ex-
ample automaton. Experiments with different au-
tomata showed the same trends. Each graph shows
100 repetitions of the experiment as box plots.
Different random number seed were used for the
repetitions. The box plots show how well the
expected value was approximated in each of the
m = 100 rounds of adaption. The value in each
round/repetition n is computed only for the sam-
ple s(n) drawn in that round/repetition. Whiskers
indicate the 9th and 91th percentile value.

Note the tendency towards underestimation in
all experiments. This indicates that the algorithm
proposes many trees with low probability under G
and has to adapt in order to find more likely trees.

For l = 20 and γ = 0.5 and k = 500 the
sampler converges in 40 iterations. Note that per-
formance after four steps with k = 500 is better
than with one step of k = 2000. This shows that
adapting parameters provides a benefit over sim-
ply increasing the sample size. With γ = 0.1,
l = 20 and k = 500 the samples improve much
more slowly. This is to be expected as there are
more than 1 billion trees in LA and only very few
of them will be assigned large probabilities by the
more peaky rule probabilities. Therefore the algo-
rithm has to randomly find these few trees to pro-
duce a good estimate both for the evaluated value
and for the gradient used in adaptation. When
k = 2000 there are faster improvements as the
algorithm has a better gradient estimate.

Convergence is also slower when l is increased
to 30 as the number of trees to consider rises and
the amount of parameters in θ grows in the order
ofO(l3). Convergence speed again increases if we
set the sample size k = 2000.

Overall we can see that the adaption steps im-
prove the quality of our importance sampler and
lead to a simple, yet versatile algorithm for ap-
proximating expected values.

6 Related Work

Sampling in NLP is most often implemented via
Markov Chain Monte Carlo methods that either

have to move through the relevant domain with
small steps (Chung et al., 2013) or use a good pro-
posal distribution in order to generate new trees
(Johnson et al., 2007). Because it is difficult
to adapt Markov Chain Monte Carlo algorithms
(Liang et al., 2010) the proposal distribution for
generating new trees needs to be specified by the
user in advance. Particle Monte Carlo Methods
(Cappé et al., 2007; Börschinger et al., 2012) are
related to importance sampling and would allow
for more adaptive proposals, but have not been
used this way for the structured outputs used in
natural language processing. The idea of using
adaptive versions of importance sampling has be-
come much more prevalent in the last years (Douc
et al., 2007; Lian, 2011; Ryu and Boyd, 2014).
Ryu and Boyd (2014) discussed the use of SGD to
optimize a convex function in order to improve an
importance sampler. They discussed applications
where the proposal distribution is from the expo-
nential family of distributions and used the vari-
ance of their sampler as the optimization objective.
Douc et al. (2007) and Lian (2011) used an ob-
jective based on Kullback-Leibler divergence, but
they used techniques other than SGD to optimize
the objective. It is also possible to use more com-
plex models to generate proposals (Gu et al., 2015)
at the price of less efficient training.

7 Conclusion

We have presented an adaptive importance sam-
pler that can be used to approximate expected val-
ues taken over the languages of probabilistic reg-
ular tree automata. These values play a central
role in many natural language processing appli-
cations and cannot always be computed analyti-
cally. Our sampler adapts itself for improved per-
formance and only requires the ability to evaluate
all involved functions on single trees. To achieve
adaptiveness, we have introduced a convex objec-
tive function which does not depend on a complex
normalization term. We hope that this simple tech-
nique will allow researchers to use more complex
models in their research.

Acknowledgments. We thank the anonymous
reviewers for their comments. We thank the work-
shop organizers for their patients in waiting for our
final version. We received valuable feedback from
Jonas Groschwitz and Martn Villalba. This work
was supported by the DFG grant KO 2916/2-1.

18

References

Benjamin Börschinger, Katherine Demuth, and Mark
Johnson. 2012. Studying the effect of input size
for Bayesian Word Segmentation on the Providence
Corpus. In Proceedings of COLING 2012, pages
325–340.

Léon Bottou. 1998. Online Algorithms and stochas-
tic approximations. In David Saad, editor, Online
Learning in Neural Networks, pages 9–13. Cam-
bridge University Press. revised, oct 2012.

Olivier Cappé, Arnaud Guillin, Jean-Michel Marin,
and Christian Robert. 2004. Population Monte
Carlo. Journal of Computational and Graphical
Statistics, 13(4):907–929.

Olivier Cappé, Simon J. Godsill, and Eric Moulines.
2007. An overview of existing methods and recent
advances in Sequential Monte Carlo. In Proceed-
ings of the IEEE, volume 95, pages 899–924.

Bob Carpenter. 2008. Lazy sparse Stochastic Gradient
Descent for Regularized Multinomial Logistic Re-
gression. Technical report, Alias-i, Inc.

Tagyoung Chung, Licheng Fang, Daniel Gildea, and
Daniel Štefankovič. 2013. Sampling tree frag-
ments from forests. Computational Linguistics,
40(1):203–229.

Hubert Comon, Max Dauchet, Rémi Gilleron, Flo-
rent Jacquemard, Denis Lugiez, Sophie Tison, Marc
Tommasi, and Christof Löding. 2007. Tree Au-
tomata techniques and applications. published on-
line - http://tata.gforge.inria.fr/.

Randal Douc, Arnaud Guillin, Jean-Michel Marin, and
Christian Robert. 2007. Convergence of adaptive
mixtures of Importance Sampling schemes. The An-
nals of Statistics, 35(1):420–448.

John Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive Subgradient methods for Online Learning
and stochastic optimization. In COLT 2010 - The
23rd Conference on Learning Theory, pages 257–
269.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent Neural Net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 199–209.

Dani Gamerman and Hedibert F. Lopes. 2006. Markov
Chain Monte Carlo - Stochastic Simulation for
Bayesian Inference. Chapman & Hall/CRC.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-
Margin Training for structured Log-Linear Models.
Technical report, Carnegie Mellon University.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2011. Producing Power-Law Distribu-
tions and damping Word Frequencies with two-stage
language models. Journal of Machine Learning Re-
search, 12:2335–2382.

Jonas Groschwitz, Alexander Koller, and Christoph Te-
ichmann. 2015. Graph parsing with S-graph Gram-
mars. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing, pages 1481–1490.

Shixiang Gu, Zoubin Ghahramani, and Richard E.
Turner. 2015. Neural adaptive Sequential Monte
Carlo. In Advances in Neural Information Process-
ing Systems 28, pages 2629–2637.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proceedings of
ACL-08: HLT, pages 586–594.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Bayesian Inference for PCFGs
via Markov Chain Monte Carlo. In Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, pages 139–146. The Association for
Computational Linguistics.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Pro-
ceedings of the 12th International Conference on
Parsing Technologies, pages 2–13.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282–289.

Zhifei Li and Jason Eisner. 2009. First- and second-
order Expectation Semirings with applications to
Minimum-Risk training on Translation Forests. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages
40–51.

Heng Lian. 2011. Stochastic adaptation of Importance
Sampler. Statistics, 46(6):777–785.

Faming Liang, Chuanhai Liu, and Raymond Carroll.
2010. Advanced Markov Chain Monte Carlo Meth-
ods. John Wiley and Sons Ltd.

Mark-Jan Nederhof and Giorgio Satta. 2006. Estima-
tion of consistent Probabilistic Context-free Gram-
mars. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the ACL, pages 343–350.

Christian P. Robert and George Casella. 2004. Monte
Carlo statistical methods. Springer, 2 edition.

19

Ernest K. Ryu and Stephen P. Boyd. 2014. Adaptive
Importance Sampling via stochastic Convex Pro-
gramming. CoRR, abs/1412.4845.

Tom Schaul, Sixin Zhang, and Yann LeCun. 2012. No
more pesky learning rates. CoRR, abs/1206.1106.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with Compo-
sitional Vector Grammars. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics, pages 455–465.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav
Petrov, Ilya Sutskever, and Geoffrey E. Hinton.
2014. Grammar as a foreign language. CoRR,
abs/1412.7449.

Daniel H. Younger. 1967. Recognition and parsing
of Context-Free Languages in time n3. Information
and Control, 10:189–208.

20

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 21–31,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Transition-based dependency parsing as
latent-variable constituent parsing

Mark-Jan Nederhof
School of Computer Science

University of St Andrews, UK

Abstract

We provide a theoretical argument that
a common form of projective transition-
based dependency parsing is less powerful
than constituent parsing using latent vari-
ables. The argument is a proof that, under
reasonable assumptions, a transition-based
dependency parser can be converted to a
latent-variable context-free grammar pro-
ducing equivalent structures.

1 Introduction

Over the last decade, transition-based dependency
parsers have received much attention, to a large
extent due to Nivre (2003), Nivre and Scholz
(2004), Nivre et al. (2004) and following publica-
tions. The theory represented in these publications
seems to differ significantly from traditional au-
tomata theory, on which the theory of constituent
parsing is based. Differences lie in notation, in
terminology and in the overall conceptual frame-
work.

An explanation for this cannot immediately be
found by contrasting the foundations of depen-
dency parsing and constituent parsing. Some
of the earliest literature on dependency parsing
(Hays, 1964; Gaifman, 1965) discusses the two
kinds of parsing on an equal footing. Also more
recent literature (Carroll and Charniak, 1992;
Klein and Manning, 2004) discusses dependency
parsing as closely related to constituent parsing.
The concept of bilexical context-free grammars
(Eisner and Satta, 1999) establishes further ex-
plicit connections between phrase-structure gram-
mar and dependency grammar. See also Rambow
(2010) for a discussion about the relation between
constituent and dependency structures.

One advantage of dependency grammar is the
ease with which the definition of parse struc-

tures can be generalized from the projective case
to the non-projective case, but also this cannot
explain the divergence from the theory of con-
stituent parsing, as much the same style is used
for describing projective dependency parsing and
for non-projective dependency parsing; cf. Nivre
(2009) for the latter. Furthermore, discontinu-
ity has also been explored for constituent parsing
(Kallmeyer and Maier, 2010; van Cranenburgh et
al., 2011). Close links between discontinuous con-
stituent parsing and non-projective dependency
parsing follow from the work of, among others,
Kallmeyer and Kuhlmann (2012) and Kuhlmann
(2013).

Recent literature on dependency parsing has a
strong emphasis on parsing speed. Often, pars-
ing algorithms are close to linear-time, or close
to quadratic-time in the worst case (Covington,
2001). However, there is also a considerable body
of literature on speeding up constituent parsing
(Lavie and Tomita, 1993; Goodman, 1997; Cara-
ballo and Charniak, 1998). Deterministic parsing
algorithms for constituent parsing were proposed
by e.g. Wong and Wu (1999), Kalt (2004), Sagae
and Lavie (2005) and Nederhof and McCaffery
(2014), while the parser of Ratnaparkhi (1997) is
close to linear time; for deterministic chunk pars-
ing, see Tsuruoka and Tsujii (2005). Seneff (1989)
suggests that deterministic constituent parsing was
more or less the norm at the end of the 1980s.
Conversely, transition-based dependency parsing
has been generalized to non-deterministic parsing
(Kuhlmann et al., 2011; Huang and Sagae, 2010).

An empirical connection between constituent
parsing and dependency parsing has been es-
tablished by several investigations of conversion
between constituent structures and dependency
structures. Transformation from constituent struc-
tures to dependency structures is addressed by Lin
(1998), Collins (2003), Yamada and Matsumoto

21

(2003) and Hall and Novák (2005). Dependency
parsers have been used to perform constituent
parsing (Ma et al., 2010). Transformations from
unlabeled dependency structures to constituent
structures were discussed by Johnson (2007), and
transformations from labeled dependency struc-
tures were discussed by Miyao et al. (2008). It
has been observed that constituent parsers used to
perform dependency parsing can be at least as ac-
curate as dedicated dependency parsers, although
they are generally slower (Cer et al., 2010; Can-
dito et al., 2010).

The present article aims to elucidate part of the
relation between the theory of transition-based de-
pendency parsing and the theory of constituent
parsing. We will focus on a particular form of
constituent parsing that is based on latent-variable
probabilistic context-free grammars, which cur-
rently offers state-of-the-art accuracy. One ap-
parent complication is that there are competing
ways of obtaining such grammars, roughly di-
vided into forms of EM training (Matsuzaki et al.,
2005; Petrov et al., 2006) or of spectral learn-
ing (Narayan and Cohen, 2015). We circum-
vent this complication by looking at the general
class of non-probabilistic latent-variable context-
free grammars, and show that these have suf-
ficient formal power to subsume deterministic
transition-based dependency parsing. The impli-
cation is that latent-variable probabilistic context-
free grammars, obtained through EM training,
spectral learning, or any other method still to be
developed, have the potential to be at least as accu-
rate as deterministic transition-based dependency
parsing.

This paper intentionally limits the scope to pro-
jective parsing. The reason is that the literature on
non-projectivity (discontinuity) has not yet con-
verged, and new approaches are discovered with
some regularity. This makes it hard to offer formal
evidence that non-projective dependency parsing
can generally be realized via discontinuous con-
stituent parsing. At best, one can highlight one or
two typical implementations of dependency pars-
ing and constituent parsing and argue that the
mechanisms for dealing with non-projectivity are
comparable in nature, awaiting precise arguments
relating their formal power.

One well-established approach to dealing with
non-projective dependency structure is commonly
referred to as pseudo-projectivity (Kahane et al.,

1998; Nivre and Nilsson, 2005). The idea is that
a first phase of projective parsing is followed by
a lifting operation that rearranges edges to make
them cross one another. A related idea for discon-
tinuous constituent parsing is the reversible split-
ting conversion of Boyd (2007).

A related but different approach is due to Nivre
(2009). Here, the usual one-way input tape is re-
placed by a buffer. A non-topmost element from
the parsing stack, which holds a word previously
read from the input sentence, can be transferred
back to the buffer, and thereby input positions can
be effectively swapped, and non-projective struc-
tures result. We see no reason why the same idea
would not equally well apply to constituent pars-
ing.

This paper has the following structure. After
fixing notation in Section 2, we present a for-
mal model of deterministic parsing in Section 3,
in terms of oracle automata. These automata ap-
pear at first sight to be biased towards constituent
parsing, but Section 4 shows that they allow a
clean formalization of arc-standard and arc-eager
transition-based dependency parsing. It is shown
in Section 5 that oracle automata can, under rea-
sonable assumptions, be transformed into latent-
variable context-free grammars. Section 6 further
explores these assumptions as relating to common
implementations of transition-based dependency
parsing. As shown in Section 7, the results carry
over to probabilistic automata and grammars.

2 Preliminaries

In this paper, a tree refers to a term built of leaf
symbols, from the alphabet Σleaf , and internal
symbols, from the alphabet Σintern . A symbol
a ∈ Σleaf by itself is a tree, and if A ∈ Σintern

and t1, . . . , tk are trees, then A(t1 · · · tk) is a tree.
(In this paper, we assume the number k of chil-
dren of an internal node is non-zero.) The set of
all trees with given alphabets Σleaf and Σintern

is denoted by T (Σleaf ,Σintern). We will use the
symbol t for trees and symbol τ for sequences
of trees. The empty sequence is denoted by ε.
We define the root of a tree by root(a) = a and
root(A(t1 · · · tk)) = A. We define the yield of a
tree by yield(a) = a and yield(A(t1 · · · tk)) =
yield(t1) · · · yield(tk). We define first(aw) = a
and last(wa) = a, for a ∈ Σleaf and w ∈ Σ∗leaf ,
first(ε) and last(ε) are undefined, and first(t) =
first(yield(t)) and last(t) = last(yield(t)) for

22

t ∈ T (Σleaf ,Σintern).
As usual, a context-free grammar (CFG) is rep-

resented by a 4-tuple (Σ, N, S, R), where Σ and
N are two disjoint finite sets of terminals and non-
terminals, respectively, S ∈ N is the start symbol,
and R is a finite set of rules, each of the form
A → α, where A ∈ N and α ∈ (Σ ∪ N)∗.
By grammar symbol we mean a terminal or non-
terminal. We use symbols A,B,C, . . . for non-
terminals, a, b, c, . . . for terminals, v, w, x, . . . for
strings of terminals, and α, β, γ, . . . for strings of
grammar symbols. To simplify the discussion we
will assume that all rules are of the form A →
B1 · · ·Bk, where k ≥ 1, or of the form A → a.
We also assume that S does not occur in the right-
hand side of any rule.

A latent-variable CFG (L-CFG) differs from
a CFG in that each nonterminal, except the start
symbol S†, is of the composite form A(`), where
A is a surface symbol and ` is a latent symbol.
We denote the set of latent symbols by L, the set
of surface symbols by N and the set of composite
nonterminals by NL. A L-CFG has one or more
rules of the form S† → S(`), some ` ∈ L.

The intuition behind L-CFG is that the surface
symbols are those that occur in parse trees used to
represent syntactic structure, these being trees in
T (Σ, N), while the purpose of the latent symbols
is to restrict derivations and help define probability
distributions over parse trees, once we extend rules
with probabilities.

L-CFGs are intimately related to regular tree
grammars (Brainerd, 1969; Gécseg and Steinby,
1997), which is apparent from the definition of
their ‘derives’ relation. Fix a L-CFG G. For
t, t′ ∈ T (Σ ∪ NL, N), we let t ⇒G t′ if t′ re-
sults from t by replacing some occurrence of A(`)

by A(α), for some rule A(`) → α. A parse tree of
G is a tree t ∈ T (Σ, N) such that S(`) ⇒∗G t, for
some `.

A canonical L-CFG is formed from a CFG by
having a singleton set L = {`}, enhancing each
nonterminal occurrence with an additional super-
script (`), and adding rule S† → S(`). The parse
trees of this canonical L-CFG concur with the
standard definition of parse tree of a CFG. The set
of all parse trees is called the tree language of a
CFG or L-CFG.

It is often convenient to distinguish a subset
of the composite nonterminals as not producing
any surface symbols in parse trees. For exam-

ple, if we binarize a long rule A → B C D
from a CFG into two rules A(`A) → E(`E) D(`D)

and E(`E) → B(`B)C(`C) of a L-CFG, then we
may wish to mark E(`E) as not producing any
trace in the parse tree. In terms of the derives
relation, this means A(`A) ⇒G A(E(`E)D(`D))
⇒G A(B(`B)C(`C)D(`D)), etc. The same princi-
ple may be used to avoid spurious ambiguity in
the representation of dependency structures using
bilexical context-free grammars (Section 4).

3 Oracle automata

We define an oracle automaton as a variant of a
traditional shift-reduce parser, in which an oracle
uniquely determines the next parser action. The
oracle is a partial function Ω that maps a sequence
of trees (the current content of the stack, see be-
low) and a terminal (the lookahead) to a rule that
is to be applied next. It is constrained by:

1. if Ω(τ, a) = (A→ b), then a = b; and

2. if Ω(τ, a) = (A → B1 · · ·Bk), then τ can
be written as τ ′t1 · · · tk, where root(ti) = Bi
for each i (1 ≤ i ≤ k).

The first constraint says that reduction of terminal
b to nonterminalA should only be suggested if that
terminal is the lookahead. The second constraint
says that reduction by a rule with right-hand side
of length k should only be suggested if the roots
of the top-most k subtrees on the stack match the
right-hand side of that rule.

For CFG G and oracle Ω, the oracle automaton
Mmanipulates configurations of the form (τ, v$),
where τ is the stack, and v is the remaining in-
put. The symbol $ is the end-of-sentence marker,
which we will need for technical reasons. For
given input w, the initial configuration is (ε, w$).
The allowable steps are:

shift (τ, av$) `M (τA(a), v$), if Ω(τ, a) =
(A→ a); and

reduce (τt1 · · · tk, v$) `M (τA(t1 · · · tk), v$) if
Ω(τt1 · · · tk,first(v$)) = (A→ B1 · · ·Bk).

If a configuration is (τ, av$) and Ω(τ, a) is un-
defined, then parsing fails. Acceptance hap-
pens upon reaching a configuration (t, $) with
root(t) = S. By a computation we mean a se-
quence (τ, vw$) `∗M (τ ′, w$) of zero or more
steps.

23

It is easy to see that if (ε, w$) `∗M (t, $)
then yield(t) = w. The set of all t such that
(ε, w$) `∗M (t, $) and root(t) = S is the tree
language of M, and is a subset of the tree lan-
guage of G. This may be a strict subset. In par-
ticular, if t is a parse tree of G and w = yield(t),
then there is at most one computation of the form
(ε, w$) `∗M (t′, $), for some t′ with root(t′) = S,
but t′ may or may not be equal to t, depending on
the definition of Ω.

In practice, the value Ω(τ, a) is not an arbitrary
function of τ and a. It will typically depend on
only a bounded number of features that can be ex-
tracted from τ . As τ becomes longer and as trees
in τ become deeper, through application of reduc-
tions, more and more details of these trees will be
outside the reach of these features. This obser-
vation is formalized through the notion of a stack
congruence ≡st , which is an equivalence relation
on stacks, with additional constraints. These addi-
tional constraints are to capture the intuition that
once details of a stack have become irrelevant to
the features, they remain so. It was inspired by
Pereira and Wright (1997).

In order to define ≡st , we also need a tree con-
gruence ≡tr , which is an equivalence relation on
trees, again with an additional constraint. This
constraint on ≡tr says that if t1 ≡tr t′1, . . . ,
tk ≡tr t′k, then A(t1 · · · tk) ≡tr A(t′1 · · · t′k) for
eachA. The intuition is that once we have decided
that some aspects of trees t1, . . . tk are no longer
useful for the oracle, this remains so when these
trees become part of a deeper tree, by adding A as
root.

The constraint on ≡st now says that if τ ≡st τ
′

and t ≡tr t′ then also τt ≡st τ ′t′. We fur-
ther say that ≡st is consistent with oracle Ω if
τ ≡st τ ′ implies Ω(τ, a) = Ω(τ ′, a) for every
a. The equivalence class of tree t is denoted by
[t]≡tr = {t′ | t′ ≡tr t}, or simply [t]. Similarly, the
equivalence class of stack τ is denoted by [τ]≡st

or [τ].
Trivial tree and stack congruences result by

equivalence classes that each contain a single tree
or stack, respectively. This would entail an in-
finite number of equivalence classes. As argued
above however, we may reasonably assume that
the number of equivalence classes is finite, consid-
ering typical oracles would use a bounded number
of features. These features are likely to investigate
only a bounded number of top-most trees on the

Sandy served Pat tea

PN V PN N

subj iobj
dobj

root

Figure 1: Example dependency structure.

stack, and for any such tree, the focus of interest
is likely to be the root, or leaves at the extreme
ends of the yields. Features are further discussed
in Section 6.

For technical reasons, we will assume t ≡tr t
′

implies first(t) = first(t′). This is without loss of
generality: in the worst case, one needs to split up
each existing equivalence class into several, one
for each terminal.

4 Oracle automata and transition-based
dependency parsing

As our oracle automata were defined in terms of
context-free grammars, it deserves an explanation
how we can use them to perform dependency pars-
ing. The most straightforward solution is to as-
sume a bilexical context-free grammar, with a sin-
gle delexicalized nonterminal A. Concretely, for
every pair of words a and b, we assume two rules
Aa → AaAb and Aa → AbAa. In the first rule,
the first member in the right-hand side is the head,
and in the second rule, the second member is the
head. (The critical reader may object this defini-
tion is inconsistent if a = b; this could be fixed by
having two versions of each nonterminal Aa.) For
each terminal, we also have the rule Aa → a and
the rule S → Aa.

With grammars of this form, we obtain what
is commonly known as spurious ambiguity.
That is, there may be several parse trees that
correspond to the same dependency struc-
ture. For example, the dependency structure
in Figure 1 can be obtained by a left-most
derivation: Aserved ⇒ ASandy Aserved ⇒
Sandy Aserved ⇒ Sandy Aserved Atea ⇒
Sandy Aserved APat Atea ⇒∗
Sandy served Pat tea. Two more left-
most derivations exist however that correspond to
the same dependency structure, both starting with
Aserved ⇒ Aserved Atea.

In practice, this spurious ambiguity is not a

24

problem. It is the oracle that ensures that only
one structure is produced. Spurious ambiguity of
transition-based dependency parsing is discussed
at length by Goldberg and Nivre (2012).

If we apply oracle automata on the above
bilexical context-free grammars, we obtain what
Nivre et al. (2007) call the arc-standard strat-
egy of transition-based dependency parsing. This
contrasts with the arc-eager strategy. The lat-
ter has a shift operation, which corresponds ex-
actly to our shift. The left-arc operation corre-
sponds to reduction with a rule Aa → AbAa,
or in other words, a step (τAb(τb)Aa(τa), v$)
` (τAa(Ab(τb)Aa(τa)), v$). The formulation of
e.g. Nivre et al. (2007) has the top of the stack as
part of the remaining input, which is largely an
inconsequential notational difference, although it
does affect the way features address elements in
the stack or in remaining input; we will return to
this issue in Section 6.

Contrary to what one may expect, the right-arc
operation is not the mirror image of the left-arc
operation but then for the rule Aa → AaAb. The
easiest way of looking at the right-arc operation is
as making an early commitment to do the actual
reduce operation with the rule Aa → AaAb, be-
fore all the dependents of b have been processed.

In terms of bilexical grammars, this ‘early com-
mitment’ made by the right-arc operation can be
expressed by marking a nonterminal occurrence,
to enforce that it (or its ancestors) will end up as
the second member (as opposed to the first) in the
right-hand side of a rule. We will use a bar-symbol
for this mark. Concretely, we may construct the
following rules:

• S → Aa, Aa → a and Aa → Aa, for each a,
and

• Aa → AbAa, Aa → AaAb and Aa → AaAb,
for each pair a and b.

A reduction with rule Aa → Aa now corre-
sponds to a right-arc operation, and a reduction
with Aa → AaAb or Aa → AaAb corresponds
to what is called a reduce in the arc-eager model.

Having a representation of ‘early commitment’
by bar-symbols does not change the information
available to an oracle, relative to the formulation
of the right-arc operation in the cited literature. In
the worst case, it will require a different way of
addressing elements in the stack. Thereby the con-
clusions we will draw in Section 6 are unaffected.

5 Construction of a L-CFG from an
oracle automaton

Let us assume an oracle automatonM for a CFG
G and an oracle Ω. We also assume a tree congru-
ence ≡tr and a stack congruence ≡st consistent
with Ω, both with a finite number of equivalence
classes. We will construct a L-CFG GM as fol-
lows. The terminals of GM are those of G. The
nonterminals of GM are S and composite non-
terminals of the form A(`), where A is a nonter-
minal from G and the latent symbol ` is a triple
([τ], [t], a) consisting of an equivalence class of
stacks, an equivalence class of trees, and a looka-
head symbol. Intuitively, [τ] represents context to
the left of the occurrence of A, [t] captures inter-
nal properties of a derivation of A, and a repre-
sents the first terminal of context immediately to
the right of the occurrence of A.

There are three types of rules in GM. The first
is:

S† → S([ε],[t],$)

for every class [t]. This is easily justified, as ini-
tially the stack is empty, and the first symbol after
an occurrence of S must be $. The second is:

A([τ],[A(a)],b) → a

for every class [τ], terminals a and b, and rule
(A→ a) = Ω(τ, a). The third is:

A([τ0],[t0],a0) → B
([τ1],[t1],a1)
1 · · ·B([τk],[tk],ak)

k

for all classes [τ0], [τ1], . . . , [τk], classes [t0], [t1],
. . . , [tk], terminals a0, a1, . . . , ak, and rule (A →
B1 · · ·Bk) = Ω(τk, a0) such that:

• [τ1] = [τ0] and [τi] = [τi−1ti−1] for each i
(1 < i ≤ k),

• [t0] = [A(t1 · · · tk)],
• ai = first(ti+1) for each i (1 ≤ i < k) and
ak = a0.

Note that the definitions are all well-defined.
For example, [τi] = [τi−1ti−1] uniquely denotes
an equivalence class, regardless of the choice of
τi−1 from [τi−1] and the choice of ti−1 from [ti−1],
because of ≡st being a stack congruence. Sim-
ilarly, ai = first(ti+1) is well-defined by the
additional assumption on tree congruences. The
above construction is reminiscent of covering of
LR(k) grammars by LR(1) grammars (Sippu and
Soisalon-Soininen, 1990).

25

Theorem 1 The tree language of GM equals the
tree language ofM.

Proof. It is easy to see that if A([τ],[t′],b) ⇒∗GM t,
for some A, t′, b and t, then [t′] = [t]. We now
need to show that (ε, w$) `∗M (t, $) if and only if
S([ε],[t],$) ⇒∗GM t, for every t ∈ T (Σ, N), where
w = yield(t).

In the ‘only if’ direction, it suffices to prove
by induction on the length of computations that
(τ, vw$) `∗M (τt, w$) implies A([τ],[t],b) ⇒∗GM t,
where A = root(t) and b = first(w$).

The base case applies if v = a and the computa-
tion consists of a shift (τ, aw$) `M (τA(a), w$),
where Ω(τ, a) = (A → a). Then GM must
include a rule A([τ],[A(a)],b) → a, where b =
first(w$). Hence A([τ],[A(a)],b) ⇒GM A(a).

Otherwise, we have a computation:

(τ0, v1 · · · vkw$) `∗M
(τ0t1, v2 · · · vkw$) `∗M · · · `∗M
(τ0t1 · · · tk−1, vkw$) `∗M
(τ0t1 · · · tk, w$) `M (τ0A(t1 · · · tk), w$)

where Ω(τ0t1 · · · tk, a0) = (A→ B1 · · ·Bk), with
a0 = first(w$) and Bi = root(ti) for each i (1 ≤
i ≤ k).

Let further τ1 = τ0 and τi = τi−1ti−1 for
each i (1 < i ≤ k), let t0 = A(t1 · · · tk), let
ai = first(ti+1) for each i (1 ≤ i < k) and let
ak = a0. Then GM must include a rule:

A([τ0],[t0],a0) → B
([τ1],[t1],a1)
1 · · ·B([τk],[tk],ak)

k

We can now use the inductive hypothesis, which
tells us that B([τi],[ti],ai)

i ⇒∗GM ti for each i (1 ≤
i ≤ k). Hence A([τ0],[t0],a0)⇒∗GM t0.

In the ‘if’ direction, it suffices to prove by in-
duction on the tree depth that A([τ],[t],b) ⇒∗GM t
implies (τ, vw$) `∗M (τt, w$) for every w with
b = first(w$), where v = yield(t).

The base case applies if the derivation is
A([τ],[A(a)],b) ⇒GM A(a). Due to existence of
A([τ],[A(a)],b) → a, and because ≡st is consistent
with Ω, we must have Ω(τ, a) = (A→ a). Hence
(τ, aw$) `M (τA(a), w$) for every w, regardless
of whether b = first(w$).

Otherwise, we have a derivation:

A([τ0],[t0],a0) ⇒GM

A(B([τ1],[t1],a1)
1 · · ·B([τk],[tk],ak)

k)⇒∗GM
A(t1 · · · tk)

for some stack τ0, trees t1, . . ., tk, and terminal a0

such that Ω(τk, a0) = (A → B1 · · ·Bk), where
τ1 = τ0, τi = τi−1ti−1 for each i (1 < i ≤ k),
t0 = A(t1 · · · tk), ai = first(ti+1) for each i (1 ≤
i < k) and ak = a0.

Let vi = yield(ti) for each i (1 ≤ i ≤ k).
Choose w such that first(w$) = a0. This means
ai = first(vi+1 · · · vkw$) for each i (1 ≤ i ≤
k). We can now apply the inductive hypothesis on
B

([τi],[ti],ai)
i ⇒∗GM ti for each i (1 ≤ i ≤ k), and

assemble the desired computation:

(τ0, v1 · · · vkw$) `∗M
(τ0t1, v2 · · · vkw$) `∗M · · · `∗M
(τ0t1 · · · tk−1, vkw$) `∗M
(τ0t1 · · · tk, w$) `M (τ0A(t1 · · · tk), w$)

Note that we made implicit use of ≡st being con-
sistent with Ω, so that, for example, the choice of
τ0 from a class [τ0] is irrelevant.

Our construction may result in a L-CFG that is
not reduced, that is, it may contain unreachable or
unproductive rules. This can be solved by reduc-
tion algorithms for CFGs (Harrison, 1978).

If probabilistic L-CFGs are desired, one may as-
sign probabilities in an arbitrary way, for exam-
ple by assigning probability 1/n to each rule that
shares its left-hand side with n − 1 other rules.
This does not change the tree language however,
and the grammar remains unambiguous, that is,
for each string, there is at most one tree.

We make no claim that the construction of L-
CFGs as given here has practical benefits over
methods for obtaining L-PCFGs via EM training
or spectral learning. The main purpose of our con-
struction was to show that L-(P)CFGs are at least
as powerful as oracle automata.

6 Features

We now present a formalization of common fea-
tures. Recall root as defined in Section 2. We
introduce ⊥ to denote the undefined value. We
assume a function applied on the undefined value
evaluates to the undefined value; for example
root(⊥) = ⊥.

We define child and nth by
child(i, A(t1 · · · tk)) = child(−i, A(tk · · · t1))
= nth(i, t1 · · · tk) = nth(−i, tk · · · t1) = ti, for
1 ≤ i ≤ k. In words, the first argument is an
index, which counts from the left if it is positive
and from the right if it is negative. For arguments

26

not covered by the above, the function values are
⊥.

We now define a feature to be a function F from
sequences of trees (stacks) to Σleaf ∪ Σintern ∪
{⊥}. We will first consider a simple kind of fea-
ture of the form F= root(child(i`, child(i`−1, . . . ,
child(i1,nth(i0, ·) . . .), some ` ≥ 0. Here · is a
placeholder for the stack as argument. In words,
the feature value for a stack t1 · · · tk is found by
considering ti0 if i0 > 0 or tk+1+i0 if i0 < 0. The
subtree at index i1 is then taken (distinguishing be-
tween i1 > 0 and i1 < 0 as before), etc. Of the
subtree obtained by the final application of child
with argument i` the root label is returned.

For F as above we define initial(F) = i0
and for 0 ≤ j ≤ `, we let prefix (F, j) de-
note the function root(child(i`, child(i`−1, . . . ,
child(ij+1, ·) . . .). In words, from F we re-
move the initial application of nth and the next
j applications of child . We let prefixes(F) =
{prefix (F, j) | 0 ≤ j ≤ `}. For a function of
the form prefix (F, j), we let head(prefix (F, j))
= ij+1 and tail(prefix (F, j)) = prefix (F, j + 1)
for 0 ≤ j < `, and head(prefix (F, `)) =
tail(prefix (F, `)) = ⊥. In words, head returns
the index of the next application of child if there
is one, and tail removes the next application of
child .

We say oracle Ω is determined by the sequence
F1, . . . , Ff of features if for every τ1, τ2, a1, a2,
the equalities Fj(τ1) = Fj(τ2) for every j (1 ≤
j ≤ f) and a1 = a2 together imply Ω(τ1, a1) =
Ω(τ2, a2). Here we have treated the lookahead (a1

or a2) as an implicit feature.
In order to obtain a tree congruence from a se-

quence F1, . . . , Ff of simple features as above,
we first define F = ∪1≤j≤fprefixes(Fj). Next
we define a function erase, which erases from a
tree t all subtrees that are outside the reach of the
functions in F , and that remain so if t becomes a
subtree of a bigger tree. Erasing is done by remov-
ing subtrees or replacing them by⊥. Formally, for
G ⊆ F , erase(G, t) = ⊥ if G = ∅, and for G 6= ∅
we define:

erase(G, A(t1 · · · tk)) = A(t′1 · · · t′k′t′′k′′ · · · t′′k)

where the t′i and t′′i are defined below. First, let
imax = max{i ∈ head(F) | F ∈ G, 1 ≤ i ≤ k}
and imin = min{i ∈ head(F) | F ∈ G, 1 ≤
−i ≤ k}. In words, in potential next applica-
tions of child in functions in G, we consider the

indices counting from the left and those counting
from the right and take the rightmost and leftmost,
respectively of those indices. If imax is defined
then k′ = imax and otherwise k′ = 0. If imin is
defined then k′′ = k + 1 + imin and otherwise
k′′ = k + 1. Note that k′ may be greater than
k′′ − 1.

For 1 ≤ i ≤ k′ we now define t′i =
erase(G′i, ti) where G′i = {tail(F) | F ∈ G,
head(F) = i}. For k′′ ≤ i ≤ k we define t′′i
= erase(G′′i , ti) where G′′i = {tail(F) | F ∈ G,
k+ 1 + head(F) = i}. Note that the total number
of nodes in (the tree representations of) the func-
tions in G′i and G′′i is strictly smaller than the total
number of nodes in the trees in G. It follows that,
for any t, the size of tree erase(F , t) is bounded,
that is, the set of such trees is finite.

Define ≡tr by t1 ≡tr t2 if and only if
erase(F , t1) = erase(F , t2). By the defini-
tion of erase , we have erase(F , A(t1 · · · tk))
= erase(F , A(erase(F , t1) · · · erase(F , tk))) for
every tree A(t1 · · · tk). It follows that ≡tr is a (fi-
nite) tree congruence.

As an example, consider f = 1 and:

F1 = root(child(3, child(2,nth(−1, ·))))
t = A(B1(b1)B2(C1(c1)C2(c2)C3(c3))B3(b3))

Then F = {root(·), root(child(3, ·)),
root(child(3, child(2, ·)))} and erase(F , t)
= A(⊥B2(⊥⊥C3())B3()).

In order to obtain our (finite) stack congru-
ence≡st , we erase elements from a stack t1 · · · tk.
We now determine imax = max{initial(Fj) |
1 ≤ j ≤ f, 1 ≤ initial(Fj) ≤ k} and
imin = min{initial(Fj) | 1 ≤ j ≤ f, 1 ≤
−initial(Fj) ≤ k}. Much as before we have
k′ = imax if imax is defined and k′ = 0 other-
wise and k′′ = k + 1 + imin if imin is defined and
k′′ = k + 1 otherwise. The stack after erasure is
erase(F , t1) · · · erase(F , tk′)erase(F , tk′′) · · ·
erase(F , tk). This allows definition of ≡st , in the
same way as of ≡tr .

We can extend the repertoire of functions in
our features. For example, we can include
first and last as defined in Section 2. We
can also add the function first intern , which
returns the internal symbol just above the left-
most leaf. Formally, first intern(A(a)) = A and
first intern(A(t1 · · · tk)) = first intern(t1) if
t1 /∈ Σleaf . The definition of last intern is sym-
metric. Allowing such functions requires appro-

27

priate refinements of erase , such that the depth of
the resulting trees remains bounded, by keeping
only the relevant nodes near selected leaves.

We will now discuss the features used by the
MaltParser, one of the most widely publicized
transition-based dependency parsers. The descrip-
tions will be based on Nivre et al. (2006) and Nivre
et al. (2007).

All features are defined in terms of word form,
part of speech or dependency relation. In our ora-
cle automata, this information can all be encoded
as parts of names of terminals and nonterminals.
In the MaltParser, the word forms, parts of speech
and dependency relations are attached to ‘tokens’
in the state of the parser. These tokens are found
in the stack or in the remaining input.

Tokens can be addressed by an index, which for
the stack counts from the top downward (cf. our
function nth with negative first argument), and for
the remaining input counts rightward from the first
unconsumed token. One source of confusion with
our automata is that in the MaltParser dependency
links can be attached to the first token in the re-
maining input, whereas our automata would first
have to transfer such a token to the stack before
linking it to other tokens by means of a reduction.
There can therefore be a slight mismatch in the
type of addressing of tokens, relative to our for-
mal framework above.

For presentational reasons, we have limited the
size of the lookahead of our oracle automata to 1.
Without causing any further complications how-
ever, this can be relaxed to lookahead of any fixed
size. In this way, we can model features of the
MaltParser that look a fixed distance ahead in the
remaining input. As for the construction of the
L-CFG, this would be modified accordingly, with
latent symbols in which the third component is a
string of the appropriate length.

Next to addressing tokens by index, features
of the MaltParser can also refer to leftmost and
rightmost dependents of indexed tokens. In our
framework, such features could be expressed us-
ing functions similar to child , first intern and
last intern , all allowing erase to return trees of
bounded size as before.

Features similar to those of the MaltParser are
used by Sagae and Lavie (2005), but in addition,
their features also include e.g. the number of de-
pendents of a token. This might suggest the num-
ber of equivalence classes is infinite after all. In

practice however, the oracle would only deal with
one from a bounded number of possible values,
that is, those that were encountered during train-
ing, which is necessarily finite. It is not clear to
us how their parser would behave if a value is
encountered during testing that is larger than the
maximum one encountered during training.

7 The probabilistic case

One may redefine Ω to be a probability distribu-
tion, constrained by:

• if Ω(A→ b | [τ], a) > 0, then a = b; and

• if Ω(A→ B1 · · ·Bk | [τ], a) > 0, then τ can
be written as τ ′t1 · · · tk, where root(ti) = Bi
for each i (1 ≤ i ≤ k).

This is in the same spirit as the non-deterministic
oracles of Goldberg and Nivre (2013).

With Ω now being a probability distribution, we
can refine the semantics of our automata to as-
sign a probability to each computation, which is
the product of the probabilities of all used steps.
The construction from Section 5 can be extended
to produce a L-PCFG, where:

• S† → S([ε],[t],$) is assigned probability 1,

• A([τ],[A(a)],b) → a is assigned Ω(A → a |
[τ], a),

• A([τ0],[t0],a0) → B
([τ1],[t1],a1)
1 · · ·B([τk],[tk],ak)

k

is assigned Ω(A→ B1 · · ·Bk | [τk], a0).

If desired, the L-PCFG can be normalized to be-
come proper, i.e. so that the probabilities of all
rules with given left-hand side sum to 1; see e.g.
Chi (1999).

8 Conclusions

We have explored formal properties of transition-
based dependency parsing, in terms of traditional
automata theory. Through our formalization, an
explicit link has been established between pro-
jective transition-based dependency parsing and
constituent parsing, in particular latent-variable
context-free parsing. Extension to the non-
projective/discontinuous case will be the subject
of future investigations.

Acknowledgements

Thanks go to reviewers for helpful comments.

28

References
A. Boyd. 2007. Discontinuity revisited: An improved

conversion to context-free representations. In Pro-
ceedings of the Linguistic Annotation Workshop, at
ACL 2007, pages 41–44, Prague, Czech Republic,
June.

W.S. Brainerd. 1969. Tree generating regular systems.
Information and Control, 14:217–231.

M. Candito, J. Nivre, P. Denis, and E. Henestroza An-
guiano. 2010. Benchmarking of statistical de-
pendency parsers for French. In The 23rd Inter-
national Conference on Computational Linguistics,
pages 108–116, Beijing, China, August.

S.A. Caraballo and E. Charniak. 1998. New figures of
merit for best-first probabilistic chart parsing. Com-
putational Linguistics, 24(2):275–298.

G. Carroll and E. Charniak. 1992. Two experiments on
learning probabilistic dependency grammars from
corpora. In Statistically-Based NLP Techniques, Pa-
pers from the AAAI Workshop, pages 1–13, San Jose.

D. Cer, M.-C. de Marneffe, D. Jurafsky, and C. Man-
ning. 2010. Parsing to Stanford dependen-
cies: Trade-offs between speed and accuracy. In
LREC 2010: Seventh International Conference on
Language Resources and Evaluation, Proceedings,
pages 1628–1632, Valletta , Malta, May.

Z. Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160.

M. Collins. 2003. Head-driven statistical models for
natural language parsing. Computational Linguis-
tics, 29(4):589–637.

M.A. Covington. 2001. A fundamental algorithm for
dependency parsing. In Proceedings of the 39th An-
nual ACM Southeast Conference, pages 95–102.

J. Eisner and G. Satta. 1999. Efficient parsing for
bilexical context-free grammars and head automa-
ton grammars. In 37th Annual Meeting of the Asso-
ciation for Computational Linguistics, Proceedings
of the Conference, pages 457–464, Maryland, USA,
June.

H. Gaifman. 1965. Dependency systems and phrase-
structure systems. Information and Control, 8:304–
337.

F. Gécseg and M. Steinby. 1997. Tree languages. In
G. Rozenberg and A. Salomaa, editors, Handbook
of Formal Languages, Vol. 3, chapter 1, pages 1–68.
Springer, Berlin.

Y. Goldberg and J. Nivre. 2012. A dynamic oracle for
arc-eager dependency parsing. In The 24th Inter-
national Conference on Computational Linguistics,
pages 959–976, Mumbai, India, December.

Y. Goldberg and J. Nivre. 2013. Training determinis-
tic parsers with non-deterministic oracles. Transac-
tions of the Association for Computational Linguis-
tics, 1:403–414.

J. Goodman. 1997. Global thresholding and multiple-
pass parsing. In Proceedings of the Second Con-
ference on Empirical Methods in Natural Language
Processing, pages 11–25, Providence, Rhode Island,
USA, August.

K. Hall and V. Novák. 2005. Corrective modeling
for non-projective dependency parsing. In Proceed-
ings of the Ninth International Workshop on Pars-
ing Technologies, pages 42–52, Vancouver, British
Columbia, Canada, October.

M.A. Harrison. 1978. Introduction to Formal Lan-
guage Theory. Addison-Wesley.

D.G. Hays. 1964. Dependency theory: A formalism
and some observations. Language, 40(4):511–525.

L. Huang and K. Sagae. 2010. Dynamic programming
for linear-time incremental parsing. In Proceedings
of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1077–1086, Upp-
sala, Sweden, July.

M. Johnson. 2007. Transforming projective bilexi-
cal dependency grammars into efficiently-parsable
CFGs with Unfold-Fold. In 45th Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference, pages 168–175, Prague,
Czech Republic, June.

S. Kahane, A. Nasr, and O. Rambow. 1998. Pseudo-
projectivity, a polynomially parsable non-projective
dependency grammar. In 36th Annual Meeting of
the Association for Computational Linguistics and
17th International Conference on Computational
Linguistics, volume 1, pages 646–652, Montreal,
Quebec, Canada, August.

K. Kallmeyer and M. Kuhlmann. 2012. A formal
model for plausible dependencies in lexicalized tree
adjoining grammar. In Eleventh International Work-
shop on Tree Adjoining Grammar and Related For-
malisms, pages 108–116.

L. Kallmeyer and W. Maier. 2010. Data-driven pars-
ing with probabilistic linear context-free rewriting
systems. In The 23rd International Conference on
Computational Linguistics, pages 537–545, Beijing,
China, August.

T. Kalt. 2004. Induction of greedy controllers for de-
terministic treebank parsers. In Conference on Em-
pirical Methods in Natural Language Processing,
pages 17–24, Barcelona, Spain, July.

D. Klein and C. Manning. 2004. Corpus-based induc-
tion of syntactic structure: Models of dependency
and constituency. In 42nd Annual Meeting of the As-
sociation for Computational Linguistics, Proceed-
ings of the Conference, pages 478–485, Barcelona,
Spain, July.

29

M. Kuhlmann, C. Gómez-Rodrı́guez, and G. Satta.
2011. Dynamic programming algorithms for
transition-based dependency parsers. In 49th An-
nual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, pages
673–682, Portland, Oregon, June.

M. Kuhlmann. 2013. Mildly non-projective de-
pendency grammar. Computational Linguistics,
39(2):355–387.

A. Lavie and M. Tomita. 1993. GLR∗ – an effi-
cient noise-skipping parsing algorithm for context
free grammars. In Third International Workshop on
Parsing Technologies, pages 123–134, Tilburg (The
Netherlands) and Durbuy (Belgium), August.

D. Lin. 1998. A dependency-based method for eval-
uating broad-coverage parsers. Natural Language
Engineering, 4(2):97–114.

X. Ma, X. Zhang, H. Zhao, and B.-L. Lu. 2010. De-
pendency parser for Chinese constituent parsing. In
CIPS-SIGHAN Joint Conference on Chinese Lan-
guage Processing.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Proba-
bilistic CFG with latent annotations. In 43rd Annual
Meeting of the Association for Computational Lin-
guistics, Proceedings of the Conference, pages 75–
82, Ann Arbor, Michigan, June.

Y. Miyao, R. Sætre K. Sagae, T. Matsuzaki, and J. Tsu-
jii. 2008. Task-oriented evaluation of syntactic
parsers and their representations. In 46th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 46–
54, Columbus, Ohio, June.

S. Narayan and S.B. Cohen. 2015. Diversity in spec-
tral learning for natural language parsing. In Con-
ference on Empirical Methods in Natural Language
Processing, Proceedings of the Conference, pages
1868–1878, Lisbon, Portugal, September.

M.-J. Nederhof and M. McCaffery. 2014. Determinis-
tic parsing using PCFGs. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 338–347,
Gothenburg, Sweden.

J. Nivre and J. Nilsson. 2005. Pseudo-projective
dependency parsing. In 43rd Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference, pages 99–106, Ann Ar-
bor, Michigan, June.

J. Nivre and M. Scholz. 2004. Deterministic depen-
dency parsing of English text. In The 20th Inter-
national Conference on Computational Linguistics,
volume 1, pages 64–70, Geneva, Switzerland, Au-
gust.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-
based dependency parsing. In Proceedings of
the Eighth Conference on Computational Natural

Language Learning, pages 49–56, Boston, Mas-
sachusetts, May.

J. Nivre, J. Hall, and J. Nilsson. 2006. MaltParser:
A data-driven parser-generator for dependency pars-
ing. In LREC 2006: Fifth International Conference
on Language Resources and Evaluation, Proceed-
ings, pages 2216–2219, Genoa, Italy, May.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryiǧit,
S. Kübler, S. Marinov, and E. Marsi. 2007. Malt-
Parser: A language-independent system for data-
driven dependency parsing. Natural Language En-
gineering, 13(2):95–135.

J. Nivre. 2003. An efficient algorithm for projective
dependency parsing. In 8th International Workshop
on Parsing Technologies, pages 149–160, LORIA,
Nancy, France, April.

J. Nivre. 2009. Non-projective dependency parsing
in expected linear time. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pages 351–
359, Suntec, Singapore, August.

F.C.N. Pereira and R.N. Wright. 1997. Finite-state
approximation of phrase-structure grammars. In
E. Roche and Y. Schabes, editors, Finite-State Lan-
guage Processing, pages 149–173. MIT Press.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree
annotation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics, pages 433–440, Sydney, Aus-
tralia, July.

O. Rambow. 2010. The simple truth about dependency
and phrase structure representations: An opinion
piece. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
Proceedings of the Main Conference, pages 337–
340, Los Angeles, California, June.

A. Ratnaparkhi. 1997. A linear observed time statis-
tical parser based on maximum entropy models. In
Proceedings of the Second Conference on Empirical
Methods in Natural Language Processing, pages 1–
10, Providence, Rhode Island, USA, August.

K. Sagae and A. Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Parsing
Technologies, pages 125–132, Vancouver, British
Columbia, Canada, October.

S. Seneff. 1989. TINA: A probabilistic syntac-
tic parser for speech understanding systems. In
ICASSP-89, volume 2, pages 711–714, Glasgow.

30

S. Sippu and E. Soisalon-Soininen. 1990. Parsing The-
ory, Vol. II: LR(k) and LL(k) Parsing, volume 20 of
EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag.

Y. Tsuruoka and J. Tsujii. 2005. Chunk parsing re-
visited. In Proceedings of the Ninth International
Workshop on Parsing Technologies, pages 133–140,
Vancouver, British Columbia, Canada, October.

A. van Cranenburgh, R. Scha, and F. Sangati. 2011.
Discontinuous data-oriented parsing: A mildly
context-sensitive all-fragments grammar. In Pro-
ceedings of the Second Workshop on Statistical Pars-
ing of Morphologically Rich Languages, pages 34–
44, Dublin, Ireland.

A. Wong and D. Wu. 1999. Learning a lightweight
robust deterministic parser. In Sixth European Con-
ference on Speech Communication and Technology,
pages 2047–2050.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
8th International Workshop on Parsing Technolo-
gies, pages 195–206, LORIA, Nancy, France, April.

31

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 32–41,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Distributed representation and estimation of WFST-based n-gram models

Cyril Allauzen, Michael Riley and Brian Roark
Google, Inc.

{allauzen,riley,roark}@google.com

Abstract

We present methods for partitioning a
weighted finite-state transducer (WFST)
representation of an n-gram language
model into multiple blocks or shards, each
of which is a stand-alone WFST n-gram
model in its own right, allowing process-
ing with existing algorithms. After in-
dependent estimation, including normal-
ization, smoothing and pruning on each
shard, the shards can be reassembled into a
single WFST that is identical to the model
that would have resulted from estimation
without sharding. We then present an ap-
proach that uses data partitions in conjunc-
tion with WFST sharding to estimate mod-
els on orders-of-magnitude more data than
would have otherwise been feasible with
a single process. We present some num-
bers on shard characteristics when large
models are trained from a very large data
set. Functionality to support distributed
n-gram modeling has been added to the
open-source OpenGrm library.

1 Introduction

Training n-gram language models on ever in-
creasing amounts of text continues to yield large
model improvements for tasks as diverse as ma-
chine translation (MT), automatic speech recogni-
tion (ASR) and mobile text entry. One approach
to scaling n-gram model estimation to peta-byte
scale data sources and beyond, is to distribute
the storage, processing and serving of n-grams
(Heafield, 2011). In some scenarios – most no-
tably ASR – a very common approach is to heav-
ily prune models trained on large resources, and
then pre-compose the resulting model off-line with
other models (e.g., a pronunciation lexicon) in or-
der to optimize the model for use at time of first-
pass decoding (Mohri et al., 2002). Among other

things, this approach can impact the choice of
smoothing for the first-pass model (Chelba et al.,
2010), and the resulting model is generally stored
as a weighted finite-state transducer (WFST) in or-
der to take advantage of known operations such as
determinization, minimization and weight pushing
(Allauzen et al., 2007; Allauzen et al., 2009; Al-
lauzen and Riley, 2013). Even though the result-
ing model in such scenarios is generally of mod-
est size, there is a benefit to training on very large
samples, since model pruning generally aims to
minimize the KL divergence from the unpruned
model (Stolcke, 1998).

Storing such a large n-gram model in a single
WFST prior to model pruning is not feasible in
many situations. For example, speech recognition
first pass models may be trained as a mixture of
models from many domains, each of which are
trained on billions or tens of billions of sentences
(Sak et al., 2013). Even with modest count thresh-
olding, the size of such models before entropy-
based pruning would be on the order of tens of
billions of n-grams.

Storing this model in the WFST n-gram format
of the OpenGrm library (Roark et al., 2012) allo-
cates an arc for every n-gram (other than end-of-
string n-grams) and a state for every n-gram prefix.
Even using very efficient specialized n-gram rep-
resentations (Sorensen and Allauzen, 2011), a sin-
gle FST representing this model would require on
the order of 400GB of storage, making it difficult
to access and process on a single processor.

In this paper, we present methods for the dis-
tributed representation and processing of large
WFST-based n-gram language models by parti-
tioning them into multiple blocks or shards. Our
sharding approach meets two key desiderata: 1)
each sub-model shard is a stand-alone “canonical
format” WFST-based model in its own right, pro-
viding correct probabilities for a particular subset
of the n-grams from the full model; and 2) once n-
gram counts have been sharded, downstream pro-

32

ϵ

...

 the

ϵ

ϵ
the

 end xyz

 xyz ϵ
 end

ϵ

 end

x

x

ϵ

<S> the

 end
<S>

end

 the
 the

 xyz

...

Figure 1: Schematic of canonical WFST n-gram format,
unweighted for simplicity. Each state shows the history it
encodes for convenience (they are actually unlabeled). Final
states are denoted with double circle.

cessing such as model normalization, smoothing
and pruning, can occur on each shard indepen-
dently. Methods, utilities and convenience scripts
have been added to the OpenGrm NGram library1

to permit distributed processing. In addition to
presenting design principles and algorithms in this
paper, we will also outline the relevant library
functionality.

2 Canonical WFST n-gram format

We take as our starting point the standard ‘canon-
ical’ WFST n-gram model format from Open-
Grm, which is presented in Roark et al. (2012)
and at ngram.opengrm.org, but which we summa-
rize briefly here. Standard n-gram language mod-
els can be presented in the following well-known
backoff formulation:

P(w | h) =
{

P̂(w | h) if c(hw) > 0
α(h) P(w | h′) otherwise

(1)

where w is the word (or symbol) being predicted
based on the previous history h, and h′ is the
longest proper suffix of h (or ε if h is a single
word/symbol). The backoff weight α(h) ensures
that this is a proper probability distribution over
symbols in the vocabulary, and is easily calculated
based on the estimates P̂ for observed n-grams.
Note that interpolated n-gram models also fit this
formulation, if pre-interpolated.

Figure 1 presents a schematic of the WFST n-
gram model format that we describe here. The
WFST format represents n-gram histories h as
states2, and words w following h as arcs leaving

1ngram.opengrm.org
2For convenience, we will refer to states as encoding (or

representing) a history h – or even just call the state h –
though there is no labeling of states, just arcs.

the state that encodes h. There is exactly one uni-
gram state (labeled with ε in Figure 1), which rep-
resents the empty history. For every state h in the
model other than the unigram state, there is a spe-
cial backoff arc, labeled with ε, with destination
state h′, the backoff state of h. For an n-gram
hw, the arc labeled with w leaving history state
h will have as destination the state hw if hw is a
proper prefix of another n-gram in the model; oth-
erwise the destination will be h′w. The start state
of the model WFST represents the start-of-string
history (typically denoted <S>), and the end-of-
string (</S>) probability is encoded in state final
costs. Neither of these symbols labels any arcs in
the model, hence they are not required to be part of
the explicit vocabulary of the model. Costs in the
model are generally represented as negative log
counts or probabilities, and the backoff arc cost
from state h is -log α(h).

With the exception of the start and unigram
states, every state h in the model is the destina-
tion state of an n-gram transition originating from
a prefix history, which we will term an ‘ascend-
ing’ n-gram transition. If h = w1 . . . wk is a
state in the model (k > 0 and if k = 1 then
w1 6= <S>), then there also exists a state in the
model h̄ = w1 . . . wk−1 and a transition from h̄
to h labeled with wk. We will call a sequence
of such ascending n-gram transitions an ascend-
ing path, and every state in the model (other than
unigram and start) can be reached via a single as-
cending path from either the unigram state or the
start state. This plus the backoff arcs make the
model fully connected.

3 Sharding count n-gram WFSTs

3.1 Model partitioning

Our principal interest in breaking (or sharding)
this WFST representation into smaller parts lies in
enabling model estimation for very large training
sets by allowing each shard to be processed (nor-
malized, smoothed and pruned) as independently
as possible. Further, we would like to simply use
existing algorithms for each of these stages on the
model shards. To that end, all of the arcs leaving a
particular state must be included in the same shard,
hence our sharding function is for states in the au-
tomaton, and arcs go with their state of origin. We
shard the n-gram WFST model into a collection of
n-gram WFSTs by partitioning the histories into
intervals on a colexicographic ordering defined be-
low. The model’s symbol table maps from sym-

33

bols in the model to unique indices that label the
arcs in the WFST. We use indices from this sym-
bol table to define a total order <V on our vocab-
ulary augmented with start-of-string token which
is assigned index 0.3 We then define the colexi-
cographic (or reverse lexicographic) order < over
V ∗ recursively on the length of the sequences as
follow. For all x, y 6= ε, we have ε < x and

x < y iff
{
x|x| <V y|y| or,
x|x| = y|y| and x̄ < ȳ

(2)

where x̄ denotes the longest prefix of x distinct
from x itself. The colexicographic interval [x, y)
then denotes the set of sequences z such that x ≤
z < y.

For example, assuming symbol indices the=1
and end=2, the colexicographic ordering of the
states in Figure 1 is:

Colex. State histories
Order (as words) (as indices)

0 ε ε
1 <S> 0
2 the 1
3 <S> the 0 1
4 end 2
5 the end 1 2

If we want, say, 4 shards of this model (at least,
the visible part in the schematic in Figure 1), we
can partition the state histories in 4 intervals; for
example:

{[ε, 1), [1, 2), [2, 1 2), [1 2, 3)} =
{{ε, 0}, {1, 0 1}, {2}, {1 2}}.

By convention, we write the interval [x, y) as
x1 . . . xl : y1 . . . ym. Thus, the above partition
would be written as:4

0 : 1
1 : 2
2 : 1 2

1 2 : 3

While this partitions the states into subsets, it re-
mains to turn these subsets into stand-alone, con-
nected WFSTs with the correct topology to al-
low for direct use of existing language model es-
timation algorithms on each shard independently.
For this to be the case, we need to: (1) be

3Not to be confused with the convention that ε has index
0 in FST symbol tables.

4We omit the empty history ε from the interval specifica-
tion since it is always assigned to the first interval.

ϵ
ϵ

ϵ
the

 xyz
 xyz

 end

ϵ

 end

x

x

ϵ

<S> the

 end

end

 the

 xyz

Figure 2: Schematic of a completed shard of the model in
Figure 1. The state corresponding to the history ‘the end’ is
the only state strictly in-context for this shard.

able to reach each state via the correct ascending
path from the start or unigram state, with correct
counts/probabilities; (2) have backoff states of all
in-shard states, along with their arcs, for calculat-
ing backoff costs; and (3) correctly assign all arc
destinations within each new WFST.

3.2 Model completion

Given a set of states to include in a context shard,
the shard model must be ‘completed’ to include
all of the requisite states and arcs needed to con-
form to the canonical n-gram topology. We step
through each of the key requirements in turn. We
refer to those states that fall within the context in-
terval as ‘strictly in-context’. Figure 2 shows a
schematic of the shard model that results for the
context 1 2 : 3, which we will refer to when
illustrating particular requirements. Only the state
corresponding to ‘the end’ is strictly in-context for
this particular shard. All states that are suffixes
of strictly in-context states are also referred to as
in-context (though not strictly so), since they are
needed for proper normalization – i.e., calculation
of α(h) in the recursive n-gram model definition
in equation 1. Hence, the state corresponding to
‘end’ in Figure 2 is in-context and is included in
the shard, as is the unigram state.

The start state and all states and transitions on
ascending paths from the start and unigram states
to in-context states must be included, so that states
that are in-context can be reached from the start
state. Thus, the state corresponding to ‘the’ in Fig-
ure 2 must be included, along with its arc labeled
with ‘end’, since they are on the ascending path to
‘the end’, which is strictly in-context.

For every state in the model, the backoff arc
should allow transition to the correct backoff state.
Finally, for all arcs (labeled with w) leaving states
h that have been included in the shard model, their

34

destination must be the longest suffix of hw that
has been included as a state in the shard model.
The arcs labeled with ‘xyz’ in Figure 2 all point
to the unigram state, since no states representing
histories ending in ‘xyz’ are in the shard model.

For the small schematic example in Figures 1
and 2, there is not much savings from sharding af-
ter completing the shard model: only one state and
four arcs from the observed part of the model in
Figure 1 were omitted in the schematic in Figure 2.
And it is clear from the construction that there will
be some redundancy between shards in the states
and arcs included when the shard model is com-
pleted. But for large models, each shard will be a
small fraction of the total model. Note that there
is a tradeoff between the number of shards and the
amount of redundancy across shards.

Another way to view the shard model in Fig-
ure 2 relative to the full model in Figure 1 is as a
pruned model, where the arcs and states that were
pruned are precisely those that are not needed
within that particular shard. This perspective is
useful when discussing distributed training in the
next section.

4 Distributed training of n-gram models

When presenting model sharding in the previous
section, we had access to the specific states in the
model schematic, and defined the contexts accord-
ingly. When training a model from data at the
scale that requires distributed processing, the full
model does not exist to inspect and partition. In-
stead, we must derive the context sharding in some
fashion prior to training the model. We will thus
break this section into two parts: first, deriving
context intervals for model sharding; then estimat-
ing models given context intervals.

4.1 Deriving context intervals

Given a large corpus, there are a couple of ways
to approach efficient calculation of effective con-
text intervals. Effective in this case is balanced,
i.e., one would like each sharded model to be of
roughly the same size, so that the time for model
estimation is roughly commensurate across shards
and lagging shards are avoided.

The first approach is to build a smaller footprint
model than the desired model, which would take
a fraction of the time to train, then derive the con-
texts from that model. For example, if one wanted
to train a 5-gram model from a billion word cor-
pus, then one may derive context intervals based

on trigram model trained by sampling one out of
every hundred sentences from the corpus. Given
that more compact model, it is relatively straight-
forward to examine the storage required for each
state and choose a balanced partition accordingly.
At higher orders and with the full sample, the size
of each shard may ultimately differ, but we have
found that estimating relative shard sizes based on
lower-order sampled models is effective at provid-
ing functional context intervals. See section 5 for
specific OpenGrm NGram library functionality re-
lated to context interval estimation.

Another method for deriving context intervals
is to accumulate the set of n-grams into a large
collection, sort it by history in the same colexico-
graphic order as is used to define the context in-
tervals, and then take quantiles from that sorted
collection. This can lead to more balanced shards
than the previous method, though efficient meth-
ods for distributed quantile extraction from collec-
tions of that sort is beyond the scope of this paper.

4.2 Estimating models given context intervals

Given a definition of k context intervals C1 . . . Ck,
we can train sharded models on very large data sets
as follows:

1. Partition data into m data shards D1 . . . Dm

2. For each data shard Di

(a) Count the n-grams from Di and build
full WFST n-gram representation Ti

(b) Split Ti into k shard models Ti1 . . . Tik

3. For each context interval Cj , merge counts
T·j from all data shards: Fj = Mergem

i=1(Tij)

4. Perform these global operations on collection
F1 . . . Fk to prepare for model estimation:
(a) Transfer correct counts as needed across

shards (see Section 4.2.4 below).
(b) Derive resources such as count-of-

counts by aggregating across shards.

5. Normalize, smooth, prune each Fj as needed:
Mj = MakeModel(Fj)

6. Merge model shards: M = Mergek
j=1(Mj)

We now go through each of these 6 stages one by
one in the following sub-sections.

4.2.1 Partition data
Given a large text corpus, this simply involves
placing each string into one of m separate collec-
tions, preferably of roughly equal size.

35

4.2.2 Count and split data shards
For each data shard Di, perform n-gram counting
exactly as one would in a non-distributed scenario.
(See Section 5 for specific commands within the
OpenGrm NGram library.) This results in an n-
gram count WFST Ti for each data shard. Us-
ing the context interval specifications C1 . . . Ck

we then split Ti into k shard models. Because we
have the full model Ti, we can determine exactly
which states and arcs need to be preserved for each
context interval, and prune the rest away.

4.2.3 Merge sharded models
For each context interval Cj , there will be a shard
model Tij for every data shard Di. Standard
count merging will yield the correct counts for all
in-context n-grams and the correct overall model
topology, i.e., every state and arc that is required
will be there. However, n-grams that are not in-
context may not have the correct count, since they
may have occurred in a data shard but were not in-
cluded in the context shard due to the absence of
any in-context n-grams for which it is a prefix.

To illustrate this point, consider a scenario with
just two data shards, D1 and D2, and a context
shardCj that only includes the n-gram history ‘foo
bar baz’ strictly in-context. Suppose ‘foo bar’ oc-
curs 10 times inD1 and also 10 times inD2, while
‘foo bar baz’ occurs 3 times in D1 but doesn’t oc-
cur at all in D2. Recall that states and ascending
arcs that are not in-context are only included in
the shard model as required to ascend to the in-
context states. In the absence of ‘foo bar baz’ in
T2j , the n-gram arc and state corresponding to ‘foo
bar’ will not be included in that shard, despite hav-
ing occurred 10 times in D2. When the counts in
T1j and T2j are merged, ‘foo bar’ will be included
in the merger, but will only have counts coming
from T1j . Hence, rather than the correct count of
20, that n-gram will just have a count of 10. The
correct count of ‘foo bar’ is only guaranteed to be
found in the shard for which it is in-context.

To get the correct counts in every shard that
needs them, we must perform a transfer opera-
tion to pass correct counts from shards where n-
grams are strictly in-context to shards where they
are needed as prefixes of other n-grams.

4.2.4 Global operations on the collection
Transfer: As mentioned above, count merging of
sharded count WFSTs across data shards yields
correct counts for in-context states, as well as the
correct WFST topology – i.e., all needed n-grams

are included – but is not guaranteed to have the
correct counts of n-grams that are not in-context.
For each shard Fi, however, we know which n-
grams we need to get the correct count for, and
can easily calculate the context shard that these n-
grams fall into. Using that information, a transfer
of correct counts is effected via the following three
stages:

1. For each shard Fi, for each Fj (j 6=i), prune
Fi to only those n-grams that are strictly in-
context for context Cj , and send the resulting
Fij to shard Fj to give correct counts.

2. For every shard Fj , provide correct counts for
each incoming F·j requiring them and return
to the appropriate shard Fi.

3. For every shard Fi, update counts from in-
coming Fi·.

Only needed n-grams are processed in this trans-
fer algorithm, which we will term the “standard”
transfer algorithm in the experimental results. Let
Qi be the set of states for shard Fi. Each state
is an n-gram of length less than n (where n is
the order of the model) that must have its cor-
rect count requested from the shard where it is
strictly in context. This leads to a complexity of
O(n

∑k
i=1 |Qi|).

An alternative, which we will term the “by-
order” transfer algorithm, performs transfer of a
more restricted set of n-grams in multiple phases,
which occur in ascending n-gram order. Note that,
when transfer of correct counts for a particular n-
gram is requested, the correct counts for all pre-
fixes of that n-gram can also be collected at the
same time at no extra cost, provided the prefix
counts are correct in the shard where we request
them, even though the prefixes may or may not be
in-context. By processing in ascending n-gram or-
der, we can guarantee that the prefixes of requested
n-grams have already been updated to the correct
counts. If we can update the counts of n-gram
prefixes, we can defer the transfer of an out-of-
context n-gram’s count until an update is required.
The correct count of an out-of-context n-gram of
order n is thus only requested if one of the fol-
lowing two conditions hold: (1) its count may be
requested by another context shard from the cur-
rent context shard during the transfer phase of or-
der n+1; or (2) its count would not be transferred
at some order greater than n, hence must be trans-
ferred now to be correct at the end of transfer. The
former condition holds if the n-gram arc has an
origin state that is out-of-context and a destination

36

state that is strictly in-context. The latter condi-
tion holds if the n-gram arc’s origin state is out-of-
context, its destination state is in-context (though
not strictly in-context), and the n-gram is not a pre-
fix of any in-context state. We will call an n-gram
of order n that meets either of those conditions
“needed at order n”. Then, for each order n from
1 to the highest order in the model, transfer is car-
ried out by replacing step number 1 in the standard
transfer algorithm above with the following:

1. For each shard Fi, for each Fj (j 6=i), prune
Fi to only those n-grams that are strictly in-
context for context Cj , and are needed at or-
der n, along with all prefixes of such n-grams.
If the resulting Fij is non-empty, send it to
shard Fj to give correct counts.

The rest of transfer at order n proceeds as be-
fore. In this algorithm, a shard requests an n-gram
only if the destination state of its corresponding
n-gram arc is in-context. This leads to a complex-
ity inO(n

∑k
i=1 |Qc

i |) whereQc
i denotes the set of

states in shard Fi corresponding to in-context his-
tories for that shard. This is a complexity reduc-
tion from the standard transfer algorithm above,
since |Qi|/n < |Qc

i | < |Qi|.
Counts-of-counts: Deriving counts-of-count his-
tograms is key for certain smoothing methods
such as Katz (1987). Each shard Fi can pro-
duce a histogram from only those n-grams that
are strictly in-context, then the histograms can
be aggregated straightforwardly across shards to
produce a global histogram, since each n-gram is
strictly in-context in only one shard.

4.2.5 Process count shards
Given the correct counts in each of the count
shards Fi, we can proceed to use existing, stan-
dard n-gram processing algorithms to normalize,
smooth and prune each of the models indepen-
dently. These algorithms are linear in the size
of the model being processed. With some minor
exceptions, existing WFST-based language mod-
eling algorithms, such as those in the OpenGrm
NGram library, can be applied to each shard in-
dependently. We mention two such exceptions
in turn, both impacting the correct application of
model pruning algorithms after the model shard
has been normalized and smoothed.

First, whereas common smoothing algorithms
such as Katz (1987) and absolute discounting
(Ney et al., 1994) will properly discount and nor-
malize all n-grams in the model shard, Witten-
Bell smoothing (Witten and Bell, 1991) will yield

correct smoothed probabilities for in-context n-
grams, but for n-grams not in-context in the cur-
rent shard, the smoothed probabilities will not be
guaranteed to be correctly estimated. This is be-
cause Witten-Bell smoothing is defined in terms
of the number of words that have been observed
following a particular history, which in the WFST
encoding of the n-gram model is represented by
the number of arcs (other than the backoff arc)
leaving the history state (plus one if the state is
final). While for any in-context state h, all of the
arcs leaving the state will be present, some of the
other n-gram states that were included to create
the model topology – notably the states along the
ascending path to in-context states – will not typ-
ically have all of the arcs that they have in their
own shard. Hence the denominator in Witten-Bell
smoothing (the count of the state plus the number
of words observed following the history) cannot be
calculated locally, and the direct application of the
algorithm will end up with mis-estimated n-gram
probabilities along the ascending paths.

If no pruning is done, then only the in-context
probabilities matter, and merging can take place
with no issues (see the next section 4.2.6).

Pruning algorithms, however, such as relative
entropy pruning (Stolcke, 1998), typically use the
joint n-gram probability – P(hw) – when calcu-
lating the scores that are used to decide whether
to prune the n-gram or not. This joint probability
is calculated by taking the product of all ascend-
ing path conditional probabilities. If the ascend-
ing path probabilities are wrong, these scores will
also be wrong, and pruning will proceed in error.
For Katz and absolute discounting, the ascend-
ing probabilities are correct when calculated on
the shard independently of the other shards (when
given counts-of-counts); but Witten Bell will not
be immediately ready for pruning.

To get correct pruning for a sharded Witten-
Bell model, another round of the transfer algo-
rithm outlined in Section 4.2.4 is required, to re-
trieve the correct probabilities of ascending arcs in
each shard.

The second issue to note here arises when prun-
ing the model to have a particular number of de-
sired n-grams in the model. For example, in some
of the trials that we run in Section 6 we prune the
n-gram models to result in 100 million n-grams in
the final model. To establish a pruning threshold
that will result in a given total number of n-grams
across all shards, the shrinking score must be cal-

37

culated for every n-gram in the collection and then
these scores sorted to derive the right threshold.
This requires a process not unlike the counts-of-
counts aggregation presented in Section 4.2.4, yet
with a sorting of the collection rather than compi-
lation into a histogram.

Once all of the model shards have been normal-
ized, smoothed and pruned using standard WFST-
based n-gram algorithms, the shards can be re-
assembled to produce a single WFST.

4.2.6 Merge model shards
Merging the shard models into a single WFST n-
gram model is a straightforward special case of
general model merging, whereby two models are
merged into one. In general, model merging al-
gorithms of two WFST models with canonical n-
gram topology will: (a) result in a new model with
canonical n-gram topology; and (b) the n-gram
costs in the new model are some function of the
n-gram costs in the two models. If the models are
being linearly interpolated, then the n-gram proba-
bility will be calculated as λp1 + (1−λ)p2, where
pk comes from the kth model, and the n-gram cost
will be the negative log of that probability.5

To merge model shards M1 and M2, we must
know, for each state h, whether h is in-context for
M1 or M2. The n-gram cost in the merged model
is c2 if h is in-context for M2; and c1 otherwise,
where ck is the cost of the n-gram in Mk. If we
start with an arbitrary model shard and designate
that as M1, then we can merge each other shard
into the merged model in turn, and designate the
resulting merged model as M1 for a subsequent
merge. By the end of merging in every context, all
of the n-grams in the final model will have been
merged in, so they will all have received their cor-
rect probabilities. The resulting WFST will have
the same probabilities as it would if the model had
been trained in a single process.

5 OpenGrm distributed functionality

While most of these distributed functions will
likely be implemented in some kind of large, data-
parallel processing system6, such as MapReduce
(Dean and Ghemawat, 2008), these pipelines will
rely upon core OpenGrm NGram library functions
to count, make, prune and merge models. The

5Backoff arc costs can then be calculated in closed form.
6We have implemented an end-to-end pipeline, which

makes use of the OpenGrm NGram library, in Flume (Cham-
bers et al., 2010). Results in Section 6 were generated with
this pipeline.

OpenGrm NGram library now includes some dis-
tributed functionality, along with a convenience
script to illustrate the sort of approach we have de-
scribed in this paper.

Recall that the basic approach involves shard-
ing the data, counting n-grams on each data shard
separately, and then splitting the counts from each
data shard into context shards. Two command-
line utilities in OpenGrm provide functionality for
(1) defining context shards; and (2) splitting an n-
gram WFST based on given context shards. One
method described in Section 4.1 for deriving con-
text shards is to train a smaller model (e.g., lower
order and/or sampled from the full target training
scenario) and then derive balanced context shards
from that smaller model. For example, if we want
to train a 5-gram model on 1B words of text, we
might count7 trigrams from every 100th sentence,
yielding the n-gram count WFST 3g.fst. Then
the command line binary ngramcontext can make
use of the sampled counts to derive a balanced
sharding of the requested size:
ngramcontext --contexts=10 3g.fst >ctx.txt

The resulting text file (ctx.txt) will look
something like this:

0 : 18
18 : 307 35

307 35 : 70
70 : 147
...

as discussed in Section 3.1. Given these con-
text definitions, we can now use ngramsplit to
partition full count WFSTs derived from partic-
ular data shards. For example, suppose that
we counted 5-grams from data shard k, yielding
DS-k.5g-counts.fst. Then we can produce 10
count shards as follows:
ngramsplit --contexts=ctx.txt --complete \
DS-k.5g-counts.fst DS-k.5g-counts

which would result in 10 count shard WFSTs
DS-k.5g-counts.0000i for 0 ≤ i < 10. The
--complete flag ensures that all required n-
grams are included in the shard, not just those
strictly in-context. Once this has been done
for all data shards, the counts for each context
shard can be merged across the data shards, i.e.,
ngrammerge using the count merge method on
DS-*.5g-counts.0000i for all i.

As discussed in Section 4.2.4, once we have the
merged counts for each model shard, we must per-
form a transfer of the correct counts. This involves

7See Roark et al. (2012) for details on n-gram counting in
the OpenGrm library.

38

n-grams time (hours) to pct. in- largest to
Corpus target preproc. make, model context smallest
(words; sents) order total per shard + count prune + shards ngrams shard ratio
Billion word 3 238M 4M 1.5 1.2 59 56.0 1.20
benchmark (BWB) 40M 1.6 1.6 5 84.8 1.07
(769M; 30.3M) 5 1.14B 4M 4.1 2.0 285 36.8 2.07

40M 4.7 3.5 28 50.5 1.26
Search queries (SQ) 5 16.6B 4M 23.4 8.9 5090 38.8 1.93
(70B; 13.2B) 40M 10.2 7.1 502 64.4 1.77

Table 1: Sharding characteristics and time to estimate under different training scenarios. As noted in Section 6, times are not
comparable if n-gram order or size of corpus are different, and times should be interpreted as a relatively coarse measure of
work. The last two columns (100*in-context/total n-ngrams and the ratio of sizes in ngrams) indicate shard redundancy.

splitting again and using the command line binary
ngramtransfer twice: once to extract the correct
counts from the correct shards; and once to return
the extracted counts to the shards requesting them.
We refer the reader to Section 4.2.4 for high level
detail, and the convenience script ngram.sh in the
OpenGrm NGram library for specifics.

Several new functions have been added via
options to existing command line binaries in
the OpenGrm NGram library. For example,
ngramcount can now produce counts of counts
(--method=count of counts) and produce them
only for a specified context shard. Further,
ngrammerge has a context merge method, which
uses a derived class of OpenGrm’s NGramMerge
class to correctly reassemble count or language
model sharded WFSTs into a single WFST. See
the script ngram.sh in the OpenGrm NGram li-
brary for details.

In the next section, we provide some data on
the characteristics of n-gram models of different
orders and sizes when they are trained via shard-
ing.

6 Shard size versus redundancy

As stated earlier, we use Flume (Chambers et al.,
2010) in C++ to distribute our OpenGrm NGram
model training. This system is not currently pub-
licly available, but within it we use methods gen-
erally very similar to what is available in Open-
Grm, just pipelined together in a different way.
One difference between the Flume version and
ngram.sh is the method for deriving contexts,
which in Flume is based on efficient quantiles ex-
tracted from the set of n-grams. While this is
also a sampling method for deriving the contexts,
the ordering constraints of quantiles do often lead
to better (though not perfect) estimates of bal-
anced shards. Additionally, the Flume system that
was used to generate these numbers uses a smart

distributed processing framework, which allocates
processors based on estimated size of the process.
This impacts the interpretability of timing results,
as noted below.

Table 1 presents some characteristics of lan-
guage model training under several conditions
which demonstrate some of the tradeoffs in dis-
tributing the model in slightly different ways.
From the Billion Word Benchmark (BWB) cor-
pus (Chelba et al., 2014), we train trigram and 5-
gram language models with different parameteri-
zations for determining the model sharding. We
also report results on a proprietary 70 billion word
collection of search queries (SQ), also with differ-
ent sharding parameterizations. For the BWB tri-
als, no symbol or n-gram frequency cutoffs were
used, but for the search queries, as part of the pre-
processing and counting, we selected the 4 mil-
lion most common words from the collection to
include in the vocabulary (all others mapped to
an out-of-vocabulary token) and limited 4-grams
and 5-grams to those occurring at least twice or
4 times, respectively. All trigram models were
pruned to 50 million n-grams prior to shard merg-
ing (reassembling into a single WFST), and 5-
gram models were pruned to 100 million n-grams.
For these trials, the standard transfer algorithm in
Section 4.2.4 was used. Run times are averaged
over five independent runs.

Note that, due to the smart distributed process-
ing framework, the times are not comparable if n-
gram order or size of corpus are different. Further,
due to distributed processing with resource con-
tention, etc., the times should be interpreted as a
coarse measure of work. That said, we note that in
the largest scenario, parameterizing for relatively
small shards (4M n-grams in-context per shard)
yields over 5000 shards, which results in extra
time in transfer (hence higher count times) and in
final merging of the contexts (hence higher make,

39

target trans. time (hours) to count
per by before trans.

Task shard order trans. to end total
BWB 4M N 2.4 1.7 4.1

Y 2.1 3.5 5.5
40M N 2.6 2.1 4.7

Y 3.1 5.9 9.0
SQ 4M N 4.7 18.7 23.4

Y 4.5 7.6 12.1
40M N 5.7 4.4 10.2

Y 5.9 6.7 12.6

Table 2: Counting time broken down between stages occur-
ring before transfer and those occurring from transfer to the
end of counting, using either the original transfer algorithm
or transferring by order.

prune, etc. times). With larger shard sizes (and
hence fewer shards), the percentage of n-grams in
each shard that are in-context (rather than ascend-
ing or backoff n-grams) is higher, and the size of
the largest shard (in terms of total n-grams in the
shard, both in-context and not) is much closer in
size to the smallest shard, leading to better load
balancing. Smaller shards, however, will gener-
ally distribute more effectively for many of the es-
timation tasks, leading to some speedups relative
to fewer, larger shards.

Table 2 presents counting times for the 5-gram
trials using both the standard transfer algorithm
reported in Table 1 and the alternate “by order”
transfer algorithm outlined in Section 4.2.4. The
times are broken down into the part of counting
before transfer and the part including transfer un-
til the end. From these we can see that in scenar-
ios with a very large number of shards – e.g., SQ
with 4M target per shard, which yields more than
5000 shards – the “by order” transfer algorithm is
much faster than the standard algorithm, leading
to a factor of 2 speedup overall. However, increas-
ing the target number of n-grams per shard, thus
yielding fewer shards, is overall a more effective
way to speedup processing. For much larger train-
ing scenarios, when even 40M n-grams per shard
would yield a large number of shards, one would
expect this alternative transfer algorithm to be use-
ful. Otherwise, the additional overhead of the ad-
ditional stages simply adds to the processing time.

7 Related work

Brants et al. (2007) presented work on distributed
language model training that has been very influ-
ential. In that work, n-grams were sharded based

on a hash function of the first words of the n-gram,
so that prefix n-grams, which carry normalization
counts, end up in the same shard as those requir-
ing the normalization. Because suffix n-grams do
not end up in the same shard, smoothing methods
that need access to backoff histories, such as Katz,
require additional processing.

In contrast, our sharding is on the suffix of
the history, which ensures that all n-grams with
the same history fall together, and very often the
backoff histories also fall in the same shard with-
out having to be added. Since normalization val-
ues can be derived by summing the counts of
all n-grams with the same history, the prefix is
not strictly speaking required for normalization,
though, as described in Section 3.2, we do add
them when ‘completing’ a model shard to canoni-
cal WFST n-gram format.

Sharding with individual n-grams as the unit
rather than working with the more complex WFST
topologies does have its benefits, particularly
when it comes to relatively easy balancing of
shards. The primary benefit of using WFSTs
in such a distributed setting lies in making use
of WFST functionality, such as modeling with
expected frequencies derived from word lattices
(Kuznetsov et al., 2016). Additionally, sharding
on the suffix of the history does allow for scaling
to much longer n-gram histories, such as would
arise in character language modeling. If we train
a 15-gram character language model from stan-
dard English corpora, then a significant number of
those n-grams will begin with the space charac-
ter, so creating a shard from a two character pre-
fix may lead to extremely unbalanced sharding. In
contrast, intervals of histories allow for balance
even in such an extreme setting.

8 Summary and Future Directions

We have presented methods for distributing the es-
timation of WFST-based n-gram language models.
We presented a model sharding approach that al-
lows for much of the model estimation to be car-
ried out on shards independently. We presented
some pipeline algorithms that yield models identi-
cal with what would be trained on a single proces-
sor, and provided some data on what the resulting
sharding looks like in real processing scenarios.
We intend to create a full open-source distributed
setup that makes use of the building blocks out-
lined here.

40

References
Cyril Allauzen and Michael Riley. 2013. Pre-

initialized composition for large-vocabulary speech
recognition. In Proceedings of Interspeech, pages
666–670.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Implementation and Application of Au-
tomata, pages 11–23. Springer.

Cyril Allauzen, Michael Riley, and Johan Schalkwyk.
2009. A generalized composition algorithm for
weighted finite-state transducers. In Proceedings of
Interspeech, pages 1203–1206.

Thorsten Brants, Ashok C Popat, Peng Xu, Franz J
Och, and Jeffrey Dean. 2007. Large language mod-
els in machine translation. In Proceedings of the
Joint Conference on Empirical Methods in Natural
Language Processing (EMNLP) and Computational
Natural Language Learning (CoNLL).

Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R Henry, Robert Bradshaw,
and Nathan Weizenbaum. 2010. Flumejava: easy,
efficient data-parallel pipelines. In ACM Sigplan
Notices, volume 45-6, pages 363–375.

Ciprian Chelba, Thorsten Brants, Will Neveitt, and
Peng Xu. 2010. Study on interaction between en-
tropy pruning and Kneser-Ney smoothing. In Pro-
ceedings of Interspeech, pages 2422–2425.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
Proceedings of Interspeech, pages 2635–2639.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapre-
duce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197. Association for Computational Linguis-
tics.

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35(3):400–401.

Vitaly Kuznetsov, Hank Liao, Mehryar Mohri, Michael
Riley, and Brian Roark. 2016. Learning n-gram lan-
guage models from uncertain data. In Proceedings
of Interspeech (to appear).

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modeling. Computer Speech and Lan-
guage, 8:1–38.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar soft-
ware libraries. In Proceedings of the ACL 2012 Sys-
tem Demonstrations, pages 61–66.

Hasim Sak, Yun-hsuan Sung, Françoise Beaufays, and
Cyril Allauzen. 2013. Written-domain language
modeling for automatic speech recognition. In Pro-
ceedings of Interspeech, pages 675–679.

Jeffrey Sorensen and Cyril Allauzen. 2011. Unary data
structures for language models. In Proceedings of
Interspeech, pages 1425–1428.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. In Proceedings of the
DARPA Broadcast News Transcription and Under-
standing Workshop, pages 270–274.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085–
1094.

41

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 42–50,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Learning Transducer Models for Morphological Analysis
from Example Inflections

Markus Forsberg
Språkbanken

University of Gothenburg
markus.forsberg@gu.se

Mans Hulden
Department of Linguistics

University of Colorado
mans.hulden@colorado.edu

Abstract

In this paper, we present a method to con-
vert morphological inflection tables into un-
weighted and weighted finite transducers
that perform parsing and generation. These
transducers model the inflectional behavior
of morphological paradigms induced from
examples and can map inflected forms of
previously unseen word forms into their
lemmas and give morphosyntactic descrip-
tions of them. The system is evaluated on
several languages with data collected from
the Wiktionary.

1 Introduction

Wide-coverage morphological parsers that return
lemmas and morphosyntactic descriptions (MSDs)
of arbitrary word forms are fundamental for achiev-
ing strong performance of many downstream tasks
in NLP (Tseng et al., 2005; Spoustová et al., 2007;
Avramidis and Koehn, 2008; Zeman, 2008; Hulden
and Francom, 2012). This is particularly true for
languages that exhibit rich inflectional and deriva-
tional morphology. Finite-state transducers are the
standard technology for addressing this issue, but
constructing them often requires not only signifi-
cant commitment of resources but also demands
linguistic expertise from the developers (Maxwell,
2015). Access to large numbers of example inflec-
tions organized into inflection tables in resources
such as the Wiktionary promises to offer a less
laborious route to constructing robust large-scale
analyzers. Learning morphological generalizations
from such example data has been the focus of much
recent research, particularly in the domain of mor-
phologically complex languages (Cotterell et al.,
2016).

In this paper we present a tool for automatic gen-
eration of both probabilistic and non-probabilistic

morphological analyzers that can be represented as
unweighted and weighted transducers. The assump-
tion is that we have access to a collection of exam-
ple word forms together with corresponding MSDs.
We present two systems: one that is designed to be
high-recall and operates with unweighted automata,
the purpose of which is to return all linguistically
plausible analyses for an unknown word form; the
second is an addition to the first in that the word
shapes are modeled with a generative probabilis-
tic model that can be implemented as a weighted
transducer that produces a ranking of the plausible
analyses. The analyzers are constructed with stan-
dard finite state tools and are designed to operate
similarly to a hand-constructed morphophonologi-
cal analyzer extended with a ‘guesser’ module to
handle unknown word forms.

The system takes as input sets of lemmatized
words annotated with an MSD, all grouped into
inflection tables—such as can be found in, for ex-
ample, the Wiktionary. The output is a morpho-
logical analyzer either as an unweighted (in the
non-probabilistic case) or a weighted model (in the
probabilistic case). For the non-probabilistic case
we use the Xerox regular expression formalism
(Karttunen et al., 1996), which we compile into a
transducer with the open-source finite-state toolkit
foma (Hulden, 2009) and for the weighted case we
have used the Kleene toolkit (Beesley, 2012).1

2 Paradigm Learning

The starting point for the research in this paper is
the notion that inflections and derivations of related
word forms can be expressed as functions—this
idea is often filed under the rubric of ‘functional
morphology’ and is strongly related to word-and-
paradigm models of morphology (Hockett, 1954;

1Our code and data are available at: https://github.
com/marfors/paradigmextract

42

drink
drank
drunk

x1 i x2
x1 a x2
x1 u x2

x1 i x2
x1 a x2
x1 u x2

x1 i x2
x1 a x2
x1 u x2

x1
x1 ed

x1 ed

x1
x1 ed

x1 ed

x1
x1 ed

x1 ed

swim
swam
swum

jump
jumped
jumped

climb
climbed
climbed

f1 f2

(a) inflection tables

(b) paradigms

(c) collapse paradigms

Figure 1: Generalizing inflection tables into
paradigm functions: (1) a number of complete in-
flection tables are given; (2) the aligned Longest
Common Subsequence is extracted; (3) resulting
identical paradigms are merged. If the resulting
paradigm f1 is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
model inflection tables from labeled data.

The purpose of modeling inflection types as func-
tions is to be able to generalize concrete manifesta-
tions of word inflection for specific lemmas, and to
apply those generalizations to unseen word forms.
The generalization in question is performed by ex-
tracting the Longest Common Subsequence (LCS)
from all word forms related to some specific lemma
and then expressing each word form in terms of
the LCS (Hulden, 2014). The LCS in turn is bro-
ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , xn), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2→ x1 a x2, with some constraints

43

on the nature of x1 and x2. This information can
then be encoded in transducer form where the vari-
able parts can be modeled as a probabilistic lan-
guage model (for weighted transducers) or a non-
probabilistic, constrained model (for unweighted
transducers).

Figure 2 illustrates this idea. We have learned a
paradigm in Spanish—we call the paradigm avenir
(arbitrarily), since that is one of the verbs out of
12 that behaved the same way and gave rise to the
same function. A natural mapping to learn from
the data is how to go from any inflected form to the
dictionary or ‘citation’ form. For example, going
from the present participle to the infinitive would
involve changing the fixed i occurring between the
two variables x1 and x2 into e and then changing
the fixed suffix after x2 from iendo to ir. The
figure also shows how the different variables were
instantiated in the training data: x1 showed up in
variable shapes (but always ending in v), while x2

was always n.
Although the learning model in principle states

nothing about the nature of the variables, mor-
phophonological restrictions will constrain their
appearance and the key to producing a transducer
that can inflect unseen words without undue over-
generation is to take these restrictions into account.
We do so in two ways: (1) for the unweighted case,
we collect statistics on the seen variables and con-
strain their possible shapes in an absolute manner,
and (2) for the weighted case, we induce a language
model over the shapes of the variables, which can
later be used to rank parses produced by the system.

3 The unweighted case: constraining
variables

Different generalized inflection tables naturally
give rise to different variable instantiations for
x1, . . . , xn. However, many of the seen variables
will not differ arbitrarily in a paradigm. This is
something we can take advantage of when design-
ing a parsing mechanism; in particular, we can
express preferences to the effect that such parses
where variables resemble already seen instantia-
tions should be preferred.

Figure 3 is a case in point. Here, we show the
implicit string-to-string rule in the paradigm which
derives the lemma form from the present partici-
ple and the first person singular present forms in
Spanish. In both the paradigms learned, the vari-
ables x1 and x2 show a somewhat repetitive pat-

tern. In the paradigm avenir, x1 ends in the letter v
for all the inflection tables seen that produced that
paradigm, while x2 always consists of the single
letter n. Likewise, in the other paradigm (negar),
x2 is consistently the string eg across all forms
seen (the inflected forms of cegar, denegar, etc.).
The only variable that does not show such a regular
pattern is the x1 variable for the paradigm called
negar.

3.1 Estimating probabilities of new variable
instantiations

That the parts of paradigms that vary from lemma
to lemma, i.e. the ‘variables’, are not subject to
arbitrary variation can be used to constrain their
shape. To model the unweighted transducers, we
begin by formalizing our belief in not seeing novel
variable shapes in the future. To quantify this, we
assume we have seen n concrete instantiations of t
different types of variables, and subsequently ask:
if there were in fact t + 1 types, all of which are
drawn from a uniform distribution, how likely are
we to have witnessed only the t types we did? This
quantity can be expressed as

punseen = (1− 1
t+ 1

)n (1)

For example, the measure for the x2 variable in
Figure 3 (avenir) becomes (1 − 1

2)12 ≈ 0.0002.
We can use this as a cutoff parameter that defines
how much evidence we require to declare a variable
not subject to further variation apart from the types
we have already seen. With this, we assume that
if punseen ≤ 0.05 for some variable, that variable in
the paradigm will not exhibit new types.2

3.2 Expressing constraints through regular
expressions

We also expand this measure to cover variables
that show variation only in non-edge positions. For
example, x2 in the avenir-paradigm in Table 3 is
always n and can be assumed to not be subject to
variation by the calculation above. The paradigm’s
x1-variable, however, cannot. That variable seems
to vary much more, with the exception of the last
letter, which is always v. To capture this, we ex-
tend the method to apply not only to the whole

2Estimating the probability of the existence of unseen types
is a classical problem (Good, 1953); see Ogino (1999) and
Kageura and Sekine (1999) for linguistics-related discussions
and Chen and Goodman (1996) for the relationship to smooth-
ing in language models.

44

0 1@

@

2v
@

v

3i:e 4n 5i 6e:r 7
n:ϵ

8
d:ϵ

9
o:ϵ

10
ϵ:[

11
ϵ:type=participle

12
ϵ:]

x1 x2

0 1@

@

2
i:ϵ

3e 4g 5o:a 6
ϵ:r

7
ϵ:[

8
ϵ:person=1st

9
ϵ:number=singular

10
ϵ:tense=present

11
ϵ:mood=indicative

12
ϵ:]

x1 x2
aviniendo → avenir[type=participle]

ciego → cegar[person=1st number=singular mood=indicative]

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1∪w2∪ . . .∪wn) if the variable is assumed
to be fixed, where the wis are the complete
strings seen as instantiations.

2. (p1 ∪ . . . ∪ pn)Σ∗ ∩ Σ∗(s1 ∪ . . . ∪ sn), if
both prefixes and suffixes can be constrained;
here the pis correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the sis
the suffixes.

3. (p1∪ . . .∪pn)Σ∗ if only prefixes appear fixed.

4. Σ∗(s1∪ . . .∪ sn) if only suffixes appear fixed.

5. Σ+ otherwise.

In the above, Σ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (Σ∗v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

x1 + i→e + x2 + iendo→ir

av
circunv
contrav
conv
dev
entrev
interv
prev
prov
rev
v
adv

n
n
n
n
n
n
n
n
n
n
n
n

av
circunv
contrav
conv
dev
entrev
interv
prev
prov
rev
v
adv

n
n
n
n
n
n
n
n
n
n
n
n

c
den
desasos
despl
fr
n
pl
r
ren
repl
restr
s
sos
an

eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg

eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg

x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(Σ+)︸ ︷︷ ︸
x1

(i :ε) e g︸︷︷︸
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego→ cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 ∪ f2 ∪ . . . ∪ f1 ∪ . . . ∪ fm (4)

5 Prioritizing analyses

The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each xi must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
Σ+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
∪P Constrained ∪P Unconstrained.

46

This in effect leads to an analyzer that can be
thought of as first consulting Original, and that fail-
ing to produce an analysis, consults Constrained,
and if that also fails, consults Unconstrained. The
same effect can also be modeled in runtime code by
keeping the three transducers separate for potential
savings of space. Table 2 illustrates this priority
effect with two Spanish words being analyzed.

6 The weighted case: language models
over variables

The above unweighted model provides a hierarchi-
cal system by which to return plausible analyses,
while curbing implausible ones. However, it lacks
the power to provide a ranking of analyses within
each layer of ever laxer constraints on the vari-
ables. An alternative to that model is to directly
use the statistics over the variable parts to generate
a weighted transducer that performs the same type
of parsing, but with a (hopefully) strict ranking of
candidate parses. We address this by inducing an
n-gram model over each variable in each paradigm.
We calculate these individual n-gram models in the
usual way for a single variable v, consisting of the
letters v1, . . . , vn:

P (v1, . . . , vn) =
n∏

i=1

P (vi|vi−(n−1), . . . , vi−1)

(5)
For each variable and function, we perform a

standard maximum likelihood estimate of the n-
grams by

P (vi|vi−(n−1), . . . , vi−1)

=
#(vi−(n−1), . . . , vi−1, vi)

#(vi−(n−1), . . . , vi−1)
(6)

with some additional add-δ smoothing to prevent
zero counts. The resulting variable models can
then (after taking negative logs) replace the variable
portions of each individual transducer that maps a
word form to its citation form. The fixed parts of
the inflection mappings retain the weight 0.

These language models are then concatenated
with the same model as used for the unweighted
case in place of the variables. This is illustrated in
Figure 4.

We tune the model for each language evaluated
by doing a grid search on (1) the order of the n-
gram (1–5), (2) the prior on the n-grams (0.01–3.0),

(3) the prior of picking a paradigm (we include a
paradigm weight for each individual paradigm).

Similarly to the unweighted case, the final model
is a union of all the individual inflection models for
each paradigm and word, with the language models
for the variables interleaved.

7 Evaluation

To evaluate the systems, we used the data set pub-
lished by Durrett and DeNero (2013) (D&DN13),
which includes full inflection tables for a large
number of lemmas in German (nouns and verbs),
Spanish (verbs), and Finnish (nouns+adjectives and
verbs). That source also provides a division into
train/dev/test splits, with 200 tables in dev and test,
respectively. We then evaluated the ability of our
systems to provide a correct lemmatization and
MSD of each word form in the held-out tables,
testing separately on each part of speech. For the
unweighted analyzer, we use the three-part setup
as described above. For the weighted case, we
produce a single highest scoring analysis. The
train/dev/test sets are entirely disjoint and share no
tables.

We trained the models by inspecting all the word
forms and corresponding MSDs, organizing them
into tables, learning the paradigms, and the gen-
erating weighted and unweighted transducers as
described above. These transducers were then run
on the test data to provide lemmatization and analy-
ses of the unseen word forms. Table 4 summarizes
the number of inflection tables seen during train-
ing, together with the final number of paradigms
learned. Table 5 shows the statistics in the held-out
data.

Because we focus on the recall figures of the
analyzers, we also calculated an “inherent ambi-
guity” measure of the test data. This is the aver-
age number of different MSDs that are given for
each word form. This ambiguity may arise as fol-
lows: the Spanish verb tenga, for example, can
be either the first person singular present subjunc-
tive of tener ‘to have’ or the third person singular
present subjunctive. Such ambiguity shows that
there exist cases where returning multiple analy-
ses is warranted, given that we do not have any
sentence context to determine the correct choice.

For the weighted case, sometimes the system
returns multiple equally scoring parses. This is due
to the fact that the language model only operates
over the variables, and, in many languages multi-

47

Language L-recall L+M-recall L/W L+M/W

nouns 95.30 95.06 2.08 9.52
German verbs 91.18 92.44 4.16 9.57

nouns+verbs 92.11 93.04 4.91 14.10

Spanish verbs 98.06 97.98 1.93 2.20

nounadj 88.69 88.48 4.10 5.30
Finnish verbs 94.52 94.47 3.77 4.60

nounadj+verbs 92.63 92.43 12.56 16.40

Table 3: The result of the unweighted evaluation, where we report separately on the recall of just the
lemma (L-recall), and the recall of the lemma and corresponding MSD (L+M-recall). Also shown are the
average number of unique lemmas returned per word form to be analyzed (L/W), and the average number
of lemmas and MSDs returned (L+M/W).

i:e/0.0 i/0.0 e:r/0.0 n:ϵ/0.0 d:ϵ/0.0 o:ϵ/0.0 ϵ:[/0.0 ϵ:type=participle/0.0 ϵ:]/0.0

x1 x2

aviniendo → avenir[type=participle]

LMx1 LMx2

Figure 4: Illustration of the coupling of language models for variables x1 and x2 to create the weighted
analyzer. Here, LMx1 and LMx2 illustrate a collection of states representing the language models for the
variables, inferred from variable instantiations seen in the training data.

Language Tables Paradigms

nouns 2564 70
German verbs 1827 139

nouns+verbs 4391 209

Spanish verbs 3855 96

nounadj 6200 259
Finnish verbs 7049 276

nounadj+verbs 13249 535

Table 4: Statistics on the D&DN13 train+dev sets.
Paradigms is the corresponding number of in-
duced paradigm functions.

Language Tables Unique wf’s Amb.

nouns 200 553 2.89
German verbs 200 2324 2.32

nouns+verbs 400 2877 2.43

Spanish verbs 200 10003 1.14

nounadj 200 5198 1.08
Finnish verbs 200 10466 1.03

nounadj+verbs 400 15664 1.05

Table 5: Statistics on the D&DN13 test set. Amb.
is the average number of lemma-MSD pairs per
unique word form (wf).

Language Lemma L+MSD MSD

German nouns 77.06 69.44 79.50
verbs 90.02 89.76 92.78

Spanish verbs 96.92 96.92 97.43

Finnish nounadj 70.29 69.68 91.59
verbs 90.44 90.44 98.02

Table 6: Evaluation of the weighted model (all
figures represent the recall).

ple MSDs often have the same surface form. For
example, Spanish compraba ‘bought 1P/3P’ (and
-aba suffix-bearing verbs in general) are always am-
biguous between 1st/3rd past tense. For this reason,
we calculate the recall (as opposed to accuracy) of
all the top scoring parses. The weighted system
always returns a single lemma in the evaluation. It
can, of course, produce a number of ranked analy-
ses if needed—an example of extracting the top-10
ranked analyses of a word form is given in Table 7.

7.1 Results

Table 3 shows the main results of the evaluation
of the unweighted model and Table 6 the results
of the weighted model. For the unweighted case,

48

rank w paradigm vars lemma analyses

1 14.10 p1_abadernar (1=compr) comprar [pers=2 num=sg tense=past mood=ind]

2 18.22 p1_abadernar (1=comprast) comprastar [pers=1 num=sg tense=pres mood=sub]
comprastar [pers=3 num=sg tense=pres mood=sub]

3 23.57 p5_abogar (1=compr) comprar [pers=2 num=sg tense=past mood=ind]
4 24.58 p4_abolir (1=comprast) comprastir [pers=3 num=sg tense=pres mood=ind]
5 24.58 p8_acrecentar (1=com,2=pr) comprar [pers=2 num=sg tense=past mood=ind]
6 25.51 p37_colgar (1=c,2=mpr) comprar [pers=2 num=sg tense=past mood=ind]
7 26.20 p10_acostar (1=c,2=mpr) comprar [pers=2 num=sg tense=past mood=ind]
8 26.61 p7_acceder (1=comprast) compraster [pers=3 num=sg tense=pres mood=ind]
9 26.87 p8_acrecentar (1=comp,2=r) comprar [pers=2 num=sg tense=past mood=ind]
10 29.98 p20_cegar (1=c,2=ompr) comprar [pers=2 num=sg tense=past mood=ind]

Table 7: Weighted parsing example: top-10 ranked parses for the word form compraste ‘buy PAST’
in Spanish with weights (in effect the negative log probability), the inferred variable division, the
lemmatization, and MSDs. Lemmas and parts of the analysis that are correct are given in boldface. Note
that several paradigms can produce an entirely correct parse for a single form such as this one, even
though the paradigms would differ in other forms.

we consider the lemma-recall and lemma+MSD
recall, and also document the average number of
unique parses returned (lemma or lemma+MSD).
For the weighted model, we give the recall for all
combinations of lemma+MSD.

The weighted recall is—for obvious reasons—
consistently below the unweighted version as the
unweighted case uses the hierarchical model to
potentially return a much larger number of anal-
yses. The weighted version always returns a sin-
gle lemma, and possibly several equally ranked
MSDs, as discussed above. Still, for some lan-
guages (Spanish and Finnish verbs in particular),
despite returning only a single analysis, perfor-
mance is on par with the unweighted model, which
returns 1.93 analyses on average (Spanish) and 3.77
(Finnish). We emphasize that the test set for our
experiments is entirely disjoint from the training
set, and that the figures therefore reflect potential
performance on unseen word forms, not standard
per-token performance in running text, which is
presumably much higher. The reported figures can
thus be interpreted to correspond to a per-type per-
formance for OOV items.

8 Conclusion and future work

We have described two supervised methods for pro-
ducing finite-state models morphological analyzers
and guessers from labeled word forms, organized
into inflection tables. The method can be used to
quickly produce high-recall morphological anal-
ysis from labeled data with little or no linguistic
development effort.

These tools can be used as is and can also be

modified to exploit unlabeled data in the form of
raw text corpora in a semi-supervised lexicon ex-
pansion setting. Some potential extensions could
be of immediate value: the generative weighted
model could be combined and evaluated on a
task of tagging/disambiguating running text where
contextual features could be used and seamlessly
combined with the morphological language model.
The weighted model also offers paths for further
experimentation—for example, it is not immedi-
ately obvious that an n-gram model is the best
choice. It seems reasonable to assume that those
parts of the variables modeled that stand closer to
the fixed parts, i.e. at the edges, would be more
important in judging similarity to previously seen
inflected forms. Table 2 hints at this being the case
since, for example, the Spanish variables seem far
more constrained at edge positions than in the mid-
dle of the variable string. Which parts to weight
as more important in judging similarity could also
be inferred from data. Another potential extension
is to also constrain the analysis form by integrat-
ing a word-level language model instead of only
a variable-level one, either replacing the variable-
level model or working in conjunction with it.

Acknowledgements

This work has been partly funded by the Swedish
Research Council under grant number 2012-5738,
Towards a knowledge-based culturomics and the
University of Gothenburg through its support of the
Centre for Language Technology and its support of
Språkbanken.

49

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
EACL, pages 569–578, Gothenburg, Sweden. Asso-
ciation for Computational Linguistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Proceedings of the NAACL-HLT
2015, pages 1024–1029, Denver, Colorado, May–
June. Association for Computational Linguistics.

Eleftherios Avramidis and Philipp Koehn. 2008. En-
riching morphologically poor languages for statisti-
cal machine translation. NAACL-HLT 2008, pages
763–770.

Kenneth R. Beesley. 2012. Kleene, a free and open-
source language for finite-state programming. In
10th International Workshop on Finite State Meth-
ods and Natural Language Processing, page 50.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. In Proceedings of the 34th ACL, pages
310–318. Association for Computational Linguis-
tics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. Association for Computational Linguistics.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In Proceedings of the 13th
EACL, pages 645–653.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of NAACL-HLT, pages 1185–1195.

Markus Forsberg and Aarne Ranta. 2004. Functional
morphology. ACM SIGPLAN Notices, 39(9):213–
223.

Markus Forsberg, Harald Hammarström, and Aarne
Ranta. 2006. Morphological lexicon extraction
from raw text data. In Advances in Natural Lan-
guage Processing, pages 488–499. Springer.

Irving J. Good. 1953. The population frequencies of
species and the estimation of population parameters.
Biometrika, 40(3-4):237–264.

Charles F Hockett. 1954. Two models of grammati-
cal description. Morphology: Critical Concepts in
Linguistics, 1:110–138.

Mans Hulden and Jerid Francom. 2012. Boosting
statistical tagger accuracy with simple rule-based
grammars. In Proceedings of the Language Re-
sources and Evaluation Conference (LREC 2012),
pages 2114–2117.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the 12th EACL, pages 29–
32, Athens, Greece. Association for Computational
Linguistics.

Mans Hulden. 2014. Generalizing inflection tables
into paradigms with finite state operations. In Pro-
ceedings of the 2014 Joint Meeting of SIGMOR-
PHON and SIGFSM, pages 29–36. Association for
Computational Linguistics.

Kyo Kageura and Satoshi Sekine. 1999. A note
on Ogino’s “method to estimate probability of new
appearance”. Journal of Mathematical Linguistics,
22(3).

Ronald M. Kaplan. 1987. Three seductions of com-
putational psycholinguistics. In P. Whitelock, M. M.
Wood, H. L. Somers, R. Johnson, and P. Bennett, ed-
itors, Linguistic Theory and Computer Applications,
London. Academic Press.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefen-
stette, and Anne Schiller. 1996. Regular expres-
sions for language engineering. Natural Language
Engineering, 2(4):305–328.

Peter H. Matthews. 1972. Inflectional morphology: A
theoretical study based on aspects of Latin verb con-
jugation. Cambridge University Press.

Michael Maxwell. 2015. Grammar debugging. In Sys-
tems and Frameworks for Computational Morphol-
ogy, pages 166–183. Springer.

T. Ogino. 1999. How many examples are required in
language research—a proposal of a method to esti-
mate probability of new appearance. Mathematical
Linguistics, 22(1):11–17.

Robert H Robins. 1959. In defence of WP. Transac-
tions of the Philological Society, 58(1):116–144.

Drahomíra Spoustová, Jan Hajič, Jan Votrubec, Pavel
Krbec, and Pavel Květoň. 2007. The best of two
worlds: Cooperation of statistical and rule-based tag-
gers for Czech. In Proceedings of the Workshop on
Balto-Slavonic Natural Language Processing, pages
67–74.

Gregory T. Stump. 2001. A theory of paradigm struc-
ture. Cambridge University Press.

Huihsin Tseng, Daniel Jurafsky, and Christopher Man-
ning. 2005. Morphological features help POS tag-
ging of unknown words across language varieties. In
Proceedings of the fourth SIGHAN workshop on Chi-
nese language processing, pages 32–39.

Daniel Zeman. 2008. Reusable tagset conversion
using tagset drivers. In Proceedings of the Lan-
guage Resources and Evaluation Conference (LREC
2008).

50

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 51–59,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Data-Driven Spelling Correction using Weighted Finite-State Methods

Miikka Silfverberga Pekka Kauppinenb Krister Lindénb

Department of Modern Languages, University of Helsinki
ampsilfve@iki.fi, bfirstname.lastname@helsinki.fi

Abstract

This paper presents two systems for
spelling correction formulated as a se-
quence labeling task. One of the systems
is an unstructured classifier and the other
one is structured. Both systems are imple-
mented using weighted finite-state meth-
ods. The structured system delivers state-
of-the-art results on the task of tweet nor-
malization when compared with the recent
AliSeTra system introduced by Eger et al.
(2016) even though the system presented
in the paper is simpler than AliSeTra be-
cause it does not include a model for input
segmentation. In addition to experiments
on tweet normalization, we present exper-
iments on OCR post-processing using an
Early Modern Finnish corpus of OCR pro-
cessed newspaper text.

1 Introduction

Spelling correction is one of the most widely ap-
plied language technological utilities. The most
obvious application of spelling correction is as
a writer’s aid. However, many natural lan-
guage processing applications can also benefit
from a spelling correction component. For ex-
ample, many existing NLP systems are trained on
newswire which tends to closely adhere to ortho-
graphical and grammatical norms. These systems
may incur a substantial hit in performance when
they are applied to noisy domains like social me-
dia. When spelling correction is applied as a pre-
processing step, performance can be better. Dig-
itization of documents is another domain where
spelling correction is useful. Digitization often
aims to transform physical documents into digi-
tal representations which support free text search.
This requires the use of an optical character recog-

input A m . c
output A nn ε e

Figure 1: Post-editing as sequence labeling. The
input to the post-editor is ”Am.c” and the correct
output is ”Anne”. This representation corresponds
to the 1-to-n alignment of Bisani and Ney (2008)
because each input symbol is associated with a
possibly empty sequence of outputs.

nition (OCR) engine. Depending on the quality of
the engine and source documents, this can succeed
to varying degrees. Spelling correction can be ap-
plied as a post-processing step in order to improve
quality.

Spelling correction is an instance of the more
general task of string-to-string translation. In
spelling correction, the objective is to transform
a possibly erroneous input string, for example
a misspelling or OCR error, into a correct out-
put string. Like many string-to-string translation
tasks, spelling correction can be formulated as se-
quence labeling: the correction system receives a
string of input symbols and associates each input
symbol with a (possibly empty) sequence of out-
put symbols as shown in Figure 1. The input to the
correction system can represent a line of text or an
isolated word. We will only consider the case of
isolated word correction in the present work.

This paper presents two models for supervised
spelling correction. Both treat the task as sequence
labeling but one of the models is structured and the
other one is unstructured. Both systems are imple-
mented as finite-state machines and are trained on
data consisting of word pairs aligned at character
level.

Our unstructured model is a finite-state trans-
ducer compiled from a set of weighted context-
sensitive replace rules that are used to generate

51

correction candidates from input strings. These
substitutions and their contexts are extracted from
training data. This approach was first presented by
Lindén (2006) for generating multilingual spelling
variants of scientific and medical terms originating
from Latin and Greek, but it also suitable for other
tasks involving probabilistic string-to-string trans-
lation.

Our structured model is an averaged perceptron
tagger. We represent the classifier as a composi-
tion of two weighted finite-state machines which
incorporate the unstructured and structured fea-
tures and parameters of the tagger. When these are
combined with an input string, the resulting finite-
state machine encodes all correction candidates
with their respective weights assigned by the tag-
ger. The finite-state implementation allows us to
extract a given amount of the best scoring correc-
tion candidates using well-known and efficient al-
gorithms that are widely available. The finite-state
implementation also allows for restricting candi-
dates to those found in a dictionary.

The paper is structured in the following way.
Section 2 presents earlier approaches to spelling
correction and the more general task of string-to-
string translation. In Section 3, we present the un-
structured and structured models used for spelling
correction. In Section 4, we present the features
utilized by the correction systems and in Section 5,
we show how the systems can be implemented us-
ing finite-state methods. In Section 6, we present
the data sets used in the experiments and in Sec-
tion 7, we present the experimental setup of the
paper and the results of the experiments. Finally,
we discuss the results in Section 8 and conclude
the paper in Section 9.

2 Related Work

Spelling correction is an old NLP task. The earli-
est approaches used plain edit distance combined
with a lexicon. The edit distance approach was
refined by Brill and Moore (2000) who added
weights for edit operations. These systems ig-
nored the context of the edit operation, which can
nevertheless be quite useful.

Dreyer et al. (2008) investigate string-to-string
translation which is a more general task than
spelling correction. In order to incorporate symbol
contexts into their models, they formulate string-
to-string translation as a sequence labeling task.
Their sequence labeling model is discriminative

and the alignment between the input and output
string is a latent variable. Dreyer et al. (2008) im-
plement their model as a finite-state machine. This
model is similar to ours but we do not treat the
alignment between input and output strings as a
latent variable. Instead, the training data for our
model is aligned in advance.

Another interesting approach is presented by
Xu et al. (2014) who learn a number of weighted
rewrite rules from data. They use a log linear
model to combine the rules and treat the alignment
of the input and output forms as a latent variable
like Dreyer et al. (2008). This system is reminis-
cent of ours because we also implement our two
systems using rewrite rules. However, again, we
do not treat the alignment of the input and output
strings as a hidden variable.

Hulden and Francom (2013) compare two FST
based methods for Spanish-language tweet nor-
malization. The first method relies on a hierarchi-
cally arranged set of unweighted context-sensitive
replace rules, while their other approach utilizes
a noisy-channel FST model on the input string.
These operations and their weights are extracted
from the training data set. The authors report a
somewhat better performance for the unweighted
rule-based method, with a final accuracy of 60 %,
but note that there is no theoretical obstacle that
would prevent the inclusion of contexts in the
weighted model.

Han and Baldwin (2011) present a method
for recognizing and correcting out-of-vocabulary
words in tweets and SMSs. They perform a set of
normalization processes to the input word to make
the relationship between the incorrect form and the
correct form more transparent and generate a set
of candidates within a certain edit distance. In ad-
dition to comparing orthographic forms, they also
consider the phonetic realization of the input word
and find correction candidates whose pronuncia-
tion is within a certain edit distance from the pro-
nunciation of the input word.

In recent work, Eger et al. (2016) survey four
systems for string-to-string translation on spelling
correction of Tweets and normalization of histor-
ical Latin text. (1) The Sequitur system (Bisani
and Ney, 2008) implements a joint generative
model on input and output strings using gra-
phones, which are units consisting of one input
symbol and a possibly empty sequence of output
symbols. (2) The DirecTL+ (Jiampojamarn et al.,

52

2010) represents the translation task as a pipeline
of a string segmentation system, which splits the
input string into character sequences, and a dis-
criminative sequence labeling system which trans-
lates the character sequences into output symbols.
DirecTL+ utilizes joint character n-grams in the
discriminative sequence labeling system. (3) The
AliSeTra system is based on the work of Eger
(2012). Like DirecTL+, it also views string-to-
string translation as a pipeline of segmentation
and sequence labeling. (4) The final system sur-
veyed by Eger et al. (2016) represents the string-
to-string translation task as a series of contex-
tual edit operations on the input string (Cotterell
et al., 2015). The operations are compiled into
a weighted finite-state machine. The edit oper-
ations are weighted using a probabilistic model
which resembles the maximum entropy Markov
model (MEMM) (McCallum et al., 2000). This
system is similar to our structured system but we
use a different feature set and estimate weights us-
ing the average perceptron algorithm. This avoids
the well-known label bias problem (Lafferty et al.,
2001) associated with MEMMs.

Systems 1, 2 and 3 surveyed by Eger et al.
(2016) form an interesting contrast to our systems
because we do not use segmentation of the input
string. In this sense, our system is simpler.

Eger et al. (2016) present experiments on
spelling correction both for the individual systems
discussed in the paper and also various combi-
nations of the systems. The AliSeTra system is
shown to give the best performance of all indi-
vidual surveyed systems on both Twitter data and
historical Latin. We also present experiments on
the Twitter data used by Eger et al. (2016) and
show that our structured system delivers at least
the same level of performance as the AliSeTra sys-
tem.

3 Models

In the following, we present the unstructured and
structured models used for spelling correction.
Both models express the probability p(y|x) of a
normalization sequence y = (y1, ..., yT) given an
input sequence x = (x1, ..., xT).

The input sequence x and output sequence y are
formally required to have the same length. In prac-
tice, each element of y can, however, consist of a
number of characters. This allows modeling of in-
sertions and deletions. For example in Figure 1,

the input sequence is (A, m, ., c) and the output
sequence is (A, nn, ε, e). This corresponds to a
deletion . → ε and a substitution m → nn. The
model cannot directly express the substitution of
two consecutive input symbols with one output,
for example nn → m. This can, however, be ex-
pressed indirectly using a deletion and subsequent
substitution as in n→ ε and n→ m.

The parameters of the models are estimated in a
supervised manner using training data consisting
of pairs of input and output strings. In order to
accelerate training, we use aligned training data
(consisting of symbol pairs) instead of treating the
alignment of input and output strings as a latent
variable.

3.1 Unstructured Classifier
This classifier represents the conditional proba-
bility p(y|x) of a normalization y = (y1, ..., yT)
given an input x = (x1, ..., xT) in an unstructured
manner, that is

p(y|x) =
T∏

t=1

p(yt|x, t)

This corresponds to making the assumption that
output symbols yt and yu (t 6= u) are independent
given the input x.

To determine the probabilities p(yt, |x, t), we
first map each input position (x, t) to a context
L � xt � R, where L and R are regular languages,
and the input position (x, t) matches L � xt � R,
that is

x1 ... xt−1 � xt � xt+1 ... xT ∈ L � xt �R.

The � symbol is a special symbol which does not
occur in any input string or output string.

We then define

p(yt|x, t) = p(yt|L � xt �R)

where the probability p(yt|L�xt �R) is estimated
from the training data simply by counting occur-
rences of output symbols z in positions which
match L � xt �R. More precisely,

p(z|L � xt �R) =

|{(x, t) matches L � xt �R and yt = z}|
|{(x, t) matches L � xt �R}|

Every input position encountered during test
time should be mapped to a unique context. There-
fore, the collection of contexts L�xt �R is chosen

53

in such a way that it forms a partition of Σ∗�Σ�Σ∗,
where Σ is the set of all input symbols. In Sec-
tion 4, we give a more detailed explanation of how
these contexts are chosen.

3.2 Peceptron Tagger
Our structured spelling correction system is for-
mulated as a traditional averaged perceptron tag-
ger (Collins, 2002) as shown in Equation 1. Given
an input sequence x of length T , the model assigns
a score s(·) for each output sequence y of length
T as determined by the model parametersw and a
vector valued feature extraction function φ. The n
best normalization candidates given by the system
can be extracted by finding the n highest scoring
outputs y.

s(x, y;w) =
T∑

t=1

w · φ(yt−2, yt−1, yt, x, t) (1)

The labels y−1 and y0 required for Equation 1 are
word boundary symbols.

4 System Specification

This section presents the contexts used for the un-
structured correction system and the features used
by the structured correction system.

4.1 Contexts for the Unstructured Classifier
As explained in Section 3.1, the unstructured nor-
malization model maps each input position (x, t)
to a context L � xt � R. These contexts form a
partition of Σ∗ � Σ � Σ∗.

The inventory of contexts is controlled by
hyper-parameters which are determined using
held-out data: nTH which is a minimum number
of context occurrences in the training data. An-
other parameter is lC which is the length of the
maximal right-hand context. We have set the value
of lC as 2 based on preliminary experiments.

If xt−1xtxt+1...xt+lC occurs at least nTH times
in the training data,

Σ∗xt−1 � xt � xt+1...xt+lC Σ∗

is chosen as context. If it occurs fewer times, each
of the sub-strings xt−1xtxt+1...xt+k, where 0 ≤
k < nC is considered in turn. The longest one
that occurs at least nTH times in the training data
is used to define a context. If none of them occur
more than nTH times, the single symbol xt is used
to define the context.

For each context L�xt�R, we include a number
of back-off contexts. For example, let Σ∗a � xt �
b c Σ∗ be a context, then back-off contexts are the
following contexts.

Σ∗ a � xt � b Σ∗

Σ∗ a � xt � Σ∗

Σ∗ � xt � Σ∗

In order to ensure that no two contexts overlap, we
need to modify the contexts slightly:

Σ∗ a � xt � b [Σ− c] Σ∗

Σ∗ a � xt � [Σ− b] Σ∗

Σ∗ [Σ− a] � xt � Σ∗

4.2 Features for the Perceptron Tagger
The structured correction system extracts unstruc-
tured and structured features from the input and
output context of letters. Unstructured features
associate the output in a single position with let-
ters in the input. In contrast, structured features
associate output letters with each other. Given
an input string x = (x1, ..., xT) and an output
string y = (y1, ..., yT), the unstructured features
extracted at position t are

1. (xt, yt)

2. (xt−1, xt, yt) and (xt, xt+1, yt)

3. (xt−3, xt−2, xt−1, yt), (xt−2, xt−1, xt, yt),
(xt−1, xt, xt+1, yt), (xt, xt+1, xt+1, yt) and
(xt+1, xt+2, xt+3, yt)

In addition, we extract the structured features

1. (yt)

2. (yt−1, yt)

3. (yt−2, yt−1, yt)

The unstructured features are aimed at capturing
the context of edit operations. Meanwhile, the
structured features act as a language model.

5 Implementation

This section describes the finite-state implemen-
tation of our correction systems as weighted re-
place rules (Mohri and Sproat, 1996). Formally,
the systems can be seen as sets of weighted par-
allel replace rules. As explained below, we how-
ever implement them using a cascade of weighted
rules for efficiency reasons. This section will also
describe the combination of replace rules and lex-
icon which is used in some of the experiments.

54

5.1 Weighted Parallel Replace Rules
Consider the following rule in XFST syntax
(Beesley and Karttunen, 2003)

u→ ε::0.05 || u

The rule matches in a context where the input
contains two consecutive symbols u, deletes the
second of them and assigns a penalty weight of
0.05 ≈ − log(0.95). The HFST library (Lindén et
al., 2011) implements these weighted rules.

The unstructured system described in Section
3.1 uses a set of mutually exclusive features as
explained in Section 4.1. Conceptually, the sys-
tem can therefore be seen as a set of parallel re-
place rules (Kempe and Karttunen, 1996) acting
on the same input strings. Although this formula-
tion is theoretically pleasing and weighted paral-
lel replace rules are available through the HFST
interface (Lindén et al., 2011), preliminary ex-
periments revealed that compilation of the system
represented using parallel replace rules is slow in
presence of training data of realistic scope. How-
ever, the subset of parallel replace rules needed in
our two systems can be reformulated as normal
replace rules to take advantage of a sequence of
compose operations eliminating the speed issue in
practice, see Section 5.3.

5.2 Unstructured Rules
The formulation of the substitutions and the con-
texts as explained in 4.1 as parallel replace rules is
fairly straightforward. For instance, the substitu-
tion xt with z in the context Σ∗a � xt � b c Σ∗ is
accomplished by the rule

xt → z::w ‖ a b c

Rules are assigned log weights which correspond
to the probabilities p of the substitutions they ex-
press, i.e. w = −log(p).

As explained in 5.1, rules are formulated as mu-
tually exclusive by supplementing the contexts of
the backoff rules with a negative expression con-
taining the non-overlapping parts from the higher-
order rule. This expression effectively blocks the
lower-order rule if a higher-order rule can be ap-
plied instead. For instance, if the rule set contains
the higher-order rule

x→ z::0.4 ‖ x y z

and a backoff rule

a→ b::0.2 ‖ x y

the latter is rewritten as

a→ b::0.2 ‖ x y [? − z]

Note that deletions and insertions are treated
here as ordinary substitutions, and the empty
string ε is thus treated like any other symbol. The
weights for insertions such as ε → a and non-
insertions (ε → ε) are estimated accordingly. The
sole exception to this are context-free insertions
that, unlike other context-free substitutions, are
disallowed altoghether.

5.3 Cascaded Weighted Rewrite Rules
In order to avoid the slow compilation of gen-
eral parallel replace rules, we can reformulate the
problem using a cascade of replace rules. In or-
der to maintain the correct semantics of the sys-
tem in a cascaded setting, we formulate the input
and output in such a way that rules no longer per-
form translation of the input string. Instead the in-
put already encodes all possible outputs and rules
simply assign weights to alternative output can-
didates. In practice, we represent inputs as se-
quences of pairs separated1 by a special symbol
• which is neither an input nor a potential output
symbol. Let us look at the following regular ex-
pression in Xerox syntax:

• # # • t [t|th|O] • e [e|c|O] • # # •
The • symbol unambiguously outlines the se-
quence of input and output symbol pairs. The
first pair of the sequence contains the word bound-
ary symbols #. Before feature extraction, we pad
the aligned strings with this auxiliary symbol in
order to formulate correspondences occurring in
string-inital and and string-final positions.The sec-
ond pair of the sequence contains an input symbol
t and a set of potential output symbols, of which
the O symbol denotes a deletion.

Using this representation, rules can be reformu-
lated as weighting expressions. For example, the
rule

O→ O::0.05 || t ? • e •
assigns a penalty of 0.05 to a deletion of the sec-
ond of the input symbols in our example above.

Features are composed into a weighted trans-
ducer W . Given an input I in the format presented
above, an n-best algorithm (Allauzen et al., 2007)
can extract the best scoring paths of I ◦W , from
which the output strings are extracted.

1The inventory of pairs is extracted from the training data

55

5.4 Structured Rules

The structured classifier uses both unstructured
and structured features. As seen above, un-
structured features can be compiled into replace
rules. Structured features can also be formulated
as rules. For example, the following rule assigns a
penalty to the output sequence ”thh”:

h→ h:: −33126 || ? t • ? h • ? •

Both the unstructured and the structured sys-
tems apply rules in the same way. Unstructured
and structured features are composed respectively
giving us two weighted transducers U and S.
Given an input I in the format presented above,
we extract the best scoring paths from I ◦ U ◦ S.

5.5 Minimization of Transducers with
Weights in the Tropical Semiring

We use finite-state machines with weights in the
tropical weight semiring as defined by Allauzen et
al. (2007). Because we use a series of composi-
tions spanning several thousands of rule transduc-
ers for compiling the unstructured and structured
feature transducers U and S, efficient determiniza-
tion and minimization algorithms are crucial.

The minimization algorithm presented by
Mohri and Sproat (1996) is available through
the HFST interface and applicable to transduc-
ers with tropical weights where the weights are
non-negative. Unfortunately, the structured cor-
rection system incorporates both positive and neg-
ative weights.

One solution to this problem is provided by Eis-
ner (2003) who introduces a more general for-
mulation of transducer minimization which is ap-
plicable to transducers with tropical weights in
the entire range R ∪ {∞,−∞} and many other
weight classes as well. We have, however, re-
sorted to a simpler approach which is applicable
in the special case of tropical weights. After ep-
silon removal and determinization but before min-
imization, we traverse the transitions and the final
state of the transducer M once and find the min-
imal weight wmin. Subsequently, we increment
all transition and final weights in transducer M
by |wmin| which results in a transducer M+ with
non-negative weights.

Let wM(p) be the weight assigned by transducer
M to path p. It is easy to see that wM+(p) =
wM(p) + |p| · |wmin|, where |p| is the length of p.

We then apply conventional minimization result-
ing in a machine N+. Subsequently, we subtract
the weight |wmin| from each transition in N+ re-
sulting in a machine N . As long as M does not
contain any epsilon transitions, the length of each
path p must be preserved by minimization. There-
fore the total weight of each path p

wN (p) = wM (p) + |p| · |wmin| − |p| · |wmin|
= wM (p)

is also preserved. Consequently, the minimized
machine accepts the same weighted relation as the
original machine.

5.6 Using a Lexicon
Some of our experiments utilize a lexicon. Pre-
liminary experiments indicated that the lexicon
should be combined in different ways with the un-
structured and structured system.

When using a lexicon, the unstructured system
returns the highest scoring correction candidate
which is found in the lexicon. If none of the candi-
dates are found in the lexicon, the system returns
the input form. In the unstructured system, the
task of an ouput language model is carried by the
lexicon alone.

The structured system extracts the N highest
scoring correction candidates and returns the high-
est scoring one of these that is found in the lexi-
con. If none of the candidates are found in the lex-
icon, the system returns the highest scoring can-
didate, which is plausible when part of the ouput
language model is encoded by the structured fea-
tures assuming that the lexicon is incomplete. This
setup was also used by Eger et al. (2016).

6 Data and Resources

We perform experiments on two data sets: a col-
lection of twitter spelling errors2 used by Eger et
al. (2016) and a corpus of Early Modern Finnish
scanned texts that have been processed using an
OCR engine. The data sets differ in the sense that
the Twitter data contains only spelling errors but
the Early Modern Finnish corpus contains a large
number of correctly recognized forms in addition
to OCR errors. Following Eger et al. (2016), we
use only the first 5000 word pairs from the Twitter
data set.

Both data sets consist of word pairs where the
first word is the original word and the second one

2Available from http://luululu.com/tweet/.

56

is its normalization. As our systems are trained on
aligned data, we used the grapheme to phoneme
translation system Phonetisaurus (Novak et al.,
2016) to align input and output strings used for
training.

The Finnish data used in our experiments con-
stitutes a part of a larger corpus of historical news-
papers and magazines (KLK) that has been digi-
tized by the National Library of Finland. Some
of this digitized material has been manually cor-
rected and edited at the Institute for the Languages
of Finland. Further correction has been carried out
via crowd-sourcing. Our data set consists of run-
ning text extracted from the OCR processed 19th-
century publications for which manually edited
material is available and comprises roughly 40 000
OCR processed word pairs.

We perform tenfold cross-validation on both
data sets. We divide the data sets into ten non-
overlapping parts D1, ..., D10 in the following
way. For each consecutive ten word pairs (starting
with the first), we assign the pair at position i to set
Di. We then form ten training, development and
test sets. The test set Ei is Di. The development
set Ui is Ti−1 when i > 1 and T10 when i = 1.
The training set Ti consists of the remaining par-
titions Dj . Hence training set T i, development set
Ui and test set Ei never overlap.

A lexicon is required for some of the exper-
iments. For Twitter data, we use the lexicon
ColLex.EN (Brück et al., 2014) following Eger
et al. (2016), and for the Finnish OCR data, we
use the OMorFi open-source Finnish morphologi-
cal analyzer (Pirinen, 2008).

For the task of correcting text written in Early
Modern Finnish, the OMorFi analyzer had to be
modified slightly to recognize capitalized variants
of all word forms as well as to accept some of
the more archaic spelling variants and vocabulary
found in Early Modern Finnish. We did this by
supplementing the acceptor with word forms ex-
tracted from the KLK corpus whose frequency
equals or exceeds 100. Word forms already ac-
cepted by OMorFi were given precedence.

7 Experiments

We perform experiments on the Twitter data and
Early Modern Finnish OCR data in the same man-
ner. For each data set, we measure the perfor-
mance of the unstructured and structured correc-
tion system using tenfold cross-validation on the

tp Number of erroneous inputs which are
corrected.

fp Number of correct inputs which are
changed to an incorrect output.

fn Number of erroneous input which are
not corrected.

Table 1: Definition of edit types.

data splits presented in Section 6. Our data sets
and code are available online.3

Both of the models presented in the paper incor-
porate hyper-parameters. We first set the hyper-
parameters using development data, then com-
bined the development and training data and use
the combination to train the final system which is
used to process the test data.

The FinnPos tagger toolkit (Silfverberg et al.,
2015) is used to train the models for the structured
system and the HFST Python interface (Lindén
et al., 2011) is used for constructing and operat-
ing finite-state machines. When training FinnPos
models, we used default settings for most hyper-
parameters. Only the number of training epochs
is determined using development data. For exper-
iments using a lexicon, we additionally use devel-
opment data to set the number of top correction
candidates N which are looked up in the lexicon
as explained in Section 5.6. For tweet normaliza-
tion, we use N = 80 and for Finnish OCR post
processing, we use N = 5.

As an evaluation metrics, we use correction rate
(CR) defined as

CR =
tp− fp

tp + fn

where tp, fp and fn are defined in Table 1. Note
that when all input forms are incorrect (as in the
case of the Twitter data), CR corresponds exactly
to the evaluation metric word accuracy (WACC)
used by Eger et al. (2016) because the count fp is
0.

WACC =
tp

tp + fn

7.1 Results
Tables 2 and 3 show the results of the experiments
on the Finnish OCR data and Twitter data. We per-
form tenfold cross-validation and provide t-based
confidence intervals at the 95% level.

3https://github.com/mpsilfve/ocrpp

57

No lexicon (%) Lexicon (%)

UC 48.56± 2.00 57.80± 1.82
AliSeTra 68.38± 1.52 72.98± 2.01
PT 70.14± 1.43 74.66± 1.38

Table 2: Results for tweet normalization. UC
refers to the unstructured classifier presented in
Section 3.1, PT to the perceptron tagger presented
in Section 3.2 and AliSeTra to the system pre-
sented by Eger et al. (2016).

No lexicon (%) Lexicon (%)

UC 20.02± 1.29 21.58± 2.11
PT 32.05± 1.97 35.09± 2.08

Table 3: Results for Finnish historical OCR.

For the Finnish OCR data, the structured per-
ceptron correction system clearly outperforms the
unstructured system both without using a lexicon
and when using a lexicon. The difference in per-
formance is statistically significant in both cases
at the 95% confidence level. Because the AliSe-
Tra system is not freely available, we do not have
results for that system on the Finnish OCR data.

For the Twitter data, both AliSeTra and the
perceptron tagger deliver superior accuracy when
compared with the unstructured system. The av-
erage performance of the perceptron tagger in this
experiment is superior to the performance of the
AliSeTra system as reported by Eger et al. (2016).
The difference in performance is, however, not sta-
tistically significant. It should be noted that the
data splits used in this work differ from the splits
used by Eger et al. (2016).

8 Discussion

The advantage of the unstructured approach is that
relatively little time is required for training the er-
ror model (on the league of ten minutes for our
data sets). The drawback of the unstructured mod-
els used is that they accommodate a very limited
set of features which manifests as comparably low
normalization performance.

The performance of our structured system is at
least equal to recent work of Eger et al. (2016)
on tweet normalization even though our system is
simpler in the sense that we use a 1-to-n mapping
from inputs to outputs whereas Eger et al. (2016)
use an n-to-n alignment between the input and

output. The n-to-n alignment, however, requires
segmentation of the input as a preprocessing step.
This may induce errors which cannot be corrected
later. Treating the segmentation as a latent vari-
able following (Cotterell et al., 2015) could be a
solution but it carries the disadvantage of slow es-
timation and inference.

It should be noted that we use some additional
unstructured features compared with Eger et al.
(2016) which may explain our slight performance
advantage.

9 Conclusions

We have presented two systems for word based
spelling correction using finite-state methods. We
have shown that we reach state-of-the-art results
when compared with a recent system presented by
Eger et al. (2016) on the task of tweet normal-
ization. Additionally, we have presented experi-
ments on the task of OCR post-processing on a
corpus consisting of Early Modern Finnish news-
paper text.

10 Acknowledgments

We wish to thank the anonymous reviewers for
their valuable suggestions.

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. Openfst: A
general and efficient weighted finite-state transducer
library. In Proceedings of the 12th International
Conference on Implementation and Application of
Automata, CIAA’07, pages 11–23, Berlin, Heidel-
berg. Springer-Verlag.

Kenneth R. Beesley and Lauri Karttunen. 2003. Fi-
nite State Morphology, volume 3 of CSLI Studies in
Computational Linguistics. CSLI Publications.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Commun., 50(5):434–451, May.

Eric Brill and Robert C. Moore. 2000. An improved
error model for noisy channel spelling correction.
In Proceedings of the 38th Annual Meeting on As-
sociation for Computational Linguistics, ACL ’00,
pages 286–293, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tim Vor Der Brück, Alexander Mehler, and Zahurul
Islam. 2014. Collex.en: Automatically generat-
ing and evaluating a full-form lexicon for english.
In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Hrafn Loftsson, Bente

58

Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), Reykjavik, Ice-
land, may. European Language Resources Associa-
tion (ELRA).

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 Conference on Empirical Methods in
Natural Language Processing - Volume 10, EMNLP
’02, pages 1–8, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. Transactions of the Associ-
ation for Computational Linguistics, 3:433–447.

Markus Dreyer, Jason R. Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’08, pages 1080–
1089, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Steffen Eger, Tim vor der Brck, and Alexander Mehler.
2016. A comparison of four character-level string-
to-string translation models for (ocr) spelling error
correction. The Prague Bulletin of Mathematical
Linguistics, 105:77–99.

Steffen Eger. 2012. S-restricted monotone alignments:
Algorithm, search space, and applications. In Pro-
ceedings of COLING 2012, pages 781–798, Mum-
bai, India, December. The COLING 2012 Organiz-
ing Committee.

Jason Eisner. 2003. Simpler and more general mini-
mization for weighted finite-state automata. In HLT-
NAACL.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a# twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 368–378.
Association for Computational Linguistics.

Mans Hulden and Jerid Francom. 2013. Weighted and
unweighted transducers for tweet normalization. In
Tweet-Norm@ SEPLN, pages 69–72. Citeseer.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2010. Integrating joint n-gram features
into a discriminative training framework. In Human
Language Technologies: Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, Proceedings, June 2-4, 2010, Los
Angeles, California, USA, pages 697–700.

André Kempe and Lauri Karttunen. 1996. Parallel re-
placement in finite state calculus. In Proceedings of
the 16th Conference on Computational Linguistics

- Volume 2, COLING ’96, pages 622–627, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Krister Lindén, Erik Axelson, Sam Hardwick,
Tommi A Pirinen, and Miikka Silfverberg. 2011.
HFSTFramework for Compiling and Applying Mor-
phologies. In Cerstin Mahlow and Michael Pi-
otrowski, editors, Systems and Frameworks for
Computational Morphology, volume 100 of Com-
munications in Computer and Information Science,
pages 67–85. Springer Berlin Heidelberg.

Krister Lindén. 2006. Multilingual modeling of cross-
lingual spelling variants. Inf. Retr., 9(3):295–310,
June.

Andrew McCallum, Dayne Freitag, and Fernando C. N.
Pereira. 2000. Maximum entropy markov mod-
els for information extraction and segmentation. In
Proceedings of the Seventeenth International Con-
ference on Machine Learning, ICML ’00, pages
591–598, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Mehryar Mohri and Richard Sproat. 1996. An effi-
cient compiler for weighted rewrite rules. In Pro-
ceedings of the 34th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 231–238,
Santa Cruz, California, USA, June. Association for
Computational Linguistics.

Josef Robert Novak, Nobuaki Minematsu, and Keikichi
Hirose. 2016. Phonetisaurus: Exploring grapheme-
to-phoneme conversion with joint n-gram models in
the wfst framework. Natural Language Engineer-
ing, FirstView:1–32, 4.

Tommi Pirinen. 2008. Automatic finite state mor-
phological analysis of Finnish language using open
source resources (in Finnish). Master’s thesis, Uni-
versity of Helsinki.

Miikka Silfverberg, Teemu Ruokolainen, Krister
Lindn, and Mikko Kurimo. 2015. Finnpos: an
open-source morphological tagging and lemmatiza-
tion toolkit for finnish. Language Resources and
Evaluation, pages 1–16.

Gu Xu, Hang Li, Ming Zhang, and Ziqi Wang. 2014.
A probabilistic approach to string transformation.
IEEE Transactions on Knowledge and Data Engi-
neering, 26(5):1–1.

59

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 60–69,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

EM-Training for Weighted Aligned Hypergraph Bimorphisms

Frank Drewes
Department of Computing Science

Umeå University
S-901 87 Umeå, Sweden
drewes@cs.umu.se

Kilian Gebhardt and Heiko Vogler
Department of Computer Science
Technische Universität Dresden

D-01062 Dresden, Germany
kilian.gebhardt@tu-dresden.de
heiko.vogler@tu-dresden.de

Abstract

We develop the concept of weighted
aligned hypergraph bimorphism where the
weights may, in particular, represent proba-
bilities. Such a bimorphism consists of an
R≥0-weighted regular tree grammar, two
hypergraph algebras that interpret the gen-
erated trees, and a family of alignments
between the two interpretations. Seman-
tically, this yields a set of bihypergraphs
each consisting of two hypergraphs and
an explicit alignment between them; e.g.,
discontinuous phrase structures and non-
projective dependency structures are bihy-
pergraphs. We present an EM-training al-
gorithm which takes a corpus of bihyper-
graphs and an aligned hypergraph bimor-
phism as input and generates a sequence
of weight assignments which converges to
a local maximum or saddle point of the
likelihood function of the corpus.

1 Introduction

In natural language processing alignments play an
important role. For instance, in machine translation
they show up as hidden information when training
probabilities of dictionaries (Brown et al., 1993) or
when considering pairs of input/output sentences
derived by a synchronous grammar (Lewis and
Stearns, 1968; Chiang, 2007; Shieber and Schabes,
1990; Nederhof and Vogler, 2012). As another
example, in language models for discontinuous
phrase structures and non-projective dependency
structures they can be used to capture the connec-
tion between the words in a natural language sen-
tence and the corresponding nodes of the parse tree
or dependency structure of that sentence.

In (Nederhof and Vogler, 2014) the generation
of discontinuous phrase structures has been for-

malized by the new concept of hybrid grammar.
Much as in the mentioned synchronous grammars,
a hybrid grammar synchronizes the derivations
of nonterminals of a string grammar, e.g., a lin-
ear context-free rewriting system (LCFRS) (Vijay-
Shanker et al., 1987), and of nonterminals of a
tree grammar, e.g., regular tree grammar (Brainerd,
1969) or simple definite-clause programs (sDCP)
(Deransart and Małuszynski, 1985). Additionally it
synchronizes terminal symbols, thereby establish-
ing an explicit alignment between the positions of
the string and the nodes of the tree. We note that
LCFRS/sDCP hybrid grammars can also generate
non-projective dependency structures.

In this paper we focus on the task of training an
LCFRS/sDCP hybrid grammar, that is, assigning
probabilities to its rules given a corpus of discon-
tinuous phrase structures or non-projective depen-
dency structures. Since the alignments are first
class citizens, we develop our approach in the
general framework of hypergraphs and hyperedge
replacement (HR) (Habel, 1992). We define the
concepts of bihypergraph (for short: bigraph) and
aligned HR bimorphism. A bigraph consists of
hypergraphs H1, λ, and H2, where λ represents
the alignment between H1 and H2. A bimorphism
B = (g,A1,Λ,A2) consists of a regular tree gram-
mar g generating trees over some ranked alphabet
Σ, two Σ-algebrasA1 andA2 which interpret each
symbol in Σ as an HR operation (thus evaluating
every tree to two hypergraphs), and a Σ-indexed
family Λ of alignments between the two interpreta-
tions of each σ ∈ Σ. The semantics of B is a set of
bigraphs.

For instance, each discontinuous phrase struc-
ture or non-projective dependency structure can be
represented as a bigraph (H1, λ,H2) whereH1 and
H2 correspond to the string component and the tree
component, respectively. Fig. 1 shows an example
of a bigraph representing a non-projective depen-

60

(a)

A hearing is scheduled on the issue today .

is
hearing

A on
issue

the

scheduled
today

.

(b)

(y
(0)
1)inp

is .
(y

(0)
1)out

hearing scheduled

A on today

issue

the

(y
(0)
1)inp

A hearing is scheduled on the issue today .
(y

(0)
1)out

H2

H1

λ

Figure 1: (a) A sentence with non-projective dependencies is represented in (b) by a bigraph (H1, λ,H2).
Both hypergraphs H1 and H2 contain a distinct hyperedge (box) for each word of the sentence. H1

specifies the linear order on the words. H2 describes parent-child relationships between the words, where
children form a list to whose start and end the parent has a tentacle. The alignment λ establishes a
one-to-one correspondence between the (input vertices of the) hyperedges in H1 and H2.

dency structure. We present each LCFRS/sDCP
hybrid grammar as a particular aligned HR bimor-
phism; this establishes an initial algebra semantics
(Goguen et al., 1977) for hybrid grammars.

The flexibility of aligned HR bimorphisms goes
well beyond hybrid grammars as they generalize
the synchronous HR grammars of (Jones et al.,
2012), making it possible to synchronously gen-
erate two graphs connected by explicit alignment
structures. Thus, they can for instance model align-
ments involving directed acyclic graphs like Ab-
stract Meaning Representations (Banarescu et al.,
2013) or Millstream systems (Bensch et al., 2014).

Our training algorithm takes as input an aligned
HR bimorphism B = (g,A1,Λ,A2) and a corpus
c of bigraphs. It is based on the dynamic program-
ming variant (Baker, 1979; Lari and Young, 1990;
Prescher, 2001) of the EM-algorithm (Dempster et
al., 1977) and thus approximates a local maximum
or saddle point of the likelihood function of c.

In order to calculate the significance of each
rule of g for the generation of a single bigraph
(H1, λ,H2) occurring in c, we proceed as usual,
constructing the reduct B � (H1, λ,H2) which
generates the singleton (H1, λ,H2) via the same
derivation trees as B and preserves the probabil-

ities. We show that the complexity of construct-
ing the reduct is polynomial in the size of g and
(H1, λ,H2) if B is an LCFRS/sDCP hybrid gram-
mar. However, as the algorithm itself is not limited
to this situation, we expect it to be useful in other
cases as well.

2 Preliminaries

Basic mathematical notation We denote the set
of natural numbers (including 0) by N and the set
N \ {0} by N . For n ∈ N, we denote {1, . . . , n}
by [n]. An alphabet A is a finite set of symbols.
We denote the set of all strings over A by A∗, the
empty string by ε, and A∗ \ {ε} by A+. We denote
the length of s ∈ A∗ by |s| and, for each i ∈ [|s|],
the ith item in s by s(i), i.e., s is identified with the
function s : [|s|]→ A such that s = s(1) · · · s(|s|).
We denote the range {s(1), . . . , s(|s|)} of s by [s].
The powerset of a set A is denoted by P(A). The
canonical extension of a function f : A → B to
f : P(A) → P(B) and to f : A∗ → B∗ are de-
fined as usual and denoted by f as well. We denote
the restriction of f : A→ B to A′ ⊆ A by f |A′ .

For an equivalence relation ∼ on B we denote
the equivalence class of b ∈ B by [b]∼ and the
quotient of B modulo ∼ by B/∼. For f : A →

61

B we define the function f/∼ : A → B/∼ by
f/∼(a) = [f(a)]∼. In particular, for a string s ∈
B∗ we let s/∼ = [s(1)]∼ · · · [s(|s|)]∼.

Terms, regular tree grammars, and algebras
A ranked alphabet is a pair (Σ, rk) where Σ is
an alphabet and rk : Σ→ N is a mapping associat-
ing a rank with each symbol of Σ. Often we just
write Σ instead of (Σ, rk). We abbreviate rk−1(k)
by Σk. In the following let Σ be a ranked alphabet.

Let A be an arbitrary set. We let Σ(A) denote
the set of strings {σ(a1, . . . , ak) | k ∈ N, σ ∈
Σk, a1, . . . , ak ∈ A} (where the parentheses and
commas are special symbols not in Σ). The set of
well-formed terms over Σ indexed by A, denoted
by TΣ(A), is defined to be the smallest set T such
that A ⊆ T and Σ(T) ⊆ T . We abbreviate TΣ(∅)
by TΣ and write σ instead of σ() for σ ∈ Σ0.

A regular tree grammar (RTG)1 (Gécseg and
Steinby, 1984) is a tuple g = (Ξ,Σ, ξ0, R) where
Ξ is an alphabet (nonterminals), Ξ ∩ Σ = ∅, el-
ements in Σ are called terminals, ξ0 ∈ Ξ (initial
nonterminal), R is a ranked alphabet (rules); each
rule in Rk has the form ξ → σ(ξ1, . . . , ξk) where
ξ, ξ1, . . . , ξk ∈ Ξ, σ ∈ Σk. We denote the set of all
rules with left-hand side ξ by Rξ for each ξ ∈ Ξ.

Since RTGs are particular context-free gram-
mars, the concepts of derivation relation and gen-
erated language are inherited. The language of the
RTG g is the set of all well-formed terms in TΣ

generated by g; this language is denoted by L(g).

We define the Ξ-indexed family (Dξ
g | ξ ∈

Ξ) of mappings Dξ
g : TΣ → P(TR); for each

term t ∈ TΣ, Dξ
g(t) is the set of t’s deriva-

tion trees in TR which start with ξ and yield t.
Formally, for each ξ ∈ Ξ and σ(t1, . . . , tk) ∈
TΣ, the set Dξ

g(σ(t1, . . . , tk)) contains each term
%(d1, . . . , dk) where % = (ξ → σ(ξ1, . . . , ξk))
is in R and di ∈ Dξi

g (ti) for each i ∈ [k].
We define Dg(t) =

⋃
ξ∈Ξ D

ξ
g(t) and Dξ

g(TΣ) =⋃
t∈TΣ

Dξ
g(t). Finally, Dξ0

g (TΣ, ξ) is the set of all

ζ ∈ TR({ξ}) such that there is a ζ ′ ∈ Dξ0
g (TΣ)

which has a subtree whose root is in Rξ, and ζ is
obtained from ζ ′ by replacing exactly one of these
subtrees by ξ.

Example 2.1. Let Σ = Σ0 ∪ Σ2 where Σ0 =
{σ2, σ4, σ5} and Σ2 = {σ1, σ3}. Let g be an RTG

1in this context we use “tree” and “term” as synonyms

with initial nonterminal S and the following rules:

S → σ1(A,B) A→ σ2

B → σ3(C,D) C→ σ4 D → σ5

We observe that S ⇒∗g σ1(σ2, σ3(σ4, σ5)). Let η,
ζ, and ζ ′ be the following trees (in order):

B → σ3(C,D)

C → σ4 D → σ5

S → σ1(A,B)

A→ σ2 B

S → σ1(A,B)

A→ σ2 η

Then ζ ∈ DS
g (TΣ, B) because ζ ′ ∈ DS

g (TΣ) and
the left-hand side of the root of η is B. �

A Σ-algebra is a pair A = (A, (σA | σ ∈ Σ))
where A is a set and σA is a k-ary operation on A
for every k ∈ N and σ ∈ Σk. As usual, we will
sometimes use A to refer to its carrier set A or,
conversely, denote A by A (and thus σA by σA)
if there is no risk of confusion. The Σ-term alge-
bra is the Σ-algebra TΣ with σTΣ

(t1, . . . , tk) =
σ(t1, . . . , tk) for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ. For each Σ-algebra A there is
exactly one Σ-homomorphism, denoted by [[.]]A,
from the Σ-term algebra to A (Wechler, 1992).

Hypergraphs and hyperedge replacement In
the following let Γ be a finite set of labels. A Γ-
hypergraph is a tuple H = (V,E, att, lab, ports),
where V is a finite set of vertices,E is a finite set of
hyperedges, att : E → V ∗ \ {ε} is the attachment
of hyperedges to vertices, lab: E → Γ is the label-
ing of hyperedges, and ports ∈ V ∗ is a sequence
of (not necessarily distinct) ports. The set of all
Γ-hypergraphs is denoted by HΓ. The vertices in
V \ [ports] are also called internal vertices and
denoted by int(H).

For the sake of brevity, we shall in the following
simply call Γ-hypergraphs and hyperedges graphs
and edges, respectively. We illustrate a graph in fig-
ures as follows (cf., e.g., graph((σ2)A) in Fig. 2a).
A vertex v is illustrated by a circle, which is filled
and labeled by i in case that ports(i) = v. An edge
e with label γ and att(e) = v1 . . . vn is depicted as
a γ-labeled rectangle with n tentacles, lines point-
ing to v1, . . . , vn which are annotated by 1, . . . , n.
(We sometimes drop these annotations.)

If we are not interested in the particular set of
labels Γ, then we also call a Γ-graph simply graph
and write H instead of HΓ. In the following, we
will refer to the components of a graph H by index-
ing them with H unless they are explicitly named.

Let H and H ′ be graphs. H and H ′ are disjoint
if VH ∩ VH′ = ∅ and EH ∩ EH′ = ∅.

62

(a)

1
is .

2

e1 e2

3 4 3 4

3 4 1 2

1 2

2 4
1 3

1 2

graph((σ1)A)

3
hearing

4

A
1 2

3 4

3 4

1 2

1 2

graph((σ2)A)

1
e1

2

3
e2

4

1 2

1 2

graph((σ3)A)

1
scheduled

2

today

3 4

3 4

1 2

1 2

graph((σ4)A)

1
on

2

issue

the

3 4

3 4

3 4

1 2

1 2

1 2

graph((σ5)A)

(b)

[[σ1(σ2, σ3(σ4, σ5))]]A =

1
is .

2

[[σ2]]A [[σ3(σ4, σ5)]]A

3 4 3 4

3 4 1 2

1 2

2 4
1 3

1 2 =

1
is .

2

hearing [[σ3(σ4, σ5)]]A

A

3 4 3 4

3 4 1 2

3 4

1 2

1 2
3

4

1 2

1 2

=

1
is .

2

hearing [[σ4]]A

A [[σ5]]A

3 4 3 4

3 4 1 2

3 4 1 2

1 2

1
2

1 2

1 2

=

1
is .

2

hearing scheduled

A on today

1 2

1 2 1 2· · ·

3 4 3 4

3 4 3 4

3 4 3 4 3 4

1 2

1 2
1

2

1 2

Figure 2: (a) The (Σ, Γ)-HR algebra A and (b) the evaluation of the term σ1(σ2, σ3(σ4, σ5)) in A.

Let E = EH ∩ EH′ . If attH |E = attH′ |E and
labH |E = labH′ |E , then the union of the graphs
H andH ′ is the graphH∪H ′ = (VH ∪VH′ , EH ∪
EH′ , attH∪attH′ , labH∪labH′ , portsHportsH′).

For every F ⊆ EH let H \ F = (VH , E,
attH |E , labH |E ,portsH) where E = EH \ F .

Let k ∈ N and H,H1, . . . ,Hk ∈ H be pair-
wise disjoint. Let e1, . . . , ek ∈ EH be pairwise
distinct edges, called variables. Let I be the graph
H \ {e1, . . . , ek} ∪H1 ∪ · · · ∪Hk. The hyperedge
replacement (HR) of e1 by H1, . . . , and ek by Hk

in H (Bauderon and Courcelle, 1987; Habel and
Kreowski, 1987) yields the graph

H[e1/H1, . . . , ek/Hk]
= (VI/∼, EI , attI/∼, labI ,portsH/∼)

where∼ is the least equivalence relation on VI such
that attH(ei, j) ∼ portsHi(j) for every i ∈ [k]
and j ∈ [min(|attH(ei)|, |portsHi |)]. In the fol-
lowing, we call∼ the equivalence relation involved
in the HR that yields H[e1/H1, . . . , ek/Hk].

We assume that each variable ei is labeled by a
distinguished symbol ⊥ ∈ Σ and depict ei by ei

instead of ⊥ . Throughout this paper, we will not
distinguish between isomorphic graphs, i.e., graphs
that are identical up to a bijective renaming of ver-
tices and edges. However, since hyperedge replace-
ment is defined on concrete graphs and requires
that H,H1, . . . ,Hk are pairwise disjoint, we may
choose isomorphic copies of the involved graphs,
i.e., rename edges or vertices. To avoid the cum-
bersome conversion between abstract and concrete

graphs, we assume that this renaming is opaque.
In this sense, we may define an HR operation as a
total function fromHk toH as follows.

Let H be a graph. For pairwise distinct
edges e1, . . . , ek ∈ EH , the HR operation
H〈e1...ek〉 : Hk → H is given by

H〈e1...ek〉(H1, . . . ,Hk) = H[e1/H1, . . . , ek/Hk]

for all graphs H1, . . . ,Hk ∈ H.
A (Σ, Γ)-HR algebra (Courcelle, 1991) is a Σ-

algebra A = (HΓ, (σA)σ∈Σ) where, for every k ∈
N and σ ∈ Σk, we have σA = H〈e1...ek〉 for some
H ∈ HΓ and pairwise distinct e1, . . . , ek ∈ EH .
Then we denote H by graph(σA). An HR algebra
is a (Σ, Γ)-HR algebra for some Σ and Γ.

An example of a (Σ, Γ)-HR algebra A and the
application of [[.]]A to a term are given in Fig. 2.

3 Bigraphs and Aligned HR
Bimorphisms

Now we formally introduce our central notions
of bigraph and aligned HR bimorphism. A case
study with examples follows in the next section.
Throughout this section let ∆ and Ω be alphabets.

Definition 3.1. A bigraph of type (∆,Ω) is a triple
B = (H1, λ,H2) where H1 ∈ H∆ and H2 ∈ HΩ

are disjoint, and λ is an alignment of H1 and H2,
i.e., a graph with Vλ = VH1 ∪ VH2 , Eλ ∩ EH1 =
Eλ∩EH2 = ∅, att(e) ∈ (VH1)

+ ·(VH2)
+ for each

e ∈ Eλ, and portsλ = ε. �

63

(a) x
(0)
1

. . . x
(0)
m0

σ y
(0)
1

. . . y
(0)
n0

y
(1)
1

. . . y
(1)
m1 x

(1)
1

. . . x
(1)
n1

e1

y
(k)
1

. . . y
(k)
mk x

(k)
1

. . . x
(k)
nk

ek

· · ·

e
(0)
1 e

(0)
n0

e
(1)
1 e

(1)
m1

e
(n)
1 e

(n)
mk

(b)
σ1

(y(0)
1)inp

is .
(y(0)

1)out

y
(1)
1 x

(1)
1

e1

x
(2)
1 x

(2)
2

e2

(c)
inp

is .
out

x
(1)
1 x

(2)
1 x

(2)
2

(d)

inp
x

(2)
2

out

x
(1)
1

x
(2)
1

Figure 3: The graphs (a) Hσ
IO, (b) Hσ1 , (c) Ls(0)

1 M, and (d) Ls(1)
1 M. The large circles and the dotted lines in

(a) and (b) visualize the underlying term structure; e.g., in (b) σ1 has two children because σ1 ∈ Σ2.

Definition 3.2. An aligned HR bimorphism of type
(Σ,∆,Ω) is a tuple B = (g,A1,Λ,A2), where
g is an RTG over Σ and A1,A2 are a (Σ,∆)-HR
algebra and a (Σ,Ω)-HR algebra, resp., such that
graph(σA1) and graph(σA2) are disjoint for each
σ ∈ Σ. Further, Λ is a Σ-indexed family (Λσ | σ ∈
Σ), each Λσ being an alignment of graph(σA1)
and graph(σA2). �

In the following, for each term t ∈ TΣ, we as-
sume (w.l.o.g.) that [[t]]A1 and [[t]]A2 are disjoint.

Definition 3.3. Let B = (g,A1,Λ,A2) be an
aligned HR bimorphism. The semantics of B, de-
noted by L(B), is the set of bigraphs defined as
follows.

First, let the B-alignment be the TΣ-indexed
family ΛB = (ΛB(t) | t ∈ TΣ) where ΛB(t)
is the alignment of [[t]]A1 and [[t]]A2 defined induc-
tively on t as follows. Let t = σ(t1, . . . , tk) ∈ TΣ.
For j ∈ [2], suppose that ∼j is the equivalence
relation involved in the hyperedge replacement
that yields graph(σAj)[e1/[[t1]]Aj , . . . , ek/[[tk]]Aj].
We assume that Λσ, ΛB(t1), . . . , ΛB(tk) have pair-
wise disjoint sets of edges. Then we define the
B-alignment of [[t]]A1 and [[t]]A2 to be the graph

ΛB(t) = (Λσ∪ΛB(t1)∪· · ·∪ΛB(tk))/(∼1∪∼2)

and we let [[t]]B = ([[t]]A1 ,ΛB(t), [[t]]A2). Finally,
we define L(B) = {[[t]]B | t ∈ L(g)}. �

4 Case Study: Hybrid Grammars

We show how an LCFRS/sDCP hybrid grammar
(Nederhof and Vogler, 2014) can be represented as
an aligned HR bimorphism. These grammars deal
with sequence terms; hence, we first recall their
definition and show how to view sequence terms as
particular graphs.

4.1 A Graph View on Sequence Terms
Let Γ be a ranked alphabet and Y be a set disjoint
from Γ. The sets of terms and sequence-terms (s-
terms) over Γ indexed by Y (Seki and Kato, 2008)
are denoted by TΓ(Y) and T ∗Γ (Y), respectively,
and defined inductively as follows:

1. Y ⊆ TΓ(Y),

2. if k ∈ N, γ ∈ Γk and si ∈ T ∗Γ (Y) for each
i ∈ [k], then γ(s1, . . . , sk) ∈ TΓ(Y), and

3. if n ∈ N and ti ∈ TΓ(Y) for each i ∈ [n],
then 〈t1, . . . , tn〉 ∈ T ∗Γ (Y).

Let s ∈ T ∗Γ (Y). We say that s is linear if every
y ∈ Y occurs at most once in s. In the following
we only consider linear s-terms. We note that, if
Γ = Γ0, then s is essentially a string over Γ0 and
Y . If Γ = Γ1, then s corresponds to a sequence of
ordinary (unranked) terms over Γ1 indexed by Y .

Every linear s-term s can be represented as a
graph LsM: it has two distinct ports inp and out ,
representing the start and end of s, resp. For each
variable y ∈ Y , LsM has two distinct ports yinp and
yout . For each occurrence of a symbol γ ∈ Γk in
s, there is a γ-labeled edge with 2k + 2 tentacles
in LsM. The (2i− 1)-th and 2i-th tentacle (i ∈ [k])
point to the start and end vertex, respectively, of
the i-th child sequence of γ. The last two tentacles
point towards the predecessor and the successor of
γ, respectively: this may be a vertex separating two
symbols, the start or end vertex of a (sub-)sequence,
or the port realizing yinp or yout for some y ∈ Y .

For instance, the s-term

s
(0)
1 = 〈is(〈x(1)

1 , x
(2)
1 〉), . (〈〉)〉

in T ∗Γ ({x(1)
1 , x

(2)
1 , x

(2)
2 }) is represented by Ls(0)

1 M in
Fig. 3c. The ports (x(2)

2)inp and (x(2)
2)out for x(2)

2

64

are depicted as filled circles to the left and the right
of x(2)

2 , and similarly for the other variables. Note
that (x(1)

1)out and (x(2)
1)inp coincide because x(1)

1

is succeeded by x(2)
1 in s(0)

1 .

4.2 LCFRS, sDCP, and LCFRS/sDCP
Hybrid Grammars

Here we formalize LCFRS/sDCP hybrid grammars
as particular aligned HR bimorphisms, where the
algebras A1 and A2 are an LCFRS algebra and an
sDCP algebra, resp. Since both LCFRS and sDCP
can be viewed as particular types of attribute gram-
mars (AG), we first define the concept of AG alge-
bra and, in a second step, instantiate it to LCFRS
algebra and sDCP algebra.

For each σ ∈ Σk, let synσA = (n0, . . . , nk) ∈
N k+1 and inhσA = (m0, . . . ,mk) ∈ Nk+1 be tu-
ples defining the sets I = {y(0)

j | j ∈ [n0]}∪{y(i)
j |

i ∈ [k], j ∈ [mi]} and O = {x(0)
r | r ∈

[m0]} ∪ {x(`)
r | ` ∈ [k], r ∈ [n`]} of inside and

outside attributes, resp. (The abbreviations stem
from the AG notions synthesized attributes and in-
herited attributes.) The definition of an AG algebra
A follows the two-phase approach in (Engelfriet
and Heyker, 1992). In the first phase, for each
symbol σ in Σk, we define a graph Hσ

IO of type
synσA, inhσA as shown in Fig. 3a: there is a pair
of vertices for each inside attribute y(i)

j and each

outside attribute x(`)
r . For each inside attribute y(i)

j

there is a edge e(i)j which connects y(i)
j with all out-

side attributes. For the edge e(0)
1 the tentacles are

shown completely in Fig. 3a; for the other edges
the tentacles to outside attributes are abridged for
clarity. The edges e1, . . . , ek correspond to the k
successors of σ.

In the second phase, we choose an I-indexed
family of s-terms (s(i)j ∈ T ∗Γ (O) | y(i)

j ∈ I) such

that each x(`)
r in O occurs exactly once in all s(i)j

together (single syntactic use restriction). Then
we replace each edge e(i)j by the graph Ls(i)j M; this
specifies a particular information flow. Formally,
we set σA = Hσ

〈e1...ek〉 where

Hσ = Hσ
IO[e(i)j /Ls(i)j M | y(i)

j ∈ I] .

For instance, for σ1 ∈ Σ2 we have synσ1
A =

(1, 1, 2) and inhσ1
A = (0, 1, 0), and so we con-

struct Hσ1
IO accordingly. Next, we choose Ls(0)

1 M
and Ls(1)

1 M as depicted in Fig. 3c and 3d, respec-

tively. Then Hσ1 = Hσ1
IO[e(0)

1 /Ls(0)
1 M, e(1)

1 /Ls(1)
1 M]

is the graph in Fig. 3b where dashed lines indicate
the identification of vertices. Note that Hσ1 equals
graph((σ1)A) in Fig. 2a.

A (Σ, Γ)-HR algebra A is a (Σ, Γ)-attribute
grammar algebra ((Σ, Γ)-AG algebra), if each
symbol σ in Σ is interpreted as described above.
For instance, A of Fig. 2a is a (Σ, Γ)-AG algebra.

We observe that (Σ, Γ)-AG algebras have the
following property: for every edge e ∈ EHσ , if
labHσ(e) ∈ Γk then e has 2k + 2 tentacles. We
call the vertex attHσ(e)(k + 1) the input vertex
of e and denote it by inp(e). Note that no two
terminal edges in Hσ have the same input vertex.
This single-input property will be crucial for an effi-
cient representation of subgraphs during the reduct
construction (cf. Sec. 5.2).

Next we instantiate the concept of AG-algebra to
LCFRS algebras and to sDCP algebras. An LCFRS
does not have inherited attributes:

Definition 4.1. Let ∆ = ∆0 be a ranked alphabet.
A (Σ,∆)-AG algebraA is a (Σ,∆)-LCFRS algebra,
if inhσA = (0, . . . , 0) for all σ ∈ Σ. �
Definition 4.2. Let Ω = Ω1 be a ranked alphabet
and let A be a (Σ,Ω)-AG algebra. We say that A
is a (Σ,Ω)-sDCP algebra. �

Then the graph view on an LCFRS/sDCP
hybrid grammar is an HR bimorphism B =
(g,A1,Λ,A2), where
• g = (Ξ,Σ, ξ0, R) is an RTG,
• A1 is a (Σ,∆)-LCFRS algebra,
• A2 is a (Σ,Ω)-sDCP algebra, ∆ = Ω (regard-

ing ∆ and Ω as sets of symbols), and
• there are functions fan: Ξ → N , inh: Ξ →

N, and syn: Ξ → N such that fan(ξ0) = 1,
inh(ξ0) = 0, syn(ξ0) = 1, and for every (ξ →
σ(ξ1, . . . , ξk)) ∈ R, it holds that

– (fan(ξ), fan(ξ1), . . . , fan(ξk)) = synσA1
and

– (inh(ξ), inh(ξ1), . . . , inh(ξk)) = inhσA2
and

(syn(ξ), syn(ξ1), . . . , syn(ξk)) = synσA2
.

Moreover, we require the following: Let σ ∈ Σ and
Hj = graph(σAj) for j ∈ [2]. For each e ∈ EΛσ

we have attΛσ(e) = inp(e1) inp(e2) where e1 ∈
EH1 , e2 ∈ EH2 , and labH1(e1) = labH2(e2).

Example 4.3. Let g be as in Ex. 2.1 and con-
sider the LCFRS/sDCP hybrid grammar B =
(g,A1,Λ,A2), where A1, Λ, and A2 are as speci-
fied in Fig. 4. Then the bigraph in Fig. 1b equals
[[σ1(σ2, σ3(σ4, σ5))]]B and is thus in L(B). �

65

(y
(0)
1)inp

is .
(y

(0)
1)out

e1 e2(x
(1)
1)inp (x

(2)
1)out

(x
(1)
1)out , (x

(2)
1)inp

(y
(1)
1)out ,(x(2)

2)out

(y
(1)
1)inp ,(x(2)

2)inp

(y
(0)
1)inp

e1 is e2 .
(y

(0)
1)out

(σ1)A2

(σ1)A1

Λσ1

(y
(0)
1)inp

hearing
(y

(0)
1)out

A
(x(0)

1)inp (x(0)
1)out

(y
(0)
1)inp

A hearing
(y

(0)
1)out

(σ2)A2

(σ2)A1

Λσ2

(y
(0)
1)inp

on
(y

(0)
1)out

issue

the

(y
(0)
1)inp

on the issue
(y

(0)
1)out

(σ5)A2

(σ5)A1

Λσ5

(y
(0)
1)inp

e1
(y

(0)
1)out (y

(0)
2)inp

e2
(y

(0)
2)out

(y
(0)
1)inp , (x

(1)
1)inp (x

(1)
1)out , (x

(2)
1)inp (x

(2)
1)out , (x

(1)
2)inp (x

(1)
2)out , (y

(0)
1)out

e1 e2

(σ3)A2

(σ3)A1

Λσ3

(y
(0)
1)inp

scheduled
(y

(0)
1)out

today

(y
(0)
1)inp

scheduled
(y

(0)
1)out (y

(0)
2)inp

today
(y

(0)
2)out

(σ4)A2

(σ4)A1

Λσ4

Figure 4: The interpretation of σ1, . . . , σ5 in A1, Λ, and A2.

5 EM Training

We present a training algorithm which takes as in-
put a weighted aligned HR bimorphism and a finite,
non-empty corpus c of bigraphs. It is essentially
the same as the training algorithm for probabilistic
context-free grammars (PCFG) (Baker, 1979; Lari
and Young, 1990; Nederhof and Satta, 2008). As
shown in (Prescher, 2001), this algorithm is a dy-
namic programming variant of the EM-algorithm
(Dempster et al., 1977). Thus, our algorithm gener-
ates a sequence of probability assignments which
converges to a probability assignment p̂; the like-
lihood of c under p̂ is a local maximum or saddle
point of the likelihood function of c.

5.1 Weighted Aligned HR Bimorphisms
We define weighted RTG in a similar way as PCFG
was defined in (Nederhof and Satta, 2006).

A weighted regular tree grammar (WRTG) is
a pair (g, p) where g = (Ξ,Σ, ξ0, R) is an RTG
and p : R → R≥0 is the weight assignment. A
weight assignment p is a probability assignment if∑

ρ∈Rξ p(ρ) = 1 for each ξ ∈ Ξ. We extend p to
the mapping p′ : Dg(TΣ)→ R≥0 on derivations as
follows: for each d = %(d1, . . . , dk) inDg(TΣ) we
define p′(d) = p(%) ·∏k

i=1 p
′(di). For each t ∈ TΣ

we define p′′(t) =
∑

d∈Dξg(t) p
′(d). We define the

mappings in : Ξ → R≥0 ∪ {∞} (inside weight)
and out : Ξ → R≥0 ∪ {∞} (outside weight) for
each ξ ∈ Ξ by

in(ξ) =
∑

d∈Dξg(TΣ)

p′(d) out(ξ) =
∑

d∈Dξ0g (TΣ,ξ)

p′′′(d)

where p′′′ : Dξ0
g (TΣ, ξ) → R≥0 is defined in the

same way as p′, with the addition that p′′′(ξ) = 1.
As usual, we will drop the primes from p′, p′′, and
p′′′.
Definition 5.1. A weighted aligned HR bimor-
phism is a pair (B, p) = ((g,A1,Λ,A2), p) where
(g,A1,Λ,A2) is an aligned HR bimorphism and
(g, p) is a WRTG. �

5.2 Reduct Construction
Given a weighted aligned HR bimorphism (B, p) =
((g,A1,Λ,A2), p) and a bigraph (H1, λ,H2), we
restrict g to an RTG g′ such that only trees t ∈ L(g)
satisfying [[t]]B = (H1, λ,H2) are in L(g′). Also,
we show that if B is an LCFRS/sDCP hybrid gram-
mar, then g′ can be constructed in time polynomial
in the size of B and (H1, λ,H2).
Definition 5.2. Let m ∈ N and H ∈ H. A
graph H ′ is an m-subgraph of H if int(H ′) ⊆
int(H), EH′ ⊆ EH , labH′ = labH |EH′ , and
|portsH′ | ≤ m. Moreover, we require that there
is a mapping ϕ : VH′ → VH , called vertex map-
ping, such that ϕ(attH′(e)) = attH(e) for each
e ∈ EH , ϕ(v) = v for each v ∈ int(H ′), and
ϕ(int(H ′)) ∩ ϕ([portsH′]) = ∅. Moreover, for
each v ∈ int(H ′), if v ∈ [attH(e)] for some
e ∈ EH , then e ∈ EH′ . The set of allm-subgraphs
of H is denoted byHmS (H). �

For instance, graph((σ4)A) in Fig. 2a is a 2-
subgraph of the last graph in Fig. 2b. If a graph H
is the result of applying an HR operation to graphs
H1, . . . ,Hk, then each Hi is a |portsHi |-subgraph
of H . (For this, the mapping ϕ in Definition 5.2 is

66

needed, because some of the ports of Hi may be
identified with each other in H .) Hence, for the
reduct we consider only m-subgraphs of H , where
m is the maximal port length of HR operations
in A1 or A2. We observe that HmS (H) is finite
because we identify isomorphic graphs.

Definition 5.3. Let (B, p) = ((g,A1,Λ,A2), p)
be a weighted aligned HR bimorphism with g =
(Ξ,Σ, ξ0, R) and let (H1, λ,H2) be a bigraph.

We define (B, p) � (H1, λ,H2), the reduct
of (B, p) with respect to (H1, λ,H2), to
be the weighted aligned HR bimorphism
((g′,A1,Λ,A2), p′) where g′ and p′ are defined as
follows.

If [[.]]B−1(H1, λ,H2) = ∅, then g′ = ({ξ′0},Σ,
ξ′0, ∅) and p′ = ∅. Otherwise, let m ∈ N
be the maximum of all |portsgraph(σA1

)| and
|portsgraph(σA2

)| where σ ∈ Σ. Now, we con-
struct g′ = (Ξ′,Σ, ξ′0, R′) where we abbreviate
HmS (H1)×HmS (λ)×HmS (H2) byHmS (H1, λ,H2):

• Ξ′ = Ξ × (HmS (H1, λ,H2) ∩ [[TΣ]]B),
• ξ′0 = (ξ0, H1, λ,H2), and
• for every rule % = (ξ → σ(ξ1, . . . , ξk)) ∈ R

and (s, η, r), (s1, η1, r1), . . . , (sk, ηk, rk) in
HmS (H1, λ,H2) ∩ [[TΣ]]B we have

%′ =
(
(ξ, s, η, r)→σ((ξ1, s1, η1, r1), . . . ,

(ξk, sk, ηk, rk))
) ∈ R′

if s = σA1(s1, . . . , sk), η = Λσ ∪η1∪ . . .∪ηk,
and r = σA2(r1, . . . , rk).

We define p′(%′) = p(%). �
Theorem 5.4. In Def. 5.3 the following hold:

1. L(g′) = [[.]]B−1(H1, λ,H2) ∩ L(g).

2. There is a deterministic tree relabeling φ from
Dg′ to Dg such that for all t ∈ L(g′) and
d′ ∈ Dg′(t), φ|Dg′ (t) is a bijection between
Dg′(t) and Dg(t), and p′(d′) = p(φ(d′)).

Proof. If [[.]]B−1(H1, λ,H2) = ∅, then L(g′) =
∅ by construction, and thus, both statements of
the theorem hold. Otherwise, the first statement
follows from the following claim.

Claim (*) For every n ∈ N, ξ ∈ Ξ, t ∈ TΣ, and
(s, η, r) ∈ (HmS (H1, λ,H2)) ∩ [[TΣ]]B it holds that
(ξ, s, η, r) ⇒n

g′ t iff ξ ⇒n
g t and [[t]]A1 = s and

ΛB(t) = η and [[t]]A2 = r.
For the proof of the second statement we define

φ((ξ, s, η, r)) = ξ for each (ξ, s, η, r) ∈ Ξ′, and
extend φ in the canonical way to derivation trees.

Then the statement is an immediate consequence of
the constructions of R′ and φ and Claim (*). �

Complexity We determine the complexity of
the reduct construction for the special case of
LCFRS/sDCP hybrid grammars. We assume that
the maximal lengthm of ports in the HR operations
is fixed and not part of the input. In preparation,
we determine an upper bound on |Ξ′|.

Let H ∈ H be such that from each vertex there
is an (undirected) path to a port. Given H each
H ′ ∈ HmS (H) ∩ [[TΣ]]A is uniquely determined
by its boundary representation (Lautemann, 1990;
Chiang et al., 2013; Groschwitz et al., 2015), which
consists of (a) the pair (portsH′ , ϕ(portsH′)),
(b) the set of boundary edges EBH′ of H ′ consisting
of all e ∈ EH′ such that attH′(e)∩ [portsH′] 6= ∅,
and (c) a function att′ : EBH′ → ([portsH′]∪{⊥})∗
such that att′(e)(i) = attH′(e)(i) if attH′(e)(i)
∈ [portsH′], and ⊥ otherwise. Note that (c) is nec-
essary because ϕ|[portsH′] might not be injective.

Now, for an arbitrary (Σ, Γ)-AG algebra A and
H ∈ LT ∗Γ (∅)M the following holds. Due to the
single-input property of H and of the involved HR
operations, for each m-subgraph H ′ the informa-
tion (b) and (c) can be inferred from (a). There are
Sm,k port sequences of length m with k distinct
vertices, where Sm,k is the Stirling number of the
second kind. For each port we choose a vertex in
VH . Thus, we obtain that |HmS (H) ∩ [[TΣ]]A| ≤∑m

k=0 Sm,k · |VH |k ≤ mm · |VH |m.
Next, we analyze the B-alignments of an

LCFRS/sDCP hybrid grammar B. Let (s, η, r) ∈
HmS (H1, λ,H2) and t ∈ TΣ with [[t]]B = (s, η, r).
Then Vη = Vs ∪ Vr. Let e ∈ Eλ and
e1 ∈ EH1 and e2 ∈ EH2 with attλ(e) =
inp(e1) inp(e2). (i) Assume that there is t′ ∈ TΣ

with [[t′]]B = (H1, λ,H2) and t is a subtree of t′.
Then e1 and e2 are unique by the single input prop-
erty. Hence, e1 ∈ Es iff e2 ∈ Er iff e ∈ Eη
because t is a subtree of t′ and by the structure of
Λσ. (ii) If there is no such t′, then the equivalences
under (i) may be violated, in which case (s, η, r)
can safely be pruned.

Thus, for each LCFRS/sDCP hybrid grammar
B and each (H1, λ,H2) with H1 ∈ LT ∗∆ (∅)M and
H2 ∈ LT ∗Ω(∅)M we obtain the upper bound |Ξ| ·
m2m · |VH1 |m · |VH2 |m on |Ξ′|. This bound can be
refined to |Ξ|·m2m ·|VH1 |2·fan∗ ·|VH2 |2·(syn∗+inh∗),
where f∗ = maxξ∈Ξ f(ξ) for f ∈ {fan, syn, inh}.
Constructing Ξ′ and R′ simultaneously with a de-
ductive parsing algorithm (Shieber et al., 1995) has

67

a worst-case time complexity in O(|Ξ′|k) where k
is the maximum rank of Σ.

5.3 EM Training Algorithm
In the first step of our training algorithm, a cor-
pus c′ : R → R≥0 is computed as follows. After
initialization (line 3), each bigraph B occurring
in c is considered (line 4), the reduct (B, pi) � B
is built (line 5), the inside/outside weights of the
new WRTG (g′, p′) are calculated (line 6), and ac-
cording to these weights and the current weight
assignment pi the count c′(%) of each rule is incre-
mented (lines 8–9). In the second step, the corpus
c′ is normalized (lines 10–14) and the result is the
next probability assignment pi+1 (line 15).

Algorithm 5.1 EM-training algorithms for
weighted aligned HR bimorphisms.
Input: weighted aligned HR bimorphism

(B, p0) = ((g,A1,Λ,A2), p0)
with g = (Ξ,Σ, ξ0, R), and a finite,
non-empty corpus c of bigraphs.

Output: sequence p1, p2, p3, . . . of improved
probability assignments for R.

1: i← 0
2: while true do
3: initialize counts c′ : R→ R≥0: c′(%)← 0
4: for B = (H1, λ,H2) s.t. c(B) > 0 do
5: ((g′,A1,Λ,A2), p′)← (B, pi) �B

with RTG g′ = (Ξ′,Σ, ξ′0, R′) and
det. tree rel. φ // cf. Thm 5.4

6: compute out and in for the WRTG
(g′, p′)

7: if in(ξ′0) 6= 0 then
8: for % = (ξ → σ(ξ1, . . . , ξk)) ∈ R do
9: c′(%)← c′(%) + c(B) · in(ξ′0)−1 ·∑

%′∈R′:
φ(%′)=% ∧ %′=(ξ′→σ(ξ′1,...,ξ

′
k))

out(ξ′) · pi(%) ·
k∏
j=1

in(ξ′j)

10: for ξ ∈ Ξ do
11: s←∑

%∈Rξ c
′(%)

12: for % ∈ Rξ do
13: if s = 0 then pi+1(%)← pi(%)·|Rξ|−1

14: else pi+1(%)← s−1 · c′(%)
15: output pi+1 and i← i+ 1

Acknowledgment

We thank the referees for their careful reading of
the manuscript.

References
James K. Baker. 1979. Trainable grammars for speech

recognition. In Speech Communication Papers for
the 97th Meeting of the Acoustical Society of Amer-
ica, pages 547–550.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. 7th Linguistic Annotation
Workshop, ACL 2013 Workshop.

Michel Bauderon and Bruno Courcelle. 1987. Graph
expressions and graph rewriting. Mathematical Sys-
tems Theory, 20:83–127.

Suna Bensch, Frank Drewes, Helmut Jürgensen, and
Brink van der Merwe. 2014. Graph transformation
for incremental natural language analysis. Theoreti-
cal Computer Science, 531:1–25.

Walter S. Brainerd. 1969. Tree generating regular sys-
tems. Inform. and Control, 14:217–231.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation:
parameter estimation. Computational Linguistics,
19(2):263–311.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proc. of the 51st Annual
Meeting of the Association for Computational
Linguistics, pages 924–932.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

Bruno Courcelle. 1991. The monadic second-order
logic of graphs V: on closing the gap between de-
finability and recognizability. Theoretical Computer
Science, 80:153–202.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Sta-
tistical Society, Series B, 39:1–38.

Pierre Deransart and Jan Małuszynski. 1985. Relat-
ing logic programs and attribute grammars. J. Logic
Programming, 2:119–155.

Joost Engelfriet and Linda Heyker. 1992. Context-
free hypergraph grammars have the same term-
generating power as attribute grammars. Acta Infor-
matica, 29(2):161–210.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest. (See also
arXiv:1509.06233, 2015).

68

Joseph A. Goguen, James W. Thatcher, Eric G. Wagner,
and Jesse B. Wright. 1977. Initial algebra semantics
and continuous algebras. J. ACM, 24:68–95.

Jonas Groschwitz, Alexander Koller, and Christoph
Teichmann. 2015. Graph parsing with s-graph
grammars. In Proc. of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing, pages 1481–1490.

Annegret Habel and Hans-Jörg Kreowski. 1987. May
we introduce to you: Hyperedge replacement. In
Proc. of the Third Intl. Workshop on Graph Gram-
mars and Their Application to Computer Science,
pages 15–26.

Annegret Habel. 1992. Hyperedge Replacement:
Grammars and Languages, volume 643 of Lecture
Notes in Computer Science. Springer.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hy-
peredge replacement grammars. In M. Kay and
C. Boitet, editors, Proc. 24th Intl. Conf. on Com-
putational Linguistics (COLING 2012): Technical
Papers, pages 1359–1376.

Karim Lari and Steve J. Young. 1990. The estimation
of stochastic context-free grammars using the Inside-
Outside algorithm. Computer Speech and Language,
4:35–56.

Clemens Lautemann. 1990. The complexity of
graph languages generated by hyperedge replace-
ment. Acta Inf., 27(5):399–421.

Philip M. Lewis and Richard E. Stearns. 1968. Syntax-
directed transduction. J. ACM, 15(3):465–488.

Mark-Jan Nederhof and Giorgio Satta. 2006. Proba-
bilistic parsing strategies. J. ACM, 53(3):406–436.

Mark-Jan Nederhof and Giorgio Satta. 2008. Prob-
abilistic parsing. In Gemma Bel-Enguix, M. Do-
lores Jiménez-López, and Carlos Martı́n-Vide, edi-
tors, New Developments in Formal Languages and
Applications, volume 113 of Studies in Computa-
tional Intelligence, pages 229–258. Springer.

Mark-Jan Nederhof and Heiko Vogler. 2012. Syn-
chronous context-free tree grammars. In Proc. of
the 11th International Workshop on Tree Adjoin-
ing Grammars and Related Formalisms (TAG+11),
pages 55–63.

Mark-Jan Nederhof and Heiko Vogler. 2014. Hy-
brid grammars for discontinuous parsing. In Proc.
of 25th International Conference on Computational
Linguistics (COLING 2014), pages 1370–1381.

Detlef Prescher. 2001. Inside-outside estimation meets
dynamic EM. In Proc. of the 7th International Work-
shop on Parsing Technologies, pages 241–244.

Hiroyuki Seki and Yuki Kato. 2008. On the gener-
ative power of multiple context-free grammars and
macro grammars. IEICE - Transactions on Informa-
tion and Systems, E91-D(2):209–221.

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous tree-adjoining grammars. In Proc. of
the 13th International Conference on Computational
Linguistics, volume 3, pages 253–258.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of de-
ductive parsing. J. Logic Programming, 24(1–2):3 –
36.

Krishnamurti Vijay-Shanker, David J. Weir, and Ar-
avind K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In Proc. of the 25th Annual Meeting of the
Association for Computational Linguistics, pages
104–111.

Wolfgang Wechler. 1992. Universal Algebra for Com-
puter Scientists, volume 25 of EATCS Monographs
on Theoretical Computer Science. Springer.

69

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 70–74,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

On the Correspondence between Compositional Matrix-Space Models of
Language and Weighted Automata

Shima Asaadi∗ and Sebastian Rudolph
Faculty of Computer Science

Technische Universität Dresden
firstname.lastname@tu-dresden.de

Abstract

Compositional matrix-space models of
language were recently proposed for the
task of meaning representation of complex
text structures in natural language process-
ing. These models have been shown to be
a theoretically elegant way to model com-
positionality in natural language. How-
ever, in practical cases, appropriate meth-
ods are required to learn such models
by automatically acquiring the necessary
token-to-matrix assignments. In this pa-
per, we introduce graded matrix gram-
mars of natural language, a variant of the
matrix grammars proposed by Rudolph
and Giesbrecht (2010), and show a close
correspondence between this matrix-space
model and weighted finite automata. We
conclude that the problem of learning
compositional matrix-space models can
be mapped to the problem of learning
weighted finite automata over the real
numbers.

1 Introduction

Quantitative models of language have recently re-
ceived considerable research attention in the field
of Natural Language Processing (NLP). In the ap-
plication of meaning representation of text in NLP,
much effort has been spent on semantic Vector
Space Models (VSMs). Such models capture word
meanings quantitatively, based on their statisti-
cal co-occurrences in the documents. The basic
idea is to represent words as vectors in a high-
dimensional space, where each dimension corre-
sponds to a separate feature. In this way, seman-
tic similarities can be computed based on mea-
suring the distance between vectors in the vector

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA)

space (Mitchell and Lapata, 2010). Vectors which
are close together in this space have similar mean-
ings and vectors which are far away are distant in
meaning (Turney and Pantel, 2010).

VSMs typically represent each word separately,
without considering representations of phrases or
sentences. So, the compositionality properties of
the language is lost in VSMs (Mitchell and Lapata,
2010). Recently, some approaches have been de-
veloped in the area of compositionality and distri-
butional semantics in NLP. These approaches in-
troduce different word representations and ways
of combining those words. Mitchell and Lapata
(2010) propose a framework for vector-based se-
mantic composition. They define additive or mul-
tiplicative function for the composition of two vec-
tors and show that compositional approaches gen-
erally outperform non-compositional approaches
which treat the phrase as the union of single lexi-
cal items. However, VSMs still have some limita-
tions in the task of modeling complex conceptual
text structures. For example, in the bag-of-words
model, the words order and therefore the structure
of the language is lost.

To overcome the limitations of VSMs, Rudolph
and Giesbrecht (2010) proposed Compositional
Matrix-Space Models (CMSM) as a recent al-
ternative model to work with distributional ap-
proaches. These models employ matrices instead
of vectors and make use of iterated matrix multi-
plication as the only composition operation. They
show that these models are powerful enough to
subsume many known models, both quantitative
(vector-space models with diverse composition
operations) and qualitative ones (such as regular
languages). It is also proved theoretically that this
framework is an elegant way to model composi-
tional, symbolic and distributional aspects of nat-
ural language.

However, in practical cases, methods are needed

70

to automatically acquire the token-to-matrix as-
signments from available data. Therefore, meth-
ods for training such models should be developed
e.g. by leveraging appropriate machine learning
methods.

In this paper, we are concerned with Graded
Matrix Grammars, a variant of the Matrix Gram-
mars of Rudolph and Giesbrecht (2010), where in-
stead of the “yes or no” decision, if a sequence is
part of a language, a real-valued score is assigned.
This is a popular task in NLP, used, e.g., in sen-
timent analysis settings (Yessenalina and Cardie,
2011).

Generally, in many tasks of NLP, we need to es-
timate functions which map arbitrary sequence of
words (e.g. sentences) to some semantical space.
Using Weighted Finite Automata (WFA), an ex-
tensive class of these functions can be defined,
which assign values to these sequences (Balle and
Mohri, 2012).

Herein, inspired by the definition of weighted fi-
nite automata (Sakarovitch, 2009) and their appli-
cations in NLP (Knight and May, 2009), we show
a tight correspondence between graded matrix
grammars and weighted finite automata. Hence,
we argue that the problem of learning CMSMs can
be mapped to the problem of learning WFA.

The rest of the paper is organized as follows.
Section 2 provides the basic notions of weighted
automata and the matrix-space model. A detailed
description of correspondence between CMSM
and WFA is presented in Section 3, followed by
related work in Section 4 and conclusion and fu-
ture work in Section 5.

2 Preliminaries

In this section, we provide the definitions of
weighted automata in (Balle and Mohri, 2015;
Sakarovitch, 2009) and matrix-space models of
language in (Rudolph and Giesbrecht, 2010).

2.1 Weighted Finite Automata

Weighted finite automata generalize classical au-
tomata in which transitions and states carry
weights. These weights can be considered as
the cost of the transitions or amount of resources
needed to execute the transitions. Let Σ be a fi-
nite alphabet. A weighted automaton A is a tu-
ple of (QA, λ, α, β) and defined over a semi-ring
(S,⊕,⊗, 0̄, 1̄). QA is a finite set of states, λ :
Σ → SQA×QA is the transition weight function,

{A, 1, 0.5} {B, 2, 0.2}

{C, 3, 0.8}

b/3

a/1.5

a/4

b/2

b/3

Figure 1: Example of WFA A.

and, α : Σ → S and β : Σ → S are two functions
assigning to every state its initial and final weight.
Thereby, for each transition e = (q, σ, q′), λ(σ)q,q′
denotes the weight of the label σ associated with
the transition e between q and q′, which are the
source and target state of the transition. Moreover,
A path P in A is a sequence of transitions labeled
with σ1 · · ·σn, in more detail:

P := p0
σ1−→ p1

σ2−→ · · · σn−→ pn

with pi ∈ QA. The weight of P is defined as
the ⊗-product of the weights of the starting state,
its transitions, and final state: ω(P) = α(p0) ⊗
λ(σ1)p0,p1⊗· · ·⊗λ(σn)pn−1,pn⊗β(pn). Now, the
weight of a word x = σ1 · · ·σn ∈ Σ? is the cumu-
lative weight of all paths labeled with the sequence
σ1 · · ·σn which is computed as the ⊕-sum of the
weights of the corresponding paths, also known as
a rational power series:

fA(σ1 · · ·σn) =
⊕

P∈PA(σ1···σn)

ω(P), (1)

where PA(σ1 · · ·σn) denotes the (finite) set of
paths in A labeled with σ1 · · ·σn. So, the func-
tion fA maps the set of strings in Σ? to S. In this
work, we will assume that S is the set of the real
numbers R with the usual multiplication and addi-
tion. Figure 1 illustrates an example of WFA over
Σ = {a, b}. Inside each state there is a tuple of
the name, initial and final weight of the state, re-
spectively. As an example, for x = ab we have:
fA(x) = 1× 1.5× 3× 0.8 + 1× 1.5× 2× 0.2 +
2× 4× 3× 0.5.

2.2 Compositionality and Compositional
Matrix-Space Model

The general principle of compositionality is that
the meaning of a complex expression is a function
of the meaning of its constituent tokens and some
rules used to combine them (Frege, 1884). More

71

formally, according to Rudolph and Giesbrecht
(2010), the underlying idea can be described as
follows: “Given a mapping J·K : Σ → S from a
set of tokens in Σ into some semantical space S,
the composition operation is defined by mapping
sequences of meanings to meanings: ./: S? →
S. So, the meaning of the sequence of tokens
σ1 · · ·σn can be obtained by first applying the
function J·K to each token and then ./ to the se-
quence Jσ1K · · · JσnK, as shown in Figure 2”.

σ1 σ2 . . . σn σ1σ2 · · ·σn

Jσ1K Jσ2K · · · JσnK Jσ1 · · ·σnK

Concatenation ·

J·K J·K J·K J·K

Composition ./

Figure 2: Principle of compositionality, illustra-
tion taken from Rudolph and Giesbrecht (2010)

In compositional matrix-space models, this gen-
eral idea is instantiated as follows: we have
S = Rn×n, i.e., the semantical space consists of
quadratic matrices of real numbers. The mapping
function J·K maps the tokens into matrices so that
the semantics of simple tokens is expressed by ma-
trices. Then, using the standard matrix multiplica-
tion as the only composition operation ./, the se-
mantics of complex phrases are also described by
matrices.

Rudolph and Giesbrecht (2010) showed theoret-
ically that by employing matrices instead of vec-
tors, CMSMs subsume a wide range of linguis-
tic models such as statistical models (vector-space
models and word space models).

3 Graded Matrix Grammars and
Weighted Finite Automata

In some applications of NLP, we need to derive
the meaning of a sequence of words in a language,
which can be done with CMSMs as described in
Section 2.2. In this section, we introduce the no-
tion of a graded matrix grammar which consti-
tutes a slight variation of matrix grammars as in-
troduced by Rudolph and Giesbrecht (2010).

Definition 1 (Graded Matrix Grammars). Let Σ be

an alphabet. A graded matrix grammarM of de-
gree n is defined as the tuple 〈J·K,Σ, α, β〉 whereJ·K is a function mapping tokens in Σ to n × n
matrices of real numbers. Moreover, α, β ∈ Rn.
Then we map each sequence of tokens σ1 · · ·σn ∈
Σ? to a real number (called the value of the se-
quence) using the target function ϕ : Σ? → R
defined by:

ϕ(σ1 · · ·σn) = αJσ1K · · · JσnKβ>. (2)

However, as discussed before, to be used in
practice, some learning methods are needed to ex-
tract graded matrix grammars from textual data.
Hence, the target function ϕ can be generalized to
all texts in the language and handle unseen word
compositions. To this end, we show the corre-
spondence between the CMSM and WFA, with
the consequence that existing learning methods for
WFA can be applied to learning CMSMs.

As discussed in Section 2.1, in WFA, for a ratio-
nal power series f , a value f(x) is the sum of all
possible paths labeled with x = σ1 · · ·σn ∈ Σ?.
However, this computation can be described via
matrices by the fact that a walk over a graph cor-
responds to a matrix multiplication (Sakarovitch,
2009). More precisely, for any σ ∈ Σ, let Aσ ∈
RQA×QA be the transition matrix of σ: [Aσ]pq =∑

e∈PA(p,σ,q) λ(σ)p,q, where PA(p, σ, q) is the set
of all transitions labeled with σ from p to q. Also,
the vectors αA ∈ RQA and βA ∈ RQA are the
start and final weights of the states in QA, respec-
tively. Then, Equation 1 can be equally expressed
as follows in terms of matrices with entries in R
(Balle and Mohri, 2015):

fA(σ1 · · ·σn) = α>AAσ1 · · ·AσnβA (3)

Hence, we see the correspondence between Equa-
tion 2 and 3. In more detail, consider each phrase
p and its value r in a natural language. If we ex-
tract the words of the language as a finite alphabet
Σ in an automaton, then p would be a string in Σ?.
The J·K function inM applied over the words con-
structs n×n transition matrices of the alphabets in
the automaton. Here, n can be the number of states
of the automaton. So, estimating the function ϕ
in graded matrix grammar corresponds to estimat-
ing the target function of the automaton fA, which
computes exactly the value of a string translated
from the phrase p in a language. That is, the repre-
sentation of a string is done with multiplication of
transition matrices of its tokens, which results in a

72

new representation matrix for the string. Then, the
suitable predefined vectors α and β translate the
resulting matrix to a real number which denotes
the value of associated phrase p in the natural lan-
guage.

The problem of learning WFAs is finding a
WFA closely estimating a target function, using
for training a finite sample of strings labeled with
their target values (Balle and Mohri, 2015). By
learning WFAs, one obtains an automaton that is
a tuple A = 〈α, β, {Aa}a∈Σ〉, and one can com-
pute the target function fA(x). Since WFA encode
CMSMs, and based on this close correspondence
between them, learning a graded matrix grammar
to estimate the value of phrases can be mapped to
the problem of learning a weighted automaton.

4 Related Work

An application of CMSM has been shown in the
work of Yessenalina and Cardie (2011). They
proposed a learning-based approach for phrase-
level sentiment analysis. Inspired by the work of
Rudolph and Giesbrecht (2010) they use CMSMs
to model composition, and present an algorithm
for learning a matrix for each word via ordered lo-
gistic regression, which is evaluated with promis-
ing results. However, it is not trivial to learn a
matrix-space model. Since the final optimization
problem is non-convex, the matrix initialization
for this method is not done perfectly.

Socher et al. (2012) introduce a matrix-vector
recursive neural network (MV-RNN) model that
learns compositional vector representations for
phrases and sentences. The model assigns a vec-
tor and a matrix to every node in a parse tree. The
vector represents the meaning of the constituent,
while the matrix captures how it affects the mean-
ing of neighboring constituent. The model needs
to parse the tree to learn the vectors and matrices.

Recently, new approaches are proposed in
learning weighted finite automata in NLP. Balle
and Mohri (2012) and Balle et al. (2014) introduce
a new family of algorithms for learning general
WFA and stochastic WFA based on the combi-
nation of matrix completion problem and spectral
methods. These algorithms are designed for learn-
ing an arbitrary weighted automaton from sample
data of strings and assigned labels. They formu-
late the missing information from the sample data
as a Hankel matrix completion problem. Then, the
spectral learning is applied to the resulting Hankel

matrix to obtain WFA. Balle et al. (2014) also, of-
fer the main results in spectral learning which are
an interesting alternative to the classical EM al-
gorithms in the context of grammatical inference
and show the computational efficiency of these al-
gorithms.

Moreover, Balle and Mohri (2015) discuss mod-
ern learning methods (spectral methods) for an ar-
bitrary WFA in different scenarios. They provide
WFA reconstruction algorithms and standardiza-
tion. it is theoretically guaranteed that for a Han-
kel matrix with a finite rank, representing a ratio-
nal power series, there is a corresponding WFA
with the number of states equal to this rank and it
is minimal.

5 Conclusion and Future Work

In this paper, we introduced a graded matrix gram-
mar for compositionality in language where com-
positional matrix-space models are employed in
different tasks of NLP. However, we need to pro-
pose a learning method to train this model for
value assignments in NLP. For this purpose, we
showed the close correspondence between matrix
grammars and weighted automata. So, the prob-
lem of learning the CMSM can be encoded as the
problem of learning WFA.

Our future goal is to review the existing meth-
ods in learning WFA, and adapt them to solve the
task of sentiment analysis/meaning representation
in NLP. Using learning methods, they allow to au-
tomatically learn CMSM and induce the graded
matrix grammar.

References
Borja Balle and Mehryar Mohri. 2012. Spectral learn-

ing of general weighted automata via constrained
matrix completion. In Advances in neural informa-
tion processing systems, pages 2168–2176.

Borja Balle and Mehryar Mohri, 2015. Learning
Weighted Automata, pages 1–21. Springer Interna-
tional Publishing.

Borja Balle, Xavier Carreras, Franco M Luque, and
Ariadna Quattoni. 2014. Spectral learning of
weighted automata. Machine Learning, 96(1):33–
63.

Gottlob Frege. 1884. Die Grundlagen der Arithmetik
eine logisch-mathematische Untersuchung über den
Begriff der Zahl. Verlage Wilhelm Koebner, Bres-
lau.

73

Kevin Knight and Jonathan May. 2009. Applications
of weighted automata in natural language process-
ing. In Manfred Droste, Werner Kuich, and Heiko
Vogler, editors, Handbook of Weighted Automata,
pages 571–596. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence, 34(8):1388–1429.

Sebastian Rudolph and Eugenie Giesbrecht. 2010.
Compositional matrix-space models of language. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, ACL ’10,
pages 907–916, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jacques Sakarovitch. 2009. Rational and recognisable
power series. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of Weighted Au-
tomata, pages 105–174. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic com-
positionality through recursive matrix-vector spaces.
EMNLP-CoNLL ’12, pages 1201–1211, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37(1):141–188.

Ainur Yessenalina and Claire Cardie. 2011. Com-
positional matrix-space models for sentiment analy-
sis. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
’11, pages 172–182, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

74

Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 75–80,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Pynini: A Python library for weighted finite-state grammar compilation

Kyle Gorman
Google, Inc.

111 8th Avenue, New York, NY 10011

Abstract

We present Pynini, an open-source library
for the compilation of weighted finite-
state transducers (WFSTs) and pushdown
transducers (PDTs) from strings, context-
dependent rewrite rules, and recursive tran-
sition networks. Pynini uses the OpenFst
library for encoding, modifying, and apply-
ing WFSTs and PDTs. We describe the de-
sign of this library and the algorithms and
interfaces used for compilation, optimiza-
tion, and application, and provide two il-
lustrations of the library in use.

1 Introduction

Weighted finite-state transducers (WFSTs) are
widely used in speech and language applications.
The hypothesis space for tasks like automatic
speech recognition (ASR) and optical character
recognition can be be represented as a compact,
efficiently searchable cascade of WFSTs (Mohri
et al., 2002). Manually-generated grammatical re-
sources such as pronunciation lexicons and phono-
logical rules are also naturally represented as finite-
state transducers. One advantage of an end-to-end
WFST formulation in complex natural language
problems like speech recognition is that WFSTs
make it easy to combine “big data” statistical com-
ponents like languagemodels and “small batch” re-
sources like hand-written grammars. For instance,
WFST ASR models may be augmented with a se-
ries of weighted rewrite rules modeling pronuncia-
tion variation (Hazen et al., 2005) to reduce word
error rate, or composed with an WFST which re-
stores punctuation and capitalization to improve
transcript readability (Shugrina, 2010).

2 Existing WFST libraries

There are a number of publicly available WFST li-
braries, most of them open-source. Roughly speak-
ing, these libraries can be divided into three groups.
First, libraries like Carmel (Knight and Graehl,
1998) and OpenFst (Allauzen et al., 2007) pro-
vide efficient implementations of key algorithms
for combining, optimizing, and searching WFSTs.
However, such libraries provide little support for
users who wish to compile a lexicon or a list of
grammatical rules into a WFST, so that even ba-
sic grammar-building tasks may be a challenge. A
second group of libraries, including HFST (Lindén
et al., 2013), Lextools (Sproat, 1995), Kleene
(Beesley, 2012), and Thrax (Roark et al., 2012),
focus on grammar compilation operations and rely
upon the aforementioned libraries for core WFST
algorithms. Finally, a third group of libraries, in-
cluding Foma (Hulden, 2009) and XFST (Beesley
and Karttunen, 2003), provide algorithms and
compilation routines for finite-state transducers,
though neither supports weighted transducers re-
quired by many real-world applications.

2.1 DSL-and-compiler interfaces

Table 1 summarizes key features of eight libraries
which provide some form of grammar compilation
support. Among these libraries, the most common
interface is a compiler for a library-specific declar-
ative, domain-specific language (DSL). There are
some advantages for using a domain-specific lan-
guage here; for instance, they allow for remarkably
terse grammars. However, in our experience, DSL-
and-compiler interfaces may also be a substantial
impediment to rapid development.
First, these domain-specific languages all make

extensive the use of novel operators; e.g., sev-
eral employ $ as a unary prefix operator denoting
the containment of an WFST. Any new language

75

XFST Lextools Carmel Foma Kleene Thrax HFST Pynini

Gratis No Yes Yes Yes Yes Yes Yes Yes
Libre No No Yes Yes Yes Yes Yes Yes
Weighted transducers No Yes No No Yes Yes Yes Yes
CDRR compilation No Yes No Yes Yes Yes Yes Yes
PDT compilation No No No No No Yes No Yes
Python bindings No No No Yes No No Yes Yes

Table 1: Key features of eight publicly available libraries for compilation of finite-state grammars.

comes with a learning curve, but the use of novel
operators (with unfamiliar precedence) may make
the curve particularly steep.
More generally, these DSLs lack the libraries,

programming constructs, and tooling present in
popular domain-general programming languages.
A user who wishes to compile a pronunciation lex-
icon from data stored in an XML file, for exam-
ple, has little choice but to write a script in some
domain-general programming language to rewrite
the XML data into a library-specific format sup-
ported by the compiler.

2.2 Introducing Pynini

We propose an alternative approach to this prob-
lem. We do not introduce yet another compet-
ing DSL-and-compiler standard, nor do we at-
tempt to expose a DSL to another programming
language, as do Foma and HFST, both of which
provide basic Python bindings. Rather we make
WFST algorithms and compilation routines “first-
class citizens” of an existing domain-general multi-
paradigm programming language. The result is a
Python extension called Pynini (named in honor of
Pāṇini, the renown Sanskrit grammarian). Pynini
takes advantage of Python’s substantial standard li-
brary, expressive syntax, and tools for debugging,
linting, and interactive development.
Pynini is distributed freely as part of the Open-

Grm toolkit under the Apache 2.0 license.

2.3 Outline

In what follows, we describe the design and imple-
mentation of the Pynini library, focusing on com-
pilation and optimization routines (§3). We then
present two examples illustrating the use of the li-
brary (§4–5), and then conclude with future direc-
tions for this project.

3 Design of the library

3.1 Software architecture
Pynini is based on OpenFst (Allauzen et al., 2007),
an efficient weighted finite-state transducer library
written in C++ 11.1 At the lowest level, OpenFst
provides a set of classes (representingWFSTs) and
functions (representing WFST algorithms) tem-
plated on the semiring of the input FST(s).
A second layer, the OpenFst scripting API,

uses virtual dispatch, function registration, and
dynamic loading of shared objects to provide a
common interface shared by FSTs of different
semirings. OpenFst also includes a Python exten-
sion module, pywrapfst, which exposes the en-
tire scripting API with little additional “syntactic
sugar”.2
Pynini extends this architecture at all three lev-

els. It is implemented with C++ template functions
(some of which are shared with Thrax), a semiring-
independent scripting interface, and a Python mod-
ule which extends pywrapfst.

3.2 Compilation
Pynini provides a Python class called Fst, which
represents a mutable WFST with a user-specified
semiring (by default, the tropical semiring). The
epsilon_machine function creates a one-state
FST that accepts only the empty string. The
acceptor function compiles a string into a (de-
terministic, epsilon-free) FSA. The user may spec-
ify how the arcs of the resulting FSA are to be la-
beled; by default, each arc in the FSA corresponds
to a byte in the input string, but the string may
also be interpreted as a UTF-8-encoded string—in
which case each arc label corresponds to a code-
point in the Unicode Basic Multilingual Plane—or
according to a user-provided symbol table. As in

1At time of writing Pynini depends on OpenFst 1.5.3.
2For more information on these APIs, visit http://

openfst.org.

76

Thrax, a string enclosed in square brackets are in-
terpreted as a single generated symbol rather than
as sequences of bytes or codepoints.
Nearly all Pynini functions permit a string to be

passed in place of an Fst, in which case acceptor
then is used to compile the string. One such
function is transducer, which takes two FSA
(or string) arguments and compiles a transducer
that represents their cross-product. The union of
many such string pairs can be compiled using the
string_file and string_map functions. The
former reads pairs of strings from a tab-separated
values (TSV) file, whereas the latter extracts string
pairs from a Python dictionary, list, or tuple. Both
functions produce a compact prefix tree represen-
tation of a map (or multimap) such as a pronuncia-
tion dictionary.
The cdrewrite function performs compilation

of context-dependent rewrite rules (CDRRs) us-
ing an algorithm due to Mohri and Sproat (1996).
The replace function compiles FSTs from recur-
sive transition networks (RTNs; Woods 1970). An
RTN is specified as a single root FST followed by
a set of one or more replacement FSTs, each of
which is passed as a keyword argument where the
keyword represents the replacement’s correspond-
ing nonterminal. If an RTN contains any recursive
replacements—i.e., if any FST in the RTN con-
tains its nonterminal either directly or indirectly—
it lacks a finite expansion and therefore cannot be
compiled into an FST, but it can be compiled as a
pushdown transducer (PDTs; Allauzen and Riley
2012) using the pdt_replace function.
Major functions for constructing FSTs are

shown in Figure 1.

3.3 Visualization

Pynini provides several techniques for visualizing
FSTs. Invoking Python’s print statement on an
Fst prints the FST’s arc list, and the drawmethod
renders an FST as a GraphViz3 image. It is also
possible to iterate over the states, arcs, and paths of
an FST using the states, arcs, and paths meth-
ods, respectively.

3.4 Algorithms

All of the major WFST algorithms supported by
OpenFst can be invoked via module-level func-
tions which return an Fst instance (or raise an ex-
ception in the case of run-time failure). A subset of

3http://graphviz.org

OpenFst WFST algorithms, including closure, in-
version, and projection, operate destructively (i.e.,
they mutate their input in-place), and can also be
invoked by calling the appropriate instancemethod
on an Fst object. All destructive operations return
their mutated input so as to allow chaining.

3.5 Optimization

Core FST operations such as composition, concate-
nation, and union tend to introduce many redun-
dant arcs and states, and therefore it is desirable
(and in some cases necessary) to optimize FSTs
during grammar compilation. OpenFst provides
four algorithms for this task: epsilon-removal, arc-
sum mapping (which merges identically-labeled
multiarcs), determinization, and minimization.
However, there are complex restrictions on the ap-
plication of these algorithms, making manual opti-
mization something of a challenge.
Pynini provides an instance method optimize

which applies these four procedures, subject to
these algorithmic restrictions and the properties of
the input FST. For instance, the minimization algo-
rithm is guaranteed to find a minimal FST only in
the case that the input is deterministic, and while
any acyclic FST over a zero-sum-free semiring is
determinizable, this is not necessarily true of FSTs
with weighted cycles (Mohri, 2009). Therefore,
if an FST is not known to be deterministic and
weighted-cycles-free, the optimization routine per-
forms both determinization and minizimation on
the FST while it is encoded as if it were an un-
weighted acceptor (Allauzen et al., 2004).

4 Sample grammar: Finnish harmony

Koskenniemi (1983) provides a number of
manually-compiled FSTs modeling Finnish mor-
phophonological patterns. One of these concerns
the well-known pattern of Finnish vowel harmony.
Many Finnish suffixes have two allomorphs
differing only in the backness specification of
their vowel. For example, the adessive suffix is
usually realized as -llä [lːæː] except when the
preceding stem contains one of u, o, and a and
there is no intervening y, ö, or ä; in this case, it
is -lla [lːɑː]. For example, käde ‘hand’ has an
adessive kädellä, whereas vero ‘tax’ forms the
adessive verolla because the nearest stem vowel
is o (Ringen and Heinämäki, 1999). Figure 2 pro-
vides a Pynini function (make_adessive) which
generates the appropriate form of a noun stem.

77

a = epsilon_machine()
b = acceptor("Red Leicester")
c = transducer("Tilsit", "Never at the end of the week, sir")
d = string_map({"Stilton": "Sorry", "Gruyère": "No"})
e = replace("[COLOR] [CHEESE]",

COLOR=union("Blue", "Red", "White"),
CHEESE=union("Leicester", "Stilton", "Vinney", "Windsor"))

Figure 1: Examples of various FST construction functions in Pynini.

It first concatenates the stem with an abstract
representation of the suffix, and then composes
the result with a context-dependent rewrite rule
adessive_harmony.

5 Sample application: T9 decoding

T9 (short for “Text on 9 keys”; Grover et al. 1998)
is a patented predictive text entry system. In T9,
each character in the “plaintext” alphabet is as-
signed to one of the 9 digit keys (0 is usually re-
served to represent space) of the traditional 3x4
touch-tone phone grid. For instance, the message
GOHOME is entered as 4604663. Since the result-
ing “ciphertext” may be highly ambiguous—this
sequence could also be read as GO HOOD, not to
mention many nonsensical expressions—a hybrid
language model/lexicon is used for decoding.
Figure 3 shows T9 encoding and decoding in

Pynini. The first line reads in an language model
represented as a weighted finite-state acceptor.4
The second line reads in the encoder table from
a string_file, a text file in which each line
contains an alphabetic character and its corre-
sponding digit key. By computing the concate-
native closure of this map, we obtain an FST
(T9_ENCODER) which can encode arbitrarily-long
plaintext strings.
The k_best function first applies a ciphertext

string (a bytestring of digits) to the inverted en-
coder FST (T9_DECODER) via composition and
output-projection. This creates an intermediate lat-
tice of all possible plaintexts consistent with the
T9 ciphertext. This is then scored by—that is,
composed with—the character LM. Finally, we
generate the k shortest paths (i.e., the k highest-
probability plaintexts) in the lattice. In the exam-
ple given in the figure, the shortest path here is in

4The language model used here is an 8-gram character lan-
guage model with Witten-Bell smoothing, trained on theWall
St. Journal portion of the Penn Treebank using OpenGrm-
NGram (Roark et al., 2012). This is somewhat different than
the language models used in mobile phone T9 systems.

fact identical to the plaintext.

6 Conclusions

We have described and illustrated the design and
implementation of an expressive and extensible
open-source library for weighted finite-state gram-
mar compilation. In future work, we hope to ex-
ploit this library to improve the user experience for
developers of grammars and ofWFST applications
more generally.

Acknowledgements

Thanks to all those who provided valuable in-
put during the design of Pynini. Richard Sproat
originally suggested to me the idea of developing
a Python based finite-state grammar library, dis-
cussed many design issues, and contributed the
path iteration algorithm. Cyril Allauzen, Steven
Bedrick, Myroslava Dzikovska, Mark Epstein,
Toby Hawker, Michael Riley, and Ke Wu also pro-
vided a lot of useful input. To obtain Pynini, visit
http://pynini.opengrm.org.

References
Cyril Allauzen and Michael Riley. 2012. A push-

down transducer extension for the OpenFst library.
In CIAA, pages 66–77.

Cyril Allauzen, Mehryar Mohri, Michael Riley, and
Brian Roark. 2004. A generalized construction of in-
tegrated speech recognition transducers. In ICASSP,
pages 761–764.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In CIAA, pages 11–23.

Kenneth R. Beesley and Lari Karttunen. 2003. Finite
state morphology. CSLI, Stanford, CA.

Kenneth R. Beesley. 2012. Kleene, a free and open-
source language for finite-state programming. In
10th International Workshop on Finite State Meth-
ods and Natural Language Processing, pages 50–54.

78

back_vowel = u("u", "o", "a")
neutral_vowel = u("i", "e")
front_vowel = u("y", "ö", "ä")
vowel = u(back_vowel, neutral_vowel, front_vowel)
archiphoneme = u("A", "I", "E", "O", "U")
consonant = u("b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q",

"r", "s", "t", "v", "w", "x", "z")
sigma_star = u(vowel, consonant, archiphoneme).closure()
adessive = "llA"
intervener = u(consonant, neutral_vowel).closure()
adessive_harmony = (cdrewrite(t("A", "a"), back_vowel + intervener, "",

sigma_star) *
cdrewrite(t("A", "ä"), "", "", sigma_star)).optimize()

def make_adessive(stem):
return ((stem + adessive) * ur).stringify()

Figure 2: Finnish adessive suffix harmony, implemented with context-dependent rewrite rules.

LM = Fst.read("charlm.fst")
T9_ENCODER = string_file("t9.tsv").closure()
T9_DECODER = invert(T9_ENCODER)

def encode_string(plaintext):
return (plaintext * T9_ENCODER).stringify()

def k_best(ciphertext, k):
lattice = (ciphertext * T9_DECODER).project(True) * LM
return shortestpath(lattice, nshortest=k, unique=True).paths()

pt = "THE SINGLE MOST POPULAR CHEESE IN THE WORLD"
ct = encode_string(pt)
for (_, opath, _) in k_best(ct, 5):
print opath

Figure 3: T9 encoding and decoding with a character LM.

79

Dale L. Grover, Martin T. King, andCliffordA.Kushler.
1998. Reduced keyboard disambiguating computer.
US Patent 5,818,437.

Timothy J. Hazen, I. Lee Hetherington, Han Shu, and
Karen Livescu. 2005. Pronunciation modeling us-
ing a finite-state transducer representation. Speech
Communication, 46(2):189–203.

Mans Hulden. 2009. Foma: A finite-state compiler
and library. In EACL, pages 29–32.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

KimmoKoskenniemi. 1983. Two-level morphology: A
general computational model for word-form recog-
nition and production. Ph.D. thesis, University of
Helsinki.

Krister Lindén, Erik Axelson, Senka Drobac, Sam
Hardwick, Juha Kuokkala, Jyrki Niemi, Tommi A.
Pirinen, and Miikka Silfverberg. 2013. HFST: A
system for creating NLP tools. In SCFM, pages 53–
71.

Mehryar Mohri and Richard Sproat. 1996. An efficient
compiler for weighted rewrite rules. In ACL, pages
231–238.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech and Lan-
guage, 16(1):69–88.

Mehryar Mohri. 2009. Weighted automata algorithms.
InManfred Droste, Werner Kuich, and Heiko Vogler,
editors,Handbook of weighted automata, pages 213–
254. Springer, New York.

Catherine O. Ringen and Orvokki Heinämäki. 1999.
Variation in Finnish vowel harmony: An OT ac-
count. Natural Language and Linguistic Theory,
17(2):303–337.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012.
TheOpenGrm open-source finite-state grammar soft-
ware libraries. In ACL, pages 61–66.

Maria Shugrina. 2010. Formatting time-aligned ASR
transcripts for readability. In NAACL, pages 198–
206.

Richard Sproat. 1995. Lextools: Tools for finite-state
linguistic analysis. Technical Report 11522-951108-
10TM, Bell Laboratories.

William A. Woods. 1970. Transition network gram-
mars for natural language analysis. Communications
of the ACM, 13(10):591–606.

80

Author Index

Allauzen, Cyril, 32
Asaadi, Shima, 70

Dietze, Toni, 1
Drewes, Frank, 60

Forsberg, Markus, 42

Gebhardt, Kilian, 60
Gorman, Kyle, 75

Hulden, Mans, 42

Kauppinen, Pekka, 51
Koller, Alexander, 11

Lindén, Krister, 51

Nederhof, Mark-Jan, 21

Riley, Michael, 32
Roark, Brian, 32
Rudolph, Sebastian, 70

Silfverberg, Miikka, 51

Teichmann, Christoph, 11

Vogler, Heiko, 60

Wansing, Kasimir, 11

81

	Program
	Equivalences between Ranked and Unranked Weighted Tree Automata via Binarization
	Adaptive Importance Sampling from Finite State Automata
	Transition-based dependency parsing as latent-variable constituent parsing
	Distributed representation and estimation of WFST-based n-gram models
	Learning Transducer Models for Morphological Analysis from Example Inflections
	Data-Driven Spelling Correction using Weighted Finite-State Methods
	EM-Training for Weighted Aligned Hypergraph Bimorphisms
	On the Correspondence between Compositional Matrix-Space Models of Language and Weighted Automata
	Pynini: A Python library for weighted finite-state grammar compilation

