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Abstract

In this paper I present a k-means clustering ap-
proach to inferring morphological position classes
(morphotactics) from Interlinear Glossed Text
(IGT), data collections available for some endan-
gered and low-resource languages. While the exper-
iment is not restricted to low-resource languages,
they are meant to be the targeted domain. Specifi-
cally my approach is meant to be for field linguists
who do not necessarily know how many position
classes there are in the language they work with and
what the position classes are, but have the expertise
to evaluate different hypotheses. It builds on an ex-
isting approach (Wax, 2014), but replaces the core
heuristic with a clustering algorithm. The results
mainly illustrate two points. First, they are largely
negative, which shows that the baseline algorithm
(summarized in the paper) uses a very predictive
feature to determine whether affixes belong to the
same position class, namely edge overlap in the af-
fix graph. At the same time, unlike the baseline
method that relies entirely on a single feature, k-
means clustering can account for different features
and helps discover more morphological phenom-
ena, e.g. circumfixation. I conclude that unsuper-
vised learning algorithms such as k-means cluster-
ing can in principle be used for morphotactics infer-
ence, though the algorithm should probably weigh
certain features more than others. Most importantly,
I conclude that clustering is a promising approach
for diverse morphotactics and as such it can facili-
tate linguistic analysis of field languages.

1 Introduction

Morphological analysis is a critical component in
NLP systems for morphologically rich languages
(Daille et al., 2002). Yet, while automatic morpho-
logical analysis may be well-developed for lan-
guages like English and Spanish, the list of these
languages is rather short. There are at least two
reasons for that. One is that high-resource lan-
guages offer big training corpora. This makes the
use of various machine learning algorithms eas-
ier. Another reason is that many high-resource
languages, most notably English, happen to fea-
ture fairly simple morphology. A morphological
analyzer for a language like English does not need

to model complex morphotactics, the constraints
on the ordering of the morphemes types.

While there are many systems which are capa-
ble of segmenting words into morphemes (Creutz
and Lagus, 2006; Johnson, 2008) and some sys-
tems which include more sophisticated morpho-
logical analyzers and use supervised machine
learning for some tasks (Pasha et al., 2014), there
do not seem to be many systems out there which
can actually infer morphotactics in an unsuper-
vised fashion. Yet many languages exhibit com-
plex morphotactics. Furthermore, most of the
world’s languages are low-resource, meaning that
there are few digitized resources that can be used
in computational projects. Many are also under-
studied, meaning that the properties of the lan-
guage including its morphotactics are not well-
documented or well-understood.

Documenting morphological rules of under-
studied languages which often also have endan-
gered status is of critical importance for the pur-
poses of both linguistic research and cultural di-
versity conservation efforts (Krauss, 1992). At
the same time, the scarcity of data makes many
modern learning approaches that rely on big data
inapplicable in this domain. However, field lin-
guists who work on these languages have small
sized but richly annotated data, Interlinear Glossed
Text (IGT), and so the richness can be leveraged to
compensate for the modest size of the corpora. An
example of IGT from Chintang [ctn]1 is given be-
low as (1):

(1) unisaNa
u-nisa-Na
3sPOSS-younger.brother-ERG.A

khatte
khatt-e
take-IND.PST

mo
mo
DEM.DOWN

kosiP
kosi-i
river-LOC

moba
mo-pe
DEM.DOWN-LOC

‘The younger brother took it to the river.’ [ctn]
(Bickel et al., 2013)

1Spoken in Nepal.
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I take an existing approach to automatically ex-
tracting morphological rules from IGT as the base-
line (Wax, 2014) and present a k-means clustering
approach to the same problem. I evaluate the re-
sults by morphological parsing (analyzing a list of
verbs by finding for each verb a sequence of mor-
phological rule applications that would produce
this form) on several languages from different
language families, including some low-resource
languages. I show that grammars obtained us-
ing k-means are generally worse than the baseline
though they can be on par with it in a particularly
noisy setting. K-means still strongly outperforms
a grammar hand-built by language experts because
automated processing ensures better recall. I no-
tice that, unlike the baseline approach, k-means is
capable of picking up non-canonical phenomena
like circumfixation. I conclude that unsupervised
classification methods like k-means clustering can
help the field linguists come up with more com-
plete hypotheses about morphotactics (accounting
for more affixes and more relationships between
them) and also discover non-canonical morpho-
logical phenomena in their data.

2 Background

This section briefly explains the theoretical as-
sumptions about morphology that are used in this
paper, looks at related work, presents the evalua-
tion framework, and finally goes over the baseline
system.

2.1 Canonical and Non-Canonical
Morphotactics

Position classes, or morphotactics, are slots for
groups of morphemes (affixes) that are in comple-
mentary distribution. The slots can have strict or
variable ordering, and an affix that attaches to an-
other affix is said to take the second affix as input.
For example, Finnish [fin] is known to have the
following order of position classes for finite verbs
(Karlsson, 2008):

(2) root + passive + tense/mood + person +
particle

Here, the root serves as input to the pas-
sive marker, the passive marker is input to the
tense/mood marker, etc.

Canonical morphotactics, in Stump’s (1993)
terminology used also in works like Crysmann and

Bonami (2015),2 assume a strict ordering of posi-
tion classes (for example, if the affix that means
tense always follows the one that means aspect, as
in Finnish above). Deviations from that which in-
volve variable morpheme ordering can be called
non-canonical morphotactics (Stump, 1993). An-
other type of non-canonical phenomena is circum-
fixation, when a prefix always comes together with
a certain suffix, or in other words an affix can be
said to split into two parts. For a more complete
review of non-canonical phenomena, see Crys-
mann and Bonami (2015). Non-canonical mor-
photactics are found very often in the world’s lan-
guages yet they are often overlooked in imple-
mented systems which tend to be biased towards
Indo-European and even just English characteris-
tics (Bender, 2011).

2.2 Morphological Analysis in NLP

The big body of research about automatic mor-
phological analysis that exists today is mostly not
concerned with morphotactics. Automatic seg-
mentation, which admittedly is a necessary step
in any morphological analysis system, is probably
the most developed area. In my study, I assume
that the segmentation has already been done, and
the goal is to capture relationships between groups
of morphemes. There are approaches which ad-
vertise themselves as deep morphological analysis
(Yarowsky and Wicentowski, 2000; Schone and
Jurafsky, 2001), but they focus on well-studied
and high-resource Indo-European languages, and
mostly aim to learn a maximally broad-coverage
table of mappings from stems and affix combina-
tions to some linguistic tag (e.g. a Penn TreeBank
POS tag). What they don’t yield is a generative
model of the language’s morphology which would
contain information about the position or inflec-
tional classes.

Work that is most similar to mine in what it aims
for is Oflazer and Gokhan (1996) and Oflazer,
Nirenburg and McShane (2001). Oflazer and
Gokhan (1996) use constraints to model morpho-
tactics, but the constraints are hand-built and un-
supervised learning is used only for segmentation.
Oflazer, Nirenburg and McShane (2001) combine
rule-based and machine learning techniques and
include elicitation in the loop in order to build
finite state automata for low-density languages.

2Cf. a broader term for canonical morphology as in Cor-
bett (2009).
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Their FSAs encode non-canonical morphotactic
phenomena such as conditioning, and they induce
morphological rules using transformation-based
learning (Brill, 1995). Still, their approach fo-
cuses more on identifying affixes and roots than
on paradigms and position classes, while the lat-
ter is necessary for the rules to become part of a
morphological grammar.

2.3 Precision Grammars and Evaluation by
Parsing

For evaluation, I use automatically generated pre-
cision grammars (Bender et al., 2008), a type of
digitized language resource. A precision grammar
consists of a lexicon and a hierarchy of lexical and
phrasal rules written according to the HPSG the-
ory of syntax (Pollard and Sag, 1994). The term
‘precision’ is meant to emphasize that any parse
or generation by the grammar will comply with the
rules and will in that sense be linguistically sound,
or precise. The grammar is machine-readable. In
combination with software such as the LKB sys-
tem (Copestake, 2002), precision grammars can
generate syntactic trees of complete feature struc-
tures3 along with semantic representations. Lex-
ical morphological rules apply first to construct
words, and then phrasal rules apply to construct
sentences. Such grammars are useful to evaluate
the quality of linguistic analyses (Bender et al.,
2008). In particular, I used precision grammars
to evaluate my results by parsing.

I used the Grammar Matrix customization sys-
tem (Bender et al., 2002; Bender et al., 2010)
to compile precision grammars from the specifi-
cations which were output by either the baseline
(Wax, 2014) or by my k-means system. In both
cases, the morphotactics is represented internally
as a directed acyclic graph (DAG) where nodes are
affix types (position classes) and edges mean that
one class serves as input to another. Cycles are
not allowed mainly because of the internal Gram-
mar Matrix restrictions, though iterating position
classes are indeed rare.4 The DAG implementa-
tion is provided entirely by the customization sys-
tem, as are all the other functional parts of the
grammar. The baseline and the k-means system

3A feature structure is the form of linguistic unit descrip-
tion in HPSG. Feature structures can combine with each other
by constraint unification to form phrase structures.

4Chintang [ctn] has them (Schikowski (2012) as cited in
Bender et al. (2012)), but it may be one of very few languages
with this feature.

supply only the specification for the DAG in form
of nodes and edges. Below are a sample entry
for a verb position class from a specification file
(Figure 1) and the relevant snippet from the gram-
mar itself, in HPSG-style (Pollard and Sag, 1994)
type description language (Figure 2) (Copestake,
2000). The customization system reads in the
specification file and, in this case, it would create
a node in the DAG that corresponds to verb-slot1
(verb position class 1) and an edge to it from the
stems node (called simply ‘verb’ in the figure).

Figure 1: Sample precision grammar specification for a file
verb position class entry

Figure 2: HPSG grammar snippet in type description lan-
guage (Copestake, 2000)

For clarity, the examples are from a toy English
grammar. The lexical rule which is illustrated will
add a suffix ing to verbs to produce the participial
form. This way a string like walking will be parsed
and a feature structure will be produced which will
capture the fact that this is a non-finite verb form,
for example.5

2.4 Baseline: Inferring Position Classes DAG
by Input Overlap

One approach to inferring the morphotactic DAG
from IGT that has been tried is Wax (2014), and
I use it as the baseline. The code for the baseline
system was shared by its author. It was also used
by Bender et al. (2014) in their set of experiments
with automatically generated grammars of Chin-
tang. Wax (2014) processes the input IGT (which
already have segmentation and alignment between
the language line and the gloss line) to identify the

5There would have to be a separate lexical rule for gerund,
because the morphosyntactic constraints are distinct.

143



original affix types: affix instances which share the
same orthography, gloss, and input relations. The
original DAG is a function of these affix types,
with affixes being nodes and input relations be-
tween them being directed edges. The system then
takes a minimum input (edge) overlap value from
the user (e.g. 80%, 50%, 20%) and compresses the
graph according to this value, i.e. two nodes which
share more than a certain percentage of edges will
be considered the same position class. The princi-
ple is illustrated in the figures below on a toy Rus-
sian morphology graph which assumes an input of
two verbs: vy-kup-i-l and po-kup-a-et.

Figure 3: Two affix nodes (po- and vy-) are detected to have
a 100% overlap (kup).

Figure 4: Two affix nodes are collapsed into one. Then the
previous step is repeated with the next pair of affixes which
share the minimum edge overlap.

Figure 5: Eventually, the entire graph consists of classes of
affixes, which can also be mapped from orthography to lin-
guistic features through the IGT glossing.

Since the system will not allow a cycle in the
graph, the compression is limited. If the system
is trying to merge nodes A and B and one of B’s
edges would create a cycle if added to A’s edges,
such edge will not be added to A (it will there be
lost). For example, the minimum number of nodes

in the compressed graph of Chintang is 48 while
the literature reports 13 position classes (Bickel
et al., 2007). One advantage of the k-means ap-
proach is that it allows the user to pick any num-
ber of position classes directly, though a smaller
number means more edges may be sacrificed.

Wax’s (2014) system outputs a grammar specifi-
cation where the lexicon and the morphology sec-
tions are filled out, and the rest of the settings are
set to default. In particular, subject and object drop
are allowed in all cases, and this makes it possible
to parse stand-alone verbs. Then the specification
is compiled into grammar rules by the Grammar
Matrix (Bender et al., 2002; Bender et al., 2010)
and this grammar can be used for parsing with
software such as the LKB (Copestake, 2002) or
ACE (Crysmann and Packard, 2012).

3 Data

Chintang

The most interesting results were obtained on the
Chintang [ctn] data, possibly because it is the
biggest and the highest quality IGT collection that
I had. I used 8667 sentences for “training” (in
this case to learn the morphological rules) and
708 verbs for testing by morphological parsing.
The collection was used with permission from the
field linguists who created it (Bickel et al., 2013).
Chintang was shown to have free prefix ordering
(Bickel et al., 2007) and is a morphologically rich
agglutinative language. The position classes for
Chintang are described in Bickel et al. (2007).
Furthermore, Bender et al. (2012) hand-built an
Oracle morphological precision grammar based on
this description, accounting for certain phenomena
such as position classes iteration. I used this gram-
mar in evaluation.

Matsigenka

Another low-resource language that I used for this
study was Matsigenka [mcb]. The IGT collec-
tion was again obtained from the field linguists
who created it (Michael et al., 2013). I used a
part of the collection which had English transla-
tions (376 sentences for training and 47 for testing,
which results in 118 verbs for testing). Matsigenka
is also an agglutinative, morphologically rich lan-
guage with possibly variable morpheme ordering
(Michael, p.c.).
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ODIN: Turkish, Tagalog, and Russian

ODIN (Lewis and Xia, 2010) is a database of
IGT obtained from crawling linguistic papers on-
line. Though the particular languages which I used
from ODIN are not low-resource, the datasets still
represent noisy and scarce data. Because it comes
from examples in linguistic papers, ODIN data is
fairly homogeneous and not necessarily represen-
tative of natural language use, but it does provide a
big selection of different languages IGT (currently
1497 datasets). For this experiment, I used three
ODIN datasets: Turkish [tur], Tagalog [tgl], and
Russian [rus]. Turkish and Tagalog can be seen
as being on the opposite sides of the morphotac-
tic spectrum: Turkish has many position classes
but the morphotactics is mostly canonical, while
Tagalog only basically has one prefix and one suf-
fix position class but features infixes and redupli-
cation.6 In addition to Turkish and Tagalog, I used
the Russian dataset from ODIN. Russian is a mor-
phologically rich language with a few prefixal and
a few suffixal position classes and a native speaker
was available to perform qualitative error analy-
sis,7 so it was included for the diversity of the test
set.

4 Method

The method and the evaluation process are illus-
trated in Figure 6 and described in the subsections
below.

Figure 6: General method. The steps relevant only to evalu-
ation are indicated by dotted lines.

6There is also a historical reason for using Turkish and
Tagalog: Wax originally tested his system on them. However,
he used the data in a different form and his original results are
not directly comparable to mine.

7Results for Russian turned out to be uninteresting.

4.1 Training/Testing Split and the Effect of
the Random Split on the Results

The Chintang and Matsigenka datasets were split
randomly into training and testing for the purposes
of other projects, and these were the splits that I
used. The ODIN data I split myself. The split
has a noticeable effect on the results. Namely,
different splits result in a different number of po-
sition classes with the same minimum overlap
value. Poor alignment between the language and
the gloss line in the ODIN data leads to differ-
ent items being discarded as the affix objects are
added to the system, depending on which IGTs are
originally in the training set.

There does not seem to be a strong correlation
between the number of position classes that the
baseline system comes up with and with either the
number of IGT in the training set or the number
of nodes in the original graph (Pearson coefficient
between -0.08 and +0.13). The effect is probably
just due to the randomness of the split. For all the
three ODIN datasets, I report the numbers and an-
alyze the results for the training-testing split which
corresponds to a representative run. The represen-
tative run is one that resulted in the average value
for the final number of position classes over 100
runs.

4.2 Affix Objects

The k-means system takes as input the original af-
fix DAG created by Wax’s (2014) system as de-
scribed in section 2.4. The baseline system reads
in the IGT and identifies affixes using the segmen-
tation that is already in the IGT, the alignment with
the gloss line, and a list of known glosses. The
affixes then are stored in a DAG as nodes, and a
directed edge between two nodes means that one
affix can serve as input to the other. Stems are also
part of the DAG, though they only have outgoing
edges and no incoming edges. An affix instance is
mapped to an existing node if it is associated with
the same gloss, orthography, and inputs. Other-
wise a new affix node is created. After the original
DAG is built, instead of compressing the graph by
using edge (input) overlap, I apply k-means clus-
tering to merge the nodes based on a number of
features described below.
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4.3 Clustering

4.3.1 k-means
I used classical k-means clustering in form of a
package for the Python programming language
(Pedregosa et al., 2011)8 with the following fea-
ture set where each feature is binary: affix’s or-
thography, affix’s gloss, linguistic feature type
(e.g. tense, number), immediate context (previous
morpheme, or the input, the only feature that the
baseline also uses), the root of the word the affix
occurred in, and whether the affix is a prefix (oc-
curs to the left of the root). I run k-means on affix
instances rather than on the DAG nodes, but each
affix instance had been associated with a particu-
lar node in the DAG as described in the previous
section. The nodes are then merged as described
below.

4.3.2 Applying Clustering Labels to the Affix
DAG

After a label is obtained for each affix instance,
a new DAG is constructed as follows: I take a
collection of new nodes, based on the clustering
labels. Nodes from the old DAG for which the
clustering label is the same are merged, with all
inputs and outputs kept, regardless of cycles. If a
certain node from the old DAG is associated with
two different clusters, the node is split into two
copy-nodes. Then a spanning tree is constructed
by breadth-first search using the ‘heaviest’ outgo-
ing edge for each node, where the weight is the
outdegree of the node to which the edge is point-
ing. Then all other possible outgoing edges, sorted
by weight and starting from the heaviest, are added
for all nodes so long as they don’t create a cycle in
the graph. Some have to be sacrificed.

4.3.3 Choosing k
One goal was to evaluate the system using k equal
to the number of position classes that the baseline
system produces, so that they can be compared.
Since the baseline system’s result depends on the
minimum overlap choice, that had to be fixed at a
particular value. At the same time, for Chintang,
there exists an Oracle precision grammar built by
language experts (Bender et al., 2012). The base-
line system is limited in how small of a graph it
can produce. In particular, when run on the Chin-
tang data, it produced a minimum of 48 position

8http://scikit-learn.org/stable/

modules/clustering.html

classes when input overlap is less or equal to 0.1,
and 55 position classes with overlap = 0.2. Fifty-
five is close to 54, the number of position classes
in the Oracle grammar. Therefore I decided to
use this 0.2 value for all languages to be able to
compare the Oracle grammar to both the baseline
system and the k-means system as well as to be
consistent with respect to all other parts of the ex-
periment. In addition, for Chintang I used k=13,
the number which does not account for iterating
affixes but is nonetheless the number that is hy-
pothesized in the literature (Bickel et al., 2007).

5 Results and Discussion

5.1 Evaluation Method

It should be stated upfront that the results of this
study seem most interesting if analyzed qualita-
tively, in terms of what kind of affixes get clus-
tered together and whether this can be helpful to
a filed linguist in any way. At the same time, it
is appropriate to include quantitative results. For
this, I use morphological parsing.

Morphological parsing is analyzing isolated
words (e.g. extracted from a held-out test set) lex-
ically, defaulting the phrase structure rules, in that
each word (such as a verb) can be analyzed as a
full sentence, provided there is a path in the mor-
photactic DAG that generates this word. This is an
appropriate evaluation method given that labeled
data for morphotactic inference virtually does not
exist for most languages, be it high-resource or
not. I am assuming that a grammar which achieves
better coverage on a held out dataset may better
represent the real grammar of the language, espe-
cially if k is kept modest.9 The Chintang Oracle
grammar I also use indirectly, looking at its per-
formance in terms of morphological parsing and
comparing to both the baseline and the k-means
systems.

All grammars, including the Oracle, were nor-
malized with respect to the lexicon and only differ
in morphological rules. The test sets were filtered
to just contain one instance of each verb. As such,
the evaluation does not take into account how fre-
quent the verbs are. The test sets for most lan-
guages are rather small (Chintang is the biggest
with 708 unique verbs in the set). This is a realis-
tic setting for low-resource language research.

9If k is very big, the grammar is likely to parse more but
it cannot be easily mapped to the language’s actual morphol-
ogy.
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Language System k/PC % parsed
Oracle 54 75.5
Wax (2014) 55 90.8

ctn k-means 55 86.1
k-means 13 83.3
Wax (2014) 23 78.4

mcb k-means 23 56.8
Wax (2014) 6 67.9

tgl k-means 6 50.9
Wax (2014) 21 53.4

tur k-means 21 53.4
Wax (2014) 5 47.9

rus k-means 5 47.1

Table 1: Morphological parsing results.

5.2 Results
The results are summarized in Table 1. The results
show that, in terms of morphological parsing, a k-
means grammar is generally worse than the base-
line system, though it can sometimes achieve sim-
ilar coverage (in the noisy ODIN setting). How-
ever both the baseline and the k-means systems
strongly outperform the hand-built Oracle gram-
mar of Chintang. Furthermore, the resulting gram-
mars can be examined by hand, not in terms of
parsing but in terms of what they look like and how
they compare to the languages’ actual morpholog-
ical rules. In case of Chintang at least, k-means
clusters together affixes which constitute circum-
fixes, while the baseline grammar cannot possibly
do that because it will never cluster together a pre-
fix and a suffix.

5.3 Analysis and Discussion
Given largely negative results, the main points of
this paper are given in qualitative linguistic anal-
ysis of concrete examples, mainly from the Chin-
tang experiments. In most cases, the k-means al-
gorithm and the baseline come up with different
sets of morphological rules. While the baseline
system clearly is better at parsing, Chintang and
Matsigenka have examples which the k-means can
parse and the baseline system cannot. That the
baseline is usually better at parsing suggests that
input overlap is an important feature and possibly
the strongest predictor of whether two affixes be-
long to the same position graph. However, the k-
means system is capable of picking up phenom-
ena which the input overlap will never detect, be-
cause they are related to variable order and gener-

ally non-canonical phenomena. For such phenom-
ena to be detected, the algorithm should consider
features beyond the affix’s immediate context. The
clearest example of this is the Chintang circumfix
mai-/-yokt which is consistently put in the same
cluster by the k-means. Below I mostly talk about
the Chintang results, as they provide the most in-
sight into the difference between the baseline and
the k-means.10

5.3.1 Chintang
Oracle Grammar versus Automatically
Induced Grammars
In terms of morphological parsing, both the k-
means morphological grammar and the baseline
grammar clearly outperform the Oracle grammar.
The main reason for this is that an automatic pro-
cedure which goes through the entire dataset in a
consistent fashion picks up a lot more affixes than
is described in the sources used by Bender et al.
(2014). In part, that is because Chintang employs
nominalization, compounding, and also features
many phonological variations, but there are also
indications that there are true verbal inflections
that are missing in the Oracle. While the Oracle
grammar cannot parse 158 items out of 708, the
baseline only misses 65, and the k-means system
misses 92. Examples of affixes which both auto-
matic grammars pick up which the Oracle gram-
mar misses include -P (glossed EMPH), -ko (nom-
inalizer), and, most interestingly, -en, which is
glossed PST.NEG, so it is clearly an affix that has
something to do with verb inflection and as such
should probably have been included in the Oracle
grammar but was missed for some reason. This
suggests that either the description of the gram-
mar in the literature is incomplete, or there are er-
rors in the corpus which should be corrected. In
either case, identifying verb inflections candidates
automatically would be helpful for the field lin-
guist who is working with the data.

Baseline Overlap=0.2 vs. k=55
The baseline system ended up compressing the
original graph to a number of nodes similar to the
Oracle number (55 instead of 54) when input over-
lap was set to 0.2. There are 7 items which the
k-means system parses and the baseline grammar
does not in this setting. A few of them, like a-lis-
a-hat-a-ce-e, require that there be two nodes for

10Admittedly, more analysis could be done on Matsigenka.
This remains part of future work.
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the -a orthography, such that one takes the root (in
this case lis) as input and the other takes the com-
plementizer hat. The baseline grammar does not
have an edge from the complementizer slot to the
tense slot. There are 34 items which the baseline
grammar parses and the k-means grammar does
not. This is because the k-means ends up sacri-
ficing more of the useful edges to avoid cycles in
the graph. Neither grammar parses 58 items. Of
these, some are due to unseen lexemes but most
are due to discarded edges (since the baseline also
discards edges when merging nodes).

The True Number of Position Classes: k=13
The most interesting (from the linguistic perspec-
tive) k-means result is the one with k=13. First of
all, it is not possible to obtain this number using
the baseline grammar, since the smallest number
it produces is 48. Secondly, the resulting graph
has some resemblance to Chintang morphotactics
as described in the literature, and that can be seen
more easily in a smaller graph. This means that the
k-means system can be useful to a researcher who
is trying to come up with hypotheses about the lan-
guage’s morphotactics and may have an idea about
roughly how many position classes there are but
not necessarily which affixes belong together and
what the input relationships are. I evaluate this
scenario with k=13, the number of position classes
in Chintang suggested by Bickel et al. (2007).

There is some resemblance between the sys-
tem’s output and Chintang morphotactics as de-
scribed by Bickel et al. (2007). An abridged ver-
sion of the results is presented in Figure 7. Three
of the clusters (not shown) are very heterogeneous
and contain stems as well as different kinds of
morphemes. These cannot be directly mapped to
actual Chintang morphotactics, though they are
useful in parsing compound verbs. There are a few
clusters that k-means seems to get roughly right
(all of them are in the figure), and some of the in-
put edges (also in the figure) reflect actual Chin-
tang morphotactics as well. One cluster, namely 9,
has affixes that are clearly glossed as a verb inflec-
tion in the data (3, 3s, 3p) but are not accounted for
in Bickel et al. (2007). One especially interesting
cluster is the one presented in Figure 8. It captures
the fact that -yokt and mai- behave as a circum-
fix, i.e. they tend to occur only together, one to the
right and one to the left of the root. Clustering
in this case is not necessarily helpful for parsing,
but it is helpful for identifying morphotactic con-

Figure 7: A part of the morphotactic graph output by k-
means with k=13. Dotted ellipse (verb-pc9) shows a clus-
ter which is not accounted for in the Chintang literature but
seems plausible as a position class. All the rest included clus-
ters at least roughly correspond to the position classes in the
literature. Some clusters and edges are not shown.

Figure 8: Chintang cluster containing circumfix mai- -yokt.

straints generally.

5.4 Matsigenka

While the k-means grammar lacks some produc-
tive edges that the overlap grammar has, it gains
at least some others, which makes it possible for
the k-means to parse i-tsarog-a-i-t-an-ak-e, since
the k-means grammar does not lose the edge from
-i class to -t class. With only one such example,
it is difficult to conclude anything. No qualitative
analysis of smaller Matsigenka graphs was done
at this point. In future work, it will be possible to
use a larger Matsigenka dataset, and hopefully the
results will be more interesting.

5.5 ODIN Data

The ODIN datasets do not contain much variety,
since the IGT come from linguistic papers’ exam-
ples, and those tend to not be very diverse. At the
same time, the ODIN data is rather noisy and often
times it is not easy to align the gloss line to the lan-
guage line. This way, many affixes never make it
into the grammars and many items are not parsed.
Interestingly, k-means comes closest to the base-
line in this setting. The items that are parsed by
both grammars are the ones that are seen in the
data a lot and are therefore fairly simple for both
systems to get. It seems that k-means could be
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used on small and noisy field datasets, often as
successfully as the baseline system, and the hope
of discovering non-canonical phenomena will be
higher.

6 Conclusion

The experiments described in this paper show
that unsupervised methods such as clustering can
be used somewhat successfully on smaller scale
data such as field languages IGT collections. In
case with Chintang at least, the clusters of af-
fixes yielded by k-means sometimes roughly cor-
respond to the position classes described in the lit-
erature. Both the baseline and the k-means sys-
tems are able to morphologically analyze (parse)
more verbs than a hand-built grammar, which con-
firms that automatic processing is useful for field
research.

Strict ordering of affixes that is easily accounted
for by heuristic methods such as Wax (2014)
is generally a very strong predictor for whether
two affixes belong to the same position class or
not. Systems that rely solely on inferring such
ordering perform better than k-means in all the
cases presented in this paper, but k-means achieves
comparable results in noisy settings. Further-
more, approaches such as input overlap are by
definition hopeless for discovering non-canonical
morphotactics, while k-means seems to discover
some correlations between positions that are con-
ditioned on each other (e.g. Chintang -yokt and the
negative prefixes). An improvement to the current
approach would be weighted k-means, where im-
mediate context (input) can be given more weight.

A system like the one described in this paper
can be a useful component of an interactive lin-
guistic analysis tool for field linguists. Kim (2015)
showed that clustering results can be made more
interpretable for humans in the education domain
with the aid of Bayesian Case Modeling. It is
possible that the same is applicable to the domain
of field linguistics and morphological analysis. I
showed that clusters suggest correlations between
morphological features; designing a BCM-based
interactive system where the linguist could guide
the algorithm and look at automatically generated
hypotheses in the process is a tempting direction
for future work. As it is at present, k-means is a
simple and extensible alternative to heuristic algo-
rithms of inferring position classes from IGT and
can serve as a stepping stone for developing ex-

pert linguistic analyses, as it can form preliminary
buckets of affixes that can be considered candi-
dates for either true position classes or for posi-
tions that are related to each other in some non-
obvious way.
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