
ACL 2016

The 54th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the 14th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology, and

Morphology

August 11, 2016
Berlin, Germany

c©2016 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-08-1

ii

Introduction

Welcome to the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology. The workshop aims to bring together researchers interested in applying computational
techniques to problems in morphology, phonology, and phonetics. Our program this year highlights the
ongoing and important interaction between work in computational linguistics and work in theoretical
linguistics. We received 23 submissions and accepted 11.

The volume of submissions made it necessary to recruit several additional reviewers. We’d like to thank
all of these people for agreeing to review papers on what seemed like impossibly short notice.

This year also marks the first SIGMORPHON shared task, on morphological reinflection. The shared
task received 9 submissions, all of which were accepted, and greatly advanced the state of the art in this
area.

We thank all the authors, reviewers and organizers for their efforts on behalf of the community.

iii

Organizers:

Micha Elsner, The Ohio State University
Sandra Kübler, Indiana University

Program Committee:

Adam Albright, MIT
Kelly Berkson, Indiana University
Damir Cavar, Indiana University
Grzegorz Chrupała, Tilburg University
Çağrı Çöltekin, University of Tübingen
Ewan Dunbar, Laboratoire de Sciences Cognitives et Psycholinguistique, Paris
Jason Eisner, Johns Hopkins University
Valerie Freeman, University of Washington
Sharon Goldwater, University of Edinburgh
Nizar Habash, NYU Abu Dhabi
David Hall, Semantic Machines
Mike Hammond, University of Arizona
Jeffrey Heinz, University of Delaware
Colin de la Higuera, University of Nantes
Ken de Jong, Indiana University
Gaja Jarosz, Amherst
Greg Kobele, University of Chicago
Greg Kondrak, University of Alberta
Kimmo Koskenniemi, University of Helsinki
Karen Livescu, TTI Chicago
Kemal Oflazer, CMU Qatar
Jeff Parker, Brigham Young
Jelena Prokic, Philipps-Universität Marburg
Andrea Sims, OSU
Kairit Sirts, Macquarie University
Richard Sproat, Google
Reut Tsarfaty, Weizmann Institute
Sami Virpioja, Aalto University
Shuly Wintner, University of Haifa

Invited Speaker:

Colin Wilson, Johns Hopkins University

v

Table of Contents

Mining linguistic tone patterns with symbolic representation
SHUO ZHANG . 1

The SIGMORPHON 2016 Shared Task—Morphological Reinflection
Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner and Mans

Hulden . 10

Morphological reinflection with convolutional neural networks
Robert Östling .23

EHU at the SIGMORPHON 2016 Shared Task. A Simple Proposal: Grapheme-to-Phoneme for Inflection
Iñaki Alegria and Izaskun Etxeberria .27

Morphological Reinflection via Discriminative String Transduction
Garrett Nicolai, Bradley Hauer, Adam St Arnaud and Grzegorz Kondrak . 31

Morphological reinflection with conditional random fields and unsupervised features
Ling Liu and Lingshuang Jack Mao. .36

Improving Sequence to Sequence Learning for Morphological Inflection Generation: The BIU-MIT Sys-
tems for the SIGMORPHON 2016 Shared Task for Morphological Reinflection

Roee Aharoni, Yoav Goldberg and Yonatan Belinkov . 41

Evaluating Sequence Alignment for Learning Inflectional Morphology
David King . 49

Using longest common subsequence and character models to predict word forms
Alexey Sorokin . 54

MED: The LMU System for the SIGMORPHON 2016 Shared Task on Morphological Reinflection
Katharina Kann and Hinrich Schütze . 62

The Columbia University - New York University Abu Dhabi SIGMORPHON 2016 Morphological Rein-
flection Shared Task Submission

Dima Taji, Ramy Eskander, Nizar Habash and Owen Rambow . 71

Letter Sequence Labeling for Compound Splitting
Jianqiang Ma, Verena Henrich and Erhard Hinrichs . 76

Automatic Detection of Intra-Word Code-Switching
Dong Nguyen and Leonie Cornips . 82

Read my points: Effect of animation type when speech-reading from EMA data
Kristy James and Martijn Wieling . 87

Predicting the Direction of Derivation in English Conversion
Max Kisselew, Laura Rimell, Alexis Palmer and Sebastian Padó . 93

Morphological Segmentation Can Improve Syllabification
Garrett Nicolai, Lei Yao and Grzegorz Kondrak . 99

Towards a Formal Representation of Components of German Compounds
Thierry Declerck and Piroska Lendvai . 104

vii

Towards robust cross-linguistic comparisons of phonological networks
Philippa Shoemark, Sharon Goldwater, James Kirby and Rik Sarkar . 110

Morphotactics as Tier-Based Strictly Local Dependencies
Alëna Aksënova, Thomas Graf and Sedigheh Moradi .121

A Multilinear Approach to the Unsupervised Learning of Morphology
Anthony Meyer and Markus Dickinson . 131

Inferring Morphotactics from Interlinear Glossed Text: Combining Clustering and Precision Grammars
Olga Zamaraeva . 141

viii

Conference Program

Thursday, August 11, 2016

9:00–9:30 Phonetics

09:00–09:30 Mining linguistic tone patterns with symbolic representation
SHUO ZHANG

09:30–10:30 Invited Talk
Colin Wilson

10:30–11:00 Coffee Break

11:00–11:30 The SIGMORPHON 2016 Shared Task—Morphological Reinflection
Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner
and Mans Hulden

11:30–12:30 Shared task poster session

Morphological reinflection with convolutional neural networks
Robert Östling

EHU at the SIGMORPHON 2016 Shared Task. A Simple Proposal: Grapheme-to-
Phoneme for Inflection
Iñaki Alegria and Izaskun Etxeberria

Morphological Reinflection via Discriminative String Transduction
Garrett Nicolai, Bradley Hauer, Adam St Arnaud and Grzegorz Kondrak

Morphological reinflection with conditional random fields and unsupervised fea-
tures
Ling Liu and Lingshuang Jack Mao

Improving Sequence to Sequence Learning for Morphological Inflection Genera-
tion: The BIU-MIT Systems for the SIGMORPHON 2016 Shared Task for Morpho-
logical Reinflection
Roee Aharoni, Yoav Goldberg and Yonatan Belinkov

Evaluating Sequence Alignment for Learning Inflectional Morphology
David King

ix

Thursday, August 11, 2016 (continued)

Using longest common subsequence and character models to predict word forms
Alexey Sorokin

MED: The LMU System for the SIGMORPHON 2016 Shared Task on Morphologi-
cal Reinflection
Katharina Kann and Hinrich Schütze

The Columbia University - New York University Abu Dhabi SIGMORPHON 2016
Morphological Reinflection Shared Task Submission
Dima Taji, Ramy Eskander, Nizar Habash and Owen Rambow

12:00–14:00 Lunch Break

14:00–15:00 Workshop poster session

Letter Sequence Labeling for Compound Splitting
Jianqiang Ma, Verena Henrich and Erhard Hinrichs

Automatic Detection of Intra-Word Code-Switching
Dong Nguyen and Leonie Cornips

Read my points: Effect of animation type when speech-reading from EMA data
Kristy James and Martijn Wieling

Predicting the Direction of Derivation in English Conversion
Max Kisselew, Laura Rimell, Alexis Palmer and Sebastian Padó

Morphological Segmentation Can Improve Syllabification
Garrett Nicolai, Lei Yao and Grzegorz Kondrak

Towards a Formal Representation of Components of German Compounds
Thierry Declerck and Piroska Lendvai

x

Thursday, August 11, 2016 (continued)

15:00–15:30 Phonology

15:00–15:30 Towards robust cross-linguistic comparisons of phonological networks
Philippa Shoemark, Sharon Goldwater, James Kirby and Rik Sarkar

15:30–16:00 Coffee Break

16:00–17:30 Morphology

16:00–16:30 Morphotactics as Tier-Based Strictly Local Dependencies
Alëna Aksënova, Thomas Graf and Sedigheh Moradi

16:30–17:00 A Multilinear Approach to the Unsupervised Learning of Morphology
Anthony Meyer and Markus Dickinson

17:00–17:30 Inferring Morphotactics from Interlinear Glossed Text: Combining Clustering and
Precision Grammars
Olga Zamaraeva

xi

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 1–9,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Mining linguistic tone patterns with symbolic representation

Shuo Zhang
Department of Linguistics, Georgetown University

ssz6@georgetown.edu

Abstract

This paper conceptualizes speech prosody
data mining and its potential application in
data-driven phonology/phonetics research.
We first conceptualize Speech Prosody
Mining (SPM) in a time-series data min-
ing framework. Specifically, we propose
using efficient symbolic representations
for speech prosody time-series similarity
computation. We experiment with both
symbolic and numeric representations and
distance measures in a series of time-series
classification and clustering experiments
on a dataset of Mandarin tones. Evaluation
results show that symbolic representation
performs comparably with other represen-
tations at a reduced cost, which enables us
to efficiently mine large speech prosody
corpora while opening up to possibilities
of using a wide range of algorithms that re-
quire discrete valued data. We discuss the
potential of SPM using time-series mining
techniques in future works.

1 Introduction

Current investigations on the phonology of into-
nation and tones (or pitch accent) typically em-
ploy data-driven approaches by building research
on top of manual annotations of a large amount
of speech prosody data (for example, (Morén and
Zsiga, 2006; Zsiga and Zec, 2013), and many oth-
ers). Meanwhile, researchers are also limited by
the amount of resources invested in such expensive
endeavor of manual annotations. Given this para-
dox, we believe that this type of data driven ap-
proach in phonology-phonetics interface can bene-
fit from tools that can efficiently index, query, clas-
sify, cluster, summarize, and discover meaningful

prosodic patterns from a large speech prosody cor-
pus.

The data mining of f0
1 (pitch) contour patterns

from audio data has recently gained success in the
domain of Music Information Retrieval (aka MIR,
see (Gulati and Serra, 2014; Gulati et al., 2015;
Ganguli, 2015) for examples). In contrast, the data
mining of speech prosody f0 data (here on referred
to as Speech Prosody Mining (SPM)2) is a less ex-
plored research topic (Raskinis and Kazlauskiene,
2013). Fundamentally, SPM in a large prosody
corpus aims at discovering meaningful patterns in
the f0 data using efficient time-series data mining
techniques adapted to the speech prosody domain.
Such knowledge has many potential applications
in prosody-related tasks, including speech prosody
modeling and speech recognition. Moreover, a
Speech Prosody Query and Retrieval (SPQR) tool
can be also of great utility to researchers in speech
science and theoretical phonology/phonetics (tone
and intonation).

Due to the nature of speech prosody data, SPM
in a large prosody corpus faces classic time-series
data mining challenges such as high dimensional-
ity, high feature correlation, and high time com-
plexity in operations such as pair-wise distance
computation. Many of these challenges have been
addressed in the time-series data mining literature
by proposing heuristics that make use of cheaper
and more efficient approximate representations of
time-series (e.g., symbolic representations). How-
ever, a central question to be addressed in SPM is
how to adapt these generic techniques to develop
the most efficient methods for computing similar-

1In this paper we use the terms fundamental frequency,
f0, and pitch somewhat interchangably.

2As the previous research in this specific area is sparse,
we have coined this term for the current paper as we con-
ceptualize the time-series data mining based framework for
the pattern discovery, similarity computation and content re-
trieval from speech prosody databases.

1

ity for the speech prosody time-series data (that
also preserves the most meaningful information
within this domain).

In this paper, we first conceptualize SPM in
a time-series mining framework. We outline the
various components of SPM surrounding the cen-
tral question of efficiently computing similarity for
speech prosody time-series data. In particular, we
propose using Symbolic Aggregate approXima-
tion (SAX) representation for time-series in var-
ious SPM tasks. We then evaluate the use of SAX
against several alternative representations for f0

time-series in a series of classic data mining tasks
using a data set of Mandarin tones(Gauthier et al.,
2007). Finally we discuss potential challenges and
SPM applications to be addressed in future works.

2 SPM framework: Computing
similarity for speech prosody
time-series

2.1 Overview

Formally, a time series T = t1,...,tp is an ordered
set of p real-valued variables, where i is the time
index. Speech prosody consists of time-ordered
fundamental frequency f0 data points computed
at a specified hop size, which can be naturally
viewed as a time-series.

Due to the typical large size of data mining
tasks and the high dimensionality of time-series,
it is often impossible to fit the data into main
memory for computation. A generic time-series
mining framework is proposed as follows (Falout-
sos et al., 1994): (1)Create an approximation of
the data, which will fit in main memory, yet re-
tains the essential features of interest; (2) Ap-
proximately solve the task at hand in main mem-
ory; (3)Make few accesses to the original data on
disk to confirm/modify the solution obtained in
Step 2. In practice, however, the success of this
generic framework depends on the efficient time-
series representation and distance measure in the
approximated space that allows the lower bound-
ing of true distances in the original space, along
with the appropriate and tractable distance com-
putation(Lin et al., 2007).

2.2 Subsequence generation

There are two ways to generate time-series subse-
quences (such as sequences of syllabic tones). In
the first mode (”long sequence”), we store time-
series as a long sequence (e.g., one audio record-

ing file lasting an hour), and we extract subse-
quences (such as tones or tone n-grams) on the
fly while performing data mining tasks by slid-
ing a moving window across the entire time-series.
In this mode, the two parameters to be specified
are: (1) the length of the desired subsequence; (2)
hop size, i.e., the distance between two consecu-
tive windowing (such as n samples, where n ≥ 1).
Most time-series mining applications work in this
way (e.g., financial, weather, DNA, EKG, etc).
The second mode is to store pre-extracted time-
series as individual subsequences and perform ex-
periments on these subsequences directly. The
first mode usually generates much more numer-
ous (partially overlapping) subsequences due to
the small hop size used in practice.

In speech prosody, however, it is meaningful
to store tone or intonation time-series as sub-
sequences. For example, it is generally ac-
knowledged that tones are associated with each
syllable (or some sub-syllabic structure like the
mora(Morén and Zsiga, 2006)). Intuitively, we
are only interested in tone time-series that have
beginning and ending points at syllable bound-
aries. This is true for tone syllable n-grams as
well. On the other hand, in a motif discovery3

context, it is conceivable that f0 patterns that be-
gin or end in the middle of the syllable could
still be of interest (due to misalignment of tone
and syllable, such as peak delay (Xu, 2001)).
In that case, using the long sequence mode, we
might discover novel, previously unknown pat-
terns and knowledges about interesting phenom-
ena in a large prosody corpus.

2.3 F0 time-series representations and
Symbolic Aggregate approXimation

A great deal of effort has been devoted to develop-
ing efficient approximate representations for time-
series data(Debarr et al., 2012). The limitations of
real-valued approaches 4 have led researchers to
consider using a symbolic representation of time
series. A symbolic approach that allows lower
bounding of the true distance would not only sat-
isfy the requirement of the generic framework out-
lined in Section 2.1, but also enables us to use a

3As will be discussed later, motif discovery is a classic
time-series mining task that searches for all previously un-
specified recurring time-series subsequence patterns in the
data set in an exhaustive manner.

4Since in many contexts the probability of observing any
real number is zero, this may limit the types of algorithms
that can work with these representations.

2

variety of algorithms and data structures that are
only defined for discrete data, including hashing,
Markov models, and suffix trees (Lin et al., 2007).

Symbolic Aggregation approXmation (or SAX
(Lin et al., 2003)) is the first symbolic represen-
tation for time series that allows for dimensional-
ity reduction and indexing with a lower-bounding
distance measure at the same time. The SAX al-
gorithm first transforms the original time-series
into a representation with a lower time resolution,
using Piecewise Aggregate Approximation tech-
nique (PAA, (Keogh et al., 2001)) as an interme-
diate step. Then it quantizes the pitch space us-
ing an alphabet, therefore transforms the entire
time-series into a string. It has two parameters:
a word size(w=desired length of the symbolic fea-
ture vector) and an alphabet size (a), the latter
being used to divide the pitch space of the con-
tour into a equiprobable parts assuming a Gaus-
sian distribution of F0 values (the breakpoints are
obtained from a lookup statistical table). After we
obtain the breakpoints, each segment of the time-
series can be assigned a letter based on the alpha-
bet bin it is in. Figure 1 shows an example of SAX
transformation of a time-series of length 128 into
the string ’baabccbc’.

In the current paper, we consider several other
representations of f0 time-series data for evalua-
tion against the SAX representation:

(1) Non-parametric f0 representation. f0 con-
tour units can be directly represented by down-
sampled or transformed f0 data points (originally
in Hertz, or transformed to Cent or Bark scale5).
(Gauthier et al., 2007) showed that unsupervised
classification using Self-Organizing Map yielded
a 80% correct result with 30-point f0 vectors. In
the same study, the First Derivative Vector (D1) is
shown to be a more effective feature than f0.

(2) Prosody modeling phonetic model represen-
tation. In speech prosody modeling, the most
straightforward phonetic model representation of
pitch contours is to use polynomial functions(Hirst
et al., 2000) to fit the f0 contour of each utterance
unit (such as a tone). A f0 contour can thus be rep-
resented by the coefficient vector [c1, c2,..., cn+1]
of a n-th order polynomial. An alternative and lin-
guistically more meaningful model is the quanti-
tative Target Approximation(qTA)(Prom-on et al.,
2009). qTA models tone/intonation production as

5Cent and Bark scales are transformations of Hertz values
in order to more closely reflect the human perception of pitch
differences.

Figure 1: Symbolic Aggregate Approximation,
with original length n = 128, number of segments
w = 8 and alphabet size a = 3, with output word
baabccbc (adpated from Lin et al 2007)

Euclidean DTW(LB Keogh) MINDIST
(30)norm-f0 (30)norm-f0 (10,20)SAX
(30)norm-f0-bk (30)norm-f0-bk
(30)norm-f0-ct (30)norm-f0-ct
(30)D1 (30)D1
(4)polynomial
(3)qTA

Table 1: Experiments on distance measures and
time-series (TS) representations. Each column
shows various TS representations with a distance
measure in the top row, with the dimensionality
or dimensionality range of the TS-representation
in the preceding parenthesis (norm=normalized,
bk=Bark, ct=Cent, D1=first derivative)

a process of syllable-wise pitch target approxima-
tion, where the target is defined by a linear equa-
tion with slope m and intercept b. The actual real-
ization of the f0 contour is constrained by articu-
latory factors, characterized by a third-order criti-
cally damped system with parameter λ.

2.4 Distance computation

The first two of the following three distance mea-
sures work on numeric representation of time-
series data, while the third works on symbolic
data.

(1) Euclidean Distance is an effective and eco-
nomic distance measure in many contexts despite
its simplicity. (Mueen et al., 2009) shows that the
difference between Euclidean and DTW distance
(discussed next) becomes smaller as the data gets
bigger.

(2) Dynamic time warping (DTW, see (Rak-
thanmanon et al., 2012)) is an algorithm for mea-
suring similarity between two temporal sequences
which may vary in time or speed in a non-linear
fashion. The optimal (shortest) DTW distance,
or the best alignment between two time series is
obtained with dynamic programming (similar to
edit distance for string alignment). It is described

3

in the literature as being extremely effective for
computing distances for time-series data (Xi et al.,
2006) and has become indispensable for many do-
mains. In practice, due to its high cost, various
lower-bounding techniques are proposed to speed
up DTW distance computation in a large database.
The LB Keogh lower bounding technique (Keogh,
2002), for example, speeds up the computation by
first taking an approximated distance between the
time-series that is both fast to compute and lower
bounds the true distance. Only when this approxi-
mated distance is better than the best-so-far do we
need to actually compute the DTW distance be-
tween the pair. This makes DTW essentially an
O(n) algorithm. However, in general DTW dis-
tance matrix computation in a big data set remains
a more expensive operation in practice. By using
symbolic representation, our goal is to find a more
efficient representation and distance measure that
perform comparably to DTW.

(3) MINDIST distance function returns the min-
imum distance between two SAX strings. It lower
bounds the true distances of original data (Lin
et al., 2003). It can be computed efficiently by
summing up the letter-wise distances in the SAX
string (letter-wise distance can be obtained from
a lookup table using the Gaussian-equiprobable
breakpoints mentioned before). For a given value
of the alphabet size a, the table needs only be cal-
culated once, then stored for fast lookup.

Table 1 gives an overview of all the time-series
representations and distance measures evaluated in
this paper.

2.5 Pitch normalization

Many literature reviews(Lin, 2005) in time-series
mining assert that time series must be normal-
ized using the z-score transformation normaliza-
tion strategy so that each contour has a standard
deviation of 1 and mean of 0. However, we
observe that z-score transformation distorts the
shapes of tone or intonation contours with a rela-
tively flat shape. Since z-score transformation ex-
presses each data point in a time series by its rela-
tive value to the mean in terms of standard devia-
tion, it would magnify the differences in the values
of the flat or near flat contours, and turn such con-
tours into a significantly un-flat contour. To solve
this problem, we propose the Subtract-Mean nor-
malization strategy:

z0 = (xi − µ) (1)

SAX has a requirement to first normalize the
time-series using the standard-deviation normal-
ized z-score transformation. In our implementa-
tion, when the standard deviation of a subsequence
time-series is less than a pre-set threshold (a very
small number), all of its segments will be assigned
the same symbol.

3 Related work

There has been limited amount of previous works
on f0 pattern data mining, including MIR f0

melodic pattern mining, and corpus based speech
intonation research.

(Gulati and Serra, 2014) mined a database of
melodic contour patterns in Indian Art Music.
Due to its astronomical size (over 14 trillion pairs
of distance computation), various techniques are
used to speed up the computation, including lower
bounding in DTW distance computation (Keogh,
2002) and early abandoning techniques for dis-
tance computation (Rakthanmanon et al., 2012).
The goal is to discover highly similar melodic
time-series patterns that frequently occur in the
collection (motifs) in an unsupervised manner, and
the result is evaluated using the query-by-content
paradigm (in which a seed query pattern is pro-
vided and top-K similar patterns are returned).
The meaningfulness of the discovered pattern is
then assessed by experts of Indian music.

(Gulati et al., 2015) experimented with 560 dif-
ferent combinations of procedures and parame-
ter values (including sampling rate of the melody
representation, pitch quantization levels, normal-
ization techniques and distance measures) in a
large-scale evaluation for the similarity compu-
tation in MIR domain. The results showed that
melodic fragment similarity is particularly sensi-
tive to distance measures and normalization tech-
niques, while sampling rate plays a less important
role.

(Valero-Mas et al., 2015) experimented with
SAX representation for the computation of F0
contour similarity from music audio signals in a
Query-By-Humming (QBH) task6 in MIR. Results
suggest that SAX does not perform well for music

6In a query by humming task, a user hums a subsection
of the melody of a desired song to search for the song from a
database of music recordings.

4

TSR-DIST SAX-MINDIST BK-EU HERTZ-EU HERTZ-DTW D1 qTA polynomial
K 1 3 5 7 1 1 1 1 1 1

dimension 20 20 20 20 30 30 30 30 3 4
accuracy 0.81 0.87 0.87 0.89 0.92 0.92 0.93 0.93 0.73 0.70

CR 0.66 0.66 0.66 0.66 1 1 1 1 0.1 0.13

Table 2: K-Nearest Neighbor tone classification results, with 10-fold cross validation (CR=compression
rate, TSR=time-series representation, DIST=distance measure, EU=Euclidean Distance, SAX parame-
ters (w,a)=(20,17), test size=1600, training size=320)

time-series data in the context of QBH. The au-
thors attribute this to the fact that the SAX rep-
resentation loses information important in music
melodic retrieval through its dimensionality re-
duction process.

To the best of our knowledge, the only work
that attempted at data mining of speech prosody is
(Raskinis and Kazlauskiene, 2013)’s work on clus-
tering intonation patterns in Lithuanian (although
it did not explicitly employ any time-series data
mining techniques). While this work examined the
use of a number of distance measures (mainly Eu-
clidean vs. DTW), it is a early-stage research and
no clear conclusion was reached regarding either
the effectiveness of the discussed methods or the
significance of the patterns discovered.

4 Case study: mining Mandarin tones
with symbolic representation

In this section we report our initial experimen-
tation using SAX and other types of time-series
representations and distance measures discussed
above. We evaluate on a data set of pre-extracted
subsequences of Mandarin tone time-series. The
current experiment aims at a focused evaluation
of these techniques on a controlled and relatively
small data set in order to study their behaviors
when dealing with speech prosody time-series
data. Therefore, we have deliberately chosen a
smaller and relatively clean dataset from which we
can clearly see the consequences when we vary the
parameters. The ultimate goal is of course to use
this framework to mine large databases of tone and
intonation corpora.

4.1 Experimental setup

Our evaluation data set of Mandarin tones is drawn
from the (Gauthier et al., 2007) data used for un-
supervised learning of Mandarin tones with the
Self-Organizing Map. This data set contains lab
speech (480*4=1920 tones, three speakers each
produced 160 instances of each of the four tone

(7
,6

)

(8
,7

)

(1
2
,7

)

(1
2

,1
0

)

(1
5

,1
0

)

(1
6

,1
1

)

(1
6

,1
2

)

(1
7

,1
1

)

(1
7

,1
2

)

(1
8

,1
1

)

(1
8

,1
2

)

(1
9

,1
1

)

(1
9

,1
2

)

(2
0

,1
2

)

(2
0

,1
3

)

(2
0

,1
4

)

(2
0

,1
5

)

(2
0

,1
7

)

(2
0

,2
0

)

(2
1

,1
3

)

(w,a)

0

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
(%

)

KNN Classification Accuracy

Figure 2: Classification accuracy(%) by SAX pa-
rameters w and a

categories), where all possible tone combinations
are permuted with the original intention to study
the variability of tone shapes in running speech.
The tonal environments introduce noisy deviation
of tone shapes from tone templates, making tone
recognition a mildly challenging task. The target
tones are spoken in a carrier sentence and later ex-
tracted as syllable-length subsequences.

Table 1 shows the time-series representations
and distance measures to be evaluated in this pa-
per. Following conventions in time-series data
mining literature, we evaluate these combinations
using time-series classification and clustering. For
classification, we use k-nearest neighbor (KNN)
and Decision Tree, both of which are widely used
in time-series classification7. We report only accu-
racy on the classification experiments considering
the balanced nature of the data set. All classifica-
tion experiments are done with 10-fold cross vali-
dation with randomized split of data.

Following the convention of using a smaller
training size in time-series data mining literature
(and considering the optimal time complexity for
splitting data size in KNN), the classification ex-

7In practice, KNN is an expensive algorithm that scale
more poorly than decision trees.

5

SAX D1_DTW BK_DTW D1 qTA polynomial BK Hertz

TS-representation & dist measure

0

10

20

30

40

50

60

70

80

90
a
cc

u
ra

cy

Clustering accuracy

Figure 3: Average clustering accuracy for 1920
Mandarin tones (%) from 5 iterations. For numeric
representations, Euclidean distance is used by de-
fault unless otherwise noted

periments are carried out using 1600 samples for
testing and 320 samples for training (with total
size of the data set being 1920 samples of tone
contour time-series). To optimize SAX parame-
ters (with MINDIST distance measure), for w, we
search from 6 up to 2n/3 (n is the length of the
time series); for a, we search each value between
6 and 20. It is observed that low value for a results
in poor classification results (since the MINDIST
is a sum of pairwise letter distance between two
strings). Figure 2 shows how classification accu-
racy varies depending on w and a.

For clustering experiments we use the k-means
clustering algorithm, where accuracy is computed
against true tone labels for each instance. 8

4.2 Results

First we report time-series classification results on
the Mandarin dataset using K-Nearest Neighbor
(KNN) and Decision Trees (J48 as implemented in
Weka). These classification results are presented
in Table 2 and Table 3, respectively. First, we
observe that the original f0 (Hertz) representation
performs comparably with normalized-Bark and
First Derivative (D1) vectors, using Euclidean dis-

8The clustering accuracy measure is defined by compar-
ing the assigned cluster labels to the true tone labels of each
time series, obtaining a confusion matrix showing the true la-
bels against the predicted labels of the cluster assignments,
where predicted labels is the most predominant label (i.e., the
tone category with the most number of instances among all
tones assigned that label) within that cluster. If the the pre-
dominant label is not unique across clusters, then a low value
of 0.1 is arbitrarily assigned to the accuracy to represent the
accuracy is undecidable.

TSR SAX BK Hertz D1 qTA poly
accuracy 0.88 0.93 0.92 0.93 0.83 0.79

CR 0.66 1 1 1 0.1 0.13

Table 3: Decision tree classification results (with
10-fold cross validation), CR=compression rate

0 1 2 3 4 5 6 7 8 9

num of interation

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
tr

a
-c

lu
st

e
r

d
is

ta
n
ce

K-means clustering probe

D1-dtw

norm-bk-dtw

D1-sax

norm-bk-sax

D1

qTA

polynomial

hertz

norm-bark

Figure 4: Kmeans clustering objective function
by number of iteration. Intra-cluster distance (y
axis) is normalized, distance measure noted ex-
cept for Euclidean. Only polynomial and qTA
(overlapped) showed periodic oscillation without
a trend to converge.

tance and DTW distance9. All of these achieved
above 90% accuracy and F1 score using K = 1.
The DTW distance showed slight advantage over
Euclidean distance. All of the numeric represen-
tations performed comparably when K varies, so
only results for K = 1 are shown. Second, we
note that the SAX representation achieved reason-
able but lower score (with lower dimensionality,
compression rate being 0.66). In particular, it per-
forms worse on K = 1, and the performance
improves significantly when we increase K to 3,
5, and 7. Third, the qTA and polynomial rep-
resentations achieved significantly lower classifi-
cation accuracy, at the advantage of having very
low dimensionality (compression rate around 0.1).
These trends also showed up in the Decision Tree
classification, which has comparable classification
accuracy with KNN (with lower cost). Overall,
we note that SAX shows slight disadvantage in
the time-series classification accuracy, while being
able to achieve a 0.66 compression rate for time
and space complexity.

The true utility of the SPM framework lies

9The difference between Bark and Cent features is small,
so we only report results for Bark.

6

in detecting patterns in an unsupervised setting.
Comparing to classification, SAX shows more dis-
tinct advantage in the clustering experiments. In
the following discussion, we note that we are able
to use a bigger compression rate for SAX in the
clustering experiments (i.e., smaller word size), at
w = 13, which gives a compression rate of ap-
proximately 0.43.

The clustering accuracy is summarized in Fig-
ure 3. We establish baseline accuracy of 56%
with normalized f0 representation, indicating the
difficulty of this task (although this is still well
above chance level of 25% for four tones). Clus-
tering results suggest that (1) The D1 feature sig-
nificantly outperforms the f0-based features with
Euclidean distance; (2) The DTW distance com-
puted with LB Keogh heuristic shows its clear ad-
vantage with f0 features, although its utility is
quite limited in this dataset, comparing to oth-
ers; (3) it is noteworthy that SAX is in a much
lower dimension yet performs comparably with
D1; (4) polynomial and qTA model coefficient
based features perform below chance in this task,
indicating distances in the original space are not
preserved in the ultra-low dimensional parameter
space. To probe into these behaviors, we plot the
k-means objective function against the number of
iteration in Figure 4. In particular, the polyno-
mial and qTA parameters show periodic oscilla-
tion of intra-cluster distances, lacking a trend to
converge. SAX shows quick convergence, rank-
ing among the most effective.

Overall, in this unsupervised setting, it is note-
worthy that DTW is not showing its advantage
in computing time-series similarity for the current
tone dataset as seen in literature in other domains
(see previous discussion). We are yet to evaluate
DTW on a harder and bigger dataset for its utility
in speech prosody tasks (as comparing to SAX).

Finally, we plot distance matrixes in Figure 5,
which may give a hint as to why SAX is a more
effective representation than the f0-Hertz vectors
in clustering: In Figure 5 we can clearly see that
the lower dimension SAX-MINDIST distance re-
flects the intrinsic structure of the clusters with
lower distances along the diagonal, whereas the
distances are all somewhat equalized in the f0 dis-
tance matrix. Overall, SAX and its low dimen-
sionality property may act as a noise-reduction
mechanism for revealing the internal structure of
the data, making it more suitable for speech tasks

Figure 5: SAX-MINDIST(left) and f0-Euclidean
(right) Distance matrix of 1920 Mandarin tones
sorted by tone category. Tones are ordered by tone
categories along the x- and y-axis. Origin at top
left corner (i.e., on both axis data points are or-
dered by 480 instances of tone 1, tone 2, tone 3,
and tone 4 when moving away from origin).

comparing to MIR tasks.

5 Discussion

In the above experiments we showed the potential
of how SPM could benefit from time-series min-
ing techniques, such as low-dimension symbolic
representation of time-series that can exploit com-
putational gains from the data compression as well
as the availability of efficient string matching al-
gorithms(Ganguli, 2015) (whose utility in SPM is
our future research task).

We observed one paradox in our evaluation of
SAX, between KNN classification and k-means
clustering: the latter is able to achieve better per-
formance (comparing to other time-series repre-
sentations within the same experiments) with a
greater compression rate (0.4) of SAX, whereas
the former performs relatively worse with a higher
compression rate (0.7) while requiring a larger
value of k (k=7 is with SAX performs compara-
bly with k=1 for other representations). We at-
tribute this difference to the nature of the two al-
gorithms, KNN classification and k-means cluster-
ing. It is possible that in SAX-MINDIST space,
data points have lower distances to cluster cen-
ters, but higher distances to its nearest k neighbors
within the same tone category (that is, comparing
to Euclidean distance).

Meanwhile, a property of SAX is that each seg-
ment used to represent the original time-series
must be of the same length. This might not be an
ideal situation in many applications (exemplified
in (Ganguli, 2015)) where variable lengths seg-
ments are desired. The complexity of converting

7

to such an variable-length representation may be
greater than the original SAX, as one must design
some criteria to decide whether the next frame of
audio samples belong to the current segment or it
should be the start of a new segment. One intu-
itive strategy is inactivity detection (i.e., flat period
can be represented with a single symbol). More-
over, the utility and implications of symbolic rep-
resentations (equal- or variable-length) for tones
and intonation is also of great theoretical interest
to phonology 10.

6 Future works

There are many research questions and applica-
tions to be addressed in future works of SPM.
Our next step following the current experiments
is to evaluate the various time-series representa-
tions and distance measures on a larger dataset
of spontaneous speech (e.g., newscast speech) in
order to find the most efficient methods of com-
puting similarity for speech prosody time-series.
Such methods will be useful for all SPM tasks in a
large database.

Another useful SPM task is to perform time-
series motif discovery in speech prosody data.
Motif discovery aims at discovering previously
unspecified patterns that frequently occur in the
time-series database. Typically we perform motif
discovery by generating time-series subsequences
on-the-fly (original time-series stored as one long
sequence), and then iteratively updating the most
frequently occurring patterns. In this way we con-
sider potential motifs in an almost exhaustive man-
ner, with substantial overlaps between consecutive
patterns extracted.

Motif discovery has great potential utility for
discovering patterns in intonation and tone re-
search. For example, to better understand the
nature of contextual variability of Mandarin tone
contour shapes in spontaneous speech11, we might
be interested in performing motif discovery with
window length being equal to one syllable or sylla-
ble n-grams, which considers syllables along with
its neighboring tones. Alternatively, we may use
variable window length and discover motifs of any
length. Of course, a challenge that follows is how

10Personally communication with scholars in phonology.
11The variability problem refers to the fact that while there

exists a canonical contour shape for each tone category, in
spontaneous speech the shapes of tones are distorted greatly
due to many contextual factors. This is a fundamental chal-
lenge in tone recognition.

to assess the meaningfulness of the motifs discov-
ered.

A direct application of SPM is a Speech
Prosody Query and Retrieval (SPQR) tool that
can assist phonologists, phoneticians, and speech
prosody researchers in their daily research tasks
(that might be done manually otherwise). The ba-
sic functionality of this tool is for the user to query
a speech prosody corpus using a seed pattern (to be
defined using a meaningful prosodic unit, such as a
syllabic tone, tone n-gram, an intonation phrase),
and retrieve the top k similar patterns in the cor-
pus. The seed pattern can be selected using ex-
ample top K-motifs extracted from the corpus, or
using a user-supplied pattern (numeric, symbolic
data points, or audio files). The researcher can
further assess the meaningfulness of the patterns
discovered by means of intrinsic (i.e., within the
phonology/phonetics domain) or extrinsic evalua-
tion (i.e., combined with annotations in other do-
mains such as syntax, semantics, and information
structure in discourse). Extended functionalities
of the SPQR tool will showcase the motif discov-
ery and other applications of SPM. The applica-
tion can be implemented with a GUI web inter-
face and use pre-computed time-series similarity
indexes for faster retrieval12.

References
David Debarr, Jessica Lin, Sheri Williamson, and Kirk

Borne. 2012. Pattern recognition in time series. Ad-
vances in Machine Learning and Data Mining for
Astronomy.

C Faloutsos, M Ranganathan, and Y Manolopulos.
1994. Fast subsequence matching in time-series
database. SIGMOD Record, 23:419–429.

Rastog A Pandit V Kantan P Rao P. Ganguli, K. 2015.
Efficient melodic query based audio search for hin-
dustani vocal compositions. Proceedings of ISMIR
2015.

Bruno Gauthier, Rushen Shi, and Yi Xu. 2007. Learn-
ing phonetic categories by tracking movements.
Cognition, 103(1):80–106, apr.

Sankalp Gulati and Joan Serra. 2014. Mining Melodic
Patterns in Large Audio Collections of Indian Art
Music. Proceedings of International Conference on
Signal Image Technology & Internet Based Systems

12A similar application for querying melodic patterns in
Indian music (developed by Sankalp Gulati at Music Tech-
nology Group, Universitat Pompeu Fabra) is available here:
http://dunya.compmusic.upf.edu/motifdiscovery/.

8

(SITIS) - Multimedia Information Retrieval and Ap-
plications, Marrakech, Morocco 2014.

Sankalp Gulati, Joan Serr, and Xavier Serra. 2015. An
Evaluation Of Methodologies For Melodic Similar-
ity In Audio Recordings Of Indian Art Music. Pro-
ceedings of IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), Brisbane, Aus-
tralia 2015, pages 678–682.

Daniel Hirst, Albert Di Cristo, and Robert Espesser,
2000. Prosody: Theory and Experiment: Studies
Presented to Gösta Bruce, chapter Levels of Rep-
resentation and Levels of Analysis for the Descrip-
tion of Intonation Systems, pages 51–87. Springer
Netherlands, Dordrecht.

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehro-
tra. 2001. Dimensionality reduction for fast similar-
ity search in large time series databases. Knowledge
and information Systems, 3(3):263–286.

E Keogh. 2002. Exact indexing of dynamic time warp-
ing. 28th International Conference on Very Large
Data Bases, pages 406–417.

Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill
Chiu. 2003. A symbolic representation of time
series, with implications for streaming algorithms.
Proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge dis-
covery - DMKD ’03, page 2.

Jessica Lin, Eamonn Keogh, Li Wei, and Stefano
Lonardi. 2007. Experiencing SAX: a novel sym-
bolic representation of time series. Data Min Knowl
Disc, 15:107–144.

Jessica Lin. 2005. Mining time-series data. Data Min-
ing and Knowledge Discovery Handbook.

Bruce Morén and Elizabeth Zsiga. 2006. The lexical
and post-lexical phonology of thai tones. Natural
Language & Linguistic Theory, 24(1):113–178.

Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney
Cash, and Brandon Westover. 2009. Exact Dis-
covery of Time Series Motifs. Proceedings of the
2009 SIAM International Conference on Data Min-
ing, pages 473–484.

Santitham Prom-on, Yi Xu, and Bundit Thipakorn.
2009. Modeling tone and intonation in Mandarin
and English as a process of target approximation.
The Journal of the Acoustical Society of America,
125(1):405–24, jan.

Thanawin Rakthanmanon, Bilson Campana, Abdullah
Mueen, Gustavo Batista, Brandon Westover, Qiang
Zhu, Jesin Zakaria, and Eamonn Keogh. 2012.
Searching and mining trillions of time series subse-
quences under dynamic time warping. Proceedings
of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
262–270.

G Raskinis and A Kazlauskiene. 2013. From speech
corpus to intonation corpus: clustering phrase pitch
contours of lithuanian. Proceedings of the 19th
Nordic Conference of Computational Linguistics.

Jose J Valero-Mas, Justin Salamon, and Emilia Gómez.
2015. Analyzing the influence of pitch quantization
and note segmentation on singing voice alignment
in the context of audio-based Query-by-Humming.
Sound and Music Computing Conference.

Xiaopeng Xi, Eamonn Keogh, Christian Shelton,
Li Wei, and Chotirat Ann Ratanamahatana. 2006.
Fast time series classification using numerosity re-
duction. In Proceedings of the Twenty-Third Inter-
national Conference on Machine Learning, pages
1033–1040.

Y Xu. 2001. Fundamental frequency peak delay in
Mandarin. Phonetica, 58(1-2):26–52.

Elizabeth Zsiga and Draga Zec. 2013. Contextual evi-
dence for the representation of pitch accents in stan-
dard serbian. Language & Speech,, 56(1):69–104.

9

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 10–22,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

The SIGMORPHON 2016 Shared Task—Morphological Reinflection

Ryan Cotterell
Dept. of Computer Science
Johns Hopkins University

ryan.cotterell@jhu.edu

Christo Kirov
Dept. of Computer Science
Johns Hopkins University
ckirov@gmail.com

John Sylak-Glassman
Dept. of Computer Science
Johns Hopkins University

jcsg@jhu.edu

David Yarowsky
Dept. of Computer Science
Johns Hopkins University
yarowsky@jhu.edu

Jason Eisner
Dept. of Computer Science
Johns Hopkins University

jason@jhu.edu

Mans Hulden
Dept. of Linguistics

University of Colorado
mans.hulden@colorado.edu

Abstract

The 2016 SIGMORPHON Shared Task was
devoted to the problem of morphological
reinflection. It introduced morphological
datasets for 10 languages with diverse ty-
pological characteristics. The shared task
drew submissions from 9 teams represent-
ing 11 institutions reflecting a variety of ap-
proaches to addressing supervised learning
of reinflection. For the simplest task, in-
flection generation from lemmas, the best
system averaged 95.56% exact-match ac-
curacy across all languages, ranging from
Maltese (88.99%) to Hungarian (99.30%).
With the relatively large training datasets
provided, recurrent neural network architec-
tures consistently performed best—in fact,
there was a significant margin between neu-
ral and non-neural approaches. The best
neural approach, averaged over all tasks
and languages, outperformed the best non-
neural one by 13.76% absolute; on individ-
ual tasks and languages the gap in accu-
racy sometimes exceeded 60%. Overall, the
results show a strong state of the art, and
serve as encouragement for future shared
tasks that explore morphological analysis
and generation with varying degrees of su-
pervision.

1 Introduction

Many languages use systems of rich overt morpho-
logical marking in the form of affixes (i.e. suffixes,
prefixes, and infixes) to convey syntactic and se-
mantic distinctions. For example, each English
count noun has both singular and plural forms
(e.g. robot/robots, process/processes), and these
are known as the inflected forms of the noun.
While English has relatively little inflectional mor-
phology, Russian nouns, for example, can have
a total of 10 distinct word forms for any given

hablar

hablo
hablas
habla
hablamos
habláis
hablan

caminar

camino
caminas
camina
caminamos
camináis
caminan

-o
-as
-a
-amos
-áis
-an

Figure 1: The relatedness of inflected forms, such as the
present indicative paradigm of the Spanish verbs hablar
‘speak’ and caminar ‘walk,’ allows generalizations about the
shape and affixal content of the paradigm to be extracted.

lemma and 30 for an imperfective verb.1 In the
extreme, Kibrik (1998) demonstrates that even by
a conservative count, a verb conjugation in Archi
(Nakh-Daghestanian) consists of 1,725 forms, and
if all sources of complexity are considered, a sin-
gle verb lemma may give rise to up to 1,502,839
distinct forms. The fact that inflected forms are
systematically related to each other, as shown in
Figure 1, is what allows humans to generate and
analyze words despite this level of morphological
complexity.

A core problem that arises in languages with
rich morphology is data sparsity. When a single
lexical item can appear in many different word

1This latter figure rises to 52 if the entire imperfective-
perfective pair (e.g. govorit’/skazat’ ‘speak, tell’) is consid-
ered to be a single lemma.

10

forms, the probability of encountering any sin-
gle word form decreases, reducing the effective-
ness of frequency-based techniques in performing
tasks like word alignment and language modeling
(Koehn, 2010; Duh and Kirchhoff, 2004). Tech-
niques like lemmatization and stemming can ame-
liorate data sparsity (Goldwater and McClosky,
2005), but these rely on morphological knowl-
edge, particularly the mapping from inflected
forms to lemmas and the list of morphs together
with their ordering. Developing systems that can
accurately learn and capture these mappings, overt
affixes, and the principles that govern how those
affixes combine is crucial to maximizing the cross-
linguistic capabilities of most human language
technology.

The goal of the 2016 SIGMORPHON Shared
Task2 was to spur the development of systems
that could accurately generate morphologically in-
flected words for a set of 10 languages based on a
range of training parameters. These 10 languages
included low resource languages with diverse mor-
phological characteristics, and the training param-
eters reflected a significant expansion upon the tra-
ditional task of predicting a full paradigm from
a lemma. Of the systems submitted, the neu-
ral network-based systems performed best, clearly
demonstrating the effectiveness of recurrent neu-
ral networks (RNNs) for morphological genera-
tion and analysis.

We are releasing the shared task data and evalu-
ation scripts for use in future research.

2 Tasks, Tracks, and Evaluation

Up to the present, the task of morphological in-
flection has been narrowly defined as the gener-
ation of a complete inflectional paradigm from a
lemma, based on training from a corpus of com-
plete paradigms.3 This task implicitly assumes the
availability of a traditional dictionary or gazetteer,
does not require explicit morphological analysis,
and, though it mimics a common task in second
language (L2) pedagogy, it is not a realistic learn-
ing setting for first language (L1) acquisition.

Systems developed for the 2016 Shared Task
had to carry out reinflection of an already inflected
form. This involved analysis of an already in-

2Official website: http://ryancotterell.
github.io/sigmorphon2016/

3A paradigm is defined here as the set of inflected word
forms associated with a single lemma (or lexeme), for exam-
ple, a noun declension or verb conjugation.

Task 1 Task 2 Task 3
Lemma run — —
Source tag — PAST —
Source form — ran ran
Target tag PRESPART PRESPART PRESPART
Target form running running running

Lemma decir — —
Source tag — PRESENT1S —
Source form — digo digo
Target tag FUTURE2S FUTURE2S FUTURE2S
Target form dirás dirás dirás

Table 1: Systems were required to generate the target form,
given the information above the line. Two examples are
shown for each task—one in English and one in Spanish.
Task 1 is inflection; tasks 2–3 are reinflection.

Restricted Standard Bonus
Task 1 1 1 1, M
Task 2 2 1, 2 1, 2, M
Task 3 3 1, 2, 3 1, 2, 3, M

Table 2: Datasets that were permitted for each task under
each condition. Numbers indicate a dataset from that respec-
tive task, e.g. ‘1’ is the dataset from Task 1, and ‘M’ indicates
bonus monolingual text from Wikipedia dumps.

flected word form, together with synthesis of a dif-
ferent inflection of that form. The systems had
to learn from limited data: they were not given
complete paradigms to train on, nor a dictionary
of lemmas.

Specifically, systems competed on the three
tasks illustrated in Table 1, of increasing difficulty.
Notice that each task can be regarded as mapping a
source string to a target string, with other input ar-
guments (such as the target tag) that specify which
version of the mapping is desired.

For each language and each task, participants
were provided with supervised training data: a
collection of input tuples, each paired with the cor-
rect output string (target form).

Each system could compete on a task under any
of three tracks (Table 2). Under the restricted
track, only data for that task could be used, while
for the standard track, data from that task and any
from a lower task could be used. The bonus track
was the same as the standard track, but allowed the
use of monolingual data in the form of Wikipedia
dumps from 2 November 2015.4

Each system was required to produce, for ev-
ery input given at test time, either a single string
or a ranked list of up to 20 predicted strings for
each task. Systems were compared on the follow-

4https://dumps.wikimedia.org/
backup-index.html

11

ing metrics, averaged over all inputs:

• Accuracy: 1 if the top predicted string was
correct, else 0

• Levenshtein distance: Unweighted edit dis-
tance between the top predicted string and the
correct form

• Reciprocal rank: 1/(1 + ranki), where ranki

is the rank of the correct string, or 0 if the
correct string is not on the list

The third metric allows a system to get partial
credit for including a correct answer on its list,
preferably at or near the top.

3 Data

3.1 Languages and Typological
Characteristics

Datasets from 10 languages were used. Of these,
2 were held as surprise languages whose identity
and data were only released at evaluation time.

• Standard Release: Arabic, Finnish, Geor-
gian, German, Navajo, Russian, Spanish, and
Turkish

• Surprise: Hungarian and Maltese

Finnish, German, and Spanish have been the sub-
ject of much recent work, due to data made avail-
able by Durrett and DeNero (2013), while the
other datasets used in the shared task are released
here for the first time. For all languages, the word
forms in the data are orthographic (not phonolog-
ical) strings in the native script, except in the case
of Arabic, where we used the romanized forms
available from Wiktionary. An accented letter is
treated as a single character. Descriptive statistics
of the data are provided in Table 3.

The typological character of these languages
varies widely. German and Spanish inflection
generation has been studied extensively, and the
morphological character of the languages is simi-
lar: Both are suffixing and involve internal stem
changes (e.g., a 7→ ä, e 7→ ie, respectively).
Russian can be added to this group, but with
consonantal rather than vocalic stem alternations.
Finnish, Hungarian, and Turkish are all agglu-
tinating, almost exclusively suffixing, and have
vowel harmony systems. Georgian exhibits com-
plex patterns of verbal agreement for which it
utilizes circumfixal morphology, i.e. simultane-
ous prefixation and suffixation (Aronson, 1990).

Split Pairs Lem Full T2T I-Tag O-Tag Sync
Ar train 12616 2130 225 1.57 72.23 56.57 1.10

dev 1596 1081 220 1.08 9.13 7.26 1.08
test 15643 2150 230 1.71 87.06 69.22 1.12

Fi train 12764 9855 95 5.70 142.15 134.36 1.01
dev 1599 1546 91 1.51 19.28 18.60 1.01
test 23878 15128 95 9.87 261.00 251.34 1.01

Ge train 12390 4246 90 14.02 152.38 137.67 1.06
dev 1591 1274 77 5.31 24.25 23.40 1.03
test 21813 4622 90 15.32 279.43 242.36 1.08

Ge train 12689 6703 99 7.76 246.19 129.48 1.44
dev 1599 1470 98 1.80 30.82 16.32 1.37
test 15777 7277 100 9.48 300.49 159.37 1.50

Hu train 18206 1508 87 9.05 231.13 211.70 1.04
dev 2381 1196 83 2.14 30.27 29.04 1.02
test 2360 1186 84 2.09 29.52 28.78 1.02

Ma train 19125 1453 3607 1.00 6.00 6.01 1.00
dev 2398 1033 1900 1.00 1.62 1.61 1.00
test 2399 1055 1928 1.00 1.61 1.59 1.00

Na train 10478 355 54 17.48 310.55 194.03 1.47
dev 1550 326 47 2.80 44.93 33.69 1.17
test 686 233 42 2.89 25.56 16.33 1.12

Ru train 12663 7941 83 10.32 182.25 152.56 1.07
dev 1597 1492 78 2.36 23.69 20.74 1.06
test 23445 10560 86 17.87 320.28 282.47 1.09

Sp train 12725 5872 84 3.24 186.38 151.48 1.06
dev 1599 1406 83 1.41 23.08 19.26 1.07
test 23743 7850 84 5.42 342.72 286.06 1.06

Tu train 12645 2353 190 1.81 79.82 67.62 1.08
dev 1599 1125 170 1.09 11.15 9.57 1.06
test 1598 1128 170 1.08 10.99 9.57 1.05

Table 3: Descriptive statistics on data released to shared task
participants. Figures represent averages across tasks. Abbre-
viations in the headers: ‘Lem’ = lemmas, ‘Full’ = number of
full tags, T2T = average occurrences of tag-to-tag pairs, I-Tag
& O-Tag = average occurrences of each input or output tag,
resp., and ‘Sync’ = average forms per tag (syncretism).

Navajo, like other Athabaskan languages, has pri-
marily prefixing verbal morphology with conso-
nant harmony among its sibilants (Rice, 2000;
Hansson, 2010). Arabic and Maltese, both Semitic
languages, utilize templatic, non-concatenative
morphology. Maltese, due partly to its contact
with Italian, also uses concatenative morphology
(Camilleri, 2013).

3.2 Quantifying Morphological Processes

It is helpful to understand how often each lan-
guage makes use of different morphological pro-
cesses and where they apply. In lieu of a more
careful analysis, here we use a simple heuris-
tic to estimate how often inflection involves pre-
fix changes, stem-internal changes (apophony), or
suffix changes (Table 4). We assume that each
word form in the training data can be divided into
three parts—prefix, stem and suffix—with the pre-
fix and suffix possibly being empty.

To align a source form with a target form, we
pad both of them with - symbols at their start
and/or end (but never in the middle) so that they
have equal length. As there are multiple ways

12

Language Prefix Stem Suffix

Arabic 68.52 37.04 88.24
Finnish 0.02 12.33 96.16
Georgian 4.46 0.41 92.47
German 0.84 3.32 89.19
Hungarian 0.00 0.08 99.79
Maltese 48.81 11.05 98.74
Navajo 77.64 18.38 26.40
Russian 0.66 7.70 85.00
Spanish 0.09 3.25 90.74
Turkish 0.21 1.12 98.74

Table 4: Percentage of inflected word forms that have modi-
fied each part of the lemma, as estimated from the “lemma 7→
inflected” pairs in task 1 training data. A sum < 100% for a
language implies that sometimes source and target forms are
identical; a sum > 100% implies that sometimes multiple
parts are modified.

to pad, we choose the alignment that results in
minimum Hamming distance between these equal-
length padded strings, i.e., characters at corre-
sponding positions should disagree as rarely as
possible. For example, we align the German verb
forms brennen ‘burn’ and gebrannt ‘burnt’ as
follows:

--brennen
gebrannt-

From this aligned string pair, we heuristically
split off a prefix pair before the first matching char-
acter (∅ 7→ ge), and a suffix pair after the last
matching character (en 7→ t). What is left is pre-
sumed to be the stem pair (brenn 7→ brann):

Pref. Stem Suff.
brenn en

ge brann t

We conclude that when correctly mapping this
source form to this target form, the prefix, stem,
and suffix parts all change. In what fraction of
training examples does each change, according to
this heuristic? Statistics for each language (based
on task 1) are shown in Table 4.

The figures roughly coincide with our expec-
tations. Finnish, Hungarian, Russian, Spanish,
and Turkish are largely or exclusively suffixing.
The tiny positive number for Finnish prefixation
is due to a single erroneous pair in the dataset.
The large rate of stem-changing in Finnish is due
to the phenomenon of consonant gradation, where
stems undergo specific consonant changes in cer-

tain inflected forms. Navajo is primarily prefix-
ing,5 and Arabic exhibits a large number of “stem-
internal” changes due to its templatic morphology.
Maltese, while also templatic, shows fewer stem-
changing operations than Arabic overall, likely a
result of influence from non-Semitic languages.
Georgian circumfixal processes are reflected in an
above-average number of prefixes. German has
some prefixing, where essentially the only forma-
tion that counts as such is the circumfix ge t
for forming the past participle.

3.3 Data Sources and Annotation Scheme

Most data used in the shared task came from the
English edition of Wiktionary.6 Wiktionary is
a crowdsourced, broadly multilingual dictionary
with content from many languages (e.g. Spanish,
Navajo, Georgian) presented within editions tai-
lored to different reader populations (e.g. English-
speaking, Spanish-speaking). Kirov et al. (2016)
describe the process of extracting lemmas and in-
flected wordforms from Wiktionary, associating
them with morphological labels from Wiktionary,
and mapping those labels to a universalized anno-
tation scheme for inflectional morphology called
the UniMorph Schema (Sylak-Glassman et al.,
2015b).

The goal of the UniMorph Schema is to en-
code the meaning captured by inflectional mor-
phology across the world’s languages, both high-
and low-resource. The schema decomposes the
morphological labels into universal attribute-value
pairs. As an example, consider again Table 1. The
FUT2S label for a Spanish future tense second-
person singular verb form, such as dirás, is de-
composed into

[
POS=VERB, mood=INDICATIVE,

tense=FUTURE, person=2, number=SINGULAR
]
.

The accuracy of data extraction and label asso-
ciation for data from Wiktionary was verified ac-
cording to the process described in Kirov et al.
(2016). However, verifying the full linguistic ac-
curacy of the data was beyond the scope of prepa-
ration for the task, and errors that resulted from the
original input of data by crowdsourced authors re-
mained in some cases. These are noted in several
of the system description papers. The full dataset
from the English edition of Wiktionary, which in-

5The Navajo verb stem is always a single syllable ap-
pearing in final position, causing our heuristic to misclassify
many stem changes as suffixal. In reality, verb suffixes are
very rare in Navajo (Young and Morgan, 1987).

6https://en.wiktionary.org

13

cludes data from 350 languages, ≈977,000 lem-
mas, and ≈14.7 million inflected word forms,
is available at unimorph.org, along with de-
tailed documentation on the UniMorph Schema
and links to the references cited above.

The Maltese data came from the Ġabra open
lexicon7 (Camilleri, 2013), and the descriptive
features for inflected word forms were mapped to
features in the UniMorph Schema similarly to data
from Wiktionary. This data did not go through the
verification process noted for the Wiktionary data.

Descriptive statistics for the data released to
shared task participants are given in Table 3.

4 Previous Work

Much previous work on computational approaches
to inflectional morphology has focused on a spe-
cial case of reinflection, where the input form is
always the lemma (i.e. the citation form). Thus,
the task is to generate all inflections in a paradigm
from the lemma and often goes by the name of
paradigm completion in the literature. There has
been a flurry of recent work in this vein: Durrett
and DeNero (2013) heuristically extracted trans-
formational rules and learned a statistical model
to apply the rules, Nicolai et al. (2015) tackled the
problem using standard tools from discriminative
string transduction, Ahlberg et al. (2015) used a
finite-state construction to extract complete candi-
date inflections at the paradigm level and then train
a classifier, Faruqui et al. (2016) applied a neu-
ral sequence-to-sequence architecture (Sutskever
et al., 2014) to the problem.

In contrast to paradigm completion, the task of
reinflection is harder as it may require both mor-
phologically analyzing the source form and trans-
ducing it to the target form. In addition, the train-
ing set may include only partial paradigms. How-
ever, many of the approaches taken by the shared
task participants drew inspiration from work on
paradigm completion.

Some work, however, has considered full rein-
flection. For example, Dreyer and Eisner (2009)
and Cotterell et al. (2015) apply graphical mod-
els with string-valued variables to model the
paradigm jointly. In such models it is possible
to predict values for cells in the paradigm condi-
tioned on sets of other cells, which are not required
to include the lemma.

7http://mlrs.research.um.edu.mt/
resources/gabra/

5 Baseline System

To support participants in the shared task, we pro-
vided a baseline system that solves all tasks in the
standard track (see Tables 1–2).

Given the input string (source form), the system
predicts a left-to-right sequence of edits that con-
vert it to an output string—hopefully the correct
target form. For example, one sequence of edits
that could be legally applied to the Finnish input
katossa is copy, copy, copy, insert(t), copy,
delete(3). This results in the output katto, via
the following alignment:

1 2 3 4 5 6
k a t - o ssa
k a t t o -

In general, each edit has the form copy,
insert(string), delete(number), or subst(string),
where subst(w) has the same effect as delete(|w|)
followed by insert(w).

The system treats edit sequence prediction as
a sequential decision-making problem, greedily
choosing each edit action given the previously
chosen actions. This choice is made by a deter-
ministic classifier that is trained to choose the cor-
rect edit on the assumption that that all previous
edits on this input string were correctly chosen.

To prepare training data for the classifier, each
supervised word pair in training data was aligned
to produce a desired sequence of edits, such as the
6-edit sequence above, which corresponds to 6 su-
pervised training examples. This was done by first
producing a character-to-character alignment of
the source and target forms (katossa, katto),
using an iterative Markov Chain Monte Carlo
method,and then combining consecutive deletions,
insertions, or substitutions into a single compound
edit. For example, delete(3) above was obtained
by combining the consecutive deletions of s, s,
and a.

The system uses a linear multi-class classi-
fier that is trained using the averaged perceptron
method (Freund and Schapire, 1999). The classi-
fier considers the following binary features at each
position:

• The previous 1, 2, and 3 input characters,
e.g. t, at, kat for the 4th edit in the exam-
ple.

• The previous 1, 2, and 3 output characters,
e.g. t, tt, att for the 5th edit.

14

• The following 1, 2, and 3 input characters,
e.g. o, os, oss for the 3rd edit.

• The previous edit. (The possible forms were
given above.)

• The UniMorph morphosyntactic features of
the source tag S or the target tag T (according
to what type of mapping we are building—
see below). For example, when lemmatiz-
ing katossa into katto as in the exam-
ple above, S =

[
POS=NOUN, case=IN+ESS,

number=SINGULAR
]
, yielding 3 morphosyn-

tactic features.

• Each conjunction of two features from the
above list where the first feature in the com-
bination is a morphosyntactic feature and the
second is not.

For task 1, we must edit from LEMMA → T .
We train a separate edit classifier for each part-of-
speech, including the morphosyntactic description
of T as features of the classifier. For task 2, we
must map from S → T . We do so by lemmatiz-
ing S → LEMMA (lemmatization) and then rein-
flecting LEMMA → T via the task 1 system.8 For
the lemmatization step, we again train a separate
edit classifier for each part-of-speech, which now
draws on source tag S features. For task 3, we
build an additional classifier to analyze the source
form to its morphosyntactic description S (using
training data from all tasks, as allowed in the stan-
dard track). This classifier uses substrings of the
word form as its features, and is also implemented
by an averaged perceptron. The classifier treats
each unique sequence of feature-value pairs as a
separate class. Task 3 is then solved by first recov-
ering the source tag and then applying the task 2
system.

The baseline system performs no tuning of pa-
rameters or feature selection. The averaged per-
ceptron is not trained with early stopping or other
regularization and simply runs for 10 iterations or
until the data are separated. The results of the
baseline system are given in Table 5. Most partic-
ipants in the shared task were able to outperform
the baseline, often by a significant margin.

8Note that at training time, we know the correct lemma for
S thanks to the task 1 data, which is permitted for use by task
2 in the standard track. This is also why task 2 is permitted to
use the trained task 1 system.

Language Task 1 Task 2 Task 3

Arabic 66.96 55.00 45.15
Finnish 64.45 59.59 56.95
Georgian 89.12 86.66 85.12
German 89.44 87.62 80.13
Hungarian 73.42 72.78 71.70
Maltese 38.49 27.54 26.00
Navajo 53.06 47.59 44.96
Russian 88.65 84.68 79.55
Spanish 95.72 94.54 87.51
Turkish 59.60 57.63 55.25

Table 5: Accuracy results for the baseline system on the stan-
dard track test set.

6 System Descriptions

The shared task received a diverse set of submis-
sions with a total of 11 systems from 9 teams rep-
resenting 11 different institutions. For the sake
of clarity, we have grouped the submissions into
three camps.

The first camp adopted a pipelined approach
similar to that of the baseline system provided.
They first employed an unsupervised alignment
algorithm on the source-target pairs in the train-
ing data to extract a set of edit operations. Af-
ter extraction, they applied a discriminative model
to apply the changes. The transduction models
limited themselves to monotonic transduction and,
thus, could be encoded through weighted finite-
state machine (Mohri et al., 2002).

The second camp focused on neural approaches,
building on the recent success of neural sequence-
to-sequence models (Sutskever et al., 2014; Bah-
danau et al., 2014). Recently, Faruqui et al. (2016)
found moderate success applying such networks to
the inflection task (our task 1). The neural systems
were the top performers.

Finally, the third camp relied on linguistically-
inspired heuristic means to reduce the structured
task of reinflection to a more reasonable multi-way
classification task that could be handled with stan-
dard machine learning tools.

6.1 Camp 1: Align and Transduce

Most of the systems in this camp drew inspira-
tion from the work of Durrett and DeNero (2013),
who extracted a set of edit operations and ap-
plied the transformations with a semi-Markov

15

CRF (Sarawagi and Cohen, 2004).

EHU EHU (Alegria and Etxeberria, 2016) took
an approach based on standard grapheme-to-
phoneme machinery. They extend the Phoneti-
saurus (Novak et al., 2012) toolkit, based on the
OpenFST WFST library (Allauzen et al., 2007),
to the task of morphological reinflection. Their
system is organized as a pipeline. Given pairs
of input and output strings, the first step involves
an unsupervised algorithm to extract an alignment
(many-to-one or one-to-many). Then, they train
the weights of the WFSTs using the imputed align-
ments, introducing morphological tags as symbols
on the input side of the transduction.

Alberta The Alberta system (Nicolai et al.,
2016) is derived from the earlier work by Nicolai
et al. (2015) and is methodologically quite sim-
ilar to that of EHU—an unsupervised alignment
model is first applied to the training pairs to im-
pute an alignment. In this case, they employ
the M2M-aligner (Jiampojamarn et al., 2007). In
contrast to EHU, Nicolai et al. (2016) do allow
many-to-many alignments. After computing the
alignments, they discriminatively learn a string-
to-string mapping using the DirectTL+ model (Ji-
ampojamarn et al., 2008). This model is state-
of-the-art for the grapheme-to-phoneme task and
is very similar to the EHU system in that it as-
sumes a monotonic alignment and could therefore
be encoded as a WFST. Despite the similarity to
the EHU system, the model performs much better
overall. This increase in performance may be at-
tributable to the extensive use of language-specific
heuristics, detailed in the paper, or the application
of a discriminative reranker.

Colorado The Colorado system (Liu and Mao,
2016) took the same general tack as the previous
two systems—they used a pipelined approach that
first discovered an alignment between the string
pairs and then discriminatively trained a transduc-
tion. The alignment algorithm employed is the
same as that of the baseline system, which relies
on a rich-get-richer scheme based on the Chinese
restaurant process (Sudoh et al., 2013), as dis-
cussed in §5. After obtaining the alignments, they
extracted edit operations based on the alignments
and used a semi-Markov CRF to apply the edits in
a manner very similar to the work of Durrett and
DeNero (2013).

OSU The OSU system (King, 2016) also used
a pipelined approach. They first extracted se-
quences of edit operations using Hirschberg’s al-
gorithm (Hirschberg, 1975). This reduces the
string-to-string mapping problem to a sequence
tagging problem. Like the Colorado system, they
followed Durrett and DeNero (2013) and used a
semi-Markov CRF to apply the edit operations. In
contrast to Durrett and DeNero (2013), who em-
ployed a 0th-order model, the OSU system used
a 1st-order model. A major drawback of the sys-
tem was the cost of inference. The unpruned set of
edit operations had over 500 elements. As the cost
of inference in the model is quadratic in the size
of the state space (the number of edit operations),
this created a significant slowdown with over 15
days required to train in some cases.

6.2 Camp 2: Revenge of the RNN
A surprising result of the shared task is the large
performance gap between the top performing neu-
ral models and the rest of the pack. Indeed, the
results of Faruqui et al. (2016) on the task of mor-
phological inflection only yielded modest gains in
some languages. However, the best neural ap-
proach outperformed the best non-neural approach
by an average (over languages) of 13.76% abso-
lute accuracy, and at most by 60.04%!

LMU The LMU system (Kann and Schütze,
2016) was the all-around best performing sys-
tem in the shared task. The system builds off of
the encoder-decoder model for machine transla-
tion (Sutskever et al., 2014) with a soft attention
mechanism (Bahdanau et al., 2014). The archi-
tecture is identical to the RNN encoder-decoder
architecture of Bahdanau et al. (2014)—a stacked
GRU (Cho et al., 2014). The key innovation is in
the formatting of the data. The input word along
with both the source and target tags were fed into
the network as a single string and trained to predict
the target string. In effect, this means that if there
are n elements in the paradigm, there is a single
model for all n2 possible reinflectional mappings.
Thus, the architecture shares parameters among all
reinflections, using a single encoder and a single
decoder.

BIU-MIT The BIU-MIT (Aharoni et al., 2016)
team submitted two systems. Their first model,
like LMU, built upon the sequence-to-sequence ar-
chitecture (Sutskever et al., 2014; Bahdanau et al.,
2014; Faruqui et al., 2016), but with several im-

16

Standard Restricted Bonus
System Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
LMU-1 1.0 (95.56) 1.0 (96.35) 1.0 (95.83) 1.0 (95.56) 1.0 (95.34) 1.0 (90.95) 1.0 (96.71) 1.0 (96.35) 1.0 (95.83)
LMU-2 2.0 (95.56) 2.0 (96.23) 2.0 (95.83) 2.0 (95.56) 2.0 (95.27) 2.0 (90.95) — — —
BIU/MIT-1 — — — 4.2 (92.65) 5.2 (77.70) 3.8 (76.39) — — —
BIU/MIT-2 — — — 4.2 (93.00) 4.2 (81.29) — — — —
HEL — — — 3.9 (92.89) 3.5 (86.30) 3.2 (86.48) — — —
MSU 3.8 (84.06) 3.6 (86.06) 3.8 (84.87) 6.2 (84.06) 6.0 (79.68) 6.2 (62.16) — — —
CU 4.6 (81.02) 5.0 (72.98) 5.0 (71.75) 7.3 (81.02) 6.9 (69.89) 5.5 (67.91) — — —
EHU 5.5 (79.24) — — 8.0 (79.67) — — — — —
COL/NYU 6.5 (67.86) 4.7 (75.59) 4.8 (67.61) 9.2 (67.86) 7.2 (77.34) 6.3 (53.56) 2.7 (72.30) 2.5 (71.74) 2.6 (67.61)
OSU — — — 9.0 (72.71) — — — — —
UA 4.6 (81.83) 4.7 (74.06) 4.4 (71.23) — — — 2.3 (79.95) 2.5 (71.56) 2.4 (70.04)
ORACLE.E 97.49 98.15 97.97 98.32 97.84 95.80 98.14 97.80 97.57

Table 6: Summary of results, showing average rank (with respect to other competitors) and average accuracy (equally weighted
average over the 10 languages and marked in parentheses) by system. Oracle ensemble (ORACLE.E) accuracy represents the
probability that at least one of the submitted systems predicted the correct form.

provements. Most importantly, they augment the
encoder with a bidirectional LSTM to get a more
informative representation of the context and they
represent individual morphosyntactic attributes as
well. In addition, they include template-inspired
components to better cope with the templatic mor-
phology of Arabic and Maltese. The second archi-
tecture, while also neural, more radically departs
from previously proposed sequence-to-sequence
models. The aligner from the baseline system is
used to create a series of edit actions, similar to
the systems in Camp 1. Rather than use a CRF, the
BIU-MIT team predicted the sequence of edit ac-
tions using a neural model, much in the same way
as a transition-based LSTM parser does (Dyer et
al., 2015; Kiperwasser and Goldberg, 2016). The
architectural consequence of this is that it replaces
the soft alignment mechanism of (Bahdanau et al.,
2014) with a hard attention mechanism, similar to
Rastogi et al. (2016).

Helsinki The Helsinki system (Östling, 2016),
like LMU and BIU-MIT, built off of the sequence-
to-sequence architecture, augmenting the system
with several innovations. First, a single decoder
was used, rather than a unique one for all pos-
sible morphological tags, which allows for addi-
tional parameter sharing, similar to LMU. More
LSTM layers were also added to the decoder, cre-
ating a deeper network. Finally, a convolutional
layer over the character inputs was used, which
was found to significantly increase performance
over models without the convolutional layers.

6.3 Camp 3: Time for Some Linguistics

The third camp relied on linguistics-inspired
heuristics to reduce the problem to multi-way clas-
sification. This camp is less unified than the other
two, as both teams used very different heuristics.

Columbia – New York University Abu Dhabi
The system developed jointly by Columbia and
NYUAD (Taji et al., 2016) is based on the work
of Eskander et al. (2013). It is unique among
the submitted systems in that the first step in the
pipeline is segmentation of the input words into
prefixes, stems, and suffixes. Prefixes and suf-
fixes are directly associated with morphological
features. Stems within paradigms are further pro-
cessed, using either linguistic intuitions or an em-
pirical approach based on string alignments, to ex-
tract the stem letters that undergo changes across
inflections. The extracted patterns are intended
to capture stem-internal changes, such as vowel
changes in Arabic. Reinflection is performed by
selecting a set of changes to apply to a stem, and
attaching appropriate affixes to the result.

Moscow State The Moscow State system
(Sorokin, 2016) is derived from the work of
Ahlberg et al. (2014) and Ahlberg et al. (2015).
The general idea is to use finite-state techniques to
compactly model all paradigms in an abstract form
called an ‘abstract paradigm’. Roughly speaking,
an abstract paradigm is a set of rule transforma-
tions that derive all slots from the shared string
subsequences present in each slot. Their method
relies on the computation of longest common sub-
sequence (Gusfield, 1997) to derive the abstract
paradigms, which is similar to its use in the re-
lated task of lemmatization (Chrupała et al., 2008;

17

Müller et al., 2015). Once a complete set of ab-
stract paradigms has been extracted from the data,
the problem is reduced to multi-way classifica-
tion, where the goal is to select which abstract
paradigm should be applied to perform reinflec-
tion. The Moscow State system employs a multi-
class SVM (Bishop, 2006) to solve the selection
problem. Overall, this was the best-performing
non-neural system. The reason for this may be
that the abstract paradigm approach enforces hard
constraints between reinflected forms in a way that
many of the other non-neural systems do not.

6.4 Performance of Submitted Systems

Relative system performance is described in Ta-
ble 6, which shows the average rank and per-
language accuracy of each system by track and
task. The table reflects the fact that some teams
submitted more than one system (e.g. LMU-1 &
LMU-2 in the table). Full results can be found
in the appendix. Table 7 shows that in most
cases, competing systems were significantly dif-
ferent (average p < 0.05 across 6 unpaired per-
mutation tests for each pair with 5000 permuta-
tions per test). The only case in which this did not
hold true was in comparing the systems submitted
by LMU to one another.

Three teams exploited the bonus re-
sources in some form: LMU, Alberta and
Columbia/NYUAD. In general, gains from the
bonus resources were modest. Even in Arabic,
where the largest benefits were observed, going
from track 2 to track 3 on task 1 resulted in an
absolute increase in accuracy of only ≈ 3% for
LMU’s best system.

The neural systems were the clear winner in
the shared task. In fact, the gains over classical
systems were quite outstanding. The neural sys-
tems had two advantages over the competing ap-
proaches. First, all these models learned to align
and transduce jointly. This idea, however, is not
intrinsic to neural architectures; it is possible—in
fact common—to train finite-state transducers that
sum over all possible alignments between the in-
put and output strings (Dreyer et al., 2008; Cot-
terell et al., 2014).

Second, they all involved massive parameter
sharing between the different reinflections. Since
the reinflection task entails generalizing from only
a few data pairs, this is likely to be a boon. In-
terestingly, the second BIU-MIT system, which

trained a neural model to predict edit operations,
consistently ranked behind their first system. This
indicates that pre-extracting edit operations, as all
systems in the first camp did, is not likely to
achieve top-level performance.

Even though the top-ranked neural systems do
very well on their own, the other submitted sys-
tems may still contain a small amount of comple-
mentary information, so that an ensemble over the
different approaches has a chance to improve ac-
curacy. We present an upper bound on the possible
accuracy of such an ensemble. Table 6 also in-
cludes an ‘Oracle’ that gives the correct answer if
any of the submitted systems is correct. The aver-
age potential ensemble accuracy gain across tasks
over the top-ranked system alone is 2.3%. This is
the proportion of examples that the top system got
wrong, but which some other system got right.

7 Future Directions

Given the success of the submitted reinflection
systems in the face of limited data from typolog-
ically diverse languages, the future of morpho-
logical reinflection must extend in new directions.
Further pursuing the line that led us to pose task
3, the problem of morphological reinflection could
be expanded by requiring systems to learn with
less supervision. Supervised datasets could be
smaller or more weakly supervised, forcing sys-
tems to rely more on inductive bias or unlabeled
data.

One innovation along these lines could be to
provide multiple unlabeled source forms and ask
for the rest of the paradigm to be produced. In
another task, instead of using source and target
morphological tags, systems could be asked to in-
duce these from context. Such an extension would
necessitate interaction with parsers, and would
more closely integrate syntactic and morphologi-
cal analysis.

Reflecting the traditional linguistic approaches
to morphology, another task could allow the use
of phonological forms in addition to orthographic
forms. While this would necessitate learning a
grapheme-to-phoneme mapping, it has the poten-
tial to actually simplify the learning task by re-
moving orthographic idiosyncrasies (such as the
Spanish ‘c/qu’ alternation, which is dependent on
the backness of the following vowel, but preserves
the phoneme /k/).

Traditional morphological analyzers, usually

18

EHU BI/M-1 BI/M-2 CU COL/NYU HEL MSU LMU-1 LMU-2 OSU
UA 90% (10) — — 67% (30) 93% (58) — 79% (28) 100% (60) 100% (30) —

EHU — 100% (10) 100% (10) 85% (20) 100% (18) 100% (10) 85% (20) 100% (20) 100% (20) 100% (9)
BI/M-1 — — 70% (20) 86% (28) 100% (22) 67% (30) 93% (28) 100% (30) 100% (30) 100% (9)
BI/M-2 — — — 95% (19) 100% (12) 80% (20) 79% (19) 95% (20) 95% (20) 100% (9)

CU — — — — 86% (49) 96% (28) 84% (56) 100% (58) 100% (58) 100% (9)
COL/NYU — — — — — 95% (22) 96% (47) 100% (80) 100% (50) 100% (8)

HEL — — — — — — 89% (28) 97% (30) 97% (30) 100% (9)
MSU — — — — — — — 96% (56) 96% (56) 100% (9)

LMU-1 — — — — — — — — 3% (60) 100% (9)
LMU-2 — — — — — — — — — 100% (9)

Table 7: How often each pair of systems had significantly different accuracy under a paired permutation test (p < 0.05), as a
fraction of the number of times that they competed (on the same language, track and task). The number of such competitions is
in parentheses.

implemented as finite state transducers (Beesley
and Karttunen, 2003), often return all morpho-
logically plausible analyses if there is ambiguity.
Learning to mimic the behavior of a hand-written
analyzer in this respect could offer a more chal-
lenging task, and one that is useful within un-
supervised learning (Dreyer and Eisner, 2011) as
well as parsing. Existing wide-coverage morpho-
logical analyzers could be leveraged in the design
of a more interactive shared task, where hand-
coded models or approximate surface rules could
serve as informants for grammatical inference al-
gorithms.

The current task design did not explore all po-
tential inflectional complexities in the languages
included. For example, cliticization processes
were generally not present in the language data.
Adding such inflectional elements to the task can
potentially make it more realistic in terms of
real-world data sparsity in L1 learning scenarios.
For example, Finnish noun and adjective inflec-
tion is generally modeled as a paradigm of 15
cases in singular and plural, i.e. with 30 slots in
total—the shared task data included precisely such
paradigms. However, adding all combinations of
clitics raises the number of entries in an inflection
table to 2,253 (Karlsson, 2008).

Although the languages introduced in this
year’s shared task were typologically diverse with
a range of morphological types (agglutinative, fu-
sional; prefixing, infixing, suffixing, or a mix),
we did not cover reduplicative morphology, which
is common in Austronesian languages (and else-
where) but is avoided by traditional computational
morphology since it cannot be represented using
finite-state transduction. Furthermore, the focus
was solely on inflectional data. Another version of
the task could call for learning derivational mor-

phology and predicting which derivational forms
led to grammatical output (i.e. existing words or
neologisms that are not subject to morphological
blocking; Poser (1992)). This could be extended
to learning the morphology of polysynthetic lan-
guages. These languages productively use not
only inflection and derivation, which call for the
addition of bound morphemes, but also incorpo-
ration, which involves combining lexical stems
that are often used to form independent words
(Mithun, 1984). Such languages combine the need
to decompound, generate derivational alternatives,
and accurately inflect any resulting words.

8 Conclusion

The SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection significantly expanded the
problem of morphological reinflection from a
problem of generating complete paradigms from
a designated lemma form to generating requested
forms based on arbitrary inflected forms, in some
cases without a morphological tag identifying the
paradigm cell occupied by that form. Further-
more, complete paradigms were not provided in
the training data. The submitted systems em-
ployed a wide variety of approaches, both neu-
ral network-based approaches and extensions of
non-neural approaches pursued in previous works
such as Durrett and DeNero (2013), Ahlberg et al.
(2015), and Nicolai et al. (2015). The superior
performance of the neural approaches was likely
due to the increased parameter sharing available
in those architectures, as well as their ability to
discover subtle linguistic features from these rel-
atively large training sets, such as weak or long-
distance contextual features that are less likely to
appear in hand-engineered feature sets.

19

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In Proceedings of
the 2016 Meeting of SIGMORPHON, Berlin, Ger-
many. Association for Computational Linguistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
EACL, pages 569–578, Gothenburg, Sweden. Asso-
ciation for Computational Linguistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Human Language Technologies:
The 2015 Annual Conference of the North American
Chapter of the ACL, pages 1024–1029, Denver, CO.
Association for Computational Linguistics.

Iñaki Alegria and Izaskun Etxeberria. 2016. EHU at
the SIGMORPHON 2016 shared task. A simple pro-
posal: Grapheme-to-phoneme for inflection. In Pro-
ceedings of the 2016 Meeting of SIGMORPHON,
Berlin, Germany, August. Association for Compu-
tational Linguistics.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri. 2007. OpenFST: A
general and efficient weighted finite-state transducer
library. In Implementation and Application of Au-
tomata, 12th International Conference, CIAA 2007,
Prague, Czech Republic, July 16-18, 2007, Revised
Selected Papers, pages 11–23.

Howard I. Aronson. 1990. Georgian: A Reading
Grammar. Slavica, Columbus, OH.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kenneth R. Beesley and Lauri Karttunen. 2003. Fi-
nite State Morphology. CSLI Publications, Stan-
ford, CA.

Christopher M. Bishop. 2006. Pattern Recognition
and Machine Learning. Springer.

John J. Camilleri. 2013. A computational grammar
and lexicon for Maltese. Master’s thesis, Chalmers
University of Technology. Gothenburg, Sweden.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Grzegorz Chrupała, Georgiana Dinu, and Josef van
Genabith. 2008. Learning morphology with Mor-
fette. In LREC.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
fsts. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 625–630, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. Transactions of the Associ-
ation for Computational Linguistics, 3:433–447.

Markus Dreyer and Jason Eisner. 2009. Graphical
models over multiple strings. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1, pages 101–110.
Association for Computational Linguistics.

Markus Dreyer and Jason Eisner. 2011. Discover-
ing morphological paradigms from plain text using
a Dirichlet process mixture model. In Proceedings
of EMNLP 2011, pages 616–627, Edinburgh. Asso-
ciation for Computational Linguistics.

Markus Dreyer, Jason R. Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In EMNLP, pages
1080–1089.

Kevin Duh and Katrin Kirchhoff. 2004. Automatic
learning of language model structure. In Pro-
ceedings of the 20th International Conference on
Computational Linguistics (COLING), pages 148–
154, Stroudsburg, PA. Association for Computa-
tional Linguistics.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1185–1195, Atlanta. Association for Compu-
tational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic extraction of morphological lex-
icons from morphologically annotated corpora. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2013, pages 1032–1043.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego, California. Association for Computa-
tional Linguistics.

20

Yoav Freund and Robert E. Schapire. 1999. Large
margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296.

Sharon Goldwater and David McClosky. 2005. Im-
proving statistical MT through morphological anal-
ysis. In Proceedings of the Conference on Human
Language Technology and Empirical Methods in
Natural Language Processing (HLT-EMNLP), pages
676–683, Stroudsburg, PA. Association for Compu-
tational Linguistics.

Dan Gusfield. 1997. Algorithms on strings, trees and
sequences: Computer science and computational bi-
ology. Cambridge University Press.

Gunnar Ólafur Hansson. 2010. Consonant Harmony:
Long-Distance Interaction in Phonology. Univer-
sity of California Publications in Linguistics. Uni-
versity of California Press, Berkeley, CA.

Daniel S. Hirschberg. 1975. A linear space al-
gorithm for computing maximal common subse-
quences. Communications of the ACM, 18(6):341–
343.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden Markov models to letter-to-phoneme
conversion. In Proceedings of the Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, pages 372–379.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discrimina-
tive training for letter-to-phoneme conversion. In
ACL 2008, Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 905–913.

Katharina Kann and Hinrich Schütze. 2016. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In Pro-
ceedings of the 2016 Meeting of SIGMORPHON,
Berlin, Germany. Association for Computational
Linguistics.

Fred Karlsson. 2008. Finnish: An essential grammar.
Routledge.

Aleksandr E. Kibrik. 1998. Archi. In Andrew Spencer
and Arnold M. Zwicky, editors, The Handbook of
Morphology, pages 455–476. Blackwell, Oxford.

David King. 2016. Evaluating sequence alignment for
learning inflectional morphology. In Proceedings of
the 2016 Meeting of SIGMORPHON, Berlin, Ger-
many, August. Association for Computational Lin-
guistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. arXiv preprint
arXiv:1603.04351.

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large scale pars-
ing and normalization of Wiktionary morphologi-
cal paradigms. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC 2016), pages 3121–3126, Paris,
France. European Language Resources Association
(ELRA).

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press, Cambridge.

Ling Liu and Lingshuang Jack Mao. 2016. Morpho-
logical reinflection with conditional random fields
and unsupervised features. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany.
Association for Computational Linguistics.

Marianne Mithun. 1984. The evolution of noun incor-
poration. Language, 60(4):847–894, December.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with LEMMING. In Empir-
ical Methods in Natural Language Processing.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In NAACL HLT 2015, The 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 922–931.

Garrett Nicolai, Bradley Hauer, Adam St. Arnaud, and
Grzegorz Kondrak. 2016. Morphological reinflec-
tion via discriminative string transduction. In Pro-
ceedings of the 2016 Meeting of SIGMORPHON,
Berlin, Germany. Association for Computational
Linguistics.

Josef R. Novak, Nobuaki Minematsu, and Keikichi Hi-
rose. 2012. WFST-based grapheme-to-phoneme
conversion: Open source tools for alignment,
model-building and decoding. In 10th International
Workshop on Finite State Methods and Natural Lan-
guage Processing (FSMNLP), pages 45–49.

Robert Östling. 2016. Morphological reinflection with
convolutional neural networks. In Proceedings of
the 2016 Meeting of SIGMORPHON, Berlin, Ger-
many. Association for Computational Linguistics.

William J. Poser. 1992. Blocking of phrasal con-
structions by lexical items. In Ivan Sag and Anna
Szabolcsi, editors, Lexical Matters, pages 111–130,
Palo Alto, CA. CSLI.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In NAACL.

21

Keren Rice. 2000. Morpheme Order and Semantic
Scope: Word Formation in the Athapaskan Verb.
Cambridge University Press, Cambridge, UK.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
Markov conditional random fields for information
extraction. In Advances in Neural Information Pro-
cessing Systems 17 [Neural Information Processing
Systems, NIPS 2004], pages 1185–1192.

Alexey Sorokin. 2016. Using longest common subse-
quence and character models to predict word forms.
In Proceedings of the 2016 Meeting of SIGMOR-
PHON, Berlin, Germany. Association for Computa-
tional Linguistics.

Katsuhito Sudoh, Shinsuke Mori, and Masaaki Na-
gata. 2013. Noise-aware character alignment
for bootstrapping statistical machine transliteration
from bilingual corpora. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2013, pages 204–209.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112.

John Sylak-Glassman, Christo Kirov, Matt Post, Roger
Que, and David Yarowsky. 2015a. A universal
feature schema for rich morphological annotation
and fine-grained cross-lingual part-of-speech tag-
ging. In Cerstin Mahlow and Michael Piotrowski,
editors, Proceedings of the 4th Workshop on Sys-
tems and Frameworks for Computational Morphol-
ogy (SFCM), pages 72–93. Springer, Berlin.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015b. A language-independent
feature schema for inflectional morphology. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (ACL-IJCNLP), pages 674–680, Beijing.
Association for Computational Linguistics.

Dima Taji, Ramy Eskander, Nizar Habash, and Owen
Rambow. 2016. The Columbia University - New
York University Abu Dhabi SIGMORPHON 2016
morphological reinflection shared task submission.
In Proceedings of the 2016 Meeting of SIGMOR-
PHON, Berlin, Germany. Association for Computa-
tional Linguistics.

Robert W. Young and William Morgan. 1987. The
Navajo Language: A Grammar and Colloquial Dic-
tionary. University of New Mexico Press, Albu-
querque.

22

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 23–26,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Morphological reinflection with convolutional neural networks

Robert Östling
Department of Modern Languages, University of Helsinki

PL 24 (Unionsgatan 40, A316)
00014 Helsingfors universitet, Finland
robert.ostling@helsinki.fi

Abstract
We present a system for morphological
reinflection based on an encoder-decoder
neural network model with extra convo-
lutional layers. In spite of its simplicity,
the method performs reasonably well on
all the languages of the SIGMORPHON
2016 shared task, particularly for the most
challenging problem of limited-resources
reinflection (track 2, task 3). We also find
that using only convolution achieves sur-
prisingly good results in this task, surpass-
ing the accuracy of our encoder-decoder
model for several languages.

1 Introduction

Morphological reinflection is the task of predict-
ing one form from a morphological paradigm
given another form, e.g. predicting the English
present participle ringing given the past tense
rang. The SIGMORPHON shared task consid-
ers three variants of this problem, with decreas-
ing amounts of information available beyond the
source form and the morphological features of the
target form:

1. The source form is always the citation form.
2. The source form’s morphological features are

not fixed, but given.
3. Only the source form itself is given.

The first and simplest case is the most well-
researched, and is essentially equivalent to the task
of predicting morphological paradigms.

This paper presents our system for morphologi-
cal reinflection, which was submitted for the SIG-
MORPHON 2016 shared task. To complement the
description given here, the source code of our im-
plementation is available as free software.1

1https://github.com/robertostling/
sigmorphon2016-system

2 Background

In general, morphological reinflection can be
solved by applying any technique for morpho-
logical analysis followed by morphological gen-
eration. These tasks have traditionally been per-
formed using manually specified rules, a slow and
expensive process. Recently, there has been an in-
creased interest in methods for learning morpho-
logical transformations automatically from data,
which is also the setting of the SIGMORPHON
2016 shared task.

This work is based on that of Faruqui et al.
(2016), who use a sequence-to-sequence model
similar to that commonly used in machine trans-
lation (Sutskever et al., 2014). Their method
is very simple: for each language and morpho-
logical feature set, they train a separate model
with a character-level bidirectional LSTM encoder
(where only the final hidden states are used), and
an LSTM decoder whose inputs are the encoded
input as well as the input character sequence.

3 Model

We propose modifying the model of Faruqui et al.
(2016) by:

1. using a single decoder, rather than one for
each combination of morphological features
(which could lead to data sparsity for lan-
guages with complex morphology and large
paradigms),

2. using both the raw letter sequence of the
source string and its convolution as inputs,

3. using deeper LSTM units for the decoder.

Although this model was originally designed for
inflection generation given a lemma, it can triv-
ially be used for reinflection by using inflected
forms rather than lemmas as input. Thus, we use
exactly the same model for the first and third task,

23

Figure 1: Structure of our convolutional encoder-
decoder model (note that convolutional layers are
not present in all configurations).

Embedded input string

1D convolution(s)

LSTM enc. layer(s)

LSTM decoder

tanh + softmax layer

Output string

Morph. feature vector

and for the second task where morphological fea-
tures are given for the source form, we include
those features along with the target form features
(which are given in all three tasks).

In our experiments, we use 4 convolutional lay-
ers and 2 stacked LSTMs (Hochreiter and Schmid-
huber, 1997). We use 256 LSTM units (for both
the encoder and decoder), 64-dimensional char-
acter embeddings and 64 convolutional filters of
width 3 for each layer. The LSTM outputs were
projected through a fully connected hidden layer
with 64 units, and finally through a fully con-
nected layer with softmax activations over the al-
phabet of the language in question. Morphological
features are encoded as binary vectors, which are
concatenated with the character embeddings (and,
when used, convolved character embeddings) to
form the input of the decoder. We then used the
Adam algorithm (Kingma and Ba, 2014) for opti-
mization, where the training objective is the cross-
entropy of the target strings. For decoding, we use
beam search with a beam size of 4. The model
architecture is summarized in figure 1.

To further explore the effect of using convo-
lutional layers in isolation, we also performed
follow-up experiments after the shared task sub-
mission. In these experiments we used an even
simpler architecture without any encoder, instead
we used a 1-dimensional residual network archi-
tecture (He et al., 2016, figure 1b) with constant

Figure 2: Structure of our purely convolutional
model (note that GRU layers are not present in all
configurations).

Embedded input string and
morphological feature vector

1D ResNet layer(s)

tanh + softmax layer

Output string

GRU decoder layer(s)

size across layers, followed by either one or zero
Gated Recurrent Unit layers (Cho et al., 2014).
The output vector of each residual layer (which
contains two convolutional layers with Batch Nor-
malization (Ioffe and Szegedy, 2015) and rectified
linear units after each) is combined with the vec-
tor of the previous layer by addition, which means
that the output is the sum of the input and the out-
put of each layer. This direct additive coupling
between layers at different depth allows very deep
networks to be trained efficiently. In this work we
use up to 12 residual layers, corresponding to a to-
tal of 24 convolutional layers.

In these experiments (unlike the encoder-
decoder model), dropout (Srivastava et al., 2014)
was used for regularization, with a dropout factor
of 50%. The morphological features of the tar-
get form are concatenated to the 128-dimensional
character embeddings at the top convolutional
layer, so the total number of filters for each layer
is 128 + n in order to keep the architecture simple
and uniform, where n is the number of different
morphological features in the given language. De-
coding is done by choosing the single most proba-
ble symbol at each letter position, according to the
final softmax layer. This model is summarized in
figure 2.

4 Evaluation

All results reported in this section refer to accu-
racy, computed using the official SIGMORPHON
2016 development data and scoring script. Table 1
on the following page shows the result on the offi-
cial test set, and a full comparison to other systems

24

Table 1: Results of our convolutional encoder-
decoder system on the official SIGMORPHON
shared task test set.

Language Accuracy (percent)
Task 1 Task 2 Task 3

Arabic 89.52 69.53 70.43
Finnish 95.14 88.42 87.55
Georgian 97.02 92.84 91.85
German 94.40 91.73 89.14
Hungarian 98.38 96.25 96.46
Maltese 86.16 73.17 75.54
Navajo 82.10 77.37 83.21
Russian 89.94 86.60 84.59
Spanish 98.35 95.35 94.85
Turkish 97.93 91.69 91.25

is available on the shared task website2 (our sys-
tem is labeled ‘HEL’).

We participate only in track 2, which only al-
lows training data from the same task that is eval-
uated. Training data from other (lower-numbered)
tasks, as track 1 allows, could trivially be ap-
pended to the training data of our model, but this
was not done since we focused on exploring the
core problem of learning reinflection. The same
constraints are followed in all experiments de-
scribed here.

Note that due to time constraints, we were
not able to explore the full set of parameters be-
fore submitting the test set results. Of the mod-
els that had finished training by the deadline, we
chose the one which had the highest accuracy on
the development set. The results reported here
are from later experiments which were carried
out to systematically test the effects of our pro-
posed changes. Table 2 shows that using con-
volutional layers improves accuracy in almost all
cases, whereas adding an extra LSTM layer does
not bring any systematic improvement.

Results when using only convolutional layers
or convolutional layers followed by a GRU recur-
rent layer can be found in table 3 on the following
page. To our surprise, we found that convolution
alone is sufficient to achieve results comparable to
or better than several of the other systems in the
shared task, and for some languages it beats our
own submitted results. There is no clear benefit
across languages of adding a final GRU decoder

2http://ryancotterell.github.io/
sigmorphon2016/

Table 2: Results of our convolutional encoder-
decoder system on the official SIGMORPHON
shared task development set for task 3 (re-
inflection). The first column contains results of
models with both convolutions (4 layers) and deep
LSTMs (2 layers), the second uses a single LSTM
layer, and the third one uses no convolutional lay-
ers.

Language Accuracy (percent)
both -deep -conv

Arabic 66.9 70.8 75.8
Finnish 85.5 88.4 80.9
Georgian 92.3 91.9 87.1
German 89.6 87.2 88.7
Hungarian 97.1 94.0 95.6
Maltese 76.1 74.0 74.9
Navajo 89.6 87.2 85.1
Russian 83.2 84.1 82.2
Spanish 93.6 94.3 91.1
Turkish 89.7 88.8 80.4

layer, but increasing the depth of the network and
in particular the width of the convolution seem to
benefit accuracy.

5 Conclusions

We find that the model of Faruqui et al. (2016) can
be extended to the task of reinflection and deliv-
ers very good levels of accuracy across languages,
and that adding convolutional layers consistently
improves accuracy.

Further experiments show, to our surprise, that
a simple and purely convolutional architecture
designed for image classification in many cases
achieves an even higher accuracy. Although
convolutional architectures have become standard
(along with recurrent neural networks) in many
text encoding tasks, this is one of rather few ex-
amples of where they have been successfully used
for text generation.

Acknowledgments

This work was carried out using the computing re-
sources of CSC.3

3https://www.csc.fi/

25

Table 3: Results of our purely convolution system (not submitted) on the official SIGMORPHON shared
task development set for task 3 (reinflection). System configurations are given on the form “convolutional
layers–filter size”.

Language Accuracy (percent)
With GRU decoder Without GRU decoder

24–7 16–7 8–7 24–5 24–3 24–7 16–7 8–7 24–5 24–3
Arabic 74.2 69.6 63.7 71.8 47.7 71.9 68.1 67.4 65.0 55.5
Finnish 89.6 90.9 84.9 85.5 90.4 91.3 89.2 91.0 88.8 86.9
Georgian 91.2 91.4 91.3 91.5 90.1 89.9 89.7 90.3 91.0 89.6
German 89.0 89.8 89.1 89.6 88.8 88.9 89.9 89.6 89.8 88.9
Hungarian 93.5 96.0 89.8 93.8 92.0 92.2 90.0 88.0 90.9 90.0
Maltese 63.0 63.2 60.4 50.1 63.2 66.0 61.1 54.1 61.2 64.6
Navajo 78.8 81.9 72.4 78.8 50.0 84.3 80.5 49.6 68.5 31.4
Russian 84.8 85.0 86.1 85.4 83.2 85.4 86.0 85.0 86.1 82.2
Spanish 95.5 92.6 94.5 95.3 92.7 94.7 94.8 94.9 94.1 95.2
Turkish 91.4 91.4 92.1 90.8 89.7 92.8 91.1 90.7 90.7 90.4

References
Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar, October. Association for Com-
putational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proc. of NAACL.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Identity mappings in deep residual net-
works. CoRR, abs/1603.05027.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780, November.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In David Blei and
Francis Bach, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-
15), pages 448–456. JMLR Workshop and Confer-
ence Proceedings.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le.
2014. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes,
N.D. Lawrence, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

26

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 27–30,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

EHU at the SIGMORPHON 2016 Shared Task. A Simple Proposal:
Grapheme-to-Phoneme for Inflection

Iñaki Alegria, Izaskun Etxeberria
IXA taldea, UPV-EHU

{i.alegria,izaskun.etxeberria}@ehu.es

Abstract

This paper presents a proposal for learning
morphological inflections by a grapheme-
to-phoneme learning model. No special
processing is used for specific languages.
The starting point has been our previous
research on induction of phonology and
morphology for normalization of histori-
cal texts. The results show that a very sim-
ple method can indeed improve upon some
baselines, but does not reach the accura-
cies of the best systems in the task.

1 Introduction

In our previous work carried out in the context
of normalization of historical texts (Etxeberria et
al., 2016) we proposed an approach based on the
induction of phonology. We obtained good re-
sults using only induced phonological weighted
finite-state transducers (WFSTs), i.e. by leverag-
ing the phoneme-to-grapheme method to yield a
grapheme-to-grapheme model. The research ques-
tion now is if the grapheme-to-grapheme model
can be extended to handle morphological informa-
tion instead of words or morphological segmenta-
tion. To assess this, we test a general solution that
works without special processing for specific lan-
guages (i.e. we do not focus on special treatment
of accents in Spanish and other idiosyncracies).

1.1 Task

We only have taken part in task 1 (Inflection from
lemma/citation form) of the SIGMORPHON 2016
Shared Task (Cotterell et al., 2016). Given a
lemma with its part-of-speech, the system must
generate a target inflected form whose morphosyn-
tactic description is given.1

1http://www.sigmorphon.org/sharedtask

1.2 Corpora and Resources

We use the data provided by the organizers of the
task. Our first experiments and tuning were con-
ducted on eight languages before the two addi-
tional ‘surprise’ languages (Maltese and Navajo)
were provided.

We also ran experiments using the available
bonus-resources (track 3) but after initial results
we decided to present only a system using the ba-
sic resources.

2 Related work

In our previous work (Etxeberria et al., 2014;
Etxeberria et al., 2016) we have used Phoneti-
saurus,2 a WFST-driven phonology tool (Novak
et al., 2012) which learns to map phonological
changes using a noisy channel model. It is a so-
lution that works well using a limited amount of
training information. The task addressed earlier
was the normalization of historical/dialectal texts.

In the same paper we demonstrated that the
method is viable for language-independent nor-
malization and we tested the same approach for
normalization of Spanish and Slovene historical
texts obtaining similar or better results than pre-
vious systems reported by Porta et al. (2013) (us-
ing hand-written rules) and Scherrer and Erjavec
(2015) (using a character-based SMT system).

Because of the model’s relative success with
historical normalization and its simplicity, we de-
veloped the approach further for addressing the
shared task problem.

There exist other finite-state transducer-based
approaches, generally more complex than what we
present, of which two warrant a mention:

(i) Dreyer et al. (2008) develops a model for

2https://github.com/AdolfVonKleist/
Phonetisaurus

27

string-to-string transduction where results are
improved using latent-variables.

(ii) Cotterell et al. (2015) models word-forms us-
ing latent underlying morphs and phonology.
The system includes finite-state technology
(in the form of WFSA and PFSTs) in two
of the three steps: concatenation, phonology,
and phonetics.

3 Experiments and Evaluation

3.1 Basic Method

We used Phonetisaurus to train a WFST-system
that learns the changes that occur when going
from the citation form to another form. This
tool—while not specifically limited to such uses—
is widely used for rapid development of high-
quality grapheme-to-phoneme (g2p) converters. It
is open-source, easy-to-use, and authors report
promising results (Novak et al., 2012).

Phonetisaurus uses joint n-gram models and it
is based on OpenFST, which learns a mapping
of phonological changes using a noisy channel
model. The application of the tool includes three
major steps:

1. Sequence alignment. The alignment algo-
rithm is based on the algorithm proposed
in Jiampojamarn et al. (2007) and includes
some minor modifications to it.

2. Model training. An n-gram language model
is trained using the aligned data and then
converted into a WFST. For producing the
language model, we used the Language
Model training toolkit NGramLibrary for
our experiments, although several alterna-
tive similar tools exist that all cooperate
with Phonetisaurus: mitlm, NGramLibrary,
SRILM, SRILM MaxEnt extension, CMU-
Cambridge SLM.

3. Decoding. The default decoder used in the
WFST-based approach finds the best hypoth-
esis for the input words given the WFST ob-
tained in the previous step. It is also possible
to extract a k-best list of output hypotheses
for each word.

The alignment algorithm is capable of learn-
ing many-to-many relationships and includes three
modifications to the basic toolkit: (a) a constraint

is imposed such that only many-to-one and one-to-
many alignments are considered during training;
(b) during initialization, a joint alignment lattice
is constructed for each input entry, and any uncon-
nected arcs are deleted;3 (c) all transitions, includ-
ing those that model deletions and insertions, are
initialized with and constrained to maintaining a
non-zero weight.

As the results obtained with this tool were the
best ones in our previous scenario, we decided
to employ it for this task. Concretely, we have
used Phonetisaurus to learn a WFST which can
translate simplified morphological expressions to
words to solve the inflection task. Once the trans-
ducer is trained, it can be used to generate cor-
respondences for previously unseen morphologi-
cal representations and their corresponding word-
forms.

3.2 Testing the models
Using the development section for tuning we ex-
perimented with different variations in our ap-
proach in order to tune a good model for the prob-
lem.

First, we compacted the morphological infor-
mation in a tag (which we consider a pseudo-
morpheme) by concatenating the first letter in the
category with a consecutive number. For example,
the first lines in the training corpus for German

aalen pos=V, ... per=1,num=PL aalen
aalen pos=V, ... per=3,num=PL aalen
aalen pos=V, ... per=2,num=SG aaltest
aalen pos=V, ... per=3,num=SG aalte
aalen pos=V,tense=PRS aalend

are converted into:

aalen V0 aalen
aalen V1 aalen
aalen V2 aaltest
aalen V3 aalte
aalen V4 aalend

Using this information three experiments were
carried out where the morphosyntactic informa-
tion was

• treated as a suffix.

• treated as a suffix and as a prefix.

• treated as a suffix, as an infix in the center of
the lemma, and as a prefix.

3The topology of the WFST is assigned by the tool and
the model is rather large (standard parameters are used: from
1-gram to 7-gram).

28

The strongest results were obtained using the
second model for all languages except Finnish,
which yielded the best results using only a suffix-
based representation.

To illustrate the encoding, below are the first
few entries in the development corpus for German:

N96+Aak+N96 → Aak
V87+aalen+V87 → geaalt
V79+aasen+V79 → aaste
V1+abandonnieren+V1 → abandonnieren
A40+abchasisch+A40 → abchasischerem

In a second step we built different WFSTs de-
pending on the category, but this yielded no im-
provement. As an alternative, we decided to test if
putting only the category information in the prefix
(i.e. one character) could help in the task. This
produced an improvement only for Finnish.

As a third step we tested the possibility of op-
timizing the size and the content of the tag (the
pseudo-morpheme), attempting to match its length
with the length of the corresponding morpheme, as
in the following example for German encodings:

N+Aak+N96 → Aak
V87+aalen+V87 → geaalt
V+aasen+V79 → aaste
V+abandonnieren+V1 → abandonnieren
A+abchasisch+A4000 → abchasischerem

This strategy produced no solid improvement in
our preliminary experiments.

3.3 Evaluation

We have measured the quality using the metrics
and the script provided by the organizers; the base-
line figures also originate with the organizers.

In all the languages whole tags were injected
as prefixes and suffixes, with the exception of
Finnish, where in the prefix tag position only the
first character is included. For example, for the
wordform aakkostot ‘alphabets’ N+aakkosto+N9
is used instead of N9+aakkosto+N9.

For the submitted final test we retrained the
transducer adding the development section to the
training corpus. As can be seen in table 1, a slight
improvement was obtained (0.43% on average).

4 Using external information

Trying to take advantage of bonus resources, we
used a word list for Spanish, German and Russian
available with the FreeLing package (Carreras et
al., 2004) as a 1-gram language-model of words.

Language Baseline Dev Test

Arabic 69.40 67.53 64.68
Finnish 69.80 86.86 83.72
Georgian 91.60 87.04 83.11
German 89.90 91.61 89.86
Hungarian 74.10 91.04 85.39
Maltese 36.56 61.89 64.80
Navajo 70.30 93.53 56.33
Russian 90.20 86.74 86.58
Spanish 95.49 90.98 91.35
Turkish 59.20 90.36 90.84

Mean 84.76 79.67

Table 1: Results on the test corpus using 1-best
accuracy for evaluation.

Since it is possible to produce multiple outputs
from the WFST we train, we also experimented
with an approach where the WFST would return
several ranked candidates (3, 5, and 10), and se-
lecting the first one found in the word list. If none
of the candidates appeared in the list, the first pro-
posal was used.

Using this strategy the results for Spanish im-
proved slightly (by 2%), while the results for Ger-
man improved slightly less (by 0.2%), and the
Russian results worsened (by -0.7%).

Language Basic Filtering 3 Filtering 5

German 91.61 91.80 91.73
Russian 86.74 86.05 84.73
Spanish 90.98 92.86 92.86

Table 2: Accuracy when using a word list for filter-
ing the proposals from the WFST. The first column
shows the results without any external resources
used; in the second column a word list has been
used for filtering the top 3 proposals and in the
third column for filtering with the top 5 proposals.

Since FreeLing is known to produce the highest-
quality output for Spanish, we may assume that the
results reflect the relative quality of the resources
in that package.

Due to this limited improvement, we decided to
present only the basic system for track 1.

5 Conclusions and future work

Previous work on lexical normalization on histor-
ical and dialectal texts has been extended and ap-

29

plied to a morphological inflection scenario.
While the method is simple and somewhat lim-

ited, with results not fully competitive against the
best reported systems (Cotterell et al., 2016), some
difficult languages saw a relatively good perfor-
mance (Navajo and Maltese).

In the near future, our aim is to improve the re-
sults by trying to place the tags and morphemes in
a more congenial configuration for WFST train-
ing and to use existing proposals to harness avail-
able latent information (Dreyer et al., 2008). In
addition to this, we plan to incorporate techniques
learned from other participants in the shared task.

References
Xavier Carreras, Isaac Chao, Lluis Padró, and Muntsa

Padró. 2004. FreeLing: An open-source suite of
language analyzers. In Proceedings of LREC.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. Transactions of the Associ-
ation for Computational Linguistics, 3:433–447.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. Association for Computational Linguistics.

Markus Dreyer, Jason R Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In Proceedings of
the conference on empirical methods in natural lan-
guage processing, pages 1080–1089. Association
for Computational Linguistics.

Izaskun Etxeberria, Inaki Alegria, Mans Hulden, and
Larraitz Uria. 2014. Learning to map variation-
standard forms using a limited parallel corpus
and the standard morphology. Procesamiento del
Lenguaje Natural, 52:13–20.

Izaskun Etxeberria, Inaki Alegria, Larraitz Uria, and
Mans Hulden. 2016. Evaluating the noisy chan-
nel model for the normalization of historical texts:
Basque, Spanish and Slovene. In Proceedings of the
LREC2016.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden Markov models to letter-to-phoneme
conversion. In HLT-NAACL, volume 7, pages 372–
379.

Josef R. Novak, Nobuaki Minematsu, and Keikichi Hi-
rose. 2012. WFST-based grapheme-to-phoneme
conversion: Open source tools for alignment,
model-building and decoding. In Proceedings of the

10th International Workshop on Finite State Meth-
ods and Natural Language Processing, pages 45–49,
Donostia–San Sebastian, July. Association for Com-
putational Linguistics.

Jordi Porta, José-Luis Sancho, and Javier Gómez.
2013. Edit transducers for spelling variation in old
Spanish. In Proc. of the workshop on computational
historical linguistics at NODALIDA 2013. NEALT
Proc. Series, volume 18, pages 70–79.

Yves Scherrer and Tomaž Erjavec. 2015. Modernising
historical Slovene words. Natural Language Engi-
neering, pages 1–25.

30

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 31–35,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Morphological Reinflection via Discriminative String Transduction

Garrett Nicolai, Bradley Hauer, Adam St Arnaud, Grzegorz Kondrak
Department of Computing Science

University of Alberta, Edmonton, Canada
{nicolai,bmhauer,ajstarna,gkondrak}@ualberta.ca

Abstract

We describe our approach and experi-
ments in the context of the SIGMOR-
PHON 2016 Shared Task on Morphologi-
cal Reinflection. The results show that the
methods of Nicolai et al. (2015) perform
well on typologically diverse languages.
We also discuss language-specific heuris-
tics and errors.

1 Introduction

Many languages have complex morphology with
dozens of different word-forms for any given
lemma. It is often beneficial to reduce the data
sparsity introduced by morphological variation in
order to improve the applicability of methods that
rely on textual regularity. The task of inflection
generation (Task 1) is to produce an inflected form
given a lemma and desired inflection, which is
specified as an abstract tag. The task of labelled
reinflection (Task 2) replaces the input lemma with
a morphologically-tagged inflected form. Finally,
the task of unlabelled reinflection (Task 3) differs
from Task 2 in that the input lacks the inflection
tag.

In this paper, we describe our system as partic-
ipants in the SIGMORPHON 2016 Shared Task
on Morphological Reinflection (Cotterell et al.,
2016). Our approach is based on discriminative
string transduction performed with a modified ver-
sion of the DIRECTL+ program (Jiampojamarn et
al., 2008). We perform Task 1 using the inflec-
tion generation approach of Nicolai et al. (2015),
which we refer to as the lemma-to-word model.
We also derive a reverse word-to-lemma (lemma-
tization) model from the Task 1 data. We per-
form Task 3 by composing the word-to-lemma and
lemma-to-word models. We reduce Task 2 to Task
3 by simply ignoring the input inflection tag.

2 Methods

In this section, we describe the application of our
string transduction and reranking approaches to
the three shared tasks.

2.1 String Transduction

We perform string transduction by adapting DI-
RECTL+, a tool originally designed for grapheme-
to-phoneme conversion.1 DIRECTL+ is a feature-
rich, discriminative character string transducer
that searches for a model-optimal sequence of
character transformation rules for its input. The
core of the engine is a dynamic programming al-
gorithm capable of transducing many consecutive
characters in a single operation. Using a struc-
tured version of the MIRA algorithm (McDonald
et al., 2005), training attempts to assign weights
to each feature so that its linear model separates
the gold-standard derivation from all others in its
search space.

From aligned source-target pairs, DIRECTL+
extracts statistically-supported feature templates:
source context, target n-gram, and joint n-gram
features. Context features conjoin the rule with
indicators for all source character n-grams within
a fixed window of where the rule is being applied.
Target n-grams provide indicators on target char-
acter sequences, describing the shape of the tar-
get as it is being produced, and may also be con-
joined with our source context features. Joint n-
grams build indicators on rule sequences, com-
bining source and target context, and memorizing
frequently-used rule patterns. We train separate
models for each part of speech in the training data.

We perform source-target pair alignment with
a modified version of the M2M aligner (Jiampo-
jamarn et al., 2007). The program applies the
Expectation-Maximization algorithm with the ob-

1https://code.google.com/p/directl-p

31

jective to maximize the joint likelihood of its
aligned source and target pairs. In order to encour-
age alignments between identical characters, we
modify the aligner to generalize all identity trans-
formations into a single match operation.

2.2 Task 1: Inflection
For Task 1, we derive a lemma-to-word model,
which transforms the lemma along with an in-
flection tag into the inflected form. Our method
models affixation with atomic morphological tags.
For example, the training instance corresponding
to the past participle dado of the Spanish verb
dar “to give” consists of the source dar+PP and
the target dado. The unsupervised M2M aligner
matches the +PP tag with the do suffix on the
basis of their frequent co-occurrence in the train-
ing data. DIRECTL+ then learns that the PP tag
should be transduced into do when the lemma
ends in ar. Similarly, prefixes are represented
by a tag before the lemma. The transducer can
also memorize stem changes that occur within the
context of a tag. For example, the training pair
PP+singen+PP → gesungen can inform the
transduction PP+ringen+PP → gerungen at
test time.

2.3 Task 2: Labeled Reinflection
Task 2 is to generate a target inflected form, given
another inflected form and its tag. Since our cur-
rent approach is not able to take advantage of the
tag information, we disregard this part of the input,
effectively reducing Task 2 to Task 3.

2.4 Task 3: Unlabeled Reinflection
In general, Task 3 appears to be harder than
Tasks 1 and 2 because it provides neither the
lemma nor the inflection tag for the given word-
form. In essence, our approach is to first lemma-
tize the source word, and then proceed as with
Task 1 as described in Section 2.2. We com-
pose the lemma-to-word model from Task 1 with a
word-to-lemma model, which is derived from the
same data, but with the source and target sides
swapped. The word-to-lemma model transforms
the inflected word-forms into sequences of lem-
mas and tags; e.g. dado→ dar+PP.

The only difference between the two models
involves empty affixes (e.g. the plural of fish in
English). The lemma-to-word model can simply
delete the tag on the source side, but the word-to-
lemma model would need to insert it on the target

side. In order to avoid the problem of unbounded
insertions, we place a dummy null character at the
boundaries of the word, effectively turning inser-
tion into substitution.

Lemmatization is not the only method of inflec-
tion simplification; we experimented with three al-
ternative approaches (Nicolai and Kondrak, 2016):

1. stem-based approach, which is composed of
the word-to-stem and stem-to-word models;

2. stemma-based approach, which instead piv-
ots on stemmed lemmas;

3. word-to-word model, which directly trans-
duces one inflected form into another.

However, as the lemma-based method obtained
the best accuracy during development, we decided
to use it for all following experiments.

2.5 Corpus Reranking
The shared task is divided into three tracks that
vary in the amount of information allowed to train
reinflection models. Track 1 (“Standard”) allows
the training data from the corresponding or lower-
numbered tasks. We did not participate in Track
2 (“Restricted”) because it was formulated af-
ter the release of the training data. For Track
3 (“Bonus”), the shared task organizers provided
unannotated text corpora for each language.

Our Track 3 approach is to rerank the n-best
list of predictions generated by DIRECTL+ for
each test word-form using the method of Joachims
(2002). For each language, we take the first one
million lines from the corresponding Wikipedia
dump as our corpus, removing the XML markup
with the html2text utility. Our reranker con-
tains three features:

1. normalized score of the prediction generated
by DIRECTL+;

2. presence in the corpus;

3. normalized log likelihood of the prediction
given a 4-gram character language model de-
rived from the corpus.

3 Language-Specific Heuristics

Each language has its own unique properties that
affect the accuracy of reinflection. While our ap-
proach is designed to be language-independent,
we also investigated modifications for improving
accuracy on individual languages.

32

3.1 Spanish Stress Accents

In Spanish, vowels are marked to indicate irregu-
lar stress (e.g. á in darás). This introduces sev-
eral additional characters that are phonetically re-
lated to their unaccented counterparts. In an at-
tempt to generalize unstressed and stressed vow-
els, we represent each stressed vowel as a pair of
an unaccented vowel and the stress mark. (e.g.
darás becomes dara's). After inflecting the test
word-forms, we reverse this process: any vowel
followed immediately by a stress mark is replaced
with the corresponding accented vowel; stress
marks not following a vowel are deleted.

3.2 Vowel Harmony

In agglutinative languages such as Finnish, Turk-
ish, and Hungarian, vowels in stems and suffixes
often share certain features such as height, back-
ness, or rounding. We augment DIRECTL+ with
features that correspond to vowel harmony viola-
tions. Since our development experiments demon-
strated a substantial (13%) error reduction only for
Turkish verbs, the vowel harmony features were
restricted to that subset of the data.

3.3 Georgian Preverbs

Georgian verbs may include preverb morphemes,
which act more like a derivational affix than an
inflectional one. These preverbs primarily distin-
guish present and future tenses, but can also con-
vey directional meaning. We observed that the
Georgian training data contained many preverbs
da and ga, but only some of the instances included
the preverb on the lemma. This forced the mod-
els to learn two separate sets of rules. Removing
these preverbs from the training word-forms and
lemmas led to an 8% error reduction on the devel-
opment set.

3.4 Arabic Sun Letters

In Arabic, consonants are divided into two classes:
sun letters (i.e. coronal consonants) and moon let-
ters (all others). When the definite article al- is
followed by a sun letter, the letter lām assimilates
to the following letter. Thus, al+shams “the sun”
is realized as ash-shams. We observed that almost
half of the errors on the adjectives could be at-
tributed to this phenomenon. We therefore enforce
this type of assimilation with a post-processing
script.

4 Experiments

Our transduction models are trained on the pairs
of word-forms and their lemmas. The word-
to-lemma models (Section 2.2), are trained on
the Task 1 training dataset, which contains gold-
standard lemmas. These models are then em-
ployed in Tasks 2 and 3 for lemmatizing the source
word-forms. The lemma-to-word models (Sec-
tion 2.4) are derived from the training data of
all three tasks, observing the Track 1 stipulations
(Section 2.5). For example, the lemma-to-word
models employed in Task 2 are trained on a com-
bination of the gold-standard lemmas from Task
1, as well as the lemmas generated by the word-
to-lemma models from the source word-forms in
Task 2. Our development experiments showed that
this kind of self-training approach can improve the
overall accuracy.2

4.1 Development Results

Selected development results are shown in Table 1.
The Task 1 results are broken down by part-of-
speech. Because of an ambiguity in the initial
shared task instructions, all development models
were trained on a union of the data from all three
tasks.

T1 T2 T3 VB NN JJ
ES 98.0 96.3 96.3 96.0 95.9 100
DE 94.4 92.2 92.2 90.5 88.6 97.7
FI 90.0 88.4 88.4 92.1 89.7 63.9
RU 89.5 86.3 86.3 81.9 91.7 96.7
TR 78.6 74.9 74.9 78.8 78.5 n/a
KA 96.8 95.5 95.5 62.9 99.0 99.2
NV 91.3 90.0 90.0 88.5 99.1 n/a
AR 81.1 76.2 76.2 85.7 61.2 84.6

Table 1: Word accuracy on the development sets.

4.2 Test Results

Table 2 shows our test results. In most cases, these
results are close to our development results. One
exception is Navajo, where the test sets were sig-
nificantly harder than the development sets. We
also note drops in accuracy from Task 1 to Task 2
and 3 that were not evident in development, par-
ticularly for Arabic and Turkish. The drops can
be attributed to the different training conditions

2Because of time constraints, we made an exception for
Maltese by training on the gold lemmas from Task 1 only.

33

Task 1 Task 2 Task 3
ST RR ST RR ST RR

ES 97.8 98.0 96.2 96.4 96.5 96.6
DE 94.1 93.8 91.1 91.6 91.1 91.6
FI 88.5 88.7 85.6 85.7 85.8 85.9
RU 88.6 89.7 85.5 86.6 85.5 86.6
TR 82.2 87.5 62.5 59.2 63.1 59.2
KA 96.1 96.3 94.1 94.2 94.1 94.4
NV 60.3 60.3 50.4 50.8 48.8 49.1
AR 82.1 53.1 71.8 44.1 72.2 58.5
HU 86.7 89.6 86.3 88.8 86.4 88.9
MT 42.0 42.5 37.5 37.8 37.5 37.8

Table 2: Word accuracy on the test sets.3

between development and testing. In Section 5,
we describe language specific issues; Arabic and
Turkish were particularly affected by less training
data.

Table 2 also contains the results for the “Bonus”
track (RR). The reranking yields an improvement
in almost all cases. Arabic is a clear exception.
The data provided for the task was presented in
a transliterated Latin script, while the Wikipedia
corpus was in the original Arabic text. While a
transliterated version of the text was eventually
provided, it was not a complete transliteration:
certain vowels were omitted, as they are difficult
to recover from standard Arabic. This affected our
reranker because it depends on correct forms in the
corpus and a character language model.

5 Error Analysis

In this section, we discuss a few types of errors
that we observed on the development sets for each
language.

Spanish The highest overall accuracy among
the tested languages confirms its reputation of
morphological regularity. A handful of verb errors
are related to the interplay between orthography
and phonology. Our models appear to have dif-
ficulty generalizing the rigid rules governing the
representation of the phonemes [k] and [T] by the
letters q, c and z. For example, the form crucen,
pronounced [kruθEn], is incorrectly predicted with
z instead of c, even though the bigram ze is never
observed in Spanish. This demonstrates that the
character language model feature of the reranker

3The results in italics were obtained after the shared task
submission deadline.

is not able to completely prevent orthographically-
invalid predictions.

German Nouns and verbs fall into several dif-
ferent inflectional classes that are difficult to pre-
dict from the orthography alone. For exam-
ple, the plural of Schnurrbart, “moustache”, is
Schnurrbärte. Our system incorrectly misses the
umlaut, applying the pluralization pattern of the
training form Wart, “attendant”, which is indeed
pluralized without the umlaut.

Finnish A phenomenon known as consonant
gradation alternates variants of consonants de-
pending on their context. Given the amount of the
training data, our method is unable to learn all of
the appropriate gradation contexts.

Russian The results indicate that verbs are sub-
stantially more challenging than nouns and adjec-
tives. Most of the errors involve vowel changes.
The reranker reduces the error rate by about 10%
on Task 1. In particular, it filters out certain pre-
dictions that appear to violate phonotactic con-
straints, and reduces the number of errors related
to lexically-conditioned prefixes in the perfective
forms.

Turkish Occasionally, the forms in crowd-
sourced data are incorrect, which can lead to spu-
rious transduction rules both during lemmatization
and inflection. For example, the form çıkaracağım
of the verb çıkarmak “to subtract” is erroneously
associated in the training data with the lemma
toplamak “to add”, which causes the word-to-
lemma model to learn a spurious çı → to rule.
At test time, this leads to incorrect lemma predic-
tions, which in turn propagate to multiple inflected
forms.

Georgian The highly unpredictable preverbs
(Section 3.3) were the cause of a large number of
errors on verbs. On the other hand, our system did
very well on nouns and adjectives, second only to
Spanish.

Arabic Errors were mainly constrained to irreg-
ular forms, such as the nominal broken plurals.
Unlike sound plurals that inflect via suffixation,
broken plurals involve consonantal substitution.
This is a difficult transduction to learn, given its
low frequency in training. Another type of errors
involves weak roots, which contain semi-vowels
rather than full consonants.

34

Navajo In contrast with the test results. our de-
velopment results were very promising, with near-
perfect performance on nouns. After the submis-
sion deadline, we were informed that the test set
differed in significant ways from the training and
development sets, which lead to increased diffi-
culty for this language.

Hungarian As it was one of the surprise lan-
guages, we applied no language-specific tech-
niques. Nevertheless, the test results were on par
with the other agglutinative languages. We spec-
ulate that adding customized vowel harmony fea-
tures could further improve the results.

Maltese A complicated morphology is repre-
sented by an extremely large tag set (3184 dis-
tinct tags). For nouns and adjectives, the num-
ber of tags is very close to the number of training
instances, which precludes any meaningful learn-
ing generalization. While many features within
tags are repeated, taking advantage of this regular-
ity would require more development time, which
was unavailable for the surprise languages. The
results highlight a limitation of the atomic tags in
our method.

6 Conclusion

Previous work in morphological generation was
largely limited to a small number of western Euro-
pean languages. The methods proposed by Nico-
lai et al. (2015) for the task of inflection genera-
tion were originally developed on such languages.
The results on the shared task data show that those
methods can be adapted to the task of reinflection,
and perform well on various morphologically-
complex languages. On the other hand, there is
room for improvement on languages like Maltese,
which provides motivation for future work.

Acknowledgements

We thank Mohammad Salameh for his help with
Arabic. We thank the organizers for their hard
work preparing the task, their readiness to an-
swer questions, and their flexibility with regards
to complications.

This research was supported by the Natural
Sciences and Engineering Research Council of
Canada, and by Alberta Innovates – Technology
Futures and Alberta Innovation & Advanced Edu-
cation.

References
Ryan Cotterell, Christo Kirov, John Sylak-Glassman,

David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme
conversion. In NAACL-HLT, pages 372–379.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discriminative
training for letter-to-phoneme conversion. In ACL,
pages 905–913.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In SIGKDD, pages 133–
142. ACM.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In ACL.

Garrett Nicolai and Grzegorz Kondrak. 2016. Lever-
aging inflection tables for stemming and lemmatiza-
tion. In ACL.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In NAACL-HLT, pages 922–931.

35

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 36–40,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Morphological Reinflection with Conditional Random Fields and
Unsupervised Features

Ling Liu
Department of Linguistics

University of Colorado
ling.liu@colorado.edu

Lingshuang Jack Mao
Department of Linguistics

University of Colorado
lima4664@colorado.edu

Abstract

This paper describes our participation in
the SIGMORPHON 2016 shared task on mor-
phological reinflection. In the task, we
use a linear-chain conditional random field
model to learn to map sequences of input
characters to sequences of output charac-
ters and focus on developing features that
are useful for predicting inflectional behav-
ior. Since the training data in the task is
limited, we also generalize the training data
by extracting, in an unsupervised fashion,
the types of consonant-vowel sequences
that trigger inflectional behavior, and by ex-
tending the available training data through
inference of unlabeled morphosyntactic de-
scriptions.

1 Introduction

Our approach to the shared task focuses on expand-
ing well-known methods to learning inflections.
As our starting point, we assume a discriminative
model akin to Durrett and DeNero (2013), Nicolai
et al. (2015), and the baseline system provided by
the organizers of the shared task, all very similar
systems at the core. To improve performance and
to address the more difficult reinflection tasks in-
troduced in the shared task, we explore methods
of expanding the training data, performing better
alignment on the training data for our discrimina-
tive sequence classifier, feature development, and
using unsupervised features for better generaliza-
tion from training data.

In what follows, we describe a baseline system
we developed, the system we actually participated
with, and present the results, together with some
analysis.

2 Exploratory experiments: a
suffix-based baseline

To assess the difficulty of the task and the varia-
tion of inflectional behavior in the data sets, we
ran a preliminary test with the data using a sim-
ple, suffix-based inflection strategy to complement
the SIGMORPHON baseline. The method simply
learns to transform input word form suffixes to
suffixes of inflected forms. It works as follows:
from each Levenshtein-aligned example pair x→
y belonging to some morphosyntactic description
(MSD) msource → mtarget, we extract all the
possible suffix-based string-to-string mapping rules
that describe this mapping. In task 1, where the
source MSD is not known, we assume that the
source mapping is the lemma form. For exam-
ple, if we have seen the example Finnish inflec-
tion rakko → rakoitta, going from lemma to
pos=N,case=PRIV,num=PL, we extract the fol-
lowing alignment, with extra start-of-word and end-
of-word markers

< r a k k o _ _ _ _ >
< r a k _ o i t t a >

This allows us to extract rules like the fol-
lowing for inflecting from the lemma form to
pos=N,case=PRIV,num=PL:

> → itta>
o> → oitta>
ko> → oitta>
kko> → koitta>
akko> → akoitta>
rakko> → rakoitta>

From this, we devise a simple inflection strat-
egy at test time where we always pick the longest
matching such rule extracted from all word pairs
that pertains to the MSD of the source and the tar-
get. The rationale for this baseline is that many

36

Suff SIGMORPHON
baseline baseline

Arabic 48.02 (45.97) 70.30
Finnish 88.36 (88.21) 68.27
Georgian 94.09 (92.75) 89.83
German 92.24 (91.99) 90.36
Hungarian 91.47 (87.76) 74.10
Maltese 37.69 (36.59) 36.56
Navajo 35.47 (11.33) 71.90
Russian 88.94 (88.18) 90.38
Spanish 98.31 (98.25) 96.93
Turkish 77.65 (76.24) 59.17

Table 1: Results of a simple suffix-based baseline
on task 1. Results are on the dev-set, and results
in parentheses describe performance on the dev-set
duplicates from the training-set removed.

hand-written models of morphology for various
languages focus on suffixes to predict morphologi-
cal behavior (Détrez and Ranta, 2012). As is seen
in table 1, this yields comparably strong results for
those languages that have largely suffixing inflec-
tions in the shared task (Finnish, Georgian, Ger-
man, Hungarian, Spanish). It also identifies the
difficult languages of the task for both—-Arabic,
Maltese, and Navajo. These are languages that
exhibit significant stem-internal alternations and
prefixation processes that thus lie outside the scope
of this simple method.

3 Sequence labeling

To address the shortcomings of the two baselines
tested—that the discriminative classifier-based
baseline works well with stem-internal changes
but weakly with predominantly suffixing processes,
and that the suffix strategy works only with suffix-
ing languages—we develop a discriminative con-
ditional random field (CRF) model and focus on
improving the initial alignment of the input and
output to better and more consistently capture pre-
fixation and suffixation.

3.1 Alignment

We use the alignment procedure in the baseline pro-
vided by the organizers (Cotterell et al., 2016). This
is a one-to-one aligner that learns globally optimal
costs for aligning a set of word pairs. We first ran
all the word pairs as a batch through this aligner,
obtaining a one-to-one alignment of each pair in
the entire training data. We also experimented with
variants on alignment using Levenshtein distance
with a bias toward aligning vowels with vowels

< d ü r f e n >

_ _ d ü r f e n
g e d u r f t _

<ge d u r f t _ > pos=V,tense=PST

lemma

Figure 1: Example of the enforced one-to-many
alignment after first aligning input-output pairs one-
to-one.

and consonants with consonants, with consistently
worse results.

After initial alignment of the input-output pairs,
we additionally force a one-to-many alignment of
the pairs, with added beginning and end markers <
and >. The markers are treated as actual symbols
that serve to allow the stems to be entirely aligned
on both sides despite possible prefixation and suf-
fixation. In performing the alignment we enforce
that the input side of the relation always comes in
single characters, each of which alternatively map
to the empty string, or a sequence. We bias this
alignment in such a way that any initial input side
zeroes are collapsed with the <-marker and any
final output side zeroes are collapsed together with
the >-marker. Stem-internal insertion sequences
x : y 0 : z are always greedily associated with the
leftmost change and become x :yz. This alignment
simplifies the labeling process since each input let-
ter is now assigned a label; furthermore, associating
prefixes and suffixes with the alignment markers in
a predetermined way allows for a consistent model
of suffixing and prefixing in the label sequence
learning process. This is illustrated in figure 1.

3.2 Labeling

We treat inflection generation as a labeling problem
of converting an input sequence x = (x1, . . . , xn)
to an output sequence y = (y1, . . . , yn). After the
forced one-to-many alignment process, we con-
vert the output side to a sequence of decisions
(y1, . . . , yn) for use in a sequential labeling pro-
cess. By default, the output strings, usually single
characters, become the labels. However, we do
not record a repetition (where the output equals the
input) as a unique decision; rather, all repetitions
are marked with a special symbol in the label se-
quence y, i.e. all repetitions are marked alike in
the output. Whenever the output differs from the

37

input, however, the output string itself becomes the
label. In figure 1, the output sequence y would
be <ge-repeat-u-repeat-repeat-t-∅-repeat. Deci-
sion sequences thus reflect the possible choices we
have for each input symbol (including the bound-
ary markers < and >)—we may repeat the symbol,
delete the symbol, or output some other sequence
of symbols.

Given input words of the form x = (x1, . . . , xn)
and the corresponding decision sequences y =
(y1, . . . , yn) we train a linear-chain CRF (Lafferty
et al., 2001) by L-BFGS (Liu and Nocedal, 1989)
using CRFsuite (Okazaki, 2007).

We model the conditional distribution of the out-
put sequence in the standard way as

p(y|x) =
1
Z

exp
(n∑

i

φ(yi−1, yi,x, i)
)

(1)

where φ is a feature function which breaks down
into k component functions

φ(yi−1, yi,x, i) =
∑
k

wkfk(yi−1, yi,x, i) (2)

and where Z is the partition function which nor-
malizes the expression to a proper distribution.

4 Features

We use a number of contextual features that look at
variable amounts of context at each xi point. Apart
from standard local contextual features, we also
employ features that refer to contexts as sequences
of consonants and vowels (C/V).1 In addition to
local contextual C/V-features we also employ non-
local features such as the types of vowels seen so
far in the word and the last vowel seen at the current
position, to better capture harmonic processes and
Semitic root-and-pattern morphology. An overview
of the most important features retained after abla-
tion analysis is given in table 2.

5 Evaluation

5.1 Outside data
We separately test the feasibility of our approach
against the data set published by Durrett and DeN-
ero (2013), five data sets over three languages.

1We used an off-the-shelf algorithm for this purpose
(Hulden, in prep.); there are many highly reliable unsuper-
vised methods for extracting vowels and consonants given a
corpus of words in an alphabetic writing system (Guy, 1991;
Kim and Snyder, 2013; Moler and Morrison, 1983; Sukhotin,
1962).

That work used a similar approach (a semi-Markov
CRF), albeit without the unsupervised features, and
we improve upon their results that use a factored
model, predicting each inflected word separately,
as in the shared task, on three out of five data sets.
We expect that with sparser, gappier training data—
Durrett and DeNero (2013) used full inflection ta-
bles for training—our richer, more generic features
will allow for better generalization.

5.2 MSD classification (task 3)
For task 3, where we are asked to inflect a word
from an unknown source MSD, we first train a
multi-class support vector machine (SVM) clas-
sifier (using LIBSVM (Chang and Lin, 2011)) to
map the source form to an MSD. Each combination
of MSDs is taken to represent a separate class—i.e.
we treat each unique MSD-string as a class. As
features, we use all substrings starting from the left
and right edges of the word form in question, a
method used successfully in e.g. morphological
paradigm classification (Ahlberg et al., 2015). In
track 2 (where only task 3 data is used), we train
the classifier on only the given output forms and
MSDs in the training data. In track 1, we feed the
classifier all seen word forms and MSDs from any
task whose data can be used.

5.3 Training method
In track 1, we inflect task 1 forms as described
above whereas task 2 (arbitrary form to arbitrary
form) is addressed by pivoting in two steps via the
lemma form by first mapping the input form to the
lemma form, and then mapping that form to the
target form. We treat task 3 as a more difficult
version of task 2; we first identify the unknown
MSD of the task 3 input form, after which the
procedure reduces to task 2. In the track 2 tasks 2
and 3, where only task-specific training data can be
used, we are unable to pivot since form-to-lemma
data is not available, and we train a separate CRF
for each MSD to MSD mapping. In track 2 task 3,
we first train the SVM classifier to identify MSDs,
then classify the unknown MSDs of the input form
in the training data, producing training data of the
same format as in task 2.

We also experimented with training a single
CRF model for each part of speech, using the
feature/value pairs of the source/target forms as
features. Somewhat surprisingly, this consistently
yielded worse results on the development sets com-
pared with training a separate model for each

38

Feature Description

frombeg Position counting from left edge
fromend Position counting from right edge
insymbol The current input symbol
prevsymbol The previous input symbol
prevsymbol2 The input symbol two to the left
prevsymbol3 The input symbol three to the left
previoustwo The previous two input symbols
nextsymbol The next input symbol
nextsymbol2 The input symbol two to the right
nexttwo The next two input symbols
nextgeminate 1 if the next input equals the current input
geminate 1 if the current input equals the previous input
isC Is the current input symbol a consonant
isV Is the current input symbol a vowel
prevC Is the previous input symbol a consonant
prevV Is the previous input symbol a vowel
nextC Is the next input symbol a consonant
nextV Is the next input symbol a vowel
lastvowel What is the last vowel seen to the left of the current position
allvowels The set of vowels in the word
trigram The trigram xi−1 xi xi+i

trigramCV The trigram mapped to C/V symbols

Table 2: The main feature templates used.

CRF D&DN13 Suffix-rules

DE-V 96.14 94.76 91.29
DE-N 83.75 88.31 86.18
ES-V 99.62 99.61 63.95
FI-V 97.18 97.23 72.00
FI-N 92.30 92.14 92.62

Table 3: Our approach on the Durrett and DeN-
ero (2013) dataset, comparing our model with that
work (D&DN13) and the simple suffix-replacing
model introduced earlier.

lemma-to-MSD (track 1) or MSD-to-MSD (track
2), and we settled for using separate models.

6 Results

The main results on the development data for task
1 are given in tables 4, 5, and 6. We separately list
figures with and without the C/V-features, which re-
sulted in an average increase in accuracy of 1.02%
(task 1), 1.58% (task 2), and 1.18% (task 3). As the
development data includes instances also found in
the training data, we separately report the accuracy
without such duplicates, given in parentheses, as
these results better reflect the performance on the
final test data.

7 Discussion

The approach we have used clearly outperforms
the baselines provided by the task and our own

dev test
no CV CV

Arabic 74.00 (72.13) 74.63 (72.81) 72.42
Finnish 88.86 (88.71) 90.05 (89.92) 88.65
Georgian 94.79 (93.46) 94.59 (93.22) 93.86
German 92.42 (92.05) 92.61 (92.25) 92.64
Hungarian 91.04 (88.74) 93.94 (91.28) 91.05
Maltese 42.03 (40.81) 41.49 (40.22) 43.49
Navajo 88.01 (65.23) 92.01 (63.67) 53.28
Russian 90.44 (89.79) 90.13 (89.45) 89.13
Spanish 98.68 (98.63) 98.74 (98.70) 98.28
Turkish 85.34 (84.15) 88.91 (88.01) 87.39

Table 4: Main results for track 1, task 1.

dev test
no CV CV

Arabic 63.93 (63.93) 65.62 (65.62) 62.74
Finnish 79.87 (79.87) 82.00 (82.00) 80.19
Georgian 92.37 (92.37) 92.25 (92.25) 90.87
German 89.31 (89.31) 89.43 (89.43) 88.44
Hungarian 87.50 (87.50) 90.20 (90.20) 87.49
Maltese 22.66 (22.66) 21.29 (21.79) 22.54
Navajo 70.54 (70.48) 76.67 (76.62) 46.13
Russian 87.06 (87.06) 86.93 (86.93) 86.71
Spanish 97.43 (97.43) 97.12 (97.12) 97.18
Turkish 67.12 (67.12) 70.37 (70.37) 67.50

Table 5: Main results for track 1, task 2.

39

dev test
no CV CV

Arabic 61.75 (61.75) 62.62 (62.62) 58.83
Finnish 79.43 (79.43) 81.68 (81.68) 79.45
Georgian 91.86 (91.85) 91.80 (91.79) 90.43
German 87.68 (87.71) 87.62 (87.39) 86.59
Hungarian 87.33 (87.32) 89.95 (89.94) 87.04
Maltese 20.54 (20.54) 19.58 (19.58) 20.58
Navajo 71.71 (71.45) 80.66 (77.54) 47.30
Russian 86.31 (86.29) 86.37 (86.35) 85.34
Spanish 96.43 (96.43) 96.18 (96.18) 96.26
Turkish 64.43 (64.41) 67.50 (67.47) 65.63

Table 6: Main results for track 1, task 3.

baseline. There is room for improvement, however.
We attribute the weak performance on the diffi-
cult languages of the task (Arabic, Maltese, and
Navajo, in particular) to limitations on the linear-
chain CRF model. Because of the immediately
local dependency on the previous label, the model
is unable to accurately capture multiple disjoint
changes in going from word form to word form—
something that is present in the Semitic languages
of the data sets and Navajo. In the future, we want
to experiment with more general CRF models to
address this shortcoming (Sutton and McCallum,
2011). We also want to explore techniques for
training a single model per part-of-speech instead
of a separate model for each inflection type. In
our experiments of training single models, this pro-
duced no improvement, but it seems that such an
approach is indispensable in order to be able to
generalize beyond the specific training data given.
Consider, for example, seeing the Finnish word
talo (‘house’) in its singular and plural inessives
talossa/taloissa and the singular abessive, talotta.
In a single model, we should be able to infer, with-
out ever seeing an inflection of that type, that the
plural abessive form is taloitta, isolating the plural
i-morpheme. However, in a model where each com-
plex inflection is learned separately, this cannot be
learned without actually seeing an example of the
combination abessive and plural.2

References

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learn-
ing of morphology. In Proceedings of NAACL-HLT,

2This work has been partly sponsored by DARPA I20 in
the program Low Resource Languages for Emergent Inci-
dents (LORELEI) issued by DARPA/I20 under Contract No.
HR0011-15-C-0113.

pages 1024–1029, Denver, Colorado, May–June. As-
sociation for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. Association for Computational Linguistics.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In Proceedings of the 13th
EACL, pages 645–653. Association for Computa-
tional Linguistics.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of NAACL-HLT, pages 1185–1195.

Jacques B.M. Guy. 1991. Vowel identification: an old
(but good) algorithm. Cryptologia, 15(3):258–262.

Young-Bum Kim and Benjamin Snyder. 2013. Unsu-
pervised consonant-vowel prediction over hundreds
of languages. In Proceedings of ACL, pages 1527–
1536, Sofia, Bulgaria, August. Association for Com-
putational Linguistics.

John Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282–289.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(1-3):503–528.

Cleve Moler and Donald Morrison. 1983. Singular
value analysis of cryptograms. American Mathemat-
ical Monthly, pages 78–87.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of NAACL-HLT, pages
922–931, Denver, Colorado, May–June. Association
for Computational Linguistics.

Naoaki Okazaki. 2007. CRFsuite: a fast implementa-
tion of conditional random fields (CRFs).

Boris V. Sukhotin. 1962. Eksperimental’noe vydele-
nie klassov bukv s pomoshch’ju EVM. Problemy
strukturnoj lingvistiki, pages 198–206.

Charles Sutton and Andrew McCallum. 2011. An in-
troduction to conditional random fields. Machine
Learning, 4(4):267–373.

40

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 41–48,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Improving Sequence to Sequence Learning for Morphological Inflection
Generation: The BIU-MIT Systems for the SIGMORPHON 2016 Shared

Task for Morphological Reinflection

Roee Aharoni and Yoav Goldberg
Computer Science Department

Bar Ilan University
roee.aharoni,yoavgo@gmail.com

Yonatan Belinkov
CSAIL

MIT
belinkov@mit.edu

Abstract

Morphological reinflection is the task of
generating a target form given a source
form and the morpho-syntactic attributes
of the target (and, optionally, of the
source). This work presents the sub-
mission of Bar Ilan University and the
Massachusetts Institute of Technology for
the morphological reinflection shared task
held at SIGMORPHON 2016. The sub-
mission includes two recurrent neural net-
work architectures for learning morpho-
logical reinflection from incomplete in-
flection tables while using several novel
ideas for this task: morpho-syntactic at-
tribute embeddings, modeling the concept
of templatic morphology, bidirectional in-
put character representations and neural
discriminative string transduction. The
reported results for the proposed models
over the ten languages in the shared task
bring this submission to the second/third
place (depending on the language) on all
three sub-tasks out of eight participating
teams, while training only on the Re-
stricted category data.

1 Introduction

Morphological inflection, or reinflection, involves
generating a target (surface form) word from a
source word (e.g. a lemma), given the morpho-
syntactic attributes of the target word. Previ-
ous approaches to automatic inflection generation
usually make use of manually constructed Finite
State Transducers (Koskenniemi, 1983; Kaplan
and Kay, 1994), which are theoretically appealing
but require expert knowledge, or machine learn-
ing methods for string transduction (Yarowsky
and Wicentowski, 2000; Dreyer and Eisner, 2011;

Durrett and DeNero, 2013; Hulden et al., 2014;
Ahlberg et al., 2015; Nicolai et al., 2015). While
these studies achieved high accuracies, they also
make specific assumptions about the set of pos-
sible morphological processes that create the in-
flection, and require feature engineering over the
input.

More recently, Faruqui et al. (2016) used
encoder-decoder neural networks for inflection
generation inspired by similar approaches for
sequence-to-sequence learning for machine trans-
lation (Bahdanau et al., 2014; Sutskever et al.,
2014). The general idea is to use an encoder-
decoder network over characters, that encodes the
input lemma into a vector and decodes it one char-
acter at a time into the inflected surface word.
They factor the data into sets of inflections with
identical morpho-syntactic attributes (we refer to
each such set as a factor) and try two training ap-
proaches: in one they train an individual encoder-
decoder RNN per factor, and in the other they train
a single encoder RNN over all the lemmas in the
dataset and a specific decoder RNN per factor.

An important aspect of previous work on learn-
ing inflection generation is the reliance on com-
plete inflection tables – the training data contains
all the possible inflections per lemma. In contrast,
in the shared task setup (Cotterell et al., 2016) the
training is over partial inflection tables that mostly
contain only several inflections per lemma, for
three different sub-tasks: The first requires mor-
phological inflection generation given a lemma
and a set of morpho-syntactic attributes, the sec-
ond requires morphological re-inflection of an in-
flected word given the word, its morpho-syntactic
attributes and the target inflection’s attributes, and
the third requires re-inflection of an inflected word
given only the target inflection attributes. The
datasets for the different tasks are available on the

41

shared task’s website.1

The fact that the data is incomplete makes
it problematic to use factored models like the
ones introduced in (Faruqui et al., 2016), as
there may be insufficient data for training a high-
quality model per factor of inflections with identi-
cal morpho-syntactic attributes. For example, in
the shared task dataset the training data usually
contains less than 100 training examples on av-
erage per such factor. Moreover, when the data
is factored this way, no information is shared be-
tween the different factors even though they may
have identical inflection rules.

We propose two neural network architectures
for the task. The first, detailed in Section 2, de-
parts from the architecture of (Faruqui et al., 2016)
by extending it in three novel ways: represent-
ing morpho-syntactic attributes, template-inspired
modeling, and bidirectional input character repre-
sentations. The second, described in Section 3, is
based on an explicit control mechanism we intro-
duce while also making use of the three extensions
mentioned above. Our experimental evaluation
over all 10 languages represented in the shared
task brings our models to the second or third place,
depending on the language.

2 First Approach: Morphological
Sequence to Sequence Architecture

Our first proposed architecture is a Morphological
Sequence to Sequence (MS2S) architecture, illus-
trated in Figure 1. It incorporates several novel
components in the sequence-to-sequence learning
paradigm, as discussed below.

2.1 Morpho-Syntactic Attribute Embeddings

We seek to train models over larger amounts of ex-
amples, rather than on factors that strictly contain
examples that share all the morpho-syntactic at-
tributes. To do so, instead of factoring the data by
the attributes we feed the attributes into the net-
work by creating a dense embedding vector for
every possible attribute/value pair (for example,
gender=FEM and gender=MASC will each have
its own embedding vector). The attribute embed-
dings for each input are then concatenated and
added as parameters to the network while being
updated during training similarly to the character
embeddings. This way, information can be shared

1http://ryancotterell.github.io/
sigmorphon2016/

Figure 1: The Morphological Sequence to Se-
quence (MS2S) network architecture for predict-
ing an inflection template given the Arabic lemma
tarjama and a set of morpho-syntactic attributes.
A round tip expresses concatenation of the inputs
it receives.

across inflections with different morpho-syntactic
attributes, as they are trained jointly, while the at-
tribute embeddings help discriminate between dif-
ferent inflection types when needed. This can be
seen in Figure 1, where f is the vector containing
a concatenation of the morpho-syntactic attribute
embeddings.

While this approach should allow us to train a
single neural network over the entire dataset to
predict all the different inflection types, in prac-
tice we were not able to successfully train such a
network. Instead, we found a middle ground in
training a network per part-of-speech (POS) type.
This resulted in much fewer models than in the
factored model, each using much more data, which
is essential when training machine learning mod-
els and specifically neural networks. For example,
on the Arabic dataset of the first sub task (inflec-
tion generation from lemma to word) this reduced
the amount of trained models from 223 with an av-
erage of 91 training examples per model, to only
3 models (one per POS type - verb, noun, adjec-
tive) with an average of 3907 training examples
per model.

2.2 Morphological Templates

We bring the idea of morphological templates into
the model: instead of training the network to pre-
dict only a specific inflection character at each step
given a lemma and a set of morpho-syntactic fea-
tures, we train the network to either predict a char-

42

acter from the vocabulary or to copy a character at
a given position in the input sequence. This en-
ables the network to produce a sequence that re-
sembles a morphological template which can be
instantiated with characters from the input to pro-
duce the correct inflection. While at train time we
encourage the network to perform copy operations
when possible, at prediction time the network can
decide whether to copy a character from the input
by predicting its location in the input or to generate
a preferred character from the vocabulary. For ex-
ample, for the Arabic lemma tarjama and a set of
morpho-syntactic attributes the network will out-
put the sequence ”tu0123i5āni” which can be in-
stantiated with the lemma into the correct inflec-
tion, tutarjimāni, as depicted in Figure 1.

Intuitively, this method enables the learning
process to generalize better as many different
examples may share similar templates – which
is important when working with relatively small
datasets. We saw indeed that adding this com-
ponent to our implementation of a factored model
similar to (Faruqui et al., 2016) gave a significant
improvement in accuracy over the Arabic dataset:
from 24.04 to 78.35, while the average number of
examples per factor was 91.

To implement this, for every given pair of in-
put and output sequences in the training set we
need to produce a parameterized sequence which,
when instantiated with the input sequence, creates
the output sequence. This is achieved by running
a character level alignment process on the train-
ing data, which enables to easily infer the desired
sequence from every input-output sequence align-
ment. For example, given the input sequences sab-
baba and output sequence tusabbibā with the in-
duced alignment εεsabbaba-tusabbibā, we produce
the expected output: tu0123i5ā, as depicted in the
next figure:

We performed the alignment process using a
Chinese Restaurant Process character level aligner
(Sudoh et al., 2013) as implemented in the shared
task baseline system.2

2https://github.com/ryancotterell/
sigmorphon2016/tree/master/src/baseline

2.3 Bidirectional Input Character
Representation

Instead of feeding the decoder RNN at each step
with a fixed vector that holds the encoded vec-
tor for the entire input sequence like Faruqui et.
al. (2016), we feed the decoder RNN at each step
with a Bi-Directional Long-Short Term Memory
(BiLSTM) representation (Graves and Schmidhu-
ber, 2005) per character in the input along with the
character embedding learned by the network. The
BiLSTM character representation is a concatena-
tion of the outputs of two LSTMs that run over
the character sequence up to the current charac-
ter, from both sides. This adds more focused con-
text when the network predicts the next inflection
output, while still including information form the
entire sequence due to the bidirectional represen-
tation.

2.4 MS2S Decoder Input

For every step i of the decoder RNN for this setup,
the input vector is a concatenation of the follow-
ing:

1. BiLSTMi – The bidirectional character em-
bedding for the ith input character (if i is
larger than the length of the input sequence,
the embedding of the last input character is
used).

2. ci – The character embedding for the ith input
character. If i is larger than the length of the
input sequence, an embedding of a special E
symbol is used, similarly to (Faruqui et al.,
2016).

3. i – A character embedding for the current
step index in the decoder. In the first step this
will be an embedding matching to ’0’, in the
second step it will an embedding matching to
’1’ etc. These are the same index embeddings
used to model copy actions from a specific in-
dex.

4. oi−1 – The feedback input, containing the
embedding of the prediction (either a charac-
ter or an integer representing an index in the
input) from the previous decoder RNN step.

5. f – The vector containing the concatena-
tion of the morpho-syntactic attribute embed-
dings.

43

3 Second Approach: The Neural
Discriminative String Transducer
Architecture

The second approach is based on a Neural Dis-
criminative String Transducer (NDST), a novel
neural network architecture that models which
specific part of the input sequence is relevant for
predicting the next output character at a given
time. This is done by maintaining a state con-
sisting of an input sequence position (the input
pointer) and an output sequence position (the out-
put pointer), which are controlled by the decoder.
This approach can be seen as a more focused re-
placement to the general attention mechanism of
Bahdanau et. al. (2014), tailored to the usually
monotonic behavior of the output sequence with
respect to the input sequence in the morphological
reinflection task. An example for using this archi-
tecture is available in Figure 2.

3.1 NDST Decoder Input
For every step i in the NDST decoder RNN, the
input vector is a concatenation of the following:

1. pinput – The input pointer, holding the
embedding that represents the position of
the current pointed input sequence element.
When i = 0, this is initialized with the em-
bedding that stands for the position of the first
element in the input. Every time the network
outputs the “step” symbol, pinput is promoted
by setting it with the embedding that repre-
sents the next input sequence position.

2. poutput – The output pointer, a character em-
bedding representing the next position in the
output sequence to be generated. When i =
0, this is initialized with the embedding that
stands for the position of the first element in
the input. Every time the network outputs a
symbol other than the “step” symbol, poutput

is promoted by setting it with the embedding
for the next output sequence position.

3. BiLSTMpinput – The bidirectional character
embedding for the input character currently
pointed by pinput.

4. oi−1 – The feedback input, containing the
embedding of the prediction (either a char-
acter, an integer representing an index in the
input, or the “step” symbol) from the previ-
ous decoder RNN step.

Figure 2: The Neural Discriminative String Trans-
ducer (NDST) architecture for predicting an in-
flection template given a lemma and a set of
morpho-syntactic attributes.

5. f – The vector containing the concatena-
tion of the morpho-syntactic attribute embed-
dings.

To train an NDST network, for every input and
output sequence in the training data we should
have a sequence of actions (of three types – either
a specific character prediction, an index to copy
from or a “step” instruction) that when performed
on the input sequence, produces the correct output
sequence. To get the correct instruction sequences
in train time we first run a character level align-
ment process on the training data, similarly to the
MS2S model. Once we have the character level
alignment per input-output sequence pair, we de-
terministically infer the sequence of actions that
results in the desired output by going through ev-
ery pair of aligned input-output characters in the
alignment. If the input and output characters in the
aligned pair are not identical, we produce the new
output character. If the input and output characters
in the aligned pair are identical we produce a copy
action from the input character location. After
that, if the next output character is not the epsilon
symbol as seen in the alignment in Figure 2.2 we
also produce a “step” action. We train the network
to produce this sequence of actions when given the
input sequence and the set of morpho-syntactic at-
tributes matching the desired inflection.

44

4 Experimental Details

4.1 Submissions

The shared task allowed submissions in three dif-
ferent tracks: Standard, which enabled using data
from lower numbered tasks in addition to the cur-
rent task data; Restricted, which enabled using
only the current task’s data; and Bonus, which en-
abled using the Standard track datasets and an ad-
ditional monolingual corpus supplied by the orga-
nizers.

We submitted two systems to the shared task,
both in the Restricted track: The first, named
BIU/MIT-1, used the MS2S architecture as de-
scribed previously and participated in all three
sub-tasks. Notice that for the 3rd task, the in-
put is identical to the first task so it does not re-
quire changes in the network architecture. To use
the MS2S network for the second task we con-
catenated the source and target morpho-syntactic
attribute embeddings and used that vector as the
f vector mentioned previously. The output from
this system was 5-best lists, meaning 5 predictions
for each input. To produce the 5-best list we per-
form beam search over the MS2S model, which is
trained greedily without such search procedure.

The second system, named BIU/MIT-2, used
the NDST architecture and participated only in the
first and second sub-tasks. This system did not
use beam search, producing only one guess per in-
put. Again, to use the NDST architecture for the
second task we simply concatenated the input and
output morpho-syntactic attribute embeddings.

4.2 Training, Implementation and Hyper
Parameters

To train our systems, we used the train portion of
the dataset as-is and submitted the model which
performed best on the development portion of
the dataset, without conducting any specific pre-
processing steps on the data. We trained our net-
works for a maximum of 300 epochs over the en-
tire training set or until no improvement on the
development set has been observed for more than
100 epochs. The systems were implemented using
pyCNN, the python wrapper for the CNN toolkit.3

In both architectures we trained the network by
optimizing the expected output sequence likeli-
hood using cross-entropy loss. For optimization
we used ADAM (Kingma and Ba, 2014) with

3https://github.com/clab/cnn

no regularization, and the parameters set as α =
10−4, β1 = 0.9, β2 = 0.999, ε = 10−8. In
all architectures we used the CNN toolkit imple-
mentation of an LSTM network with two layers,
each having 200 entries. The character embed-
dings were also vectors with 200 entries, and the
morpho-syntactic attribute embeddings were vec-
tors of 20 entries. When using beam search we
used a beam width of 5.

5 Results

While developing our systems we measured our
performance on the development set with respect
to two baselines: the shared task baseline sys-
tem (ST-Base) inspired by (Nicolai et al., 2015;
Durrett and DeNero, 2013), and the factored se-
quence to sequence baseline (Fact.) similar to the
one introduced in (Faruqui et al., 2016). On the
test set, our systems ranked second or third out of
eight groups in the shared task (depending on the
language). The best participating system, LMU-
1/2 (Kann and Schütze, 2016) relied on a single
encoder-decoder model with attention (Bahdanau
et al., 2014) per language, with several improve-
ments like performing prediction using majority
voting over an ensemble of five models. In con-
trast, our first system did not use an explicit atten-
tion mechanism and is composed of 3 models per
language (one per POS type) without using ensem-
bling. We compare our system to the best system
on the test set.

The results for the first task are shown in Ta-
ble 1, measuring aggregated accuracy across all
POS tags. On the development set, our models
surpassed both baselines significantly and were
competitive with each other, as the MS2S model
gained the best aggregated accuracy results on
all languages but Russian and Finnish, where the
NDST model was better. On the test set, similar
results are shown: the MS2S model gives higher
accuracies except for Russian, Navajo and Maltese
where the NDST model was superior.

For the second task, we measured performance
only with respect to ST-Base as can be seen in Ta-
ble 2. On the development set, the NDST model
outperformed the baseline and the MS2S model
for all languages but Georgian and Spanish, where
the MS2S and ST-Base models were better, re-
spectively, although not with a significant differ-
ence. On the test set, the MS2S model gave better
results only for Georgian and Hungarian.

45

Table 1: Results for inflection generation (first sub-task), measuring accuracy on the development set:
our models vs. the shared task (ST-Base) and Factored (Fact.) baselines, and mean reciprocal rank
(MRR) on the test set: our models vs. the best performing model (Kann and Schütze, 2016).

Dev Test
Language ST-Base Fact. MS2S NDST MS2S NDST Best
Russian 90.38 84.22 91.57 93.33 89.73 90.62 91.46
Georgian 89.83 92.37 98.41 97.01 97.55 96.54 98.5
Finnish 68.27 75.78 95.8 94.36 93.81 92.58 96.8
Arabic 70.29 24.04 96.28 92.95 93.34 89.96 95.47
Navajo 71.9 83.47 98.82 98.48 80.13 88.43 91.48
Spanish 96.92 91.79 98.99 99.31 98.41 98.33 98.84
Turkish 59.17 64.68 98.18 97.8 97.74 96.17 98.93
German 89.29 90.35 96.36 95.99 95.11 94.87 95.8
Hungarian 78.62 65.75 99.23 98.76 98.33 97.59 99.3
Maltese 36.94 N/A 87.92 85.2 82.4 84.78 88.99

Table 2: Results for morphological re-inflection with source attributes (second sub-task) measuring
accuracy over the development set: our models vs. the shared task (ST-Base) baseline, and mean
reciprocal rank (MRR) over the test set: our models vs. the best performing model (Kann and Schütze,
2016)

Dev Test
Language ST-Base MS2S NDST MS2S NDST Best
Russian 85.63 85.06 86.62 83.36 85.81 90.11
Georgian 91.5 94.13 93.81 92.65 92.27 98.5
Finnish 64.56 77.13 84.31 74.44 80.91 96.81
Arabic 58.75 75.25 78.37 70.26 73.95 91.09
Navajo 60.85 63.85 75.04 56.5 67.88 97.81
Spanish 95.63 93.25 95.37 92.21 94.26 98.45
Turkish 54.88 82.56 87.25 81.69 83.88 98.38
German 87.69 93.13 94.12 91.67 92.66 96.22
Hungarian 78.33 94.37 94.87 92.33 91.16 99.42
Maltese 26.2 43.29 49.7 41.92 50.13 86.88

Table 3: Results for morphological re-inflection without source attributes (third sub-task) measuring
accuracy over the development set: our models vs. the shared task (ST-Base) baseline, and mean
reciprocal rank (MRR) over the test set: our models vs. the best performing model (Kann and Schütze,
2016)

Dev Test
Language ST-Base MS2S NDST MS2S Best
Russian 81.31 84.56 84.25 82.81 87.13
Georgian 90.68 93.62 91.05 92.08 96.21
Finnish 61.94 76.5 66.25 72.99 93.18
Arabic 50 72.56 69.31 69.05 82.8
Navajo 60.26 62.7 54.0 52.85 83.5
Spanish 88.94 92.62 89.68 92.14 96.69
Turkish 52.19 79.87 75.25 79.69 95.0
German 81.56 90.93 89.31 89.58 92.41
Hungarian 78 94.25 83.83 91.91 98.37
Maltese 24.75 44.04 3.58 40.79 84.25

46

For the third task we also measured perfor-
mance with respect to ST-Base as can be seen in
Table 3. On the development set, the MS2S model
outperformed the others on all languages. Since
this was the situation we did not submit the NDST
model for this sub-task, thus not showing test re-
sults for the NDST model on the test set.

6 Preliminary Analysis

An obvious trend we can see in the results is
the MS2S approach giving higher accuracy scores
on the first and third tasks, while the NDST ap-
proach being significantly better on the second
task. While inspecting the data for the second
and third tasks we noticed that the datasets only
differ in the added morpho-syntactic attributes for
the input sequences, and are identical other then
that. This is encouraging as it shows how the
NDST control mechanism can facilitate the addi-
tional data on the input sequence to predict inflec-
tions in a better way. We plan to further analyze
the results to better understand the cases where the
NDST architecture provides added value over the
MS2S approach.

7 Discussion and Future Work

Our systems reached the second/third place in the
Restricted category in the shared task, depend-
ing on the language/sub-task combination. It is
also encouraging to see that if we submitted our
systems as-is to the Standard and Bonus tracks
we would also get similar rankings, even without
using the additional training data available there.
The winning submission in all tracks, described in
(Kann and Schütze, 2016) also used an encoder-
decoder approach that incorporated the morpho-
syntactic attributes as inputs to the network, but
with several differences from our approach like us-
ing an attention mechanism similar to (Bahdanau
et al., 2014), training a single model for all inflec-
tion types rather than one per POS type and per-
forming prediction by using an ensemble of five
models with majority voting rather than using a
single trained model like we did. Future work may
include exploring a hybrid approach that com-
bines the ideas proposed in our work and the lat-
ter. Other recent works that propose ideas relevant
to explore in future work in this direction are (Gu
et al., 2016), which describe a different copying
mechanism for encoder-decoder architectures, or
(Rastogi et al., 2016), which models the reinflec-

tion task using a finite state transducer weighted
with neural context that also takes special care of
the character copying issue.

Acknowledgments

We thank Manaal Faruqui for sharing his code
with us. This work was supported by the In-
tel Collaborative Research Institute for Computa-
tional Intelligence (ICRI-CI).

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised learning
of morphology. In Rada Mihalcea, Joyce Yue Chai,
and Anoop Sarkar, editors, HLT-NAACL, pages
1024–1029. The Association for Computational Lin-
guistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. The Association for Computational Lin-
guistics.

Markus Dreyer and Jason Eisner. 2011. Discover-
ing morphological paradigms from plain text using a
dirichlet process mixture model. In EMNLP, pages
616–627. The Association for Computational Lin-
guistics.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1185–1195, Atlanta, Georgia, June. The As-
sociation for Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection gen-
eration using character sequence to sequence learn-
ing. In NAACL HLT 2016, The 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, San Diego, California, USA, June 12
- June 17, 2016.

A. Graves and J. Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism
in sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

47

Mans Hulden, Markus Forsberg, and Malin Ahlberg.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In Gosse Bouma and Yan-
nick Parmentier 0001, editors, EACL, pages 569–
578. The Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL, Berlin, Ger-
many, August. The Association for Computational
Linguistics.

Ronald M. Kaplan and Martin Kay. 1994. Regu-
lar models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Kimmo Koskenniemi. 1983. Two-level morphology:
A general computational model of word-form recog-
nition and production. Technical Report Publication
No. 11, Department of General Linguistics, Univer-
sity of Helsinki.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 922–931, Denver, Col-
orado, May–June. The Association for Computa-
tional Linguistics.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In Proc. of NAACL.

Katsuhito Sudoh, Shinsuke Mori, and Masaaki Na-
gata. 2013. Noise-aware character alignment
for bootstrapping statistical machine transliteration
from bilingual corpora. In EMNLP, pages 204–209.
The Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger, editors, NIPS, pages 3104–3112.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In ACL. The Association for
Computational Linguistics.

48

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 49–53,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Evaluating Sequence Alignment for Learning Inflectional Morphology

David L. King
The Ohio State University
king.2138@osu.edu

Abstract

This work examines CRF-based sequence
alignment models for learning natural lan-
guage morphology. Although these sys-
tems have performed well for a limited
number of languages, this work, as part
of the SIGMORPHON 2016 shared task,
specifically sets out to determine whether
these models handle non-concatenative
morphology as well as previous work
might suggest. Results, however, indicate
a strong preference for simpler, concatena-
tive morphological systems.

Introduction

Morphologically-rich languages pose a challenge
for the natural language processing and genera-
tion community. Computationally mapping in-
flected wordforms to a baseform has been stan-
dard practice in semantics and generation. Tradi-
tionally, hand-coding these as rule-based systems
required extensive engineering overhead, but has
produced high quality resolution between base and
inflected wordforms. This work extends work by
Durrett and DeNero (2013) to automatically learn
morphological paradigms by comparing edit op-
erations between a lemma and baseform and tests
a similar algorithm on other morphologically-rich
langauges and those which exhibit more extensive
use of non-concatenative morphology.

Background

Morphological reinflection and lemma generation
are not trivial tasks, and have been the subject
of much research and engineering. Traditionally,
rule-based and finite-state methods (Minnen et al.,
2001; Koskenniemi, 1984) have been used, par-
ticularly when no training data is available. Al-
though these handcrafted systems perform with a

high level of accuracy, creating them is difficult
and requires a great deal of engineering overhead.

Recently, more automatic, machine learning
methods have been utilized. These systems have
required far less handcrafting of rules, but also do
not perform as well. Specifically, work by Durrett
and DeNero (2013) exploits sequence alignment
systems across strings, a technique originally de-
veloped for DNA analysis. They showed that by
computing minimum edit operations between two
strings and having a semi-markov conditional ran-
dom field (CRF) (Sarawagi and Cohen, 2004) pre-
dict when wordform edits rules were to be used, a
system could achieve state-of-the-art performance
in completing morphological paradigms for En-
glish and German.

English and German, along with other Ger-
manic languages, have a somewhat rarer tendency
towards ablauting, that is changing or deleting
segments from the lemma of a wordform as part
of its inflection. In some circles, morphology is
thought of in the purely concatenative sense (i.e.
give + -s → gives). Durrent and DeNero’s work
shows promise in that they already account for
non-concatenative morphonology in English and
German. Using a similar system, this work hy-
pothesizes that such an approach will perform well
on languages with more prolific non-concatenative
morphology, such as Arabic and Maltese.

Shared Task

The 2016 SIGMORPHON (Cotterell et al., 2016)
shared task on morphological reinflection con-
sisted of multiple tracks for discerning fully in-
flected wordforms in ten languages, two of which
were surprise languages whose data was not re-
leased until a week before the submission dead-
line. In task 1, participants were given a lemma
and a target word’s grammatical information with

49

Language Training Items
Arabic 12254
Finnish 12693
Georgian 11576
German 12490
Hungarian 16219
Maltese 18975
Navajo 6012
Russian 12390
Spanish 12575
Turkish 12336

Table 1: Training items available for restricted
task 1.

which to guess the fully inflected target wordform.
In task 2, participants were supplied with two fully
inflected wordforms—one source and one target—
and their grammatical features. Task 3 was the
same as task 2, except that no source grammati-
cal information was supplied.

Additionally, participants were allowed to
choose standard, restricted, or bonus training sets.
The standard training allowed for any task to use
training data from a task lower than it. Restricted
training only allowed for training on data for that
given data set (i.e. task 1 can only train on task 1,
task 2 on task 2, and task 3 on task 3). A system
attempting a certain task number and training on
a higher task number (e.g. attempting task 1 and
additionally using task 2 training data) constituted
using bonus training.

For the purposes of testing this work’s hypoth-
esis, task 1 was chosen as being the most anal-
ogous and direct means of evaluation. Addition-
ally, restricted training was used to minimize vari-
ance between the training sets of the ten languages
in question. As seen in table 1, although gener-
ally most training sets have about 12,000 items,
Navajo, Maltese, and Hungarian are the excep-
tions.

Implementation

This work exploits string sequence alignment
algorithms such as Hirschberg’s algorithm
(Hirschberg, 1975) and the Ratciff/Obershelp
algorithm (Black, 2004) in the same vein as recent
work by Durrett and DeNero (2013) and Nicolai
et al. (2015). In these frameworks, the fewest
number of edits required to convert one string
to another are considered to be morphological

give→ gave

g i v e
g a v e

Rule -i+a

kitab→ kutub
k i t a b
k u t u b

Rule -i+u -a+u

springen→ gesprungen

s p r i n g e n
ge s p r u n g e n

Rule +g+e -i +u

Figure 1: Sample edits for English give → gave,
Arabic kitab to kutub (‘book’ singular→ plural),
and German springen → gesprungen (‘to jump’
infinitival → past participle). Note that edit rules
are applied in a character-by-character manner
across the lemma.

rules. As shown in figure 1, source and target
words are aligned to minimize edit operations
required to make them the same. This minimal
list of edit operations is converted into an edit
rule at the character level (i.e. this work does
not predict word level edit operations). These
segment edits are fed with a feature set to be
trained on by a linear chain CRF (Sutton and
McCallum, 2011) using online passive-aggressive
training (Crammer et al., 2006).

Features for the CRF included a mix of data
provided by the task data and surface features
from the uninflected lemmas. All features were
shared across all segments (i.e. at the word level)
except for features specific to the the current
segment and listed in table 2. Outputs from the
CRF were edit operations for each segment of
the input lemma. After these operations were
carried out on their respective segments within
the lemma, a fully inflected wordform was the
final output from the system. The feature set was
chosen with insight from previous work.

Full feature set:

• Grammatical information – concatenated

• Grammatical information – factored

• Character level bigram information – for-
wards and backwards

50

Current Edit Affix Distance Distance
type from from

beginning end
start +g+e prefixing 0 8
s empty infixing 1 7
p empty infixing 2 6
r empty infixing 3 5
i -u+i infixing 4 4
n empty infixing 5 3
g empty infixing 6 2
e empty infixing 7 1
n empty suffixing 8 0

spring→ gesprungen

Table 2: An example of character-specific features
as used by the CRF – all other features are shared
across the entire edit sequence.

• Character level trigram information – for-
wards and backwards

• Character indexes from beginning and end

• Distance from the current character to the be-
ginning of the lemma

• Distance from the current character to the end
of the lemma

• Affix type (prefixing, infixing, or suffixing –
circumfixing was not explicitly encoded into
the feature set)

Results

Overall the system performed far better on the de-
velopment set than the test set. It is easiest to
summarize the results from table 6 in terms of the
number of edit rules the system had to learn. Lan-
guages with under 500 edit rules for the system to
learn performed best and only experienced mod-
erate dropoff between the development and test
sets. Languages with over 500 edit rules to be
learned both performed worse and experienced ex-
treme drop offs in some instances. The exception,
Turkish, will be discussed below and in the next
section.

Languages traditionally used in these tasks,
such as German, performed best, while those less
often tested in these systems, such as Maltese,
seem to be more difficult for the system to accu-
rately predict. There was a drastic drop in Navajo,
which the task organizers claim to be caused by a
dialectal shift between the training, development,

Affix Data Set Dev Test
Train -0.764 -0.707
Dev -0.694 -0.603

Table 3: Correlations of the number of affixes per
language in a given data set and the system’s ac-
curacy of that language.

Figure 2: Aggregate Accuracy over the Develop-
ment Set

and testing data sets, among other reasons. Mal-
tese was not able to be tested since the CRF took
15 days to train, which did not fit within the time
allotted for training on the surprise languages. The
jump in training time for Maltese was not unex-
pected, given how many unique affixes the train-
ing set had, and taking into account the effect that
increasing the number of classes a CRF must pre-
dict increases its asymptotic complexity quadrati-
cally by some measures (Cohn, 2007). Hungarian,
the other surprise language, did not drop as drasti-
cally.

Language Train Dev
Arabic 3.249 3.170
Finnish 1.835 1.775
Georgian 1.464 1.474
German 1.042 1.035
Hungarian 1.559 1.536
Maltese 3.184 3.103
Navajo 3.260 3.283
Russian 1.803 1.775
Spanish 1.495 1.474
Turkish 2.131 2.058

Table 4: Entropy over affix counts in the training
and development data sets.

51

Figure 3: Aggregate Accuracy over the Test Set

Discussion

The difference in system performance between
development and testing could be interpreted as
overfitting. That said, overfitting to the develop-
ment set would show a more universal drop in
scores from development to testing than is exhib-
ited here. Table 5 shows the number of unique
affixes the system had to learn. As expected, lan-
guages traditionally thought to have less complex
morphological structure had fewer unique affixes
in both training and development sets. This is
echoed in table 4, where entropy over the unique
affix counts was calculated.

In addition to a non-uniform drop in accuracy,
a strong negative correlation–as seen in table 3–
between the number of affixes in the training set
and accuracy seems to indicate that data sparsity
might explain this phenomenon more fully. It ap-
pears that data sparsity has a greater effect as the
number of affixes increases.

Certain languages did appear to drop between
development and testing more drastically than oth-
ers. While Finnish, German, Hungarian, Russian,
Spanish, and Turkish fell less that 10%, Navajo
and Arabic fell more than 30% each. Navajo’s
drop can be explained by the lack of training data.
In 6012 training items, there were 684 edit rules
that the system had to learn. This ratio of edit rules
to wordforms is more than 1:10, which is higher
than almost any other language in the task, second
only to Maltese. What is particularly interesting is
the number of affixes between Turkish and Arabic.

Although Arabic fell more drastically, Turk-
ish clearly has more affixes in the data set, both
by ratio and sheer count, and should perform

Language Train Dev
Arabic 668 260
Finnish 433 228
Georgian 149 88
German 153 83
Hungarian 460 279
Maltese 2113 787
Navajo 684 386
Russian 417 170
Spanish 133 88
Turkish 823 438

Table 5: Number of unique affixes in each data set.

worse given the previously-mentioned observa-
tions about an overall negative correlation be-
tween affix number and system performance. It
should be taken into consideration that the kinds
of morphology in Arabic and Turkish are not en-
tirely analogous. Turkish, although agglutina-
tive, is also primarily a suffixing language (Lewis,
2000), while Modern Standard Arabic is compar-
atively more non-concatenative. Arabic and Mal-
tese, both of which have high entropies as seen in
table 4 in additional more non-concatenative mor-
phological structures, also performed worse than
Turkish in the development results, which had an
entropy more akin to Russian and Finnish. This
points to the likelihood that non-contatenative
morphology is still an issue for sequence align-
ment algorithms. Whether this problem can be
solved by using a different algorithm, increasing
training data, or by altering the underlying ma-
chine learning is beyond the scope of this task.

It should also be noted that, as far as this work
is aware, the data sets were not balanced for fre-
quency. Language learners often rotely memorize
irregular forms because they do not fit a productive
inflectional pattern. Luckily, irregular forms usu-
ally occur more frequently than wordforms sub-
ject to productive morphological rules (Bybee and
Thompson, 1997; Grabowski and Mindt, 1995).
Since the algorithm ostensibly treats productive
and lexicalized forms equally, it would be inter-
esting to see if there were any difference in perfor-
mance between these datasets and others balanced
to account for irregular form frequency.

Conclusion

Sequence alignment algorithms have proven use-
ful in automatically learning natural language

52

Language Dev Test
Arabic 0.665 0.358
Finnish 0.759 0.728
Georgian 0.962 0.949
German 0.925 0.894
Hungarian 0.918 0.849
Maltese 0.635 N/A
Navajo 0.865 0.279
Russian 0.824 0.761
Spanish 0.965 0.949
Turkish 0.825 0.776

Table 6: Aggregate Accuracy Across Languages.
Maltese required 15 days to train, and was unable
to finish before the results were due.

morphology. That said, supervised models require
exceptional amounts of training data to overcome
data sparsity. Given a lack of training data, more
traditional finite-state methods might be prefer-
able given enough time to engineer such systems.
This work has shown that CRF-based sequence
alignment models do perform well for languages
with lower affix to wordform ratios and unique af-
fix count entropy values. Although there is not
enough evidence to overtly reject this work’s hy-
pothesis, the evidence does indicate a preference
for concatenative morphology by CRF-based se-
quence alignment models.

Acknowledgments

This work acknowledges the contributions of
Micha Elsner for advising and assisting both tech-
nically and theoretically, without which this would
not have come together. This work also thanks
the anonymous reviewers for their guidance and
insight.

References
Paul E Black. 2004. Ratcliff/Obershelp pattern recog-

nition. Dictionary of Algorithms and Data Struc-
tures, 17.

Joan Bybee and Sandra Thompson. 1997. Three fre-
quency effects in syntax. In Annual Meeting of the
Berkeley Linguistics Society, volume 23, pages 378–
388.

Trevor A Cohn. 2007. Scaling conditional random
fields for natural language processing. Ph.D. thesis,
Citeseer.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.

2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. Association for Computational Linguistics.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. The Journal of Ma-
chine Learning Research, 7:551–585.

Greg Durrett and John DeNero. 2013. Supervised
Learning of Complete Morphological Paradigms. In
HLT-NAACL, pages 1185–1195.

Eva Grabowski and Dieter Mindt. 1995. A corpus-
based learning list of irregular verbs in English.
ICAME Journal, 19(1995):5–22.

Daniel S. Hirschberg. 1975. A linear space al-
gorithm for computing maximal common subse-
quences. Communications of the ACM, 18(6):341–
343.

Kimmo Koskenniemi. 1984. A general computational
model for word-form recognition and production. In
Proceedings of the 10th International Conference on
Computational Linguistics and 22nd annual meet-
ing on Association for Computational Linguistics,
pages 178–181. Association for Computational Lin-
guistics.

G. Lewis. 2000. Turkish Grammar. Oxford: Oxford
University Press.

Guido Minnen, John Carroll, and Darren Pearce. 2001.
Applied morphological processing of English. Nat-
ural Language Engineering, 7(03):207–223.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proc. of NAACL.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information
extraction. In Advances in neural information pro-
cessing systems, pages 1185–1192.

Charles Sutton and Andrew McCallum. 2011. An in-
troduction to conditional random fields. Machine
Learning, 4(4):267–373.

53

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 54–61,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Using longest common subsequence
and character models to predict word forms

Alexey Sorokin
Moscow State University / GSP-1, Leninskie Gory, 1

Faculty of Mathematics and Mechanics, 119991, Moscow, Russia
Moscow Institute of Physics and Technology / Institutskij per., 9,

Faculty of Innovations and High Technologies, 141701, Dolgoprudny, Russia
alexey.sorokin@list.ru

Abstract

This paper presents an algorithm for au-
tomatic word forms inflection. We use
the method of longest common subse-
quence to extract abstract paradigms from
given pairs of basic and inflected word
forms, as well as suffix and prefix fea-
tures to predict this paradigm automati-
cally. We elaborate this algorithm us-
ing combination of affix feature-based and
character ngram models, which substan-
tially enhances performance especially for
the languages possessing nonlocal phe-
nomena such as vowel harmony. Our sys-
tem took part in SIGMORPHON 2016
Shared Task and took 3rd place in 17 of
30 subtasks and 4th place in 7 substasks
among 7 participants.

1 Introduction

Automatic paradigm detection has attracted ex-
tensive attention in recent years. The most valu-
able works include (Ahlberg et al., 2014; Ahlberg
et al., 2015), which pursue a classification-based
approach, encoding every inflection paradigm by
a single label, and (Dreyer and Eisner, 2011;
Nicolai et al., 2015) applyng transduction-base
techniques. The representation of morphological
paradigms in (Ahlberg et al., 2014) is based on
the longest common subsequence (LCS) method,
suggesting that the common material in the LCS
is the “stem” and the symbols not in the LCS
are inflection markers. This approach actually
goes back to the 60s and was first applied in the
seminal work of Andrey A. Zaliznyak “Russkoe
imennoe slovoizmenenie” (“Russian nominal in-
flection”, Zaliznyak (2002)). From the lingustic
point of view, transduction-based techniques are
more relevant, since when inflection is realised

by several simultaneous modifications (say, pre-
fix and suffix changes and vowel alterations in the
stem), it is more natural to represent it by multi-
ple operations, not by a single label. Nevertheless
we decide to use the first approach: firstly, ma-
chine learning algorithms used for classification
are more simple computationally than the ones
for string transformations and require less param-
eter tuning. Secondly, our work was initially con-
ducted for Russian, where most morphological al-
terations occur in affixes with the exception of sev-
eral patterns. Our method is based on the one of
Ahlberg et al. (2015) with several technical modi-
fications.

Our system participated in SIGMORPHON-
2016 Shared Task on morphological inflection
(Cotterell et al., 2016). This task required one
to guess a single word form of a given category,
not the whole paradigm, which is a reverse for one
of the standard NLP tasks: lemmatization, where
the goal is to predict a basic form of the word
(the lemma) given its inflected form. Lemmati-
zation is rarely considered as labeling task, the
only exception being Gesmundo and Samardžić
(2012). However, the latter work considers only
alterations at the edges of the word, while the LCS
method allows one to address internal changes as
well. A more general method of edit trees used
in Chrupala et al. (2008) and Müller et al. (2015)
is another realization of the LCS approach. How-
ever, lemmatization algorithms extensively exploit
context to discriminate between candidate forms
which is irrelevant for SIGMORPHON challenge.

Our paper consists of 5 parts, including the in-
troduction. The second part briefly explains how
abstract paradigms are induced from data. It also
introduces the techniques used for their automatic
detection. The third part outlines SIGMORPHON

SHARED TASK and the methods we proposed to
solve it. The fourth part describes different vari-

54

ants of our system and compares their relative per-
formance. We conclude with the error analysis and
future work directions.

2 Abstract paradigms

A standard task of paradigm learning is to guess
an inflection table given a source form. In the
classification approach, this task is solved by en-
coding the complete table with a label and then
predicting this label using standard machine learn-
ing technique. The predicted values in our method
are abstract paradigms introduced in Ahlberg
et al. (2014). Informally speaking, an abstract
paradigm is a list of patterns, where common
parts of word forms are replaced by variables.
These variables correspond to maximal contigu-
ous segments of the longest common subsequence
of these forms. For example, paradigms sing-
sang and drink-drank both share the same abstract
paradigm 1+i+2#1+a+2. The same approach can
be applied not only to complete paradigms, but
also to the pairs (source form, inflected form).

Following Ahlberg et al. (2014), we use finite
automata to extract LCS. However, our implemen-
tation has several technical differences, mentioned
below. When several variants of the same length
exist, we extract the one with the least total num-
ber of gaps and the least total length of these gaps.
These two quantities being equal, the number of
zero-length gaps is minimized. For example, given
Arabic verb imtāza “to be distinguished” and its
inflected form tamtaz, the best LCS is mt-z , not
mt-a since it has two gaps of length 1 instead of
one gap of length 2 and one of length 0. We also
restrict the maximal length of gaps in the middle
and in the beginning of the word to prevent spuri-
ous matches. When the language lacks prefix in-
flection, we simply set the maximal initial gap to
0.

After enumerating all possible abstract
paradigms, the task of automatic inflection be-
comes a standard classification problem. Our
basic system uses lemma suffixes and prefixes as
features, following the scheme of Ahlberg et al.
(2014). We bound their length by some number
(usually 5 for suffixes and 3 for prefixes) and
encode them as binary features. We also remove
frequent affixes before extracting the features,
attaching them afterwards. Since the number of
possible features can reach several thousands,
we perform extensive feature selection. For the

competition we enriched the model by character
ngram scores which is our main contribution and
significantly boosted performance. Details are
given in Section 4.

3 Sigmorphon Shared Task

First SIGMORPHON SHARED TASK (Cotterell et
al., 2016) was held for 10 languages of differ-
ent genealogy and morphological structure. There
were several agglutinative languages (Finnish
and Turkish), two Semitic languages (Arabic
and Maltese) with “root-and-pattern” morphology,
some languages are more difficult to characterize
(Navajo). We refer the reader to the organizers’
article for a complete description of the task. The
competition consisted of 3 parts. In the first partic-
ipants were asked to construct a word form given
its lemma and morphological tag. In the second
task the source form was not required to be the
lemma, but its tag was also given. In the third task
the tag of the source form was unknown.

In the first task our system was trained for each
morphological tag separately. Every lemma-form
pair was treated as an abstract paradigm contain-
ing two cells. Given a lemma at test time, the
classifier uses its suffixes and prefixes to detect the
most probable abstract paradigm. A paradigm be-
ing known, we determine the variable values. Sub-
stituting this values for the variables in the second
cell of the paradigm, we calculate the target form.
The scheme of the process described is presented
in Figure 1.

In the second task we first map the form of
the source category to its lemma, training on
the reverse pairs from the first task, then apply
a direct classifier from Task 1. Since our sys-
tem assigns probabilities, for every source form
w1 of the category c1 we calculate a set of
possible lemmas l1, . . . , lm with their probabil-
ities; afterwards for every lemma we construct
its possible forms of target category c2 and se-
lect the forms with the highest total probability
P (w2|w1, c1, c(w2) = c2) =

∑
i
p(w2|lem(w2) =

li, c(w2) = c2)p(lem(w1) = li). The algorithm is
depicted on Figure 2.

For the third task we learn the transformation
from the word form to its lemma, using the re-
versed training data for Task 1 with target category
omitted (only the POS label is known). Then the
obtained lemmas were transform to word forms of
target category just as in Task 2 using the same

55

Source form features paradigms (with probs) variables target form
(pos=V,lemma) (pos=V,mood=SBJV,

per=3,tense=PRS,
num=SG, . . .)

detentar ˆd, ˆde 1+ar#1+e 0.82 1=detent detente
r$, ar$, tar$ 1+e+2+ar#1+ie+2+e 0.13 1=det, 2=nt detiente
ntar$, entar$ 1+ar#1+ue 0.05 1=detent detentue

Figure 1: How we model inflection (Task 1). For each lemma in the test set we predict an abstract
paradigm, which consists of lemma and target form patterns. Fitting the lemma to its guessed pattern,
we find the variables in the paradigm. Using these variables, the target word form is constructed.

Source form Lemmas Target forms Target forms
(with probs) (for each lemma) (with probs)

pos=V,polar=POS, pos=V,mood=IND,tense=PST,
mood=IMP,per=1,num=PL per=1,num=SG,aspect=PFV
vaguemos vagar 0.83 vagué 0.90 vagué 0.92

vagé 0.10 vagé 0.08
vaguar 0.17 vagué 0.97

vaguué 0.03

Figure 2: How we model reinflection (Task 2). First, for the source form a list of possible lemmas is
constructed. Second, for each potential lemma all possible target forms are predicted. The probabilities
of these forms are calculated using chain rule.

probability formula. Our system essentially re-
lies on 2 basic components: forward transforma-
tion from lemma to its inflected form and the cor-
responding backward transformation. Therefore
in what follows we focus on implementation is-
sues and evaluate performance mainly for these
two problems.

We deliberately refrain from using any external
sources including linguistic information and cor-
pus statistics. Nevertheless, our method could be
easily extended with corpora features, see Ahlberg
et al. (2014) and Sorokin and Khomchenkova
(2016) for possible strategies.

4 Performing classification

In this section we present some details of our sys-
tem used to solve Task 1 and its reverse, for the
general description see Section 2. Each inflec-
tion/lemmatization task was solved without any
information about other forms of the given lemma.
We applied a logistic regression classifier using
suffixes and prefixes as features. Usually the
length of suffixes was 5 for inflection and 6 for
lemmatization, the maximal length of prefix fea-
tures was 3. However, prefix features were not

used for Turkish and Finnish, while for Navajo we
used prefixes of length up to 5 and the length of
suffixes was bounded by 3. In all languages words
were classified by their last (first for Navajo) letter
and a separate classifier was trained for each let-
ter. To avoid data sparsity we performed extensive
feature selection, keeping only best 10% of fea-
tures according to an ambiguity measure (?) and
disregarding features observed less than 3 times in
the training set. If an affix of length up to 3 un-
ambigiously predicts the paradigm label π, we as-
sign π for any lemma ending by (beginning with)
this affix. We also experimented with removing
frequent suffixes before extracting features and at-
taching them afterwards, which slightly improved
the results for most of the languages. Language-
dependent parameters are given in the Appendix.

We report the results of our system evaluation in
Table 1, column SIMPLE. We used the train-dev
split provided by the workshop organizers after re-
moving all the duplicates from the development
set.1 For most of the tasks it outperforms the base-
line which uses the transductive approach with an
averaged perceptron as the classifier. However, for

1Actually, it was not done in the submission version,
which caused slight overfitting for several tasks.

56

Language
Verbs Adjectives Nouns

JOINT SIMPLE BASE JOINT SIMPLE BASE JOINT SIMPLE BASE
Arabic 80.9 66.0 65.5 94.4 87.2 63.2 76.2 73.4 76.3
Finnish 94.0 93.4 58.4 62.9 62.9 14.3 87.8 87.2 77.9
Georgian 42.3 32.1 48.7 100.0 100.0 100.0 97.6 96.6 95.3
German 90.0 89.3 85.5 97.2 96.7 91.0 91.2 91.2 89.2
Hungarian 92.5 89.8 78.7 75.9 71.4 58.0
Navajo 94.5 93.4 84.6 56.4 47.9 53.9
Russian 83.2 82.8 81.2 95.8 95.8 95.8 91.9 91.5 91.9
Spanish 98.6 98.6 96.2 100.0 100.0 99.1 100.0 100.0 99.5
Turkish 83.5 74.4 61.2 87.3 78.4 56.3

Table 1: Performance quality for inflection (Task 1).

Russian and Arabic there is a marginal gap, while
for Georgian and Navajo verbs our results are not
satisfying enough.

We try to close this gap using character models.
We learn an ngram model on the set of word forms
in the train data. Model counts are smoothed us-
ing Witten-Bell smoothing. We integrate ngram
probabilities in our model via standard reranking
scheme: the SIMPLE model is used to generate
the n-best list. Then for every form in this list
we calculate its log-probability according to SIM-
PLE model as well as language model logarith-
mic score normalized by word length. These two
features are passed to a logistic regression classi-
fier and the hypothesis with highest decision score
is returned. To learn the weights of the scores
we apply the following procedure from Joachims
(2002): suppose three hypotheses w1, w2 and w3

were generated for the lemma l in the training set ,
w2 being the correct word form. If their log prob-
abilities are p1, p2, p3 and n-gram log scores are
s1, s2, s3 respectively, we include in the training
set vectors [p2−p1, s2− s1] and [p2−p3, s2− s3]
as positive instances and [p1 − p2, s1 − s2] and
[p3 − p2, s3 − s2] as negative. Note that this rank-
ing scheme allows for integration of other task-
dependent features as well which might be helpful
in lemmatization or POS-tagging.

The results of the improved system are also
given in Table 1, column JOINT. We observe that
for most of the tasks the combined system confi-
dently beats the baseline, except Georgian verbs.
Arabic nouns and Russian nouns and adjectives
are on par with the baseline system. Character
ngram models are the most helpful for the lan-
guages with developed vowel harmony, such as
Turkish (the impact for Finnish is more modest

since the performance quality of the SIMPLE sys-
tem was already high). In case of Arabic SIMPLE
model often generates about ten forms of approx-
imately the same probability; the character model
helps to select the best one and rule out the words
which do not satisfy local phonological require-
ments.

Table 2 contains results for the reverse task of
lemmatization used as the first stage in Tasks 2
and 3. There was no baseline available, therefore
we compare only performance of the SIMPLE sys-
tem and the JOINT system using character ngram
models. We observe that ngram statistics produce
more substantial gain in this task than for inflec-
tion. We also provide evaluation results on Tasks
2 and 3 of the Shared Task (Table 3, first line for
each language stands for Task 2 and second for
Task 3). Since accuracy for these tasks is deter-
mined by lemmatization and inflection quality, we
will not discuss them further. For the results of the
competition itself we refer the reader to organiz-
ers’ article (Cotterell et al., 2016), we just mention
that our system was ranked the 3rd 17 times of 30,
5 times for Task 1 and 6 times for Tasks 2 and 3.

5 Error analysis and discussion

A morphological inflection system may fail to re-
cover a correct form for two reasons: first, it is too
restricted to generate a correct paradigm, second,
its features are not strong enough to discriminate
between correct and incorrect labels. To distin-
guish these two cases we calculated the recall of
our system both for the inflection and lemmatiza-
tion subtasks, measuring whether a correct word
receives probability larger than 1%. Results are
collected in Table 4. Interestingly, the ranking pre-
cision (which is the percentage of cases when the

57

Language
Verbs Adjectives Nouns

JOINT SIMPLE JOINT SIMPLE JOINT SIMPLE
Arabic 76.1 56.7 94.5 93.6 83.1 63.6
Finnish 92.7 85.0 62.9 48.7 90.7 84.7
Georgian 51.3 34.6 99.2 98.4 99.4 96.6
German 94.3 92.1 98.1 96.8 94.1 90.7
Hungarian 98.7 96.1 99.1 98.2
Navajo 65.6 44.2 64.2 52.2
Russian 87.5 82.8 97.1 96.8 93.6 89.7
Spanish 98.5 96.5 100.0 99.1 97.2 98.2
Turkish 93.8 91.3 97.0 96.4

Table 2: Performance quality for lemmatization.

Language
Verbs Adjectives Nouns

JOINT BASE JOINT BASE JOINT BASE

Arabic
81.9 55.0 86.9 61.3 71.0 62.8
84.3 50.9 86.9 49.0 69.2 46.5

Finnish
88.0 74.3 55.6 5.6 89.7 52.5
88.0 51.1 52.8 5.6 87.5 71.0

Georgian
46.9 37.0 96.0 97.0 97.5 94.2
44.4 40.6 94.9 92.6 98.1 94.2

German
86.2 81.0 97.8 91.4 91.0 87.2
85.7 74.4 97.6 87.6 88.8 70.6

Hungarian
95.0 79.9 77.8 63.0
96.3 78.8 75.0 63.0

Navajo
54.5 47.6 100.0 89.0
56.6 56.8 100.0 81.1

Russian
78.9 71.7 95.9 96.2 89.5 89.0
77.1 70.1 96.9 91.6 89.1 83.9

Spanish
98.0 95.5 100.0 96.6 97.2 95.7
97.9 91.5 100.0 70.3 97.6 84.3

Turkish
85.2 56.0 88.8 54.0
86.4 55.2 87.7 51.6

Table 3: Performance quality on Tasks 2 and 3.

correct word form was ranked the first provided
it was in the candidate list) for the overwhelm-
ing majority of tasks is over 90% which shows
that affix features and character models are in-
deed effective in discriminating between candidate
paradigms. Omitting Georgian verbs and Finnish
adjectives, where the classifier suffers from the
lack of training data, we observe two problematic
languages: Arabic demonstrates decent recall and
moderate precision in both tasks, while results on
Navajo degrade mostly due to extremely low recall
except the lemmatization of nouns, where preci-
sion drops to 66%.

As a key example, consider the

Pres+2+Sg+Masc form of Arabic verbs, for
which the percentage of correctly predicted forms
was only 62% (8 of 13). In 4 of 5 erroneous
cases the algorithm fails to even suggest the
correct transformation (1+ā+2+a#ta+1+ū+2+u,
e. g. dāma “to last” – tadūmu “you (Masc) last”)
because it was never observed in the training set
for this particular task and was observed only
once at all. The fact that in other forms ā was
often replaced by ū also does not help since
transformations are considered “as a whole”,
not as a sequence of local edits. The remaining
mistake (tad. raḡit.t.u instead of tad. riḡat.t.u for
id. raḡat.t.a “to leave”) is also frequent: the algo-

58

Language
Verbs Adjectives Nouns

Recall Accur. Prec. Recall Accur. Prec. Recall Accur. Prec.

Arabic
88.2 80.4 91.16% 95.9 93.6 97.60% 83.9 76.2 90.82%
85.5 76.1 89.01% 96.1 94.5 98.34% 84.4 83.1 98.46%

Finnish
95.1 94.1 98.95% 63.9 62.9 98.44% 96.0 87.8 91.46%
96.1 90.6 94.28% 65.7 62.9 95.74% 98.0 92.7 94.59%

Georgian
59.8 42.3 70.74% 100.0 99.2 99.2% 98.5 97.6 98.09%
62.9 51.3 81.56% 100.0 100.0 100.0% 99.8 99.4 99.60%

German
93.3 90.0 96.46% 98.1 97.2 99.08% 94.8 91.2 96.20%
94.3 94.3 100.0% 98.4 98.1 99.70% 96.6 94.1 97.41%

Hungarian
97.5 92.5 94.87% 82.1 75.9 92.45%
99.1 98.7 99.60% 99.1 99.1 100.0%

Navajo
61.8 56.4 91.26% 97.8 94.5 96.63%
67.9 64.8 95.43% 95.6 63.3 66.21%

Russian
91.4 83.2 91.03% 98.5 95.8 97.26% 98.0 91.9 93.78%
88.2 86.6 98.19% 97.7 95.2 97.44% 96.8 94.1 97.21%

Spanish
98.8 98.6 99.80% 100.0 100.0 100% 100.0 100.0 100%
98.6 98.5 99.90% 100.0 100.0 100% 99.5 97.2 97.69%

Turkish
87.7 83.5 95.21% 89.5 87.3 97.54%
93.8 93.8 100.0% 96.8 96.4 99.59%

Table 4: Recall and precision on inflection (upper) and lemmatization (lower) tasks.

rithm correctly predicts the paradigm description
i+1+a+2+a#ta+1+i+2+u but erroneously replaces
the first root syllable instead of the second. In
the case of ambiguity the position of alteration
is determined by calculating the probability of
“local” transformation a → i in both locations
and choosing the most probable according to its
immediate context. Since local features cannot
distinguish first and second syllables of the root
and paradigm description contains no information
on the number of vowels in variables, our system
cannot avoid such mistakes. However, their
percentage can be lowered by allowing the system
to predict several surface variants for one abstract
paradigm (in current architecture this decision is
made before calculating ngram scores).

Another difficult problem for our approach is
fusion. Consider the REAL+Pl+1 form of the
Navajo verbs, where only 2 predictions of 7
are correct and in 5 remaining cases the correct
paradigm label was not even in the list of possible
paradigms. For example, the plural form deiiji̧i̧’
of the verb yiiji̧i̧h “to stand up” is produced using
the pattern y+1+h#de+1+’ while the training set
contained only the transformation y+1+h#dei+1+’
for yik’ȩȩh→ deiik’ȩȩ’, where the prefix de- was
fused with initial y. That explains the low per-
formance on Navajo inflection in terms of re-

call. The opposite problem holds for lemmatizing
Navajo nouns. For example, all 4-th person forms
start with ha-, however, it can be obtained from
the lemma form either by adding initial h (ataa’-
hataa’) or by substitutiing for initial bi- (bijaa’-
hajaa’). This ambiguity cannot be resolved with
dictionary or corpus; fortunately, when reinflect-
ing other forms all the potential lemmas generate
the same form so the performance on Tasks 2 and
3 is unaffected.

Summarizing, our classification-based ap-
proach meets difficulties when faced with ‘too
local’ phenomena like fusion of ‘too global’
like vowel harmony. Indeed, there is no way
to predict vowels in the middle of the word
observing only its edges. This difficulty is
resolved using character ngrams, which can
capture the interdependency between nearby
vowels in the word stem. Using models of order
up to 6 significantly improves performance on
Arabic, Turkish and Finnish. When applying
ngram models in the lemmatization stage we
observe consistent improvement practically for all
languages. Character models cannot help when a
correct paradigm was not generated as a candidate

1Generally, our system was ranked higher on Tasks 2 and
3 which means that lemmatization part works better than in-
flection partially due to character ngram usage

59

(recall the discussion on Arabic verbs above).
There are two possible strategies in this case:
first, a deterministic postprocessing step could
be applied to “harmonize” vowels or make other
phonetic transformations. Another variant is to
create with every abstract paradigm its “phonetic
variants” and perform the classification step on
the extended set of paradigms. We plan to address
this question in future research.

The last thing to say, one of the important mer-
its of our system is its simplicity. It does not re-
quire complex techniques for parameter tuning;
training the model also relies on well-established
algorithms. The features we use are also very
simple and they could be easily extended, for ex-
ample, to capture the context information. Tak-
ing into account the solid performance of our sys-
tem in SIGMORPHON SHARED TASK, we think
that classification-based approaches could be use-
ful in a couple of tasks including paradigm in-
duction, morphological parsing and lemmatization
for languages of arbitrarily complex morphologi-
cal structure.

References
Markus Dreyer and Jason Eisner. 2011. Discover-

ing morphological paradigms from plain text using
a dirichlet process mixture model. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 616–627. Association
for Computational Linguistics.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with Lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, pages
2268–2274. Association for Computational Linguis-
tics.

Alexey Sorokin and Irina Khomchenkova. 2016. Au-
tomatic detection of morphological paradigms using
corpora information. In Dialogue. 22nd Interna-
tional Conference on Computational Linguistics and
Intellectual Technologies, pages 604–616, Moscow,
Russia, June. RSUH.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 569–578,
April.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning

of morphology. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics Human Language Tech-
nologies (NAACL-HLT 2015), Denver, CO, pages
1024–1029, June.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics Human Language Tech-
nologies (NAACL-HLT 2015), Denver, CO, pages
923–931, June.

Andrea Gesmundo and Tanja Samardžić. 2012. Lem-
matisation as a tagging task. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics: Short Papers-Volume 2, pages
368–372. Association for Computational Linguis-
tics.

Grzegorz Chrupala, Georgiana Dinu, and Josef van
Genabith. 2008. Learning morphology with Mor-
fette. In Proceedings of the Sixth International
Conference on Language Resources and Evalua-
tion (LREC’08), pages 2362–2367, Marrakech, Mo-
rocco, May. European Language Resources Associ-
ation (ELRA).

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. Association for Computational Linguistics.

Thorsten Joachims. 2002. Optimizing search en-
gines using clickthrough data. In Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–
142. ACM.

Andrey A. Zaliznyak. 2002. Russian nominal inflec-
tion. Yazyki slavyanskoj kultury, Moscow, Russia.

Acknowledgements

The author thanks Irina Khomchenkova for care-
ful assistance during the research. I am also very
grateful to anonymous ACL SIGMORPHON re-
viewers whose detailed comments were very help-
ful in improving this paper. This work is a part
of General Internet Corpus of Russian (http:
//www.webcorpora.ru/) project.

Appendix

60

Language Max. gap,
initial gap

Max. suffix,
prefix length

Affix classifiers Affix memo-
rization length

ngram model pa-
rameters

Arabic
5, 2 4, 4 Suffix 0 6, normalized
5, 2 4, 4 Suffix, prefix 0 6, unnormalized

Finnish
1, 0 5, 0 Suffix 3 6, normalized
1, 0 6, 0 Suffix 3 6, normalized

Georgian
5, 1 5, 3 Suffix 0 5, unnormalized
5 ,1 5, 3 Suffix 0 5, unnormalized

German
2, 2 5, 3 Suffix 3 6, normalized
2, 2 5, 3 Suffix 3 6, normalized

Hungarian
1, 0 5, 0 Suffix 3 6, normalized
1, 0 6, 0 Suffix 3 5, normalized

Navajo
3, 7 5, 3 Prefix 3 6, unnormalized
3, 7 6, 3 Prefix 0 6, unnormalized

Russian
1, 3 5, 0 Suffix 0 3, normalized
1, 3 6, 3 Suffix 3 6, normalized

Spanish
2, 2 5, 0 Suffix 3 6, normalized
5, 2 6, 3 Suffix 3 6, normalized

Turkish
1, 0 5, 0 Suffix 3 5, unnormalized
5, 2 6, 0 Suffix 3 6, normalized

Table 5: System parameters for inflection (upper) and lemmatization (lower) tasks.

61

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 62–70,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

MED: The LMU System for the SIGMORPHON 2016 Shared Task on
Morphological Reinflection

Katharina Kann and Hinrich Schütze
Center for Information & Language Processing

LMU Munich, Germany
kann@cis.lmu.de

Abstract

This paper presents MED, the main sys-
tem of the LMU team for the SIGMOR-
PHON 2016 Shared Task on Morpholog-
ical Reinflection as well as an extended
analysis of how different design choices
contribute to the final performance. We
model the task of morphological reinflec-
tion using neural encoder-decoder models
together with an encoding of the input as a
single sequence of the morphological tags
of the source and target form as well as
the sequence of letters of the source form.
The Shared Task consists of three sub-
tasks, three different tracks and covers 10
different languages to encourage the use of
language-independent approaches. MED
was the system with the overall best per-
formance, demonstrating our method gen-
eralizes well for the low-resource setting
of the SIGMORPHON 2016 Shared Task.

1 Introduction

In many areas of natural language processing
(NLP) it is important that systems are able to
correctly analyze and generate different morpho-
logical forms, including previously unseen forms.
Two examples are machine translation and ques-
tion answering, where errors in the understanding
of morphological forms can seriously harm perfor-
mance. Accordingly, learning morphological in-
flection patterns from labeled data is an important
challenge.

The task of morphological inflection (MI) con-
sists of generating an inflected form for a given
lemma and target tag. Several approaches have
been developed for this, including machine learn-
ing models and models that exploit the paradigm
structure of language (Ahlberg et al., 2015;

Dreyer, 2011; Nicolai et al., 2015). A more com-
plex problem is morphological reinflection (MRI).
For this, an inflected form has to be found given
another inflected form, a target tag and optionally
a source tag.

We use the same approach to both MI and
MRI: the character-based and language indepen-
dent sequence-to-sequence attention model called
MED, which stands for Morphological Encoder-
Decoder. To solve the MRI task, we train one sin-
gle model on all available source-to-target map-
pings for each language contained in the training
set. This enables the encoder-decoder to learn
good parameters for relatively small amounts of
training data per target tag already, because most
MRI patterns occur in many source-target tag
pairs. In our model design, what is learned for one
pair can be transferred to others.

The most important point for this is the repre-
sentation we use for MRI. We encode the input as
a single sequence of (i) the morphological tags of
the source form, (ii) the morphological tags of the
target form and (iii) the sequence of letters of the
source form. The output is the sequence of let-
ters of the target form. We train a single generic
encoder-decoder per language on this represen-
tation that can handle all tag pairs, thus making
it possible to make efficient use of the available
training data.

The SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection covers both, MI and MRI,
for 10 languages as well as different settings and
MED outperforms all other systems on all sub-
tasks. The given languages, tracks and tasks will
be explained briefly now. For further details on the
Shared Task please refer to Cotterell et al. (2016).

Languages. In total, the Shared Task covers
10 languages: Arabic, Finnish, Georgian, German,
Hungarian, Maltese, Navajo, Russian, Spanish and
Turkish. The training and development datasets

62

for Hungarian and Maltese were only released at
evaluation time.

Tasks. The Shared Task consists of 3 separate
tasks with increasing difficulty: task 1 is supposed
to be the easiest and task 3 the hardest. The first
task consists of mapping a given lemma and target
tag to a target form. Task 2 requires the mapping
of a given source form, source tag and target tag to
a target form. Finally, task 3 consists of finding a
target form for a given source form and source tag
only.

Tracks. The Shared Task is split into 3 tracks
that differ in the information available. The first
track is the standard track and requires the solution
for each task to use only the training and develop-
ment data of the current and all lower-numbered
tasks, e.g., to use only the data for tasks 1 and 2
for task 2. The restricted track limits the avail-
able training and development data to the data be-
longing to the current task, i.e., data from lower
tasks cannot be used, making it impossible to re-
duce task 2 to task 1 or task 3 to task 2. Track 3 is
the bonus track. In this track, all available data per
language can be used, including unlabeled corpora
which are provided by the task organizers. How-
ever, those vary a lot in length, depending on the
language. Therefore, we do not make use of them.

In total, there are 90 combinations of languages,
tasks and tracks to solve.

The remainder of this paper is organized as fol-
lows: In Section 2, our model for the SIGMOR-
PHON 2016 Shared Task is presented. Next, our
method to preprocess and thus extend the training
data is explained in detail. In Section 4 the final
results on the test data of the Shared Task are pre-
sented and discussed. Afterwards, we analyze the
contribution of different settings and components
to the overall performance of our system in detail.
Finally, in Section 6, we give information about
prior work on topics related to our system.

This paper is mainly concerned with the imple-
mentation and analysis of the system we submit-
ted to the Shared Task. In (Kann and Schütze,
2016), we instead focus on the novel aspects of our
new method MED and compare its performance to
prior work on other MRI benchmarks.

2 System description

Our system for the Shared Task is an encoder-
decoder recurrent neural network (RNN), called
MED, which stands for Morphological Encoder-

Decoder. It will be described in detail in this Sec-
tion.

2.1 Neural network model

Our model is based on the network architecture
proposed by Bahdanau et al. (2014) for machine
translation.1 The authors describe the model in de-
tail; unless we explicitly say so in the description
of our model below, we use the same network con-
figuration as they do.

Bahdanau et al. (2014)’s model is an extension
of the recurrent neural network (RNN) encoder-
decoder developed by Cho et al. (2014) and
Sutskever et al. (2014). The encoder of the latter
consists of a gated RNN (GRU) that reads an input
sequence of vectors x and encodes it into a fixed-
length context vector c, computing hidden states
ht and c by

ht = f(xt, ht−1) (1)

and

c = q(h1, ..., hTx) (2)

with nonlinear functions f and q. The decoder
uses the context vector to predict the output y:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, c) (3)

with y = (y1, ..., yTy) and each conditional prob-
ability being modeled with an RNN as

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c) (4)

where g is a nonlinear function and st is the hidden
state of the RNN.

Bahdanau et al. (2014) proposed an attention-
based version of this model that allows different
vectors ct for each step by automatic learning of an
alignment model. They further made the encoder
bidirectional. In their model each hidden state hj

at time step j does not only depend on the preced-
ing, but also on the following input:

hj =
[−→
hT

j ;
←−
hT

j

]T

(5)

1Our implementation of MED is based on https:
//github.com/mila-udem/blocks-examples/
tree/master/machine_translation.

63

The formula for p(y) changes accordingly:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, x) (6)

=
Ty∏
t=1

g(yt−1, st, ct) (7)

with st being an RNN hidden state for time t
and ct being the weighted sum of the annotations
(h1, ..., hTx) produced by the encoder:

ci =
Tx∑
j=1

αijhj (8)

The attention weights αij are calculated for
each hj as

αij =
exp(eij)∑Tx

k=1 exp(eik)
(9)

with

eij = a(si−1, hj) (10)

a is parametrized as a feedforward neural net-
work and trained jointly with all other compo-
nents.

More theoretical background is given in (Bah-
danau et al., 2014) and a system overview can be
seen in Figure 1.

The final model is a multilayer network with
a single maxout (Goodfellow et al., 2013) hidden
layer that computes the conditional probability of
each element in the output sequence (a charac-
ter in our case, (Pascanu et al., 2014)). As MRI
is less complex than machine translation, we re-
duce the number of hidden units and the embed-
ding size. After initial experiments, we fixed the
hyperparameters of our system and did not further
adapt them to a specific task or language. Encoder
and decoder RNNs have 100 hidden units each.
For training, we use stochastic gradient descent,
Adadelta (Zeiler, 2012) and a minibatch size of 20.
We initialize all weights in the encoder, decoder
and the embeddings except for the GRU weights
in the decoder with the identity matrix as well as
all biases with zero (Le et al., 2015). We train
all models for 20 iterations for all combinations of
track and task where we cannot extend the training
data with our method described in the next section.
Otherwise, we train for 10 epochs.2 We settled

2For extended data in Maltese we trained only for 6
epochs, due to time constraints.

on this number in early experimentation because
training usually converged before that limit.

MED is an ensemble of five RNN encoder-
decoders. The final decision is made by majority
voting. In case of a tie, the answer is chosen ran-
domly among the most frequent predictions.

2.2 Input and output format

We define the alphabet Σlang as the set of char-
acters used in the application language. As each
tag combination which describes a source or target
form consists of one or more subtags, e.g., “num-
ber“ or “case“, we further define Σsrc and Σtrg as
the set of morphological subtags seen during train-
ing as part of the source tag or the target tag, re-
spectively. Finally, we define Sstart and Send to be
a start and an end symbol. Then each input of our
system is of the format SstartΣ+

srcΣ
+
trgΣ+

langSend.
In the same way, we define the output format as
SstartΣ+

langSend.
For example, a valid input for German

would be <w> IN=pos=ADJ IN=case=GEN
IN=num=PL OUT=pos=ADJ OUT=case=ACC
OUT=num=PL i s o l i e r t e r </w>. The corre-
sponding system output should be <w> i s o l i e
r t e </w>.3

3 Data and training

3.1 Training data enhancement

Since the Shared Task models a low-resource set-
ting, a way to enhance the given training data is
highly desirable. We apply three different meth-
ods for this, depending on the track and, therefore,
depending on the information available. Even
though the training data enhancer could be used
to increase the amount of available data for other
models as well, we expect it to be especially effec-
tive with MED. This is due to the fact that MED
is able to reuse information from any combination
of input and output tag for any other tag pair.

Restricted track. In the restricted track, only
training and development data of the respective
task and language can be used. This means that
there is less information available than in the other
two tracks. Therefore, in this track we can only
use a very basic enhancement method and we can

3For task 1 in the restricted and standard track and task
3 throughout all tracks, no source tag is given and we only
have one tag combination in the input. Therefore, we do not
prepend IN= or OUT= to the tags. However, internally, this
does not make a difference for the model.

64

Figure 1: System overview. The input x consists of characters
as well as input and output tags. The output y consists of
characters only.

only apply it to task 2. The idea the method is
based on is that task 2 is symmetric. As described
before, the task consists of mapping a triplet of
source tag, source form and target tag to a target
form. To double the training data it is sufficient
to switch the information and thus create a new
sample, mapping from target tag, target form and
source tag to the source form.

Standard track. The training data enhancement
for the standard track combines information from
task 1 and task 2 and can therefore, following the
Shared Task rules, be used for task 2 and task
3, as only data from lower tasks needs to be ac-
cessed. The idea of our enhancement method is
that each word form belongs to a certain paradigm
which in turn belongs to one single lemma. There-
fore, when knowing the lemmas of words, we can
group them into paradigms. When having more
than one word per paradigm, we can infer the in-
formation that all of them can be inflected into
each other and thus use them to create new sam-
ples. Knowing this, we use task 1 training data to
make groups of lemmas and word forms belong-
ing to the same paradigm, keeping the tags. Then,
we add all information from task 2 and, knowing
that source form and target form always belong
to the same lemma, we add both forms with their

tags to a group whenever one of them is already
in there.4 Afterwards, we build all combinations
of word pairs of each paradigm and, by doing so,
create new training data.

This method could be applied even if there was
absolutely no overlap between the lemmas in task
1 and task 2. However, it would then be neces-
sary to train a lemmatizer on task 1 data first and
lemmatize all words to sort them into paradigms.
When doing this, accuracy could be improved
by only accepting predictions with a strong con-
fidence and by only accepting new words for a
paradigm if the source and the target form of a
sample have the same lemma prediction.

Bonus track. In the bonus track, our training
data enhancement can also be used for task 1. In
order to do so, we first apply the same method
as for the standard track to produce the extended
training data. However, we additionally change
the input format for task 1 such that it resembles
the task 2 input, using LEMMA as the input tag.
In this way, we can apply the task 2 model to task
1 such that task 1 is able to benefit from the addi-
tional data as well.

3.2 Description of the final training data

Depending on the complexity of the language and
the structure of the datasets we end up with a dif-
ferent amount of final training samples for each
language, even though we start with nearly iden-
tical training set sizes. We show the final number
of samples for task 2 in different tracks in Table
1. As can be seen, the training data enhancement
increases the number of samples by a factor be-
tween 10 and 80. Out of all languages, the en-
hancer has the smallest effect for Finnish. Most
additional samples are created for Maltese.

3.3 Training

For each of the 10 languages we train one ensem-
ble for each task of the restricted track as well as
for each of tasks 2 and 3 of the bonus track. We do
not train a separate model for task 1, due to the fact
that the same model can be applied to both task 1
and task 2 of the bonus track. In total, we train 50
ensembles, consisting of 250 single models. For
our setting, task 1 of the standard track is the same
as for the restricted track, while tasks 2 and 3 are
the same as for the bonus track.

4As for none of the languages task 3 contained new word
forms, we did not consider task 3 data here.

65

T2, given T2, restricted T2, standard
Dataset no. samples no. samples factor no. samples factor
Arabic 14,400 28,800 2 458,814 32
Finnish 14,400 28,800 2 116,206 8
Georgian 14,400 28,800 2 196,396 14
German 14,400 28,800 2 166,148 12
Hungarian 21,600 43,200 2 643,630 30
Maltese 21,600 43,200 2 1,629,446 75
Navajo 14,385 28,770 2 160,332 11
Russian 14,400 28,800 2 129,302 9
Spanish 14,400 28,800 2 211,030 15
Turkish 14,400 28,800 2 392,136 27

Table 1: Number of training samples for task 2 without (given) and with the training data enhancer (restricted and standard
track) together with the factor by which the size of the training set increased. Note that the samples for task 2 in the standard
track are the same as the samples for task 1 in the bonus track.

Language Task 1 Task 2 Task 3
Arabic 95.47% 97.38% 96.52%
Finnish 96.80% 97.40% 96.56%
Georgian 98.50% 99.14% 98.87%
German 95.80% 97.45% 95.60%
Hungarian 99.30% 99.67% 99.50%
Maltese 88.99% 88.17% 87.83%
Navajo 91.48% 96.64% 96.20%
Russian 91.46% 91.00% 89.91%
Spanish 98.84% 98.74% 97.96%
Turkish 98.93% 97.94% 99.31%

Table 2: Exact-match accuracy per language for the standard
track of the SIGMORPHON 2016 Shared Task.

Language Task 1 Task 2 Task 3
Arabic 95.47% 91.09% 82.80%
Finnish 96.80% 96.81% 93.18%
Georgian 98.50% 98.50% 96.21%
German 95.80% 96.22% 92.41%
Hungarian 99.30% 99.42% 98.37%
Maltese 88.99% 86.88% 84.25%
Navajo 91.48% 97.81% 83.50%
Russian 91.46% 90.11% 87.13%
Spanish 98.84% 98.45% 96.69%
Turkish 98.93% 98.38% 95.00%

Table 3: Exact-match accuracy per language for the restricted
track of the SIGMORPHON 2016 Shared Task.

For each task of the restricted track we train a
separate model for 20 epochs. For the bonus track
we reduce the number of epochs to 10, because
we have much more training data. For Maltese,
we reduce it even further to 6 epochs.

Because we do not tune any hyperparameters,
we combine the original training and development
sets to one big training set. The numbers reported
in Table 1 are considering this big dataset.

4 Results on the Shared Task test data

Tables 2, 3 and 4 list the official final results of
MED for the SIGMORPHON 2016 Shared Task.
Table 2 shows the results of the standard track for
which systems are allowed to access the data of

Language Task 1 Task 2 Task 3
Arabic 98.25% 97.38% 96.25%
Finnish 97.30% 97.40% 96.56%
Georgian 99.20% 99.14% 98.87%
German 97.38% 97.45% 95.60%
Hungarian 99.69% 99.67% 99.50%
Maltese 88.53% 88.17% 87.83%
Navajo 98.03% 96.64% 96.20%
Russian 92.15% 91.00% 89.91%
Spanish 99.05% 98.74% 97.96%
Turkish 97.49% 97.94% 99.31%

Table 4: Exact-match accuracy per language for the bonus
track of the SIGMORPHON 2016 Shared Task.

the respective task and all lower numbered tasks.
Therefore, we can apply our training data exten-
sion to tasks 2 and 3, but not to task 1. Because
of this, the two higher tasks have the same scores
as in the bonus track: we effectively give the same
answers. Task 1, in turn, is the same for the stan-
dard and the restricted track, leading to the same
numbers in Tables 2 and 3.

For ease of exposition, we will mostly com-
pare the restricted and the bonus track as the stan-
dard track can be considered a mixture of those
two. For most tasks and languages the accuracy
is higher in the bonus than in the restricted track.
This is easy to explain as MED has more data to
train on (task 1 information for tasks 2 and 3 and
task 2 information for task 1). The exception is
Navajo: For task 2 the accuracy is higher in the
bonus track than in the restricted track. We leave
an investigation of this for future work.

Our training data enhancer – which is the only
difference between the bonus and the restricted
track as we do not use the provided unlabeled cor-
pora – is clearly effective: For Arabic, for ex-
ample, it leads to 13.72% improvement in perfor-
mance for task 3. For Turkish, the accuracy for
task 3 increases by 4.31%. Those are also the lan-

66

guages for which the training data enhancement
was very effective as can be seen in Table 1. That
Maltese does not improve so much even though we
use a lot more training data is most likely due to
the shorter training: we trained only for 6 epochs
instead of 10, because of time constraints.

As expected, the scores for task 3 are worse than
or at most comparable to the scores for task 2 in all
tracks. This is due to the fact that task 3 does not
provide a source tag, so less information is avail-
able. However, it seems that this information was
not much needed as the improvement when adding
it is minor. The better result for task 3 for Turkish
compared to task 2 in the bonus track may be due
to randomness during training – like the order of
samples in the training data – as it is below 1.5%.

It may be surprising at first that the results for
task 1 are not always better than the results for
task 2. This is the case, for example, in the re-
stricted track for Finnish, Georgian, Hungarian
and Navajo. As the organizers describe on the
Shared Task’s homepage, they expect task 1 to be
the easiest. Our guess would be that the model
has more information in total for task 2 as more
forms are given per paradigm. Additionally, task
2 is symmetric; this makes it possible to use twice
the training data, as described in Section 3.

5 System Analysis

To analyze which design choices are important
and how they influence the performance of MED
we conduct several experiments, always keeping
all but the investigated design choice fixed to the
settings described in Section 2. To make the ex-
periments clearer, we limit them to one combina-
tion of task, track and language: Unless mentioned
otherwise, we perform all experiments described
in this section on task 2 of the restricted track for
Russian. For the experiments in this section, the
system is trained on training data only and eval-
uated on the development set. The training data
enhancement is not used in this analysis.

5.1 Analysis 1: Number of hidden units in
encoder and decoder

In its original configuration MED has 100 hidden
units in both the encoder and the decoder. This
number was found to be good during initial ex-
periments. However, we want to investigate how
the number of hidden units in the RNNs can effect
the final accuracy on an MRI task. Therefore, we

Number of hidden units Exact-match accuracy
50 86.2%

100 88.4%
200 87.2%
400 87.3%

Table 5: Performance of MED for different numbers of hid-
den units in the encoder and decoder.

Embedding size Exact-match accuracy
100 86.7%
200 87.3%
300 88.4%
400 90.0%
500 90.3%

Table 6: Performance of MED for different embedding di-
mensions in the encoder and decoder.

train one ensemble for each of 50, 100, 200 and
400 hidden units. To reduce the number of pos-
sible different options and because it agrees with
MED’s original configuration, we define the num-
bers of hidden units in encoder and decoder to be
equal.

The evaluation in Table 5 shows that the best ac-
curacy is obtained for 100 hidden units. Lower re-
sults for fewer hidden units indicate that the model
does not have enough capacity to learn the pat-
terns in the data well. Lower results for more hid-
den units indicate that the model is overfitting the
training data.

5.2 Analysis 2: Size of the embeddings

We chose 300 to be the size of the character and
tag embeddings in our model for the Shared Task.
In this analysis, we want to systematically investi-
gate how MED performs for different embedding
sizes for the encoder and decoder embeddings. We
train the model with embeddings of the sizes 100,
200, 300, 400 and 500 and report the resulting ac-
curacies in Table 6.

The results show that the bigger the embeddings
get the more the perfomance improves. The best
accuracy is reached for 500-dimensional embed-
dings, i.e., the biggest embeddings in this analy-
sis. This suggests that we might have improved
our final results in the Shared Task even further
by using embeddings of a higher dimensionality.
However, this is also a trade-off between a gain
in accuracy and longer training time. Keeping in
mind that we had to train many single models, 300
was a reasonable choice for the embedding size,
with only 1.9% loss of perfomance compared to
500-dimensional embeddings.

67

Initialization Exact-match accuracy
Identity 90.5%

Identity + orthogonal 88.4%
Gaussian + orthogonal 89.7%

Table 7: Performance of MED for different initialization
types.

5.3 Analysis 3: Initialization
For the Shared Task, most weights of MED are
initialized with the identitiy matrix. An exception
to this are the weights in the decoder GRU which
are initialized using a random orthogonal matrix.
All biases are initialized to zero. We now compare
how MED’s final performance depends on the type
of initialization. For this, we train two additional
models: (i) we initialize all weights with the iden-
titiy matrix and (ii) we initialize all weights except
for the weights in the decoder GRU from a Gaus-
sian distribution. The weights in the decoder GRU
are again initialized with a random orthogonal ma-
trix.

The final accuracy of the three models can be
seen in Table 7. The random intialization leads
to better results than intitializing with the iden-
tity matrix together with a random orthogonal ma-
trix. However, the highest accuracy is reached by
initializing all weights with identity matrices. In
fact, the results are 2.1% better than MED’s origi-
nal performance. Thus, we would recommend this
initialization for future use of our model.

5.4 Analysis 4: One embedding per tag vs.
one embedding per tag combination

To keep the model flexible to handle tag com-
binations not present in the training set, we
split each tag combination into single tags,
e.g., pos=ADJ,case=ACC,gen=FEM,num=SG
becomes pos=ADJ, case=ACC, gen=FEM and
num=SG with each part having its own embedding
which is fed into the model.

We now compare to the performance of a rep-
resentation in which tags are “fused” and each tag
combination has only one single embedding. As
this is one of the most important design choices
for MED, we do this analysis for several languages
and additionally report the number of tag combi-
nations that are not seen during training.

Table 8 shows that unknown tag combinations
are generally not a problem with the exception
of Maltese. Nevertheless, there is a considerable
decrease in performance. The difference is espe-
cially big for languages with a lower performance

Language MED MED-tag-comb. Unk.
Arabic 88.8% 83.4% 0
Finnish 95.6% 95.2% 1
Georgian 97.3% 95.6% 0
German 95.1% 93.5% 1
Hungarian 99.3% 99.3% 0
Maltese 85.7% 77.1% 151
Navajo 91.1% 83.4% 1
Russian 88.4% 86.8% 1
Spanish 97.5% 97.0% 0
Turkish 97.6% 95.9% 2

Table 8: Exact match accuracy for the standard representa-
tion (MED) as well as the representation with one embedding
per tag combination (MED-tag-comb) per language. The last
column shows the number of samples that contain tag combi-
nations that appear in dev but not in train, either for the source
or the target form.

Tag order type Exact-match accuracy
MED 88.4%

MED-perm 86.4%

Table 9: Performance of MED when training on samples with
tags in always the same order (MED) and samples where the
tags are permuted inside each combination (MED-perm).

like Arabic, Maltese, Navajo and Russian. Lan-
guages with a general high accuracy do not lose
much accuracy when using one embedding per
tag combination. We hypothesize that the pat-
terns of these languages are easy enough to even
be learned with a harder representation. Over-
all, it seems that our representation with split-up
tag combinations is the better choice for MRI and
might even be a key component for MED’s suc-
cess in the Shared Task.

5.5 Analysis 5: The order of tags

In the representation we feed to MED, the order
of single tags inside a tag combination is always
fixed. We now investigate how much influence this
has on the final performance of the model; i.e., we
ask: is MRI harder or easier to learn if we permu-
tate the morphological tags? For this analysis, we
randomly shuffle the tags of each combination in
the training and development data (while still us-
ing the development set for testing).

Table 9 shows that learning seems to be easier
for non-permuted tags. Indeed, when keeping the
order of tags fixed, the system performance is 2%
better than for the random tag order. However, the
difference is not big. This might actually be differ-
ent for languages other than Russian as we did not
investigate from a linguistic point of view if the or-
der matters contentwise for any of the languages.

68

6 Related Work

Prior work on morphology includes morphologi-
cal segmentation (Harris, 1955; Hafer and Weiss,
1974; Déjean, 1998), different approaches for
MRI (Ahlberg et al., 2014; Durrett and DeNero,
2013; Eskander et al., 2013; Nicolai et al., 2015).
and work on morphological tagging and lemmati-
zation (Müller et al., 2015).

RNN encoder-decoder models, gated RNNs in
general as well as LSTMs were applied to sev-
eral NLP tasks including some on morphology
like morphological segmentation (Wang et al.,
2016) during the last years. Other tasks they
proved to be useful for are machine translation
(Cho et al., 2014; Sutskever et al., 2014; Bah-
danau et al., 2014), parsing (Vinyals et al., 2015)
or speech recognition (Graves and Schmidhuber,
2005; Graves et al., 2013).

The most similar work to ours was probably
the one by Faruqui et al. (2015). Indeed, MED’s
design is very close to their model. However,
they trained one network for every tag pair; this
can negatively impact performance in a setting
with limited training data like the SIGMORPHON
2016 Shared Task. In contrast, we train a sin-
gle model for each language. This radically re-
duces the amount of training data needed for the
encoder-decoder because most MRI patterns oc-
cur in many tag pairs, so what is learned for one
can be transferred to others. In order to model all
tag pairs of the language together, we introduce an
explicit morphological representation that enables
the attention mechanism of the encoder-decoder to
generalize MRI patterns across tag pairs.

7 Conclusion

In this paper we described MED, our system for
the SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection as well as a training data
enhancement method based on paradigms. MED
is a powerful character-based encoder-decoder
RNN and its architecture is completely language-
independent, such that we trained the models for
all 10 languages of the Shared Task using the same
hyperparameters. MED establishes the state of
the art for the SIGMORPHON 2016 Shared Task,
scoring first in all of the 90 subtasks of the final
evaluation.

Furthermore, we presented an extended analy-
sis, evaluating different design choices for MED.
The results show that most of our initial settings

were good choices, especially the representation
of morphological tags. However, it might be
possible to further improve MED’s performance
increasing the size of the used embeddings and
choosing another initialization.

Acknowledgments

We are grateful to MILA (https://mila.
umontreal.ca) for making their neural ma-
chine translation model available to us. We further
acknowledge the financial support of Siemens for
this research.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proc. of EACL.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Proc. of NAACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proc. of the 2016
Meeting of SIGMORPHON.

Hervé Déjean. 1998. Morphemes as necessary concept
for structures discovery from untagged corpora. In
Proc. of the Joint Conferences on New Methods in
Language Processing and CoNLL.

Markus Dreyer. 2011. A non-parametric model for the
discovery of inflectional paradigms from plain text
using graphical models over strings. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proc. of HLT-NAACL.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic extraction of morphological lex-
icons from morphologically annotated corpora. In
Proc. of EMNLP.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2015. Morphological inflection genera-
tion using character sequence to sequence learning.
arXiv preprint arXiv:1512.06110.

69

Ian Goodfellow, David Warde-farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out networks. In Proc. of ICML.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5):602–610.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proc. of ICASSP.

Margaret A Hafer and Stephen F Weiss. 1974. Word
segmentation by letter successor varieties. Informa-
tion storage and retrieval, 10(11):371–385.

Zellig S Harris. 1955. From phoneme to morpheme.
Language, 31(2):190–222.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proc. of ACL.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proc. of
EMNLP.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proc. of NAACL.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to construct deep
recurrent neural networks. In Proc. of ICLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Proc. of NIPS.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proc. of NIPS.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo.
2016. Morphological segmentation with window
LSTM neural networks. In Proc. of AAAI.

Matthew D Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

70

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 71–75,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

The Columbia University - New York University Abu Dhabi
SIGMORPHON 2016 Morphological Reinflection

Shared Task Submission

Dima Taji†, Ramy Eskander‡, Nizar Habash†, Owen Rambow‡

†Computational Approaches to Modeling Language Lab, New York University Abu Dhabi
{dima.taji,nizar.habash}@nyu.edu

‡Center for Computational Learning Systems, Columbia University
{reskander,rambow}@ccls.columbia.edu

Abstract

We present a high-level description and er-
ror analysis of the Columbia-NYUAD sys-
tem for morphological reinflection, which
builds on previous work on supervised
morphological paradigm completion. Our
system improved over the shared task
baseline on some of the languages, reach-
ing up to 30% absolute increase. Our rank-
ing on average was 5th in Track 1, 8th in
Track 2, and 3rd in Track 3.

1 Introduction

In this paper, we present a high-level description
and error analysis of the Columbia University -
New York University Abu Dhabi system for mor-
phological reinflection, which was submitted to
the SIGMORPHON 2016 shared task on morpho-
logical reinflection (Cotterell et al., 2016). The
system builds on previous work on supervised
morphological paradigm completion (Eskander et
al., 2013). Although the core system is the same,
additional efforts were needed to preprocess the
shared task data in order to make it compatible
with our existing approach, as well as to create a
new interface that targets morphological reinflec-
tion specifically. Our system improved over the
baseline on some of the languages, reaching up
to 30% absolute increase. Our ranking on aver-
age was 5th in Track 1, 8th in Track 2, and 3rd in
Track 3.

The rest of this paper is structured as follows.
We present some related work in computational
morphology in Section 2. We then discuss our ap-
proach to the shared task in Section 3. We discuss
our performance and insights in Section 4. Finally,
we give an outlook on our approach in Section 5.

2 Related Work

The area of computational morphology includes
a rich and varied continuum of approaches and
techniques. Within it, we find, on one end, sys-
tems painstakingly designed by hand (Kosken-
niemi, 1983; Buckwalter, 2004; Habash and Ram-
bow, 2006; Détrez and Ranta, 2012); and on the
other end, unsupervised methods that learn mor-
phology models from unannotated data (Creutz
and Lagus, 2007; Dreyer and Eisner, 2011; Ra-
sooli et al., 2014; Monson et al., 2008; Ham-
marström and Borin, 2011). Closer to the former
side of the continuum, we find work on minimally
supervised methods for morphology learning that
make use of available resources such as paral-
lel data, dictionaries or some additional morpho-
logical annotations (Yarowsky and Wicentowski,
2000; Snyder and Barzilay, 2008; Cucerzan and
Yarowsky, 2002). Closer to the other end, we find
work that focuses on defining morphological mod-
els with limited lexicons that are then extended us-
ing raw text (Clément et al., 2004; Forsberg et al.,
2006). The setting of the shared task on morpho-
logical reinflection (Cotterell et al., 2016), which
provides a rich partly annotated training data set,
encourages methods that are supervised.

Our shared task submission builds on our pre-
viously published work on paradigm completion
(Eskander et al., 2013), which falls somewhere in
the middle of the continuum outlined above. Our
approach learns complete morphological models
using rich morphological annotations. The match
of the requirements for our approach and those
for the shared task was far from perfect, but it
was interesting to participate since we have always
wanted to explore ways to reduce some of the ex-
pected input annotations – in particular word seg-
mentations, which are not provided in the shared
task.

71

3 Approach

Our basic approach is supervised paradigm com-
pletion as presented in (Eskander et al., 2013). It
was designed to learn a morphological analyzer
and generator from data that has been manually
segmented and clustered by lexeme. To adapt
our approach to the shared task, we added two
phases that sandwich the basic paradigm comple-
tion in a pipeline architecture: an initial segmen-
tation phase to preprocess the shared task data to
match our approach’s expectations; and a phase
to perform reinflection as specified in the various
sub-tasks in the shared task.

3.1 Word Segmentation

In the segmentation phase, we segment every
word in the training dataset (TRAIN) into pre-
fix, stem, and suffix. For example, the Arabic
word al-muhandisatu is ideally segmented into al-
+muhandis+atu. This phase has three steps.

In the first step, we estimate the probability of
every possible affix-feature and stem-POS (Part-
of-Speech).1 This is accomplished by summing
over the partial counts of all possible segmenta-
tions of every word in TRAIN, constrained only by
a minimal stem length parameter, s.2

In the second step, we cluster the words in
lemma clusters, which are groups of words that
share the same lemma and only vary in terms of in-
flectional morphology. For Task 1, lemmas were
given in TRAIN, and we clustered all the words
that appear with each given lemma. For Task 2
and Task 3, we used cooccurrence evidence to de-
termine the clusters, where if two words appeared
together in the same training instance, we assigned
them to the same lemma cluster. This may result
in under-clustering due to words not appearing to-
gether, as well as over-clustering, when the entries
consist of derivational rather than inflectional mor-
phology. To normalize the treatment of the dif-
ferent tasks, lemmas in Task 1 were included as
words with the feature feat=lemma; and words ap-
pearing with no features in Task 3 were given the
POS of the word they appeared with and the fea-
ture feat=UNK.

Finally, we decide on the optimal segmentation
1For the Arabic word al-muhandisatu, the ideal affix-

feature pairs the affix al-+ _ +atu, with the feature set that
appears with this word, pos=ADJ, def=DEF, case=NOM,
gen=FEM, num=SG. The ideal stem-POS pairs the stem
muhandis with the POS, pos=ADJ.

2s = 3, determined empirically.

for each word in the context of its lemma cluster in
the following manner. For every word in the clus-
ter, we produce a ranking of top b segmentations3

as an initial filter. This rank is based on P(stem-
POS)*P(affix-feature), which were computed in
the first step. We select for each word the seg-
mentation that minimizes the overall number of
stems in the lemma cluster, with a bias towards the
stem with the highest prominence score. A stem
prominence score is computed as the probability
of the stem-POS multiplied by the number of oc-
currences it has in the top b segmentation choices
(for all words in the cluster). This ensures that, for
all the words that have a segmentation including
the top stem, this segmentation is selected. For the
words that do not have the top stem among their
b segmentations, we go for the next stem in the
prominence score ranking, and so on.

Two problematic cases are handled exception-
ally: words with feat=UNK, because it appears
very frequently, and features that are infrequent
(below a threshold x4). Those words are not used
as part of determining the prominence score, but
the stem is forced upon them.

At the end of this process, we should have a
specific segmentation for every word. To assess
the algorithm’s performance, we ran it on an ex-
ternal data set of Egyptian Arabic (Eskander et
al., 2013), for which we had a manually anno-
tated gold standard. Our segmentation algorithm
achieves a word segmentation accuracy of 84.7%
when tested on this dataset.

3.2 Paradigm Completion

The core of our work is paradigm completion,
in which we build complete inflectional classes
(ICs) based on corpus annotations. The construc-
tion of the ICs follows the technique we presented
in (Eskander et al., 2013), where the ICs have
all the possible morphosyntactic feature combina-
tions for every lemma in TRAIN.

The paradigm completion step works as fol-
lows. First, the entries in TRAIN are converted into
paradigms, where each paradigm lists all the in-
flections of all morphosyntactic feature combina-
tions for a specific lemma seen in the training data.
The paradigms are then converted into inflectional
classes (ICs), where stem entries are abstracted as
templates by extracting out the root letters. We de-

3b = 10, determined empirically.
4x = 5, determined empirically.

72

termine which letters should be considered pattern
(non-root) letters for each language. These are let-
ters that change between stems in the same IC. For
example, in English sing, sang, sung, we observe
that the vowel i can change to a or u. So these
three letters change in this IC. For each letter, we
count the number of ICs in which the letter under-
goes a change in the IC stems; and we order the
letters by this frequency. We then use a small tun-
ing corpus to determine what subset of letters is
optimal for the specific language: we repeatedly
perform paradigm completion with all initial seg-
ments of the ordered list of letters. We choose the
subset which results in the best performance on the
task. 5 Finally, the generated ICs are merged to-
gether into a smaller number of more condensed
ICs, where two ICs merge if they share the same
inflectional behavior. The ICs are then completed
by sharing affix and stem information with each
other. We apply the above process to the different
POS types in the shared task, independently.

3.3 Morphological Reinflection

The set of ICs created in paradigm completion are
used to create a morphological analyzer and gen-
erator. In cases in which the input is a previously
seen (i.e., in TRAIN) lemma (Task 1) or an in-
flected form with a tag (Task 2) or without a tag
(Task 3), we can match the input against the IC
which was created from that item, and then we
can just generate the requested form. In cases of
unseen lemmas or forms, we run the ICs as a mor-
phological analyzer, which matches it against an
IC, and we again proceed to generate the inflected
form.

4 Results

4.1 Shared Task

We participated in all the tracks and tasks of the
shared task, with a total of nine submissions for
almost all languages. Our ranking, on average
over all languages and tasks, was 5th (5.4) in
Track 1, 8th (7.6) in Track 2, and 3rd (2.6) in
Track 3. The best performing systems used neu-
ral network models, which have improved perfor-
mance in many areas of NLP (Manning, 2016).

5We do this for Task 1 (in which the lemma is available
as input), and then use the same set in all task/track combi-
nations. For some task/track combinations we should have
used different data, but did not do this for lack of time. We
acknowledge the methodological flaw, but we suspect that do-
ing it differently would not have changed our results much.

In Table 1, we present the results for our system
(Track 3 Task 3) and baseline together with a num-
ber of features of the different language sets and
their correlations with the final scores. We do not
include the results for Finnish and Russian as our
system had many problems and we believe the re-
sults are not meaningful.6 We also do not present
any results on the other tasks and tracks, although
we participated in all of them, because of limited
space. The results across tasks and tracks are com-
parable to the task we selected here. For some lan-
guages, our approach did well, increasing quality
over the official baseline for six languages by up
to 30% absolute (Turkish).

Given our previous work on Arabic (Eskander
et al., 2013), we were dismayed to see the low-
ish results on Arabic; although this was not un-
expected given that the Arabic used in the shared
task was not in standard Arabic orthography. Ara-
bic has a morphophonemic orthography that hides
some of the allomorphic distinctions made explicit
in the shared task, and some of which we do not
do well on. For instance, the Arabic definite arti-
cle morpheme al- has a number of allomorphs that
assimilate to the consonant that follows the article
when the consonant is one of the 14 sun letters (see
(Habash, 2010) for a discussion), e.g., al-daftaru
→ ad-daftaru ‘the notebook’, and al-numūru →
an-numūru ‘the tigers’, as opposed to the de-
fault al-’uk

¯
ti → al-’uk

¯
ti ‘the sister’. In Arabic’s

morphophonemic orthography, the different allo-
morphs are written using one form Al: Ald∼aftaru
Q�� 	̄ YË @, Aln∼umuwru PñÒ	JË @, and AlÂuxti �I 	k

B@.7

4.2 Correlation Insights

We present next some insights gained by con-
sidering correlations between specific features of
the data sets for different languages and the lan-
guages’ performance in the baseline and our sys-
tem. We expect some of these insights to be gen-
eral indicators of the complexity of modeling dif-
ferent languages morphologically.

The first two columns in Table 1, Stemallo and
Affixallo, are the stem allomorphy rate and the
affix allomorphy rate, respectively. Stemallo is
computed as the ratio of unique stems divided by
the number of lemmas in our training data. The

6Our official system’s performance on Track 3 Task 3 for
Finnish and Russian are 20% (40% below baseline) and 62%
(19% below baseline), respectively.

7Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).

73

Language Stemallo Affixallo Features Lemmas Examples log(F) log(A/S) log(L/F) log(E/F) System Baseline
Arabic 2.8 8.0 232 5,357 47,298 2.37 0.5 1.36 2.3 59% 51%
Georgian 1.1 5.9 96 9,483 49,813 1.98 0.7 1.99 2.7 90% 87%
German 1.2 6.7 105 10,834 49,633 2.02 0.8 2.01 2.7 79% 82%
Hungarian 2.0 14.3 91 6,936 82,244 1.96 0.9 1.88 3.0 89% 78%
Maltese 4.5 2.6 3,825 3,186 65,597 3.58 -0.2 -0.08 1.2 29% 25%
Navajo 5.9 22.8 58 2,235 41,401 1.76 0.6 1.59 2.9 84% 60%
Spanish 1.2 13.5 90 9,374 48,217 1.95 1.0 2.02 2.7 79% 89%
Turkish 1.8 9.9 195 5,620 46,693 2.29 0.7 1.46 2.4 84% 54%
Systemcorrel -0.43 0.54 -0.90 0.45 -0.16 -0.93 0.89 0.91 0.94
Baselinecorrel -0.67 0.26 -0.76 0.81 -0.08 -0.82 0.88 0.93 0.85

Table 1: Results for our system (Track 3 Task 3) and baseline together with a number of features of the
different language sets and their correlations with the final scores. In columns 7 through 10: F=Features,
L=Lemmas, E=Examples, A=Affixes, and S=Stems.

Affixallo is computed as the ratio of unique affixes
divided by the number of features in our training
data. Ideally, these two measures would reflect the
complexity of the language, as well as how well
we model it. The numbers may be larger than
or smaller than the ideal model depending on the
quality of our segmentation step and the amount
of training data. Next in Table 1 are the counts of
features, lemmas, and training examples. Finally,
we present four metrics that are derived from the
previously shown values, e.g. logE/F is the log of
the ratio of training examples to features. In the
last two rows, we show the correlation coefficient
between each presented value and the final score
over all languages.

The languages vary widely in performance in
both the baseline and our system. It is imme-
diately evident that among the basic aspects of
the training data, the number of features has a
very high negative correlation with the results –
see Features, and log(F) in Table 1. The number
of training examples is not an indicator of per-
formance ranking in this set. However, the log
of the ratio of training examples to features is a
very strong indicator with very high correlation.
This makes sense since we expect languages with
richer morphology to require relatively more ex-
amples than languages with poorer morphology.
We computed the Stemallo and Affixallo because
we thought they may give us insights into how our
approach handles different languages and perhaps
reflect errors in the segmentation process: we ex-
pected segmentation errors to inflate these two val-
ues. This hypothesis was not possible to confirm
since the number of variant forms is not only de-
pendent on segmentation and number of features
in a language, but ultimately the number of train-

ing examples in relation to the number of features.
As such, these two values are not well correlated
with the results; although, interestingly, the ratio
of Affixallo to Stemallo is. This may simply reflect
that languages with less variable stems and more
content-heavy affixes may be easier to model. The
log of the ratio of lemmas to features, is another in-
teresting measure with very high correlation (par-
ticularly in the baseline). This measure reflects
that it is harder to model languages with very rich
features without providing lots of collections of
examples (lemma sets).

4.3 Error Analysis
When analyzing the errors in our output, we ob-
served a number of overlapping phenomena that
made the identification of the specific sources of
the errors difficult. The following are the three
main phenomena we noted.

(1) Stemming errors, where the segmentation
process added letters to the stem or ignored let-
ters in the stem. For example, the Arabic word
al-‘ajalatu was stemmed to l-‘ajala instead of
‘ajala, and the system ended up generating l-
‘ajalatay as the dual possessive noun instead of
‘ajalatay. Similarly, in Maltese the stem of the
word nqtilthomx was determined to be the word
itself, thus generating nqtilthomxthulhomx instead
of nqtilthulhomx.

(2) Paradigm errors, where the system opti-
mized for the wrong pattern because of possible
previous stemming errors. In Spanish, for exam-
ple, the word curta was reinflected as curtéis in-
stead of curtáis, and in Turkish ortağa generated
ortağlara instead of ortaklara.

(3) Allomorphy modeling errors, which can
be present in affixes or in stems. When one mor-
pheme can have multiple allomorphs, the system

74

might prefer the wrong allomorph. This can be
observed in the cases of the Arabic definite arti-
cle’s so-called sun letters, where the system gen-
erated al-dafı̄’i instead of ad-dafı̄’i, as well as the
Turkish vowel harmony issues, where uğratmiyor-
sunuz was generated instead of uğratmıyorsunuz.
Stem allomorphy happens when the stem slightly
changes depending on specific features, for exam-
ple, in Arabic qāmūs and qawāmı̄s are stems for
the same noun (one singular and one broken plu-
ral), which caused the generation of al-qāmūsi in-
stead of al-qawāmı̄si.

5 Outlook

We built our morphological paradigm completion
system for a specific purpose: we are annotating
texts by hand in order to develop morphological
analyzers and taggers for Arabic dialects. The
question now arises whether we can reduce the
human annotation work (say, by not requiring hu-
man segmentation of the input data) while still
maintaining the same quality of morphological re-
sources.

We intend to explore methods to improve the
segmentation step in order to reduce the errors pro-
duced in it. In particular, we will explore joint
segmentation and paradigm completion; better al-
lomorphy modeling, perhaps by introducing new
models for allomorphy detection, and for phono-
logical and morphological rewrites; and applica-
tion of deep learning.

References
Tim Buckwalter. 2004. Buckwalter Arabic Morpho-

logical Analyzer Version 2.0. LDC catalog number
LDC2004L02, ISBN 1-58563-324-0.

Lionel Clément, Bernard Lang, Benoît Sagot, et al.
2004. Morphology based automatic acquisition of
large-coverage lexica. In LREC 04, pages 1841–
1844.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The sigmorphon 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. Association for Computational Linguistics.

Mathias Creutz and Krista Lagus. 2007. Unsuper-
vised models for morpheme segmentation and mor-
phology learning. ACM Transactions on Speech and
Language Processing (TSLP), 4(1).

Silviu Cucerzan and David Yarowsky. 2002. Boot-
strapping a multilingual part-of-speech tagger in one
person-day. In proceedings of the 6th conference on

Natural language learning-Volume 20, pages 1–7.
Association for Computational Linguistics.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. EACL 2012, page 645.

Markus Dreyer and Jason Eisner. 2011. Discover-
ing morphological paradigms from plain text using
a dirichlet process mixture model. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 616–627. Association
for Computational Linguistics.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic Extraction of Morphological Lex-
icons from Morphologically Annotated Corpora.
In Proceedings of tenth Conference on Empirical
Methods in Natural Language Processing.

Markus Forsberg, Harald Hammarström, and Aarne
Ranta. 2006. Morphological lexicon extraction
from raw text data. Advances in Natural Language
Processing, pages 488–499.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
A Morphological Analyzer and Generator for the
Arabic Dialects. In Proceedings of ACL, pages 681–
688, Sydney, Australia.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods. Springer.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publish-
ers.

Harald Hammarström and Lars Borin. 2011. Unsuper-
vised learning of morphology. Computational Lin-
guistics, 37(2):309–350.

Kimmo Koskenniemi. 1983. Two-Level Model for
Morphological Analysis. In Proceedings of the 8th
International Joint Conference on Artificial Intelli-
gence, pages 683–685.

Christopher D Manning. 2016. Computational linguis-
tics and deep learning. Computational Linguistics.

Christian Monson, Jaime Carbonell, Alon Lavie, and
Lori Levin. 2008. Paramor: Finding paradigms
across morphology. Advances in Multilingual and
Multimodal Information Retrieval, pages 900–907.

Mohammad Sadegh Rasooli, Thomas Lippincott, Nizar
Habash, and Owen Rambow. 2014. Unsupervised
morphology-based vocabulary expansion. In ACL
(1), pages 1349–1359.

Benjamin Snyder and Regina Barzilay. 2008. Un-
supervised multilingual learning for morphological
segmentation. In Proceedings of ACL-08: HLT,
pages 737–745, Columbus, Ohio, June.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In Proceedings of the 38th
Annual Meeting on Association for Computational
Linguistics, pages 207–216. Association for Com-
putational Linguistics.

75

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 76–81,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Letter Sequence Labeling for Compound Splitting

Jianqiang Ma Verena Henrich Erhard Hinrichs
SFB 833 and Department of Linguistics

University of Tübingen, Germany
{jma,vhenrich,eh}@sfs.uni-tuebingen.de

Abstract

For languages such as German where
compounds occur frequently and are writ-
ten as single tokens, a wide variety of NLP
applications benefits from recognizing and
splitting compounds. As the traditional
word frequency-based approach to com-
pound splitting has several drawbacks, this
paper introduces a letter sequence label-
ing approach, which can utilize rich word
form features to build discriminative learn-
ing models that are optimized for split-
ting. Experiments show that the proposed
method significantly outperforms state-of-
the-art compound splitters.

1 Introduction

In many languages including German, compounds
are written as single word-tokens without word de-
limiters separating their constituent words. For
example, the German term for ‘place name’ is
Ortsname, which is formed by Ort ‘place’ and
Name ‘name’ together with the linking element
‘s’ between constituents. Given the productive
nature of compounding, treating each compound
as a unique word would dramatically increase the
vocabulary size. Information about the existence
of compounds and about their constituent parts is
thus helpful to many NLP applications such as ma-
chine translation (Koehn and Knight, 2003) and
term extraction (Weller and Heid, 2012).

Compound splitting is the NLP task that auto-
matically breaks compounds into their constituent
words. As the inputs to compound splitters often
include unknown words, which are not necessarily
compounds, splitters usually also need to distin-
guish between compounds and non-compounds.

Many state-of-the-art splitters for German
(Popović et al., 2006; Weller and Heid, 2012)

mainly implement variants of the following two-
step frequency approach first proposed in Koehn
and Knight (2003):

1. Matching the input word with known words,
generating splitting hypotheses, including the
non-splitting hypothesis that predicts the in-
put word to be a non-compound.

2. Choosing the hypothesis with the highest ge-
ometric mean of frequencies of constituents
as the best splitting. If the frequency of the
input word is higher than the geometric mean
of all possible splittings, non-splitting is cho-
sen.

The frequency approach is simple and efficient.
However, frequency criteria are not necessarily
optimal for identifying the best splitting deci-
sions. In practice, this often leads to splitting
compounds at wrong positions, erroneously split-
ting non-compounds, and incorrectly predicting
frequent compounds to be non-compounds. Par-
allel corpora (Koehn and Knight, 2003; Popović
et al., 2006) and linguistic analysis (Fritzinger and
Fraser, 2010) etc. were used to improve the fre-
quency approach, but the above-mentioned issues
remain. Moreover, frequencies encode no infor-
mation about word forms, which hinders knowl-
edge transfer between words with similar forms.
In an extreme yet common case, when one or more
compound constituents are unknown words, the
correct splitting is not even generated in Step 1 of
the frequency approach.

To address the above-mentioned problems, this
paper proposes a letter sequence labeling (LSL)
approach (Section 2) to compound splitting. We
cast the compound splitting problem as a sequence
labeling problem. To predict labels, we train con-
ditional random fields (CRF; Lafferty et al., 2001),
which are directly optimized for splitting. Our

76

CRF models can leverage rich features of letter n-
grams (Section 2.3), such as ung (a German nom-
inalization suffix), which are shared among words
and applicable to many unknown compounds and
constituents. Our method is language indepen-
dent, although this paper focuses on German.

Evaluated with the compound data from Ger-
maNet (Hamp and Feldweg, 1997; Henrich and
Hinrichs, 2010) and Parra Escartı́n (2014), experi-
ments in Section 3 show that our approach signifi-
cantly outperforms previously developed splitters.
The contributions of this paper are two-fold:

• A novel letter sequence labeling approach to
compound splitting

• Empirical evaluations of the proposed ap-
proach and developed feature on a large com-
pound list

2 Letter Sequence Labeling (LSL) for
Compound Splitting

2.1 Compound splitting as LSL
Before detailing the sequence labeling approach,
we first describe the representation of splitting out-
put used for this paper.

Splitting output. The splitting output for the
above example Ortsname would be “Orts name”.
In general, we consider the output as string se-
quences obtained by adding whitespaces between
constituent words in the original compound. Link-
ing elements between constituents are attached
to the ones before them. Moreover, no lemma-
tization or morphological analysis is performed.
Compound splitting also considers the recogni-
tion of non-compounds, the output of which is
the word itself. The choice for such representa-
tion is to avoid bias to any morphological theory
or language-specific property. If needed, however,
such output can be mapped to lexemes/lemmas.

Sequence labeling. With the above-mentioned
representation, compound splitting can be viewed
as a sequence of predictions of what positional
role each letter plays in a word/string. Specifi-
cally, we label each letter with the BMES tag-set.
For multi-letter strings, label B indicates “the first
letter of a string”, label E indicates “the last letter
of a string”, and label M indicates “a letter in the
middle of a string”. The rare cases of single-letter
strings are labeled as S. The label sequence for the
example Ortsname would be: B-M-M-E-B-M-M-
E. The splitting output strings can be constructed

by extracting either single letters that are labeled
as S or the consecutive letters such that (1) the first
letter is labeled as B; (2) the last letter is labeled as
E; (3) all the others in between are labeled as M.

We call the above formulation of compound
splitting letter sequence labeling. It falls into the
broader category of sequence labeling, which is
widely used in various NLP tasks, such as POS
tagging (Hovy et al., 2014) and Chinese word seg-
mentation (Ma and Hinrichs, 2015). As many
state-of-the-art NLP systems, we build conditional
random fields models to conduct sequence label-
ing, which are detailed in the next subsections.

2.2 Conditional random fields (CRFs)
Conditional random fields (Lafferty et al., 2001)
are a discriminative learning framework, which is
capable of utilizing a vast amount of arbitrary, in-
teractive features to achieve high accuracy. The
probability assigned to a label sequence for a par-
ticular letter sequence of length T by a CRF is
given by the following equation:

pθ(Y|X) =
1

Zθ(X)
exp

{
T∑
t=1

K∑
k=1

θkfk(yt−1, yt, xt)

}
(1)

In the above formula, X is the sequence of let-
ters in the input compound (or non-compound),
Y is the label sequence for the letters in the input
and Z(X) is a normalization term. Inside the for-
mula, θk is the corresponding weight for the fea-
ture function fk, where K is the total number of
features and k is the index. The letters in the word
being labeled is indexed by t: each individual xt
and yt represent the current letter and label, while
yt−1 represents the label of the previous letter.

For the experiments in this paper, we use the
open-sourced CRF implementation Wapiti, as de-
scribed in Lavergne et al. (2010).

2.3 Feature templates
A feature function fk(yi−1, yi, xi) for the letters xi
under consideration is an indicator function that
can describe previous and current labels, as well
as a complete letter sequence in the input word.
For example, one feature function can have value 1
only when the previous label is E, the current label
is B and the previous three letters are rts. Its value
is 0 otherwise. This function describes a possible
feature for labeling the letter n in Ortsname.

In our models, we mainly consider functions of
context features, which include n-grams that ap-

77

pear in the local window of h characters that cen-
ters at letter xi. In this paper, we use 1 ≤ n ≤ 5
for n-grams and h = 7 for window size, as we
found that smaller windows or only low order n-
grams lead to inferior results. The contexts are au-
tomatically generated from the input words using
feature templates by enumerating the correspond-
ing n-grams, the index of which is relative to the
current letter (i.e. xi). Table 1 shows the templates
for the context features used in this work.

Type Context features
unigram xi−3, xi−2, xi−1, xi, xi+1, xi+2, xi+3

bigram xi−3xi−2, xi−2xi−1, ..., xi+2xi+3

trigram xi−3xi−2xi−1, ..., xi+1xi+2xi+3

4-gram xi−3xi−2xi−1xi, ..., xixi+1xi+2xi+3

5-gram xi−3xi−2xi−1xixi+1, ...

Table 1: Context feature templates.

Besides context features, we also consider tran-
sition features for current letter xi, each of which
describes the current letter itself in conjunction
with a possible transition between the previous
and the current labels, i.e. (xi, yi−1, yi) tuples.

3 Experiments

3.1 Gold-standard data
The training of CRFs requires gold-standard la-
bels that are generated from the gold-standard
splittings (non-splittings) of compounds (non-
compounds). We use GermaNet (GN) for this pur-
pose, as it has a large amount of available, high-
quality annotated compounds (Henrich and Hin-
richs, 2011). We have extracted a total of 51,667
unique compounds from GermaNet 9.0. The com-
pounds have 2 to 5 constituents, with an average
of 2.1 constituents per compound. The remain-
ing words are, nevertheless, not necessarily non-
compounds, as not all the compounds are anno-
tated in GN. So we extract 31,076 words as non-
compounds, by choosing words that have less than
10 letters and are not known compounds. The
heuristic here is that compounds tend to be longer
than simplex words. The resulting non-compound
list still contains some compounds, which adver-
sly affects modeling.

We also employ the Parra Escartı́n (2014;
henceforth PE) data to allow a fair comparison
of our approach with existing compound splitters.
The PE dataset has altogether 342 compound to-
kens and 3,009 non-compounds. PE’s compounds

have 2 to 5 constituents, with an average amount
of 2.3 constituents.

3.2 Evaluation metrics
In our experiments, we use evaluation metrics pro-
posed in Koehn and Knight (2003), which are
widely used in the compound splitting literature.
Each compound splitting result falls into one of
the following categories: correct split: words
that should be split (i.e. compounds) and are cor-
rectly split; correct non-split: words that should
not be split (i.e. non-compounds) and are not
split; wrong non-split: words that should be split
but are not split; wrong faulty split: words that
should be split and are split, but at wrong posi-
tion(s); wrong split: words that should not be
split but are split. As in Koehn and Knight (2003),
the following scores are calculated from the above
counts to summarize the results that only concern
compounds:

• precision: (correct split) / (correct split +
wrong faulty split + wrong split)
• recall: (correct split) / (correct split + wrong

faulty split + wrong non-split)
• accuracy: (correct) / (correct + wrong)

3.3 Experiments on GermaNet data
In the experiments of this subsection, a random set
of 70% of the GN data is used for training the LSL
model and another 10% is used as a development
set for choosing hyper parameters of the model.
The remaining 20% is the test set, which is put
aside during training and only used for evaluation.

Model Precision Recall Accurracy
uni- & bigrams 0.873 0.833 0.857
+ trigrams 0.937 0.920 0.925
+ 4-grams 0.952 0.940 0.942
+ 5-grams 0.955 0.941 0.943

Table 2: Results of models with different context
features on GermaNet. Best results in bold face.

Since our models predict splittings solely based
on the information about the input word, different
tokens of the same word type appearing in var-
ious sentences would result in exactly the same
prediction. Therefore the learning and evaluation
with the GN data is based on types rather than to-
kens. As shown in Table 2, the model performance
improves steadily by adding higher-order letter n-
gram features.

78

Models Correct Wrong Scores
split non non faulty split precision recall accuracy

Popović et al. (2006) 248 3009 84 10 0 0.961 0.725 0.972
Weller and Heid (2012) 259 3008 82 1 1 0.992 0.757 0.975
Letter sequence labeling (this work) 319 2964 14 10 44 0.855 0.930 0.980

Table 3: Comparison with the state-of-the-art. Best results are marked in bold face.

The best overall accuracy of 0.943 is achieved
by the model that uses features of n-grams up to
order 5. No further improvement is gained by even
higher order n-grams in our experiments, as the
model would overfit to the training data. The high
accuracy on the GN data is a reliable indicator for
performance in real-life scenario, due to its rigid
non-overlapping division of large training and test
sets.

3.4 Experiments on Parra Escartı́n’s data
When comparing our method with frequency-
based ones, it would be ideal if each method was
trained and tested (on disjoint partitions of) the
same benchmark data, which provides both gold-
standard splitting and frequency information. Un-
fortunately, GermaNet provides no frequency in-
formation and most large-scale word frequency
lists have no gold-standard splits, which makes
neither suitable benchmarks. Another practical
difficulty is that many splitters are not publicly
available. We plan to complement the GN data
with frequency information extracted from large
corpora to construct such benchmark data in the
future. For the present work, we evaluate our
model on the test data that other methods have
been evaluated on. For this purpose, we use the
PE data, as two state-of-the-art splitters, namely
Popović et al. (2006) and Weller and Heid (2012)1,
have been evaluated on it.

We train the best model from the last subsection
using modified GN data, which has longer non-
compounds up to 15 letters in length and excludes
words that also appear in the PE data. The model
is evaluated on the PE data using the same metrics
as described in Section 3.2, except that the evalu-
ation is by token rather than by type, to be com-
patible with the original PE results. Table 3 shows
the results, which are analyzed in the remainder of
this section.

Splitting compounds. Accuracy and precision
1Parra Escartı́n (2014) evaluated Weller and Heid (2012)

‘as is’, using a model pre-trained on unknown data, which
might have overlaps with the test data.

consider both non-compounds and compounds
and are influenced by the ratio of the two, which
is 8.8:1 for the PE data. It means that both met-
rics are mostly influenced by how well the systems
distinguish compounds from non-compounds. By
contrast, recall depends solely on compounds and
is thus the best indicator for splitting performance.
The recall of our model is significantly higher than
that of previous methods, which shows that it gen-
eralizes well to splitting unknown compounds.

Recognizing non-compounds. The relatively
low precision of our model is mainly caused by
the high wrong split count. We found that al-
most half of these “non-compounds” that our
model “wrongly” splits are compounds, as the
PE annotation skips all adjectival and verbal com-
pounds and also ignores certain nominal com-
pounds. The remaining of wrong split errors can
be reduced by using higher quality training cases
of non-compounds, as the current gold-standard
non-compounds were chosen by the word length
heuristic, which introduced noise in learning.

4 Discussion and Related Work

Work on compound splitting emerged in the con-
text of machine translation (Alfonseca et al.,
2008b; Stymne, 2008; El-Kahlout and Yvon,
2010) and speech recognition (Larson et al.,
2000) for German, Turkish (Bisazza and Federico,
2009), Finnish (Virpioja et al., 2007) and other
languages (Alfonseca et al., 2008a; Stymne and
Holmqvist, 2008). Most works, including discrim-
inative learning methods (Alfonseca et al., 2008a;
Dyer, 2009), follow the frequency approach. A
few exceptions include, for example, Macherey et
al. (2011) and Geyken and Hanneforth (2005), the
latter of which builds finite-state morphological
analyzer for German, where compound splitting is
also covered. In contrast to most previous work,
this paper models compound splitting on the lower
level of letters, which can better generalize to un-
known compounds and constituents. Moreover, it
is possible to integrate word-level knowledge into

79

the proposed sequence labeling model, by adding
features such as “the current letter starts a letter
sequence that matches a known word in the lexi-
con”.

The basic idea of letter or phoneme sequence-
based analysis goes back to early structural lin-
guistics work. Harris (1955) studies the distribu-
tion of distinct phoneme unigrams and bigrams be-
fore or after a particular phoneme, i.e. predeces-
sor/successor variety. The change of these vari-
ety scores in an utterance is used to determine the
word boundaries. That idea has been adopted and
further developed in the context of word segmen-
tation of child-directed speech (Çöltekin and Ner-
bonne, 2014), where all the intra-utterance word
boundaries are absent. Another instance of such
sentence-wise word segmentation is Chinese word
segmentation (Peng et al., 2004), where it is a stan-
dard solution to conduct CRF-based sequence la-
beling, using ngrams of orthographic units as fea-
tures. To some extent, compound splitting can
be seen as a special case of the above two word
segmentation tasks. In particular, our method is
clearly inspired by that of Chinese word segmen-
tation, such as Peng et al. (2004). Although it
might seem obvious to model compound split-
ting as letter sequence labeling in hindsight, it is
not really so in foresight. Both the dominance
of word frequency-based approach and the extra
challenges in morphology makes is less natural to
think in terms of letter operation and labeling.

5 Conclusion and Future Work
Conclusion. This paper has introduced a novel,
effective way of utilizing manually split com-
pounds, which are now available for many lan-
guages, to boost the performance of automatic
compound splitting. The proposed approach is
language independent, as it only uses letter n-
gram features that are automatically generated
from word forms. Such features capture mor-
phological and orthographic regularities without
explicitly encoding linguistic knowledge. More-
over, our approach requires no external NLP mod-
ules such as lemmatizers, morphological analyzers
or POS taggers, which prevents error propagation
and makes it easy to be used in other NLP systems.
The proposed approach significantly outperforms
existing methods.

Future work. We would like to conduct ex-
trinsic evaluations on tasks such as machine trans-
lation to investigate how compound splitting im-

pacts the performance of NLP applications. It is
interesting to study how new features and alterna-
tive sets of labels for letters would influence the
results and to test our approach on other languages
such as Dutch and Swedish.

Acknowledgments

The authors would like to thank Daniël de Kok and
the anonymous reviewers for their helpful com-
ments and suggestions. The financial support for
the research reported in this paper was provided by
the German Research Foundation (DFG) as part of
the Collaborative Research Center “The Construc-
tion of Meaning” (SFB 833), project A3.

References
Enrique Alfonseca, Slaven Bilac, and Stefan Pharies.

2008a. Decompounding query keywords from com-
pounding languages. In Proceedings of ACL: Short
Papers, pages 253–256.

Enrique Alfonseca, Slaven Bilac, and Stefan Pharies.
2008b. German decompounding in a difficult cor-
pus. In Computational Linguistics and Intelligent
Text Processing, pages 128–139. Springer.

Arianna Bisazza and Marcello Federico. 2009. Mor-
phological pre-processing for Turkish to English sta-
tistical machine translation. In Proceedings of the
International Workshop on Spoken Language Trans-
lation, pages 129–135.

Çağrı Çöltekin and John Nerbonne. 2014. An explicit
statistical model of learning lexical segmentation us-
ing multiple cues. In Proceedings of EACL 2014
Workshop on Cognitive Aspects of Computational
Language Learning.

Chris Dyer. 2009. Using a maximum entropy model to
build segmentation lattices for MT. In Proceedings
of NAACL, pages 406–414.

Ilknur Durgar El-Kahlout and François Yvon. 2010.
The pay-offs of preprocessing for German-English
statistical machine translation. In Proceedings of In-
ternational Workshop of Spoken Language Transla-
tion, pages 251–258.

Fabienne Fritzinger and Alexander Fraser. 2010. How
to avoid burning ducks: combining linguistic analy-
sis and corpus statistics for German compound pro-
cessing. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and Metric-
sMATR, pages 224–234.

Alexander Geyken and Thomas Hanneforth. 2005.
Tagh: A complete morphology for german based on
weighted finite state automata. In Finite-State Meth-
ods and Natural Language Processing, pages 55–66.
Springer.

80

Birgit Hamp and Helmut Feldweg. 1997. GermaNet –
a lexical-semantic net for German. In Proceedings
of ACL workshop Automatic Information Extraction
and Building of Lexical Semantic Resources for NLP
Applications, Madrid.

Zellig S Harris. 1955. From phoneme to morpheme.
Language.

Verena Henrich and Erhard Hinrichs. 2010. GernEdiT
– the GermaNet editing tool. In Proceedings of
LREC, pages 2228–2235, Valletta, Malta, May.

Verena Henrich and Erhard Hinrichs. 2011. Determin-
ing immediate constituents of compounds in Ger-
maNet. In Proceedings of the International Con-
ference Recent Advances in Natural Language Pro-
cessing 2011, pages 420–426.

Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.
Experiments with crowdsourced re-annotation of a
POS tagging data set. In Proceedings of ACL, pages
377–382.

Philipp Koehn and Kevin Knight. 2003. Empirical
Methods for Compound Splitting. In EACL, page 8.

John Lafferty, A. McCallum, and F. Pereira. 2001.
Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In Proceed-
ings of International Conference on Machine Learn-
ing, pages 282–289.

Martha Larson, Daniel Willett, Joachim Köhler, and
Gerhard Rigoll. 2000. Compound splitting and lexi-
cal unit recombination for improved performance of
a speech recognition system for german parliamen-
tary speeches. In Proceedings of INTERSPEECH,
pages 945–948.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. In Proceed-
ings of ACL, pages 504–513.

Jianqiang Ma and Erhard Hinrichs. 2015. Accurate
linear-time Chinese word segmentation via embed-
ding matching. In Proceedings of ACL-IJCNLP
(Volume 1: Long Papers), pages 1733–1743, Bei-
jing, China, July.

Klaus Macherey, Andrew M Dai, David Talbot,
Ashok C Popat, and Franz Och. 2011. Language-
independent compound splitting with morphological
operations. In Proceedings of ACL, pages 1395–
1404.

Carla Parra Escartı́n. 2014. Chasing the perfect split-
ter: a comparison of different compound splitting
tools. In LREC, pages 3340–3347.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. In Proceedings
of COLING, pages 562–568.

Maja Popović, Daniel Stein, and Hermann Ney. 2006.
Statistical machine translation of German compound
words. In Advances in Natural Language Process-
ing, pages 616–624. Springer.

Sara Stymne and Maria Holmqvist. 2008. Process-
ing of Swedish compounds for phrase-based statisti-
cal machine translation. In Proceedings of the 12th
Annual Conference of the European Association for
Machine Translation, pages 180–189.

Sara Stymne. 2008. German compounds in factored
statistical machine translation. In Advances in Natu-
ral Language Processing, pages 464–475. Springer.

Sami Virpioja, Jaakko J Väyrynen, Mathias Creutz,
and Markus Sadeniemi. 2007. Morphology-aware
statistical machine translation based on morphs in-
duced in an unsupervised manner. Machine Trans-
lation Summit XI, 2007:491–498.

Marion Weller and Ulrich Heid. 2012. Analyzing and
Aligning German Compound Nouns. In Proceed-
ings of LREC, pages 2–7.

81

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 82–86,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Automatic Detection of Intra-Word Code-Switching

Dong Nguyen12 Leonie Cornips23

1Human Media Interaction, University of Twente, Enschede, The Netherlands
2 Meertens Institute, Amsterdam, The Netherlands

3Maastricht University, Maastricht, The Netherlands
d.nguyen@utwente.nl, leonie.cornips@meertens.knaw.nl

Abstract

Many people are multilingual and they
may draw from multiple language vari-
eties when writing their messages. This
paper is a first step towards analyzing and
detecting code-switching within words.
We first segment words into smaller units.
Then, words are identified that are com-
posed of sequences of subunits associated
with different languages. We demonstrate
our method on Twitter data in which both
Dutch and dialect varieties labeled as Lim-
burgish, a minority language, are used.

1 Introduction

Individuals have their own linguistic repertoire
from which they can draw elements or codes (e.g.,
language varieties). In both spoken and written
communication, multilingual speakers may use
multiple languages in a single conversation, for
example within a turn or even within a syntactic
unit, often referred to as intra- and extra-sentential
code-switching.

In online communication the usage of multi-
ple languages is also prevalent. Over 10% of the
Twitter users tweet in more than one language
(Hale, 2014) and code-switching has been ob-
served on various social media platforms as well
(Androutsopoulos, 2013; Johnson, 2013; Jurgens
et al., 2014; Nguyen et al., 2015). The occur-
rence of code-switching in online communication
has sparked interest in two research directions.

First, the presence of code-switching in text in-
troduces new challenges for NLP tools, since these
tools are usually designed for texts written in a
single language. Recently, various studies have
focused on automatic language identification at
a more-fine grained level, such as words instead
of documents (Solorio et al., 2014), to facilitate

the processing of such texts. Several studies have
adapted NLP tools for code-switched texts (e.g.,
Solorio and Liu (2008) and Peng et al. (2014)).

Second, the availability of social media data
has enabled studying code-switching patterns in
a multitude of social situations and on a larger
scale than datasets collected using more tradi-
tional methods. To fully leverage these large
amounts of data, several recent studies have em-
ployed automatic language identification to study
code-switching patterns in social media (Kim et
al., 2014; Nguyen et al., 2015).

Research in both these directions has so far
studied code-switching by assigning concrete lan-
guages to messages or individual words. How-
ever, the notion of languages or a language im-
plies that languages are concrete, stable, count-
able identities that can be distinguished unprob-
lematically from each other. In reality, however,
people use language: linguistic resources (fea-
tures, items, nouns, morphemes, etc.) that are
recognized by the speakers or others as belonging
to two or more sets of resources (Jørgensen and
Juffermans, 2011). From this perspective, code-
switching can thus occur within words. For exam-
ple, in oetverkocht ‘sold out’, the particle oet ‘out’
is used that is associated with Limburgish whereas
verkocht ‘sold’ is associated with Dutch.

This study is a first step towards detecting
code-switching within words using computational
methods, which could support the processing of
code-switched texts and support sociolinguists in
their study of code-switching patterns. We fo-
cus on tweets from a province in the Netherlands
where a minority language is spoken alongside
Dutch (see Section 3). We automatically segment
the words into smaller units using the Morfessor
tool (Section 4). We then identify words with sub-
units that are associated with different languages
(Section 5).

82

2 Related Work

This paper builds on research on morphology and
automatic language identification.

Morphology We focus on tweets written in
Limburg, a province in the Netherlands. Mor-
phological analysis for Dutch using computational
approaches has been the focus in several stud-
ies. Van den Bosch and Daelemans (1999) pro-
posed a memory-based learning approach. Cast
as a classification problem, morpheme boundaries
were detected based on letter sequences. De Pauw
et al. (2004) built on this work and compared a
memory-based learning method with a finite state
method. One of the characteristic features of
Dutch is diminutive formation (Trommelen, 1983)
and computational approaches have been explored
to predict the correct diminutive suffix in Dutch
(Daelemans et al., 1996; Kool et al., 2000).

McArthur (1998) identified four major types of
code-switching, ranging from tag-switching (tags
and set of phrases) to intra-word switching, where
a change occurs within a word boundary. The oc-
currence of intra-word switching has only been
rarely addressed in computational linguistics re-
search. Habash et al. (2005) developed a mor-
phological analyzer and generator for the Arabic
language family. The tool allows combining mor-
phemes from different dialects.

Language Identification The prevalence of
code-switching in online textual data has gen-
erated a renewed interest in automatic language
identification. Instead of focusing on document
level classification, recent studies have focused on
language identification on a word level to sup-
port the analysis and processing of code-switched
texts (Nguyen and Doğruöz, 2013). In the First
Shared Task on Language Identification in Code-
Switched Data (Solorio et al., 2014), a small frac-
tion of the words were labeled as ‘mixed’, indi-
cating that these words were composed of mor-
phemes from different languages. However, many
participating systems had very low performance,
i.e., zero F-scores, on this particular category
(Chittaranjan et al., 2014; Jain and Bhat, 2014; Bar
and Dershowitz, 2014; Shrestha, 2014). Oco and
Roxas (2012) focused on detecting code-switching
points and noted that intra-word code-switching
caused difficulties to a dictionary based approach.
In this study, we segment words into smaller units
to detect intra-word code-switching.

3 Dataset

We confine our analysis to tweets from users in
the Dutch province of Limburg, the southern-
most province in the Netherlands. The ‘dialects’
of Limburg were extended minor recognition in
1997 under the label ‘Limburgish’ by The Nether-
lands, a signatory of the 1992 European Charter
for Regional and Minority Languages (cf. Cornips
(2013)). To collect users located in Limburg, seed
users were identified based on geotagged tweets
and manual identification. The set was then ex-
panded based on the social network of the users.
Users were then mapped to locations based on
their provided profile location to create the fi-
nal set. Tweets are labeled with languages, such
as Dutch, Limburgish, and English, using an in-
house language identification tool. The dataset is
described in more detail in Nguyen et al. (2015).

4 Morphological Segmentation

The first step in our analysis is to segment the
words into smaller units. We use the Morfessor
Baseline implementation (Virpioja et al., 2013) to
learn a model for what is called morphological
segmentation in an unsupervised manner. Mor-
fessor segments the words into morphs (usually
‘morpheme-like’ units), such that words in the
data can be formed by concatenation of such
morphs.

Training We experiment with two different
sources to train Morfessor: tweets and Wikipedia
texts. The tweets come from the data described
in Section 3. We also downloaded the Dutch
and Limburgish Wikipedia versions. More specif-
ically, we have the following datasets:

• Dutch Wikipedia (NL WIKI)

• Limburgish Wikipedia (LIM WIKI)

• Dutch tweets (NL TWEETS)

• Limburgish tweets (LIM TWEETS)

We exclude words that only occur once. Fol-
lowing Creutz and Lagus (2005), we explore two
different ways for training Morfessor: based on
word tokens (such that the frequencies of words
are taken into account) and based on word types.
Creutz and Lagus (2005) suggest using word
types, which in their experiments led to a higher
recall.

83

Dutch Limburgish
Word tokens Word Types Word tokens Word Types

Data #types P R P R P R P R

NL WIKI 1,377,658 0.976 0.681 0.842 0.765 0.805 0.745 0.662 0.812
LIM WIKI 68,255 0.743 0.806 0.559 0.867 0.752 0.788 0.586 0.839
NL TWEETS 115,319 0.968 0.685 0.833 0.779 0.893 0.745 0.627 0.818

LIM TWEETS 37,054 0.867 0.757 0.648 0.874 0.956 0.711 0.665 0.826
TWEETS + WIKI 1,460,724 0.985 0.674 0.871 0.747 0.955 0.689 0.827 0.771

Table 1: Results of morphological segmentation using Morfessor, reporting Precision (P) and Recall (R)

Evaluation To evaluate the performance of
Morfessor on the Twitter data we randomly an-
notated a set of tweets attributed to either Dutch
or Limburgish, resulting in 330 words from Dutch
tweets and 312 words from Limburgish tweets.
Table 1 reports the precision and recall as cal-
culated by the Morfessor tool. Overall, the per-
formance differences are small. The best perfor-
mance is obtained when Limburgish data is part of
the training data. Furthermore, training on word
tokens results in a higher precision, while training
on word types results in a higher recall, matching
the findings of Creutz and Lagus (2005).

An analysis of the resulting segmentations in
the Twitter data illustrates this even more. We
consider models trained on both the Wikipedia
and Twitter data. A model trained on word to-
kens segments only 23.5% of the words, while
a model trained on word types segments 71.4%
of the words. For our application, a higher
recall is preferred, and thus following Creutz
and Lagus (2005) we use a model trained on
word types in the remaining part of this pa-
per. Example segmentations using this model
are rogstaekersoptocht as rogstaeker+s+optocht
‘carnivalsname+s+parade’, leedjesaovend as leed-
jes+aovend ‘songs+evening’ and zoemetein as
zoe+metein ‘immediately’.

5 Detection of Intra-Word
Code-Switching

We now identify code-switching within words
based on the extracted morphs (e.g., morphemes,
particles, bare nouns and character sequences).

5.1 Language Identification

To identify code-switching within words, we first
compute the association of the morphs with Dutch
and Limburgish. For illustration, we separate

3 LIM roë,wêr, sjw, lië, pke
NL pje, ful, cre, ary, ica

4 LIM wari, ônne, blié, gesj, tere
NL isme, tttt, pppp, gggg, oool

5 LIM oetge, raods, telik, erlik, aafge
NL uitge, erweg, eloos, logie, zwerf

Table 2: Most distinguishing morphs with lengths
3-5 that do not occur on their own, for Dutch (NL)
and Limburgish (LIM) according to the odds ratio.

morphs that occur on their own in the data from
morphs that only occur in combination with other
morphs. For each morph, we compute its probabil-
ity in each language (Dutch and Limburgish) and
apply Laplace smoothing. For each morph, the
odds ratio is then computed as follows (Mladenic
and Grobelnik, 1999), with m being the morph:

log(
P (m|NL)(1− P (m|LIM))
(1− P (m|NL))(P (m|LIM)

) (1)

Since the odds ratio is sensitive to infrequent
words, only morphs were considered that occur
in at least 5 words. Table 2 displays the most
distinguishing morphs that do not occur on their
own. While some of the extracted morphs are
not strictly morphemes but grapheme sequences,
they do seem to reflect the differences between the
Dutch and Limburgish language. One example is
reflected in pje and pke. The diminutive je is as-
sociated with Dutch, while ke is associated with
Limburgish. We also see the frequent use of di-
acritics, characteristic of Limburgish orthography.
The results are also affected by the informal na-
ture of social media, such as the use of lengthening
in the extracted morphs (e.g., oool). Furthermore,
the occurrence of English words has led to morphs
like ary (from, e.g., anniversary) and ful. We also

84

3 LIM oèt, veu, iér, vuu, ôch
NL gro, hor, cal, tec, ish

4 LIM hoëg, kaup, roop, stök, zurg
NL rook, rouw, uuuu, ship, doek

5 LIM slaop, sjaol, paort, hoeëg, rieje
NL fonds, dorps, kruis, kraam, keten

Table 3: Most distinguishing morphs with lengths
3-5 that do occur on their own, for Dutch (NL) and
Limburgish (LIM) according to the odds ratio.

see oetge and uitge where oet ‘out’ is associated
with Limburgish. Table 3 shows the distinguish-
ing morphs that do occur on their own. In this
table we find many units that are bare nouns, like
rook (‘smoke’), rouw (‘mourning’), etc.

5.2 Identified Words
Since many words are cognates in Dutch and Lim-
burgish, we apply a strict threshold to assign the
extracted units to a single language (1.5 and -1.5
odds ratio). We then extract all words that are
composed of sequences of units that are associated
with different languages.

Results In total 50 words were identified. We
manually checked whether they were correct, and
if not, the type of error that was made (Table 4).
Since Limburgish is a label for various dialect va-
rieties, we consulted several sources to determine
the Limburgish form(s).1

Type Freq %

Correct 17 34%
Error: name 15 30%
Error: concatenation 2 4%
Error: English 2 4%
Error: spelling mistake 2 4%
Error: other 12 24%

Table 4: Evaluation of the identified words.

An example of an identified word with code-
switching is cijfer + kes ‘small numbers’. The
Limburgish plural diminutive kes is combined
with the Dutch noun cijfer ‘number’ whereas
/‘si:f@ö/ is associated with Limburgish. As an-
other example, in sjlaag + boom (‘crossing gate’)
Limburgish sjlaag (palatized /s/) is combined with
Dutch boom (instead of /bO:m/).

1eWND (www.meertens.knaw.nl/dialectwoordenboeken/),
WLD (dialect.ruhosting.nl/wld/zoeken materiaalbases.html)
and Limburghuis (www.limburghuis.nl/).

Error analysis Manual inspection of the identi-
fied words shows that the informal nature of the
Twitter data makes the task challenging. In par-
ticular, spelling mistakes (e.g., woendag ‘Wednes-
day’ instead of woensdag), the occurrence of En-
glish words (e.g., wearable), and concatenated
words (e.g., kleiduivenschieten instead of klei-
duiven schieten) were sometimes incorrectly iden-
tified as words containing code-switching. Fur-
thermore, most of the errors were names that
were incorrectly identified (prinsestraat, kleistek-
erstraat). We therefore expect that more prepro-
cessing, like removing named entities, would im-
prove the system.

6 Conclusion

Research using automatic language identification
to study code-switching patterns has so far focused
on assigning languages to messages or individual
words (Nguyen et al., 2016). This study is a first
step towards automatic language identification and
analysis of code-switching patterns within words.
Our experiments demonstrate that Twitter users do
code-switch within words and are creative in their
language use by combining elements from both
the standard language (Dutch) and the minority
language (Limburgish).

The precision of the system could be improved
by applying more preprocessing steps, such as fil-
tering named entities. Evaluation was challenging
due to the difficulty of labeling languages on such
a fine-grained level as the extracted morphs. In
particular, when focusing on minority languages
such as Limburgish for which no standard exists
and which shares many cognates with Dutch, it is
not always clear whether a certain variant is asso-
ciated with Dutch, Limburgish, or both. A future
study could focus on a more extensive evaluation
of the system.

Acknowledgements

This research was supported by the Netherlands
Organization for Scientific Research (NWO),
grants 314-98-008 (Twidentity) and 640.005.002
(FACT).

References
Jannis Androutsopoulos. 2013. Code-switching in

computer-mediated communication. In Pragmatics
of Computer-Mediated Communication. De Gruyter
Mouton.

85

Kfir Bar and Nachum Dershowitz. 2014. The Tel Aviv
university system for the code-switching workshop
shared task. In Proceedings of the First Workshop
on Computational Approaches to Code Switching.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and
Monojit Choudhury. 2014. Word-level language
identification using CRF: Code-switching shared
task report of MSR India system. In Proceedings of
the First Workshop on Computational Approaches to
Code Switching.

Leonie Cornips. 2013. Recent developments in the
Limburg dialect region. In Frans Hinskens and Jo-
han Taeldeman, editors, Language and Place. An
International Handbook of Linguistic Variation. De
Gruyter Mouton.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Helsinki
University of Technology.

Walter Daelemans, Peter Berck, and Steven Gillis.
1996. Unsupervised discovery of phonological cate-
gories through supervised learning of morphological
rules. In Proceedings of COLING 1996.

Guy De Pauw, Tom Laureys, Walter Daelemans, and
Hugo Van hamme. 2004. A comparison of two
different approaches to morphological analysis of
Dutch. In Proceedings of the Seventh Meeting of
the ACL Special Interest Group in Computational
Phonology.

Nizar Habash, Owen Rambow, and George Kiraz.
2005. Morphological analysis and generation for
Arabic dialects. In Proceedings of the ACL Work-
shop on Computational Approaches to Semitic Lan-
guages.

Scott A. Hale. 2014. Global connectivity and multilin-
guals in the Twitter network. In CHI ’14.

Naman Jain and Riyaz Ahmad Bhat. 2014. Language
identification in code-switching scenario. In Pro-
ceedings of the First Workshop on Computational
Approaches to Code Switching.

Ian Johnson. 2013. Audience design and commu-
nication accommodation theory: Use of Twitter by
Welsh-English biliterates. In Social Media and Mi-
nority Languages: Convergence and the Creative In-
dustries. Multilingual Matters.

J. Normann Jørgensen and Kasper Juffermans. 2011.
Languaging.

David Jurgens, Stefan Dimitrov, and Derek Ruths.
2014. Twitter users #codeswitch hashtags!
#moltoimportante #wow. In Proceedings of the First
Workshop on Computational Approaches to Code
Switching.

Suin Kim, Ingmar Weber, Li Wei, and Alice Oh. 2014.
Sociolinguistic analysis of Twitter in multilingual
societies. In Proceedings of the 25th ACM confer-
ence on Hypertext and social media.

Anne Kool, Walter Daelemans, and Jakub Zavrel.
2000. Genetic algorithms for feature relevance as-
signment in memory-based language processing. In
Proceedings of CoNLL-2000 and LLL-2000.

Tom McArthur. 1998. Code-mixing and code-
switching. Concise Oxford companion to the En-
glish language.

Dunja Mladenic and Marko Grobelnik. 1999. Feature
selection for unbalanced class distribution and Naive
Bayes. In Proceedings of ICML ’99.

Dong Nguyen and A. Seza Doğruöz. 2013. Word level
language identification in online multilingual com-
munication. In Proceedings of EMNLP 2013.

Dong Nguyen, Dolf Trieschnigg, and Leonie Cornips.
2015. Audience and the use of minority languages
on Twitter. In Proceedings of ICWSM 2015.

Dong Nguyen, A. Seza Doğruöz, Carolyn P. Rosé, and
Franciska de Jong. 2016. Computational sociolin-
guistics: A survey. To appear in Computational Lin-
guistics.

Nathaniel Oco and Rachel Edita Roxas. 2012. Pat-
tern matching refinements to dictionary-based code-
switching point detection. In PACLIC 26.

Nanyun Peng, Yiming Wang, and Mark Dredze.
2014. Learning polylingual topic models from code-
switched social media documents. In ACL 2014.

Prajwol Shrestha. 2014. Incremental n-gram approach
for language identification in code-switched text.
In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching.

Thamar Solorio and Yang Liu. 2008. Part-of-speech
tagging for English-Spanish code-switched text. In
Proceedings of EMNLP 2008.

Thamar Solorio, Elizabeth Blair, Suraj Mahar-
jan, Steven Bethard, Mona Diab, Mahmoud
Ghoneim, Abdelati Hawwari, Fahad AlGhamdi, Ju-
lia Hirschberg, Alison Chang, and Pascale Fung.
2014. Overview for the first shared task on language
identification in code-switched data. In Proceedings
of the First Workshop on Computational Approaches
to Code Switching.

Mieke Trommelen. 1983. The Syllable in Dutch. Wal-
ter de Gruyter.

Antal Van den Bosch and Walter Daelemans. 1999.
Memory-based morphological analysis. In Proceed-
ings of ACL 1999.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, Mikko
Kurimo, et al. 2013. Morfessor 2.0: Python imple-
mentation and extensions for Morfessor baseline.

86

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 87–92,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Read my points: Effect of animation type when speech-reading from
EMA data

Kristy James
University of Groningen

Saarland University
kristyj@coli.uni-saarland.de

Martijn Wieling
University of Groningen

The Netherlands
m.b.wieling@rug.nl

Abstract

Three popular vocal-tract animation
paradigms were tested for intelligibility
when displaying videos of pre-recorded
Electromagnetic Articulography (EMA)
data in an online experiment. EMA tracks
the position of sensors attached to the
tongue. The conditions were dots with
tails (where only the coil location is
presented), 2D animation (where the dots
are connected to form 2D representations
of the lips, tongue surface and chin), and
a 3D model with coil locations driving
facial and tongue rigs. The 2D anima-
tion (recorded in VisArtico) showed the
highest identification of the prompts.

1 Introduction

Electromagnetic Articulography (EMA) is a pop-
ular vocal-tract motion capture technique used
increasingly for second language learning and
speech therapy purposes. In this situation, an in-
structor aids the subject to reach a targeted vocal
tract configuration by showing them a live aug-
mented visualization of the trajectories of (some
of) the subject’s articulators, alongside a targeted
configuration.

Current research into how subjects respond to
this training uses a variety of different visualiza-
tions: Katz et al. (2010) and Levitt et al. (2010)
used a ‘mouse-controlled drawing tool’ to indicate
target areas as circles on the screen, with the for-
mer displaying an ‘image of [the] current tongue
position’, the latter displaying a ‘tongue trace’.
Suemitsu et al. (2013) displayed a mid-sagittal
representation of the tongue surface as a spline be-
tween three sensors along the tongue, as well as
showing a palate trace and lip coil positions and
targets as circles. Katz and Mehta (2015) used

a 3D avatar with a transparent face mesh, pink
tongue rig, including colored shapes that lit when
touched as targets.

For audiovisual feedback scenarios the optimal
manner of presenting the stimuli has not yet been
explicitly studied, but rather the experiments have
reflected recent software developments. Mean-
while, different tools (Tiede, 2010; Ouni et al.,
2012) have emerged as state of the art software
for offline processing and visualization. The claim
that subjects make gains in tongue gesture aware-
ness only after a practice period with the visualiza-
tion (Ouni, 2011) underlies the need for research
into how EMA visualizations can best be pre-
sented to subjects in speech therapy or L2-learning
settings.

The main inspiration for this work is the find-
ing of Badin et al. (2010) that showing normally-
obscured articulators (as opposed to a full face,
with and without the tongue) has a positive effect
on the identification of VCV stimuli. An estab-
lished body of research already focuses on quan-
tifying the intelligibility-benefit or realism of an-
imated talking heads, ideally as compared to a
video-realistic standard (Ouni et al., 2007; Cosker
et al., 2005). However, as the articulators that
researchers/teachers wish to present to their sub-
jects in the aforementioned scenario are generally
outside the line of sight, these evaluation meth-
ods cannot be directly applied to intra-oral visu-
alizations. We aim to fill this gap by comparing
commonly-used EMA visualizations to determine
which is most intelligible,1 hoping this may guide
future research into the presentation of EMA data
in a visual feedback setting.

1This word-identification task differs from the most com-
mon speech-training usage whereby a learner’s attention is
drawn to the difference between a live animation of their
movements and some reference placement or movement.

87

2 Method

In this experiment, animations of eighteen CVC
English words were presented in silent conditions
to participants of differing familiarity levels with
vocal tract animations in an online survey; sub-
jects were asked to identify the word in a forced-
choice paradigm (a minimal pair of the prompt
could also be chosen) and later give qualitative
feedback about their experience speech-reading
from the different systems.2

2.1 Participants

Participants were recruited through promotion on
social media, university mailing lists, on the inter-
net forum Reddit and on Language Log. In sum,
136 complete responses were collected, with three
of these excluded for breaking the experiment over
several days. We analyze the results of all 84 na-
tive English speakers. Participants had varying
levels of previous exposure to vocal tract anima-
tions: of those analysed 43% had seen such ani-
mations before, 25% had no exposure, 25% had
studied some linguistics but not seen such anima-
tions, and 6% considered themselves experts in the
topic.

2.2 Stimuli

The prompts presented were nine minimal pairs
of mono-syllabic CVC words spoken by a single
British female speaker recorded for the study of
Wieling et al. (2015).

Three of the pairs differed in the onset conso-
nant, three in the vowel, and three in the coda con-
sonant. Care was taken that the pairs had a signif-
icant difference in place or manner that would be
visible in the EMA visualization.

In order to compare the animations, they were
standardized as follows: a frontal view was pre-
sented on the left half of the screen, a mid-sagittal

2The experimental design also collected data about
whether subjects could perceive differences between the
competing animation paradigms, for a separate research
question.

Onset Nucleus Coda
sad/bad bet/bit time/ties

mess/yes mat/mitt sum/sun
bale/tale whale/wheel maid/male

Table 1: Prompt minimal pairs, by location of dif-
ference.

view with the lips to the left on the right half.
No waveform or labeling information was dis-
played. Lip coils were green, tongue coils red
and chin/incisor coils blue. Where surfaces were
shown, lips were pink, and tongues were red. A
palate trace, made using each tool’s internal con-
struction method, was displayed in black. A white
or light grey background was used.

The animations were produced as follows: Dots
with tails were produced using functions from
Mark Tiede’s MVIEW package (Tiede, 2010),
with an adapted video-production script for the
standardizations mentioned above. 2D anima-
tions were produced from VisArtico (Ouni et al.,
2012), using the internal video-production pro-
cesses. 3D animations were produced using
a simulated real-time animation of the data in
Ematoblender (James, 2016), which manipulates
an adapted facial rig from MakeHuman in the
Blender Game Engine. See Figure 1 for examples
of the three types of visualizations.

2.3 Procedure

This experiment was hosted on the platform Sur-
veyGizmo. Firstly the EMA data was explained
and participant background information was col-
lected. This included information about previous
exposure to linguistics studies and vocal tract vi-
sualizations. A brief training session followed, in
which participants saw four prompts covering a
wide range of onset and coda consonants in all
three animation systems. They were free to play
these animations as many times as they wished.

Subsequently, subjects were presented with two
silent animations. The animations were either
matching or non-matching (minimal pair) stim-
uli, which were displayed as HTML5 videos in
web-friendly formats. They were controlled only
by separate ‘Play’ buttons below each video. For
each of these animations the subject was presented
with four multiple choice options (one correct, one
minimal pair, one randomly chosen pair, with the
items and order retained across both questions).
They were also asked to rate whether they believed
the two stimuli to be the same word or not.

Upon submitting their answers, the subject was
asked to view the videos again (as often as they
liked) with sound, allowing them to check their
answers and learn the mapping between anima-
tion and sound. The time that they spent viewing
each prompt (for identification and after the an-

88

(a) Dots with tails (b) 2D graphics
(c) 3D graphics

Figure 1: Different animation paradigms tested.

sum
time
sad
bet

whale
bad
mat
bale
sun

male
tale

mess
yes
ties
mitt
bit

maid
wheel

3D Dots 2D
Visualization system

P
ro

m
pt

0.00

0.25

0.50

0.75

1.00

Mean
Score

Figure 2: Prompt variability by animation type.
Lighter colors indicate a better response.

swer was revealed) was also measured. After each
three questions they were asked to rate their con-
fidence at guessing the prompts’ identities. Then
after twelve questions they were asked to comment
about their strategies. Finally, they could complete
another six questions, or skip to the concluding
qualitative questions.

3 Data Analysis

The prompt identification task yielded a bino-
mial dataset based on the correctness of the iden-
tification. The random assignment of prompt
pairs to system combinations led to an unbalanced
dataset, which motivated the use of generalized
linear mixed-effects regression models (GLMMs)
for analysis (Bates et al., 2015). Random inter-
cepts and slopes were included if they improved
the model in a model comparison procedure.

In order to take into account the variability in
subject responses, random intercepts for subject
were included. Similarly, random intercepts were
included for each prompt. The prompt variability
was quite extensive and is visualized in Figure 2.

ID model
(Intercept) −0.26(0.14)
SYSM −0.08(0.11)
SYSV 0.27(0.11)∗

AIC 3261.90
Num. obs. 2486
Num. groups: RESPID 83
Num. groups: PROMPT 18
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Coefficient, standard error and signifi-
cance and of fixed effects for the mixed model of
the identification dataset. 2D animations (SYSV)
improve identification significantly over the base-
line (3D animations). Table created with texreg
(Leifeld, 2013).

4 Results

The resulting model for the identification data in-
cluded random intercepts for the subject, random
intercepts for the prompt (with a random slope for
the match-mismatched condition), and a fixed ef-
fect for the system, shown in Table 2. The 2D ani-
mation was significantly better-identified than the
3D animation. The Dots animation was slightly
(but not significantly) less well-performing than
the 3D animation.

Even within the most intelligible system (2D
graphics), it is evident that there is much variabil-
ity in how well participants are able to identify the
various prompts (see Figure 2). A generalized lo-
gistic mixed-effects regression model was fitted to
analyze the effects of onset and coda consonants
and the nuclear vowel in the prompts.

When assessing the effect of either onset, coda
or nucleus on how well people were able to detect
the correct utterance, we found that the type of nu-
cleus (i.e. the vowel) was most important. For ex-
ample, whenever a stimulus contained the vowel
/a/ its recognition was better than with a different

89

vowel. In contrast, a stimulus with the vowel /i/
was much less well recognized. As the vowel ne-
cessitates greater movements of especially the lips
than consonants, it makes sense that the type of
vowel is an important predictor. Given that we
only had a limited number of stimuli, including
the onset or coda together with the nucleus did not
help predict the recognition of the stimulus.

The hypothesized effect on the identification
score of question number and time spent watch-
ing the videos (a learning effect was expected) was
not borne out in the results. Though many sub-
jects improved over time, others worsened, which
could be attributed to fatigue or boredom during
the long experiment. Similarly, including the sub-
jects’ previous experience with linguistics and vo-
cal tract visualizations did not significantly im-
prove the model.

5 Discussion

5.1 Identification strategies

The model’s identification of the ease of inter-
preting 2D animations was reflected in partici-
pants’ comments about the strategies they used for
speech-reading. The frequency with which these
strategies were mentioned is shown in Table 3.

Strategy Frequency
Lip aperture/shape 71
Mimic the animation 56
Tongue placement/movement 48
Tongue-palate contact/distance 25
Knowledge of phonetics 21
Deduce using answer options 15
Tongue timing 7
Start/end position 5
Counting syllables/gestures 3
Vowel length 2
Visualize someone else 1

Table 3: Identification strategy frequency by num-
ber of mentions over all participants.

One participant (ID 1233) summed up the par-
ticular difficulty of the ‘dots with tails’ system suc-
cinctly: “In the ones with lips and tongue, I spoke
each of the possible answers myself and tried to
envision how closely my own lips and tongue re-
sembled the videos. In the one with just dots, I
was purely guessing.”

5.2 Pitfalls of the 3D animation

Whereas it might seem somewhat surprising that
the 3D animation did not result in (significantly)
better recognition over the simplest representation
(dots with tails), participants’ comments highlight
some possible causes.

Firstly, the colors of the lips and tongue were
similar, which was especially problematic in the
front view of this experiment. Though the color
choices were made based on VisArtico’s color
scheme, the 2D animation avoids this problem by
excluding the tongue from the frontal view.

Secondly, participants expressed that they
would have liked to see teeth and a facial expres-
sion in the 3D animation. They also commented
that they expected more lip-rolling movement. In-
deed, seeing a more realistic avatar with these cru-
cial elements missing may have been somewhat
unnatural-looking.

Some linguistically-experienced participants
also indicated that they expected a detailed 3D
avatar to also indicate nasality, the place where
the soft and hard palates meet, or ‘what the throat
is doing’. Unfortunately, this information is not
available using EMA data.

Finally, many subjects commented that they
found the 3D animation ‘too-noisy’ and preferred
the ‘clean’ and ‘clearer’ 2D option.3 Subjects’ de-
scriptions of their personal identification strategies
indicates that they often used lip-reading strate-
gies, and that this was easier in 2D where the lip
shape was clear, and there was no difficulty with
any color contrasts from the tongue. While the
graphics quality of the 3D system was not as clear
as for the other systems, the setup is similar to the
3D state of the art such as reported in Katz et al.
(2014).4

5.3 Additional observations

Though the speaker and analyzed participants all
identified themselves as English native speak-
ers, two American participants noted that they

3Due to a combination of video capture technique and
data streaming rate (the 3D system was recorded with real-
time processing) the frame rate of the 3D system was lower
than the other systems. Consequently, some participants also
commented they wished for smoother 3D animations.

4The shapes of the tongue and lips in the 3D animation are
controlled by internal constraints within the Blender Game
Engine, and are dependent on the mesh shape. The perfor-
mance of the 3D graphics could be improved by using a more-
detailed facial rig and mesh and allowing a slower rendering
(or using a faster game engine).

90

perceived the British speaker as having a for-
eign/German accent. Several participants men-
tioned that their main tactic was mimicking the
speaker saying the answer options (and in doing
so mimicking their interpretation of the speaker’s
accent), which they on occasion found difficult.
This underlines the usefulness of using dialect-
appropriate trajectories for the speech-reader.

In this experiment, all animations were based
on EMA recordings from a single speaker in one
recording session. In general usage however,
the differing coil placement for each subject and
recording session may also affect the identification
ability. Other visualization methods (e.g., cine-
radiography or MRI) give a high-dimensional pic-
ture of the vocal tract and avoid these problems.
However, these technologies are not practical for
real-time speech training due to their health-risk
and cost, respectively. One strategy to compensate
for this problem when creating the animations is to
use photos of the coil placement during recording
to manually specify the offset from the intended
placement on the articulator. For example, VisAr-
tico allows the user to specify whether the lip coils
were placed close to or above/below the lip open-
ing.

6 Conclusion

In sum, the simplicity and clarity of 2D graphi-
cal animations is preferable for subjects to iden-
tify silent animations of EMA data. The features
of the most successful animation paradigm sug-
gest that future EMA-animations should include
both indications of lip and tongue surface shape.
If used, 3D models should ensure that they pro-
vide clear and clean demonstrations, in which the
edges of the articulators (particularly in the frontal
view) can easily be distinguished.

References
Pierre Badin, Yuliya Tarabalka, Frédéric Elisei, and

Gérard Bailly. 2010. Can you ‘read’ tongue move-
ments? Evaluation of the contribution of tongue dis-
play to speech understanding. Speech Communica-
tion, 52(6):493–503.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects mod-
els using lme4. Journal of Statistical Software,
67(1):1–48.

Blender. https://www.blender.org/. Ac-
cessed: 2016-04-14.

Darren Cosker, Susan Paddock, David Marshall, Paul L
Rosin, and Simon Rushton. 2005. Toward percep-
tually realistic talking heads: Models, methods, and
mcgurk. ACM Transactions on Applied Perception
(TAP), 2(3):270–285.

Kristy James. 2016. Watch your tongue and read my
lips: a real-time, multi-modal visualisation of ar-
ticulatory data. Master’s thesis, Saarland Univer-
sity/University of Groningen.

William F Katz and Sonya Mehta. 2015. Visual feed-
back of tongue movement for novel speech sound
learning. Frontiers in human neuroscience, 9.

William F Katz, Malcolm R McNeil, and Diane M
Garst. 2010. Treating apraxia of speech (AOS) with
EMA-supplied visual augmented feedback. Aphasi-
ology, 24(6-8):826–837.

WF Katz, Thomas F Campbell, Jun Wang, Eric Farrar,
J Coleman Eubanks, Arvind Balasubramanian, Bal-
akrishnan Prabhakaran, and Rob Rennaker. 2014.
Opti-speech: A real-time, 3D visual feedback sys-
tem for speech training. In Proc. Interspeech.

r/languagelearning. https://www.reddit.com/
r/languagelearning/. Accessed: 2016-04-
14.

Philip Leifeld. 2013. texreg: Conversion of statisti-
cal model output in R to LATEX and HTML tables.
Journal of Statistical Software, 55(8):1–24.

June S Levitt and William F Katz. 2010. The effects of
EMA-based augmented visual feedback on the En-
glish speakersácquisition of the Japanese flap: a per-
ceptual study. stroke, 4:5.

Mark Liberman. 2016. Language Log.
http://languagelog.ldc.upenn.edu/
nll/?p=24223. Accessed: 2016-04-14.

MakeHuman Open Source tool for making 3D
characters. http://www.makehuman.org/
download.php. Accessed: 2016-02-09.

Slim Ouni, Michael M Cohen, Hope Ishak, and Do-
minic W Massaro. 2007. Visual contribution to
speech perception: measuring the intelligibility of
animated talking heads. EURASIP Journal on Au-
dio, Speech, and Music Processing, 2007(1):3–3.

Slim Ouni, Loı̈c Mangeonjean, and Ingmar Steiner.
2012. VisArtico: a visualization tool for artic-
ulatory data. In 13th Annual Conference of the
International Speech Communication Association-
InterSpeech 2012.

Slim Ouni. 2011. Tongue Gestures Awareness and
Pronunciation Training. In ISCA, editor, 12th An-
nual Conference of the International Speech Com-
munication Association - Interspeech 2011, Flo-
rence, Italy, August. (accepted).

r/samplesize. https://www.reddit.com/r/
SampleSize. Accessed: 2016-04-14.

91

SurveyGizmo. http://www.surveygizmo.
com/. Accessed: 2015-11-13.

Atsuo Suemitsu, Takayuki Ito, and Mark Tiede. 2013.
An electromagnetic articulography-based articula-
tory feedback approach to facilitate second language
speech production learning. In Proceedings of Meet-
ings on Acoustics, volume 19, page 060063. Acous-
tical Society of America.

Mark Tiede. 2010. MVIEW: Multi-channel visual-
ization application for displaying dynamic sensor
movements. unpublished.

Martijn Wieling, Pauline Veenstra, Patti Adank, An-
drea Weber, and Mark Tiede. 2015. Comparing L1
and L2 speakers using articulography. In Proceed-
ings of the 18th International Congress of Phonetic
Sciences. University of Glasgow, August.

92

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 93–98,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Predicting the Direction of Derivation in English Conversion

Max Kisselew∗, Laura Rimell†, Alexis Palmer‡, and Sebastian Padó∗
∗ IMS, Stuttgart University, Germany

{pado,kisselmx}@ims.uni-stuttgart.de
† Computer Laboratory, University of Cambridge, UK

laura.rimell@cl.cam.ac.uk
‡ Leibniz ScienceCampus, ICL, Heidelberg University, Germany

palmer@cl.uni-heidelberg.de

Abstract

Conversion is a word formation operation
that changes the grammatical category of
a word in the absence of overt morphol-
ogy. Conversion is extremely productive
in English (e.g., tunnel, talk). This paper
investigates whether distributional informa-
tion can be used to predict the diachronic
direction of conversion for homophonous
noun–verb pairs. We aim to predict, for ex-
ample, that tunnel was used as a noun prior
to its use as a verb. We test two hypotheses:
(1) that derived forms are less frequent than
their bases, and (2) that derived forms are
more semantically specific than their bases,
as approximated by information theoretic
measures. We find that hypothesis (1) holds
for N-to-V conversion, while hypothesis (2)
holds for V-to-N conversion. We achieve
the best overall account of the historical
data by taking both frequency and seman-
tic specificity into account. These results
provide a new perspective on linguistic the-
ories regarding the semantic specificity of
derivational morphemes, and on the mor-
phosyntactic status of conversion.

1 The Morphology of Conversion

Word formation operations that change the gram-
matical category of a word in the absence of overt
morphology pose interesting linguistic challenges.
Such operations are highly productive in English,
especially between the categories of noun and
verb (consider examples such as tunnel or walk,
also more recent examples such as email). This
phenomenon is also observed in other languages,
for example German (Vogel, 1996), Dutch (Don,
1993), Hungarian (Kiefer, 2005), and Bulgarian
(Manova and Dressler, 2005). We call these cases

“conversion”, without any theoretical commitment.
Conversion in English, especially N-to-V con-

version, has been extensively studied within mor-
phology and syntax. Historically, accounts for this
phenomenon involved (a) conversion (proper), a
category-changing word-formation operation as-
sumed to be different from other types of deriva-
tional morphology (Koziol, 1937; Bauer, 1983;
Plag, 1999), or (b) zero-derivation, involving a
derivational affix akin to -ize, -ify, -er, etc., but
which happens to be phonologically null (Bloom-
field, 1933; Marchand, 1969; Kiparsky, 1982).
Most current syntactic theories of conversion,
though, are based on underspecification. This is
the idea that meaning-sound correspondences are
stored in the lexicon as uncategorized roots and ob-
tain a grammatical category when combined with
syntactic heads, which may be phonologically null
or overt (Halle and Marantz, 1993; Pesetsky, 1995;
Hale and Keyser, 2002; Borer, 2005a; Arad, 2005).

The range of meanings resulting from conver-
sion has been a key source of evidence for various
theoretical approaches. Verbs derived via N-to-V
conversion can have a wide variety of meanings,
seemingly constrained only by the template ‘action
having to do with the noun’, such as in the phrase
celluloid the door open, meaning ‘use a credit card
to spring the lock open’ (Clark and Clark, 1979).
V-to-N conversion has a narrower semantic range.
It is likely to result in a noun referring to the event
described by the verb or to its result, e.g. talk
(Grimshaw, 1990).

This paper presents a computational study of
conversion: we study which factors are able to ac-
count for diachronic precedence in cases of English
V-to-N and N-to-V conversion. The goal is to pre-
dict, e.g., that tunnel was originally used as a noun
and walk as a verb. Historical precedence provides
a theory-neutral ground truth which we treat as a
proxy for the actual direction of conversion.

93

We use methods from distributional semantics
to test two morphological hypotheses: (1) that de-
rived forms are less frequent than their bases, and
(2) that derived forms are more semantically spe-
cific than their bases. We use information theoretic
measures to gauge semantic specificity, applying
these measures for the first time to theoretical ques-
tions regarding derivational morphology.

2 The Direction of Derivation

We analyze corpus data as a source of evidence for
the direction of derivation in lemmas attested in
both nominal and verbal contexts. We take histori-
cal precedence as the gold standard for the gram-
matical category of the base. For example, the
lemma tunnel was first attested in English as a
noun around the year 1440, and as a verb in 1577,
according to the Oxford English Dictionary. The
gold standard direction of derivation is therefore
N-to-V. On the other hand, the lemma drive was
first attested as a verb around 900 and as a noun in
1697, so the gold standard direction is V-to-N.

The idea of predicting a direction of derivation
is not uncontroversial from a theoretical perspec-
tive. According to underspecification accounts of
conversion, there is no direction to predict, since
both nominal and verbal uses result from syntactic
categorization of a root which is unspecified for
category. Nevertheless, even underspecification al-
lows for the fact that some roots seem to be used
primarily in one category or another (Harley and
Noyer, 1999; Arad, 2005; Borer, 2005b). More-
over, historical precedence provides an objective
ground truth, regardless of any particular theory of
word formation (Rimell, 2012).

Gold Standard. Our gold standard consists of
1,044 English lemmas which have undergone N-
to-V conversion and 948 lemmas which have un-
dergone V-to-N conversion. We obtained the his-
torical precedence data from CELEX (Baayen et
al., 1995) using the WebCelex interface.1 N-to-V
lemmas are coded in CELEX as monomorphemic
nouns and also conversion verbs; V-to-N lemmas
are monomorphemic verbs and also conversion
nouns.2 We limited the dataset to lemmas which
are monomorphemic in their base grammatical cat-

1http://celex.mpi.nl
2N-to-V lemmas have a CELEX entry with Class=N (part

of speech) and MorphStatus=M (monomorphemic), and a
second entry with Class=V and MorphStatus=Z (conversion).
The converse holds for V-to-N lemmas.

egory in order to avoid root compounds and de-
nominal verbs formed from already-derived nouns,
such as leverage and commission, which we be-
lieved would complicate the analysis. We manually
excluded a handful of lemmas which appeared in
both CELEX searches due to polysemy.

3 Methods

3.1 Hypotheses

We advance two main hypotheses which can be
investigated in a corpus-based fashion.

1. Derived forms are less frequent than their base
words.

2. Derived forms are semantically more specific
than their base words.

The first hypothesis is not entirely straightforward,
since some derived forms are in fact more frequent
than their bases, especially when the base is fre-
quent (Hay, 2001). However, derived forms have
been found to have lower frequency than their bases
in general (Harwood and Wright, 1956; Hay, 2001);
therefore, while the hypothesis as stated may be an
oversimplification, we use it as a first approxima-
tion to a frequency-related analysis of conversion.

The second hypothesis corresponds to the Mono-
tonicity Hypothesis of Koontz-Garboden (2007),
which states that derivational morphemes always
add content to their bases, in the form of compo-
sitional lexical semantic operators. Linguistic sup-
port for this proposal comes from cross-linguistic
examination of word-formation operations, such
as causative and anticausative operations on verbs.
If conversion is the result of a phonologically null
derivational affix, we would expect the Monotonic-
ity Hypothesis to hold. Semantic specificity, or
complexity – with a derived word assumed to have
a more complex, or narrower, meaning because it
has more semantic subcomponents – has also been
used as a diagnostic for the direction of derivation
in conversion (Plag, 2003), but based on linguistic
judgments rather than distributional semantics.

The rest of this section is concerned with opera-
tionalizing these two hypotheses. We first describe
the corpus that we are using, then the semantic
representations that we construct from it to pur-
sue the second hypothesis, and finally the concrete
predictors that instantiate the hypotheses.

94

3.2 Corpus
Our corpus is a concatenation of the lemmatized
and part-of-speech (PoS) tagged BNC3 and ukWaC
corpora4, containing 2.36 billion tokens. Both cor-
pora are widely used for building distributional
spaces. Together, they cover a large range of text
types both in terms of genres and of domains.

Since we will use this corpus to extract informa-
tion about the noun and verb usages of morpholog-
ically unmarked conversion cases, it is a pertinent
question how well standard part-of-speech taggers
recognize this distinction. To test this, we carried
out a manual annotation study.

From each corpus we extracted 33 examples
each of 100 lemmas, chosen randomly from the
lemmas in the gold standard, half on the N-to-
V conversion list and the other half on the V-to-
N list. Two of the authors, both native English
speakers, annotated the PoS tags for correctness.
Inter-annotator agreement was κ=0.68. Overall,
the accuracy of the PoS tags was 85%, which we
considered sufficiently reliable for good quality
category-specific representations.5

While many lemmas and their instances were
straightforward to annotate as either noun or verb,
some examples presented difficulties. Two promi-
nent cases were gerunds and adjectival forms
(forked tongue, fuselage was skinned with alu-
minum), although there were a variety of other, less
frequent cases. In these instances we used the overt
inflectional morphology as a guide; for example,
-ing or -ed endings indicated a verb. This strategy
is based on the fact that inflectional morphology
strictly selects for the part of speech of its base.

3.3 Vector Representations
To measure semantic specificity, we perform a
distributional analysis which represents each con-
version case with two 10,000-dimensional bag-of-
words vectors: one for the verb and one for the
noun, relying on automatic PoS tags (cf. Sec-
tion 3.2). The dimensions correspond to the most
frequent content words in the corpus. The context
window size is set to 5 words on either side of
the target. Following standard practice, we apply

3http://www.natcorp.ox.ac.uk, tagged with the
CLAWS4 tagger and the C5 tagset

4http://wacky.sslmit.unibo.it, tagged with Tree-
Tagger and the Penn Treebank tagset

5We performed the same annotation on Wikipedia data,
tagged with TreeTagger and the Penn Treebank tagset, but
found the automatic PoS tagging to be less reliable. Therefore,
we excluded it from consideration.

a Positive Pointwise Mutual Information (PPMI)
transformation and L1-normalize each vector.6

Downsampling. The use of vectors based on co-
occurrence counts poses a methodological diffi-
culty, because word frequency is a potential con-
founder for the information-theoretic measures
with which we operationalize the specificity hy-
pothesis (Section 3.4). The potential difficulty
arises because more frequent words might have
denser vectors (more non-zero values), which could
lead to observing spurious increases in specificity
that are merely correlates of frequency rather than
the result of a conceptual shift. To avoid this
danger, we balance the frequencies of bases and
derived forms by downsampling. For each verb-
noun conversion pair, both vectors are constructed
from the same number of occurrences, namely
min(fN , fV), by skipping instances of the more
frequent category uniformly at random. For exam-
ple, tunnel (n.) occurs 38,967 times in the corpus
and tunnel (v.) 2,949 times. Through downsam-
pling, the vectors both for tunnel (n.) and for tunnel
(v.) are constructed from 2,949 instances.

3.4 Operationalizing the Hypotheses

Frequency. We assess the frequency hypothesis
by directly comparing the number of nominal and
verbal corpus occurrences of a target lemma.

Semantic Specificity. We operationalize the se-
mantic specificity hypothesis by applying measures
of information content to distributional represen-
tations. This follows the example of two recent
studies. In the context of hyponymy identification,
Santus et al. (2014) proposed entropy as a measure
of the semantic specificity S(w) of a word w, via
its distributional, L1-normalized vector ~w. Entropy
is supposed to be inversely correlated with seman-
tic specificity, since higher specificity corresponds
to more restrictions on context, which means lower
entropy, defined as

S(w) = H(~w) = −
∑

i

~wi · log ~wi (1)

6Much recent work in distributional semantics has made
use of low-dimensional, dense vectors, obtained either by di-
mensionality reduction of co-occurrence vectors, or as word
embeddings from a neural network trained to optimize con-
text prediction. Although reduced vectors and embeddings
perform well on a variety of Natural Language Processing
tasks, they are not suitable for our approach, because their
feature weights are not interpretable probabilistically, which
information-theoretic measures rely on.

95

Predictor N-to-V V-to-N all

Most Freq. Class 100% 0% 52.4%

Entropy H 50.1% 75.5% 62.2%
KL divergence 53.8% 76.7% 64.6%
Frequency 84.7% 58.7% 72.3%

Freq + H + KL 77.4% 76.0% 76.8%

Table 1: Accuracies for predicting the direction
of derivation, presented by gold standard direction
(all results on downsampled space)

Predictor Estimate Std. Err. Sig.

Intercept 0.15 0.06 **
∆ entropy -2.08 0.18 ***
∆ KL divergence -2.22 0.18 ***
∆ log frequency 1.74 0.09 ***

Table 2: Logistic regression model (∆ always de-
notes noun value minus verb value)

The second study (Herbelot and Ganesalingam,
2013) was directly interested in measuring speci-
ficity and proposed to equate it with the Kullback-
Leibler (KL) divergence D between a word vector
~w and the “neutral” vector ~n:

S(w) = D(~w||~n) =
∑

i

~wi · log
~wi

~ni
(2)

where ~n is the prior distribution over all words.
We compute ~n as the centroid of approximately
28,000 word vectors in our vector space; the vec-
tors are computed according to the procedure in
Section 3.3. In this approach, higher KL diver-
gence corresponds to higher semantic specificity.
We note that the entropy and KL divergence val-
ues are closely related mathematically and highly
correlated in practice (ρ = 0.91).

Combined Model. Finally, we combine the indi-
vidual indicators (standardized differences in log
frequency, entropy, and KL divergence within each
pair) as features in a logistic regression model. We
also experimented with including an interaction
between the information-theoretic terms and fre-
quency, but did not obtain a better model fit.

4 Results and Discussion

Assessing the Hypotheses. The quantitative re-
sults of our experiments are shown in Table 1.

Compared against the most frequent class base-
line, which assigns the most frequent direction in
the gold standard — that is, N-to-V— to all cases,
both our hypotheses are substantially, and signifi-
cantly, more successful in predicting the direction
of derivation (at a significance level of α = 0.05).

Furthermore, the frequency hypothesis is more
successful than the semantic specificity hypothe-
sis on the complete conversion dataset. However,
there is a striking complementarity between the
frequency and specificity hypotheses with respect
to the gold standard direction (N-to-V vs. V-to-N).
Among the N-to-V cases, frequency excels with al-
most 85% accuracy, while the specificity predictors
are at baseline level. V-to-N shows the opposite be-
havior, with above 75% accuracy for the specificity
predictors and a sharp drop for frequency.

This complementarity among the predictors also
enables the regression model to combine their re-
spective strengths. It yields accuracies of 76%+
for both N-to-V and V-to-N conversion, with an
overall accuracy of 76.8%, significantly better than
frequency only. Table 2 shows normalized coeffi-
cients obtained for the four predictors in the model,
all of which contribute highly significantly. Posi-
tive coefficients increase the log odds for the class
N-to-V. As expected, the frequency difference be-
tween noun and verb comes with a positive coef-
ficient: a higher noun frequency indicates N-to-V.
According to hypothesis (2), we would expect a
negative coefficient for the KL divergence differ-
ence between noun and verb and and a positive one
for entropy. While this expectation is met for KL
divergence, we also see a negative coefficient for
entropy. This is due to the very strong correlation
between the two predictors: the regression model
uses the weaker one, entropy, as a “correction fac-
tor” for the stronger one, KL divergence.

Table 3 shows some examples (taken from the
top of the alphabetically-ordered list of conversion
cases), cross-classified by whether two complemen-
tary predictors (frequency and KL divergence) both
make the correct prediction, disagree, or both fail,
together with the number of conversion instances
for each class. The two predictors agree more often
than they disagree, but among the disagreements,
the strong asymmetry between N-to-V (top) and
V-to-N (below) is readily visible.

Part-of-speech Differences as a Confounder.
A possible criticism of our results is that they arise
primarily from distributional differences between

96

correct direction: N-to-V

wrong in both wrong in f wrong in KL correct in both
size=112 size=48 size=370 size=514

augur balk age air
biff calk alarm alloy

correct direction: V-to-N

wrong in both wrong in f wrong in KL correct in both
size=132 size=259 size=91 size=466

ally account act accord
answer address babble ache

Table 3: Conversion examples cross-classified ac-
cording to the frequency (f) and KL divergence
(KL) predictors, with sizes of various classes.

the two parts of speech (nouns and verbs) and are
not specifically related to conversion. To test this
hypothesis, we first inspected the means of entropy,
KL divergence and log frequency in our sample and
found that downsampling was successful in largely
eliminating differences at the part-of-speech level
(e.g., H̄N = 6.57, H̄V = 6.62). We tested the impor-
tance of the remaining differences by re-running
our experiments with predictors that were normal-
ized by part-of-speech (i.e., either subtracting the
part-of-speech mean or dividing by it). The perfor-
mance of the individual predictors hardly changed,
nor did the performance of the logistic regression
model (slight increase in accuracy from 76.8% to
77.0%). Our conclusion is that the patterns that we
observe are indeed reflections of semantic shifts
due to conversion, rather than inherent differences
between parts of speech.

Consequences of Asymmetry for Theory. The
asymmetry observed between N-to-V and V-to-N
conversion in Table 1 suggests that different theo-
retical accounts of conversion may be appropriate
for the two directions. The failure of the speci-
ficity hypothesis to predict the direction of N-to-V
conversion at better than chance level is consistent
with an underspecification approach, rather than
a derivational one (cf. Section 1). The theoreti-
cal justification for our hypothesis (2), namely that
derived forms are more semantically specific than
their bases, assumes that the input to N-to-V con-
version is a noun, to which semantic content is
added in the form of a phonologically null operator.
If, instead, an uncategorized root merges with a
categorizing head to form both the noun and the
verb, there is no reason why one would be more
semantically specific than the other. On the other

hand, the high accuracy of the information theo-
retic measures on V-to-N conversion are consistent
with a derivational approach.

There is an interesting positive correlation be-
tween semantic regularity and (gain in) frequency.
As often noted in the literature, the semantics of N-
to-V conversion is irregular, with conversion verbs
exhibiting a wide range of meanings – for example,
age, meaning something like ‘increase in age’. In
N-to-V conversion, the derived word often occurs
less frequently than its base, possibly because the
high level of semantic flexibility encourages nonce
formations. On the other hand, V-to-N conversion
has much more regular semantics, where the noun
typically names the event or its result – for exam-
ple, an address involves the act of addressing. In
V-to-N conversion, frequency is a poor predictor
of the direction of derivation, indicating that the
derived word often occurs more frequently than its
base, possibly because semantic regularity allows
usages to become entrenched.

5 Conclusion

In this paper, we have analyzed the phenomenon of
diachronic direction of derivation in English con-
version. An initial experiment has shown a striking
complementarity in the ability of frequency and
semantic specificity to account for the direction of
conversion in N-to-V and V-to-N cases, as well
as good overall accuracy for a combined model.
This opens up interesting avenues for future ex-
ploration. We believe corpus-based, distributional
measures can yield useful insights for theoretical
approaches to morphology and syntax. Finally, we
note that Herbelot and Ganesalingam (2013) found
a frequency-based measure and KL divergence to
perform about equally well on the task of predicting
lexical specificity, e.g. that cat is more specific than
animal. The relationship between various corpus-
based measures remains to be fully explored.

Acknowledgments. We thank the reviewers for
their valuable comments and student assistant Olga
Chumakova for her support. MK and SP acknowl-
edge partial funding by Deutsche Forschungsge-
meinschaft (SFB 732, Project B9). LR acknowl-
edges EPSRC grant EP/I037512/1 and ERC Start-
ing Grant DisCoTex (306920). AP acknowledges
Leibniz Association grant SAS-2015-IDS-LWC
and the Ministry of Science, Research, and Art
of Baden-Württemberg.

97

References
Maya Arad. 2005. Roots and patterns: Hebrew

morpho-syntax. Springer, Dordrecht.

Harald R. Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX lexical database. Release
2. LDC96L14. Linguistic Data Consortium, Univer-
sity of Pennsylvania, Philadelphia, PA.

Laurie Bauer. 1983. English word-formation. Cam-
bridge University Press, Cambridge.

Leonard Bloomfield. 1933. Language. Henry Holt,
New York.

Hagit Borer. 2005a. In name only: Structuring sense,
Volume I. Oxford University Press, Oxford.

Hagit Borer. 2005b. The normal course of events:
Structuring sense, Volume II. Oxford University
Press, Oxford.

Eve V. Clark and Herbert H. Clark. 1979. When nouns
surface as verbs. Language, 55:767–811.

Jan Don. 1993. Morphological conversion. Ph.D. the-
sis, Utrecht University.

Jane Grimshaw. 1990. Argument Structure. MIT
Press, Cambridge.

Ken Hale and Samuel Jay Keyser. 2002. Prole-
gomenon to a theory of argument structure. MIT
Press, Cambridge.

Morris Halle and Alec Marantz. 1993. Distributed
morphology and the pieces of inflection. In S.J.
Keyser and K. Hale, editors, The view from Building
20, pages 111–176. MIT Press, Cambridge.

Heidi Harley and Rolf Noyer. 1999. State-of-the-
article: Distributed Morphology. GLOT, 4:3–9.

Frank W. Harwood and Alison M. Wright. 1956. Sta-
tistical study of English word formation. Language,
32(2):260–273.

Jennifer Hay. 2001. Lexical frequency in morphology:
Is everything relative? Linguistics, 39:1041–70.

Aurélie Herbelot and Mohan Ganesalingam. 2013.
Measuring semantic content in distributional vectors.
In Proceedings of ACL, pages 440–445, Sofia, Bul-
garia.

Ferenc Kiefer. 2005. Types of conversion in hungar-
ian. In Approaches to Conversion/Zero-Derivation.
Waxmann, Münster.

Paul Kiparsky. 1982. Word formation and the lexicon.
In Fred Ingeman, editor, Proceedings of the Mid-
America Linguistics Conference, page 3–29. Univer-
sity of Kansas.

Andrew Koontz-Garboden. 2007. States, changes of
state, and the Monotonicity Hypothesis. Ph.D. the-
sis, Stanford University.

Herbert Koziol. 1937. Handbuch der englischen Wort-
bildungslehre. C. Winter, Heidelberg.

Stela Manova and Wolfgang U. Dressler. 2005.
The morphological technique of conversion in
the inflecting-fusional type. In Approaches to
Conversion/Zero-Derivation. Waxmann, Münster.

Hans Marchand. 1969. The categories and types of
present-day English word-formation: A synchronic-
diachronic approach, 2nd edition. C.H. Becksche
Verlagsbuchhandlung, München.

David Pesetsky. 1995. Zero syntax: Experiencers and
cascades. MIT Press, Cambridge.

Ingo Plag. 1999. Morphological productivity: Struc-
tural constraints in English derivation. Mouton de
Gruyter, Berlin and New York.

Ingo Plag. 2003. Word-Formation in English. Cam-
bridge University Press, Cambridge.

Laura Rimell. 2012. Nominal Roots as Event Predi-
cates in English Denominal Conversion Verbs. Ph.D.
thesis, New York University.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing hypernyms in
vector spaces with entropy. In Proceedings of EACL,
pages 38–42, Gothenburg, Sweden.

Petra Maria Vogel. 1996. Wortarten und Wortarten-
wechsel. Zu Konversion und verwandten Erschein-
ungen im Deutschen und in anderen Sprachen. Mou-
ton de Gruyter, Berlin and New York.

98

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 99–103,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Morphological Segmentation Can Improve Syllabification

Garrett Nicolai Lei Yao Grzegorz Kondrak
Department of Computing Science

University of Alberta
{nicolai,lyao1,gkondrak}@ualberta.ca

Abstract

Syllabification is sometimes influenced
by morphological boundaries. We show
that incorporating morphological infor-
mation can improve the accuracy of or-
thographic syllabification in English and
German. Surprisingly, unsupervised seg-
menters, such as Morfessor, can be more
useful for this purpose than the supervised
ones.

1 Introduction

Syllabification is the process of dividing a word
into syllables. Although in the strict linguistic
sense syllables are composed of phonemes rather
than letters, due to practical considerations we fo-
cus here on orthographic syllabification, which is
also referred to as hyphenation. Some dictionar-
ies include hyphenation information to indicate
where words may be broken for end-of-line di-
visions, and to assist the reader in recovering the
correct pronunciation. In many languages the or-
thographic and phonological representations of a
word are closely related.

Orthographic syllabification has a number of
computational applications. Incorporation of
the syllable boundaries between letters benefits
grapheme-to-phoneme conversion (Damper et al.,
2005), and respelling generation (Hauer and Kon-
drak, 2013). Hyphenation of out-of-dictionary
words is also important in text processing (Trogka-
nis and Elkan, 2010). Because of the produc-
tive nature of language, a dictionary look-up pro-
cess for syllabification is inadequate. Rule-based
systems are generally outperformed on out-of-
dictionary words by data-driven methods, such as
those of Daelemans et al. (1997), Demberg (2006),
Marchand and Damper (2007), and Trogkanis and
Elkan (2010).

Morphological segmentation is the task of
dividing words into morphemes, the smallest
meaning-bearing units in the word (Goldsmith,
2001). For example the morpheme over occurs in
words like hold+over, lay+over, and skip+over.1

Roots combine with derivational (e.g. refut+able)
and inflectional affixes (e.g. hold+ing). Compu-
tational segmentation approaches can be divided
into rule-based (Porter, 1980), supervised (Ruoko-
lainen et al., 2013), semi-supervised (Grönroos et
al., 2014), and unsupervised (Creutz and Lagus,
2002). Bartlett et al. (2008) observe that some of
the errors made by their otherwise highly-accurate
system, such as hol-dov-er and coad-ju-tors, can
be attributed to the lack of awareness of mor-
phological boundaries, which influence syllabifi-
cation.

In this paper, we demonstrate that the accu-
racy of orthographic syllabification can be im-
proved by considering morphology. We aug-
ment the syllabification approach of Bartlett et al.
(2008), with features encoding morphological seg-
mentation of words. We investigate the degree
of overlap between the morphological and sylla-
ble boundaries. The results of our experiments on
English and German show that the incorporation
of expert-annotated (gold) morphological bound-
aries extracted from lexical databases substantially
reduces the syllabification error rate, particularly
in low-resource settings. We find that the accu-
racy gains tend to be preserved when unsuper-
vised segmentation is used instead. On the other
hand, relying on a fully-supervised system appears
to be much less robust, even though it generates
more accurate morphological segmentations than
the unsupervised systems. We propose an expla-
nation for this surprising result.

1We denote syllable boundaries with ‘-’, and morpheme
boundaries with ‘+’.

99

2 Methods

In this section, we describe the original syllabi-
fication method of Bartlett et al. (2008), which
serves as our baseline system, and discuss various
approaches to incorporating morphological infor-
mation.

2.1 Base system

Bartlett et al. (2008) present a discriminative ap-
proach to automatic syllabification. They for-
mulate syllabification as a tagging problem, and
learn a Structured SVM tagger from labeled data
(Tsochantaridis et al., 2005). Under the Markov
assumption that each tag is dependent on its previ-
ous n tags, the tagger predicts the optimal tag se-
quence (Altun et al., 2003). A large-margin train-
ing objective is applied to learn a weight vector to
separate the correct tag sequence from other possi-
ble sequences for each training instance. The test
instances are tagged using the Viterbi decoding al-
gorithm on the basis of the weighted features.

Each training instance is represented as a se-
quence of feature vectors, with the tags following
the “Numbered NB” tagging scheme, which was
found to produce the best results. In the scheme,
the B tags signal that a boundary occurs after the
current character, while the N tags indicate the dis-
tance from the previous boundary. For example,
the word syl-lab-i-fy is annotated as: N1 N2 B N1
N2 B B N1 N2. The feature vectors consist of all
n-grams around the current focus character, up to
size 5. These n-grams are composed of context
letters, and word-boundary markers that are added
at the beginning and end of each word.

2.2 Morphological information

We incorporate available morphological informa-
tion by adding morpheme boundary markers into
the input words. The extracted features belong
to two categories: orthographic and morphologi-
cal. The orthographic features are identical to the
ones described in Section 2.1. The morphologi-
cal features are also contextual n-grams, but may
contain morphological breaks, which can poten-
tially help identify the correct syllabification of
words. Manually-annotated morphological lexi-
cons sometimes distinguish between inflectional,
derivational, and compound boundaries. We can
pass this information to the syllabification system
by marking the respective boundaries with differ-
ent symbols.

Since morphologically annotated lexicons are
expensive to create, and available only for well-
studied languages, we investigate the idea of
replacing them with annotations generated by
fully-supervised, distantly-supervised, and unsu-
pervised segmentation algorithms.

2.2.1 Fully-supervised

While supervised methods typically require large
amounts of annotated training data, they can per-
form segmentation of unseen (out-of-dictionary)
words. As our fully-supervised segmenter, we
use the discriminative string transducer of Jiampo-
jamarn et al. (2010). The transducer is trained
on aligned source-target pairs, one pair per word;
the target is identical to the source except that it
includes characters that represent morphological
breaks. Using source and target context, the trans-
ducer learns to insert these breaks into words.

2.2.2 Distantly-supervised

Whereas morphologically-annotated lexicons are
rare, websites such as Wiktionary contain crowd-
generated inflection tables for many languages. A
distantly-supervised segmenter can be trained on
semi-structured inflection tables to divide words
into stems and affixes without explicit segmenta-
tion annotation. We adopt the approach of Nico-
lai and Kondrak (2016), which combines unsuper-
vised alignment with a discriminative string trans-
duction algorithm, An important limitation of this
approach is that it can only identify inflectional
morpheme boundaries.

2.2.3 Unsupervised

Unsupervised methods have the advantage of re-
quiring no training data. We investigate the ap-
plicability of two unsupervised segmenters: Mor-
fessor (Creutz and Lagus, 2005) and Morpheme++
(Dasgupta and Ng, 2007). Morfessor uses the min-
imum description length (MDL) principle to pre-
dict a word as a likely sequence of morphemes.
Since the baseline version of Morfessor tends to
over-segment rare words, we instead apply Mor-
fessor FlatCat (Grönroos et al., 2014), which re-
duces over-segmentation through the use of a hid-
den Markov model. Morpheme++ is another sys-
tem that is capable of distinguishing between pre-
fixes, suffixes, and stems by taking advantage of
the regularity of affixes.

100

3 Experiments

In this section, we introduce our data sets, and dis-
cuss the overlap between morphological and syl-
labic boundaries. We investigate the quality of the
morphological segmentations of produced by var-
ious methods, and replicate the syllabification re-
sults of Bartlett et al. (2008). Finally, we discuss
the results of incorporating morphological infor-
mation into the syllabification system.

3.1 Data

Our data comes from the English and German sec-
tions of the CELEX lexical database (Baayen et
al., 1995). The English and German training sets
contain 43,212 and 41,382 instances, with corre-
sponding development sets of 8,735 and 5,173 in-
stances, and test sets of 8,608 and 5,173 instances.
The distantly-supervised and fully-supervised seg-
menters were trained on the union of the training
and development sets, while the unsupervised seg-
menters were applied to the union of the train-
ing, development and test sets. The distantly-
supervised system had no access to the gold mor-
phological segmentations.

The annotation in CELEX distinguishes be-
tween inflectional vs. derivational affixes, as well
as derivational vs. compound breaks. The latter
distinction did not help in our development exper-
iments, so we disregard it. We refer to the two
subsets of the morpheme boundary annotations as
“Gold Inflectional” and “Gold Derivational”.

3.2 Quality of morphological segmentation

Table 1 shows the word accuracy (entire words
segmented correctly) of various segmentation
methods on the test sets. Unsurprisingly, the
fully-supervised segmenter is substantially more
accurate than the other systems. The distantly-
supervised system can only identify inflectional
boundaries. so its overall accuracy is rather low;

EN DE
Morfessor 1.0 59.4 39.8
Morfessor FlatCat 59.6 40.8
Morpheme++ 66.3 39.1
Distantly-supervised 63.5 21.3
Fully-supervised 95.4 71.3

Table 1: Morphological segmentation word accu-
racy on the test set.

however, its accuracy on the inflectional bound-
aries is 96.0% for English, and 82.6% for Ger-
man. Among the unsupervised systems, Morfes-
sor FlatCat is only slightly better than Morfessor
1.0, while Morpheme++ is comparable on Ger-
man, and significantly better on English. It should
be noted that since our focus is on syllabification,
no careful parameter tuning was performed, and
our data excludes word frequency information.

EN DE
Morfessor 38.2 61.4
Morfessor FlatCat 39.1 66.7
Morpheme++ 46.4 67.1
Distantly-supervised 24.8 7.9
Fully-supervised 44.5 51.5
Gold 45.1 49.7
Gold Inflectional 24.4 4.5
Gold Derivational 68.6 57.6

Table 2: Overlap between syllabic and morpho-
logical boundaries on the test set.

Table 2 shows the percentage of the predicted
morphological breaks that match gold syllable
boundaries. We observe that the inflectional
boundaries are far less likely than the deriva-
tional ones to correspond to syllable breaks. We
also note that on German the unsupervised seg-
menters exhibit much higher syllabification over-
lap than the gold annotation. We attribute this to
the tendency of the unsupervised methods to over-
segment.

3.3 Baseline syllabification

As a baseline, we replicate the experiments of
Bartlett et al. (2008), and extend them to low-
resource settings. Since the training sets are of
slightly different sizes, we label each training size
point as specified in Table 3. We see that correct
syllabification of approximately half of the words
is achieved with as few as 100 English and 50 Ger-
man training examples.

3.4 Morphologically-informed syllabification

Our main set of experiments concerns the incorpo-
ration of the morphological information obtained
from methods described in Section 2.2 into the
baseline syllabification system. As seen in Ta-
ble 3, the accuracy of the baseline syllabification
system trained on a large number of instances is
already very high, so the gains introduced by mor-

101

Label Training Size Error Rate
EN DE EN DE

A 51 45 61.27 52.97
B 101 91 51.25 44.08
C 203 182 43.05 35.37
D 406 364 34.00 25.32
E 812 727 27.23 19.01
F 1623 1455 21.50 12.74
G 3247 2910 16.96 9.24
H 6493 5819 10.50 6.27
I 12987 11639 6.61 4.64
J 25974 23278 3.73 3.19
K 51947 46555 2.18 2.04

Table 3: Absolute error rate for the baseline with
varying amounts of the training data.

phology are necessarily small. In Figures 1 and
2, we show the relative error reduction at various
training sizes. The absolute error rate can be ob-
tained by multiplying the values from the table and
the figures.

For the sake of clarity, we omit some of the
methods from the graphs. The unsupervised meth-
ods are represented by Morfessor FlatCat. The
distantly-supervised system is generally success-
ful at predicting the inflectional boundaries, but
fails to improve on the baseline, as they are less
important for syllabification than the derivational
boundaries.

3.5 Discussion

Overall, the results confirm that morphology can
help syllabification. The incorporation of gold
segmentation boundaries consistently leads to the
reduction of the syllabification error rate; the only
exception occurs on the full English training set.
While the fully-supervised system provides a ben-
efit at lower training thresholds, it actually hurts
the accuracy at larger training sizes. Notably,
unsupervised segmentation appears to outperform
fully-supervised segmentation as the amount of
the training data increases; the corresponding er-
ror rate reduction approaches 25% on German.

One explanation for the strong performance of
the unsupervised systems is their high accuracy
on compound words. Consider the German com-
pound Toppflagge “masthead flag”. An unsuper-
vised system is able to guess that the word is com-
posed of the words Topp and Flagge that exist in
the lexicon on their own. To produce the same

-30

-20

-10

0

10

20

30

A B C D E F G H I J K

E
R

R
O

R
 R

E
D

U
C

T
IO

N
 (

R
E

LA
T

IV
E

 %
)

NUMBER OF TRAINING INSTANCES

Baseline Gold Supervised Unsupervised

Figure 1: Syllabification error rate reduction on
English.

-45

-35

-25

-15

-5

5

15

25

A B C D E F G H I J K
E

R
R

O
R

 R
E

D
U

C
T

IO
N

 (
R

E
LA

T
IV

E
 %

)

NUMBER OF TRAINING INSTANCES

Baseline Gold Supervised Unsupervised

Figure 2: Syllabification error rate reduction on
German.

segmentation, the fully-supervised system must
be trained on a number of compound words that
include either topp or flagge. Since compound
boundaries are almost always syllable breaks as
well, they have a strong effect on syllabification.

Sometimes even a linguistically incorrect seg-
mentation proposed by an unsupervised segmenter
may work better for the purposes of syllabifica-
tion. Many words of Latin origin contain affixes
that are no longer productive in English. Thus,
an unsupervised system over-segments the word
ob+literate, which allows it to produce the cor-
rect syllabification ob-lit-er-ate, as opposed to o-
blit-er-ate predicted by the gold-informed system.
This phenomenon appears to be particularly fre-
quent in German.

4 Conclusion

We have demonstrated that morphological infor-
mation can improve the accuracy of orthographic
syllabification. We have found that unsupervised
segmentation methods often perform better than
supervised methods, and can rival gold human an-
notation. We have proposed two explanations for

102

this counter-intuitive phenomenon. We hope that
this work will contribute a computational perspec-
tive on the issue of interaction between syllabifi-
cation and morphology.

Acknowledgments

This research was supported by the Natural
Sciences and Engineering Research Council of
Canada, and the Alberta Innovates Technology
Futures.

References
Yasemin Altun, Ioannis Tsochantaridis, and Thomas

Hofmann. 2003. Hidden Markov support vector
machines. In ICML, pages 3–10.

Harald R. Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX Lexical Database. Re-
lease 2 (CD-ROM). Linguistic Data Consortium,
University of Pennsylvania.

Susan Bartlett, Grzegorz Kondrak, and Colin Cherry.
2008. Automatic syllabification with structured
SVMs for letter-to-phoneme conversion. In ACL,
pages 568–576.

Mathias Creutz and Krista Lagus. 2002. Unsuper-
vised discovery of morphemes. In Proceedings of
the ACL-02 workshop on Morphological and phono-
logical learning-Volume 6, pages 21–30.

Mathias Creutz and Krista Lagus. 2005. Induc-
ing the morphological lexicon of a natural language
from unannotated text. In Conference on Adaptive
Knowledge Representation and Reasoning (AKRR),
pages 51–59.

Walter Daelemans, Antal van den Bosch, and Ton Wei-
jters. 1997. Igtree: Using trees for compression and
classification in lazy learning algorithms. Artificial
Intellegence Review, 11(1-5):407–423.

Robert I Damper, Yannick Marchand, J-DS Marsters,
and Alexander I Bazin. 2005. Aligning text and
phonemes for speech technology applications us-
ing an em-like algorithm. International Journal of
Speech Technology, 8(2):147–160.

Sajib Dasgupta and Vincent Ng. 2007. High-
performance, language-independent morphological
segmentation. In HLT-NAACL, pages 155–163.

Vera Demberg. 2006. Letter-to-phoneme conversion
for a german text-to-speech system.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguisitics, 27(2), June.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and
Mikko Kurimo. 2014. Morfessor FlatCat: An
HMM-based method for unsupervised and semi-
supervised learning of morphology. In COLING,
pages 1177–1185.

Bradley Hauer and Grzegorz Kondrak. 2013. Auto-
matic generation of English respellings. In NAACL,
pages 634–643.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2010. Integrating joint n-gram features
into a discriminative training network. In NAACL.

Yannick Marchand and Robert I. Damper. 2007. Can
syllabification improve pronunciation by analogy of
English? Natural Language Engineering, 13(1):1–
24.

Garrett Nicolai and Grzegorz Kondrak. 2016. Lever-
aging inflection tables for stemming and lemmatiza-
tion. In ACL.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morpholog-
ical segmentation in a low-resource learning setting
using conditional random fields. In CoNLL.

Nikolaos Trogkanis and Charles Elkan. 2010. Condi-
tional random fields for word hyphenation. In ACL,
pages 366–374.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large mar-
gin methods for structured and interdependent out-
put variables. In Journal of Machine Learning Re-
search, pages 1453–1484.

103

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 104–109,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Towards a Formal Representation of Components of German
Compounds

Thierry Declerck
DFKI GmbH

D-66123 Saarbrücken, Germany
&

Austrian Centre for Digital Humanities
A-1010 Vienna, Austria
declerck@dfki.de

Piroska Lendvai
Dept. of Computational Linguistics

Saarland University
D-66123 Saarbrücken, Germany
piroska.r@gmail.com

Abstract

This paper presents an approach for
the formal representation of compo-
nents in German compounds. We as-
sume that such a formal representa-
tion will support the segmentation and
analysis of unseen compounds that
feature components already seen in
other compounds. An extensive lan-
guage resource that explicitly codes
components of compounds is Ger-
maNet, a lexical semantic network
for German. We summarize the Ger-
maNet approach to the description of
compounds, discussing some of its
shortcomings. Our proposed exten-
sion of this representation builds on
the lemon lexicon model for ontolo-
gies, established by the W3C Ontol-
ogy Lexicon Community Group.

1 Introduction

The motivation for our study is the assumption
that the availability of a formal representation
of components in German compound words
can help in the detection, processing and anal-
ysis of new unseen compounds. Compound-
ing in German is a productive process to cre-
ate (new) words, and these typically consist of
lexical items partly seen in other compounds
already. Our aim is to create a formal repre-

sentation of such components in German, in
order to facilitate the segmentation and possi-
bly the generation of compound words.

Several German lexical resources feature
designated elements to mark up entries as
compounds, whereas they typically lack ele-
ments that would represent the components of
compounds.

One of the most fully-fledged resource
of German compound nouns is GermaNet
(Hamp and Feldweg, 1997; Kunze and Lem-
nitzer, 2002), a lexical semantic net for Ger-
man following the principles of the Princeton
WordNet (Fellbaum, 1998). The approach
of GermaNet to the encoding of elements of
compounds within the lexical-semantic net is
described in (Henrich and Hinrichs, 2011).
Additionally to this representation of com-
pounds, GermaNet offers a freely available
list of 66,047 nominal compounds split to
their modifier(s) and head, in a tab-delimited
(tsv) format1. Table 1 shows few examples
taken from this list, while Example ?? shows
the encoding of the compound Rotsperre (’red
card suspension’) within the XML represen-
tation of the GermaNet lexical semantic net-
work.

Based on the GermaNet description of com-
pounds, several studies on annotating and sys-

1http://www.sfs.uni-tuebingen.de/
GermaNet/documents/compounds/split_
compounds_from_GermaNet11.0.txt

104

tems on processing compounds have been
proposed (Hinrichs et al., 2013; Santos, 2014;
Dima et al., 2014; Dima and Hinrichs, 2015).

Compound Modifier(s) Head
Rotschopf rot Schopf
Rotschwanz rot Schwanz
Rotschwingel rot Schwingel
Rotspecht rot Specht
Rotsperre rot Sperre
Rotstich rot|Rot Stich
Rotstift rot Stift
Rotstiftaktion Rotstift Aktion

Table 1: Examples from the GermaNet list of
nominal compounds.

The few examples listed in Table 1 show
that GermaNet describes explicitly only im-
mediate constituents of compounds, but is
also reflecting the recursive nature of com-
pounds that have more than two constituent
parts, as can be seen with the words Rots-
tift (’red pencil’) and Rotstiftaktion (’cutback’,
’reduce spending’). In this case a tool can eas-
ily split Rotstiftaktion into rot, Stift and Ak-
tion, on the basis of the segmentation of Rots-
tift.

We note also that one compound can have
more than one modifier, as in the case of Rot-
stich (’tinge of red’), where we have both an
adjectival (rot) and a nominal (Rot) modifier.
GermaNet marks the different part-of-speech
(PoS) properties of the components being in
the modifier position by using different cases:
Upper case marks a noun (as this is the case
for all the listed compounds), while lower case
marks either a verb or an adjective.

We observe also that the modifier rot is of-
ten repeated (in fact much more often then in
this slice taken from the list: there are also
many compounds ending with the component
rot).

In the following sections we present first

the GermaNet formal representation of com-
pounds in the full context of the lexical se-
mantic net. Then we suggest our extensions to
the GermaNet representation, utilizing mod-
ules of the lemon2 approach to the encoding
of lexical data.

2 Representation of Compounds in
the GermaNet lexical semantic net

The structure of a GermaNet entry containing
the compound word Rotsperre (’red card sus-
pension’) is shown in Example 1. The rele-
vant information is to be found in the XML
elements rendered in bold face.

<s y n s e t c l a s s =” Geschehen ”
c a t e g o r y =”nomen” i d =” s21159 ”>

< l e x U n i t i d =” l29103 ”
s t y l e M a r k i n g =” no ”
a r t i f i c i a l =” no ”
namedEn t i t y =” no ” s o u r c e =”
c o r e ” s e n s e =” 1 ”>

<or thForm>R o t s p e r r e< /
o r thForm>

<compound>
<m o d i f i e r c a t e g o r y =”

A d j e k t i v ”> r o t< /
m o d i f i e r>

<head>S p e r r e< / head>
< / compound>

< / l e x U n i t>
<p a r a p h r a s e>beim F u s s b a l l< /

p a r a p h r a s e>
< / s y n s e t>

Example 1: A compound lexical unit in
GermaNet: Rotsperre (’red card suspension’)

In this formal representation, the PoS of the
modifier element of the compound (rot, ’red’)
is explicitly given, while this is not the case
for the head, as the PoS of the head element
of a compound is identical to the PoS of the
whole compound. However, we advocate that
explicitly encoding the PoS information of the

2The lexicon model for ontologies (lemon)
is resulting from the work of the W3C On-
tology Lexicon Community Group; https:
//www.w3.org/community/ontolex/wiki/
Final_Model_Specification.

105

head component can be necessary; for exam-
ple if a tool would access only the repository
of components. In this case, the tool would
have to infer the PoS information of the head
component from the compounds in which it
occurs, adding thus an additional processing
step, which can be avoided if the PoS of the
head component is explicitly marked.

As already observed for the list of com-
pounds in the tsv format, the GermaNet entry
displays here the adjective modifier in lower-
case. In this case we are loosing the informa-
tion about the original use of the word form.
We suggest to introduce an additional feature
in which the original form of the component
is preserved.

By observing the list of compounds pro-
vided by GermaNet, we noted that the mod-
ifier component of Rotsperre keep recurring
in other compounds. This is for sure also
the case for the head components. For ex-
ample, the component Sperre (’suspension’,
’block’, ...) is repeated in the related word
Gelbsperre (’yellow card suspension’). Such
productively recurring components would be
beneficial to have encoded in a repository so
that they are included only once in a lexicon,
possibly with links to the different compo-
nents they can be combined with, depending
on their related senses.

The use of a modifier in a compound can
play a disambiguation role. While we can eas-
ily establish a relation between the reduced
set of senses of the compound and the set of
senses of the head of the compound, we have
no immediate information on the synsets asso-
ciated to the modifier of the compound. This
is an information we would also like to explic-
itly encode.

Further, we consider the encoding of the
Fugenelement (’connecting element’) that is
often used in the building of compounds; e.g.
the s in Führungstor (’goal which gives the

lead’). GermaNet does not include this infor-
mation in its XML representation.

Finally, we notice that the ordering of com-
ponents is not explicitly encoded.

In order to remedy the above issues, we
suggest to adopt the recently published spec-
ifications of the lemon model. In the follow-
ing section, we describe this model and our
suggested representation of GermaNet com-
pounds.

3 The lemon Model

The lemon model has been designed using
the Semantic Web formal representation lan-
guages OWL, RDFS and RDF3. It also makes
use of the SKOS vocabulary4. lemon is
based on the ISO Lexical Markup Frame-
work (LMF)5 and the W3C Ontology Lexicon
Community Group proposed an extension of
the original lemon model6, stressing its mod-
ular design.

The core module of lemon, called ontolex,
is displayed in Figure 1. In ontolex, each
element of a lexicon entry is described inde-
pendently, while typed relation markers, in the
form of OWL, RDF or ontolex properties, are
interlinking these elements.

Additionally to the core module of lemon,
we make use of its decomposition module,
called decomp7, designed for the representa-
tion of Multiword Expression lexical entries,
and which we use for the representation of
compound words.

3See respectively http://www.w3.
org/TR/owl-semantics/, https:
//www.w3.org/TR/rdf-schema/, and
https://www.w3.org/RDF/

4https://www.w3.org/2004/02/skos/
5See (Francopoulo et al., 2006) and http://www.

lexicalmarkupframework.org/
6See (McCrae et al., 2012)
7http://www.w3.org/community/

ontolex/wiki/Final_Model_
Specification

106

Figure 1: ontolex, the core module of lemon.
Figure created by John P. McCrae for the
W3C Ontolex Community Group.

Figure 2: decomp, the decomposition module
of lemon. Figure created by John P. McCrae
for the W3C Ontolex Community Group.

The relation of decomp to the core mod-
ule, and more particularly to the class on-
tolex:LexicalEntry, is displayed in Figure 2.
Components of a compound (or a multi-
word) entry are pointed to by the prop-
erty: decomp:constituent. The range of
this property is an instance of the class de-
comp:Component.

Taking again Rotsperre (’red card suspen-
sion’) as an example, and which is built of two
components, we make use two times of the de-
comp:constituent property, the current values
of it being :Rot comp and :sperre comp
(see the corresponding RDF code given below

in the entries (1-3), which are instances of the
class ontolex:Component. This way we
can encode the surface forms of the compo-
nents, as they are used in compounds.

The relation between the
ontolex:Component instances (the
surface forms of the components occurring in
the compounds) and the ontolex:Word in-
stances (the full lexical entries corresponding
the surface form of the components) follows
the schema for the relation between the two
classes ontolex:LexicalEntry and
ontolex:Component, which is graph-
ically shown in Figure 2. For our example
Rotsperre, as shown in the entries (1-3)
below, the elements Rot and sperre are in-
stances of the class ontolex:Component,
and as such sperre can be linked/related
to other compounds like Löschsperre
(’deletion block’) or to the (semantically
more closely related) Gelbsperre (’yel-
low card suspension’). The property
decomp:correspondsTo links the com-
ponents to the lexical entries that encode all
the lexical properties of those surface forms
used in the compound word.

A simplified representation of the com-
pound entry Rotsperre and of its components
is displayed below, in (1-3). In the entry (1)
we use rdf 1 and rdf 28 for marking the
order of the two components in the compound
word. We assume that information on the po-
sition of the elements can be relevant for the
interpretation of the compound.

(1) :Rotsperre lex
rdf:type ontolex:LexicalEntry ;
lexinfo:partOfSpeech lexinfo:noun ;
rdf: 1 :Rot comp ;
rdf: 2 :sperre comp ;

8As instances of the property
rdfs:ContainerMembershipProperty,
see http://www.w3.org/TR/rdf-schema/ for
more details.

107

decomp:constituent :Rot comp ;
decomp:constituent :sperre comp ;
decomp:subterm :Sperre lex ;
decomp:subterm :rot lex ;
ontolex:denotes
<https://www.wikidata.org/wiki/
Q1827> .

Entries (2) and (3) below show the en-
coding of the instances of the class
decomp:Component:

(2) :Rot comp
rdf:type decomp:Component ;
decomp:correspondsTo :rot lex .

(3) :sperre comp
rdf:type decomp:Component ;
decomp:correspondsTo
:Sperre lex .

The proposed approach to the representa-
tion of elements of compounds seems intuitive
and economical, since one component can be
linked to a large number of other components,
and, next to decomposition, can also be used
for the generation of compound words, taking
into account the typical position such compo-
nents are taking in known compounds.

In the compound entry (1) we also make
use of the property decomp:subterm. This
property links the compound to the full lexical
information associated to its components, in-
cluding the senses of such components. The
motivation of the lemon model is the determi-
nation of senses of lexical entries by reference
to ontological entities outside of the lexicon
proper. We can thus easily extend the repre-
sentation of the compound word with sense in-
formation, by linking the components and the
compound word to relevant resources in the
Linked Open Data (LOD) cloud. The sense of
:Rot comp is given by a reference to http:
//de.dbpedia.org/page/Rot, where
additional associations of red with political

parties or sports clubs, etc. can be found.
The same holds for :sperre comp, which
can be linked to the LOD resource http:
//de.dbpedia.org/page/Sperre.

Additionally, for the sense of the com-
plete compound word we link to the LOD re-
source: https://www.wikidata.org/
wiki/Q1827, with the specific meaning of
suspension from a sports game. The senses
repository for Sperre can look as displayed in
the lexicalSense entries (4) and (5).

(4) :sperre sense1
rdf:type ontolex:LexicalSense ;
rdfs:label “A sense for the German
word ‘Sperre”’@en ;
ontolex:isSenseOf :Sperre lex ;
ontolex:reference
<http://de.dbpedia.org/resource/Lock>
.

(5) :sperre sense2
rdf:type ontolex:LexicalSense ;
rdfs:label “A sense for the German
word ‘Sperre”’@en ;
ontolex:isSenseOf :Sperre lex ;
ontolex:reference
<http://de.dbpedia.org/resource/
Wettkampfsperre> .

Our current work includes associat-
ing GermaNet senses as values of the
ontolex:LexicalSense property.
We are also encoding connecting ele-
ments (Fugenelemente with the help of the
ontolex:Affix class.

4 Conclusion

We presented an approach for the formal rep-
resentation of elements that occur in com-
pound words. Our motivation is to provide
rules for computing compound words on the
basis of their components.

108

Acknowledgments

Work presented in this paper has been sup-
ported by the PHEME FP7 project (grant No.
611233) and by the FREME H2020 project
(grant No. 644771). The author would like to
thank the anonymous reviewers for their very
helpful comments.

References
Corina Dima and Erhard Hinrichs. 2015. Auto-

matic noun compound interpretation using deep
neural networks and word embeddings. In Pro-
ceedings of the 11th International Conference
on Computational Semantics, pages 173–183,
London, UK, April. Association for Computa-
tional Linguistics.

Corina Dima, Verena Henrich, Erhard Hinrichs,
and Christina Hoppermann. 2014. How to
tell a schneemann from a milchmann: An
annotation scheme for compound-internal re-
lations. In Nicoletta Calzolari (Conference
Chair), Khalid Choukri, Thierry Declerck,
Hrafn Loftsson, Bente Maegaard, Joseph Mar-
iani, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Ninth In-
ternational Conference on Language Resources
and Evaluation (LREC’14), Reykjavik, Iceland,
may. European Language Resources Associa-
tion (ELRA).

Christiane Fellbaum. 1998. WordNet: An Elec-
tronic Lexical Database. Bradford Books.

Gil Francopoulo, Monte George, Nicoletta Calzo-
lari, Monica Monachini, Nuria Bel, Y Pet, and
Claudia Soria. 2006. Lexical markup frame-
work (lmf. In In Proceedings of LREC2006.

Birgit Hamp and Helmut Feldweg. 1997. Ger-
manet - a lexical-semantic net for german. In In
Proceedings of ACL workshop Automatic Infor-
mation Extraction and Building of Lexical Se-
mantic Resources for NLP Applications, pages
9–15.

Verena Henrich and Erhard W. Hinrichs. 2011.
Determining immediate constituents of com-
pounds in germanet. In Galia Angelova, Kalina

Bontcheva, Ruslan Mitkov, and Nicolas Ni-
colov, editors, RANLP, pages 420–426. RANLP
2011 Organising Committee.

Erhard Hinrichs, Verena Henrich, and Reinhild
Barkey. 2013. Using partwhole relations for
automatic deduction of compound-internal re-
lations in germanet. Language Resources and
Evaluation, 47(3):839–858.

Claudia Kunze and Lothar Lemnitzer. 2002. Ger-
manet - representation, visualization, applica-
tion. In Proceedings of the Third International
Conference on Language Resources and Eval-
uation (LREC-2002), Las Palmas, Canary Is-
lands - Spain, May. European Language Re-
sources Association (ELRA). ACL Anthology
Identifier: L02-1073.

John P. McCrae, Guadalupe Aguado de Cea, Paul
Buitelaar, Philipp Cimiano, Thierry Declerck,
Asunción Gómez-Pérez, Jorge Gracia, Laura
Hollink, Elena Montiel-Ponsoda, Dennis Spohr,
and Tobias Wunner. 2012. Interchanging lex-
ical resources on the semantic web. Language
Resources and Evaluation, 46(4):701–719.

Pedro Bispo Santos. 2014. Using compound lists
for german decompounding in a back-off sce-
nario. In Workshop on Computational, Cogni-
tive, and Linguistic Approaches to the Analysis
of Complex Words and Collocations (CCLCC
2014), pages 51–55.

109

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 110–120,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Towards robust cross-linguistic comparisons of phonological networks

Philippa Shoemark
School of Informatics

University of Edinburgh
p.j.shoemark@sms.ed.ac.uk

Sharon Goldwater
School of Informatics

University of Edinburgh
sgwater@inf.ed.ac.uk

James Kirby
Linguistics and English Language

University of Edinburgh
j.kirby@ed.ac.uk

Rik Sarkar
School of Informatics

University of Edinburgh
rsarkar@inf.ed.ac.uk

Abstract
Recent work has proposed using network
science to analyse the structure of the men-
tal lexicon by viewing words as nodes in a
phonological network, with edges connect-
ing words that differ by a single phoneme.
Comparing the structure of phonological
networks across different languages could
provide insights into linguistic typology
and the cognitive pressures that shape lan-
guage acquisition, evolution, and process-
ing. However, previous studies have not
considered how statistics gathered from
these networks are affected by factors such
as lexicon size and the distribution of word
lengths. We show that these factors can
substantially affect the statistics of a phono-
logical network and propose a new method
for making more robust comparisons. We
then analyse eight languages, finding many
commonalities but also some qualitative
differences in their lexicon structure.

1 Introduction

Studies suggest that the ease with which a word is
recognised or produced is affected by the word’s
phonological similarity to other words in the men-
tal lexicon (often operationalised as neighbourhood
density, i.e., the number of words that differ from
a target word by just a single phoneme) (Luce and
Pisoni, 1998; Harley and Bown, 1998; Vitevitch,
2002; Ziegler et al., 2003). Yet the nature of these
effects is not always consistent between languages.
For example, in English, the neighbourhood den-
sity of a word was found to correlate positively
with reaction times in a picture naming task (Vite-
vitch, 2002), and negatively with the speed and

accuracy of participants’ responses in a lexical de-
cision task (Luce and Pisoni, 1998). However, in
Spanish the opposite pattern was found: words with
higher neighbourhood densities were produced less
quickly in a picture naming task (Vitevitch and
Stamer, 2006), and recognised more quickly and
accurately in an auditory lexical decision task (Vite-
vitch and Rodrı́guez, 2005).

A possible explanation for such cross-linguistic
variation is that the different effects of neighbour-
hood density (a local measure of lexicon struc-
ture) might result from differences in the global
lexicon structure: for example, if one language
exhibits much greater similarity between words
overall, this could affect how language process-
ing mechanisms develop, leading to qualitatively
different behaviour.

One way to analyse the global phonological
structure of the mental lexicon is by represent-
ing it as a phonological network (Vitevitch, 2008):
a graph in which nodes correspond to the word-
forms in a lexicon, and edges link nodes which
are phonologically similar according to some met-
ric (typically, words which differ by exactly one
phoneme, i.e. they have a Levenshtein distance
of one). The structure of the network can then be
analysed quantitatively using measures from net-
work science. While neighbourhood density (i.e., a
node’s degree) is one local measure of connectivity,
other measures can better capture the global struc-
ture of the network. By comparing these measures
across languages, we might find explanations for
the behavioural differences mentioned above.

As well as providing insight into cross-linguistic
variations in language processing, cross-linguistic
comparisons of phonological network structure
could also uncover universal properties of language

110

or typological generalisations. Indeed, Arbesman
et al. (2010) argued based on an analysis of phono-
logical networks from five languages that these
networks share several structural properties that
distinguish them from other naturally occurring
networks, suggesting some important underlying
organisation. Though specific hypotheses were
not presented in this work, one of the authors sug-
gested in an earlier analysis of the English lexicon
that such properties might arise due to particular
learning processes (Vitevitch, 2008).

However, work by Gruenenfelder and Pisoni
(2009) found that several of the structural prop-
erties discussed above were also found in a random
pseudolexicon with the same word lengths as a real
English lexicon, but with the phonemes in each
word chosen at random. Thus, they argued that
these structural properties are simply a by-product
of the way phonological networks are defined (by
connecting similar strings) and should not be taken
as evidence of particular growth processes (or pre-
sumably, any other cognitive pressures Arbesman
et al. might later have had in mind).

These studies highlight some important method-
ological issues that need to be resolved if we hope
to use network analysis as a tool for cross-linguistic
studies. In order to make meaningful compar-
isons between different languages’ networks, we
need to determine what constitutes a large or small
difference in phonological network statistics by
comparing all languages to appropriate random
baselines. In addition, there are two other factors
that have not been explicitly considered in previ-
ous studies of phonological networks. First, we
don’t know how the size of a phonological network
(number of nodes) affects its statistics. The lexi-
cons in Arbesman et al.’s study ranged from 2500
words (Hawaiian) to 122,000 words (Spanish), yet
if the size of the Spanish lexicon had also been
2500 words, it might have yielded quite different
statistics. Second, there is a lack of consensus
about whether phonological networks should be
constructed from lemmas or from all wordforms in-
cluding morphological variants, and in some cases,
datasets may only be available for one or the other
option. Therefore, we need to understand how in-
cluding or excluding inflectional variants affects
the measured statistics of phonological networks.

In this paper, we investigate the questions above,
synthesizing arguments from the literature with our
own analyses to propose a new method for com-

paring phonological networks across languages.
Using this method, we compare network statis-
tics across eight different languages to appropri-
ate baselines at a range of lexicon sizes. We show
that Gruenenfelder and Pisoni’s (2009) findings
for English extend to the other seven languages
we consider, supporting their argument that the
small-world properties of phonological networks
should not be used as evidence of particular cogni-
tive/growth processes. We also find that network
statistics vary with lexicon size within each lan-
guage, but not always in the same way. These
differences provide a first step in investigating the
relationship between cross-linguistic variation in
language processing and global lexicon structure.

2 Background

The use of network science to study the phonolog-
ical structure of the lexicon was first proposed by
Vitevitch (2008). He and later authors converged
on using several standard measures from network
science, which we will also employ. These are:

Degree assortativity coefficient In some net-
works, nodes tend to connect to other nodes that
have similar degrees (numbers of neighbours) to
their own. The extent to which a network exhibits
this property can be quantified using the degree
assortativity coefficient, which is defined as the
Pearson correlation coefficient r of the degrees of
the nodes at either end of each edge. So, r lies be-
tween −1 (the higher a node’s degree is, the lower
the degrees of its neighbours) and 1 (nodes con-
nect only to other nodes of the same degree), with
r = 0 if there is no correlation between the degrees
of neighbouring nodes.

Networks with positive degree assortativity are
relatively robust. Empirical studies show that in
such networks many nodes can be removed without
substantially reducing their connectivity (Newman,
2003).

Fraction of nodes in the giant component
Complex networks often have many distinct con-
nected components. Often, a single giant compo-
nent contains a much larger fraction of the nodes
than any other component, and this fraction helps
characterise the global connectivity of the network.

Average shortest path length (ASPL) The
shortest path length between two nodes v and w,
which we denote d(v, w), is the minimum number
of edges that must be traversed to get from node

111

v to node w. The ASPL is then the mean of the
shortest path lengths between all pairs of nodes,
and is given by the equation

ASPL =
∑

v,w∈V

d(v, w)
|V |(|V | − 1)

,

where V denotes the set of all nodes in the net-
work. Since paths do not exist between mutually
disconnected components, there are different ways
to compute ASPL for graphs with disconnected
components; all values reported in this paper com-
pute the average across all pairs of nodes in the
giant component only.

Average clustering coefficient A node’s cluster-
ing coefficient measures the ‘cliquishness’ of its
neighbourhood, and is defined as the number of
edges that exist between its neighbours divided by
the number of possible edges between them:

C(v) =
2|{ eu,w ∈ E : ev,u ∈ E, ev,w ∈ E}|

k(v)(k(v)− 1)
,

where E denotes the set of all edges in the network,
ex,y denotes an edge between nodes x and y, and
k(x) denotes the degree of node x. The clustering
coefficient is undefined for nodes with k < 2, since
the denominator reduces to zero for such nodes.
We report the mean clustering coefficient over all
nodes in the giant component; nodes with fewer
than two neighbours are assigned a coefficient of
zero.1

A word’s clustering coefficient has been found
to predict behavioural measures in both lexical ac-
cess (Chan and Vitevitch, 2009) and adult and child
word learning (Goldstein and Vitevitch, 2014; Carl-
son et al., 2014).

Small-world property Small world networks
(Watts and Strogatz, 1998) are characterized by
short ASPL relative to their size and high average
clustering coefficients relative to what one would
expect from an equivalent Erdős-Rényi graph—one
with the same number of nodes and edges as the
real graph, but where edges are placed randomly
between pairs of nodes. A distinctive property of
these networks is their easy searchability: it is usu-
ally possible to find short paths between nodes in a
decentralized fashion using only small quantities
of information per node when the network admits

1Some researchers instead define the coefficient for such
nodes to be one, whilst others exclude such nodes from the
average (Schank and Wagner, 2004).

embedding in a suitable space (Kleinberg, 2000;
Sarkar et al., 2013). It has been suggested that
easy searchability could be relevant for spreading-
activation models of lexical processing (Chan and
Vitevitch, 2009) and in lexical acquisition (Carlson
et al., 2011).

Using the measures above, Vitevitch (2008) anal-
ysed a lexicon of English, and Arbesman et al.
(2010) extended the analysis to five lexicons repre-
senting languages from different language families.
They found several characteristics common to these
networks. All five lexicons were found to exhibit
the small-world property, having similar ASPLs to
those expected in comparable Erdős-Rényi graphs,
but average clustering coefficients that were sev-
eral orders of magnitude larger. The phonological
networks were also marked by high degree assorta-
tivity, with coefficients ranging from 0.56 to 0.76,
in contrast to typical values of 0.1 to 0.3 for so-
cial networks, and -0.1 to -0.2 for biological and
technical networks. The giant components in the
phonological networks all contained less than 70%
of nodes (in three cases, less than 40%), whereas
the giant components of social, biological, and tech-
nical networks typically contain 80-90% of nodes.
Arbesman et al. suggested that “together, these
observed characteristics hint at some deeper orga-
nization within language” (2010: 683).

Nevertheless, Arbesman et al. also found some
quantitative variation in the phonological network
statistics across languages—for example, the Man-
darin network had an ASPL almost twice that of the
Hawaiian network, a clustering coefficient twice
that of the Spanish network, and the fraction of
nodes in its giant component was almost twice that
of the English network. However, we don’t know
if these differences are meaningful, since the ex-
pected variability of these statistics in phonological
networks has not been established. In addition,
since the lexicon sizes varied widely across lan-
guages, the differences in network statistics may
have been due to this variation rather than to more
interesting differences between the languages.

Gruenenfelder and Pisoni (2009) started to ad-
dress these issues by considering a random baseline
network for English. They constructed a pseudolex-
icon by randomly generating phoneme sequences
with the same lengths as the words in an English
lexicon2, and found that the phonological network

2Both the English lexicon and the pseudolexicon were
limited to words of only 2 to 5 phonemes in length.

112

210 211 212 213 214 215 216

5.0

5.5

6.0

6.5

7.0

7.5

8.0

A
SP

L
in

G
C

210 211 212 213 214 215 216

0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33

A
ve

ra
ge

C
C

in
G

C

210 211 212 213 214 215 216

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

D
eg

re
e

A
ss

or
t.

C
oe

ff.

210 211 212 213 214 215 216

0.20

0.25

0.30

0.35

0.40

0.45

F
ra

c.
no

de
s

in
G

C

0.0 0.2 0.4 0.6 0.8 1.0

Lexicon size (number of nodes) – log-scaled

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Phonological network statistics of English lemmas, as a function of lexicon size.

of this random pseudolexicon also exhibited the
small-world property and a high degree assortativ-
ity coefficient. They concluded that these charac-
teristics are likely to occur in any network whose
nodes represent random sequences of parts (i.e.,
phonemes), and whose edges are determined by
the overlap of these parts. Thus they argued that
high assortative mixing by degree and small-world
characteristics should not be taken to indicate a
deeper organisational principle in the lexicon.

So, although Gruenenfelder and Pisoni (2009)
have analysed some properties of a randomly gen-
erated lexicon with the same size, word-lengths,
and phoneme inventory as a particular English lexi-
con, it remains to be seen whether these properties
are characteristic of randomly generated lexicons
in general, or to what extent they vary across dif-
ferent lexicon sizes, word-length distributions, and
phoneme inventory sizes. In the following sec-
tions we show that all of these factors affect the
statistics of both random and real lexicons; we then
propose a more robust method for making cross-
linguistic comparisons of phonological networks.
While our method is still not enough to draw strong
quantitative conclusions in all cases, we are able
to shed further light on a number of the claims and
questions raised above, and we also discover some
cross-linguistic differences in lexicon structure that
warrant further investigation.

3 Effect of lexicon size

We begin by asking whether the size of a phono-
logical network may affect its statistics. For this
analysis, we use only a single language (English).

3.1 Method
We start with the 44,841 English lemmas in the
CELEX database (Baayen et al., 1995), which in-
cludes both word frequencies and phonemic tran-
scriptions. We derive from this original lexicon a
series of sublexicons of decreasing sizes, by pro-
gressively filtering out batches of words with the

lowest frequencies. Thresholding a lexicon by fre-
quency simulates drawing a lexicon from a smaller
corpus or dictionary, since the more frequently a
word is used, the more likely it is to appear in even
a small corpus or dictionary. For each (sub)lexicon,
we associate each distinct phonological form with
a unique node and place edges between pairs of
nodes that differ by one phoneme (insertion, dele-
tion, or substitution). To construct the networks
and compute their statistics we use the NetworkX
Python package (Hagberg et al., 2008).

3.2 Results and discussion

Figure 1 shows the values of four network statis-
tics as a function of lexicon size. All the values
fall within the range found across languages by
Arbesman et al. (2010). However, all four statistics
do vary with lexicon size, suggesting that com-
parisons between networks should only be made
between lexicons of similar size.

One way to attempt such quantitative compar-
isons across languages could be to subsample from
each lexicon in order to obtain lexicons of the same
size. However, we don’t know if the slopes of these
plots will be the same across languages. Consider
the hypothetical plot in Figure 2:

Lexicon size

N
et

w
or

k
st

at
is

ti
c

Language X
Language Y

Figure 2: Hypothetical scenario where the value
of a phonological network statistic is positively
correlated with lexicon size in Language X, but
negatively correlated in Language Y.

In this case, controlling for lexicon size is not
enough, since if we choose a small lexicon size
then Language X will have a smaller statistic than
Language Y, whereas if we choose a large size then

113

the opposite holds. This observation motivates us
to compare statistics across a range of sizes rather
than using point estimates as in previous work.

Indeed, an established technique for comparing
the properties of real networks against random base-
lines is to plot the value of a network statistic as
a function of network size, and compare the slope
obtained for random networks against the trend ob-
served in real networks (Albert and Barabási, 2002).
However, care must be taken in choosing appropri-
ate random baselines for phonological networks,
due to the issues described next.

4 Effects of word-length distribution and
phoneme inventory size

Recently, Stella and Brede (2015) pointed out that
due to the way in which nodes and edges are typi-
cally defined in phonological networks, the statis-
tics of such networks are highly sensitive to the
distribution of word lengths in the lexicon, and to
a lesser extent, the size of the phoneme inventory.
Stella and Brede considered the set of all possible
‘words’ (i.e. possible sequences of phonemes) that
could be formed using a given phoneme inventory,
and noted that the number of possible n-phoneme
words scales exponentially with n, while the num-
ber of possible neighbours of an n-phoneme word
scales linearly with n. Hence, if we randomly sam-
ple a pair of words from the set of all possible
words, then the shorter their lengths are, the more
likely it is that the sampled words will be neigh-
bours. Thus, lexicons with a higher proportion
of short words will tend to be more densely con-
nected, regardless of any other phonological proper-
ties. Also, since the number of possible n-phoneme
words scales faster with the size of the phoneme
inventory than does the number of possible neigh-
bours of an n-phoneme word, we expect the size of
the phoneme inventory to affect the connectivity of
a phonological network, albeit by a smaller factor
than the distribution of word lengths.

Unlike lexicon size, the word-length distribution
and phoneme inventory size are inherent properties
of a language, so these confounds make it difficult
to directly compare network statistics across lan-
guages, even after controlling for lexicon size. In
making cross-linguistic comparisions, we would
like to be able to identify differences between lan-
guages beyond the fact that their lexicons have
different word length distributions.

Therefore, rather than directly comparing the

statistics of real lexicons across languages, we pro-
pose to generate separate pseudolexicons for each
language that match the word-length distribution
and phoneme inventory size of that language. We
can then examine the differences between these
pseudolexicons and the real lexicons over a range
of lexicon sizes, and compare these differences
across languages. Using this method we can bet-
ter evaluate some of the claims made by previous
authors and reveal some previously undetected vari-
ation in network structure across languages.

5 Cross-linguistic comparison

5.1 Data and method

We analyse phonological networks from eight dif-
ferent languages: English, Dutch, German, French,
Spanish, Portuguese, Polish, and Basque. Where
possible, we have obtained for each language a
lexicon consisting only of lemmas, and another
with separate entries for phonemically distinct in-
flectional variants.3 Each lexical entry consists
of a phonemically transcribed word and a corpus-
derived estimate of its frequency. The sources and
sizes of the lexicons are listed in Table 1. From
each of these original lexicons, we derive a series
of sublexicons of decreasing sizes, by progressively
filtering out batches of low-frequency words.

For each real lexicon and derived sublexicon, we
generate 20 random pseudolexicons with the same
size, phoneme inventory size, and word-length
distribution4. For each lexicon size in each lan-
guage, we compute the mean and standard devia-
tion of each statistic across the 20 pseudolexicons,
as well as the statistics for the comparable real
(sub)lexicon.

5.2 Results and discussion

We first consider how the average word length
varies across our sample lexicons. Figure 3 shows
that average word lengths vary with lexicon size
(tending to increase as more infrequent words are
included in the lexicon), as well as across languages
(average word lengths in English and French are
substantially shorter than in Spanish).

3We were unable to obtain phonemic transcriptions for
Portuguese inflected wordforms, or reliable frequencies for
Spanish lemmas.

4Specifically, we replicate Gruenenfelder and Pisoni’s pro-
cedure for generating their ‘Word Length Only’ lexicon, ex-
cept that we match the entire word-length distribution, not just
the number of two-, three-, four-, and five-segment words.

114

Language Lexicon Type Size Source of pronunciations Source of frequencies

English Lemmas 44,841 CELEX (Baayen et al., 1995) CELEX
All wordforms 87,263 CELEX CELEX

Dutch Lemmas 117,048 CELEX CELEX
All wordforms 300,090 CELEX CELEX

German Lemmas 50,481 CELEX CELEX
All wordforms 353,679 CELEX CELEX

French Lemmas 43,361 Lexique (New et al., 2001) Lexique
All wordforms 71,334 Lexique Lexique

Portuguese Lemmas 18,656 Porlex (Gomes and Castro, 2003) CORLEX (Bacelar do Nascimento, 2003)
Spanish All wordforms 42,461 CALLHOME (Garrett et al., 1996) CALLHOME
Polish Lemmas 6024 GlobalPhone (Schultz, 2002) SUBTLEX-PL (Mandera et al., 2014)

All wordforms 25,623 GlobalPhone SUBTLEX-PL
Basque Lemmas 9102 E-hitz (Perea et al., 2006) E-hitz

All wordforms 99,491 E-hitz E-hitz

Table 1: Sources and sizes of lexicons. Sizes refer to the number of distinct phonological forms: sets of
words which have distinct spellings and/or senses but the same phonemic transcription are conflated into a
single phonological wordform.

4

5

6

7

8

9
English Dutch German Polish

210 211 212 213 214 215 216

4

5

6

7

8

9
French

210 211 212 213 214 215 216

Spanish

210 211 212 213 214 215 216

Portuguese

210 211 212 213 214 215 216

Basque

0.0 0.2 0.4 0.6 0.8 1.0

Lexicon size (number of nodes)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

W
or

d
L

en
gt

h

Figure 3: Average word length as a function of lexicon size. Solid lines are for lemmas; dashed lines are
for all wordforms.

Results for the four measures of network struc-
ture and connectivity defined above are presented
in Figure 4. We first discuss the similarities be-
tween different languages, focusing on the claims
made by previous researchers; we then discuss
some cross-linguistic differences.

5.2.1 Cross-linguistic similarities
As noted by Arbesman et al. (2010), there are some
striking similarities across the languages, especially
relative to other types of networks. To test for the
small-word behaviour that Arbesman et al. found
in their networks, we computed estimates of the
ASPLs and clustering coefficients of Erdős-Rényi
graphs matched to the giant components of each of
our lexicons.5 The ASPLs all ranged from 4 to 6,

5Following Gruenenfelder and Pisoni (2009), we esti-
mate the ASPL of an Erdős-Rényi graph using the formula

which is somewhat smaller than in our real lexicons,
but considered similar according to the conventions
used to test for the small-world property (Watts and
Strogatz, 1998). The clustering coefficients of the
Erdős-Rényi graphs ranged between 0.0003 and
0.03, orders of magnitude smaller than the values of
0.17 to 0.37 for our real lexicons; again, according
to the usual conventions (Watts and Strogatz, 1998),
these results indicate that all of our real lexicons
exhibit the small-world property.

However, all of our pseudolexicons are also
small-world networks. This finding extends Grue-
nenfelder and Pisoni’s result for English and sup-

ASPLER ≈ ln(|V |)
ln(〈k〉) , where 〈k〉 = 2|E|

|V | is the graph’s aver-
age degree. The average clustering coefficient of an Erdős-
Rényi graph is given by CER = 〈k〉

|V | (Albert and Barabási,
2002).

115

0

2

4

6

8

10

12
English Dutch German Polish

210 211 212 213 214 215 216

0

2

4

6

8

10

12
French

210 211 212 213 214 215 216

Spanish

210 211 212 213 214 215 216

Portuguese

210 211 212 213 214 215 216

Basque

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A
SP

L
in

G
C

−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

English Dutch German Polish

210 211 212 213 214 215 216

−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

French

210 211 212 213 214 215 216

Spanish

210 211 212 213 214 215 216

Portuguese

210 211 212 213 214 215 216

Basque

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

C
C

in
G

C

−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

English Dutch German Polish

210 211 212 213 214 215 216

−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

French

210 211 212 213 214 215 216

Spanish

210 211 212 213 214 215 216

Portuguese

210 211 212 213 214 215 216

Basque

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
eg

re
e

A
ss

or
ta

ti
vi

ty
C

oe
ff.

0.0

0.1

0.2

0.3

0.4

0.5

0.6
English Dutch German Polish

210 211 212 213 214 215 216

0.0

0.1

0.2

0.3

0.4

0.5

0.6
French

210 211 212 213 214 215 216

Spanish

210 211 212 213 214 215 216

Portuguese

210 211 212 213 214 215 216

Basque

0.0 0.2 0.4 0.6 0.8 1.0

Lexicon size (number of nodes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

N
od

es
in

G
C

Figure 4: Thick, coloured lines show network statistics as a function of lexicon size in real lexicons.
Thin, black lines show network statistics averaged across twenty random pseudolexicons, and the shaded
regions indicate ± 2 standard deviations. Solid lines are for lemmas; dashed lines are for all wordforms.

116

ports their claim that the small-world properties
arise naturally from the conventional definition of
these networks, rather than suggesting a “deeper
organization” as suggested by Arbesman et al.

Our results for degree assortativity also support
Gruenenfelder and Pisoni’s argument that substan-
tial assortative mixing by degree can be expected
in networks which are based on the overlap of parts
randomly combined into wholes. The degree as-
sortativity coefficients for all of the real lexicons
lie between 0.5 and 0.8, which is higher than the
values typically observed in social, biological, and
technical networks. But again, the coefficients of
the pseudolexicons are similar to those of the real
lexicons, making these values less remarkable.

The final generalisation that Arbesman et al.
made was that all the languages they examined
had a smaller proportion of nodes in their giant
components than the 80-90% that is typically ob-
served in complex networks. We find the same, but
as noted in Gruenenfelder and Pisoni’s analysis of
English, the fraction of nodes in the giant compo-
nent of the real lexicons is actually much greater
than in their matched pseudolexicons. This is not
surprising, as the real lexicons have phonotactic
constraints which would tend to make words more
similar to one another than if phonemes were sam-
pled at random. So again, the claim of a “deeper
organisation” seems premature.

5.2.2 Cross-linguistic differences
The search for interesting universal properties is
only half the motivation for making such cross-
linguistic comparisons. Ideally, we also want to
identify differences that might correlate with dif-
ferent behavioural patterns across languages. Two
of our statistics don’t reveal much on this point:
average clustering coefficient (discussed above)
and degree assortativity. There are some quanti-
tative differences in degree assortativity between
languages, but they seem mainly driven by differ-
ences in the word length distributions, since the
differences across real lexicons pattern the same as
the differences across pseudolexicons.

However, our results do reveal some more inter-
esting cross-linguistic differences in the way the
other two statistics vary across lexicon sizes and
lexicon types (lemmas vs all wordforms).

Fraction of nodes in the giant component
Some of the cross-linguistic differences in this
statistic again seem driven by differences in word-

length distribution, since there are large cross-
linguistic differences for this statistic even in the
pseudolexicons. For example, pseudolexicons
matched to French or English tend to contain
around 10% of the nodes, whereas pseudolexicons
matched to German or Spanish are an order of
magnitude smaller. However, word lengths cannot
account for all of the differences in giant compo-
nent size across languages, because the magnitude
of the difference in values between the real lexi-
cons and their corresponding pseudolexicons also
varies across languages. For example, the giant
component sizes of the pseudolexicons matched to
Basque and Polish lemmas are reasonably similar,
but the giant component sizes of the real Basque
lemma lexicons are twice as large as those of the
real Polish lemma lexicons.

In most of the languages the fraction of nodes in
the giant component tends to decrease with increas-
ing lexicon size (i.e. as more infrequent words are
included in the lexicon), which suggests that less
frequent words are phonotactically unusual. In con-
trast, in Spanish, Portuguese, and to a lesser extent
Basque, the less frequent words are more likely to
be a part of the giant component, suggesting that
they are more similar to other words in the lan-
guage. These different trends do not appear to be
solely a consequence of differences in word-length
distributions, since in the pseudolexicons matched
to Spanish, Portuguese, and Basque, the fraction
of nodes in the giant component does tend to de-
crease slightly with increasing lexicon size. This
finding could be important for understanding cross-
linguistic differences in language processing, since
both word frequency and phonotactic probability
are thought to affect both recognition and produc-
tion of words (Luce and Pisoni, 1998; Vitevitch
and Sommers, 2003).

These results also provide a real example of the
behaviour hypothesized in Figure 2, underscoring
the danger of using a single lexicon size to compare
phonological network statistics across languages:
if we compared lexicons containing around 10,000
words, we might conclude that Dutch wordforms
were more densely connected than Spanish word-
forms; whereas if we compared lexicons containing
30,000 words, their giant component sizes would
support the opposite conclusion.

Average shortest path length Arbesman et al.
noted that the ASPL for Mandarin was double that
of Hawaiian, and raised the question of whether

117

this quantitative difference was significant. Our
results suggest not: the sizes of the two lexicons
they used (Hawaiian: 2578, Mandarin: 30,086)
are similar to the smallest and largest sizes of the
Polish and Spanish wordform lexicons used in our
study (Polish: 1694 and 25,623, Spanish: 1694 and
42,461), and we see that for Polish and Spanish
wordforms, as well as for Portuguese lemmas, the
largest lexicon has almost twice the ASPL as the
smallest one.

On the other hand, there do seem to be some
meaningful differences in ASPL across languages.
For the English lexicons, the ASPLs in the giant
component are barely distinguishable from those of
the corresponding random pseudolexicons. How-
ever, the values for Spanish and Polish lexicons
are consistently higher than those of their respec-
tive pseudolexicons; while for German, Portuguese,
and Basque, the differences between real and ran-
dom lexicons are less stable across different lexicon
sizes.

It should be noted that while the sizes of the
pseudolexicons are matched to those of the real lex-
icons, the sizes of their giant components are not.
Since the giant components of random pseudolexi-
cons tend to be considerably smaller than those of
real lexicons, it is unsurprising that their ASPLs
tend also to be smaller. Nevertheless, our results
show that the ASPL in the giant component of a
phonological network is not a simple function of
the giant component’s size. Recall that the differ-
ence between the size of the giant component in the
real lexicons and the size of the giant component in
the corresponding random lexicons is smaller for
Polish than for English or French. Hence, all else
being equal, we would expect the difference in the
ASPLs of real and random lexicons to be smaller
for Polish too—but the ASPLs in the Polish giant
components are actually larger, relative to the cor-
responding pseudolexicons, than those of English
or French.

Polish also behaves differently from some of the
other languages with respect to its morphology. In
Polish, the magnitude of the difference in ASPL
between real and random lexicons is greater when
morphological variants are included than when the
lexicons are restricted to lemmas, but this is not the
case for English, Dutch, or French.

6 Conclusion

This paper has argued that, when making compar-
isons between phonological networks, researchers
must consider that network statistics are affected
by lexicon size, phoneme inventory size, the distri-
bution of word lengths, and whether morphological
variants are included or not. Since it is not possible
to directly control for all of these in cross-linguistic
comparisons, we have proposed that such compar-
isons need to be made indirectly, by looking at how
each language’s phonological network differs from
a matched pseudolexicon across a range of lexicon
sizes, and then comparing these differences across
languages. While this approach doesn’t permit sim-
ple comparisons of single numbers, nevertheless it
can lead to insights regarding proposed universal
properties as well as cross-linguistic differences.

In particular, our analysis of eight languages pro-
vides further support to Gruenenfelder and Pisoni’s
(2009) claim that the small-world and other proper-
ties discussed by Vitevitch (2008) and Arbesman et
al. (2010) are a consequence of how phonological
networks are defined, and do not necessarily reflect
particular growth processes or cognitive pressures.
At the same time, we did identify several differ-
ences in the behaviour of network statistics across
different languages, which could provide an ex-
planation for previously identified differences in
language processing. We hope that our results will
inspire further work to investigate these potential
connections and to extend our analyses to addi-
tional languages.

7 Acknowledgements

This work was supported in part by a James S. Mc-
Donnell Foundation Scholar Award (#220020374)
to Sharon Goldwater, and by the EPSRC Centre for
Doctoral Training in Data Science, funded by the
UK Engineering and Physical Sciences Research
Council (grant EP/L016427/1) and the University
of Edinburgh.

References
Réka Albert and Albert-László Barabási. 2002. Sta-

tistical mechanics of complex networks. Reviews of
Modern Physics, 74(1):47.

Samuel Arbesman, Steven H. Strogatz, and Michael S.
Vitevitch. 2010. The structure of phonological
networks across multiple languages. International
Journal of Bifurcation and Chaos, 20(03):679–685.

118

R Harald Baayen, Richard Piepenbrock, and Léon Gu-
likers. 1995. CELEX2, LDC96L14. Web download,
Linguistic Data Consortium, Philadelpha, PA.

Maria Fernanda Bacelar do Nascimento. 2003. Um
novo léxico de frequências do Português. Revista
Portuguesa de Filologia, 25:341–358.

Matthew T Carlson, Max Bane, and Morgan Sondereg-
ger. 2011. Global properties of the phonological net-
works in child and child-directed speech. In N Da-
nis, K Mesh, and H Sung, editors, Proceedings of
the 35th Boston University Conference on Language
Development, volume 1, pages 97–109. Cascadilla
Press Somerville, MA.

Matthew T Carlson, Morgan Sonderegger, and Max
Bane. 2014. How children explore the phonological
network in child-directed speech: A survival analy-
sis of childrens first word productions. Journal of
Memory and Language, 75:159–180.

Kit Ying Chan and Michael S Vitevitch. 2009. The
influence of the phonological neighborhood cluster-
ing coefficient on spoken word recognition. Jour-
nal of Experimental Psychology: Human Perception
and Performance, 35(6):1934.

Susan Garrett, Tom Morton, and Cynthia McLemore.
1996. CALLHOME Spanish lexicon, LDC96L16.
Web download, Linguistic Data Consortium,
Philadelpha, PA.

Rutherford Goldstein and Michael S Vitevitch. 2014.
The influence of clustering coefficient on word-
learning: how groups of similar sounding words fa-
cilitate acquisition. Frontiers in Psychology, 5.

Inês Gomes and São Luı́s Castro. 2003. Porlex, a lexi-
cal database in European Portuguese. Psychologica,
32:91–108.

Thomas M Gruenenfelder and David B Pisoni. 2009.
The lexical restructuring hypothesis and graph the-
oretic analyses of networks based on random lexi-
cons. Journal of Speech, Language, and Hearing
Research, 52(3):596–609.

Aric A Hagberg, Daniel A Schult, and Pieter J Swart.
2008. Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy2008), pages
11–15, Pasadena, CA USA, August.

Trevor A Harley and Helen E Bown. 1998. What
causes a tip-of-the-tongue state? evidence for lexical
neighbourhood effects in speech production. British
Journal of Psychology, 89(1):151–174.

Jon Kleinberg. 2000. The small-world phenomenon:
An algorithmic perspective. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory
of Computing, pages 163–170. ACM.

Paul A Luce and David B Pisoni. 1998. Recognizing
spoken words: The neighborhood activation model.
Ear and Hearing, 19(1):1.

Paweł Mandera, Emmanuel Keuleers, Zofia Wod-
niecka, and Marc Brysbaert. 2014. Subtlex-pl:
subtitle-based word frequency estimates for Polish.
Behavior Research Methods, 47(2):471–483.

Boris New, Christophe Pallier, Ludovic Ferrand, and
Rafael Matos. 2001. A lexical database for con-
temporary french on internet: Lexique. Année Psy-
chologique, 101(3):447–462.

Mark EJ Newman. 2003. Mixing patterns in networks.
Physical Review E, 67(2):026126.

Manuel Perea, Miriam Urkia, Colin J Davis, Ainhoa
Agirre, Edurne Laseka, and Manuel Carreiras. 2006.
E-hitz: A word frequency list and a program for
deriving psycholinguistic statistics in an agglutina-
tive language (Basque). Behavior Research Meth-
ods, 38(4):610–615.

Rik Sarkar, Xianjin Zhu, and Jie Gao. 2013. Dis-
tributed and compact routing using spatial distribu-
tions in wireless sensor networks. ACM Transac-
tions on Sensor Networks (TOSN), 9(3):32.

Thomas Schank and Dorothea Wagner. 2004. Approx-
imating clustering-coefficient and transitivity. Uni-
versität Karlsruhe, Fakultät für Informatik.

Tanja Schultz. 2002. Globalphone: a multilingual
speech and text database developed at karlsruhe uni-
versity. In INTERSPEECH.

Massimo Stella and Markus Brede. 2015. Pat-
terns in the English language: phonological net-
works, percolation and assembly models. Journal
of Statistical Mechanics: Theory and Experiment,
2015(5):P05006.

Michael S Vitevitch and Eva Rodrı́guez. 2005. Neigh-
borhood density effects in spoken word recognition
in Spanish. Journal of Multilingual Communication
Disorders, 3(1):64–73.

Michael S Vitevitch and Mitchell S Sommers. 2003.
The facilitative influence of phonological similarity
and neighborhood frequency in speech production
in younger and older adults. Memory & Cognition,
31(4):491–504.

Michael S Vitevitch and Melissa K Stamer. 2006.
The curious case of competition in Spanish speech
production. Language and Cognitive Processes,
21(6):760–770.

Michael S Vitevitch. 2002. The influence of phono-
logical similarity neighborhoods on speech produc-
tion. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 28(4):735.

Michael S Vitevitch. 2008. What can graph theory tell
us about word learning and lexical retrieval? Jour-
nal of Speech, Language, and Hearing Research,
51(2):408–422.

119

Duncan J Watts and Steven H Strogatz. 1998. Col-
lective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442.

Johannes C Ziegler, Mathilde Muneaux, and Jonathan
Grainger. 2003. Neighborhood effects in auditory
word recognition: Phonological competition and or-
thographic facilitation. Journal of Memory and Lan-
guage, 48(4):779–793.

120

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 121–130,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Morphotactics as Tier-Based Strictly Local Dependencies

Alëna Aksënova Thomas Graf Sedigheh Moradi

Department of Linguistics
Stony Brook University

Stony Brook, NY 11794, USA
∗mail@thomasgraf.net

alena.aksenova@stonybrook.edu, sedigheh.moradi@stonybrook.edu

Abstract

It is commonly accepted that morpholog-
ical dependencies are finite-state in na-
ture. We argue that the upper bound on
morphological expressivity is much lower.
Drawing on technical results from compu-
tational phonology, we show that a vari-
ety of morphotactic phenomena are tier-
based strictly local and do not fall into
weaker subclasses such as the strictly lo-
cal or strictly piecewise languages. Since
the tier-based strictly local languages are
learnable in the limit from positive texts,
this marks a first important step towards
general machine learning algorithms for
morphology. Furthermore, the limitation
to tier-based strictly local languages ex-
plains typological gaps that are puzzling
from a purely linguistic perspective.

1 Introduction

Different aspects of language have different levels
of complexity. A lot of recent work in phonology
(see Graf (2010), Heinz (2011a; 2011b; 2015),
Chandlee (2014), Jardine (2015) and references
therein) argues that phonological well-formedness
conditions are subregular and hence do not re-
quire the full power of finite-state automata. This
is particularly noteworthy because computational
phonology still relies heavily on finite-state meth-
ods (Kaplan and Kay, 1994; Frank and Satta,
1998; Riggle, 2004). A similar trend can be ob-
served in computational syntax, where the orig-
inal characterization as mildly context-sensitive
string languages (Huybregts, 1984; Shieber, 1985)
is now being reinterpreted in terms of subregu-
lar tree languages (Graf, 2012; Graf and Heinz,
2015). Curiously missing from these investiga-
tions is morphology.

While linguistic theories sometimes consider
morphology a part of syntax, computational mor-
phology recognizes that the weak generative ca-
pacity of morphology is much closer to phonol-
ogy than syntax. Consequently, computational
morphology involves largely the same finite-state
methods as computational phonology (Kosken-
niemi, 1983; Karttunen et al., 1992). This
raises the question whether morphology, just like
phonology, uses only a fraction of the power fur-
nished by these tools. A positive answer would
have important repercussions for linguistics as
well as natural language processing. The subreg-
ular classes identified in computational phonol-
ogy are learnable in the limit from positive text
(Heinz et al., 2012), so a subregular theory of mor-
phology would greatly simplify machine learning
while also explaining how morphological depen-
dencies can be acquired by the child from very
little input. A subregular model of morphology
would also be much more restricted with respect
to what processes are predicted to arise in natural
languages. It thus provides a much tighter typo-
logical fit than the regular languages. In this paper,
we argue that the subregular view of morphology
is indeed correct, at least for morphotactics.

Morphotactics describes the syntax of mor-
phemes, that is to say, their linear order in the
word and the conditions that license their pres-
ence or enforce their absence. One can distin-
guish surface morphotactics from underlying mor-
photactics. The former regulates the shape of the
pronounced surface strings, whereas the latter is
only concerned with the arrangements of the mor-
phemes in the initial representation rather than
how said morphemes are realized in specific envi-
ronments. We only consider underlying morpho-
tactics in this paper.

The following example may clarify the distinc-
tion. In German, the past participle of a verb is

121

formed via a circumfix. The first part of the cir-
cumfix is always the prefix ge-, whereas the sec-
ond part may be the suffix -en or -t depending on
the verb stem. In addition, the suffixes can also oc-
cur on their own, e.g. on infinitives or the third per-
son singular form of the verb. Surface morphotac-
tics thus has to ensure that ge- always appears with
one of these two suffixes, and that the form of the
suffix matches the stem. At the same time, it does
not need to worry about matching -en or -t with
ge- since these forms can occur independently as
realizations of different morphemes. Underlying
morphotactics, on the other hand, is unaware of
the surface realizations and only knows that some
abstract prefix GE- must always occur with the ab-
stract suffix -EN, and the other way round. The
fact that -EN has a surface realization that is in-
distinguishable from the infinitival marker, which
does not require the prefix GE-, is irrelevant for
underlying morphotactics. More succinctly: un-
derlying morphotactics regulates the distribution
of morphemes, surface morphotactics the distribu-
tion of allomorphs.

This paper considers a variety of phenomena —
circumfixation, variable affix ordering, unbounded
prefixation — and concludes that they all belong
to the class of tier-based strictly local languages.
We first show that even though many morphotactic
dependencies are strictly local, that is not the case
for all of them (Sec. 2.1). While some of these
outliers are strictly piecewise (Sec. 2.2), tier-based
strictly local grammars are needed to handle the
full range of data points (Sec. 2.3). This prompts
our conjecture that all dependencies that are part
of underlying morphotactics stay within the class
of tier-based strictly local languages. We then use
this hypothesis in Sec. 3 to explain two typologi-
cal gaps with respect to compounding markers and
circumfixation.

2 Subregular Patterns in Morphology

The regular languages are one of the best under-
stood language classes, with many attractive prop-
erties. Yet it is often forgotten that this class prop-
erly includes many weaker ones (McNaughton and
Pappert, 1971), some of which have recently at-
tracted much interest in computational phonol-
ogy. At the very bottom of the hierarchy one
finds strictly local and strictly piecewise languages
(Rogers et al., 2010), and a little bit higher up
the tier-based strictly local languages (Heinz et al.,

Regular Star-Free LTT LT SL

PT SP

TSL

Figure 1: The subregular hierarchy as given in
Heinz et al. (2011); language classes in dashed
boxes are studied in this paper

2011). The subregular hierarchy includes many
other classes (see Fig. 1), but the previous three are
noteworthy because they are conceptually simple
and efficiently learnable in the limit from positive
data (Heinz et al., 2012; Jardine and Heinz, 2016)
while also furnishing sufficient power for a wide
range of phonological phenomena (Heinz, 2015;
Jardine, 2015).

In this section, we investigate the role of strictly
local, strictly piecewise and tier-based strictly lo-
cal patterns in morphotactics. We show that some
but not all patterns are strictly local or strictly
piecewise, whereas all typologically instantiated
patterns seem to fit in the class of tier-based
strictly local languages.

2.1 Strictly Local

A string language L over alphabet Σ is strictly lo-
cal (SL) iff there is some k ∈ N such that L is
generated by a strictly k-local grammar G. Such a
grammar consists of a finite set of k-grams, each
one of which describes an illicit substring. More
precisely, given a string w ∈ Σ∗, let ŵk :=
okwnk (where o, n /∈ Σ) and k-grams(w) :=
{s | s is a substring of ŵk−1 of length k}. Then
G generates string w iff k-grams(w) ∩ G = ∅.
That is to say, G generates every string over Σ that
does not contain an illicit substring.

Most phonological dependencies can be de-
scribed in strictly local terms — see Heinz (2015)
for numerous examples. Consider for instance the
well-known process of word-final obstruent de-
voicing that forces voiced obstruents at the end
of the word to be realized as voiceless: moroz
[maros] ‘frost’ in Russian, Bad [bat] ‘bath’ in Ger-
man). If one considers phonotactics rather than
mappings from underlying representations to sur-
face forms, this is tantamount to a ban against
word-final voiced obstruents. Said ban, in turn, is
captured by a strictly 2-local grammar G that con-
tains all bigrams of the form vn, with v a voiced

122

obstruent.
The specification of SL grammars can be sim-

plified by applying mappings. In the case at hand,
one could define a function f that replaces every
voiced obstruent by the designated symbol ♦ so
that the grammar G can be reduced to the single
bigram ♦n. One has to be careful, though. The SL
languages are not closed under relabelings, in fact,
every regular language is the image of a strictly 2-
local language under some relabeling. However,
the directionality of the ♦-relabeling above is the
opposite: first the relabeling is applied, and then
the grammar filters out strings in the image of that
relabeling. As long as the relabeling is a many-
to-one map between alphabets (and thus does not
introduce distinctions that weren’t already part of
the original alphabet), this provably does not in-
crease weak generative capacity for any of the for-
malisms discussed in this paper.

We make use of such relabelings in the follow-
ing sections in order to convert natural language
patterns into more easily described formal lan-
guages. For morphotactics, though, this raises the
issue how the size of the atomic units should be
chosen. One could posit that morphology, just like
phonology, treats every phonological segment as
a symbol. In that case, stems and morphemes are
strings of symbols. Alternatively, one may treat
each morpheme, including stems, as an atomic
symbol. This is an important decision when it
comes to modeling the interactions of morphol-
ogy and phonology such as phonologically con-
ditioned allomorphy. Fortunately our results are
independent of this choice, due to the productive
nature of compounding.

To better understand why different representa-
tions could in principle affect subregular complex-
ity, note first that whether a stem is represented as
a single, atomic symbol or as a sequence of phono-
logical segments seems to determine if prefixes
and suffixes might be separated by an unbounded
amount of symbols. Consider a circumfix u- -v,
where neither part of the affix may occur without
the other. A concrete example is the nominaliza-
tion circumfix ke- -an in Indonesian (Mahdi, 2012;
Sneddon, 1996):

(1) a. tingii
high

b. ke-
NMN-

tinggi
high

-an
-NMN

‘altitude’

If a stem is a single symbol x , then x and uxv
are well-formed whereas ux and xv are not due to
u- -v being a circumfix whose subparts cannot oc-
cur in isolation. This generalization is easily cap-
tured by the strictly 3-local grammar {oxv , uxn}.
However, if stems are sequences of symbols, then
the well-formed patterns are of the form x+ or
ux+v (since the length of stems is in principle un-
bounded). The illict strings, on the other hand, are
of the form ox+v and ux+n. But no strictly local
grammar can generate the former patterns without
also generating the latter. That is due to the strictly
local languages being closed under suffix substitu-
tion closure.

Suffix Substitution Closure Language L is SL
iff there exists a k ∈ N such that for all
strings u1, v1, u2, v2 and any string x of
length k − 1, if u1xv1, u2xv2 ∈ L, then
u1xv2 ∈ L.

If there is no upper bound on the length of stems,
then we can infer from xk ∈ L and ux kv ∈ L that
both x kv ∈ L and ux k ∈ L. It seems, then, that
circumfixes are strictly local only if each stem is
an atomic symbol.

But this line of reasoning erroneously assumes
that the circumfix can only apply to individual
stems, which ignores the availability of com-
pounding. Returning to Indonesian, we see that
its nominalization marker is not restricted to sin-
gle stems and can also apply to compounds.

(2) a. maha
big

siswa
pupil

‘student’
b. ke-

NMN-
maha
big

siswa
pupil

-an
-NMN

‘student affairs’

Compounding is an unbounded process, so even
if each stem is mapped to a single symbol x ,
one ends up with the same patterns as with the
segmental mapping approach: x+ and ux+v are
well-formed, while ux+ and x+v are ill-formed.
Since the choice of representation does not affect
the subregular complexity results, we opt for the
segmental mapping, which does not require us to
use compounding in all our natural language data
points.

The details of the segmental mapping are as fol-
lows: within a stem, all segments are replaced
by some distinguished symbol. We choose x for

123

this purpose. All morphemes, on the other hand,
are replaced by single symbols. Symbols are cho-
sen to maximize clarity of exposition, so that we
sometimes assign each morpheme a unique sym-
bol and sometimes map irrelevant morphemes to a
randomly chosen filler symbol. For some linguis-
tic phenomena we follow linguistic convention in
assuming that the underlying representations con-
tain additional distinguished symbols to mark the
edges of the stem — this will be mentioned explic-
itly for all relevant cases.

The preceding discussion yielded as a nice side-
result that circumfixation is not SL unless each
part of the circumfix can also occur on its own.
Few circumfixes display that kind of freedom,
wherefore not all aspects of morphotactics are SL.
However, large swaths of morphology still are,
with a couple of examples from English given be-
low:

(3) a. un-
a-

do
xx

b. break
xxxxx

-able
-b

(4) a. punch
xxxxx

-ed
-c

b. put
xxx

-ε
-c

Any kind of affix that only consists of one part and
whose distribution is determined within a locally
bounded domain is part of strictly local morpho-
tactics. Although we did not carry out any rigor-
ous quantitative comparisons, we believe the ma-
jority of morphological dependencies to belong to
this class.

2.2 Strictly Piecewise

While SL covers a wide range of phenomena,
it isn’t just circumfixes that require more power.
Problems arise whenever a dependency involves
both the domain of prefixes and the domain of suf-
fixes — because they can be separated by arbitrar-
ily many symbols — and such configurations are
not limited to circumfixes. In most languages the
ordering of affixes tends to be fixed, but there are
languages in which affixes are ordered relatively
freely and do not follow a strict template, thereby
creating non-local dependencies.

Let us consider the following data from Swahili:

(5) a. a-
SBJ:CL.1-

vi-
OBJ:CL.8-

soma
read

-vyo
-REL:CL.8
u-v-xxxx-c

‘reads’

b. a-
SBJ:CL.1-

si-
NEG-

vyo-
REL:CL.8-

vi-
read

soma
-OBJ:CL.8
u-w-c-v-xxxx

‘doesn’t read’

This data is taken from Stump (2016). Based on
his discussion of vyo, the following forms are un-
grammatical.

(6) a. * a-
SBJ:CL.1-

vyo-
REL:CL.8-

vi-
OBJ:CL.8-

soma
read
u-c-v-xxxx

b. * a-
SBJ:CL.1-

vyo-
REL:CL.8-

vi-
OBJ:CL.8-

soma
read

-vyo
-REL:CL.8

u-c-v-xxxx-c

c. * a-
SBJ:CL.1-

si-
NEG-

vyo-
REL:CL.8-

vi-
OBJ:CL.8-

soma
read

-vyo
REL:CL.8-

u-w-c-v-xxxx-c

d. * a-
SBJ:CL.1-

si-
NEG-

vi-
OBJ:CL.8-

soma
read

-vyo
REL:CL.8-
u-w-v-xxxx-c

Different generalizations can be drawn from these
data sets, some of which are more complex than
others.

The first generalization states that vyo is only li-
censed if it follows either a segment that is part of
a stem or the prefix si. This is a strictly 2-local
pattern, and it explains both (6a) and (6b). Alter-
natively, one may conclude that (6b) is ill-formed
because there is more than one occurrence of vyo.
Such a ban against two instances of vyo is also sup-
ported by the ill-formedness of (6c), which is un-
expected under the first generalization. Preventing
the presence of two instances of vyo is beyond the
power of any SL grammar G: if uvx+c ⊂ L(G)

124

and uwcvx+ ⊂ L(G), then L(G) must also con-
tain strings of the form uwcvx+c (due to suffix
substitution closure).

The second generalization is similar to the
phonological requirement that no word may con-
tain more than one primary stress, which is
strictly piecewise (SP; Heinz (2010), Rogers et
al. (2010)). SP grammars work exactly the same
as SL grammar except that instead of illicit sub-
strings they list illicit subsequences. Given a
string w, its set of k-sequences is k-seqs(w) :={
s | s is a subsequence of ŵk−1 of length k

}
. A

strictly k-piecewise grammar G is a finite set of
k-grams over Σ ∪ {o, n}, and the language gen-
erated by G is L := {w | k-seqs(w) ∩G = ∅}.

The ban against two occurrences of vyo is
strictly 2-piecewise — the grammar only need to
contain the bigram vyo vyo. The intersection of the
strictly 2-local and strictly 2-piecewise languages
does not contain (6a)–(6c), as desired. But it does
contain (6d). Both generalizations miss that even
though vyo can occur as a prefix and as a suffix, it
is a prefix if and only if si is present. This kind of
conditional positioning cannot be captured by SL
grammars, and the culprit is once again suffix sub-
stitution closure. But SP grammars by themselves
are not sufficient, either.

Suppose we increase the locality rank from 2 to
3 and include si x vyo as an illicit subsequence in
our SP grammar. This forces vyo to be a prefix
in the presence of si. However, it still incorrectly
allows for vyo to be a prefix in the absence of si.
No SP grammar can prevent this outcome. The
problem is that any word of the form u vyo v x
contains only subsequences that also occur in the
well-formed u si vyo v x. Consequently, any SP
grammar that generates the latter also generates
the former. It is only in combination with the
SL grammar that we can correctly rule out prefix
vyo without a preceding si. Swahili’s inflectional
morphology thus provides evidence that SL is not
enough to handle all aspects of morphotactics and
must be supplemented by some mechanism to han-
dle long-distance dependencies, with SP being one
option.

But even the combination of SL and SP cannot
capture all non-local dependencies. In Swahili, the
inability of SP mechanisms to enforce the pres-
ence of si with prefix vyo could be remedied by
the strictly local requirement that vyo may only
occur after si or a stem. This elegant interaction

of SL and SP is not always possible, however. The
most noteworthy case are circumfixes. Consider
some arbitrary circumfix u- -v. Clearly all subse-
quences of ux+ are subsequences of ux+v , so if
the latter is generated by some SP grammar then
by definition the former must be, too. The under-
lying problem is that SP grammars can only en-
force the absence of an affix, not its presence. Cir-
cumfixes where the presence of one affix entails
the presence of the other affix thus are not SP. It
seems that we must move higher up the subregular
hierarchy in order to accommodate circumfixes,
which will also have the welcome side-effect of
providing a simpler account for the distribution of
Swahili vyo.

2.3 Tier-Based Strictly Local
As pointed out in the previous section, the Swahili
pattern isn’t too dissimilar from the phonological
requirement that no word has more than one pri-
mary stress. However, the distribution of primary
stress is more specific than that: every phonolog-
ical word has exactly one primary stress. Ensur-
ing the presence of at least one primary stress is
beyond the capabilities of SP grammars — once
again this holds because every subsequence of an
ill-formed word without primary stress is also a
subsequence of the well-formed counterpart with
exactly one primary stress. A better model for pri-
mary stress assignment is furnished by tier-based
strictly local (TSL; Heinz et al. (2011)) grammars,
which also happen to be powerful enough for cir-
cumfixation.

A TSL grammar is an SL grammar that operates
over a tier, a specific substructure of the string.
Given a tier-alphabet T ⊆ Σ, let ET be a mapping
that erases all symbols in a string that do not be-
long to T . First, ET (ε) = ε. Then for a ∈ Σ and
w ∈ Σ∗,

ET (aw) :=

{
a · ET (w) if a ∈ T

ET (w) otherwise

The T -tier of a string w is its image under ET .
A tier-based strictly k-local grammar G is a pair
〈K, T 〉 where K is a strictly k-local grammar over
tier-alphabet T . The grammar generates the lan-
guage L(G) := {w | ET (w) ∈ L(K)}. Note that
every SL language is a TSL language with T = Σ.

The distribution of primary stress is tier-based
strictly 2-local. Assuming that primary stress is
indicated as some diacritic on symbols, the tier-
alphabet T contains all symbols with this diacritic.

125

This is tantamount to projecting a tier that only
contains segments with primary stress. The gram-
mar then contains the bigram on to block words
with an empty primary stress tier, i.e. words that
contain no primary stress. In addition, every bi-
gram uv for u, v ∈ T is added to rule out words
with more than one primary stress. The require-
ment of exactly one primary stress per word thus
boils down to having exactly one segment on the
primary stress tier, which is a strictly local depen-
dency over that tier.

The Swahili pattern from the previous section
can also be analyzed as tier-based strictly local,
and the same is true for circumfixation. For
Swahili we project a tier that contains only the af-
fix vyo, and we do not allow more than one seg-
ment on this tier. As a result, vyo occurs at most
once per word. To ensure that vyo is a prefix
whenever si is present, we furthermore postulate
a marker # that indicates the edges of the stem.
The projected tier then includes all instances of
vyo, si and the marker # (of which there are ex-
actly two). On this tier, the 4-gram si##vyo cor-
rectly excludes all ill-formed cases of vyo as a suf-
fix, whereas ovyo## prevents vyo from occur-
ring as a prefix in the absence of si. Adapting the
ban against two instances of vyo to this slightly
expanded tier is left as an exercise to the reader.

In order to regulate the distribution of circum-
fixes such as u- -v, we have to project a tier that
contains only those subparts u and v. If the affixes
can never occur by themselves, then we block ov
and un. Removing one of those two bigrams cre-
ates asymmetric cases where one of the affixes —
but not the other — is sometimes allowed to be
present by itself. We also add uu and vv to block
strings where the prefix parts outnumber or are
outnumbered by the suffix parts of the circumfix.
Note that this has the side effect of also prohibiting
unbounded circumfixation, a point we return to in
Sec. 3.2.

At this point, we can safely say that natural lan-
guage morphotactics is at least TSL (barring the
discovery of any intermediate classes between SL
and TSL, or SP and TSL). SL is sufficiently pow-
erful for large parts of morphology, but any kind
of dependency that involves both prefixes and suf-
fixes is likely not SL. Some patterns that are not
SL are SP, but these also turn out to be TSL. To the
best of our knowledge, there are no morpholog-
ical dependencies that are SP but not TSL (even

though the two language classes are incompara-
ble). We thus put forward the following conjec-
ture:

Subregular Morphotactics All morphotactic de-
pendencies are tier-based strictly local.

As any universal claim about the real world, our
conjecture cannot be proved conclusively — the
fact that no counterexamples have been encoun-
tered does not guarantee that counterexamples will
never be encountered. But there are additional rea-
sons to consider TSL a better fit for morphotactics
than one of the more powerful classes.

Moving beyond TSL in the subregular hierarchy
would take us into the class of star-free languages,
which are equivalent to the string sets definable in
first-order logic with the transitive closure of the
successor relation. As mentioned before, every
language that is generated by a tier-based strictly
k-local grammar can be identified in the limited
from positive text, provided the learner knows the
value of k. The class of star-free languages, on
the other hand, is not learnable in the limit from
positive text. It also makes largely incorrect typo-
logical predictions: Unlike TSL, the class of star-
free languages is closed under union and relative
complement. But the union or relative comple-
ment of two morphotactic systems attested in natu-
ral languages rarely yields linguistically plausible
morphotactics. Similarly, it is trivial to write first-
order formulas for highly unnatural patterns, e.g.
that every word containing two instances of a but
less than three bs must contain no substring of the
form cd+c. These points show that moving from
TSL to star-free means losing essential properties
of natural language morphotactics.

Future work may of course identify more ade-
quate classes in the vicinity of TSL. Given our
current, more limited knowledge of the subregular
hierarchy, however, the strongest empirically de-
fensible stance is that tier-based strict locality is
both sufficient and necessary for natural language
morphotactics.

3 Beyond Tier-Based Strictly Local?

If the subregular hypothesis is correct, then no
morphological pattern may exceed the computa-
tional power furnished by tier-based strictly local
grammars. In particular, whenever the combina-
tion of two attested TSL patterns is not TSL, that
combination should not be attested. The subreg-

126

ular hypothesis thus provides a principled expla-
nation for typological gaps. In this section we
consider two such cases related to compounding
markers and the limits of circumfixation.

3.1 Case Study 1: Compounding Markers
Compounding describes the combination of two or
more stems to form a compound lexeme, where
the stems may belong to different categories. Lan-
guages differ with respect to whether compound-
ing is (at least sometimes) explicitly marked. In
the following we exhibit two TSL compounding
patterns from Turkish and Russian whose combi-
nation is not typologically attested. We then ex-
plain why this combined pattern is not TSL, deriv-
ing the otherwise puzzling typological gap.

Turkish possessive compounds (see Aslan and
Altan (1998) for a detailed description) obey the
general pattern stem-stem+-o, where o stands for
the compounding marker -sI.

(7) a. bahçe
garden

kapI
gate

-sI
-COMP

xxxxx-xxxx-o

‘garden gate’
b. türk

turkish
kahve
coffee

-sI
-COMP

xxxx-xxxxx-o

‘Turkish coffee’
c. türk

turkish
bahçe
garden

kapI
gate

-sI
-COMP

(∗-sI)
(∗-COMP)

xxxx-xxxxx-xxxx-o(-*o)

‘Turkish garden gate’

The compounding marker is added when two
stems are combined. Addition of further stems
does not increase the number of compounding
markers, it is always a single marker for the whole
word. The resulting pattern stem-(stem+-o) is tier-
based strictly 2-local under the assumption that a
designated symbol occurs between stems, say �.
For then we can project a tier that contains only
� and o, with the only illicit bigrams on this tier
being oo, o�, and �n.

Russian compounding, on the other hand, fol-
lows the pattern (stem-o)∗-stem, which means that
the addition of a new stem to the compound re-
quires the appearance of the compounding marker
-o- between the stems:

(8) a. vod
water

-o-
-COMP-

voz
carry

xxx-o-xxx

‘water-carrier’
b. vod -o- voz -o- voz

water -COMP- carry -COMP- carry
xxx-o-xxx-o-xxx

‘carrier of water-carriers’

Assuming once again the presence of the special
symbol # — which marked the edges of stems in
the previous section — we can show this pattern to
also be tier-based strictly 2-local. In this case, the
illicit bigrams are ##, oo, oo, and on. Observe
that we can remove the first one of these bigrams
to allow for cases where the compounding marker
is optional.

One may wonder now whether it is possible
for natural languages to display a combination of
the compounding patterns seen with Russian and
Turkish. From a linguistic perspective, the ex-
pected answer is yes. If compounding can be
marked by a suffix as in Turkish, and compound-
ing can introduce a marker with each step as in
Russian, then it should be possible to introduce
a suffix with each compounding step. But to the
best of our knowledge, no language instantiates
this system. From a computational perspective,
on the other hand, this typological gap is expected
because the described system is not TSL — as a
matter of fact, it isn’t even regular.

A language L that suffixes a marker to a com-
pound with each compounding step would pro-
duce compounds where the number of compound
markers is proportional to the number of stems.
Let h be a map that replaces all stems by s, all
compound markers by o, and all other material by
some other symbol. Intersecting h(L) with the
regular language s+o+ yields the language smon,
m > n. This string set is easily shown to be
context-free (e.g. via the Myhill-Nerode theorem),
and since regular languages are closed under ho-
momorphisms and intersection, it follows that L
cannot be regular. But every TSL language is reg-
ular, so the combination of Russian and Turkish
outlined above is not TSL. The absence of this
compounding pattern in the typology of natural
languages thus lends further support to our conjec-
ture that natural language morphotactics is limited
to TSL dependencies.

3.2 Case Study 2: Unbounded Affixation
Circumfixation already played an important role
in motivating TSL as a reasonable lower bound
on how much power is required for natural lan-

127

guage morphotactics. We now show that just like
compounding markers, circumfixation also sug-
gests that TSL marks the upper bound on required
expressivity. In particular, unbounded affixation
is widely attested across languages, whereas un-
bounded circumfixation is not.

A number of languages allow some of their af-
fixes to occur multiple times. For instance, the
Russian temporal prefix posle- can appear itera-
tively in the beginning of a word like zavtra ‘to-
morrow’.

(9) a. posle-
AFTER-

zavtra
tomorrow

a-xxxxxx

‘the day after tomorrow’
b. posle-

AFTER-
posle-
AFTER-

zavtra
tomorrow

a-a-xxxxxx

‘the day after the day after tomorrow’

The very same pattern is also found in German,
with morgen ‘tomorrow’, über-morgen ‘the day
after tomorrow’, über-über-morgen ‘the day after
the day after tomorrow’, and so on. German also
has the pattern ur-groß-vater, ur-ur-groß-vater,
which is the analog of English great grandfather,
great great grandfather and its iterations (various
linguistic diagnostics show that these are morpho-
logical words rather than phrases). Note that in all
those cases it is impossible to insert other prefixes
between the iterated prefix: ∗ur-groß-ur-ur-groß-
vater. In sum, some affixes can be freely iterated
as long as no other affixes intervene.

These patterns are all TSL by virtue of being
strictly 2-local. We illustrate this claim with Ger-
man. We ignore the problem of how groß can
be restricted to occur only with specific stems (if
stems are atomic symbols, this is trivial, other-
wise it requires a strictly k-local grammar over
the string of phonological segments where k is
large enough to contain both groß and the rele-
vant stems). We also assume, as before, that there
is some marker # that marks the edges of stems.
Then to ensure that the relevant strings of pre-
fixes follow the pattern ur∗groß#, the sequences
großur, großgroß, and ur# are marked as illicit.
Unbounded prefixation thus stays within the class
of TSL dependencies.

An interesting counterpart to Russian and Ger-
man is Ilocano (Galvez Rubino, 1998), which uses
the circumfix ka- -an with a function similar to
posle and über.

(10) a. bigat
morning
xxxxx

‘morning’
b. ka-

NEXT-
bigat
morning

-an
-NEXT

a-xxxxx-a′

‘the next morning’

Crucially, Ilocano differs from Russian and Ger-
man in that the circumfix cannot be iterated.

(11) * ka-
NEXT-

ka-
NEXT-

bigat
morning

-an
-NEXT

-an
-NEXT

a-a-xxxxx-a′-a′

‘the next morning after the next one’

Given our previous discussion of circumfixation in
Sec. 2.3, Ilocano clearly instantiates a tier-based
strictly 2-local pattern, too.

As before, there is little linguistic reason why
unbounded circumfixation should be blocked. If
affixation can be unbounded to construct more and
more complex versions of day after tomorrow, and
day after tomorrow can be derived via circumfixa-
tion, then one would expect unbounded circumfix-
ation to be a viable option. But once again there
is a clear computational reason as to why this does
not happen: the corresponding morphotactic sys-
tem would no longer be TSL.

Let L be some minor variant of Russian where
posle- is instead a circumfix pos- -le. As before we
let h be a homomorphism that replaces all stems
by s, the two parts of the circumfix by o, and all
other material by some distinct symbol. The inter-
section of h(L) with the regular language o+so+

is the context-free string set onson. Therefore L is
supra-regular and cannot be tier-based strictly lo-
cal. Unbounded circumfixation simply cannot be
reconciled with the subregular hypothesis.

4 Conclusion

The received view is that all of morphology is eas-
ily modeled with finite-state machines (Kosken-
niemi, 1983; Karttunen et al., 1992). We contend
that this view is overly generous and that tighter
bounds can be established, at least for specific sub-
parts of morphology. Morphotactics defines the
restrictions on the possible orderings of morpho-
logical units, and we argued based on data from
typologically diverse languages that the power
of natural language morphotactics is severely re-
stricted:

128

Subregular Morphotactics All morphotactic de-
pendencies are tier-based strictly local.

In contrast to regular languages, tier-based strictly
local languages are efficiently learnable in the
limit from positive text (Heinz et al., 2012; Jar-
dine and Heinz, 2016). Our result thus marks a
first step towards provably correct machine learn-
ing algorithms for natural language morphology.

Admittedly, morphotactics is just one of several
parts of morphology. We put aside allomorphy
and only considered the distribution of morphemes
in the underlying forms. Even within that narrow
area we did not thoroughly explore all facets, for
instance infixation and incorporation. Nonetheless
our results show that the success of the subregu-
lar perspective need not be limited to phonology.
At least morphotactics can be insightfully studied
through this lens, too. In addition, there has been
a lot of progress in extending the subregular hier-
archy from languages to transductions (see Chan-
dlee (2014) and references therein), and we are
confident that these results will allow us to expand
the focus of investigation from morphotactics to
morphology at large.

It will also be interesting to see how uniform
the complexity bounds are across different mod-
ules of morphology. In phonology, suprasegmen-
tal dependencies tend to be more complex than
segmental ones (Jardine, 2015). Most construc-
tions in this paper involve derivational morphol-
ogy, but the affix vyo in Swahili is related to in-
flectional morphology and turned out to have a
distribution that is neither SL nor SP (although it
can be captured with a combination of the two).
So both derivational and inflectional morphotac-
tics occupy points in TSL \ (SL ∪ SP). In this
regard it is also worth noting that some phonolog-
ical processes such as tone plateauing belong to
SP \ TSL, whereas no morphological dependen-
cies seem to be part of this subclass. We hope to
address these and related issues in future work.

References
Erhan Aslan and Asli Altan. 1998. The role of -(s)I in

turkish indefinite nominal compounds. Dil, 131:57–
75.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Robert Frank and Giorgio Satta. 1998. Optimality the-
ory and the generative complexity of constraint vio-
lability. Computational Linguistics, 24:307–315.

Carl R. Galvez Rubino. 1998. Ilocano: Ilocano-
English, English-Ilocano: Dictionary and Phrase-
book. Hippocrene Books Inc., U.S.

Thomas Graf and Jeffrey Heinz. 2015. Commonality
in disparity: The computational view of syntax and
phonology. Slides of a talk given at GLOW 2015,
April 18, Paris, France.

Thomas Graf. 2010. Logics of phonological reason-
ing. Master’s thesis, University of California, Los
Angeles.

Thomas Graf. 2012. Locality and the complexity of
minimalist derivation tree languages. In Philippe
de Groot and Mark-Jan Nederhof, editors, Formal
Grammar 2010/2011, volume 7395 of Lecture Notes
in Computer Science, pages 208–227, Heidelberg.
Springer.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning with lattice-structure hypothesis
spaces. Theoretical Computer Science, 457:111–
127.

Jeffrey Heinz. 2010. Learning long-distance phono-
tactics. Linguistic Inquiry, 41:623–661.

Jeffrey Heinz. 2011a. Computational phonology —
part I: Foundations. Language and Linguistics Com-
pass, 5:140–152.

Jeffrey Heinz. 2011b. Computational phonology —
part II: Grammars, learning, and the future. Lan-
guage and Linguistics Compass, 5:153–168.

Jeffrey Heinz. 2015. The computational nature of
phonological generalizations. Ms., University of
Delaware.

M. A. C. Huybregts. 1984. The weak adequacy of
context-free phrase structure grammar. In Ger J.
de Haan, Mieke Trommelen, and Wim Zonneveld,
editors, Van Periferie naar Kern, pages 81–99. Foris,
Dordrecht.

Adam Jardine and Jeffrey Heinz. 2016. Learning tier-
based strictly 2-local languages. Transactions of the
ACL, 4:87–98.

Adam Jardine. 2015. Computationally, tone is differ-
ent. Phonology. to appear.

Ronald M. Kaplan and Martin Kay. 1994. Regu-
lar models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378.

Lauri Karttunen, Ronald M. Kaplan, and Annie Zae-
nen. 1992. Two-level morphology with composi-
tion. In COLING’92, pages 141–148.

129

Kimmo Koskenniemi. 1983. Two-level morphol-
ogy: A general computational model for word-form
recognition and production. Publication 11, Univer-
sity of Helsinki, Department of General Linguistics,
Helsinki.

Waruno Mahdi. 2012. Distinguishing cognate
homonyms in Indonesian. Oceanic Linguistics,
51(2):402–449.

Robert McNaughton and Seymour Pappert. 1971.
Counter-Free Automata. MIT Press, Cambridge,
MA.

Jason Riggle. 2004. Generation, Recognition, and
Learning in Finite-State Optimality Theory. Ph.D.
thesis, University of California, Los Angeles.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Vischer, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christan Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Lan-
guage, volume 6149 of Lecture Notes in Artificial
Intelligence, pages 255–265. Springer, Heidelberg.

Stuart M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Phi-
losophy, 8(3):333–345.

James Neil Sneddon. 1996. Indonesian Comprehen-
sive Grammar. Routledge, London and New York.

Greg Stump. 2016. Rule composition in an adequate
theory of morphotactics. Manuscript, University of
Kentucky.

130

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 131–140,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

A Multilinear Approach to the Unsupervised Learning of Morphology

Anthony Meyer
Indiana University

antmeyer@indiana.edu

Markus Dickinson
Indiana University

md7@indiana.edu

Abstract

We present a novel approach to the un-
supervised learning of morphology. In
particular, we use a Multiple Cause Mix-
ture Model (MCMM), a type of autoen-
coder network consisting of two node
layers—hidden and surface—and a matrix
of weights connecting hidden nodes to sur-
face nodes. We show that an MCMM
shares crucial graphical properties with
autosegmental morphology. We argue on
the basis of this graphical similarity that
our approach is theoretically sound. Ex-
periment results on Hebrew data show
that this theoretical soundness bears out in
practice.

1 Introduction

It is well-known that Semitic languages pose prob-
lems for the unsupervised learning of morphol-
ogy (ULM). For example, Hebrew morphology
exhibits both agglutinative and fusional processes,
in addition to non-concatenative root-and-pattern
morphology. This diversity in types of morpho-
logical processes presents unique challenges not
only for unsupervised morphological learning, but
for morphological theory in general. Many previ-
ous ULM approaches either handle the concatena-
tive parts of the morpholgy (e.g., Goldsmith, 2001;
Creutz and Lagus, 2007; Moon et al., 2009; Poon
et al., 2009) or, less often, the non-concatenative
parts (e.g., Botha and Blunsom, 2013; Elghamry,
2005). We present an approach to clustering
morphologically related words that addresses both
concatenative and non-concatenative morphology
via the same learning mechanism, namely the
Multiple Cause Mixture Model (MCMM) (Saund,
1993, 1994). This type of learning has direct con-
nections to autosegmental theories of morphology

(McCarthy, 1981), and at the same time raises
questions about the meaning of morphological
units (cf. Aronoff, 1994).

Consider the Hebrew verbs zwkr1 (‘he remem-
bers’) and mzkir (‘he reminds’), which share the
root z.k.r. In neither form does this root appear
as a continuous string. Moreover, each form inter-
rupts the root in a different way. Many ULM al-
gorithms ignore non-concatenative processes, as-
suming word formation to be a linear process, or
handle the non-concatenative processes separately
from the concatenative ones (see survey in Ham-
marstrom and Borin, 2011). By separating the
units of morphological structure from the surface
string of phonemes (or characters), however, the
distinction between non-concatenative and con-
catenative morphological processes vanishes.

We apply the Multiple Cause Mixture Model
(MCMM) (Saund, 1993, 1994), a type of auto-
encoder that serves as a disjunctive clustering al-
gorithm, to the problem of morphological learn-
ing. An MCMM is composed of a layer of hid-
den nodes and a layer of surface nodes. Like other
generative models, it assumes that some subset of
hidden nodes is responsible for generating each in-
stance of observed data. Here, the surface nodes
are features that represent the “surface” properties
of words, and the hidden nodes represent units of
morphological structure.

An MCMM is well-suited to learn non-
concatenative morphology for the same reason
that the autosegmental formalism is well-suited
to representing it on paper (section 2): the layer
of morphological structure is separate from the
surface layer of features, and there are no de-
pendencies between nodes within the same layer.
This intra-layer independence allows each hidden
node to associate with any subset of features, con-

1We follow the transliteration scheme of the Hebrew Tree-
bank (Sima’an et al., 2001).

131

tiguous or discontiguous. We present details of
the MCMM and its application to morphology in
section 3. Our ultimate goal is to find a ULM
framework that is theoretically plausible, with the
present work being somewhat exploratory.

1.1 Targets of learning

Driven by an MCMM (section 3), our sys-
tem clusters words according to similarities in
form, thereby finding form-based atomic building
blocks; these building blocks, however, are not
necessarily morphemes in the conventional sense.
A morpheme is traditionally defined as the cou-
pling of a form and a meaning, with the meaning
often being a set of one or more morphosyntactic
features. Our system, by contrast, discovers build-
ing blocks that reside on a level between phono-
logical form and morphosyntactic meaning, i.e.,
on the morphomic level (Aronoff, 1994).

Stump (2001) captures this distinction in his
classification of morphological theories, distin-
guishing incremental and realizational theories.
Incremental theories view morphosyntactic prop-
erties as intrinsic to morphological markers.
Accordingly, a word’s morphosyntactic content
grows monotonically with the number of mark-
ers it acquires. By contrast, in realizational the-
ories, certain sets of morphosyntactic properties
license certain morphological markers; thus, the
morphosyntactic properties cannot be inherently
present in the markers. Stump (2001) presents
considerable evidence for realizational morphol-
ogy, e.g., the fact that “a given property may be
expressed by more than one morphological mark-
ing in the same word” (p. 4).

Similarly, Aronoff (1994) observes that the
mapping between phonological and morphosyn-
tactic units is not always one-to-one. Often,
one morphosyntactic unit maps to more than one
phonological form, or vice versa. There are even
many-to-many mappings. Aronoff cites the En-
glish past participle: depending on the verb, the
past participle can by realized by the suffixes -ed
or -en, by ablaut, and so on. And yet for any given
verb lexeme, the same marker is used for the both
the perfect tense and the passive voice, despite the
lack of a relationship between these disparate syn-
tactic categories. Aronoff argues that the complex-
ity of these mappings between (morpho-)syntax
and phonology necessitates an intermediate level,
namely the morphomic level.

MASC FEM

SG mqwmi mqwmi-t
PL mqwmi-im mqwmi-wt

(a) mqwmi ‘local’

MASC FEM

SG gdwl gdwl-h
PL gdwl-im gdwl-wt

(b) gdwl ‘big’

Figure 1: The t quasi-morpheme

Our system’s clusters correspond roughly to
Aronoff’s morphomes. Hence, the system
does not require building blocks to have par-
ticular meanings. Instead, it looks for pre-
morphosyntactic units, i.e., ones assembled from
phonemes, but not yet assigned a syntactic or se-
mantic meaning. In a larger pipeline, such build-
ing blocks could serve as an interface between
morphosyntax and phonology. For instance, while
our system can find Hebrew’s default masculine
suffix -im, it does not specify whether it is in fact
masculine in a given word or whether it is fem-
inine, as this suffix also occurs in idiosyncratic
feminine plurals.

Our system also encounters building blocks like
the t in fig. 1, which might be called “quasi-
morphemes” since they recur in a wide range of
related forms, but fall just short of being entirely
systematic.2 The t in fig. 1 seems to be fre-
quently associated with the feminine morphosyn-
tactic category, as in the feminine nationality suf-
fix -it (sinit ‘Chinese (F)’), the suffix -wt for de-
riving abstract mass nouns (bhirwt ‘clarity (F)’),
as well as in feminine singular and plural present-
tense verb endings (e.g., kwtb-t ‘she writes’ and
kwtb-wt ‘they (F.PL) write’, respectively).

In fig. 1(a), note that this t is present in both
the F.SG and F.PL forms. However, it cannot be
assigned a distinct meaning such as “feminine,”
since it cannot be separated from the w in the F.PL

suffix -wt.3 Moreover, this t is not always the F.SG

marker; the ending -h in fig. 1(b) is also common.
Nevertheless, the frequency with which t occurs in
feminine words does not seem to be accidental. It
seems instead to be some kind of building block,
and our system treats it as such.

2Though, see Faust (2013) for an analysis positing /-t/ as
Hebrew’s one (underlying) feminine-gender marker.

3If the w in -wt meant “plural,” we would expect the de-
fault M.PL suffix to be -wm instead of -im.

132

Because our system is not intended to identify
morphosyntactic categories, its evaluation poses a
challenge, as morphological analyzers tend to pair
form with meaning. Nevertheless, we tentatively
evaluate our system’s clusters against the mod-
ified output of a finite-state morphological ana-
lyzer. That is, we map this analyzer’s abstract mor-
phosyntactic categories onto categories that, while
still essentially morphosyntactic, correspond more
closely to distinctions in form (see section 4).

2 Morphology and MCMMs

In this section, we will examine autosegemental
(or multi-linear) morphology (McCarthy, 1981),
to isolate the property that allows it to handle non-
concatenative morphology. We will then show that
because an MCMM has this same property, it is
an appropriate computational model for learning
non-concatenative morphology.

First, we note some previous work connecting
autosegmental morphology to computation. For
example, Kiraz (1996) provides a framework for
autosegmental morphology within two-level mor-
phology, using hand-written grammars. By con-
trast, Fullwood and O’Donnell (2013) provide a
learning algorithm in the spirit of autosegmen-
tal morphology. They sample templates, roots,
and residues from Pitmor-Yor processes, where a
residue consists of a word’s non-root phonemes,
and a template specifies word length and the word-
internal positions of root phonemes. Botha and
Blunsom (2013) use mildly context-free grammars
with crossing branches to generate words with dis-
contiguous morphemes. The present work, in con-
trast, assumes nothing about structure beforehand.

Other works implement certain components of
autosegmental theory (e.g., Goldsmith and Xan-
thos, 2009) or relegate it to a certain phase in their
overall system (e.g., Rodrigues and Ćavar, 2005).
The present work seeks to simulate autosegmental
morphology in a more general and holistic way.

2.1 Multilinear morphology

The central aspect of autosegmental theory (Mc-
Carthy, 1981) is its multi-linear architecture, i.e.,
its use of a segmental tier along with many au-
tosegmental tiers to account for morphological
structure. The segmental tier is a series of place-
holders for consonants and vowels, often called
the CV skeleton. The other tiers each represent a
particular morpheme. Fig. 2(a) shows four tiers.

One is the CV skeleton. The other three, labeled
µ1, µ2, and µ3, are morphemes.4

morpheme tiers

segmental tier C V C C V C

µ1 µ2 µ3

m,a g,d,l i

(a) Multi-linear approach

single tier m a | g d | i | l

(b) Linear approach

Figure 2: Multiple tiers vs. a single tier

Notice that µ2, the consonantal root, is discon-
tinuous; it is interrupted by µ3. If a model has only
one tier, as in fig. 2(b), there would be no way of
representing the unity of µ2, i.e., that g, d, and l
all belong to the same morpheme. With this multi-
tier aspect of autosegmental morphology in mind,
we can now state two criteria for a model of non-
concatenative morphology:

(1) a. Morphemes are represented as being
separate from the segmental tier.

b. Each morpheme tier (or node) is or-
thogonal to all other morpheme tiers.

Criterion (1b) implies that the morpheme tiers are
unordered. Without sequential dependencies be-
tween morpheme tiers, crossing edges such as
those in fig. 2(a) are made possible. We should
note that autosegmental morphology has other
properties to constrain morphological structure,
e.g., the well-formedness principle; at present, we
are not concerned with capturing all aspects of au-
tosegmental morphology, but instead in building a
generic system to which one can later add linguis-
tically motivated constraints.

2.2 A graph-theoretic interpretation
In graph-theoretic terms, the multi-linear formal-
ism of McCarthy (1981) is a type of multipartite
graph. This is a graph whose nodes can be parti-
tioned into N sets of mutually nonadjacent nodes,
i.e.,N sets such that no two nodes within the same
set are connected by an edge. Fig. 3, for example,
shows a bipartite graph, i.e., a graph with two par-
titions, in this case the sets M and R. Within each

4Although McCarthy uses the term morpheme rather than
morphome, the same principles apply.

133

set, all nodes are independent; the only connec-
tions are between nodes of different sets.

M

R

Figure 3: Bipartite graph

As it turns out, a bipartite graph suffices to
capture the essential properties of McCarthy’s
autosegmental framework, for a bipartite graph
meets the two criteria stated in (1). We can refor-
mulate the morpheme tiers and the segmental tier
in fig. 2(a) as the sets M and R, respectively, in
fig. 3—disjoint by the definition of bipartite. This
satisfies the first criterion. For the second, each
node in M represents a morpheme (or morpheme
tier), and, by the definition of bipartite, the nodes
within M are independent and thus orthogonal.

An MCMM (section 3) is well-suited for the
learning of non-concatenative morphology be-
cause it is bipartite graph. It has two layers (equiv-
alently, sets) of nodes, a hidden layer and a surface
layer—corresponding, respectively, toM andR in
fig. 3. There are no intra-layer connections in an
MCMM, only connections between layers.

We will henceforth refer to an MCMM’s two
partitions of nodes as vectors of nodes and will use
matrix and vector notation to describe the compo-
nents of an MCMM: uppercase boldface letters re-
fer to matrices, lowercase boldface letters refer to
vectors, and italicized lowercase letters refer to the
individual elements of vectors/matrices. For ex-
ample, mi,k is the kth element in the vector mi,
which is the ith row in the I×K matrix M. Thus,
we will henceforth write the M and R in fig. 3 as
m and r, respectively (or mi and ri, where i is the
index of the ith word).

3 The Multiple Cause Mixture Model

A Multiple Cause Mixture Model (MCMM)
(Saund, 1993, 1994) is a graphical model consist-
ing of a layer of surface nodes and a hidden layer
of causal nodes. The hidden nodes (or units) are
connected to surface nodes by weights. Each sur-
face node is either ON (active) or OFF (inactive)
depending on the hidden-node activities and the
weights connecting hidden nodes to surface nodes.

3.1 Architecture

An MCMM can be viewed as a variation of the
classical autoencoder network (Dayan and Zemel,
1995), a type of neural network used for unsuper-
vised learning. In autoencoders, a hidden layer
is forced to learn a compression scheme, i.e., a
lower-dimensional encoding, for a dataset.

MCMMs are called Multiple Cause Mixture
Models because more than one hidden unit can
take part in the activation of a surface unit. This is
illustrated in figure 4, where the nodes m are the
hidden units, and r is the (reconstructed) surface
vector. Each arc cj,k represents the weight on the
connection between mk and rj . The activity of rj
is determined by a mixing function (section 3.2).

The MCMM learns by comparing the recon-
structed vector ri to its corresponding original dat-
apoint di. The discrepancy between the two is
quantified by an objective function. If there is a
discrepancy, the values of the nodes in mi as well
as the weights C are adjusted in order to reduce the
discrepancy as much as possible. See section 3.3
for more on the learning process.

Suppose data points du and dv have some fea-
tures in common. Then, as the MCMM tries to re-
construct them in ru and rv, respectively, similar-
ities will emerge between their respective hidden-
layer vectors mu and mv. In particular, the vec-
tors mu and mv should come to share at least one
active node, i.e., at least one k ∈ K such that
mu,k = 1 and mv,k = 1. This can serve as a
basis for clustering; i.e., mi,k indicates whether di

is a member of cluster k.

3.2 Mixing Function

The mapping between the layer of hidden nodes m
and the layer of surface nodes r is governed by a
mixing function, which is essentially a voting rule
(Saund, 1994); it maps from a set of input “votes”
to a single output decision. The output decision
is the activity (or inactivity) of a node rij in the
surface layer. Following Saund (1994), we use the
Noisy-Or function:

ri,j = 1−
∏
k

(1−mi,kcj,k) (1)

Note that the input to this function includes not
only the hidden nodes m, but also the weights cj

on the hidden nodes. That is, the activity of the
hidden node mk is weighted by the value cjk. A
classical autoencoder also has a mixing function,

134

hidden units (m)

weights (C)

predicted units (r)

observed units (d)

. . .

. . .

. . .

m1 m2 mk mK

r1 r2 r3 rj rJ

d1 d2 d3 dj dJ

cj,k

Figure 4: Architecture of a Multiple Cause Mixture Model (MCMM).

though it is more commonly called an activation
function in autoencoders. The most common ac-
tivation function involves a simple weighted sum
of the hidden layer m’s activations. The entirely
linear weighted sum is then passed to the logistic
sigmoid function σ, which squashes the sum to a
number between 0 and 1:

ri,j = σ
(∑

k

mi,kcj,k

)
(2)

Notice that both (1) and (2), have the same three
primary components: the output (or surface node)
ri,j , the hidden layer of nodes m, and a matrix of
weights C. Both are possible mixing functions.

3.3 Learning

In both the classical autoencoder and the MCMM,
learning occurs as a result of the algorithm’s
search for an optimal valuation of key variables
(e.g., weights), i.e., a valuation that minimizes
the discrepancy between reconstructed and origi-
nal data points. The search is conducted via nu-
merical optimization; we use the nonlinear conju-
gate gradient method. Our objective function is a
simple error function, namely the normalized sum
of squares error:

E =
1

I × J
∑

i

∑
j

(ri,j − di,j)
2 (3)

where I × J is the total number of features in
the dataset. The MCMM’s task is to minimize
this function by adjusting the values in M and C,
where M is the I × K matrix that encodes each
data point’s cluster-activity vector, and C is the
J × K matrix that encodes the weights between
mi and ri for every i ∈ I (see fig. 5).

The MCMM’s learning process is similar to Ex-
pectation Maximization (EM) in that at any given
time it is holding one set of variables fixed while
optimizing the other set. We thus have two func-
tions, OPTIMIZE-M and OPTIMIZE-C, which take
turns optimizing their respective matrices.

The function OPTIMIZE-M visits each of the I
cluster-activity vectors mi in M, optimizing each
one separately. For each mi, OPTIMIZE-M enters
an optimization loop over its K components, ad-
justing each mi,k by a quantity proportional to the
negative gradient of E at mi,k. This loop repeats
until E ceases to decrease significantly, where-
upon OPTIMIZE-M proceeds to the next mi.

The function OPTIMIZE-C consists of a sin-
gle optimization loop over the entire matrix C.
Each cj,k is adjusted by a quantity proportional
to the negative gradient of E at cj,k. Unlike
OPTIMIZE-M, which comprises I separate opti-
mization loops, OPTIMIZE-C consists of just one,
When each of its J ×K components has been ad-
justed, one round of updates to C is complete. E
is reassessed only between completed rounds of
updates. If the change in E remains significant,
another round begins.

Both OPTIMIZE-M and OPTIMIZE-C are en-
closed within an “alternation loop” that alternates
between the two functions, holding C fixed dur-
ing OPTIMIZE-M, and vice versa. This alternation
continues until E cannot be decreased further. At
this point, an “outer loop” splits the cluster which
contributes the most to the error, adds one to the
cluster count K, and restarts the alternation loop.
The outer loop repeats until it reaches an overall
stopping criterion, e.g., E = 0.

The optimization task is subject to the constraint
that no value in M or C may exceed 1 or fall be-

135

low 0. In other words, it is a task of bound con-
strained optimization. Thus, whenever a value in
either M or C is about to fall below 0, it is set to
0. Likewise, whenever a value is about to exceed
1, it is set to 1 (Ni and Yuan, 1997).

3.4 A Simple MCMM Example

Fig. 5 shows an example of an MCMM for two
data points (i.e., I = 2). The hidden cluster activ-
ities M, the weights C, and the mixing function
r constitute a model that reproduces the observed
data points D. The nodes mi,k represent cluster
activities; if m1,2 = 1, for instance, the second
cluster is active for d1 (i.e., d1 is a member of
cluster 2). Note that the J ×K weight matrix C is
the same for all data points, and the kth row in C
can be seen as the kth cluster’s “average” vector:
the jth component in ck is 1 only if all data points
in cluster k have 1 at feature j.

D(i,j)

d1,1 d1,2 d1,3 d2,1 d2,2 d2,3

0 1 0 1 0 1

(a) Observed Data

M(i,k)

C(j,k)

R(i,j)

.2 .9 .8 .1

m1,1 m1,2 m2,1 m2,2

.24 .81 .23 .68 .16 .76

r1,1 r1,2 r1,3 r2,1 r2,2 r2,3

.85
.1

.95 .1

.9
.05 .85

.1

.95 .1

.9
.05

(b) Learning in Progress

M(i,k)

C(j,k)

R(i,j)

0 1 1 0

m1,1 m1,2 m2,1 m2,2

0

r1,1

1

r1,2

0

r1,3

1

r2,1

0

r2,2

1

r2,3

1
0

1 0

1
0 1

0

1 0

1
0

(c) Convergence

where ri,j = 1−ΠK
k=1(1−mi,kcj,k)

[NOISY-OR function]

Figure 5: A simple MCMM example

We can see that while learning is in progress,
the cluster activities (mi,k) and the cluster centers
(cj,k) are in flux, as the error rate is being reduced,
but that they converge to values of 0 and 1. At
convergence, a reconstruction node (ri,j) is 1 if at

least one mi,kcj,k = 1 (and 0 otherwise).

3.5 MCMMs for Morphology

To apply MCMMs to morphological learning, we
view the components as follows. For each word
i, the observed (dj) and reconstructed (rj) units
refer to binary surface features extracted from the
word (e.g., “the third character is s”). The hidden
units (mk) correspond to clusters of words which,
in the ideal case, contain the same morpheme (or
morphome). The weights (cj,k) then link specific
morphemes to specific features.

For an example, consider the English word ads.
Ideally, there would be two clusters derived from
the MCMM algorithm, one for the stem ad and
one clustering words with the plural ending -s.
Fig. 6 shows a properly learned MCMM, based
upon positional features: one feature for each let-
ter in each position. Note that ads does not have
partial membership of the ad and -s hidden units,
but is a full member of both.

4 Experiments

4.1 Gold Standard

Our dataset is the Hebrew word list (6888 unique
words) used by Daya et al. (2008) in their study
of automatic root identification. This list speci-
fies the root for the two-thirds of the words that
have roots. Only the roots are specified, how-
ever, and not other (non-root) properties. To obtain
other morphological properties, we use the MILA
Morphological Analysis tool (MILA-MA) (Itai and
Wintner, 2008). Because its morphological knowl-
edge is manually coded and its output determinis-
tic, MILA-MA provides a good approximation to
human annotation. The system is designed to an-
alyze morphemes, not morphomes, an issue we
partially account for in our category mappings and
take up further in section 4.4.

As an example of the way we use MILA-MA’s
output, consider the word bycim (‘in trees’), which
MILA-MA analyzes as a M%Pl noun bearing the
prefixal preposition b- (‘in’). Given this analy-
sis, we examine each MCMM-generated cluster
that contains bycim. In particular, we want to see
if bycim has been grouped with other words that
MILA-MA has labeled as M%Pl or as having b-.

Category mappings MILA-MA outputs 22 pos-
sible feature labels. Four of these (id,
undotted, transliterated, register)

136

m(k)

C(j,k)

r(j)

1 1

m1 m2

ad- --s

1

r1

a@1

0

r2

d@1

0

r3

s@1

0

r4

a@2

1

r5

d@2

0

r6

s@2

0

r7

a@3

0

r8

d@3

1

r9

s@3

1 0 0
0

1
0 0 0

0 0
0 0 0

0
0

0 0 1

Figure 6: An MCMM example for the word ads, with nine features (three letters, each at three positions),
and two clusters “causing” the word

are irrelevant and are discarded. Each of the 18 re-
maining features has at least two values, and some
have many more, resulting in a great many feature-
value pairs, i.e., categories.

Most part-of-speech (POS) categories are rather
abstract; they often cannot be linked to particu-
lar elements of form. For example, a noun can be
masculine or feminine, can be singular or plural,
and can bear one of a variety of derivational af-
fixes. But there is no single marker that unifies
all nouns. The situation with verbs is similar: ev-
ery Hebrew verb belongs to one of seven classes
(binyanim), each of which is characterized by a
distinctive vowel pattern.

We thus replace “super-categories” like NOUN

and VERB with finer-grained categories that point
to actual distinctions in form. In fact, the only POS
categories we keep are those for adverbs, adjec-
tives, and numerals (ordinal and cardinal). The
rest are replaced by composite (sub-)categories
(see below) or discarded entirely, as are negative
categories (e.g., construct:false) and un-
marked forms (e.g., M%Sg in nominals).

Sometimes two or more morphosyntactic cate-
gories share an element of form; e.g., the future-
tense prefix t- can indicate the 2nd person in the
MASC gender or, in the FEM gender, either the 2nd
or 3rd person:

temwr ‘you (M.SG) will keep’
temwr ‘she will keep’
temwrw ‘you (F.PL) will keep’

Verb inflections are thus mapped to composite cat-
egories, e.g., future%(2%M)|(2|3%F), where
the symbol | means ‘or’. We also map MILA-

MA’s binyan and tense feature-value pairs to
stem type, since the shape of a verb’s stem
follows from its binyan, and, in some binyanim,
past and future tenses have different stems. Both
the composite-inflectional and stem type cate-
gories represent complex mappings between mor-
phosyntax and phonology.

However, since it is not yet entirely clear what
would constitute a fair evaluation of the MCMM’s
clusters (see section 5), we generally try to retain
the traditional morphosyntatctic labels in some
form, even if these traditional labels exist only
in combination with other labels. Most of our
mappings involve fusing “atomic” morphosyntac-
tic categories. For example, to capture Hebrew’s
fusional plural suffixes for nominals, we combine
the atomic categories FEM or MASC with PL; i.e.,
MASC + PL 7→ M%Pl and FEM + PL 7→ F%Pl.

Whenever ambiguity is systematic and thus pre-
dictable, we choose the most general analysis. For
instance, participle analyses are always accom-
panied by adjective and noun analyses (cf. En-
glish -ing forms). Since a participle is always
both a noun and an adjective, we keep the par-
ticiple analysis and discard the other two. Finally,
we use rootless:Nominal to capture ortho-
graphic regularities in loan words. In sum, we
employ reasonably motivated and informative cat-
egories, but the choice of mappings is nontrivial
and worthy of investigation in its own right.

4.2 Thresholds and Features

The MCMM begins the learning process with a
single cluster, and whenever its error stops de-

137

creasing significantly, it adds a cluster. It is sup-
posed to continue to add clusters until it converges,
i.e., until the error is (close to) 0, but so far our
MCMM has never converged. As the number of
clusters increases, the MCMM becomes increas-
ingly encumbered by the sheer number of compu-
tations it must perform. We thus stop it when the
number of clusters K reaches a pre-set limit: for
this paper, the limit was K = 100. Such a cut-off
leaves most of the cluster activities in M between
0 and 1. We set a threshold for cluster membership
at 0.5: if mi,kcj,k ≥ 0.5 for at least one index j in
J , then di is a member of the kth cluster.

If mi,kcj,k ≤ 0.5 for all j in J , we say that the
kth cluster is inactive in the ith word. If a cluster is
inactive for every word, we say that it is currently
only a potential cluster rather than an actual one.

Each word is encoded as a vector of features.
This vector is the same length for all words.
For any given word, certain features will be ON

(with values = 1), and the rest—a much greater
portion—will be OFF (with values = 0). Each fea-
ture is a statement about a word’s form, e.g., “the
first letter is b” or “i occurs before t”. In our fea-
tures, we attempt to capture some of the informa-
tion implicit in a word’s visual representation.

A positional feature indicates the presence of
a particular character at a certain position, e.g.,
m@[0], for ‘m at the first position’ or l@[-2]
for ‘l at the second-to-last position’. Each data
point di contains positional features correspond-
ing to the first s and the final s positions in word i,
where s is a system parameter (section 4.4). With
22 letters in the Hebrew alphabet, this amounts to
22× s× 2 positional features.

A precedence feature indicates, for two char-
acters a and b, whether a precedes b within a cer-
tain distance (or number of characters). This dis-
tance is the system parameter δ. We define δ as the
difference between the indices of the characters a
and b. For example, if δ = 1, then characters a and
b are adjacent. The number of precedence features
is the length of the alphabet squared (222 = 484).

4.3 Evaluation Metrics

We evaluate our clustering results according to
three metrics. Let U denote the set of M re-
turned clusters and V the set of N gold-standard
categories. The idea behind purity is to compute
the proportion of examples assigned to the correct
cluster, using the most frequent category within

a given cluster as gold. Standard purity assumes
each example belongs to only one gold category.
For a dataset like ours consisting of multi-category
examples, this can yield purities greater than 1.
We thus modify the calculations slightly to com-
pute average cluster-wise purity, as in (4), where
we divide by M . While this equation yields pu-
rities within [0, 1], even when clusters overlap, it
retains the metric’s bias toward small clusters.

puravg(U, V) =
1
M

∑
m∈M

maxn |um ∩ vn|
M

(4)

Given this bias, we incorporate other metrics:
BCubed precision and BCubed recall (Bagga
and Baldwin, 1998) compare the cluster mappings
of x with those of y, for every pair of data points
x and y. These metrics are well-suited to cases of
overlapping clusters (Artiles and Verdejo, 2009).
Suppose x and y share m clusters and n cate-
gories. BCubed precision measures the extent to
which m ≤ n. It is 1 as long there are not more
clusters than gold-standard categories. BCubed
Recall measures the extent to which m ≥ n. See
Artiles and Verdejo (2009) for calculation details.

4.4 Results

With a cut-off point at K = 100 clusters, we ran
the MCMM at different valuations of s and δ. The
results are given in table 1, where “δ = ∗” means
that δ is the entire length of the word in question,
and “n/a” means that the feature type in question
was left out; e.g., in the s column, “n/a” means
that no positional features were used. Depending
upon the threshold (section 4.2), a cluster may be
empty: K ′ is the number of actual clusters (see
section 4.2). Cov(erage), on the other hand, is the
number of words that belong to least one cluster.
The valuations s = 1 and δ = 1 or 2 seem to
produce the best overall results.5

Some of the clusters appear to be capturing key
properties of Hebrew morphology, as evidenced
by the MILA-MA categories. For example, in
one cluster, 677 out of 942 words turn to be of
the composite MILA-MA category M%Pl, a pu-
rity of 0.72.6 In another cluster, this one contain-
ing 584 words, 483 are of the MILA-MA category

5While s = 1 indicates an preference for learning short
prefixes and suffixes, it is important to note that more than
one-letter affixes may be learned through the use of the prece-
dence features, which can occur anywhere in a word.

6Recall that M%Pl is merger of the originally separate
MILA-MA categories M and Pl .

138

preposition:l (the prefixal preposition l-), a
purity of 0.83.

Thus, in many cases, the evaluation recognizes
the efficacy of the method and helps sort the dif-
ferent parameters. However, it has distinct lim-
itations. Our gold standard categories are modi-
fied categories from MILA-MA, which are not en-
tirely form-based. For example, in one 1016-word
cluster, the three most common gold-standard cat-
egories are F%Pl (441 words), F%Sg (333 words),
and pos:adjective (282 words). Taking the
most frequent category as the correct label, the pu-
rity of this cluster is 441

1016 = 0.434. However, a
simple examination of this cluster’s words reveals
it to be more coherent than this suggests. Of the
1016 words, 92% end in t; in 96%, t is one of the
final two characters; and in 98%, one of the final
three. When t is not word-final, it is generally fol-
lowed by a morpheme and thus is stem-final. In-
deed, this cluster seems to have captured almost
exactly the “quasi-morpheme” t discussed in sec-
tion 1. Thus, an evaluation with more form-based
categories might measure this cluster’s purity to be
around 98%—a point for future work.

None of the experiments reported here produced
actual (section 4.2) clusters representing conso-
nantal roots. However, past experiments did pro-
duce some consonantal-root clusters. In these
clusters, the roots were often discontinuous, e.g.,
z.k.r in the words lizkwr, lhzkir, and zikrwn. It is
not yet clear to us why these past experiments pro-
duced actual root clusters and the present ones did
not, but, in any case, we expect to see more root
clusters as K (and especially K ′) increases.

s δ Purity BP BR Cov. K′

n/a 1 0.394 0.456 0.223 3279 12
n/a 2 0.330 0.385 0.218 4002 14
n/a 3 0.396 0.423 0.261 4214 19
n/a * 0.379 0.422 0.319 4495 20
1 n/a 0.576 0.599 0.458 3577 4
2 n/a 0.428 0.488 0.396 5942 12
3 n/a 0.429 0.508 0.370 6384 18
1 1 0.463 0.580 0.325 5760 16
1 2 0.443 0.540 0.358 5401 14
1 3 0.458 0.500 0.369 5144 12
1 * 0.456 0.518 0.383 5096 14
2 1 0.371 0.460 0.298 6316 26
2 2 0.401 0.481 0.291 5728 20
2 3 0.392 0.465 0.366 5509 17
2 * 0.412 0.474 0.347 5366 18
3 1 0.399 0.461 0.334 6102 19
3 2 0.403 0.474 0.326 5756 19
3 3 0.364 0.438 0.345 5164 17
3 * 0.391 0.463 0.390 5496 17

Table 1: Results at K = 100

5 Summary and Outlook

We have presented a model for the unsupervised
learning of morphology, the Multiple Cause Mix-
ture Model, which relies on hidden units to gener-
ate surface forms and maps to autosegmental mod-
els of morphology. Our experiments on Hebrew,
using different types of features, have demon-
strated the potential utility of this method for dis-
covering morphological patterns.

So far, we have been stopping the MCMM at
a set number (K) of clusters because computa-
tional complexity increases with K: the complex-
ity is proportional to I × J × K, with I × J al-
ready large. But if the model is to find consonan-
tal roots along with affixes, K is going to have to
be much larger. We can attack this problem by
taking advantage of the nature of bipartite graphs
(section 2): with intra-layer independence, every
ri,j in the vector ri—and thus each element in
the entire matrix R—can be computed in paral-
lel. We are currently parallelizing key portions of
our code, rewriting costly loops as kernels to be
processed on the GPU.

In a different vein, we intend to adopt a better
method of evaluating the MCMM’s clusters, one
more appropriate for the morphome-like nature of
the clusters. Such a method will require gold-
standard categories that are morphomic rather than
morphosyntactic, and we anticipate this to be a
nontrivial undertaking. From the theoretical side,
an exact inventory of (Hebrew) morphomes has
not been specified in any work we know of, and
annotation criteria thus need to be established.
From the practical side, MILA-MA provides nei-
ther segmentation nor derivational morphology for
anything other than verbs, and so much of the an-
notation will have to built from scratch.

Finally, our data for this work consisted of
Modern Hebrew words that originally appeared
in print. They are spelled according to the or-
thographic conventions of Modern Hebrew, i.e.,
without representing many vowels. As vowel ab-
sences may obscure patterns, we intend to try out
the MCMM on phonetically transcribed Hebrew.

References
Mark Aronoff. 1994. Morphology by Itself: Stems and

Inflectional Classes, volume 22 of Linguistic Inquiry
Monograph. MIT Press, Cambridge, MA.

Enrique Amigó Julio Gonzalo Javier Artiles and Felisa
Verdejo. 2009. A comparison of extrinsic cluster-

139

ing evaluation metrics based on formal constraints.
Information Retrieval 12(4):353–371.

Amit Bagga and Breck Baldwin. 1998. Entity-
based cross-document coreferencing using the vec-
tor space model. In Proceedings of the 17th interna-
tional conference on Computational linguistics: Vol-
ume 1. Association for Computational Linguistics,
pages 79–85.

Jan A. Botha and Phil Blunsom. 2013. Adaptor gram-
mars for learning non-concatenative morphology. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP-
13). Seattle, pages 345–356.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Transactions on Speech and
Language Processing 4(1):3.

Ezra Daya, Dan Roth, and Shuly Wintner. 2008. Identi-
fying semitic roots: Machine learning with linguistic
constraints. Computational Linguistics 34(3):429–
448.

Peter Dayan and Richard S Zemel. 1995. Competi-
tion and multiple cause models. Neural Computa-
tion 7:565–579.

Khaled Elghamry. 2005. A constraint-based algorithm
for the identification of arabic roots. In Proceed-
ings of the Midwest Computational Linguistics Col-
loquium. Indiana University.

Noam Faust. 2013. Decomposing the feminine suf-
fixes of modern hebrew: a morpho-syntactic anal-
ysis. Morphology 23(4):409–440.

Michelle Fullwood and Tim O’Donnell. 2013. Learn-
ing non-concatenative morphology. In Proceedings
of the Fourth Annual Workshop on Cognitive Mod-
eling and Computational Linguistics (CMCL). Sofia,
Bulgaria, pages 21–27.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics 27:153–198.

John Goldsmith and Aris Xanthos. 2009. Learning
phonological categories. Language 85(1):4–38.

Harald Hammarstrom and Lars Borin. 2011. Unsuper-
vised learning of morphology. Computational Lin-
guistics 37(2):309 – 350.

Alon Itai and Shuly Wintner. 2008. Language resources
for Hebrew. Language Resources and Evaluation
42(1):75–98.

George Anton Kiraz. 1996. Computing prosodic mor-
phology. In Proceedings of the 16th International
Conference on Computational Linguistics (COLING
1996). Copenhagen, pages 664–669.

Andreas Klöckner, Nicolas Pinto, Yunsup Lee,
B. Catanzaro, Paul Ivanov, and Ahmed Fasih. 2012.
PyCUDA and PyOpenCL: A Scripting-Based Ap-
proach to GPU Run-Time Code Generation. Parallel
Computing 38(3):157–174.

John J McCarthy. 1981. A prosodic theory of noncon-
catenative morphology. Linguistic inquiry 12:373–
418.

Taesun Moon, Katrin Erk, and Jason Baldridge. 2009.
Unsupervised morphological segmentation and clus-
tering with document boundaries. In Proceedings of
the 2009 Conference on Empirical Methods in Natu-
ral Language Processing: Volume 2. Association for
Computational Linguistics, pages 668–677.

Q Ni and Y Yuan. 1997. A subspace limited mem-
ory quasi-newton algorithm for large-scale nonlin-
ear bound constrained optimization. Mathematics of
Computation of the American Mathematical Society
66(220):1509–1520.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In In ACL. Ariya Rastrow,
Abhinav Sethy, and Bhuvana Ramabhadran.

Paul Rodrigues and Damir Ćavar. 2005. Learn-
ing arabic morphology using information theory.
In Proceedings from the Annual Meeting of the
Chicago Linguistic Society. Chicago Linguistic So-
ciety, pages 49–58.

Eric Saund. 1993. Unsupervised learning of mixtures
of multiple causes in binary data. In NIPS. pages
27–34.

Eric Saund. 1994. A multiple cause mixture model
for unsupervised learning. Neural Computation
7(1):51–71.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and N. Nativ. 2001. Building a tree-bank of Modern
Hebrew text. Traitment Automatique des Langues
42(2).

Gregory T Stump. 2001. Inflectional morphology: A
theory of paradigm structure, volume 93. Cam-
bridge University Press.

140

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 141–150,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Inferring Morphotactics from Interlinear Glossed Text:
Combining Clustering and Precision Grammars

Olga Zamaraeva
University of Washington

Seattle, WA, USA
olzama@uw.edu

Abstract

In this paper I present a k-means clustering ap-
proach to inferring morphological position classes
(morphotactics) from Interlinear Glossed Text
(IGT), data collections available for some endan-
gered and low-resource languages. While the exper-
iment is not restricted to low-resource languages,
they are meant to be the targeted domain. Specifi-
cally my approach is meant to be for field linguists
who do not necessarily know how many position
classes there are in the language they work with and
what the position classes are, but have the expertise
to evaluate different hypotheses. It builds on an ex-
isting approach (Wax, 2014), but replaces the core
heuristic with a clustering algorithm. The results
mainly illustrate two points. First, they are largely
negative, which shows that the baseline algorithm
(summarized in the paper) uses a very predictive
feature to determine whether affixes belong to the
same position class, namely edge overlap in the af-
fix graph. At the same time, unlike the baseline
method that relies entirely on a single feature, k-
means clustering can account for different features
and helps discover more morphological phenom-
ena, e.g. circumfixation. I conclude that unsuper-
vised learning algorithms such as k-means cluster-
ing can in principle be used for morphotactics infer-
ence, though the algorithm should probably weigh
certain features more than others. Most importantly,
I conclude that clustering is a promising approach
for diverse morphotactics and as such it can facili-
tate linguistic analysis of field languages.

1 Introduction

Morphological analysis is a critical component in
NLP systems for morphologically rich languages
(Daille et al., 2002). Yet, while automatic morpho-
logical analysis may be well-developed for lan-
guages like English and Spanish, the list of these
languages is rather short. There are at least two
reasons for that. One is that high-resource lan-
guages offer big training corpora. This makes the
use of various machine learning algorithms eas-
ier. Another reason is that many high-resource
languages, most notably English, happen to fea-
ture fairly simple morphology. A morphological
analyzer for a language like English does not need

to model complex morphotactics, the constraints
on the ordering of the morphemes types.

While there are many systems which are capa-
ble of segmenting words into morphemes (Creutz
and Lagus, 2006; Johnson, 2008) and some sys-
tems which include more sophisticated morpho-
logical analyzers and use supervised machine
learning for some tasks (Pasha et al., 2014), there
do not seem to be many systems out there which
can actually infer morphotactics in an unsuper-
vised fashion. Yet many languages exhibit com-
plex morphotactics. Furthermore, most of the
world’s languages are low-resource, meaning that
there are few digitized resources that can be used
in computational projects. Many are also under-
studied, meaning that the properties of the lan-
guage including its morphotactics are not well-
documented or well-understood.

Documenting morphological rules of under-
studied languages which often also have endan-
gered status is of critical importance for the pur-
poses of both linguistic research and cultural di-
versity conservation efforts (Krauss, 1992). At
the same time, the scarcity of data makes many
modern learning approaches that rely on big data
inapplicable in this domain. However, field lin-
guists who work on these languages have small
sized but richly annotated data, Interlinear Glossed
Text (IGT), and so the richness can be leveraged to
compensate for the modest size of the corpora. An
example of IGT from Chintang [ctn]1 is given be-
low as (1):

(1) unisaNa
u-nisa-Na
3sPOSS-younger.brother-ERG.A

khatte
khatt-e
take-IND.PST

mo
mo
DEM.DOWN

kosiP
kosi-i
river-LOC

moba
mo-pe
DEM.DOWN-LOC

‘The younger brother took it to the river.’ [ctn]
(Bickel et al., 2013)

1Spoken in Nepal.

141

I take an existing approach to automatically ex-
tracting morphological rules from IGT as the base-
line (Wax, 2014) and present a k-means clustering
approach to the same problem. I evaluate the re-
sults by morphological parsing (analyzing a list of
verbs by finding for each verb a sequence of mor-
phological rule applications that would produce
this form) on several languages from different
language families, including some low-resource
languages. I show that grammars obtained us-
ing k-means are generally worse than the baseline
though they can be on par with it in a particularly
noisy setting. K-means still strongly outperforms
a grammar hand-built by language experts because
automated processing ensures better recall. I no-
tice that, unlike the baseline approach, k-means is
capable of picking up non-canonical phenomena
like circumfixation. I conclude that unsupervised
classification methods like k-means clustering can
help the field linguists come up with more com-
plete hypotheses about morphotactics (accounting
for more affixes and more relationships between
them) and also discover non-canonical morpho-
logical phenomena in their data.

2 Background

This section briefly explains the theoretical as-
sumptions about morphology that are used in this
paper, looks at related work, presents the evalua-
tion framework, and finally goes over the baseline
system.

2.1 Canonical and Non-Canonical
Morphotactics

Position classes, or morphotactics, are slots for
groups of morphemes (affixes) that are in comple-
mentary distribution. The slots can have strict or
variable ordering, and an affix that attaches to an-
other affix is said to take the second affix as input.
For example, Finnish [fin] is known to have the
following order of position classes for finite verbs
(Karlsson, 2008):

(2) root + passive + tense/mood + person +
particle

Here, the root serves as input to the pas-
sive marker, the passive marker is input to the
tense/mood marker, etc.

Canonical morphotactics, in Stump’s (1993)
terminology used also in works like Crysmann and

Bonami (2015),2 assume a strict ordering of posi-
tion classes (for example, if the affix that means
tense always follows the one that means aspect, as
in Finnish above). Deviations from that which in-
volve variable morpheme ordering can be called
non-canonical morphotactics (Stump, 1993). An-
other type of non-canonical phenomena is circum-
fixation, when a prefix always comes together with
a certain suffix, or in other words an affix can be
said to split into two parts. For a more complete
review of non-canonical phenomena, see Crys-
mann and Bonami (2015). Non-canonical mor-
photactics are found very often in the world’s lan-
guages yet they are often overlooked in imple-
mented systems which tend to be biased towards
Indo-European and even just English characteris-
tics (Bender, 2011).

2.2 Morphological Analysis in NLP

The big body of research about automatic mor-
phological analysis that exists today is mostly not
concerned with morphotactics. Automatic seg-
mentation, which admittedly is a necessary step
in any morphological analysis system, is probably
the most developed area. In my study, I assume
that the segmentation has already been done, and
the goal is to capture relationships between groups
of morphemes. There are approaches which ad-
vertise themselves as deep morphological analysis
(Yarowsky and Wicentowski, 2000; Schone and
Jurafsky, 2001), but they focus on well-studied
and high-resource Indo-European languages, and
mostly aim to learn a maximally broad-coverage
table of mappings from stems and affix combina-
tions to some linguistic tag (e.g. a Penn TreeBank
POS tag). What they don’t yield is a generative
model of the language’s morphology which would
contain information about the position or inflec-
tional classes.

Work that is most similar to mine in what it aims
for is Oflazer and Gokhan (1996) and Oflazer,
Nirenburg and McShane (2001). Oflazer and
Gokhan (1996) use constraints to model morpho-
tactics, but the constraints are hand-built and un-
supervised learning is used only for segmentation.
Oflazer, Nirenburg and McShane (2001) combine
rule-based and machine learning techniques and
include elicitation in the loop in order to build
finite state automata for low-density languages.

2Cf. a broader term for canonical morphology as in Cor-
bett (2009).

142

Their FSAs encode non-canonical morphotactic
phenomena such as conditioning, and they induce
morphological rules using transformation-based
learning (Brill, 1995). Still, their approach fo-
cuses more on identifying affixes and roots than
on paradigms and position classes, while the lat-
ter is necessary for the rules to become part of a
morphological grammar.

2.3 Precision Grammars and Evaluation by
Parsing

For evaluation, I use automatically generated pre-
cision grammars (Bender et al., 2008), a type of
digitized language resource. A precision grammar
consists of a lexicon and a hierarchy of lexical and
phrasal rules written according to the HPSG the-
ory of syntax (Pollard and Sag, 1994). The term
‘precision’ is meant to emphasize that any parse
or generation by the grammar will comply with the
rules and will in that sense be linguistically sound,
or precise. The grammar is machine-readable. In
combination with software such as the LKB sys-
tem (Copestake, 2002), precision grammars can
generate syntactic trees of complete feature struc-
tures3 along with semantic representations. Lex-
ical morphological rules apply first to construct
words, and then phrasal rules apply to construct
sentences. Such grammars are useful to evaluate
the quality of linguistic analyses (Bender et al.,
2008). In particular, I used precision grammars
to evaluate my results by parsing.

I used the Grammar Matrix customization sys-
tem (Bender et al., 2002; Bender et al., 2010)
to compile precision grammars from the specifi-
cations which were output by either the baseline
(Wax, 2014) or by my k-means system. In both
cases, the morphotactics is represented internally
as a directed acyclic graph (DAG) where nodes are
affix types (position classes) and edges mean that
one class serves as input to another. Cycles are
not allowed mainly because of the internal Gram-
mar Matrix restrictions, though iterating position
classes are indeed rare.4 The DAG implementa-
tion is provided entirely by the customization sys-
tem, as are all the other functional parts of the
grammar. The baseline and the k-means system

3A feature structure is the form of linguistic unit descrip-
tion in HPSG. Feature structures can combine with each other
by constraint unification to form phrase structures.

4Chintang [ctn] has them (Schikowski (2012) as cited in
Bender et al. (2012)), but it may be one of very few languages
with this feature.

supply only the specification for the DAG in form
of nodes and edges. Below are a sample entry
for a verb position class from a specification file
(Figure 1) and the relevant snippet from the gram-
mar itself, in HPSG-style (Pollard and Sag, 1994)
type description language (Figure 2) (Copestake,
2000). The customization system reads in the
specification file and, in this case, it would create
a node in the DAG that corresponds to verb-slot1
(verb position class 1) and an edge to it from the
stems node (called simply ‘verb’ in the figure).

Figure 1: Sample precision grammar specification for a file
verb position class entry

Figure 2: HPSG grammar snippet in type description lan-
guage (Copestake, 2000)

For clarity, the examples are from a toy English
grammar. The lexical rule which is illustrated will
add a suffix ing to verbs to produce the participial
form. This way a string like walking will be parsed
and a feature structure will be produced which will
capture the fact that this is a non-finite verb form,
for example.5

2.4 Baseline: Inferring Position Classes DAG
by Input Overlap

One approach to inferring the morphotactic DAG
from IGT that has been tried is Wax (2014), and
I use it as the baseline. The code for the baseline
system was shared by its author. It was also used
by Bender et al. (2014) in their set of experiments
with automatically generated grammars of Chin-
tang. Wax (2014) processes the input IGT (which
already have segmentation and alignment between
the language line and the gloss line) to identify the

5There would have to be a separate lexical rule for gerund,
because the morphosyntactic constraints are distinct.

143

original affix types: affix instances which share the
same orthography, gloss, and input relations. The
original DAG is a function of these affix types,
with affixes being nodes and input relations be-
tween them being directed edges. The system then
takes a minimum input (edge) overlap value from
the user (e.g. 80%, 50%, 20%) and compresses the
graph according to this value, i.e. two nodes which
share more than a certain percentage of edges will
be considered the same position class. The princi-
ple is illustrated in the figures below on a toy Rus-
sian morphology graph which assumes an input of
two verbs: vy-kup-i-l and po-kup-a-et.

Figure 3: Two affix nodes (po- and vy-) are detected to have
a 100% overlap (kup).

Figure 4: Two affix nodes are collapsed into one. Then the
previous step is repeated with the next pair of affixes which
share the minimum edge overlap.

Figure 5: Eventually, the entire graph consists of classes of
affixes, which can also be mapped from orthography to lin-
guistic features through the IGT glossing.

Since the system will not allow a cycle in the
graph, the compression is limited. If the system
is trying to merge nodes A and B and one of B’s
edges would create a cycle if added to A’s edges,
such edge will not be added to A (it will there be
lost). For example, the minimum number of nodes

in the compressed graph of Chintang is 48 while
the literature reports 13 position classes (Bickel
et al., 2007). One advantage of the k-means ap-
proach is that it allows the user to pick any num-
ber of position classes directly, though a smaller
number means more edges may be sacrificed.

Wax’s (2014) system outputs a grammar specifi-
cation where the lexicon and the morphology sec-
tions are filled out, and the rest of the settings are
set to default. In particular, subject and object drop
are allowed in all cases, and this makes it possible
to parse stand-alone verbs. Then the specification
is compiled into grammar rules by the Grammar
Matrix (Bender et al., 2002; Bender et al., 2010)
and this grammar can be used for parsing with
software such as the LKB (Copestake, 2002) or
ACE (Crysmann and Packard, 2012).

3 Data

Chintang

The most interesting results were obtained on the
Chintang [ctn] data, possibly because it is the
biggest and the highest quality IGT collection that
I had. I used 8667 sentences for “training” (in
this case to learn the morphological rules) and
708 verbs for testing by morphological parsing.
The collection was used with permission from the
field linguists who created it (Bickel et al., 2013).
Chintang was shown to have free prefix ordering
(Bickel et al., 2007) and is a morphologically rich
agglutinative language. The position classes for
Chintang are described in Bickel et al. (2007).
Furthermore, Bender et al. (2012) hand-built an
Oracle morphological precision grammar based on
this description, accounting for certain phenomena
such as position classes iteration. I used this gram-
mar in evaluation.

Matsigenka

Another low-resource language that I used for this
study was Matsigenka [mcb]. The IGT collec-
tion was again obtained from the field linguists
who created it (Michael et al., 2013). I used a
part of the collection which had English transla-
tions (376 sentences for training and 47 for testing,
which results in 118 verbs for testing). Matsigenka
is also an agglutinative, morphologically rich lan-
guage with possibly variable morpheme ordering
(Michael, p.c.).

144

ODIN: Turkish, Tagalog, and Russian

ODIN (Lewis and Xia, 2010) is a database of
IGT obtained from crawling linguistic papers on-
line. Though the particular languages which I used
from ODIN are not low-resource, the datasets still
represent noisy and scarce data. Because it comes
from examples in linguistic papers, ODIN data is
fairly homogeneous and not necessarily represen-
tative of natural language use, but it does provide a
big selection of different languages IGT (currently
1497 datasets). For this experiment, I used three
ODIN datasets: Turkish [tur], Tagalog [tgl], and
Russian [rus]. Turkish and Tagalog can be seen
as being on the opposite sides of the morphotac-
tic spectrum: Turkish has many position classes
but the morphotactics is mostly canonical, while
Tagalog only basically has one prefix and one suf-
fix position class but features infixes and redupli-
cation.6 In addition to Turkish and Tagalog, I used
the Russian dataset from ODIN. Russian is a mor-
phologically rich language with a few prefixal and
a few suffixal position classes and a native speaker
was available to perform qualitative error analy-
sis,7 so it was included for the diversity of the test
set.

4 Method

The method and the evaluation process are illus-
trated in Figure 6 and described in the subsections
below.

Figure 6: General method. The steps relevant only to evalu-
ation are indicated by dotted lines.

6There is also a historical reason for using Turkish and
Tagalog: Wax originally tested his system on them. However,
he used the data in a different form and his original results are
not directly comparable to mine.

7Results for Russian turned out to be uninteresting.

4.1 Training/Testing Split and the Effect of
the Random Split on the Results

The Chintang and Matsigenka datasets were split
randomly into training and testing for the purposes
of other projects, and these were the splits that I
used. The ODIN data I split myself. The split
has a noticeable effect on the results. Namely,
different splits result in a different number of po-
sition classes with the same minimum overlap
value. Poor alignment between the language and
the gloss line in the ODIN data leads to differ-
ent items being discarded as the affix objects are
added to the system, depending on which IGTs are
originally in the training set.

There does not seem to be a strong correlation
between the number of position classes that the
baseline system comes up with and with either the
number of IGT in the training set or the number
of nodes in the original graph (Pearson coefficient
between -0.08 and +0.13). The effect is probably
just due to the randomness of the split. For all the
three ODIN datasets, I report the numbers and an-
alyze the results for the training-testing split which
corresponds to a representative run. The represen-
tative run is one that resulted in the average value
for the final number of position classes over 100
runs.

4.2 Affix Objects

The k-means system takes as input the original af-
fix DAG created by Wax’s (2014) system as de-
scribed in section 2.4. The baseline system reads
in the IGT and identifies affixes using the segmen-
tation that is already in the IGT, the alignment with
the gloss line, and a list of known glosses. The
affixes then are stored in a DAG as nodes, and a
directed edge between two nodes means that one
affix can serve as input to the other. Stems are also
part of the DAG, though they only have outgoing
edges and no incoming edges. An affix instance is
mapped to an existing node if it is associated with
the same gloss, orthography, and inputs. Other-
wise a new affix node is created. After the original
DAG is built, instead of compressing the graph by
using edge (input) overlap, I apply k-means clus-
tering to merge the nodes based on a number of
features described below.

145

4.3 Clustering

4.3.1 k-means
I used classical k-means clustering in form of a
package for the Python programming language
(Pedregosa et al., 2011)8 with the following fea-
ture set where each feature is binary: affix’s or-
thography, affix’s gloss, linguistic feature type
(e.g. tense, number), immediate context (previous
morpheme, or the input, the only feature that the
baseline also uses), the root of the word the affix
occurred in, and whether the affix is a prefix (oc-
curs to the left of the root). I run k-means on affix
instances rather than on the DAG nodes, but each
affix instance had been associated with a particu-
lar node in the DAG as described in the previous
section. The nodes are then merged as described
below.

4.3.2 Applying Clustering Labels to the Affix
DAG

After a label is obtained for each affix instance,
a new DAG is constructed as follows: I take a
collection of new nodes, based on the clustering
labels. Nodes from the old DAG for which the
clustering label is the same are merged, with all
inputs and outputs kept, regardless of cycles. If a
certain node from the old DAG is associated with
two different clusters, the node is split into two
copy-nodes. Then a spanning tree is constructed
by breadth-first search using the ‘heaviest’ outgo-
ing edge for each node, where the weight is the
outdegree of the node to which the edge is point-
ing. Then all other possible outgoing edges, sorted
by weight and starting from the heaviest, are added
for all nodes so long as they don’t create a cycle in
the graph. Some have to be sacrificed.

4.3.3 Choosing k
One goal was to evaluate the system using k equal
to the number of position classes that the baseline
system produces, so that they can be compared.
Since the baseline system’s result depends on the
minimum overlap choice, that had to be fixed at a
particular value. At the same time, for Chintang,
there exists an Oracle precision grammar built by
language experts (Bender et al., 2012). The base-
line system is limited in how small of a graph it
can produce. In particular, when run on the Chin-
tang data, it produced a minimum of 48 position

8http://scikit-learn.org/stable/

modules/clustering.html

classes when input overlap is less or equal to 0.1,
and 55 position classes with overlap = 0.2. Fifty-
five is close to 54, the number of position classes
in the Oracle grammar. Therefore I decided to
use this 0.2 value for all languages to be able to
compare the Oracle grammar to both the baseline
system and the k-means system as well as to be
consistent with respect to all other parts of the ex-
periment. In addition, for Chintang I used k=13,
the number which does not account for iterating
affixes but is nonetheless the number that is hy-
pothesized in the literature (Bickel et al., 2007).

5 Results and Discussion

5.1 Evaluation Method

It should be stated upfront that the results of this
study seem most interesting if analyzed qualita-
tively, in terms of what kind of affixes get clus-
tered together and whether this can be helpful to
a filed linguist in any way. At the same time, it
is appropriate to include quantitative results. For
this, I use morphological parsing.

Morphological parsing is analyzing isolated
words (e.g. extracted from a held-out test set) lex-
ically, defaulting the phrase structure rules, in that
each word (such as a verb) can be analyzed as a
full sentence, provided there is a path in the mor-
photactic DAG that generates this word. This is an
appropriate evaluation method given that labeled
data for morphotactic inference virtually does not
exist for most languages, be it high-resource or
not. I am assuming that a grammar which achieves
better coverage on a held out dataset may better
represent the real grammar of the language, espe-
cially if k is kept modest.9 The Chintang Oracle
grammar I also use indirectly, looking at its per-
formance in terms of morphological parsing and
comparing to both the baseline and the k-means
systems.

All grammars, including the Oracle, were nor-
malized with respect to the lexicon and only differ
in morphological rules. The test sets were filtered
to just contain one instance of each verb. As such,
the evaluation does not take into account how fre-
quent the verbs are. The test sets for most lan-
guages are rather small (Chintang is the biggest
with 708 unique verbs in the set). This is a realis-
tic setting for low-resource language research.

9If k is very big, the grammar is likely to parse more but
it cannot be easily mapped to the language’s actual morphol-
ogy.

146

Language System k/PC % parsed
Oracle 54 75.5
Wax (2014) 55 90.8

ctn k-means 55 86.1
k-means 13 83.3
Wax (2014) 23 78.4

mcb k-means 23 56.8
Wax (2014) 6 67.9

tgl k-means 6 50.9
Wax (2014) 21 53.4

tur k-means 21 53.4
Wax (2014) 5 47.9

rus k-means 5 47.1

Table 1: Morphological parsing results.

5.2 Results
The results are summarized in Table 1. The results
show that, in terms of morphological parsing, a k-
means grammar is generally worse than the base-
line system, though it can sometimes achieve sim-
ilar coverage (in the noisy ODIN setting). How-
ever both the baseline and the k-means systems
strongly outperform the hand-built Oracle gram-
mar of Chintang. Furthermore, the resulting gram-
mars can be examined by hand, not in terms of
parsing but in terms of what they look like and how
they compare to the languages’ actual morpholog-
ical rules. In case of Chintang at least, k-means
clusters together affixes which constitute circum-
fixes, while the baseline grammar cannot possibly
do that because it will never cluster together a pre-
fix and a suffix.

5.3 Analysis and Discussion
Given largely negative results, the main points of
this paper are given in qualitative linguistic anal-
ysis of concrete examples, mainly from the Chin-
tang experiments. In most cases, the k-means al-
gorithm and the baseline come up with different
sets of morphological rules. While the baseline
system clearly is better at parsing, Chintang and
Matsigenka have examples which the k-means can
parse and the baseline system cannot. That the
baseline is usually better at parsing suggests that
input overlap is an important feature and possibly
the strongest predictor of whether two affixes be-
long to the same position graph. However, the k-
means system is capable of picking up phenom-
ena which the input overlap will never detect, be-
cause they are related to variable order and gener-

ally non-canonical phenomena. For such phenom-
ena to be detected, the algorithm should consider
features beyond the affix’s immediate context. The
clearest example of this is the Chintang circumfix
mai-/-yokt which is consistently put in the same
cluster by the k-means. Below I mostly talk about
the Chintang results, as they provide the most in-
sight into the difference between the baseline and
the k-means.10

5.3.1 Chintang
Oracle Grammar versus Automatically
Induced Grammars
In terms of morphological parsing, both the k-
means morphological grammar and the baseline
grammar clearly outperform the Oracle grammar.
The main reason for this is that an automatic pro-
cedure which goes through the entire dataset in a
consistent fashion picks up a lot more affixes than
is described in the sources used by Bender et al.
(2014). In part, that is because Chintang employs
nominalization, compounding, and also features
many phonological variations, but there are also
indications that there are true verbal inflections
that are missing in the Oracle. While the Oracle
grammar cannot parse 158 items out of 708, the
baseline only misses 65, and the k-means system
misses 92. Examples of affixes which both auto-
matic grammars pick up which the Oracle gram-
mar misses include -P (glossed EMPH), -ko (nom-
inalizer), and, most interestingly, -en, which is
glossed PST.NEG, so it is clearly an affix that has
something to do with verb inflection and as such
should probably have been included in the Oracle
grammar but was missed for some reason. This
suggests that either the description of the gram-
mar in the literature is incomplete, or there are er-
rors in the corpus which should be corrected. In
either case, identifying verb inflections candidates
automatically would be helpful for the field lin-
guist who is working with the data.

Baseline Overlap=0.2 vs. k=55
The baseline system ended up compressing the
original graph to a number of nodes similar to the
Oracle number (55 instead of 54) when input over-
lap was set to 0.2. There are 7 items which the
k-means system parses and the baseline grammar
does not in this setting. A few of them, like a-lis-
a-hat-a-ce-e, require that there be two nodes for

10Admittedly, more analysis could be done on Matsigenka.
This remains part of future work.

147

the -a orthography, such that one takes the root (in
this case lis) as input and the other takes the com-
plementizer hat. The baseline grammar does not
have an edge from the complementizer slot to the
tense slot. There are 34 items which the baseline
grammar parses and the k-means grammar does
not. This is because the k-means ends up sacri-
ficing more of the useful edges to avoid cycles in
the graph. Neither grammar parses 58 items. Of
these, some are due to unseen lexemes but most
are due to discarded edges (since the baseline also
discards edges when merging nodes).

The True Number of Position Classes: k=13
The most interesting (from the linguistic perspec-
tive) k-means result is the one with k=13. First of
all, it is not possible to obtain this number using
the baseline grammar, since the smallest number
it produces is 48. Secondly, the resulting graph
has some resemblance to Chintang morphotactics
as described in the literature, and that can be seen
more easily in a smaller graph. This means that the
k-means system can be useful to a researcher who
is trying to come up with hypotheses about the lan-
guage’s morphotactics and may have an idea about
roughly how many position classes there are but
not necessarily which affixes belong together and
what the input relationships are. I evaluate this
scenario with k=13, the number of position classes
in Chintang suggested by Bickel et al. (2007).

There is some resemblance between the sys-
tem’s output and Chintang morphotactics as de-
scribed by Bickel et al. (2007). An abridged ver-
sion of the results is presented in Figure 7. Three
of the clusters (not shown) are very heterogeneous
and contain stems as well as different kinds of
morphemes. These cannot be directly mapped to
actual Chintang morphotactics, though they are
useful in parsing compound verbs. There are a few
clusters that k-means seems to get roughly right
(all of them are in the figure), and some of the in-
put edges (also in the figure) reflect actual Chin-
tang morphotactics as well. One cluster, namely 9,
has affixes that are clearly glossed as a verb inflec-
tion in the data (3, 3s, 3p) but are not accounted for
in Bickel et al. (2007). One especially interesting
cluster is the one presented in Figure 8. It captures
the fact that -yokt and mai- behave as a circum-
fix, i.e. they tend to occur only together, one to the
right and one to the left of the root. Clustering
in this case is not necessarily helpful for parsing,
but it is helpful for identifying morphotactic con-

Figure 7: A part of the morphotactic graph output by k-
means with k=13. Dotted ellipse (verb-pc9) shows a clus-
ter which is not accounted for in the Chintang literature but
seems plausible as a position class. All the rest included clus-
ters at least roughly correspond to the position classes in the
literature. Some clusters and edges are not shown.

Figure 8: Chintang cluster containing circumfix mai- -yokt.

straints generally.

5.4 Matsigenka

While the k-means grammar lacks some produc-
tive edges that the overlap grammar has, it gains
at least some others, which makes it possible for
the k-means to parse i-tsarog-a-i-t-an-ak-e, since
the k-means grammar does not lose the edge from
-i class to -t class. With only one such example,
it is difficult to conclude anything. No qualitative
analysis of smaller Matsigenka graphs was done
at this point. In future work, it will be possible to
use a larger Matsigenka dataset, and hopefully the
results will be more interesting.

5.5 ODIN Data

The ODIN datasets do not contain much variety,
since the IGT come from linguistic papers’ exam-
ples, and those tend to not be very diverse. At the
same time, the ODIN data is rather noisy and often
times it is not easy to align the gloss line to the lan-
guage line. This way, many affixes never make it
into the grammars and many items are not parsed.
Interestingly, k-means comes closest to the base-
line in this setting. The items that are parsed by
both grammars are the ones that are seen in the
data a lot and are therefore fairly simple for both
systems to get. It seems that k-means could be

148

used on small and noisy field datasets, often as
successfully as the baseline system, and the hope
of discovering non-canonical phenomena will be
higher.

6 Conclusion

The experiments described in this paper show
that unsupervised methods such as clustering can
be used somewhat successfully on smaller scale
data such as field languages IGT collections. In
case with Chintang at least, the clusters of af-
fixes yielded by k-means sometimes roughly cor-
respond to the position classes described in the lit-
erature. Both the baseline and the k-means sys-
tems are able to morphologically analyze (parse)
more verbs than a hand-built grammar, which con-
firms that automatic processing is useful for field
research.

Strict ordering of affixes that is easily accounted
for by heuristic methods such as Wax (2014)
is generally a very strong predictor for whether
two affixes belong to the same position class or
not. Systems that rely solely on inferring such
ordering perform better than k-means in all the
cases presented in this paper, but k-means achieves
comparable results in noisy settings. Further-
more, approaches such as input overlap are by
definition hopeless for discovering non-canonical
morphotactics, while k-means seems to discover
some correlations between positions that are con-
ditioned on each other (e.g. Chintang -yokt and the
negative prefixes). An improvement to the current
approach would be weighted k-means, where im-
mediate context (input) can be given more weight.

A system like the one described in this paper
can be a useful component of an interactive lin-
guistic analysis tool for field linguists. Kim (2015)
showed that clustering results can be made more
interpretable for humans in the education domain
with the aid of Bayesian Case Modeling. It is
possible that the same is applicable to the domain
of field linguistics and morphological analysis. I
showed that clusters suggest correlations between
morphological features; designing a BCM-based
interactive system where the linguist could guide
the algorithm and look at automatically generated
hypotheses in the process is a tempting direction
for future work. As it is at present, k-means is a
simple and extensible alternative to heuristic algo-
rithms of inferring position classes from IGT and
can serve as a stepping stone for developing ex-

pert linguistic analyses, as it can form preliminary
buckets of affixes that can be considered candi-
dates for either true position classes or for posi-
tions that are related to each other in some non-
obvious way.

References
Emily M. Bender, Dan Flickinger, and Stephan Oepen.

2002. The Grammar Matrix: An open-source
starter-kit for the rapid development of cross-
linguistically consistent broad-coverage precision
grammars. In John Carroll, Nelleke Oostdijk, and
Richard Sutcliffe, editors, Proceedings of the Work-
shop on Grammar Engineering and Evaluation at
the 19th International Conference on Computational
Linguistics, pages 8–14, Taipei, Taiwan.

Emily M Bender, Dan Flickinger, and Stephan Oepen.
2008. Grammar engineering for linguistic hypothe-
sis testing. In Proceedings of the Texas Linguistics
Society X conference: Computational linguistics for
less-studied languages, pages 16–36. Citeseer.

Emily M Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar customization. Research on Language & Com-
putation, 8(1):23–72. 10.1007/s11168-010-9070-1.

Emily M. Bender, Robert Schikowski, and Balthasar
Bickel. 2012. Deriving a lexicon for a precision
grammar from language documentation resources:
A case study of Chintang. In COLING, pages 247–
262.

Emily M. Bender, Joshua Crowgey, Michael Wayne
Goodman, and Fei Xia. 2014. Learning grammar
specifications from igt: A case study of chintang.
In Proceedings of the 2014 Workshop on the Use
of Computational Methods in the Study of Endan-
gered Languages, pages 43–53, Baltimore, Mary-
land, USA, June. Association for Computational
Linguistics.

Emily M. Bender. 2011. On achieving and evaluating
language-independence in NLP. Linguistic Issues in
Language Technology, 6(3):1–26.

Balthasar Bickel, Goma Banjade, Martin Gaenszle,
Elena Lieven, Netra Prasad Paudyal, Ichchha Purna
Rai, Manoj Rai, Novel Kishore Rai, and Sabine
Stoll. 2007. Free prefix ordering in Chintang. Lan-
guage, pages 43–73.

Balthasar Bickel, Martin Gaenszle, Novel Kishore
Rai, Vishnu Singh Rai, Elena Lieven, Sabine Stoll,
G. Banjade, T. N. Bhatta, N. Paudyal, J. Pettigrew,
M. Rai, and I. P. Rai. 2013. Tale of a poor guy.
Accessed online on 15-January-2013.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational lin-
guistics, 21(4):543–565.

149

Ann Copestake. 2000. Appendix: Definitions of typed
feature structures. Natural Language Engineering,
6(01):109–112.

Ann Copestake. 2002. The LKB system.

Greville G Corbett. 2009. Canonical inflec-
tional classes. Selected proceedings of the 6th
Décembrettes: Morphology in Bordeaux, pages 1–
11.

Mathias Creutz and Krista Lagus. 2006. Morfessor in
the morpho challenge. In Proceedings of the PAS-
CAL Challenge Workshop on Unsupervised Segmen-
tation of Words into Morphemes. Citeseer.

Berthold Crysmann and Olivier Bonami. 2015. Vari-
able morphotactics in information-based morphol-
ogy. Journal of Linguistics, pages 1–64.

Berthold Crysmann and Woodley Packard. 2012. To-
wards efficient hpsg generation for german, a non-
configurational language. In COLING, pages 695–
710.

Béatrice Daille, Cécile Fabre, and Pascale Sébillot.
2002. Applications of computational morphology.
Many morphologies, pages 210–234.

Mark Johnson. 2008. Unsupervised word segmenta-
tion for sesotho using adaptor grammars. In Pro-
ceedings of the Tenth Meeting of ACL Special In-
terest Group on Computational Morphology and
Phonology, pages 20–27. Association for Computa-
tional Linguistics.

Fred Karlsson. 2008. Finnish: An essential grammar.
Routledge.

Been Kim. 2015. Interactive and interpretable ma-
chine learning models for human machine collab-
oration. Ph.D. thesis, Massachusetts Institute of
Technology.

Michael Krauss. 1992. The world’s languages in cri-
sis. Language, 68(1):4–10.

William D. Lewis and Fei Xia. 2010. Developing
ODIN: A multilingual repository of annotated lan-
guage data for hundreds of the world’s languages.
Literary and Linguistic Computing, 25(3):303–319.

Lev Michael, Christine Beier, Zachary O’Hagan,
Harold Vargas Pereira, and Jose Vargas Pereira.
2013. Matsigenka text written by Matsigenka
authors. Accessed online on 15-September-
2015: http://www.cabeceras.org/ldm_
publications/mcb_text_collection_
30jun2013_v1.pdf.

Kemal Oflazer and Gokhan Tur. 1996. Combin-
ing hand-crafted rules and unsupervised learning
in constraint-based morphological disambiguation.
arXiv preprint cmp-lg/9604001.

Kemal Oflazer, Sergei Nirenburg, and Marjorie Mc-
Shane. 2001. Bootstrapping morphological ana-
lyzers by combining human elicitation and machine
learning. Computational linguistics, 27(1):59–85.

Arfath Pasha, Mohamed Al-Badrashiny, Mona T Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In LREC, pages 1094–1101.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. The University of Chicago Press
and CSLI Publications, Chicago, IL and Stanford,
CA.

Robert Schikowski. 2012. Chintang morphology. Un-
published ms, University of Zürich.

Patrick Schone and Daniel Jurafsky. 2001.
Knowledge-free induction of inflectional mor-
phologies. In Proceedings of the second meeting
of the North American Chapter of the Association
for Computational Linguistics on Language tech-
nologies, pages 1–9. Association for Computational
Linguistics.

Gregory T Stump. 1993. Position classes and morpho-
logical theory. In Yearbook of Morphology 1992,
pages 129–180. Springer.

David Wax. 2014. Automated grammar engineering
for verbal morphology. Master’s thesis, University
of Washington.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In Proceedings of the 38th
Annual Meeting on Association for Computational
Linguistics, pages 207–216. Association for Com-
putational Linguistics.

150

Author Index

Aharoni, Roee, 41
Aksënova, Alëna, 121
Alegria, Iñaki, 27

Belinkov, Yonatan, 41

Cornips, Leonie, 82
Cotterell, Ryan, 10

Declerck, Thierry, 104
Dickinson, Markus, 131

Eisner, Jason, 10
Eskander, Ramy, 71
Etxeberria, Izaskun, 27

Goldberg, Yoav, 41
Goldwater, Sharon, 110
Graf, Thomas, 121

Habash, Nizar, 71
Hauer, Bradley, 31
Henrich, Verena, 76
Hinrichs, Erhard, 76
Hulden, Mans, 10

James, Kristy, 87

Kann, Katharina, 62
King, David, 49
Kirby, James, 110
Kirov, Christo, 10
Kisselew, Max, 93
Kondrak, Grzegorz, 31, 99

Lendvai, Piroska, 104
Liu, Ling, 36

Ma, Jianqiang, 76
Mao, Lingshuang Jack, 36
Meyer, Anthony, 131
Moradi, Sedigheh, 121

Nguyen, Dong, 82
Nicolai, Garrett, 31, 99

Östling, Robert, 23

Padó, Sebastian, 93
Palmer, Alexis, 93

Rambow, Owen, 71
Rimell, Laura, 93

Sarkar, Rik, 110
Schütze, Hinrich, 62
Shoemark, Philippa, 110
Sorokin, Alexey, 54
St Arnaud, Adam, 31
Sylak-Glassman, John, 10

Taji, Dima, 71

Wieling, Martijn, 87

Yao, Lei, 99
Yarowsky, David, 10

Zamaraeva, Olga, 141
ZHANG, SHUO, 1

151

	Program
	Mining linguistic tone patterns with symbolic representation
	The SIGMORPHON 2016 Shared Task—Morphological Reinflection
	Morphological reinflection with convolutional neural networks
	EHU at the SIGMORPHON 2016 Shared Task. A Simple Proposal: Grapheme-to-Phoneme for Inflection
	Morphological Reinflection via Discriminative String Transduction
	Morphological reinflection with conditional random fields and unsupervised features
	Improving Sequence to Sequence Learning for Morphological Inflection Generation: The BIU-MIT Systems for the SIGMORPHON 2016 Shared Task for Morphological Reinflection
	Evaluating Sequence Alignment for Learning Inflectional Morphology
	Using longest common subsequence and character models to predict word forms
	MED: The LMU System for the SIGMORPHON 2016 Shared Task on Morphological Reinflection
	The Columbia University - New York University Abu Dhabi SIGMORPHON 2016 Morphological Reinflection Shared Task Submission
	Letter Sequence Labeling for Compound Splitting
	Automatic Detection of Intra-Word Code-Switching
	Read my points: Effect of animation type when speech-reading from EMA data
	Predicting the Direction of Derivation in English Conversion
	Morphological Segmentation Can Improve Syllabification
	Towards a Formal Representation of Components of German Compounds
	Towards robust cross-linguistic comparisons of phonological networks
	Morphotactics as Tier-Based Strictly Local Dependencies
	A Multilinear Approach to the Unsupervised Learning of Morphology
	Inferring Morphotactics from Interlinear Glossed Text: Combining Clustering and Precision Grammars

