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Abstract

This paper presents a method for linking
models for aligning linguistic etymologi-
cal data with models for phylogenetic in-
ference from population genetics. We be-
gin with a large database of genetically re-
lated words—sets of cognates—from lan-
guages in a language family. We pro-
cess the cognate sets to obtain a complete
alignment of the data. We use the align-
ments as input to a model developed for
phylogenetic reconstruction in population
genetics. This is achieved via a natu-
ral novel projection of the linguistic data
onto genetic primitives. As a result, we
induce phylogenies based on aligned lin-
guistic data. We place the method in the
context of those reported in the literature,
and illustrate its operation on data from
the Uralic language family, which results
in family trees that are very close to the
“true” (expected) phylogenies.

1 Introduction

Recently, mathematical theory of statistical
physics has been shown to unite stochastic mod-
els of evolution in seemingly diverse fields,
such as population genetics, ecology and linguis-
tics (Blythe and McKane, 2007; Blythe, 2009;
Baxter et al., 2009; Vázquez et al., 2010). How-
ever, statistical inference about language evolution
under such models is complicated by the practi-
cally intractable form of likelihoods for even a
moderate set of languages. This calls for novel
ways to probabilistic evaluation of any particu-
lar phylogenetic model and for learning the most
plausible genealogies from data. In the con-
text of population genetics, such an approach is
introduced in (Sirén et al., 2011; Sirén et al.,

2013) by combining diffusion-based approxima-
tions of conditional distributions with adaptive
Monte Carlo methods. In contrast to coalescent-
based likelihoods, this approach enables analy-
sis of much larger data collections, as the suf-
ficient statistics from the data correspond under
these models to the empirical allele frequencies of
each population, rather than genetic characteristics
of single individuals. This property makes these
models attractive from the perspective of evolu-
tionary linguistics.

The field of evolutionary linguistics, or com-
putational etymology, addresses a range of prob-
lems, including: automatic identification of sets of
cognates—genetically related words; finding ge-
netic relations across languages in a language fam-
ily; finding patterns of recurrent sound correspon-
dence among groups of languages; reconstruction
of proto-forms in ancestral (usually unobserved)
languages; etc. These problems are interdepen-
dent. When approached by traditional methods,
work proceeds in cycles, through iterative refine-
ment via the comparative method. In our work, we
take sets of cognate words as given, and focus on
the problems of genetic relations and patterns of
correspondence. The problem of reconstruction is
also addressed, indirectly.

Based on automatically derived pairwise corre-
spondences among the languages in a given cor-
pus of cognate sets1—we aim to determine the
overall structure of the language family. To find
the correspondences, we try to find the best align-
ment of the complete data at the level of individ-
ual sounds—or, equivalently, symbols, since we
assume that our data is phonetically transcribed.

An important aspect of our approach is that we
aim to use all available data—to avoid subjective

1The creators of the input dataset posit that the elements
of a cognate set derive from a common origin—a word in the
ancestral proto-language.

27



bias, which would be inherent in selecting some
subset of available data, as is sometimes done with
short 50- to 200-word lists. We learn patterns of
correspondence directly from the data, in explicit
form. We let only the data determine what rules
are inherent in it; i.e., we look for correspondences
that are inherently encoded in a given dataset—
rather than relying on externally supplied (and
possibly biased) assumptions or “priors.” The
models assume no a priori knowledge or “univer-
sal” principles—e.g., no preference for aligning a
symbol with itself, aligning a vowel with a vowel
rather than a consonant, etc.

The main idea of the approach we are explor-
ing here—summarized in Figure 1—is to create a
bridge between the two domains: on the linguis-
tic side, alignment of etymological data, and on
the population-genetics side, phylogenetic infer-
ence. The two domains operate on different kinds
of objects: in linguistics we have languages, words
and sounds, whereas in genetics we have pop-
ulations, individuals, and their DNA sequences,
and although there are apparent similarities, it is
not obvious how these can be combined. In Sec-
tion 4 we formalize the problem of alignment and
present some details about the alignment mod-
els we use—step B in the figure. Section 6 de-
scribes our population-genetics model for phylo-
genetic inference (step D). Section 5 shows how
we can “glue” these two together, by means of
a cross-domain projection—mapping information
obtained from linguistic alignments into a form
usable in population genetics (step C). In Sec-
tion 7 we present some results from the combined
approach, which involves building pairwise dis-
tance matrices and constructing phylogenetic trees
(steps E–F). The resulting trees are compared to
manually-constructed gold standards, to get an es-
timate of the quality of the inference pipeline.

Building phylogenetic trees by applying models
from population genetics to an alignment of a lan-
guage family has not been attempted previously, to
our knowledge. In section 2 we review several ap-
proaches to etymological alignment from the last
decade, and describe the data we use in our exper-
iments, in Section 3. We conclude with a discus-
sion and current work, in Section 8.

2 Related Work

The last 15 years have seen a surge in interest
in computational modeling of language relation-

ships, change and evolution. We have been devel-
oping a family of models for this task, called the
Etymon models, (Wettig et al., 2011; Wettig et al.,
2012; Nouri and Yangarber, 2016), etc.2

Methods introduced in (Kondrak, 2002), in-
spired by alignment in machine translation, learn
one-to-one sound correspondences between words
in pairs of languages. Kondrak (2003), and Wet-
tig et al. (2011) find more complex—many-to-
many—sound correspondences. These methods
focus on alignment. They model the context of the
sound changes in a limited way, while it is known
that most evolutionary changes are conditioned on
the context of the evolving sound. Bouchard-Côté
et al. (2007) propose MCMC-based methods to
model context, and operate on more than one pair
of languages at a time.3

The Etymon models, similarly to other work,
operate at the phonetic level only, leaving se-
mantic judgements to the creators of the input
databases. Some prior work has attempted to ap-
proach semantics by computational means as well.
We do not address the problem of discovering cog-
nates; this problem is attempted, e.g., in, (Kon-
drak, 2004; Kessler, 2001; Steiner et al., 2011)
and semi-automatically in (Bouchard-Côté et al.,
2007). Our Etymon models begin with a set of et-
ymological data (or more than one such set) for a
language family as given, and treat the given cog-
nate set as a fundamental unit of input. We use the
principle of recurrent sound correspondence, as in
much of the literature, including (Kondrak, 2002;
Kondrak, 2003), and others.

One approach to evaluating our alignment mod-
els, is to try to infer relationships among entire
languages within the family. Construction of phy-
logenies is studied extensively, e.g., by (Nakhleh
et al., 2005; Ringe et al., 2002; Barbançon et al.,
2009). This work differs from ours in that it op-
erates on manually pre-compiled sets of charac-
ters. Each character is a distinctive feature of lan-
guages, which takes on different values among dif-
ferent languages within the family. All Etymon
models operate at the level of sounds within words
and cognate sets.

There is extensive work on alignment in the
machine-translation (MT) literature, with some

2Please see http://etymon.cs.helsinki.fi/ for the publicly
available software packages.

3The running time did not scale well when the number
of languages was above three; (Bouchard-Côté et al., 2009)
describe improved models to align multiple languages.
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A. Data B. Alignment model C. Projection D. Pop-genetics model E. Distances F. Trees

Figure 1: Outline of the components in the inference pipeline

methods from MT alignment projected onto align-
ment in etymology. The intuition is that sen-
tences that are translation of each other in MT
correspond to cognate words in etymology, and
words in MT correspond to sounds in etymology.
The notion of regularity of sound change in et-
ymology, which is what our models try to cap-
ture, is loosely similar to contextually conditioned
correspondence of translation words across lan-
guages. For example, (Kondrak, 2002) employs
MT alignment from (Melamed, 1997; Melamed,
2000). One might employ the IBM models for
MT alignment, (Brown et al., 1993), or the HMM
model, (Vogel et al., 1996). Among the MT-
related models, (Bodrumlu et al., 2009) is similar
to ours in that it is based on MDL, the Minimum
Description Length principle. There are important
differences between our alignment problem vs.
alignment in MT. Evolutionary sound correspon-
dence is conditioned by local context, whereas in
MT correspondences may depend on much wider
context. There is no analogue to the notion of pho-
netic features in MT. Phonetic correspondences
in etymological data—which apply throughout the
language—have no analogue in semantic shift pro-
cesses in a such way as to be captured by MT
alignment models. Neither are phonetic features
used in the aforementioned work from the area of
automatic transliteration, e.g., (Zelenko, 2009).

Our work on the Etymon models is closely
related to a series of generative models
in (Bouchard-Côté et al., 2007) through (Hall and
Klein, 2011), in the following respects.

In (Wettig et al., 2011) some context is modeled
in the form of coding pairs of symbols, as in (Kon-
drak, 2003). Bouchard-Côté et al. (2007) and Hall
and Klein (2011) handle context by conditioning
the symbol being generated upon the symbols im-
mediately preceding and following. Wettig et al.
(2012) and Nouri and Yangarber (2016) use much
broader context by building decision trees, so that
non-relevant context information does not grow
model complexity.

In (Wettig et al., 2011) sounds / symbols are
treated as atomic—not analyzed in terms of their
phonetic makeup. (Bouchard-Côté et al., 2007)

recognize “natural classes” in defining the context
of a sound change, though not in generating the
symbols themselves; (Bouchard-Côté et al., 2009)
encode as a prior which sounds are “close” to each
other. In (Wettig et al., 2012) and later Etymon
models, we code each sound in terms of the indi-
vidual phonetic features that make up the sound.

Etymon models are based on the information-
theoretic MDL principle, e.g., (Grünwald,
2007)—like (Wettig et al., 2011) and un-
like (Bouchard-Côté et al., 2007; Hall and Klein,
2011). MDL brings important theoretical benefits,
since models chosen in this way are guided by
data with no free parameters or hand-picked
“priors.” The data analyst chooses the model
class and structure, and the coding scheme, i.e.,
a decodable way to encode both model and
data. This determines the learning strategy—we
optimize the cost function, which is the code
length determined by these choices.

Objective function: For the objective function to
optimize during alignment, we use the prequential
code-length (Dawid, 1984), as explained in (Wet-
tig et al., 2011). Normalized Maximum Likeli-
hood (NML) as presented in (Wettig et al., 2012;
Nouri and Yangarber, 2016) could be used as an
alternative to prequential coding. Although NML
reduces the code length, and brings other advan-
tages, it did not have a significant effect on the
quality of the alignments required in the experi-
ments presented here.

Some of our work on modeling language
change and evolution, (Nouri and Yangarber,
2016) shows that alignment may not be a neces-
sary goal for obtaining efficient compression; in
case of models that circumvent alignment, it is less
clear how they can be combined with population-
genetics models.

Additional prior work related to the population-
genetics models is referenced throughout the pa-
per and in Section 6.

3 Data

As we mentioned, we aim to use large-scale ety-
mological databases, rather than small, manually-
selected sets of characters of the languages. For
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  Uralic  

  Samoyedic  

  South  

  Sayan  
  Samoyedic  

  Kamas  
  Koibal  
  Motor  
  Taigi  
  ...  

  Selkup  

  North  

  Enets-Nenets  

  Nenets    Enets  

  Nganasan  

  Finno-Ugric  

  Ugric  

  Ob-Ugric  

  Mansi    Khanty  

  Hungarian  

  Finnic  

  Permic  

  Udmurt    Komi  

  West Finnic  

  Mari  
    

  Mordvin  
  North Finnic  

  Sami  
  Baltic Finnic  

  Finnish  
  Estonian  Figure 2: Uralic language family, adapted from (Anttila, 1989)

∗Proto

F innish

Mordvin

k a r . n e š
| | | | | | |
k ā r . n e .
| | | | | | |
k . r e n . č

v e n e š
| | | | |
v e n e .
| | | | |
v e n . č

Figure 3: Sample alignments for Finnish and
Mordvin: kaarne/krenč ’raven’, vene/venč ’boat’,
with unobserved, hypothesized proto word-forms

the Uralic language family, we use the Star-
Ling Uralic database, (Starostin, 2005), based
on (Rédei, 1991) and expanded. The database con-
tains 2586 Uralic cognate sets. Whereas much of
the prior work is based on small manually pre-
selected subsets of the data—so-called “Swadesh
lists” of 100 (or 40, 50, etc.) words—we use com-
plete large data sets. In this paper, we focus on
a sub-tree of Uralic, viz., the Finno-Ugric sub-
family—i.e., excluding the remaining Samoyedic
sub-tree of Uralic—which contains most of the ex-
tant Uralic data. Our experiments use the 10 “prin-
cipal” Finno-Ugric languages.4

One arrangement of the Uralic languages ac-
cepted by some linguists is shown in Fig-
ure 2, adapted from Encyclopedia Britannica and
(Anttila, 1989). Note, that this is the subject of
some debate in modern scholarship, and alterna-
tive phylogenies have some acceptance among lin-

4The 10 Finno-Ugric languages used in the exper-
iments are: est=Estonian, fin=Finnish, khn=Khanty,
kom=Komi, man=Mansi, mar=Mari, mrd=Mordvin,
saa=Saami, udm=Udmurt, unk/ugr=Hungarian. The Star-
Ling database also contains data on dialects for the 7
languages excluding {fin, est, unk}; in the figures, the suffix
after the code identifies the principal dialect—having the
largest number of entries in StarLing. Some of these dialects
are quite far apart; in other experiments we also use the
second-largest dialects, giving 17 languages in total.

guists. Figure 2 shows the phylogeny most widely
accepted today. Other theories, e.g., posit a “Vol-
gaic” branch, which groups together Mari with
Mordvin languages, where this phylogeny posits
Mari on an independent branch, an offshoot from
the “West Finnic” subgroup, see, e.g., (Anttila,
1989). We use this phylogeny as a gold-standard
in our experiments.

In our experiments we need a measure of dis-
tance between phylogenies proposed by different
approaches. For comparison, we can treat the phy-
logenies as unrooted, leaf-labeled (URLL) trees.
One distance measure for URLL trees is intro-
duced in (Robinson and Foulds, 1981). Based on
this particular distance measure, the distance be-
tween the gold standard tree and the tree with a
Volgaic branch would be 0.14, (see discussion in
Section 7).

4 Pairwise Alignment

We use our Etymon models, described in (Wettig
et al., 2011; Wettig et al., 2012), for aligning the
etymological data.e summarize the main features
of these models in this section. We begin with
pairwise alignment: aligning words from two lan-
guages at a time. For each word pair, the task of
alignment means finding exactly which symbols
correspond. The simplest form of such alignment
at the symbol level is a 1-1 pair (σ : τ) ∈ Σ×T , a
single symbol σ from the source alphabet Σ with
a symbol τ from the target alphabet T . We denote
the sizes of the alphabets by |Σ| and |T |.

To model insertions and deletions, we augment
both alphabets with a special empty symbol—
denoted by a dot—and write the augmented alpha-
bets as Σ. and T .. We can then align word pairs,
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such as vene—venč (“boat” in Finnish and Mord-
vin), in many ways, including, e.g., as in Figure 3,
where the alignment on the right contains symbol
pairs: (v : v), (e : e), (n : n), (e : .), (. : č). Note
that, since the Proto language is not observed, the
alignment model might actually prefer to align
(e:č) in these examples, especially if this pattern
appears several times (which it does)—since there
is no a priori penalty for vowel-consonant align-
ment, as mentioned in the Introduction.

If we align all languages simultaneously, rather
than pairwise, there may be additional information
in other languages (which there is), that may help
the model disfavor (e:č). N-way alignment will be
revisited in the conclusion.

According to the MDL Principle, the aim is to
code these aligned word pairs as compactly as pos-
sible. To construct such a code, we “transmit” the
aligned data by listing the “events”—the observed
symbol pairs (σ : τ). Since the code needs to
be uniquely decodable, after each word pair we
transmit a special event (# : #) to mark the
word boundaries. The code length (or cost) for
the complete, aligned data is our objective func-
tion that the algorithm optimizes. Lower code-
length means that the algorithm has found a way
of aligning the data that is more compact, i.e., it
has discovered more regularity in the data.

Using prequential coding, or Bayesian Marginal
Likelihood, the total cost of coding the aligned
data is given by:

L(D) = (1)

−
∑
e∈E

log Γ
(
C(e) + α(e)

)
+
∑
e∈E

log Γ
(
α(e)

)
+ log Γ

[∑
e∈E

(
C(e) + α(e)

)]− log Γ

[∑
e∈E

α(e)

]

whereE = Σ.×T .∪{(# : #)} is the event space,
C(e) stores the number of times event e occurs
in the complete alignment, and α(e) = 1 are the
uniform Dirichlet priors.

Learning the model from the observed data now
means iteratively re-aligning word pairs, and up-
dating the matrix C, which stores the counts of
all observed alignment events. The sparser C be-
comes, the lower the code-length will be.

Summary of the Algorithm: We start with an
initial random alignment for each pair of words in
the corpus. We then alternate between two steps:
A. update the count matrix and compute the code

length, and B. re-align all word pairs in the corpus,
using dynamic-programming re-alignment. Dur-
ing the dynamic-programming step, for each word
pair we find the best alignment, i.e., the one with
the lowest cost given the alignments for rest of
the words. The algorithm is described in detail in
(Wettig et al., 2011).

The algorithm is similar to Expectation-
Maximization (EM), but is in fact greedy. The iter-
ative steps monotonically decrease the cost func-
tion, and thus compress the data. We continue un-
til we reach convergence. To avoid local optima,
we use Simulated Annealing.

5 Projection

To be able to apply phylogenetic reconstruction
methods from population genetics we need to de-
fine appropriate analogues for the notions of popu-
lation, individual, locus, and allele, which are the
essential inputs to the population genetics models,
described in the next section.

It is natural to identify population with lan-
guage, and individuals with words in the language.
Next, suppose that the proto-language L∗ (the root
of the family tree) had been fully observed, as
in Figure 3. Then, for any leaf language Li, we
could align Li to L∗ (pairwise). We could then fix
the set of sounds of L∗ as the set of “loci” (sites)
in the “DNA” of the individuals. We treat each
sound s of L∗ as a locus, in the sense that from the
complete alignment from Li to L∗ we can observe
the distribution of sounds (fromLi’s alphabet) that
were aligned to s. Thus, the alleles are the various
sounds (in Li’s alphabet) which appear aligned to
s in the words in Li. Each Li will have its distinc-
tive distribution of alleles at each locus. Thus, in
the Mordvin examples in Figure 3, at the “locus”
labeled e in the Proto-language, we would observe
the “allele” e once, and the allele dot twice.

However, in general, we have no access to L∗,
and we proceed indirectly as follows. Suppose,
for instance, {Li} are the 10 languages from the
Finno-Ugric sub-family of Uralic. We designate
each Li, in turn, as a reference language—in place
of the unobserved L∗. The reference Li “do-
nates” its sounds as the loci, to be aligned to each
of the remaining 9 (target) languages. As be-
fore (with L∗), at each site, a target population
Lj has a distinctive distribution over the alleles—
symbols drawn from the universal phonetic alpha-
bet, which is simply the union of the individual al-

31



phabets. In this way, each reference language Li
induces one dataset DLi of allele distributions in
the remaining 9 populations, giving a total of 10
input datasets. These datasets are processed by the
population genetics model introduced below.

Although “sacrificing” the reference language
in this way skews the dataset, we compensate for
this by averaging the estimated pairwise distances
over all 10 datasets {DLi}. When we calculate
the distances of languages based on a single ref-
erence, there will be a higher level of variance
in the estimates and as a consequence Neighbor-
Join and similar algorithms can easily lead to in-
correct trees. When we instead calculate the av-
erage distance for any pair of languages (Li, Lj)
over the 8 remaining references, the variance in
the estimates stabilizes (because the mean distance
estimate will be much less variable) and conse-
quently the NeighborJoin algorithm shows more
accurate performance. To verify empirically these
basic statistical arguments—that using the mean
distances is more stable than any single estimate—
we ran simulations with artificial data sets (Fig-
ure 4). In the simulation we perturb the pairwise
distances with Normal noise, using mean 0 and
σ as shown on the X-axis. The upper curve is
the (average) URLL distance from trees built on
single estimates to the gold-standard tree in Fig-
ure 2; the lower curve is the URLL distance from
the tree based on the mean of the estimates to
the gold-standard tree. The figures confirm the
higher stability of the mean (of 8 estimates in A,
15 estimates in B), as compared to any single es-
timate, which is according to the expectations. In
addition, there may be a small effect caused by
the fact that some reference language can produce
slightly better results than another, but the main
effect should be the one explained above.

6 Population genetics model

With this definition of population, individual, lo-
cus, and allele, we proceed to the method for
building the phylogenetic tree based on each com-
plete aligned data set. Below we introduce ex-
pressions for conditional distributions that jointly
determine a hierarchical probability model for the
count data derived from the alignment. The model
reflects the degree of relatedness among the lan-
guages through a tree topology and the corre-

sponding branch length parameters.5 We con-
sider modeling the relatedness of K languages
by a rooted bifurcating tree topology T repre-
senting the order of divergence from a common
ancestral language. The leaves of the topology
T correspond to the K modern (observed) lan-
guages, whereas the inner nodes correspond to
ancestral (unobserved) languages. The length of
each branch c of T is a parameter to be inferred
from the output of the alignment algorithm us-
ing the introduced two-part coding approach. Our
Beta-Dirichlet model describes stochastic changes
in the alignment patterns of loci by separating the
shared alleles S among two or more languages
from those that are present in a single language
only (private alleles P ). From the perspective of
genetics, the latter correspond to novel mutations
that arise over time in any particular population
and are not observed elsewhere. For a locus, the
conditional distribution of alleles for a node c of
T , either observed or ancestral, is determined by
the relative frequencies ψSc and ψPc of values in S
and P , respectively. HereψSc = (ψSc1, . . . , ψScr)
is a vector of relative frequencies for the r alleles
in S and ψPc is a scalar of the total relative fre-
quency of alleles in P , so that ψPc+

∑r
j=1 ψScj =

1. By definition, ψPca equals zero for the root
node ca.

For each node c except the root, the conditional
distribution of the relative frequency of the values
in the private set ψPc given the relative frequency
ψPpa(c) in the parent node pa(c) is defined as the
Beta distribution:

ψPc | ψPpa(c) ∼ Beta(φPcµPc, φPc(1− µPc))
(2)

where µPc corresponds to the mean of the distri-
bution and φPc determines the variance, given by

V ar(ψPc) =
µPc(1− µPc)
φPc + 1

The relative frequencies of the shared features ψSc
have the conditional distribution:

(1− ψPc)−1ψSc | ψPc, ψPpa(c), ψSpa(c) ∼
∼ Dirichlet(φScµSc1, . . . , φScµScr) (3)

where again µScj and φSc control the first two cen-
tral moments of the distribution.

5The underlying theory relies on concepts from theoreti-
cal population genetics, (Ewens, 2004; Blythe and McKane,
2007); the reader may refer also to (Sirén et al., 2011; Sirén
et al., 2013), for a detailed account of the model structure.
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Figure 4: Stability of phylogeny based on sample means of pairwise distances vs. individual samples:
(A) for 10 Uralic languages; (B) for 17 Uralic languages

We choose parameters of the two distributions
as

µPc = 1− e−mcτc(1− ψPpa(c)) (4)

µScj =
ψSpa(c)j

1− ψPpa(c)
(5)

φPc =
µPc

(1−e−(mc+1)τc )
(mc+1) − (1− µPc)(1− e−τc)

− 1

(6)

φSc =
(mc + 1)(1− µPc)e−τc

1− e−(mc+1)τc
(7)

to yield the same expectation and covariance struc-
ture as obtained under the Wright-Fisher infinite
alleles model (Sirén et al., 2013; Ewens, 2004).
The parameter τc represents the relative time be-
tween a node and its ancestral language and mc is
an effective mutation parameter in the branch con-
necting c and pa(c). For the relative frequencies
ψSca in the root node ca, a uniform distribution
is assumed in the model. Assuming conditional
independence of all loci for which count data is
derived in the alignment, a product multinomial
distribution is obtained for the feature counts con-
ditionally on the unknown relative frequency pa-
rameters, such that

p(x|ψ) =
L∏
l=1

K∏
c=1

p(x(c)
l |ψlP c, ψlSc), (8)

where p(x(c)
l |ψlP c, ψlSc) is the joint multinomial

probability of the feature counts x(c)
l for the lo-

cus l in language c, where the relative frequencies
are now indexed. Notice that the remaining pa-
rameters in 2 and 3 are set to be constant over the

loci, thus representing the average tendency over
the loci.

In our fully Bayesian probabilistic formulation,
prior distributions are assigned to all the unknown
parameters. Similar to (Sirén et al., 2013), here
we have used uniform distributions on the interval
(0, 1) for the time parameters τ and exponential
distributions with mean 1 for the relative mutation
parameters m. As in Bayesian phylogenetics in
general, the tree topologies are assigned a uniform
prior distribution. These choices have been made
to specify vaguely informative prior distributions
which should not have any considerable effect on
the resulting posterior inferences.

Using the implementation from (Sirén et al.,
2013), the Adaptive Metropolis (AM) algo-
rithm, (Haario et al., 2001) can be applied to gen-
erate samples from the conditional posterior dis-
tribution of τ , m and ψ, given a topology T and
the partition of the features to sets P and S. In our
MCMC simulations we used 100000 iterations in
total, out of which the initial sequence of 20000
iterations was discarded as burn-in and the chain
was thinned by including every 8th iteration in the
final sample. This resulted in posterior samples of
size 10000 values.

Here, the AM algorithm is first used to gener-
ate the posterior samples separately for each pair
of languages in a given alignment, which allows
us to compute the distance between the two lan-
guages as the sum of relative times τ since the
divergence from a common ancestral language.
Then, we construct the tree topology correspond-
ing to the particular alignment by finding the un-
rooted binary tree using the neighbour joining al-
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Figure 5: Phylogenetic (unrooted) tree computed
by NeighborJoin, using pairwise distances aver-
aged over 10 Uralic datasets.

gorithm, (Felsenstein, 2004). Finally, a summary
tree for all languages is obtained by combining the
information over all considered alignments. As
the described procedure is used separately for each
sample obtained from the posterior distribution of
the pairwise distances, it results in a measure of
statistical uncertainty associated with the topology
by counting the relative number of times the ob-
tained tree has a certain topology. Conditional on
any topology constructed in this manner, one can
obtain posterior inferences for its branch lengths
directly from the posterior samples by including
the fraction of samples leading to the particular
topology.

The software suite implementing this model has
been made available to the public.6

7 Experiments

In this section we present some results from using
the combined pipeline approach, summarized in
Figure 1, applied to the Uralic data.

Since we have 10 input datasets that each con-
tribute different pairwise distances, we average
these distances over all 10 datasets (for each lan-
guage pair (a, b), averaging over the 8 datasets
where neither a nor b is reference). A topol-
ogy obtained using this method is shown in Fig-
ure 5. Recall, that this tree is unrooted,7 and iden-
tifying the node circled in green with the Finno-

6URL: http://www.helsinki.fi/bsg/. Compatibility be-
tween the etymological and the population-genetic suites will
be maintained also in future releases.

7NeighborJoin selects the root via a heuristic, which only
tries to minimize the length of the longest root-to-leaf path.

Figure 6: Phylogenetic network computed by
NeighborNet, using same datasets.

D(T,G) Count % of Total
0.000000 1 0.0000
0.142857 14 0.0007
0.285714 126 0.0062
0.428571 1018 0.0502
0.571429 8114 0.4003
0.714286 60444 2.9819
0.857143 363112 17.9135
1.000000 1594196 78.6471

Total 2027025

Table 1: URLL tree distances from gold standard.

Ugric node in “gold-standard” Uralic trees yields
a strong resemblance to the “true” topology. The
main deviation in the derived topology is at the
node circled in red, corresponding to Permic (an-
cestor of Komi and Udmurt), which “should” be in
the other subtree relative to the Finno-Ugric root.
This resulting tree has a URLL distance of 0.28
from the gold-standard tree we introduced in Sec-
tion 3. To get an intuitive sense of the quality of
this result, we observe that the number of unrooted
leaf-labeled trees with n nodes is (2n− 3)!!, (see,
e.g., (Ford, 2010)), which is over 2 million for 10
nodes. These trees and their distance from the
gold-standard are summarized in Table 1. In the
table, D(T,G) denotes the distance of a selected
tree to the gold standard. It is easy to check that the
expected distance for a randomly selected URLL
10-leaf tree from is over 0.963, with a standard de-
viation of 0.17. The chance of picking a tree with
distance 0.28 or less at random is under 7×10−5.
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For a deeper investigation of the relations
among the languages, we generate a phyloge-
netic network in SplitsTree4, (Huson and Bryant,
2006), (Figure 6), from the posterior expectations
of the pair-wise distances using the Neighbor-Net
method, (Bryant and Moulton, 2004). As de-
scribed in the original article, (Bryant and Moul-
ton, 2004), the sizes of the boxes in the center of
the network represent uncertainty about the phy-
logenetic position of the adjacent leaf nodes. For
instance, there is negligible uncertainty about the
position of the common ancestor of Finnish and
Estonian. In contrast, the greatest uncertainty is
related to the position of Permic, which is the only
branch in the tree in Figure 5 that deviates from
the gold-standard structure. The relevance of the
introduced alignment method is highlighted by the
fact that our reconstruction of the language relat-
edness in terms of trees yields results highly con-
gruent with gold-standards .

8 Discussion and current work

Using recent advances from population genetics,
we have obtained a promising approach to fully
probabilistic inference about language genealo-
gies based on unsupervised etymological align-
ment. According to our knowledge, this work
represent a first attempt to do such inference and
it will be of considerable interest to investigate
further the properties of this model family in the
linguistics context. The essential elements that
enable the use of a powerful population-genetics
modeling approach are: a. the mapping of sounds
to genetic loci which allow the use of a dis-
tribution to represent the evidence in the data;
b. use of each language in turn as a reference
language in the pair-wise alignment, instead of an
(unobserved) proto-language. Since the model-
based distances are averaged over a set of refer-
ence languages, the resulting distance estimates
are considerably more stable than the individual
estimates, as demonstrated in our numerical ex-
periments; c. the novel diffusion approximation-
based population-genetics models offer an enor-
mous computational advantage over standard co-
alescent likelihood-based models. Moreover, the
latter models would be considerably more diffi-
cult to adapt to the linguistic setting, since they
are by definition individual-based, in contrast to
the models used here, which enable a direct mod-
eling of languages as a whole by frequencies of

the mapped sounds.
Current work includes using context of sounds

in aligning the word pairs, and applications to et-
ymological data sets from other language fami-
lies, and extension for modeling of internal nodes
in the tree. One direction is using Turkic data
(from StarLing), where some of the ancestral lan-
guages are observed, and examining how accu-
rately the model identifies these languages with
internal nodes of the phylogeny. We are also ex-
tending the presented model to work with more
than 1-1 symbol alignment, using, e.g., 2-2 align-
ments found in (Kondrak, 2003; Wettig et al.,
2012). Finally, using methods for direct N-way
alignment—e.g., as suggested in (Steiner et al.,
2011)—we may be able to obtain useful estimates
of the sounds in the hidden Proto-language, and
how they align to sounds in the observed lan-
guages. This would in a sense provide the “true”
sites, and allow us to circumvent the need for av-
eraging over distances obtained from alignment
to reference languages, potentially improving the
overall accuracy.
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