
Proceedings of the 1st Workshop on Representation Learning for NLP, pages 201–205,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Using Embedding Masks for Word Categorization

Stefan Ruseti, Traian Rebedea and Stefan Trausan-Matu
University Politehnica of Bucharest

{stefan.ruseti, traian.rebedea, stefan.trausan}@cs.pub.ro

Abstract

Word embeddings are widely used nowa-
days for many NLP tasks. They reduce the
dimensionality of the vocabulary space,
but most importantly they should capture
(part of) the meaning of words. The new
vector space used by the embeddings al-
lows computation of semantic distances
between words, while some word embed-
dings also permit simple vector operations
(e.g. summation, difference) resembling
analogical reasoning. This paper pro-
poses a new operation on word embed-
dings aimed to capturing categorical infor-
mation by first learning and then apply-
ing an embedding mask for each analyzed
category. Thus, we conducted a series
of experiments related to categorization of
words based on their embeddings. Sev-
eral classical approaches were compared
together with the one introduced in the pa-
per which uses different embedding masks
learnt for each category.

1 Introduction

The idea of using vector representations of words
for various natural language processing (NLP) and
machine learning tasks has become more and more
popular in the last years. Most of these represen-
tations are based on the idea that the meaning of
a word can be determined by the context in which
each word is used.

Sometimes, additional information about the
words is available or can be computed and this
might be used along with the embedding for each
word. This information may consist of relations
between words (e.g. syntactic dependencies),
part of speech (POS) tags, word categories, word
senses, etc.

In this paper, we propose to encode this extra
information in the form of a vector mask that can
be applied on the word embedding before being
used as an input by any classifier, such as a neural
network, or before computing any semantic dis-
tance between the word embeddings. We explore
the possibility of using vector masks for assign-
ing WordNet (Miller, 1995) categories to words.
We define a word category as one of the top con-
cepts in the WordNet taxonomy as will be later ex-
plained in more detail. Using the trained masks for
a subset of words, we then test whether they im-
prove the accuracy of determining the correct cate-
gory for new words that are not part of the training
corpus.

2 Related Work

Distributed words’ embeddings based on word co-
occurrences can be computed using various mech-
anisms and theories. Some of them employ alge-
braic decompositions of the original vector space,
others use mixture models to compute a distri-
bution of words in topics from a large collection
of texts, while newer methods make use of neu-
ral embeddings to train word representations on
even larger corpora of texts than the previous mod-
els. All the methods described in this section
are completely unsupervised and are based on the
frequency of words in documents and their co-
occurrences.

Latent Semantic Analysis (LSA) (Landauer and
Dumais, 1997) is a commonly used vector rep-
resentation for words. The word vectors are ob-
tained through a Singular Value Decomposition
(SVD). The main reasoning behind LSA is that the
decomposed space can generalize the relationships
between words and documents existing in the orig-
inal term-document matrix and will remove noisy
features. While SVD is generally used for LSA,

201



other matrix factorizations such as Non-negative
Matrix Factorization (Lee et al., 2010) have been
successfully employed for various tasks.

A newer approach which can also be used for
computing embeddings is Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003). This model assumes
that each document is a mixture of topics and each
topic is defined as a distribution over the words in
the corpus. Although LDA is mainly used for topic
modelling, it can also be employed for computing
word embeddings, which are represented by the
probabilities that each word is included in a topic.

One of the most recent and popular models for
training word embeddings is Word2Vec (Mikolov
et al., 2013a) which makes use of neural embed-
ding models. The word representations are com-
puted by a neural network that predicts the prob-
abilities of a word occuring in a context window.
Levy and Goldberg (2014) showed that this model
performs, in fact, a factorization of a word-context
matrix. The main advantage of this model over
other similar ones is the fact that it can be trained
on much larger texts, which could produce better
embeddings.

GloVe (Pennington et al., 2014) is a word rep-
resentation model based on the global word co-
occurrence matrix which is reduced to a lower-
dimensional representation after normalization
and log-smoothing. The model achieves better re-
sults than Word2Vec, at least for the word analogy,
word similarity and named entity recognition tasks
presented in the paper (Pennington et al., 2014).

Recent work was also focused on improving
given vector representations. Usually, the vec-
tors are computed with an unsupervised method
and a post-processing step is applied on the final
vectors that do not depend on the representation
model. Mrki et al. (2016) use pairs of synonyms
and antonyms to bring words closer or apart, while
keeping as much of the original topology as pos-
sible. A similar method, that uses WordNet rela-
tions between words, was proposed by Faruqui et
al. (2014).

Tsubaki et al. (2013) proposed a method of im-
proving vectors in the training step. For each word
and syntactic relations, a group of frequent words
was computed. Based on them, the representation
of a word can be projected in another space de-
pending on the words connected to it.

All representations presented so far learn, for
simplicity, only one embedding vector per word.

Neelakantan et al. (2014) propose a Multi-Sense
Skip-gram that learns different representations for
each sense of a word. The advantage over other
multi-sense representations is the fact that sense
discrimination and embedding learning are per-
formed in the same step.

3 Problem Description

In our approach we considered WordNet for ex-
tracting word categories. WordNet contains sets
of synonym words (synsets) with various linguis-
tic relations between them. In our case, the im-
portant relations are hyponymy and hypernymy,
which describe specializations/generalizations be-
tween concepts. These relations form a tree, with
”entity” as the top concept in the case of nouns.

Our experiment starts from the assumption that
word embeddings should partially capture the hy-
pernym/hyponym relations from Wordnet. To test
this supposition, we decided to split the nouns
synset tree into several top-level subtrees rooted
in concepts who subsum a somehow similar size
set of words. These top-level concepts denote the
word categories. We opted to use only a small
number of categories, because of their hierarchi-
cal structure of the tree. In order to determine a
balanced set of categories, a top-down approach
was used where a candidate concept for a category
was split if its subtree contained too many words
or if it had more than one child containing most of
the words in that subtree.

One of the problems that we encountered was
the fact that there is a many-to-many relation be-
tween words and synsets. Since the hierarchy was
based on synsets and the embeddings are com-
puted on words, a simply greedy approach was
chosen by taking the first word for each synset.

In the filtering process, which established the
initial balanced categories for our experiment, we
kept only the synsets corresponding to single word
lemmas that had a corresponding vector in our pre-
trained Word2Vec representations.

After computing the mapping between words
and categories, a corpus was built in order to
test the hypothesis that embeddings can be used
to determine the category of a word. The gen-
erated dataset consists of triples of the form
(word, category, result), where result is 1 when
the first synset of the word is part of category and
0 otherwise. For simplicity, the number of positive
and negative examples in the dataset is equal.

202



4 Vector Operations and Masks for
Word Embeddings

We start from the more complex assumption that
two adjacent words in a sentence should have a
combined meaning depending on their individual
senses and the type of syntactical dependency be-
tween them. If a mathematical function may be
learned for each dependency type, then the mean-
ing of the sentence may be recursively computed
by combining embeddings two by two.

The word embeddings computed using the skip-
gram method presents another interesting feature.
Mikolov et al. (2013b) showed that vectors can
be combined to resemble analogies. A famous ex-
ample is ”King −Man + Woman = Queen”,
where the operations are applied on the corre-
sponding vectors of each word, and the closest
vector to the result is the one corresponding to the
word Queen. We hope to detect other relations be-
tween words, relations that could be expressed by
more complicated mathematical functions in the
embedding space.

Assuming that we use word embeddings of size
d, we have to find a function that combines the
two vectors and the dependency to produce an-
other vector of size d. Considering that the depen-
dency also uses some embedding, of size d’, the
function to generate the combined embedding can
be expressed like Wd,2d+d′ ∗ [w1;w2; dep]. The
problem with this representation is that it cannot
capture relations similar to w1 − w2 which exist
in the vector space. Thus the dependency should
not be added as a distinct feature, but rather define
how the two embeddings are combined.

The simplest solution is to consider differ-
ent networks for each dependency type. This
would allow us to represent any function between
the words, but requires a very large number of
weights. This might not be possible due to the
limited training examples and because some de-
pendency types are too rare.

In order to decrease the number of required
weights, the dependency can be represented as a
mask. The mask can be applied as a point-wise
multiplication with the [w1;w2] vector, which al-
lows learning transformations like w1 − w2.

In a first experiment, we decided to test the vec-
tor masks on the word categorization dataset. The
assumption is that some part of the representation
of words in the same category might be common,
while the other corresponds to specific context for

each word. This means that two words can become
closer in the vector space by neutralizing the spe-
cific dimensions for that category. In order to do
this, we computed an embedding for each category
in the dataset having the same size with the word
embeddings. These category embeddings are used
as a mask, multiplying them pointwise with a word
embedding. This operation is actually a scaling in
the word embedding space which should cluster
the words from the same category.

5 Experiments

The solutions below were tested in similar condi-
tions on the generated dataset. A brief description
of each method was added when needed. Most
of the models (Support Vector Machines - SVM,
random forest and logistic regression) were devel-
oped in Weka 1, while the neural networks were
implemented in Tensorflow2.

Cosine Similarity
A common way of comparing embeddings is using
the cosine similarity. A threshold can be used as
a boundary between positive and negative exam-
ples. For word categorization, the best threshold
was chosen based on the training set.

Multilayer Perceptron (MLP)
The network consists of one hidden layer with
100 neurons and an softmax output layer with 2
neurons representing the probabilities for the two
classes. The tanh activation function was used and
a dropout with probability 0.4 on the hidden layer
was added to reduce the effect of overfitting. For
training, we opted for cross-entropy loss function
and Adagrad Optimizer for 500 epochs.

Cosine with Vector Mask
Given a word and a category, the embedding of
the category is applied as pointwise multiplica-
tion both to the embedding of the word and the
word depicting the category. The resulting vectors
are then compared using cosine. The following
loss function was used during training the vector
masks:

max((y−y′
)2−0.25, 0)+α∗

√ ∑
w w

2

noweights
(1)

, where:
1http://www.cs.waikato.ac.nz/ml/weka/
2https://www.tensorflow.org/

203



• y the output of the network (the cosine simi-
larity between vectors, normalized to 0-1)

• y’ the target value (0 for negative and 1 for
positive examples)

• w a parameter from the network (a value in
the category embedding matrix)

The first term tries to achieve a maximum 0.5
difference between the output and the target value,
while the second term is a regularizer to avoid
overfitting.

Mask + MLP
This network combines the mask embeddings with
the same MLP described earlier. First, the word
and category embeddings are transformed by ap-
plying the mask. The resulting vectors are used as
inputs for the MLP.

6 Results

The described methods are compared on the gen-
erated dataset for word categorization based on
WordNet. The accuracy scores from Table 1 were
obtained using 10-fold cross-validation.

Method Accuracy (%)
Cosine 60.59
SVM 59.69
Logistic regression 60.12
Random forest 77.79
MLP 83.00
Mask + cosine 77.00
Mask + MLP 85.50

Table 1: Accuracy of the compared methods.

The poor results obtained by the SVM are
not very surprising. While the words from the
same category might be grouped together in the
Word2Vec embedding space, the training exam-
ples consisted in pairs of words and categories.
Positive pairs have no reason to be close to each
other, meaning that the positive and negative ex-
amples are not linearly separable in this case.

Comparing cosine similarity with the mask-
cosine method, an important improvement of 27%
can be observed. This demonstrates that scaling
both the word and its category will make them
closer, while scaling a word and a different cat-
egory will make them more distant. This means
that each mask successfully minimizes the effect

of dimensions in the space that are not related to
the given category.

It was also expected that the mask+MLP ap-
proach to work better than a simple MLP because
the first one has more parameters. In our experi-
ments, the improvement was not impressive (about
3%), but we observed a much faster training rate.
While the MLP needed 500 epochs to reach this
accuracy, the version with masks achieved the
same performance in 50 epochs. The masks accel-
erate training, but also have a tendency to quickly
over-fit on the training data.

7 Conclusion

Mask embeddings proved to be useful for the pro-
posed word categorization task. Although this is
an artificial task (the category of each word is al-
ready known from WordNet), the method can be
applied in other scenarios. The results show that
such masks can learn which dimensions are impor-
tant in a given situation. Also, the masks can be
learnt much faster than a regular fully-connected
layer.

An alternative for masks would be the use of
different networks for each category. This solu-
tion is more general than the method proposed
in this paper which uses embeddings masks and
MLP; for this reason they will have more parame-
ters than the Mask+MLP technique. Further test-
ing is needed on this subject, but masks seem a
viable solution for limiting the number of parame-
ters of a network, which can be crucial when deal-
ing with small datasets.

References
David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

2003. Latent dirichlet allocation. The Journal of
Machine Learning Research, 3:993–1022, mar.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2014.
Retrofitting Word Vectors to Semantic Lexicons.
nov.

Thomas K Landauer and Susan T. Dumais. 1997. A
solution to Plato ’ s problem: The Latent Semantic
Analysis Theory of Acquisition, Induction, and Rep-
resentation of Knowledge. Psychological Review,
104(2):211–240.

Hyekyoung Lee, Jiho Yoo, and Seungjin Choi. 2010.
Semi-Supervised Nonnegative Matrix Factorization.
IEEE Signal Processing Letters, 17(1):4–7, jan.

204



Omer Levy and Yoav Goldberg. 2014. Neural Word
Embedding as Implicit Matrix Factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Rep-
resentations in Vector Space. Proceedings of the
International Conference on Learning Representa-
tions (ICLR 2013), pages 1–12.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. Proceedings of NAACL-HLT,
(June):746–751.

George A. Miller. 1995. WordNet: a lexical
database for English. Communications of the ACM,
38(11):39–41, nov.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting Word Vectors to Lin-
guistic Constraints. mar.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew Mccallum. 2014. Efficient Non-
parametric Estimation of Multiple Embeddings per
Word in Vector Space. Emnlp-2014, pages 1059–
1069.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1532–1543.

Masashi Tsubaki, Kevin Duh, Masashi Shimbo, and
Yuji Matsumoto. 2013. Modeling and Learning Se-
mantic Co-Compositionality through Prototype Pro-
jections and Neural Networks. In EMNLP, pages
130–140.

205


