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Abstract

We introduce an LSTM-based method
for dynamically integrating several word-
prediction experts to obtain a conditional
language model which can be good simul-
taneously at several subtasks. We illus-
trate this general approach with an appli-
cation to dialogue where we integrate a
neural chat model, good at conversational
aspects, with a neural question-answering
model, good at retrieving precise infor-
mation from a knowledge-base, and show
how the integration combines the strengths
of the independent components. We hope
that this focused contribution will attract
attention on the benefits of using such mix-
tures of experts in NLP and dialogue sys-
tems specifically.

1 Introduction

The mainstream architecture for virtual agents in
dialogue systems (McTear, 2004; Jokinen and
McTear, 2009; Rieser and Lemon, 2011; Young et
al., 2013) involves a combination of several com-
ponents, which require a lot of expertise in the
different technologies, considerable development
and implementation effort to adapt each compo-
nent to a new domain, and are only partially train-
able (if at all). Recently, Vinyals and Le (2015),
Serban et al. (2015), Shang et al. (2015) pro-
posed to replace this complex architecture by a
single network (such as a Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997))
that predicts the agent’s response from the dia-
logue history up to the point where it should be
produced: this network can be seen as a form of
conditional neural language model (LM), where
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the dialogue history provides the context for the
production of the next agent’s utterance.

Despite several advantages over the traditional
architecture (learnability, adaptability, better ap-
proximations to human utterances), this approach
is inferior in one dimension: it assumes that all the
knowledge required for the next agent’s utterance
has to be implicitly present in the dialogues over
which the network is trained, and to then be pre-
cisely memorized by the network, while the tra-
ditional approach allows this knowledge to be dy-
namically accessed from external knowledge-base
(KB) sources, with guaranteed accuracy.

To address this issue, we propose the following
approach. As in Vinyals and Le (2015), we first
do train a conditional neural LM based on exist-
ing dialogues, which we call our chat model; this
model can be seen as an “expert” about the con-
versational patterns in the dialogue, but not about
its knowledge-intensive aspects. Besides, we train
another model, which this time is an expert about
these knowledge aspects, which we call our QA
model, due to its connections to Question Answer-
ing (QA). We then combine these two expert mod-
els through an LSTM-based integration model,
which at each time step, encodes the whole his-
tory into a vector and then uses a softmax layer to
compute a probability mixture over the two mod-
els, from which the next token is then sampled.

While here we combine in this way only two
models, this core contribution of our paper is im-
mediately generalizable to several expert mod-
els, each competent on a specific task, where the
(soft) choice between the models is done through
the same kind of contextually-aware “attention”
mechanism. Additional smaller contributions con-
sist in the neural regime we adopt for training the
QA model, the way in which we reduce the mem-
orization requirements on this model.

It is worth noting that concurrently with our
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work, Yin et al. (2015) have proposed a similar
idea focusing only on QA in a traditional set-up.
Our case is more difficult because of the chat inter-
action; and the integration framework we propose
is generally applicable to situations where a pool
of word-prediction “experts” compete for atten-
tion during the generation of text. Outside of di-
alogue applications, also independently and even
more recently, Ling et al. (2016) have proposed a
“Latent Predictor Network for Code Generation”,
which has some close similarities to our LSTM-
based mixture of experts.

2 LSTM-based Mixture of Experts

The method is illustrated in Figure 1. Let wt
1 =

w1...wt be a history over words. We suppose
that we have K models each of which can com-
pute a distribution over its own vocabulary Vk :
pk(w ∈ Vk|wt

1), for k ∈ [1,K]. We use an LSTM
to encode the history word-by-word into a vector
ht which is the hidden state of the LSTM at time
step t. We then use a softmax layer to compute the
probabilities

p(k|wt
1) =

eu(k,ht)∑K
k′=1 e

u(k′,ht)

where [u(1,ht), ..., u(K,ht)]
T = Wht+b, W ∈

RK×dim(ht),b ∈ RK . The final probability of the
next word is then:

p(w|wt
1) =

K∑
k=1

p(k|wt
1) pk(w|wt

1). (1)

Our proposal can be seen as bringing together
two previous lines of research within an LSTM
framework. Similar to the mixture-of-experts tech-
nique of Jacobs et al. (1991), we predict a label by
using a “gating” neural network to mix the pre-
dictions of different experts based on the current
situation. Similar to the approach of Florian and
Yarowsky (1999), we dynamically combine dis-
tributions on words to produce an integrated LM.
However Florian and Yarowsky (1999) focus on
the combination of topic-dependent LMs, while in
our case, the components can be arbitrary distri-
butions over words — we later use a component
that produces answers to questions appearing in
the text. In our case, the labels are words, the gat-
ing neural network is an LSTM that stores a rep-
resentation of a long textual prefix, and the com-
bination mechanism is trained by optimizing the

parameters of this LSTM.

3 Data

Our corpus consists of 165k dialogues from a
“tech company” in the domain of mobile tele-
phony support. We split them into train, devel-
opment, and test sets whose sizes are 145k, 10k,
and 10k dialogues. We then tokenize and low-
ercase each dialogue, and remove unused infor-
mation such as head, tail, chat time (Figure 2).
For each response utterance found in a dialogue,
we create a context-response pair whose context
consists of all sentences appearing before the re-
sponse. This process gives us 973k/74k/75k pairs
for training/development/testing.

Knowledge-base The KB we use in this work
consists of 1,745k device-attribute-value triples,
e.g., (Apple iPhone 5; camera megapixels; 8.0).
There are 4729 devices and 608 attributes. Be-
cause we consider only numeric values, only
triples that have numeric attributes are chosen, re-
sulting in a set of 65k triples of 34 attributes.

Device-specification context-response pairs
Our target context-response pairs are those in
which the client asks about numeric value at-
tributes. We employ a simple heuristic to select
target context-response pairs: a context-response
pair is chosen if its response contains a number
and one of the following keywords: cpu, pro-
cessor, ghz, mhz, memory, mb(s), gb(s), byte,
pixel, height, width, weigh, size, camera, mp,
hour(s), mah. Using this heuristic, we col-
lect 17.6k/1.3k/1.4k pairs for training/dev/testing.
These sets are significantly smaller than those ex-
tracted above.

4 KB-aware Chat Model

4.1 Neural Chat Model

Ouur corpus is comparable to the one described in
Vinyals and Le (2015)’s first experiment, and we
use here a similar neural chat model.

Without going into the details of this model for
lack of space, it uses a LSTM to encode into a vec-
tor the sequence of words observed in a dialogue
up to a certain point, and then this vector is used
by another LSTM for generating the next utterance
also word-by-word. The approach is reminiscent
of seq2seq models for machine translation such as
(Sutskever et al., 2014), where the role of “source
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Figure 1: LSTM-based mixture-of-experts for Language modelling. ⊗ denotes multiplication,⊕ denotes
sum.

7760 | 121686798 | log started fri may 06 10:50:43 pdt 2011
-lsb- 10:51:33 -rsb- you have been connected to X .

-lsb- 10:51:49 -rsb- X : hello and thanks for contacting Z ! my name is X , how can i assist 
-------------------------you today ?
-lsb- 10:52:13 -rsb- Y : how do i change the text notification on my htc evo
-lsb- 10:53:06 -rsb- X : sorry you are having problems with that but you are in the right                 
-------------------------place . before we begin can i start with you name please ?
-lsb- 10:53:28 -rsb- Y : Y test
-lsb- 10:53:55 -rsb- X : thank you Y . one moment while i pull up the information on that         
-------------------------device .
-lsb- 10:54:36 -rsb- Y : i am using this to showcase the shack support to an employee if you 
-------------------------guys are busy we can try this later

-lsb- -- end of transcript as seen by customer -- -rsb-
-lsb- 10:55:10 -rsb- the customer has ended the chat session .
...

head

tail

time

Figure 2: An example dialogue.
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sentence” is played by the dialogue prefix, and that
of “target sentence” by the response utterance.

4.2 Neural Question Answering Model

In a standard setting, a question to query a KB
must be formal (e.g., SQL). However, because a
human-like QA system should take natural ques-
tions as input, we build a neural model to translate
natural questions to formal queries. This model
employs an LSTM to encode a natural question
into a vector. It then uses two softmax layers to
predict the device name and the attribute. This
model is adequate here, since we focus on the QA
situation where the client asks about device speci-
fications. For more complex cases, more advanced
QA models should be considered (e.g., Bordes et
al. (2014), Yih et al. (2015)).

Given question wl
1, the two softmax layers give

us a distribution over devices pd(•|wl
1) and a dis-

tribution over attributes pa(•|wl
1). We can then

compute a distribution over the set Vqa of all val-
ues found in the KB, by marginalizing over d, a:

pqa(v|wl
1) =

∑
〈d,a,v〉∈T

pd(d|wl
1)pa(a|wl

1), (2)

where T is the set of all triples in the KB.
Initial experiments showed that predicting val-

ues in this indirect way significantly improves the
accuracy compared to employing a single softmax
layer to predict values directly, because it does not
require the hidden states to directly memorize the
value for each device-attribute pair.

Data Generation One serious difficulty is that
we do not have a corpus of natural questions on
which to train the QA model, so we have to re-
sort to a method for generating virtual question/an-
swer pairs, on which to train our QA model. How-
ever, existing corpora and methods for generating
such data (e.g., Fader et al. (2013)) hardly meet
our needs here. This is because our case is very
different from (and somewhat more difficult than)
traditional QA set-ups in which questions are inde-
pendent. In our case several scenarios are possible,
resulting from the chat interaction (e.g., in a chat,
questions can be related as in Figure 3). We there-
fore propose a simple heuristic method for gener-
ating artificial QA data that can cover several sce-
narios.

For each pair <device name, attribute>,
we paraphrase the device name by randomly
dropping some words (e.g., “apple iphone 4”

becomes “iphone 4”), and paraphrase the attribute
using a small handcrafted dictionary and also
randomly dropping some words (“battery talk
time” becomes “battery life” which can become
“battery”). We then draw a sequence of l words
from a vocabulary w.r.t word frequency, where
l ∼ Gamma(k, n) (e.g., “i what have”), and
shuffle these words. The output of the final step is
used as a training datapoint like: have iphone
4 what battery i → apple iphone 4
battery talk time. To make it more re-
alistic, we also generate complex questions by
concatenating two simple ones. Such questions
are used to cover the dialogue scenario where the
client continues asking about another device and
attribute. In this case, the system should focus on
the latest device and attribute. Using this method,
we generate a training set of 7.6m datapoints and
a development set of 10k.

4.3 Integration

We now show how we integrate the chat model
with the QA model using the LSTM-based
mixture-of-experts method. The intuition is the
following: the chat model is in charge of gener-
ating smooth responses into which the QA model
“inserts” values retrieved from the KB. Ideally,
we should employ an independent LSTM for the
purpose of computing mixture weights, as in Sec-
tion 2. However, due to the lack of training
data, our integration model makes use of the chat
model’s hidden state to compute these weights.
Because this hidden state captures the uncertainty
of generating the next word, it is also able to detect
whether or not the next word should be generated
by the chat model.

The chat model is the backbone because it gen-
erates most tokens. The QA model, on the other
hand, is crucial since we want the system to gen-
erate correct values. (E.g., the chat model alone
cannot provide the precise information shown in
Figure 3.) More importantly, in the future when
new devices are released, we do not need to col-
lect new chat data, which are often expensive, to
retrain the chat model.

Let C and wt
1 be a context and words generated

up to this point. pc(•|wt
1, C) and pqa(•|wt

1, C) are
given by the chat model and the QA model. We
then compute the distribution p(•|wt

1, C) over Vc∪
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Vqa as a mixture of pc and pqa:

p(w|wt
1, C) = α.pc(w|wt

1, C)
+ (1− α).pqa(w|wt

1, C)

where α = σ(wThc
t + b), hc

t is the hidden state of
the chat model, σ is the sigmoid function; w ∈
Rdim(hc

t ) and b ∈ R. Note that the sigmoid is
equivalent to the softmax for two output units.

Training To train this integration model, we
keep the chat model and the QA model frozen, and
minimize the objective:

J(θ) =−
∑

(C,wl
1)∈D

l−1∑
t=0

β(wt+1) log p(wt+1|wt
1, C; θ)

+
λ

2
||θ||2

w.r.t. θ = (w, b), where β(w) = 100 if w ∈ Vqa \
Vc, β(w) = 1 otherwise. λ is the regularization
parameter and D is the training set. We set β(w ∈
Vqa \ Vc) high because we want the training phase
to focus on those tokens representing values in the
KB but not supported by the chat model.

Decoding To find the most probable re-
sponses, our decoder employs the uniform-cost-
search algorithm (Russell and Norvig, 2003),
which is guaranteed to find optimal solutions and
is feasible with our search space. We stipulate a
constraint that a response is to answer not more
than one question.

5 Experiments

We implement our models in C++ using CUDA.
Since automatically evaluating a conversation sys-
tem is still challenging, we, following Vinyals and
Le (2015), use word perplexity only. In our exper-
iments, every LSTM has 1024 hidden units and
1024 memory cells. The vocabulary of the chat
model has 19.3k words, that of the QA model
12.7k words.

We firstly train the chat model on all chat data
with the learning rate 0.01, and continue training
it on the device-specification data with the learn-
ing rate 0.001. Using this smaller learning rate we
expect that the model will not forget what it has
learnt on all the chat corpus. Next, we train the QA
model on the data generated in Section 4.2 with
the learning rate 0.01. Finally, we train the inte-
gration model on the device-specification training
data also with the learning rate 0.01.

Our initial results are as follows. The integra-
tion slightly increases the perplexity on all tokens
(15.4, compared to 14.7 of the chat model), but it
does help to significantly decrease perplexity 38%
on the numeric tokens (46.8, compared to 75.8 of
the chat model). This decrease is due to the im-
proved ability of the integration model to detect
places where a numeric value associated with a
device-attribute information request should be in-
serted and to predict this value. Not all numeric
values are associated with information requests of
this type, but the reported perplexities are over all
numeric values. The decrease in perplexity over
the numeric values is not enough to decrease over-
all perplexity because the numeric tokens repre-
sent only 6.7% of the tokens, and the integration
model wrongly puts some small probability mass
on the QA expert also in the case of the many non-
numeric tokens. However, the fact that the per-
plexity decreases over the numeric tokens shows
that the integration model is useful for predicting
correct values, which are informationally much
more critical to the user than general words (ad-
mittedly, perplexity is here a weak proxy for what
a human evaluation of usefulness would provide.)

Figure 3 shows a chat example with our integra-
tion model.

6 Conclusions

We introduce a general LSTM-based mixture-of-
experts method for language modelling and illus-
trate the approach by integrating a neural chat
model with a neural QA model. The experimen-
tal results, while limited to measures of perplex-
ity, do show that the integration model is capable
of handling chats inside of which the user may ask
about device specifications; a more thorough and
convincing evaluation would require human asses-
ments of the quality of the produced responses.

We believe that the proposed integration method
has potential for a wide range of applications. It al-
lows to pool a number of different language mod-
els, each expert in a specific domain or class of
problems (possibly trained independently based
on the most appropriate data) and to generate the
next word based on a competition between these
models, under the supervision of an LSTM-based
attention mechanism.
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Client: i want to know about how fast is the processor of apple ipad 2
Machine: that 's an excellent question , i can definitely help you with that !
    1 ghz
    was there anything else i could help you out with today ?
Client: and its ram ?
Machine: 0.5 gigabytes
Client: thanks
Machine: was there anything else i could help you out with today ?

Figure 3: A dialogue with the integration model. The first value is produced by the pair <apple ipad 2,
cpu maximum frequency>, the second value by <apple ipad 2, internal ram>.
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