
ACL 2016

The 54th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the 1st Workshop on Representation Learning
for NLP

August 11th, 2016
Berlin, Germany

c©2016 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-04-3

ii

Introduction

Welcome to the 1st Workshop on Representation Learning for NLP (RepL4NLP), held on August 11,
2016 and hosted by the 54th Annual Meeting of the Association for Computational Linguistics (ACL)
in Berlin, Germany. The workshop is sponsored by DeepMind, Facebook AI Research, and Microsoft
Research.

Representation Learning for NLP aims to continue the spirit of previously successful workshops at
ACL/NAACL/EACL, namely VSM at NAACL’15 and CVSC at ACL’13/EACL’14/ACL’15, which
focussed on vector space models of meaning, compositionality, and the application of deep neural
networks and spectral methods to NLP. It provides a forum for discussing recent advances on these
topics, as well as future research directions in linguistically motivated vector-based models in NLP.

iii

Organizers:

Phil Blunsom, DeepMind and Oxford University
Kyunghyun Cho, New York University
Shay Cohen, University of Edinburgh
Edward Grefenstette, DeepMind
Karl Moritz Hermann, DeepMind
Laura Rimell, University of Cambridge
Jason Weston, Facebook
Scott Yih, Microsoft

Program Committee:

Marco Baroni, University of Trento
Antoine Bordes, Facebook
Leon Bottou, Facebook
Xavier Carreras, Xerox
Stephen Clark, University of Cambridge
Hal Daumé III, University of Maryland
Kevin Duh, Johns Hopkins University
Pino Di Fabbrizio, Amazon
Manaal Faruqui, Carnegie Mellon University
Dean Foster, University of Pennsylvania
Yoav Goldberg, Bar Ilan University
Jamie Ryan Kiros, Toronto
Tomáš Kočiský, DeepMind
Omer Levy, Bar Ilan University
Wang Ling, DeepMind
Graham Neubig, NAIST
Ankur Parikh, Google
John Platt, Google
Roi Reichart, Technion
Sebastian Riedel, UCL
Tim Rocktaschel, UCL
Diarmuid O Seaghdha, University of Cambridge / VocalIQ
Richard Socher, Salesforce MetaMind
Mark Steedman, University of Edinburgh
Karl Stratos, Columbia University
Peter Turney, Allen Institute for Artificial Intelligence (AI2)
Lyle Ungar, University of Pennsylvania
Oriol Vinyals, DeepMind
Guillaume Wisniewski, LIMSI-CNRS

v

Table of Contents

Explaining Predictions of Non-Linear Classifiers in NLP
Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Müller and Wojciech Samek 1

Joint Learning of Sentence Embeddings for Relevance and Entailment
Petr Baudiš, Silvestr Stanko and Jan Šedivý . 8

A Joint Model for Word Embedding and Word Morphology
Kris Cao and Marek Rei . 18

On the Compositionality and Semantic Interpretation of English Noun Compounds
Corina Dima . 27

Functional Distributional Semantics
Guy Emerson and Ann Copestake . 40

Assisting Discussion Forum Users using Deep Recurrent Neural Networks
Jacob Hagstedt P Suorra and Olof Mogren . 53

Adjusting Word Embeddings with Semantic Intensity Orders
Joo-Kyung Kim, Marie-Catherine de Marneffe and Eric Fosler-Lussier . 62

Towards Abstraction from Extraction: Multiple Timescale Gated Recurrent Unit for Summarization
Minsoo Kim, Dennis Singh Moirangthem and Minho Lee . 70

An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding Generation
Jey Han Lau and Timothy Baldwin . 78

Quantifying the Vanishing Gradient and Long Distance Dependency Problem in Recursive Neural Net-
works and Recursive LSTMs

Phong Le and Willem Zuidema . 87

LSTM-Based Mixture-of-Experts for Knowledge-Aware Dialogues
Phong Le, Marc Dymetman and Jean-Michel Renders . 94

Mapping Unseen Words to Task-Trained Embedding Spaces
Pranava Swaroop Madhyastha, Mohit Bansal, Kevin Gimpel and Karen Livescu 100

Multilingual Modal Sense Classification using a Convolutional Neural Network
Ana Marasović and Anette Frank . 111

Towards cross-lingual distributed representations without parallel text trained with adversarial autoen-
coders

Antonio Valerio Miceli Barone . 121

Decomposing Bilexical Dependencies into Semantic and Syntactic Vectors
Jeff Mitchell . 127

Learning Semantic Relatedness in Community Question Answering Using Neural Models
Henry Nassif, Mitra Mohtarami and James Glass . 137

Learning Text Similarity with Siamese Recurrent Networks
Paul Neculoiu, Maarten Versteegh and Mihai Rotaru . 148

vii

A Two-stage Approach for Extending Event Detection to New Types via Neural Networks
Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho and Ralph Grishman . 158

Parameterized context windows in Random Indexing
Tobias Norlund, David Nilsson and Magnus Sahlgren . 166

Making Sense of Word Embeddings
Maria Pelevina, Nikolay Arefiev, Chris Biemann and Alexander Panchenko 174

Pair Distance Distribution: A Model of Semantic Representation
Yonatan Ramni, Oded Maimon and Evgeni Khmelnitsky . 184

Measuring Semantic Similarity of Words Using Concept Networks
Gábor Recski, Eszter Iklódi, Katalin Pajkossy and Andras Kornai . 193

Using Embedding Masks for Word Categorization
Stefan Ruseti, Traian Rebedea and Stefan Trausan-Matu . 201

Sparsifying Word Representations for Deep Unordered Sentence Modeling
Prasanna Sattigeri and Jayaraman J. Thiagarajan . 206

Why "Blow Out"? A Structural Analysis of the Movie Dialog Dataset
Richard Searle and Megan Bingham-Walker . 215

Learning Word Importance with the Neural Bag-of-Words Model
Imran Sheikh, Irina Illina, Dominique Fohr and Georges Linarès . 222

A Vector Model for Type-Theoretical Semantics
Konstantin Sokolov . 230

Towards Generalizable Sentence Embeddings
Eleni Triantafillou, Jamie Ryan Kiros, Raquel Urtasun and Richard Zemel 239

Domain Adaptation for Neural Networks by Parameter Augmentation
Yusuke Watanabe, Kazuma Hashimoto and Yoshimasa Tsuruoka . 249

Neural Associative Memory for Dual-Sequence Modeling
Dirk Weissenborn . 258

viii

Conference Program

Thursday, August 11, 2016

9:30–9:40 Welcome and Opening Remarks

9:40–10:30 Keynote: Katrin Erk (University of Texas at Austin)

10:30–11:00 Coffee Break

11:00–11:50 Keynote: Animashree Anandkumar (University of California, Irvine)

11:50–12:10 Best Papers

12:10–13:30 Lunch Break

13:30–14:20 Keynote: Hal Daumé III (University of Maryland)

14:20–15:10 Keynote: Raia Hadsell (DeepMind)

15.10–15.30 Poster Session

Decoding Neural Activity Patterns Associated with Sentences by Combining Expe-
riential Attribute and Text-Based Semantic Models
Andrew Anderson, Jeffrey Binder, Leonardo Fernandino, Colin Humphries, Lisa
Conant, Katrin Erk and Rajeev Raizada

Explaining Predictions of Non-Linear Classifiers in NLP
Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Müller and Woj-
ciech Samek

Joint Learning of Sentence Embeddings for Relevance and Entailment
Petr Baudiš, Silvestr Stanko and Jan Šedivý

Combining String Kernels and Gaussian Processes for Richer Text Representations.
Daniel Beck

ix

Thursday, August 11, 2016 (continued)

A Joint Model for Word Embedding and Word Morphology
Kris Cao and Marek Rei

Learning Word Representations from Multiple Information Sources
Yunchuan Chen, Lili Mou, Yan Xu, Ge Li and Zhi Jin

On the Compositionality and Semantic Interpretation of English Noun Compounds
Corina Dima

Functional Distributional Semantics
Guy Emerson and Ann Copestake

Improving Preposition Sense Disambiguation with Representations Learned from
Mutilingual Data
Hila Gonen and Yoav Goldberg

Assisting Discussion Forum Users using Deep Recurrent Neural Networks
Jacob Hagstedt P Suorra and Olof Mogren

Adjusting Word Embeddings with Semantic Intensity Orders
Joo-Kyung Kim, Marie-Catherine de Marneffe and Eric Fosler-Lussier

Towards Abstraction from Extraction: Multiple Timescale Gated Recurrent Unit for
Summarization
Minsoo Kim, Dennis Singh Moirangthem and Minho Lee

An Empirical Evaluation of doc2vec with Practical Insights into Document Embed-
ding Generation
Jey Han Lau and Timothy Baldwin

Quantifying the Vanishing Gradient and Long Distance Dependency Problem in
Recursive Neural Networks and Recursive LSTMs
Phong Le and Willem Zuidema

LSTM-Based Mixture-of-Experts for Knowledge-Aware Dialogues
Phong Le, Marc Dymetman and Jean-Michel Renders

Learning Phone Embeddings for Word Segmentation of Child-Directed Speech
Jianqiang Ma, Çağrı Çöltekin and Erhard Hinrichs

Mapping Unseen Words to Task-Trained Embedding Spaces
Pranava Swaroop Madhyastha, Mohit Bansal, Kevin Gimpel and Karen Livescu

x

Thursday, August 11, 2016 (continued)

Multilingual Modal Sense Classification using a Convolutional Neural Network
Ana Marasović and Anette Frank

Towards cross-lingual distributed representations without parallel text trained with
adversarial autoencoders
Antonio Valerio Miceli Barone

Decomposing Bilexical Dependencies into Semantic and Syntactic Vectors
Jeff Mitchell

Distilling Word Embeddings: An Encoding Approach
Lili Mou, Ran Jia, Yan Xu, Ge Li, Lu Zhang and Zhi Jin

Learning Semantic Relatedness in Community Question Answering Using Neural
Models
Henry Nassif, Mitra Mohtarami and James Glass

Learning Text Similarity with Siamese Recurrent Networks
Paul Neculoiu, Maarten Versteegh and Mihai Rotaru

A Two-stage Approach for Extending Event Detection to New Types via Neural Net-
works
Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho and Ralph Grishman

Parameterized context windows in Random Indexing
Tobias Norlund, David Nilsson and Magnus Sahlgren

Making Sense of Word Embeddings
Maria Pelevina, Nikolay Arefiev, Chris Biemann and Alexander Panchenko

Pair Distance Distribution: A Model of Semantic Representation
Yonatan Ramni, Oded Maimon and Evgeni Khmelnitsky

Measuring Semantic Similarity of Words Using Concept Networks
Gábor Recski, Eszter Iklódi, Katalin Pajkossy and Andras Kornai

Using Embedding Masks for Word Categorization
Stefan Ruseti, Traian Rebedea and Stefan Trausan-Matu

Sparsifying Word Representations for Deep Unordered Sentence Modeling
Prasanna Sattigeri and Jayaraman J. Thiagarajan

xi

Thursday, August 11, 2016 (continued)

Why "Blow Out"? A Structural Analysis of the Movie Dialog Dataset
Richard Searle and Megan Bingham-Walker

Learning Word Importance with the Neural Bag-of-Words Model
Imran Sheikh, Irina Illina, Dominique Fohr and Georges Linarès

A Vector Model for Type-Theoretical Semantics
Konstantin Sokolov

Towards Generalizable Sentence Embeddings
Eleni Triantafillou, Jamie Ryan Kiros, Raquel Urtasun and Richard Zemel

Domain Adaptation for Neural Networks by Parameter Augmentation
Yusuke Watanabe, Kazuma Hashimoto and Yoshimasa Tsuruoka

Neural Associative Memory for Dual-Sequence Modeling
Dirk Weissenborn

MuFuRU: The Multi-Function Recurrent Unit
Dirk Weissenborn and Tim Rocktäschel

15.30–16.00 Poster Session Continues and Coffee break

16.00–17.20 Panel Discussion

xii

Thursday, August 11, 2016 (continued)

17.20–17.30 Closing Remarks

xiii

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 1–7,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Explaining Predictions of Non-Linear Classifiers in NLP

Leila Arras1, Franziska Horn2, Grégoire Montavon2,
Klaus-Robert Müller2,3, and Wojciech Samek1

1Machine Learning Group, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
2Machine Learning Group, Technische Universität Berlin, Berlin, Germany

3Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
{leila.arras, wojciech.samek}@hhi.fraunhofer.de

klaus-robert.mueller@tu-berlin.de

Abstract

Layer-wise relevance propagation (LRP)
is a recently proposed technique for ex-
plaining predictions of complex non-linear
classifiers in terms of input variables. In
this paper, we apply LRP for the first time
to natural language processing (NLP).
More precisely, we use it to explain the
predictions of a convolutional neural net-
work (CNN) trained on a topic categoriza-
tion task. Our analysis highlights which
words are relevant for a specific prediction
of the CNN. We compare our technique
to standard sensitivity analysis, both qual-
itatively and quantitatively, using a “word
deleting” perturbation experiment, a PCA
analysis, and various visualizations. All
experiments validate the suitability of LRP
for explaining the CNN predictions, which
is also in line with results reported in re-
cent image classification studies.

1 Introduction

Following seminal work by Bengio et al. (2003)
and Collobert et al. (2011), the use of deep learn-
ing models for natural language processing (NLP)
applications received an increasing attention in re-
cent years. In parallel, initiated by the computer
vision domain, there is also a trend toward under-
standing deep learning models through visualiza-
tion techniques (Erhan et al., 2010; Landecker et
al., 2013; Zeiler and Fergus, 2014; Simonyan et
al., 2014; Bach et al., 2015; Lapuschkin et al.,
2016a) or through decision tree extraction (Krish-
nan et al., 1999). Most work dedicated to under-
standing neural network classifiers for NLP tasks
(Denil et al., 2014; Li et al., 2015) use gradient-
based approaches. Recently, a technique called
layer-wise relevance propagation (LRP) (Bach et

al., 2015) has been shown to produce more mean-
ingful explanations in the context of image classi-
fications (Samek et al., 2015). In this paper, we ap-
ply the same LRP technique to a NLP task, where
a neural network maps a sequence of word2vec
vectors representing a text document to its cat-
egory, and evaluate whether similar benefits in
terms of explanation quality are observed.

In the present work we contribute by (1) ap-
plying the LRP method to the NLP domain, (2)
proposing a technique for quantitative evaluation
of explanation methods for NLP classifiers, and
(3) qualitatively and quantitatively comparing two
different explanation methods, namely LRP and a
gradient-based approach, on a topic categorization
task using the 20Newsgroups dataset.

2 Explaining Predictions of Classifiers

We consider the problem of explaining a predic-
tion f(x) associated to an input x by assigning to
each input variable xd a scoreRd determining how
relevant the input variable is for explaining the
prediction. The scores can be pooled into groups
of input variables (e.g. all word2vec dimensions of
a word, or all components of a RGB pixel), such
that they can be visualized as heatmaps of high-
lighted texts, or as images.

2.1 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (Bach et al.,
2015) is a newly introduced technique for obtain-
ing these explanations. It can be applied to various
machine learning classifiers such as deep convolu-
tional neural networks. The LRP technique pro-
duces a decomposition of the function value f(x)
on its input variables, that satisfies the conserva-
tion property:

f(x) =
∑

dRd. (1)

1

The decomposition is obtained by performing a
backward pass on the network, where for each
neuron, the relevance associated with it is redis-
tributed to its predecessors. Considering neurons
mapping a set of n inputs (xi)i∈[1,n] to the neuron
activation xj through the sequence of functions:

zij = xiwij + bj

n

zj =
∑

izij

xj = g(zj)

where for convenience, the neuron bias bj has
been distributed equally to each input neuron, and
where g(·) is a monotonously increasing activation
function. Denoting by Ri and Rj the relevance
associated with xi and xj , the relevance is redis-
tributed from one layer to the other by defining
messages Ri←j indicating how much relevance
must be propagated from neuron xj to its input
neuron xi in the lower layer. These messages are
defined as:

Ri←j =
zij + s(zj)

n∑
i zij + s(zj)

Rj

where s(zj) = ε · (1zj≥0 − 1zj<0) is a stabilizing
term that handles near-zero denominators, with ε
set to 0.01. The intuition behind this local rele-
vance redistribution formula is that each input xi

should be assigned relevance proportionally to its
contribution in the forward pass, in a way that the
relevance is preserved (

∑
iRi←j = Rj).

Each neuron in the lower layer receives rele-
vance from all upper-level neurons to which it con-
tributes

Ri =
∑

jRi←j .

This pooling ensures layer-wise conservation:∑
iRi =

∑
j Rj . Finally, in a max-pooling

layer, all relevance at the output of the layer
is redistributed to the pooled neuron with max-
imum activation (i.e. winner-take-all). An im-
plementation of LRP can be found in (La-
puschkin et al., 2016b) and downloaded from
www.heatmapping.org1.

2.2 Sensitivity Analysis
An alternative procedure called sensitivity analy-
sis (SA) produces explanations by scoring input
variables based on how they affect the decision
output locally (Dimopoulos et al., 1995; Gevrey

1Currently the available code is targeted on image data.

et al., 2003). The sensitivity of an input variable is
given by its squared partial derivative:

Rd =
(∂f
∂xd

)2
.

Here, we note that unlike LRP, sensitivity analysis
does not preserve the function value f(x), but the
squared l2-norm of the function gradient:

‖∇xf(x)‖22 =
∑

dRd. (2)

This quantity is however not directly related to
the amount of evidence for the category to de-
tect. Similar gradient-based analyses (Denil et al.,
2014; Li et al., 2015) have been recently applied in
the NLP domain, and were also used by Simonyan
et al. (2014) in the context of image classification.
While recent work uses different relevance defini-
tions for a group of input variables (e.g. gradient
magnitude in Denil et al. (2014) or max-norm of
absolute value of simple derivatives in Simonyan
et al. (2014)), in the present work (unless other-
wise stated) we employ the squared l2-norm of
gradients allowing for decomposition of Eq. 2 as
a sum over relevances of input variables.

3 Experiments

For the following experiments we use the 20news-
bydate version of the 20Newsgroups2 dataset con-
sisting of 11314/7532 train/test documents evenly
distributed among twenty fine-grained categories.

3.1 CNN Model
As a document classifier we employ a word-based
CNN similar to Kim (2014) consisting of the fol-
lowing sequence of layers:

Conv −→ ReLU −→ 1-Max-Pool −→ FC

By 1-Max-Pool we denote a max-pooling
layer where the pooling regions span the whole
text length, as introduced in (Collobert et al.,
2011). Conv, ReLU and FC denote the con-
volutional layer, rectified linear units activation
and fully-connected linear layer. For building
the CNN numerical input we concatenate horizon-
tally 300-dimensional pre-trained word2vec3 vec-
tors (Mikolov et al., 2013), in the same order the
corresponding words appear in the pre-processed

2http://qwone.com/%7Ejason/20Newsgroups/
3GoogleNews-vectors-negative300,

https://code.google.com/p/word2vec/

2

document, and further keep this input representa-
tion fixed during training. The convolutional oper-
ation we apply in the first neural network layer is
one-dimensional and along the text sequence di-
rection (i.e. along the horizontal direction). The
receptive field of the convolutional layer neurons
spans the entire word embedding space in verti-
cal direction, and covers two consecutive words in
horizontal direction. The convolutional layer filter
bank contains 800 filters.

3.2 Experimental Setup

As pre-processing we remove the document head-
ers, tokenize the text with NLTK4, filter out punc-
tuation and numbers5, and finally truncate each
document to the first 400 tokens. We train
the CNN by stochastic mini-batch gradient de-
scent with momentum (with l2-norm penalty and
dropout). Our trained classifier achieves a classifi-
cation accuracy of 80.19%6.

Due to our input representation, applying LRP
or SA to our neural classifier yields one relevance
value per word-embedding dimension. From these
single input variable relevances to obtain word-
level relevances, we sum up the relevances over
the word embedding space in case of LRP, and
(unless otherwise stated) take the squared l2-norm
of the corresponding word gradient in case of
SA. More precisely, given an input document d
consisting of a sequence (w1, w2, ..., wN) of N
words, each word being represented by a D-
dimensional word embedding, we compute the rel-
evance R(wt) of the tth word in the input docu-
ment, through the summation:

R(wt) =
D∑

i=1

Ri,t (3)

where Ri,t denotes the relevance of the input vari-
able corresponding to the ith dimension of the tth

word embedding, obtained by LRP or SA as spec-
ified in Sections 2.1 & 2.2.

4We employ NLTK’s version 3.1 recommended tok-
enizers sent tokenize and word tokenize, module
nltk.tokenize.

5We retain only tokens composed of the following char-
acters: alphabetic-character, apostrophe, hyphen and dot, and
containing at least one alphabetic-character.

6To the best of our knowledge, the best published
20Newsgroups accuracy is 83.0% (Paskov et al., 2013). How-
ever we notice that for simplification we use a fixed-length
document representation, and our main focus is on explain-
ing classifier decisions, not on improving the classification
state-of-the-art.

In particular, in case of SA, the above word rel-
evance can equivalently be expressed as:

RSA(wt) = ‖∇wtf(d)‖22 (4)

where f(d) represents the classifier’s prediction
for document d.

Note that the resulting LRP word relevance is
signed, while the SA word relevance is positive.

In all experiments, we use the term target class
to identify the function f(x) to analyze in the rel-
evance decomposition. This function maps the
neural network input to the neural network output
variable corresponding to the target class.

3.3 Evaluating Word-Level Relevances
In order to evaluate different relevance models, we
perform a sequence of “word deletions” (hereby
for deleting a word we simply set the word-vector
to zero in the input document representation), and
track the impact of these deletions on the classifi-
cation performance. We carry out two deletion ex-
periments, starting either with the set of test docu-
ments that are initially classified correctly, or with
those that are initially classified wrongly7. We es-
timate the LRP/SA word relevances using as target
class the true document class. Subsequently we
delete words in decreasing resp. increasing order
of the obtained word relevances.

Fig. 1 summarizes our results. We find that
LRP yields the best results in both deletion exper-
iments. Thereby we provide evidence that LRP
positive relevance is targeted to words that sup-
port a classification decision, while LRP negative
relevance is tuned upon words that inhibit this de-
cision. In the first experiment the SA classifica-
tion accuracy curve decreases significantly faster
than the random curve representing the perfor-
mance change when randomly deleting words, in-
dicating that SA is able to identify relevant words.
However, the SA curve is clearly above the LRP
curve indicating that LRP provides better expla-
nations for the CNN predictions. Similar results
have been reported for image classification tasks
(Samek et al., 2015). The second experiment indi-
cates that the classification performance increases
when deleting words with the lowest LRP rele-
vance, while small SA values points to words that
have less influence on the classification perfor-
mance than random word selection. This result

7For the deletion experiments we consider only the test
documents whose pre-processed length is greater or equal to
100 tokens, this amounts to a total of 4963 documents.

3

0 10 20 30 40 50
Number of deleted words

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

(4

1
5
4
 d

o
cu

m
e
n
ts

)

LRP

SA

random

0 10 20 30 40 50
Number of deleted words

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

(8

0
9
 d

o
cu

m
e
n
ts

)

LRP

SA

random

Figure 1: Word deletion on initially correct (left)
and false (right) classified test documents, using
either LRP or SA. The target class is the true
document class, words are deleted in decreasing
(left) and increasing (right) order of their rele-
vance. Random deletion is averaged over 10 runs
(std < 0.0141). A steep decline (left) and incline
(right) indicate informative word relevances.

can partly be explained by the fact that in contrast
to SA, LRP provides signed explanations. More
generally the different quality of the explanations
provided by SA and LRP can be attributed to their
different objectives: while LRP aims at decompos-
ing the global amount of evidence for a class f(x),
SA is build solely upon derivatives and as such
describes the effect of local variations of the in-
put variables on the classifier decision. For a more
detailed view of SA, as well as an interpretation
of the LRP propagation rules as a deep Taylor de-
composition see Montavon et al. (2015).

3.4 Document Highlighting
Word-level relevances can be used for highlighting
purposes. In Fig. 2 we provide such visualizations
on one test document for different relevance target
classes, using either LRP or SA relevance mod-
els. We can observe that while the word ride
is highly negative-relevant for LRP when the tar-
get class is not rec.motorcycles, it is pos-
itively highlighted (even though not heavily) by
SA. This suggests that SA does not clearly dis-
criminate between words speaking for or against
a specific classifier decision, while LRP is more
discerning in this respect.

3.5 Document Visualization
Word2vec embeddings are known to exhibit lin-
ear regularities representing semantic relation-

ships between words (Mikolov et al., 2013). We
explore if these regularities can be transferred to
a document representation, when using as a docu-
ment vector a linear combination of word2vec em-
beddings. As a weighting scheme we employ LRP
or SA scores, with the classifier’s predicted class
as the target class for the relevance estimation. For
comparison we perform uniform weighting, where
we simply sum up the word embeddings of the
document words (SUM).

For SA we use either the l2-norm or squared l2-
norm for pooling word gradient values along the
word2vec dimensions, i.e. in addition to the stan-
dard SA word relevance defined in Eq. 4, we use
as an alternative RSA(l2)(wt) = ‖∇wtf(d)‖2 and
denote this relevance model by SA(l2).

For both LRP and SA, we employ different
variations of the weighting scheme. More pre-
cisely, given an input document d composed of
the sequence (w1, w2, ..., wN) of D-dimensional
word2vec embeddings, we build new document
representations d′ and d′e.w.

8 by either using word-
level relevances R(wt) (as in Eq. 3), or through
element-wise multiplication of word embeddings
with single input variable relevances (Ri,t)i∈[1,D]

(we recall that Ri,t is the relevance of the input
variable corresponding to the ith dimension of the
tth word in the input document d). More formally
we use:

d′ =
N∑

t=1

R(wt) · wt

or

d′e.w. =
N∑

t=1

R1,t

R2,t
...

RD,t

� wt

where � is an element-wise multiplication. Fi-
nally we normalize the document vectors d′ resp.
d′e.w. to unit l2-norm and perform a PCA projec-
tion. In Fig. 3 we label the resulting 2D-projected
test documents using five top-level document cat-
egories.

For word-based models d′, we observe that
while standard SA and LRP both provide simi-
lar visualization quality, the SA variant with sim-
ple l2-norm yields partly overlapping and dense
clusters, still all schemes are better than uniform9

8The subscript e.w. stands for element-wise.
9We also performed a TFIDF weighting of word embed-

dings, the resulting 2D-visualization was very similar to uni-
form weighting (SUM).

4

LRP SA
It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

s
c
i
.
s
p
a
c
e

s
c
i
.
m
e
d

r
e
c
.
m
o
t
o
r
c
y
c
l
e
s

Figure 2: Heatmaps for the test document sci.space 61393 (correctly classified), using either layer-
wise relevance propagation (LRP) or sensitivity analysis (SA) for highlighting words. Positive relevance
is mapped to red, negative to blue. The target class for the LRP/SA explanation is indicated on the left.

LRP e.w. LRP SUM

comp

rec

sci

politics

religion

SA e.w. SA SA (l2)

Figure 3: PCA projection of the 20Newsgroups test documents formed by linearly combining word2vec
embeddings. The weighting scheme is based on word-level relevances, or on single input variable rel-
evances (e.w.), or uniform (SUM). The target class for relevance estimation is the predicted document
class. SA(l2) corresponds to a variant of SA with simple l2-norm pooling of word gradient values. All
visualizations are provided on the same equal axis scale.

5

weighting. In case of SA note that, even though
the power to which word gradient norms are raised
(l2 or l22) affects the present visualization experi-
ment, it has no influence on the earlier described
“word deletion” analysis.

For element-wise models d′e.w., we observe
slightly better separated clusters for SA, and a
clear-cut cluster structure for LRP.

4 Conclusion

Through word deleting we quantitatively evalu-
ated and compared two classifier explanation mod-
els, and pinpointed LRP to be more effective than
SA. We investigated the application of word-level
relevance information for document highlighting
and visualization. We derive from our empirical
analysis that the superiority of LRP stems from the
fact that it reliably not only links to determinant
words that support a specific classification deci-
sion, but further distinguishes, within the preemi-
nent words, those that are opposed to that decision.

Future work would include applying LRP to
other neural network architectures (e.g. character-
based or recurrent models) on further NLP tasks,
as well as exploring how relevance information
could be taken into account to improve the clas-
sifier’s training procedure or prediction perfor-
mance.

Acknowledgments

This work was supported by the German Ministry
for Education and Research as Berlin Big Data
Center BBDC (01IS14013A) and the Brain Korea
21 Plus Program through the National Research
Foundation of Korea funded by the Ministry of
Education.

References
S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-

R. Müller, and W. Samek. 2015. On Pixel-Wise
Explanations for Non-Linear Classifier Decisions by
Layer-Wise Relevance Propagation. PLoS ONE,
10(7):e0130140.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin.
2003. A Neural Probabilistic Language Model.
JMLR, 3:1137–1155.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural Lan-
guage Processing (Almost) from Scratch. JMLR,
12:2493–2537.

M. Denil, A. Demiraj, and N. de Freitas. 2014. Extrac-
tion of Salient Sentences from Labelled Documents.
Technical report, University of Oxford.

Y. Dimopoulos, P. Bourret, and S. Lek. 1995. Use of
some sensitivity criteria for choosing networks with
good generalization ability. Neural Processing Let-
ters, 2(6):1–4.

D. Erhan, A. Courville, and Y. Bengio. 2010. Under-
standing Representations Learned in Deep Architec-
tures. Technical report, University of Montreal.

M. Gevrey, I. Dimopoulos, and S. Lek. 2003. Review
and comparison of methods to study the contribu-
tion of variables in artificial neural network models.
Ecological Modelling, 160(3):249–264.

Y. Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proc. of EMNLP, pages
1746–1751.

R. Krishnan, G. Sivakumar, and P. Bhattacharya. 1999.
Extracting decision trees from trained neural net-
works. Pattern Recognition, 32(12):1999–2009.

W. Landecker, M. Thomure, L. Bettencourt,
M. Mitchell, G. Kenyon, and S. Brumby. 2013. In-
terpreting Individual Classifications of Hierarchical
Networks. In IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), pages
32–38.

S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller,
and W. Samek. 2016a. Analyzing Classifiers:
Fisher Vectors and Deep Neural Networks. In Proc.
of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller,
and W. Samek. 2016b. The Layer-wise Relevance
Propagation Toolbox for Artificial Neural Networks.
JMLR. in press.

J. Li, X. Chen, E. Hovy, and D. Jurafsky. 2015. Visu-
alizing and Understanding Neural Models in NLP.
arXiv, (1506.01066).

M. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013.
Efficient Estimation of Word Representations in
Vector Space. In Workshop Proc. ICLR.

G. Montavon, S. Bach, A. Binder, W. Samek, and K.-R.
Müller. 2015. Explaining NonLinear Classification
Decisions with Deep Taylor Decomposition. arXiv,
(1512.02479).

H.S. Paskov, R. West, J.C. Mitchell, and T. Hastie.
2013. Compressive Feature Learning. In Adv. in
NIPS.

W. Samek, A. Binder, G. Montavon, S. Bach, and K.-
R. Müller. 2015. Evaluating the visualization of
what a Deep Neural Network has learned. arXiv,
(1509.06321).

6

K. Simonyan, A. Vedaldi, and A. Zisserman. 2014.
Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps. In
Workshop Proc. ICLR.

M. D. Zeiler and R. Fergus. 2014. Visualizing and
Understanding Convolutional Networks. In ECCV,
pages 818–833.

7

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 8–17,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Joint Learning of Sentence Embeddings for Relevance and Entailment

Petr Baudiš, Silvestr Stanko and Jan Šedivý
FEE CTU Prague

Department of Cybernetics
Technická 2, Prague,

Czech Republic
baudipet@fel.cvut.cz

Abstract

We consider the problem of Recognizing
Textual Entailment within an Information
Retrieval context, where we must simulta-
neously determine the relevancy as well as
degree of entailment for individual pieces
of evidence to determine a yes/no answer
to a binary natural language question.

We compare several variants of neural net-
works for sentence embeddings in a set-
ting of decision-making based on evidence
of varying relevance. We propose a basic
model to integrate evidence for entailment,
show that joint training of the sentence
embeddings to model relevance and entail-
ment is feasible even with no explicit per-
evidence supervision, and show the impor-
tance of evaluating strong baselines. We
also demonstrate the benefit of carrying
over text comprehension model trained on
an unrelated task for our small datasets.

Our research is motivated primarily by a
new open dataset we introduce, consist-
ing of binary questions and news-based
evidence snippets. We also apply the
proposed relevance-entailment model on
a similar task of ranking multiple-choice
test answers, evaluating it on a preliminary
dataset of school test questions as well as
the standard MCTest dataset, where we
improve the neural model state-of-art.

1 Introduction

Let us consider the goal of building machine rea-
soning systems based on knowledge from fulltext
data like encyclopedic articles, scientific papers
or news articles. Such machine reasoning sys-
tems, like humans researching a problem, must

be able to recover evidence from large amounts
of retrieved but mostly irrelevant information and
judge the evidence to decide the answer to the
question at hand.

A typical approach, used implicitly in informa-
tion retrieval (and its extensions, like IR-based
Question Answering systems (Baudiš, 2015)), is
to determine evidence relevancy by a keyword
overlap feature (like tf-idf or BM-25 (Robertson
et al., 1995)) and prune the evidence by the rele-
vancy score. On the other hand, textual entailment
systems that seek to confirm hypotheses based
on evidence (Dagan et al., 2006) (Marelli et al.,
2014) (Bowman et al., 2015) are typically pro-
vided with only a single piece of evidence or only
evidence pre-determined as relevant, and are of-
ten restricted to short and simple sentences with-
out open-domain named entity occurences. In this
work, we seek to fuse information retrieval and
textual entaiment recognition by defining the Hy-
pothesis Evaluation task as deciding the truth
value of a hypothesis by integrating numerous
pieces of evidence, not all of it equally relevant.

As a specific instance, we introduce the Ar-
gus Yes/No Question Answering task. The prob-
lem is, given a real-world event binary question
like Did Donald Trump announce he is running
for president? and numerous retrieved news arti-
cle fragments as evidence, to determine the an-
swer for the question. Our research is motivated
by the Argus automatic reporting system for the
Augur prediction market platform. (Baudis et al.,
2016b) Therefore, we consider the question an-
swering task within the constraints of a practical
scenario that has limited available dataset and only
minimum supervision. Hence, authentic news sen-
tences are the evidence (with noise like segmenta-
tion errors, irrelevant participial phrases, etc.), and
whereas we have gold standard for the correct an-
swers, the model must do without explicit super-

8

vision on which individual evidence snippets are
relevant and what do they entail.

To this end, we introduce an open dataset of
questions and newspaper evidence, and a neural
model within the Sentence Pair Scoring frame-
work (Baudiš et al., 2016a) that (A) learns sen-
tence embeddings for the question and evidence,
(B) the embeddings represent both relevance and
entailment characteristics as linear classifier in-
puts, and (C) the model aggregates all available
evidence to produce a binary signal as the answer,
which is the only training supervision.

We also evaluate our model on a related task
that concerns ranking answers of multiple-choice
questions given a set of evidencing sentences.
We consider the MCTest dataset and the AI2-
8grade/CK12 dataset that we introduce below.

The paper is structured as follows. In Sec. 2,
we formally outline the Argus question answer-
ing task, describe the question-evidence dataset,
and describe the multiple-choice questions task
and datasets. In Sec. 3, we briefly survey the re-
lated work on similar problems, whereas in Sec. 4
we propose our neural models for joint learning
of sentence relevance and entailment. We present
the results in Sec. 5 and conclude with a sum-
mary, model usage recommendations and future
work directions in Sec. 6.

2 The Hypothesis Evaluation Task

Formally, the Hypothesis Evaluation task is to
build a function yi = fh(Hi), where yi ∈ [0, 1] is
a binary label (no towards yes) and Hi = (qi, Ei)
is a hypothesis instance in the form of question
text qi and a set of Ei = {eij} evidence texts eij

as extracted from an evidence-carrying corpus.

2.1 Argus Dataset

Our main aim is to propose a solution to the Ar-
gus Task, where the Argus system (Baudis, 2015)
(Baudis et al., 2016b) is to automatically ana-
lyze and answer questions in the context of the
Augur prediction market platform.1 In a pre-
diction market, users pose questions about future
events whereas others bet on the yes or no answer,
with the assumption that the bet price reflects the
real probability of the event. At a specified mo-
ment (e.g. after the date of a to-be-predicted sports
match), the correct answer is retroactively deter-
mined and the bets are paid off. At a larger vol-

1https://augur.net/

ume of questions, determining the bet results may
present a significant overhead for running of the
market. This motivates the Argus system, which
should partially automate this determination —
deciding questions related to recent events based
on open news sources.

To train a machine learning model for the fh

function, we have created a dataset of questions
with gold labels, and produced sets of evidence
texts from a variety of news paper using a pre-
existing IR (information retrieval) component of
the Argus system. We release this dataset openly.2

To pose a reproducible task for the IR com-
ponent, the time domain of questions was re-
stricted from September 1, 2014 to September 1,
2015, and topic domain was focused to politics,
sports and the stock market. To build the question
dataset, we have used several sources:

• We asked Amazon Mechanical Turk users to
pose questions, together with a golden label
and a news article reference. This seeded the
dataset with initial, somewhat redundant 250
questions.

• We manually extended this dataset by derived
questions with reversed polarity (to obtain an
opposite answer).

• We extended the data with questions auto-
generated from 26 templates, pertaining top
sporting event winners and US senate or gu-
bernatorial elections.

To build the evidence dataset, we used the
Syphon preprocessing component (Baudis et al.,
2016b) of the Argus implementation3 to identify
semantic roles of all question tokens and produce
the search keywords if a role was assigned to each
token. We then used the IR component to query a
corpus of newspaper articles, and kept sentences
that contained at least 2/3 of all the keywords.
Our corpus of articles contained articles from The
Guardian (all articles) and from the New York
Times (Sports, Politics and Business sections).
Furthermore, we scraped partial archive.org his-
torical data out of 35 RSS feeds from CNN,
Reuters, BBC International, CBS News, ABC
News, c—net, Financial Times, Skynews and the
Washington Post.

2https://github.com/brmson/dataset-sts
directory data/hypev/argus

3https://github.com/AugurProject/argus

9

Train Val. Test
Original #q 1829 303 295

Post-search #q 1081 167 158
Average #m per q. 19.04 13.99 16.66

Figure 1: Characteristics of the Argus QA dataset.

For the final dataset, we kept only questions
where at least a single evidence was found (i.e. we
successfuly assigned a role to each token, found
some news stories and found at least one sentence
with 2/3 of question keywords within). The final
size of the dataset is outlined in Fig. 1 and some
examples are shown in Fig. 2.

2.2 AI2-8grade/CK12 Dataset

The AI2 Elementary School Science Questions
(no-diagrams variant)4 released by the Allen In-
stitute cover 855 basic four-choice questions re-
garding high school science and follows up to the
Allen AI Science Kaggle challenge.5 The vocabu-
lary includes scientific jargon and named entities,
and many questions are not factoid, requiring real-
world reasoning or thought experiments.

We have combined each answer with the respec-
tive question (by substituting the wh-word in the
question by each answer) and retrieved evidence
sentences for each hypothesis using Solr search in
a collection of CK-12 “Concepts B” textbooks.6

525 questions attained any supporting evidence,
examples are shown in Fig. 3.

We consider this dataset as preliminary since it
was not reviewed by a human and many hypothe-
ses are apparently unprovable by the evidence we
have gathered (i.e. the theoretical top accuracy is
much lower than 1.0). However, we released it to
the public7 and still included it in the comparison
as these qualities reflect many realistic datasets
of unknown qualities, so we find relative perfor-
mances of models on such datasets instructive.

2.3 MCTest Dataset

The Machine Comprehension Test (Richardson
et al., 2013) dataset has been introduced to provide
a challenge for researchers to come up with mod-
els that approach human-level reading comprehen-

4http://allenai.org/data.html
5https://www.kaggle.com/c/

the-allen-ai-science-challenge
6We have also tried English Wikipedia, but the dataset is

much harder.
7https://github.com/brmson/dataset-sts

directory data/hypev/ai2-8grade

sion, and serve as a higher-level alternative to se-
mantic parsing tasks that enforce a specific knowl-
edge representation. The dataset consists of a set
of 660 stories spanning multiple sentences, writ-
ten in simple and clean language (but with less re-
stricted vocabulary than e.g. the bAbI dataset (We-
ston et al., 2015)). Each story is accompanied by
four questions and each of these lists four possible
answers; the questions are tagged as based on just
one in-story sentence, or requiring multiple sen-
tence inference. We use an official extension of
the dataset for RTE evaluation that again textually
merges questions and answers.

The dataset is split in two parts, MC-160 and
MC-500, based on provenance but similar in qual-
ity. We train all models on a joined training set.

The practical setting differs from the Argus task
as the MCTest dataset contains relatively restricted
vocabulary and well-formed sentences. Further-
more, the goal is to find the single key point in the
story to focus on, while in the Argus setting we
may have many pieces of evidence supporting an
answer; another specific characteristics of MCTest
is that it consists of stories where the ordering and
proximity of evidence sentences matters.

3 Related Work

Our primary concern when integrating natural
language query with textual evidence is to find
sentence-level representations suitable both for
relevance weighing and answer prediction.

Sentence-level representations in the retrieval +
inference context have been popularly proposed
within the Memory Network framework (Weston
et al., 2014), but explored just in the form of av-
eraged word embeddings; the task includes only
very simple sentences and a small vocabulary.
Much more realistic setting is introduced in the
Answer Sentence Selection context (Wang et al.,
2007) (Baudiš et al., 2016a), with state-of-art
models using complex deep neural architectures
with attention (dos Santos et al., 2016), but the
selection task consists of only retrieval and no in-
ference (answer prediction). A more indirect re-
trieval task regarding news summarization was in-
vestigated by (Cao et al., 2016).

In the entailment context, (Bowman et al., 2015)
introduced a large dataset with single-evidence
sentence pairs (Stanford Natural Language Infer-
ence, SNLI), but a larger vocabulary and slightly
more complicated (but still conservatively formed)

10

Will Andre Iguodala win NBA Finals MVP in 2015?
Should Andre Iguodala have won the NBA Finals MVP award over LeBron James?
12.12am ET Andre Iguodala was named NBA Finals MVP, not LeBron.
Will Donald Trump run for President in 2016?
Donald Trump released Immigration Reform that will make America Great Again last weekend —
. . . his first, detailed position paper since announcing his campaign for the Republican nomination
. . . for president.
The Fix: A brief history of Donald Trump blaming everything on President Obama
DONALD TRUMP FOR PRESIDENT OF PLUTO!

Figure 2: Example pairs in the Argus dataset.

pedigree chart model is used to show the pattern of traits that are passed from one generation
to the next in a family?
A pedigree is a chart which shows the inheritance of a trait over several generations.
Figure 51.14 In a pedigree, squares symbolize males, and circles represent females.
energy pyramid model is used to show the pattern of traits that are passed from one generation
to the next in a family?
Energy is passed up a food chain or web from lower to higher trophic levels.
Each step of the food chain in the energy pyramid is called a trophic level.

Figure 3: Example pairs in the AI2-8grade/CK12 dataset. Answer texts substituted to a question are shown in italics.

sentences. They also proposed baseline recurrent
neural model for modeling sentence representa-
tions, while word-level attention based models are
being studied more recently (Rocktäschel et al.,
2015) (Cheng et al., 2016).

In the MCTest text comprehension challenge
(Richardson et al., 2013), the leading models use
complex engineered features ensembling multiple
traditional semantic NLP approaches (Wang and
McAllester, 2015). The best deep model so far
(Yin et al., 2016) uses convolutional neural net-
works for sentence representations, and attention
on multiple levels to pick evidencing sentences.

4 Neural Model

Our approach is to use a sequence of word embed-
dings to build sentence embeddings for each hy-
pothesis and respective evidence, then use the sen-
tence embeddings to estimate relevance and entail-
ment of each evidence with regard to the respec-
tive hypothesis, and finally integrate the evidence
to a single answer.

4.1 Sentence Embeddings
To produce sentence embeddings, we investi-
gated the neural models proposed in the data-
set-sts framework for deep learning of sen-
tence pair scoring functions. (Baudiš et al., 2016a)

We refer the reader to (Baudiš et al., 2016a)
and its references for detailed model descriptions.

We evaluate an RNN model which uses bidirec-
tionally summed GRU memory cells (Cho et al.,
2014) and uses the final states as embeddings;
a CNN model which uses sentence-max-pooled
convolutional filters as embeddings (Kim, 2014);
an RNN-CNN model which puts the CNN on top
of per-token GRU outputs rather than the word
embeddings (Tan et al., 2015); and an attn1511
model inspired by (Tan et al., 2015) that inte-
grates the RNN-CNN model with per-word atten-
tion to build hypothesis-specific evidence embed-
dings. We also report the baseline results of avg
mean of word embeddings in the sentence with
projection matrix and DAN Deep Averaging Net-
work model that employs word-level dropout and
adds multiple nonlinear transformations on top of
the averaged embeddings (Iyyer et al., 2015).

The original attn1511 model (Baudiš et al.,
2016a) (as tuned for the Answer Sentence Se-
lection task) used a softmax attention mechanism
that would effectively select only a few key words
of the evidence to focus on — for a hypothesis-
evidence token t scalar attention score ah,e(t), the
focus sh,e(t) is:

sh,e(t) = exp(ah,e(t))/
∑
t′

exp(ah,e(t′))

A different focus mechanism exhibited better per-
formance in the Hypothesis Evaluation task, mod-

11

elling per-token attention more independently:

sh,e(t) = σ(ah,e(t))/max
t′

σ(ah,e(t′))

We also use relu instead of tanh in the CNNs.
As model input, we use the standard GloVe

embeddings (Pennington et al., 2014) extended
with binary inputs denoting token type and over-
lap with token or bigram in the paired sentence,
as described in (Baudiš et al., 2016a). However,
we introduce two changes to the word embedding
model — we use 50-dimensional embeddings in-
stead of 300-dimensional, and rather than build-
ing an adaptable embedding matrix from the train-
ing set words preinitialized by GloVe, we use only
the top 100 most frequent tokens in the adaptable
embedding matrix and use fixed GloVe vectors for
all other tokens (including tokens not found in the
training set). In preliminary experiments, this im-
proved generalization for highly vocabulary-rich
tasks like Argus, while still allowing the high-
frequency tokens (like interpunction or conjunc-
tions) to learn semantic operator representations.

As an additional method for producing sentence
embeddings, we consider the Ubu. RNN trans-
fer learning method proposed by (Baudiš et al.,
2016a) where an RNN model (as described above)
is trained on the Ubuntu Dialogue task (Lowe et
al., 2015).8 The pretrained model weights are
used to initialize an RNN model which is then
fine-tuned on the Hypothesis Evaluation task. We
use the same model as originally proposed (except
the aforementioned vocabulary handling modifi-
cation), with the dot-product scoring used for
Ubuntu Dialogue training replaced by MLP point-
scores described below.

4.2 Evidence Integration

Our main proposed schema for evidence integra-
tion is Evidence Weighing. From each pair of
hypothesis and evidence embeddings,9 we pro-
duce two [0, 1] predictions using a pair of MLP
point-scorers of dataset-sts (Baudiš et al.,

8The Ubuntu Dialogue dataset consists of one million chat
dialog contexts, learning to rank candidates for the next utter-
ance in the dialog; the sentences are based on IRC chat logs of
the Ubuntu community technical support channels and con-
tain casually typed interactions regarding computer-related
problems, resembling tweet data, but longer and with heavily
technical jargon.

9We employ Siamese training, sharing the weights be-
tween hypothesis and evidence embedding models.

2016a)10 with sigmoid activation function. The
predictions are interpreted as Ci ∈ [0, 1] entail-
ment (0 to 1 as no to yes) and relevance Ri ∈ [0, 1].
To integrate the predictions across multiple pieces
of evidence, we propose a weighed average model:

y =
∑

i CiRi∑
i Ri

We do not have access to any explicit labels for
the evidence, but we train the model end-to-end
with just y labels and the formula for y is differ-
entiable, carrying over the gradient to the sentence
embedding model. This can be thought of as a
simple passage-wide attention model.

As a baseline strategy, we also consider Evi-
dence Averaging, where we simply produce a sin-
gle scalar prediction per hypothesis-evidence pair
(using the same strategy as above) and decide the
hypothesis simply based on the mean prediction
across available evidence.

Finally, following success reported in the An-
swer Sentence Selection task (Baudiš et al.,
2016a), we consider a BM25 Feature combined
with Evidence Averaging, where the MLP scorer
that produces the pair scalar prediction as above
takes an additional BM25 word overlap score in-
put (Robertson et al., 1995) besides the element-
wise embedding comparisons.

5 Results

5.1 Experimental Setup

We implement the differentiable model in the
Keras framework (Chollet, 2015) and train the
whole network from word embeddings to output
evidence-integrated hypothesis label using the bi-
nary cross-entropy loss as an objective11 and the
Adam optimization algorithm (Kingma and Ba,
2014). We apply L2 = 10−4 regularization and
a p = 1/3 dropout.

Following the recommendation of (Baudiš et
al., 2016a), we report expected test set question
accuracy12 as determined by average accuracy in
16 independent trainings and with 95% confidence
intervals based on the Student’s t-distribution.

10From the elementwise product and sum of the embed-
dings, a linear classifier directly produces a prediction; con-
trary to the typical setup, we use no hidden layer.

11Unlike (Yin et al., 2016), we have found ranking-based
loss functions ineffective for this task.

12In the MCTest and AI2-8grade/CK12 datasets, we test
and rank four hypotheses per question, whereas in the Argus
dataset, each hypothesis is a single question.

12

Model train val test
avg 0.872 0.816 0.744

±0.009 ±0.008 ±0.020

DAN 0.884 0.822 0.754
±0.012 ±0.011 ±0.025

RNN 0.906 0.875 0.823
±0.013 ±0.005 ±0.008

CNN 0.896 0.857 0.822
±0.018 ±0.006 ±0.007

RNN-CNN 0.885 0.860 0.816
±0.010 ±0.007 ±0.009

attn1511 0.935 0.877 0.816
±0.021 ±0.008 ±0.008

Ubu. RNN 0.951 0.912 0.852
±0.017 ±0.004 ±0.008

Figure 4: Model accuracy on the Argus task, using the evi-
dence weighing scheme.

Model Mean Ev. BM25 Feat. Weighed
avg 0.746 0.770 0.744

±0.051 ±0.011 ±0.020

RNN 0.822 0.828 0.823
±0.015 ±0.015 ±0.008

attn1511 0.819 0.811 0.816
±0.013 ±0.012 ±0.008

Ubu. RNN 0.847 0.831 0.852
±0.009 ±0.018 ±0.008

Figure 5: Comparing the influence of the evidence integra-
tion schemes on the Argus test accuracy.

5.2 Evaluation

In Fig. 4, we report the model performance on
the Argus task, showing that the Ubuntu Dialogue
transfer RNN outperforms other proposed models
by a large margin. However, a comparison of evi-
dence integration approaches in Fig. 5 shows that
evidence integration is not the major deciding fac-
tor and there are no staticially meaningful differ-
ences between the evaluated approaches. We mea-
sured high correlation between classification and
relevance scores with Pearson’s r = 0.803, show-
ing that our model does not learn a separate evi-
dence weighing function on this task.

In Fig. 6, we look at the model performance on
the AI2-8grade/CK12 task, repeating the story of
Ubuntu Dialogue transfer RNN dominating other
models. However, on this task our proposed evi-
dence weighing scheme improves over simpler ap-
proaches — but just on the best model, as shown in
Fig. 7. On the other hand, the simplest averaging
model benefits from at least BM25 information to

Model train val test
avg 0.505 0.442 0.401

±0.024 ±0.022 ±0.016

DAN 0.556 0.491 0.391
±0.038 ±0.015 ±0.008

RNN 0.712 0.381 0.361
±0.053 ±0.016 ±0.012

CNN 0.676 0.442 0.384
±0.056 ±0.012 ±0.011

RNN-CNN 0.582 0.439 0.376
±0.057 ±0.024 ±0.014

attn1511 0.725 0.384 0.358
±0.069 ±0.012 ±0.015

Ubu. RNN 0.570 0.494 0.441
±0.059 ±0.012 ±0.011

Figure 6: Model (question-level) accuracy on the AI2-
8grade/CK12 task, using the evidence weighing scheme.

Model Mean Ev. BM25 Feat. Weighed
avg 0.366 0.415 0.401

±0.010 ±0.008 ±0.016

CNN 0.385 0.384
±0.020 ±0.011

Ubu. RNN 0.416 0.418 0.441
±0.011 ±0.009 ±0.011

Figure 7: Comparing the influence of the evidence integra-
tion schemes on the AI2-8grade/CK12 test accuracy.

select relevant evidence, apparently.
For the MCTest dataset, Fig. 8 compares our

proposed models with the current state-of-art
ensemble of hand-crafted syntactic and frame-
semantic features (Wang and McAllester, 2015),
as well as past neural models from the literature,
all using attention mechanisms — the Attentive
Reader of (Hermann et al., 2015), Neural Rea-
soner of (Peng et al., 2015) and the HABCNN
model family of (Yin et al., 2016).13 We see
that averaging-based models are surprisingly ef-
fective on this task, and in particular on the MC-
500 dataset it can beat even the best so far reported
model of HABCNN-TE. Our proposed transfer
model is statistically equivalent to the best model
on both datasets (furthermore, previous work did
not include confidence intervals, even though their
models should also be stochastically initialized).

As expected, our models did badly on the
multiple-evidence class of questions — we made
no attempt to model information flow across ad-

13(Yin et al., 2016) also reports the results on the former
models.

13

joint MC-160 MC-500
Model all (train) one multi all one multi all

hand-crafted 0.842 0.678 0.753 0.721 0.679 0.699
Attn. Reader 0.481 0.447 0.463 0.444 0.395 0.419

Neur. Reasoner 0.484 0.468 0.476 0.457 0.456 0.456
HABCNN-TE 0.633 0.629 0.631 0.542 0.517 0.529

avg 0.577 0.653 0.471 0.556 0.587 0.506 0.542
±0.009 ±0.027 ±0.020 ±0.012 ±0.018 ±0.010 ±0.011

DAN 0.590 0.681 0.486 0.577 0.636 0.496 0.560
±0.009 ±0.017 ±0.010 ±0.010 ±0.013 ±0.007 ±0.007

RNN 0.608 0.583 0.490 0.533 0.539 0.456 0.494
±0.030 ±0.033 ±0.018 ±0.020 ±0.016 ±0.013 ±0.012

CNN 0.658 0.655 0.511 0.578 0.571 0.483 0.522
±0.021 ±0.020 ±0.012 ±0.014 ±0.013 ±0.012 ±0.009

RNN-CNN 0.597 0.617 0.493 0.551 0.554 0.470 0.508
±0.039 ±0.041 ±0.021 ±0.020 ±0.023 ±0.016 ±0.014

attn1511 0.687 0.611 0.485 0.544 0.571 0.454 0.507
±0.061 ±0.052 ±0.025 ±0.033 ±0.036 ±0.011 ±0.021

Ubu. RNN 0.678 0.736 0.503 0.612 0.641 0.452 0.538
±0.035 ±0.033 ±0.016 ±0.023 ±0.017 ±0.017 ±0.015

∗ Ubu. RNN 0.786 0.547 0.658 0.676 0.494 0.577

Figure 8: Model (question-level) accuracy on the test split of the MCTest task, using the evidence weighing scheme. The first
column shows accuracy on a train split joined across both datasets.
∗ The model with top MC-500 test set result (across 16 runs) that convincingly dominates HABCNN-TE in the one and all
classes and illustrates that the issue of reporting evaluation spread is not just theoretical. 5/16 of the models have MC-160 all
accuracy > 0.631.

Model Mean Ev. BM25 Feat. Weighed
avg 0.423 0.506 0.542

±0.014 ±0.012 ±0.011

CNN 0.373 0.509 0.522
±0.036 ±0.027 ±0.009

Ubu. RNN 0.507 0.509 0.538
±0.014 ±0.012 ±0.015

Figure 9: Comparing the influence of the evidence integra-
tion schemes on the MC-500 (all-type) test accuracy.

jacent sentences in our models as this aspect is
unique to MCTest in the context of our work.

Interestingly, evidence weighing does play an
important role on the MCTest task as shown in
Fig. 9, significantly boosting model accuracy. This
confirms that a mechanism to allocate attention to
different sentences is indeed crucial for this task.

5.3 Analysis

While we can universally proclaim Ubu. RNN as
the best model, we observe many aspects of the
Hypothesis Evaluation problem that are shared by
the AI2-8grade/CK12 and MCTest tasks, but not
by the Argus task.

Our largest surprise lies in the ineffectivity of
evidence weighing on the Argus task, since ob-
servations of irrelevant passages initially led us to
investigate this model. We may also see that non-
pretrained RNN does very well on the Argus task
while CNN is a better model otherwise.

An aspect that could explain this rift is that
the latter two tasks are primarily retrieval based,
where we seek to judge each evidence as irrele-
vant or essentially a paraphrase of the hypothesis.
On the other hand, the Argus task is highly se-
mantic and compositional, with the questions of-
ten differing just by a presence of negation — re-
current model that can capture long-term depen-
dencies and alter sentence representations based
on the presence of negation may represent an es-
sential improvement over an n-gram-like convolu-
tional scheme. We might also attribute the lack of
success of evidence weighing in the Argus task to
a more conservative scheme of passage retrieval
employed in the IR pipeline that produced the
dataset. Given the large vocabulary and noise lev-
els in the data, we may also simply require more
data to train the evidence weighing properly.

14

We see from the training vs. test accuracies that
RNN-based models (including the word-level at-
tention model) have a strong tendency to overfit
on our small datasets, while CNN is much more
resilient. While word-level attention seems ap-
pealing for such a task, we speculate that we sim-
ply might not have enough training data to prop-
erly train it.14 Investigating attention transfer is
a point for future work — by our preliminary ex-
periments on multiple datasets, attention models
appear more task specific than the basic text com-
prehension models of memory based RNNs.

One concrete limitation of our models in case
of the Argus task is a problem of reconciling par-
ticular named entity instances. The more obvious
form of this issue is Had Roger Federer beat Mar-
tin Cilic in US OPEN 2014? versus an opposite
Had Martin Cilic beat Roger Federer in US OPEN
2014? — another form of this problem is reconcil-
ing a hypothesis like Will the Royals win the World
Series? with evidence Giants Win World Series
With Game 7 Victory Over Royals. An abstract
embedding of the sentence will not carry over the
required information — it is important to explic-
itly pass and reconcile the roles of multiple named
entities which cannot be meaningfully embedded
in a GloVe-like semantic vector space.

6 Conclusion

We have established a general Hypothesis Eval-
uation task with three datasets of various prop-
erties, and shown that neural models can exhibit
strong performance (with less hand-crafting ef-
fort than non-neural classifiers). We propose an
evidence weighing model that is never harmful
and improves performance on some tasks. We
also demonstrate that simple models can outper-
form or closely match performance of complex ar-
chitectures; all the models we consider are task-
independent and were successfully used in differ-
ent contexts than Hypothesis Evaluation (Baudiš
et al., 2016a). Our results empirically show that a
basic RNN text comprehension model well trained
on a large dataset (even if the task is unrelated and
vocabulary characteristics are very different) out-
performs or matches more complex architectures
trained only on the dataset of the task at hand.15

14Just reducing the dimensionality of hidden representa-
tions did not yield an improvement.

15Even if these use multi-task learning, which was em-
ployed in case of the HABCNN models that were trained to
also predict question classes.

Finally, on the MCTest dataset, our best pro-
posed model is better or statistically indistinguish-
able from the best neural model reported so far
(Yin et al., 2016), even though it has a simpler ar-
chitecture and only a naive attention mechanism.

We would like to draw several recommenda-
tions for future research from our findings: (A)
encourage usage of basic neural architectures as
evaluation baselines; (B) suggest that future re-
search includes models pretrained on large data
as baselines; (C) validate complex architectures
on tasks with large datasets if they cannot beat
baselines on small datasets; and (D) for random-
ized machine comprehension models (e.g. neural
networks with random weight initialization, batch
shuffling or probabilistic dropout), report expected
test set performance based on multiple indepen-
dent training runs.

As a general advice for solving complex tasks
with small datasets, besides the point (B) above
our analysis suggests convolutional networks as
the best models regarding the tendency to over-
fit, unless semantic composionality plays a crucial
role in the task; in this scenario, simple averaging-
based models are a great start as well. Preinitializ-
ing a model also helps against overfitting.

We release our implementation of the Argus
task, evidence integration models and processing
of all the evaluated datasets as open source.16

We believe the next step towards machine com-
prehension NLP models (based on deep learn-
ing but capable of dealing with real-world, large-
vocabulary data) will involve research into a bet-
ter way to deal with entities without available em-
beddings. When distinguishing specific entities,
simple word-level attention mechanisms will not
do. A promising approach could extend the flex-
ibility of the final sentence representation, mov-
ing from attention mechanism to a memory mech-
anism17 by allowing the network to remember a
set of “facts” derived from each sentence; related
work has been done for example on end-to-end
differentiable shift-reduce parsers with LSTM as
stack cells (Dyer et al., 2015).

Acknowledgments
This work was co-funded by the Augur Project of the
Forecast Foundation and financially supported by the Grant

16https://github.com/brmson/dataset-sts
task hypev

17Not necessarily “memories” in the sense of Memory Net-
works.

15

Agency of the Czech Technical University in Prague, grant
No. SGS16/ 084/OHK3/1T/13. Computational resources
were provided by the CESNET LM2015042 and the CERIT
Scientific Cloud LM2015085, provided under the programme
“Projects of Large Research, Development, and Innovations
Infrastructures.”

We’d like to thank Peronet Despeignes of the Augur

Project for his support. Carl Burke has provided instructions

for searching CK-12 ebooks within the Kaggle challenge.

References
Petr Baudiš, Jan Pichl, Tomáš Vyskočil, and Jan Se-

divý. 2016a. Sentence pair scoring: Towards
unified framework for text comprehension. CoRR,
abs/1603.06127.

Petr Baudis, Silvestr Stanko, and Peronet Despeignes.
2016b. Argus: An artificial-intelligence assistant for
augur’s prediction market platform reporters.

Petr Baudis. 2015. Argus: Deciding questions about
events.

Petr Baudiš. 2015. YodaQA: A Modular Question An-
swering System Pipeline. In POSTER 2015 - 19th
International Student Conference on Electrical En-
gineering.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 EMNLP Confer-
ence. ACL.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei.
2016. Attsum: Joint learning of focusing and sum-
marization with neural attention. arXiv preprint
arXiv:1604.00125.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. CoRR, abs/1601.06733.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

Franois Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment, pages 177–
190. Springer.

Cı́cero Nogueira dos Santos, Ming Tan, Bing Xiang,
and Bowen Zhou. 2016. Attentive pooling net-
works. CoRR, abs/1602.03609.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. CoRR, abs/1505.08075.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1684–
1692.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. CoRR, abs/1506.08909.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. SemEval-2014.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai
Wong. 2015. Towards neural network-based rea-
soning. arXiv preprint arXiv:1508.05508.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the EMNLP 2014,
12:1532–1543.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for the
open-domain machine comprehension of text.

Stephen E Robertson, Steve Walker, Susan Jones, et al.
1995. Okapi at trec-3.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
CoRR, abs/1509.06664.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer
selection. CoRR, abs/1511.04108.

Hai Wang and Mohit Bansal Kevin Gimpel David
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics. Proceedings of ACL,
Volume 2: Short Papers:700.

16

Mengqiu Wang, Noah A Smith, and Teruko Mita-
mura. 2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In EMNLP-CoNLL,
volume 7, pages 22–32.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2014. Memory networks. CoRR, abs/1410.3916.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks.
CoRR, abs/1502.05698.

Wenpeng Yin, Sebastian Ebert, and Hinrich Schütze.
2016. Attention-based convolutional neural
network for machine comprehension. CoRR,
abs/1602.04341.

17

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 18–26,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

A Joint Model for Word Embedding and Word Morphology

Kris Cao and Marek Rei
Computer Lab

University of Cambridge
United Kingdom

kc391@cam.ac.uk

Abstract

This paper presents a joint model for
performing unsupervised morphologi-
cal analysis on words, and learning a
character-level composition function
from morphemes to word embeddings.
Our model splits individual words into
segments, and weights each segment
according to its ability to predict context
words. Our morphological analysis is
comparable to dedicated morphological
analyzers at the task of morpheme bound-
ary recovery, and also performs better
than word-based embedding models at
the task of syntactic analogy answering.
Finally, we show that incorporating
morphology explicitly into character-level
models helps them produce embeddings
for unseen words which correlate better
with human judgments.

1 Introduction

Word embedding models associate each word in a
corpus with a vector in a semantic space. These
vectors can either be learnt to optimize perfor-
mance in a downstream task (Bengio et al., 2003;
Collobert et al., 2011) or learnt via the distri-
butional hypothesis: words with similar contexts
have similar meanings (Harris, 1954; Mikolov et
al., 2013a). Current word embedding models treat
words as atomic. However, words follow a power
law distribution (Zipf, 1935), and word embed-
ding models suffer from the problem of sparsity:
a word like ‘unbelievableness’ does not appear at
all in the first 17 million words of Wikipedia, even
though it is derived from common morphemes.
This leads to three problems:

1. word representations decline in quality for

rarely observed words (Bullinaria and Levy,
2007).

2. word embedding models handle out-of-
vocabulary words badly, typically as a single
‘OOV’ token.

3. the word distribution has a long tail, and
many parameters are needed to capture all of
the words in a corpus (for an embedding size
of 300 with a vocabulary of 10k words, 3 mil-
lion parameters are needed)

One approach to smooth word distributions is
to operate on the smallest meaningful semantic
unit, the morpheme (Lazaridou et al., 2013; Botha
and Blunsom, 2014). However, previous work on
the morpheme level has all used external morpho-
logical analyzers. These require a separate pre-
processing step, and cannot be adapted to suit the
problem at hand.

Another is to operate on the smallest ortho-
graphic unit, the character (Ling et al., 2015; Kim
et al., 2016). However, the link between shape
and meaning is often complicated (de Saussure,
1916), as alphabetic characters carry no inherent
semantic meaning. To account for this, the model
has to learn complicated dependencies between
strings of characters to accurately capture word
meaning. We hypothesize that explicitly introduc-
ing morphology into character-level models can
help them learn morphological features, and hence
word meaning.

In this paper, we introduce a word embedding
model that jointly learns word morphology and
word embeddings. To the best of our knowledge,
this is the first word embedding model that learns
morphology as part of the model. Our guiding in-
tuition is that the words with the same stem have
similar contexts. Thus, when considering word
segments in terms of context-predictive power, the

18

segment corresponding to the stem will have the
most weight.

Our model ‘reads’ the word and outputs a se-
quence of word segments. We weight each seg-
ment, and then combine the segments to obtain
the final word representation. These represen-
tations are trained to predict context words, as
this has been shown to give word representations
which capture word semantics well (Mikolov et
al., 2013b). As the root morpheme has the most
context-predictive power, we expect our model to
assign high weight to this segment, thereby learn-
ing to separate root+affix structures.

One exciting feature of character-level models
is their ability to represent open-vocabulary words.
After training, they can predict a vector for any
word, not just words that they have seen before.
Our model has an advantage in that it can split
unknown words into known and unknown compo-
nents. Hence, it can potentially generalise better
over seen morphemes and words and apply exist-
ing knowledge to new cases.

To evaluate our model, we evaluate its use as
a morphological analyzer (§4.1), test how well it
learns word semantics, including for unseen words
(§4.2), and examine the structure of the embedding
space (§4.3).

2 Related Work

While words are often treated as the fundamental
unit of language, they are in fact themselves com-
positional. The smallest unit of semantics is the
morpheme, while the smallest unit of orthography
is the grapheme, or character. Both have been used
as a method to go beyond word-level models.

2.1 Morphemic analysis and semantics

As word semantics is compositional, one might
ask whether it is possible to learn morpheme
representations, and compose them to obtain
good word representations. Lazaridou et al.
(2013) demonstrated precisely this: one can de-
rive good representations of morphemes distribu-
tionally, and apply tools from compositional dis-
tributional semantics to obtain good word repre-
sentations. Luong et al. (2013) also trained a
morphological composition model based on recur-
sive neural networks. Botha and Blunsom (2014)
built a language model incorporating morphemes,
and demonstrated improvements in language mod-
elling and in machine translation. All of these

approaches incorporated external morphological
knowledge, either in the form of gold standard
morphological analyses such as CELEX (Baayen
et al., 1995) or an external morphological analyzer
such as Morfessor (Creutz and Lagus, 2007).

Unsupervised morphology induction aims to
decide whether two words are morphologically re-
lated or to generate a morphological analysis for a
word (Goldwater et al., 2005; Goldsmith, 2001).
While they may use semantic insights to perform
the morphological analysis (Soricut and Ochs,
2015), they typically are not concerned with ob-
taining a semantic representation for morphemes,
nor of the resulting word.

2.2 Character-level models

Another approach to go beyond words is based on
on character-level neural network models. Both
recurrent and convolutional architectures for de-
riving word representations from characters have
been used, and results in downstream tasks such
as language modelling and POS tagging have been
promising, with reductions in word perplexity for
language modelling and state-of-the-art English
POS tagging accuracy (Ling et al., 2015; Kim
et al., 2016). Ballesteros et al. (2015) train a
character-level model for parsing. Zhang et al.
(2015) do away with words completely, and train
a convolutional neural network to do text classifi-
cation directly from characters.

Excitingly, character-level models seem to cap-
ture morphological effects. Examining nearest
neighbours of morphologically complex words in
character-aware models often shows other words
with the same morphology (Ling et al., 2015; Kim
et al., 2016). Furthermore, morphosyntactic fea-
tures such as capitalization and suffix information
have long been used in tasks such as POS tagging
(Xu et al., 2015; Toutanova et al., 2003). By ex-
plicitly modelling these features, one might expect
good performance gains in many NLP tasks.

What is less clear is how well these models
learn word semantics. Classical word embedding
models seem to capture word semantics, and the
nearest neighbours of a given word are typically
semantically related words (Mikolov et al., 2013a;
Mnih and Kavukcuoglu, 2013). In addition, the
correlation between model word similarity scores
and human similarity judgments is typically high
(Levy et al., 2015). However, no previous work (to
our knowledge) evaluates the similarity judgments

19

Figure 1: A graphical illustration of SGNS. The
target vector for ‘dog’ is learned to have high inner
product with the context vectors for words seen
in the context of ‘dog’ (no shading), while having
low inner product with random negatively sampled
words (shaded)

of character-level models against human annota-
tors.

3 The Char2Vec model

We hypothesize that by incorporating morpho-
logical knowledge directly into a character-level
model, one can improve the ability of character-
level models to learn compositional word seman-
tics. In addition, we hypothesize that incorporat-
ing morphological knowledge helps structure the
embedding space in such a way that affixation cor-
responds to a regular shift in the embedding space.
We test both hypotheses directly in §4.2 and §4.3
respectively.

The starting point for our model is the skip-
gram with negative sampling (SGNS) objective of
Mikolov et al. (2013b). For a vocabulary V of
size |V | and embedding size N , SGNS learns two
embedding tables W,C ∈ RN×|V |, the target and
context vectors. Every time a word w is seen in
the corpus with a context word c, the tables are
updated to maximize

log σ(w · c) +
k∑

i=1

Ec̃i∼P (w)[log σ(−w · c̃i)] (1)

where P (w) is a noise distribution from which we
draw k negative samples. In the end, the target

vector for a word w should have high inner prod-
uct with context vectors for words with which it
is typically seen, and low inner products with con-
text vectors for words it is not typically seen with.
Figure 1 illustrates this for a particular example.
In Mikolov et al. (2013b), the noise distribution
P (w) is proportional to the unigram probability of
a word raised to the 3/4th power (Mikolov et al.,
2013b).

Our innovation is to replace W with a trainable
function f that accepts a sequence of characters
and returns a vector of length N (i.e. f : A<ω →
RN , where A is the alphabet we are considering
and A<ω denotes the finite length strings over the
alphabet A). We still keep the table of context
embeddings C, and our model objective is still to
minimize

log σ(f(w) · c)+
k∑

i=1

Ec̃i∼P (w)[log σ(−f(w) · c̃i)]
(2)

where we now treat w as a sequence of characters.
After training, f can be used to produce an em-
bedding for any sequence of characters, even if it
was not previously seen in training.

The process of calculating f on a word is il-
lustrated in Figure 2. We first pad the word with
beginning and end of word tokens, and then pass
the characters of the word into a character lookup
table. As the link between characters and mor-
phemes is non-compositional and requires essen-
tially memorizing a sequence of characters, we
use LSTMs (Hochreiter and Schmidhuber, 1997)
to encode the letters in the word, as they have
been shown to capture non-local and non-linear
dependencies. We run a forward and a backward
LSTM over the character embeddings. The for-
ward LSTM reads the beginning of word symbol,
but not the end of word symbol, and the backward
LSTM reads the end of word symbol but not the
beginning of word symbol. This is necessary to
align the resulting embeddings, so that the LSTM
hidden states taken together correspond to a parti-
tion of the word into two without overlap.

The LSTMs output two sequences of vectors
hf

0 , . . . , h
f
n and hb

n, . . . , h
b
0. We then concatenate

the resulir ofting vectors, and pass them through
a shared feed-forward layer to obtain a final se-
quence of vectors hi. Each vector corresponds
to two half-words: one half read by the forward
LSTM, and the other by the backward LSTM.

We then learn an attention model over these hid-

20

Figure 2: An illustration of Char2Vec. A bidirec-
tional LSTM reads the word (start and end of word
symbols represented by ˆ and $ respectively), out-
putting a sequence of hidden states. These are then
passed through a feed-forward layer (not shown),
weighted by an attention model (the square box in
the diagram) and summed to obtain the final word
representation.

den states: given a hidden state hi, we calculate
a weight αi = a(hi) such that

∑
αi = 1, and

then calculate the resulting vector for the word w
as f(w) =

∑
αihi. Following Bahdanau et al.

(2014), we calculate a as

a(hi) =
exp(vT tanh(Whi))∑
j exp(vT tanh(Whj))

(3)

i.e. a softmax over the hidden states.

3.1 Capturing morphology via attention
Previous work on bidirectional LSTM character-
level models used both LSTMs to read the entire
word (Ling et al., 2015; Ballesteros et al., 2015).
This can lead to redundancy, as both LSTMs are
used to capture the full word. In contrast, our
model is capable of splitting the words and op-
timizing the two LSTMs for modelling different
halves. This means one of the LSTMs can spe-
cialize on word prefixes and roots, while the other
memorizes possible suffixes. In addition, when
dealing with an unknown word, it can be split into

Figure 3: An illustration of the attention model
(start and end of word symbols omitted). The root
morpheme contributes the most to predicting the
context, and is upweighted. In contrast, another
potential split is inaccurate, and predicts the wrong
context words. This is downweighted.

known and unknown components. The model can
then use the semantic knowledge it has learnt for
a known component to predict a representation for
the unknown word as a whole.

We hypothesize that the natural place to split
words is on morpheme boundaries, as morphemes
are the smallest unit of language which carry se-
mantic meaning. We test the splitting capabilities
of our model in §4.1.

4 Experiments

We evaluate our model on three tasks: morpho-
logical analysis (§4.1), semantic similarity (§4.2),
and analogy retrieval (§4.3). We trained all of the
models once, and then use the same trained model
for all three tasks – we do not perform hyperpa-
rameter tuning to optimize performance on each
task.

We trained our Char2Vec model on the Text8
corpus, consisting of the first 100MB of a 2006

21

cleaned-up dump of Wikipedia1. We only trained
on words which appeared more than 5 times in our
corpus. We used a context window size of 3 words
either side of the target word, and took 11 nega-
tive samples per positive sample, using the same
smoothed unigram distribution as word2vec.
The model was trained for 3 epochs using the
Adam optimizer (Kingma and Ba, 2015). All ex-
periments were carried out using Keras (Chollet,
2015) and Theano (Bergstra et al., 2010; Bastien
et al., 2012). We initialized the context lookup
table using word2vec2, and kept it fixed during
training. 3 In all character-level models, the char-
acter embeddings have dimension dC = 64, while
the forward and backward LSTMs have dimension
dLSTM = 256. The concatenation of both there-
fore has dimensionality d = 512. The concate-
nated LSTM hidden states are then compressed
down to dword = 256 by a feed-forward layer.

As baselines, we trained a SGNS model on the
same dataset with the same parameters. To test
how much the attention model helps the character-
level model to generalize, we also trained the
Char2Vec model without the attention layer, but
with the same parameters. In this model, the word
embeddings are just the concatenation of the fi-
nal forward and backward states, passed through a
feedforward layer. We refer to this model as C2V-
NO-ATT. We also constructed count-based vec-
tors using SVD on PPMI-weighted co-occurence
counts, with a window size of 3. We kept the top
256 principal components in the SVD decomposi-
tion, to obtain embeddings with the same size as
our other models.

4.1 Morphological awareness
The main innovation of our Char2Vec model com-
pared to existing recurrent character-level models
is the capability to split words and model each half
independently. Here we test whether our model
segmentations correspond to gold-standard mor-
phological analyses.

We obtained morphological analyses for all the
words in our training vocabulary which were in the
English Lexicon Project (Balota et al., 2007). We
then converted these into surface-level segmenta-

1available at mattmahoney.net/dc/text8
2We use the Gensim implementation:

https://radimrehurek.com/gensim/
3We experimented with updating the initialized context

lookup tables, and with randomly initialized context lookups,
but found they were influenced too much by orthographic
similarity from the character encoder.

tions using heuristic affix-matching, and used this
as a gold-standard morphemic analysis. We ended
up with 14682 words, of which 7867 have at least
two morphemes and 1138 have at least three.

Evaluating morphological segmentation is a
long-debated issue (Cotterell et al., 2016). Tra-
ditional hard morphological analyzers are nor-
mally evaluated on border F1 – that is, how many
morpheme borders are recovered. However, our
model does not actually posit any hard morpheme
borders. Instead, it just associates each charac-
ter boundary with a weight. Therefore, we treat
the problem of recovering intra-word morpheme
boundaries as a ranking problem. We rank each
inter-character boundary of a word according to
our model weights, and then evaluate whether our
model ranks morpheme boundaries above non-
morpheme boundaries.

We use mean average precision (MAP) as our
evaluation metric. We first calculate precision at
N for each word, until all the gold standard mor-
pheme boundaries have been recovered. Then, we
average over N to obtain the average precision
(AP) for that word. We then calculate the mean
of the APs across all words to obtain the MAP for
the model.

We report results of a random baseline as a point
of comparison, which randomly places morpheme
boundaries inside the word. We also report the
results of the Porter stemmer4, where we place a
morpheme boundary at the end of the stem, then
randomly thereafter.

Finally, we trained Morfessor 2.05 (Creutz and
Lagus, 2007) on our corpus, using an initial ran-
dom split value of 0.9, and stopping training when
the difference in loss between successive epochs is
less than 0.1% of the total loss. While Morfessor
is no longer state-of-the-art in morpheme recovery
(see, e.g. Narasimhan et al. (2015) for more re-
cent work), it has previously been as a component
in pipelines to build compositional word represen-
tations (Luong et al., 2013; Botha and Blunsom,
2014). We then used our trained Morfessor model
to predict morpheme boundaries6, and randomly
permuted the predicted morpheme boundaries and
ranked them ahead of randomly permuted non-
morpheme boundaries to calculate MAP.

4We used the NLTK implementation
5We used the Python implementation
6We found Morfessor to be quite conservative by default

in its segmentations. The 2nd ranked segmentation gave bet-
ter MAPs, which are the results we describe.

22

Model All word MAP Rich-morphology MAP

Random 0.233 0.261
Porter Stemmer 0.705 0.446

Morfessor 0.631 0.500
Char2Vec 0.593 0.586

Table 1: Results at retrieving intra-word mor-
pheme boundaries.

Word Model analysis Gold-standard analysis

carrying carry |ing carry |ing
leninism lenin |ism lenin |ism

lesbianism lesbia |nism lesbian |ism
buses buse |s bus |es

government gove |rnment govern |ment
unrepentant un |repent |ant un |repent |ant
weaknesses weak |nes |ses weak |ness |es

Table 2: Morphological analyses for sample words
from the corpus. We take the top N model predic-
tions as the split points, where N is the number of
gold-standard morphemes in the word.

As the test set is dominated by words with sim-
ple morphology, we also extracted all the morpho-
logically rich words with 3 or more morphemes,
and created a separate evaluation on this subsec-
tion. We report the results in Table 1.

As the results show, our model performs the
best out of all the methods at analysing morpho-
logically rich words with multiple morphemes. On
these words, our model even outperforms Morfes-
sor, which is explicitly designed as a morpholog-
ical analyzer. This shows that our model learns
splits which correspond well to human morpho-
logical analysis, even though we build no morpho-
logical knowledge into our model. However, when
evaluating on all words, the Porter stemmer has a
great advantage, as it is rule-based and able to give
just the stem of words with great precision, which
is effectively giving a canonical segmentation for
words with just 2 morphemes.

We show some model analyses against the gold
standard in Table 2.

4.2 Capturing semantic similarity
Next, we tested our model similarity scores
against human similarity judgments. For these
datasets, human annotators are asked to judge how
similar two words are on a fixed scale. Model
word vectors are evaluated based on ranking the
word pairs according to their cosine similarity, and
then measuring the correlation (using Spearman’s

Model WordSim353 MEN Test RW

PPMI-SVD 0.607 0.601 0.293
SGNS 0.667 0.557 0.388
C2V-NO-ATT 0.361 0.298 0.317
CHAR2VEC 0.345 0.322 0.282

Table 3: Similarity correlations of in-vocabulary
word pairs between the models and human anno-
tators.

Model WordSim353 MEN Test RW RW OOV

C2V-NO-ATT 0.358 0.292 0.273 0.233
CHAR2VEC 0.340 0.318 0.264 0.243

Table 4: Similarity correlations of all word pairs
between the character-level models and human an-
notators. RW OOV indicates results specifically
on pairs in the RW dataset with at least one word
not seen in the training corpus.

ρ) between model judgments and human judg-
ments (Levy et al., 2015).

We use the WordSim353 dataset (Finkelstein et
al., 2002), the test split of the MEN dataset (Bruni
et al., 2014), and the Rare Word (RW) dataset (Lu-
ong et al., 2013). The word pairs in the Word-
Sim353 and MEN datasets are typically simple,
commonly occurring words denoting basic con-
cepts, whereas the RW dataset contains many mor-
phologically derived words which have low corpus
frequencies. This is reflected by how many of the
test pairs in each dataset contain out of vocabu-
lary (OOV) items: 3/353 and 6/1000 of the word
pairs in WordSim353 and MEN, compared with
1083/2034 for the RW dataset.

We report results for in-corpus word pairs in Ta-
ble 3, and for all word pairs for those models able
to predict vectors for unseen words in Table 4.

Overall, word-based embedding models learn
vectors that correlate better with human judg-
ments, particularly for morphologically simple
words. However, character-based models are
competitive with word-based models on the RW
dataset. While the words in this dataset appear
rarely in our corpus (of the in-corpus words, over
half appear fewer than 100 times), each morpheme
may be common, and the character-level models
can use this information. We note that on the entire
RW dataset (of which over half contain an OOV
word), the character-based models still perform
reasonably. We also note that on word pairs in the
RW test containing at least one OOV word, the

23

In-vocabulary Out-of-Vocabulary
germany football bible foulness definately

Char2Vec unfiltered

germaine footballer bibles illness definitely
germanies footballing testament seriousness indefinitely
germain footballing librarianship sickness enthusiastically
germano foosball literature loudness emphatically

germaniae footballers librarian cuteness consistently

Char2Vec filtered

poland footballer testament illness definitely
german basketball literature blindness consistently
spain tennis hebrew consciousness drastically

germans rugby judaism hardness theoretically
france baseball biblical weakness infinitely

Table 5: Filtered and unfiltered model nearest neighbours for some in-vocabulary and out-of-vocabulary
words

full Char2Vec model outperforms the C2V model
without morphology. This suggests that character-
based embedding models are learning to morpho-
logically analyse complex word forms, even on
unseen words, and that giving the model the capa-
bility to learn word segments independently helps
this process.

We also present some word nearest neighbours
for our Char2Vec model in Table 5, both on the
whole vocabulary and then filtering the nearest
neighbours to only include words which appear
100 times or more in our corpus. This corresponds
to keeping the top 10k words, which is common
among language models (Ling et al., 2015; Kim et
al., 2016). We note that nearest neighbour pre-
dictions include words that are orthographically
distant but semantically similar, showing that our
model has the capability to learn to compose char-
acters into word meanings.

We also note that word nearest neighbours seem
to be more semantically coherent when rarely-
observed words are filtered out of the vocabulary,
and more based on orthographic overlap when the
entire vocabulary is included. This suggests that
for rarely-observed words, the model is basing its
predictions on orthographic analysis, whereas for
more commonly observed words it can ‘memo-
rize’ the mapping between the orthography and
word semantics.

4.3 Capturing syntactic and semantic
regularity

Finally, we evaluate the structure of the embed-
ding space of our various models. In particular,

Model All Acc Sem. Acc Syn. Acc

PPMI-SVD 0.365 0.444 0.341
SGNS 0.436 0.339 0.513
C2V-NO-ATT 0.316 0.016 0.472
CHAR2VEC 0.355 0.025 0.525

Table 6: Results on the Google analogy task

we test whether affixation corresponds to regular
linear shifts in the embedding space.

To do this, we use the Google analogy dataset
(Mikolov et al., 2013a). This consists of 19544
questions of the form “A is to B as C is to X”.
We split this collection into semantic and syntactic
sections, based on whether the analogies between
the words are driven by morphological changes or
deeper semantic shifts. Example semantic ques-
tions are on capital-country relationships (“Paris
is to France as Berlin is to X”) and currency-
country relationships (“pound is to Great Britain
as dollar is to X”). Example syntactic questions
are adjective-adverb relationships (“amazing is to
amazingly as apparent is to X”) and opposites
formed by prefixing a negation particle (“accept-
able is to unacceptable as aware is to X”). This
results in 5537 semantic analogies and 10411 syn-
tactic analogies.

We use the method of Mikolov et al. (2013a) to
answer these questions. We first `2-normalize all
of our word vectors. Then, to answer a question of
the form “A is to B as C is to X”, we find the word

24

w which satisfies

w = argmax
w∈V−{a,b,c}

cos(w, b− a+ c) (4)

where a, b, c are the word vectors for the words A,
B and C respectively.

We report the results in Table 6. The most in-
triguing result is that character-level models are
competitive with word-level models for syntactic
analogy, with our Char2Vec model holding the
best result for syntactic analogy answering. This
suggests that incorporating morphological knowl-
edge explicitly rather than latently helps the model
learn morphological features. However, on the se-
mantic analogies, the character-based models do
much worse than the word-based models. This is
perhaps unsurprising in light of the previous sec-
tion, where we demonstrate that character-based
models do worse at the semantic similarity task
than word-level models.

5 Discussion

We only report results for English. However, En-
glish is a morphologically impoverished language,
with little inflection and relatively few productive
patterns of derivation. Our morphology test set re-
flects this, with over half the words consisting of a
simple morpheme, and over 90% having at most 2
morphemes.

This is unfortunate for our model, as it performs
better on words with richer morphology. It gives
consistently more accurate morphological analy-
ses for these words compared to standard base-
lines, and matches word-level models for seman-
tic similarity on rare words with rich morphol-
ogy. In addition, it seems to learn morphosyntactic
features to help solve the syntactic analogy task.
Most of all, it is language-agnostic, and easy to
port across different languages. We thus expect
our model to perform even better for languages
with a richer morphology than English, such as
Turkish and German.

6 Conclusion

In this paper, we present a model which learns
morphology and word embeddings jointly. Given
a word, it splits the word in to segments and ranks
the segments based on their context-predictive
power. Our model can segment words into mor-
phemes, and also embed the word into a represen-
tation space.

We show that our model is competitive at the
task of morpheme boundary recovery compared to
a dedicated morphological analyzer, beating dedi-
cated analyzers on words with a rich morphology.
We also show that in the representation space word
affixation corresponds to linear shifts, demonstrat-
ing that our model can learn morphological fea-
tures.

Finally, we show that character-level models,
while outperformed by word-level models gener-
ally at the task of semantic similarity, are com-
petitive at representing rare morphologically rich
words. In addition, the character-level models can
predict good quality representations for unseen
words, with the morphologically aware character-
level model doing slightly better.

References
Harald R. Baayen, Richard Piepenbrock, and Leon Gu-

likers. 1995. The CELEX Lexical Database. Re-
lease 2 (CD-ROM). Linguistic Data Consortium,
University of Pennsylvania, Philadelphia, Pennsyl-
vania.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. ICLR.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs.
EMNLP.

David A. Balota, Melvin J. Yap, Keith A. Hutchi-
son, Michael J. Cortese, Brett Kessler, Bjorn Loftis,
James H. Neely, Douglas L. Nelson, Greg B. Simp-
son, and Rebecca Treiman. 2007. The english lexi-
con project. Behavior Research Methods.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155,
March.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a CPU and
GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference
(SciPy), June.

25

Jan A. Botha and Phil Blunsom. 2014. Composi-
tional Morphology for Word Representations and
Language Modelling. In ICML, Beijing, China, jun.
Award for best application paper.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Int.
Res.

John A. Bullinaria and Joseph P. Levy. 2007. Ex-
tracting semantic representations from word co-
occurrence statistics: A computational study. Be-
havior Research Methods.

Franois Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR, 12:2493–2537, November.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016.
A joint model of orthography and word segmenta-
tion. In NAACL.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Trans. Speech Lang. Process.,
4(1):3:1–3:34, February.

Ferdinand de Saussure. 1916. Course in General Lin-
guistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing search in context: The
concept revisited. ACM Trans. Inf. Syst.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27(2):153–198, June.

Sharon Goldwater, Mark Johnson, and Thomas L. Grif-
fiths. 2005. Interpolating between types and tokens
by estimating power-law generators. In Y. Weiss,
B. Schlkopf, and J. Platt, editors, NIPS, pages 459–
466. MIT Press, Cambridge, MA.

Zelig S. Harris. 1954. Distributional structure. Word.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780, November.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. AAAI.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR.

Angeliki Lazaridou, Marco Marelli, Roberto Zampar-
elli, and Marco Baroni. 2013. Compositional-ly
derived representations of morphologically complex
words in distributional semantics. ACL.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W.
Black, and Isabel Trancoso. 2015. Finding function
in form: Compositional character models for open
vocabulary word representation. EMNLP.

Minh-Thang Luong, Richard Socher, and Christo-
pher D. Manning. 2013. Better word representa-
tions with recursive neural networks for morphol-
ogy. In CoNLL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. ICLR Workshop.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. NIPS.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 2265–2273. Curran Associates,
Inc.

Karthik Narasimhan, Regina Barzilay, and Tommi S.
Jaakkola. 2015. An unsupervised method for un-
covering morphological chains. TACL.

Radu Soricut and Franz Ochs. 2015. Unsuper-
vised morphology induction using word embed-
dings. NAACL.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In In Proceedings of NAACL.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network.
ACL.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. NIPS.

George Kingsley Zipf. 1935. The psycho-biology of
language.

26

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 27–39,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

On the Compositionality and Semantic Interpretation of
English Noun Compounds

Corina Dima
Collaborative Research Center 833
University of Tübingen, Germany

corina.dima@uni-tuebingen.de

Abstract

In this paper we present a study cover-
ing the creation of compositional distri-
butional representations for English noun
compounds (e.g. computer science) using
two compositional models proposed in the
literature. The compositional representa-
tions are first evaluated based on their sim-
ilarity to the corresponding corpus-learned
representations and then on the task of au-
tomatic classification of semantic relations
for English noun compounds. Our experi-
ments show that compositional models are
able to build meaningful representations
for more than half of the test set com-
pounds. However, using pre-trained com-
positional models does not lead to the ex-
pected performance gains for the semantic
relation classification task. Models using
compositional representations have a sim-
ilar performance as a basic classification
model, despite the advantage of being pre-
trained on a large set of compounds.

1 Introduction

Creating word representations for multiword ex-
pressions is a challenging NLP task. The chal-
lenge comes from the fact that these constructions
have “idiosyncratic interpretations that cross word
boundaries (or spaces)” (Sag et al., 2002). A good
example of such challenging multiword expres-
sions are noun compounds (e.g. finger nail, health
care), where the meaning of a compound often in-
volves combining some aspect or aspects of the
meanings of its constituents.

Over the last few years distributed word repre-
sentations (Collobert et al., 2011b; Mikolov et al.,
2013; Pennington et al., 2014) have proven very
successful at representing single-token words, and
there have been several attempts at creating com-
positional distributional models of meaning for

multi-token expressions, in particular adjective-
word phrases (Baroni and Zamparelli, 2010), de-
terminer phrases (Dinu et al., 2013b) or verb
phrases (Yin and Schütze, 2014).

Studying the semantics of multiword units, and
in particular the semantic interpretation of noun
compounds has been an active area of research
in both theoretical and computational linguistics.
Here, one train of research has focused on under-
standing the mechanism of compounding by pro-
viding a label for the relation between the con-
stituents (e.g. in finger nail, the nail is PART OF the
finger) as in (Ó Séaghdha, 2008; Tratz and Hovy,
2010) or by identifying the preposition in the pre-
ferred paraphrase of the compound (e.g. nail of
the finger) as in (Lauer, 1995).

In this paper, we explore compositional distri-
butional models for English noun compounds, and
analyze the impact of such models on the task of
predicting the compound-internal semantic rela-
tion given a labeled dataset of compounds. At the
same time, we analyze the results of the compo-
sitional process through the lens of the semantic
relation annotation, in an attempt to uncover com-
pounding patterns that are particularly challenging
for the compositional distributional models.

2 Context and Compound Interpretation

There are two possible settings for compound
interpretation: out-of-context interpretation and
context-dependent interpretation.

Bauer (1983, pp. 45) describes a continuum of
types of complex words, arranged with respect
to their formation status and to how dependent
their interpretation is on the context: (i)“nonce for-
mations, coined by a speaker/writer on the spur
of the moment to cover some immediate need”,
where there is a large ambiguity with respect
to the meaning of the compound which cannot
be resolved without the immediate context (e.g.
Nakov’s (2013) example compound plate length,

27

for which a possible interpretation in a given con-
text could be what your hair is when it drags in
your food); (ii) institutionalized lexemes, whose
potential ambiguity is canceled by the frequency
of use and familiarity with the term, and whose
more established meaning could be inferred based
on the meanings of the constituents and prior
world experience, without the need for an imme-
diate context (e.g. orange juice); (iii) lexicalized
lexemes, where the meaning has become a con-
vention which cannot be inferred from the con-
stituents alone and can only be successfully inter-
preted if the term is familiar or if the context pro-
vides enough clues (e.g. couch potato1).

The available datasets we use (described in Sec-
tion 3) are very likely to contain some very low
frequency items of type (i), whose actual inter-
pretation would necessitate taking the immediate
context into account, as well some highly lexical-
ized compounds of type (iii), where the meaning
can only be deduced from context. Nevertheless,
because of a lack of annotated resources that pro-
vide the semantic interpretation of a compound to-
gether with its context, we will focus on the out-
of-context interpretation of compounds.

3 Datasets

3.1 English Compound Dataset for
Compositionality

The English compound dataset used for the com-
position tests was constructed from two existing
compound datasets and a selection of the nom-
inal compounds in the WordNet database. The
first existing compound dataset was described in
(Tratz, 2011) and contains 19158 compounds2.
The second existing compound dataset was pro-
posed in (Ó Séaghdha, 2008) and contains 1443
compounds3.

Additional compounds were collected from the
WordNet 3.1 database files 4, more specifically
from the noun database file data.noun. The
WordNet compound collection process involved
3 steps: (i) collecting all candidate compounds,

1a couch potato is not a potato, but a person who exercises
little and spends most of the time in front of a TV.

2The dataset is part of the semantically-enriched
parser described in (Tratz, 2011) which can be obtained
from http://www.isi.edu/publications/licensed-sw/

fanseparser/
3Available at http://www.cl.cam.ac.uk/˜do242/

Resources/1443_Compounds.tar.gz
4Available at http://wordnetcode.princeton.edu/

wn3.1.dict.tar.gz

i.e. words that contained an underscore or a dash
(e.g. abstract entity, self-service); (ii) filtering out
candidates that included numbers or dots, or had
more than 2 constituents; (iii) filtering out candi-
dates where either one of the constituents had a
part-of-speech tag that was different from noun
or verb. The part-of-speech tagging of the can-
didate compounds was performed using the spaCy
Python library for advanced natural language pro-
cessing5. The reason for allowing both noun
and verb as accepted part-of-speech tags was
that given the extremely limited context available
when PoS-tagging a compound the tagger would
frequently label as verb multi-sense words that
were actually nouns in the given context (e.g. eye
drop, where drop was tagged as a verb). The final
compound list extracted from WordNet 3.1 con-
tained 18775 compounds.

The compounds collected from all three re-
sources were combined into one list. The list
was deduplicated and filtered for capitalized com-
pounds (the Tratz (2011) dataset contained a small
amount of person names and titles). A final fil-
tering step removed all the compounds where ei-
ther of the two constituents or the compound itself
did not have a minimum frequency of 100 in the
support corpus (presented later, in Section 4.1).
The frequency filtering step was motivated by the
assumption that the compositional process can be
better modeled using “well-learned” word vectors
that are based on a minimum number of contexts.

The final dataset contains 27220 compounds,
formed through the combination of 5335 modifiers
and 4761 heads. The set of unique modifiers and
heads contains 7646 words, with 2450 words ap-
pearing both as modifiers and as heads. The dictio-
nary for the final dataset contains therefore 34866
unique words. The dataset was partitioned into
train, test and dev splits containing 19054,
5444 and 2722 compounds respectively.

3.2 English Compound Datasets for
Semantic Interpretation

The Tratz (2011) dataset and the Ó Séaghdha
(2008) dataset are both annotated with seman-
tic relations between the compound constituents.
The Tratz (2011) dataset has 37 semantic relations
and 19158 compounds. The Ó Séaghdha (2008)
dataset has 1443 compounds annotated with 6
coarse relation labels (ABOUT, ACTOR, BE, HAVE,

5https://spacy.io/

28

IN, INST). Appendix A lists the relations in the
two datasets together with some example anno-
tated compounds.

For both datasets a small fraction of the
constituents had to be recoded to the artificial
underscore-based form described in Section 4.1, in
order to maximize the coverage of the word repre-
sentations for the constituents (e.g. database was
recoded to data base).

4 Composition Models for English
Nominal Compounds

A common view of natural language regards it as
being inherently compositional. Words are com-
bined to obtain phrases, which in turn combine
to create sentences. The composition continues to
the paragraph, section and document levels. It is
this defining trait of human language, its compo-
sitionality, that allows us to produce and to under-
stand the potentially infinite number of utterances
in a human language.

Gottlob Frege (1848-1925) is credited with
phrasing this intuition into the form of a principle,
known as the Principle of Compositionality: “The
meaning of the whole is a function of the mean-
ing of the parts and their mode of combination”
(Dowty et al., 1981, p.8).

The adoption of distributional vectors as a
proxy for the meaning of individual words (in
other words, having a “meaning of the parts”) en-
couraged researchers to focus their attention on
finding composition models which could act as the
“mode of combination”.

When applied to vector space models of lan-
guage, the idea of looking for a “mode of
combination” translates to finding a composi-
tion function f which takes as input some n-
dimensional distributional representations for the
two constituents constructed using a support cor-
pus, ucorpus, vcorpus ∈ Rn and outputs another
n-dimensional representation for the compound
pcomposed ∈ Rn,

pcomposed = f(ucorpus, vcorpus)

Additionally, we consider pcorpus ∈ Rn, the
learned representation for the compound, to be the
“gold standard” for the composed representation
of the compound pcomposed. Therefore the com-
position function f should minimize JMSE , the
mean squared error between the composed and the

corpus-induced representations:

JMSE =
nc∑
i=1

1
n

n∑
j=1

(pcomposed
ij − pcorpus

ij)2

where nc is the number of compounds in our
dataset.

Previous studies like (Guevara, 2010; Baroni
and Zamparelli, 2010) evaluate their proposed
composition functions on training data created us-
ing the following procedure: first, they gather a
set of word pairs to model. Then, a large corpus
is used to construct distributional representations
both for the word pairs as well as for the individ-
ual words in each pair. In order to derive word pair
representations the corpus is first pre-processed
such that all the occurrences of the word pairs of
interest are linked with the underscore character
‘ ’. This tricks the tokenizer into considering each
pair a singe-unit word, thus making it possible to
record its co-occurrence statistics using the same
distributional methods one would use for a gen-
uine single-unit word.

The same methodology is applied here for creat-
ing a training dataset for compositional models us-
ing the list of compounds described in Section 3.1.
The process is detailed in Section 4.1.

Next, we selected two composition functions
(we also refer to them as composition models)
from the ones presented in the literature:

• the full additive model, introduced in Zan-
zotto et al. (2010) (in their work this model
is called the estimated additive model) and
popularized as part of the DISSECT toolkit
(Dinu et al., 2013a; Dinu et al., 2013b). In
this model the two constituent vectors u and
v ∈ Rn are composed by multiplying them
via two square matrices A,B ∈ Rn×n. A
and B are the same for every u and v, so dur-
ing training we only have to estimate the pa-
rameters in two n × n matrices, making the
model constant in the number of parameters.
The mathematical formulation of the full ad-
ditive model is presented in Eq. 1.

p = Au + Bv (1)

• the matrix model, introduced in Socher et al.
(2011). It is a non-linear composition model
where the constituent vectors u, v ∈ Rn

are first concatenated, resulting in a vector

29

[u; v] ∈ R2n and then multiplied with a ma-
trix W ∈ R2n×n. The result of the mul-
tiplication is an n-dimensional vector which
is passed as a final step through a non-linear
function g (in this case the element-wise hy-
perbolic tangent tanh). The parameter ma-
trix W which has to be estimated during the
training process is the same for all the pos-
sible input vectors u and v. Since this com-
position function is implemented via a neural
network, a bias term b ∈ Rn is added after the
multiplication of the matrix W with the con-
catenated vector [u; v]. The complete form of
this composition function is given in Eq. 2.

p = g(W[u; v] + b) (2)

The preference for these particular composition
models is justified by their constant number of pa-
rameters with respect to the vocabulary size. This
allows us to use this composition model for a sig-
nificantly larger number of constituents than the
one in the list of compounds it was trained on. In
particular, this allows us to predict a composition
vector even for the compounds that were not at-
tested in the corpus, if their constituents are fre-
quent enough to be part of our full vocabulary.

Both models were reimplemented using the
Torch7 library (Collobert et al., 2011a), whose nn-
graph module allows for an easy creation of archi-
tectures with multiple inputs and outputs. Reim-
plementing the composition models is also justi-
fied by the use of trained composition models as
a form of pre-training for the semantic interpreta-
tion models described in Section 5.

4.1 Compound-aware Word Representations
The support corpus for creating English word rep-
resentations for compositionality experiments (re-
ferred to in Section 3.1) was obtained by concate-
nating the raw text from the ENCOW14AX corpus
(Schäfer, 2015) and the pre-processed 2014 En-
glish Wikipedia dump described and made avail-
able in Müller and Schütze (2015). A preprocess-
ing step similar to the one described in Müller
and Schütze (2015) was applied to the concate-
nated corpus: the text was lowercased and the dig-
its were replaced with 0s. An additional prepro-
cessing step was necessary for creating compound
representations. A list of compounds (described
in Section 3.1) was used to recode the initial cor-
pus such that the two-part compounds in the list

would be considered a single token. The recod-
ing process involved replacing different spelling
variants of a compound - written as two sepa-
rate words, contiguously or with a dash (as in
dress code, dresscode or dress-code), as well as
their respective plural forms (dress codes, dress-
codes, dress-codes) with an artificial underscore-
based form (e.g. dress code). We did not, how-
ever, modify the plural first constituents (i.e. sav-
ings account), nor did we normalize the spelling
variation which is the result of different spelling
standards as in color scheme (American English)
and colour scheme (British English). The result
was a 9 billion words raw-text corpus with a cor-
responding vocabulary containing 424,014 words
(both simplex words and compounds) with mini-
mum frequency 100 (the full vocabulary had 16M
words).

The raw-text corpus was the basis for training
300 dimensional word representations using the
GloVe package (Pennington et al., 2014). The
GloVe model was trained for 15 iterations using
a 10-word symmetric context (20 words in total)
for constructing the co-occurence matrix. The
vector spaces were normalized to the L2-norm,
first across features and then across samples using
scikit-learn (Pedregosa et al., 2011).

4.2 Evaluation and Results

The parameters of the two composition models
described in Section 4 were estimated with the
help of the list of compounds in the train set
described in Section 3.1 and the word represen-
tations presented in Section 4.1. We evaluated
the performance of the composition models on the
test split of the dataset, using the rank evalu-
ation proposed by Baroni and Zamparelli (2010).
Using a trained model, we generate composed rep-
resentations for all the compounds in the test
set. The composed representation of each com-
pound is ranked with respect to all the 34866
unique words in the dictionary (the set of all
compounds and their respective constituents) us-
ing the cosine similarity. The best possible re-
sult is when the corpus-learned representation is
the nearest neighbor of the composed representa-
tion, and corresponds to assigning the rank 1 to
the composed vector. Rank 2 is assigned when the
corpus-learned representation is the second near-
est neighbor, and so on. The cut-off rank 1000
is assigned to all the representations with a rank

30

VARIE
TY

&GEN
US_

OF

TO
PI
C_O

F_
COGNIT

IO
N&EM

OTI
ON

JU
ST

IF
IC

ATI
ON

PA
RTI

AL_
ATT

RIB
UTE

_T
RANSF

ER

W
HOLE

+
ATT

RIB
UTE

&FE
ATU

RE&
QUALI

TY
_V

ALU
E_

IS
_C

HARACTE
RIS

TI
C_O

F

EX
PE

RIE
NCER

-O
F-

EX
PE

RIE
NCE

TI
M
E-

OF2

TO
PI
C_O

F_
EX

PE
RT

M
IT

IG
ATE

&OPP
OSE

ADJ-L
IK

E_
NOUN

OBTA
IN

&ACCES
S&

SE
EK

LE
XIC

ALI
ZED

AM
OUNT-

OF

USE
R_R

EC
IP
IE

NT

CONTA
IN

CREA
TO

R-P
ROVID

ER
-C

AUSE
_O

F

M
EA

NS

ORGANIZ
E&

SU
PE

RVIS
E&

AUTH
ORIT

Y

W
HOLE

+
PA

RT_
OR_M

EM
BER

_O
F

PA
RT&

M
EM

BER
_O

F_
COLL

EC
TI

ON&CONFI
G&SE

RIE
S

PU
RPO

SE

TI
M
E-

OF1

OW
NER

-U
SE

R

SU
BST

ANCE-
M
ATE

RIA
L-

IN
GRED

IE
NT

EM
PL

OYE
R

SU
BJE

CT

M
EA

SU
RE

CREA
TE

-P
ROVID

E-
GEN

ER
ATE

-S
EL

L

LO
CATI

ON

OTH
ER

REL
ATI

ONAL-
NOUN-C

OM
PL

EM
EN

T

EQ
UATI

VE

TO
PI
C

PE
RFO

RM
&EN

GAGE_
IN

OBJE
CTI

VE

0

5

10

15

20

25

m
e
d
ia

n
 r

a
n
ks

0

500

1000

1500

2000

2500

3000

co
m

p
o
u
n
d
 c

o
u
n
t

Figure 1: Semantic relations in the Tratz (2011) dataset: number of compounds labeled with a relation
(green triangle) vs. the median rank assigned to their composed representations by the full additive model
(blue circle).

≥ 1000. The first, second and third quartiles (Q1,
Q2/median, Q3) are then computed for the sorted
list of ranks of the composed representations of the
test set compounds. The result of our evaluation
are displayed in Table 1.

Model Ranks dev Ranks test
Q1 Q2 Q3 Max Q1 Q2 Q3 Max

matrix 2 5 28 1K 1 5 25 1K
full additive 1 5 28 1K 1 5 25 1K

Table 1: Composition models results: quartiles
for the ranks assigned to the dev and test com-
posed representations (lower is better).

Both composition models obtain good results
on the test dataset with respect to the Q1, Q2,
Q3 quartiles. Ranks in the 1-5 range, which were
assigned to half of the test set compounds cor-
respond to a well-built compound representation
which resides in the expected vectorial neighbor-
hood. For the next quarter of the data, the rank in
the 6-25 range points to a representation that might
still be considered reasonable depending on the
application. For the last segment of ranked com-
pounds the constructed representations are most
likely incorrect. As detailed in the next paragraph,
such high ranks usually suggest a difficulty in cre-
ating a compound representation based on the con-
stituent representations and indicate that the com-
pound belongs to a special class (e.g. lexicalized,
multi-sense etc). For both models the maximum
assigned rank is the cut-off rank 1000.

To put these results into perspective, the results

of compositional models were interpreted through
the lens of annotated semantic relations in publicly
available datasets. Figure 1 plots the median rank
assigned to the compounds with a particular se-
mantic relation against the number of compounds
labeled with that semantic relation in the subset
of the Tratz (2011) dataset included in the compo-
sitionality dataset described in Section 3.1. The
figure confirms the intuition that recovering the
meaning of lexicalized compounds like eye candy
and basket case is very difficult given only the
constituents: the LEXICALIZED relation, which
labels 131 compounds, has the median rank 27.
Another difficult semantic relation for the compo-
sition model is PARTIAL ATTRIBUTE TRANSFER,
which labels compounds such as hairline crack
and bullet train, which has a median rank of 12
for its 41 compounds. The high median rank sug-
gests that this type of attributive relation is difficult
to model using distributional representations of the
individual constituents, as it is based on a common
attribute which is not present in the surface form
of the compound (the width for the hairline and
the crack; the speed for the bullet and the train).

5 Automatic Semantic Relation
Classification for English Nominal
Compounds

The goal of the current section is to asses the im-
pact of composition models on the task of auto-
matic semantic relation classification for English
nominal compounds. The semantic relation classi-
fication task deals with predicting the correct label
for the relation between the constituents of a com-

31

pound, given a fixed set of possible labels (e.g. the
label of the relation linking iron to fence in iron
fence is MATERIAL). The two datasets described
in Section 3.2 are used as a testbed for the com-
parison of the composition models described in
Section 4. The state of the art results for these
datasets are 65.4% 5-fold cross-validation (CV)
accuracy for the Ó Séaghdha dataset, obtained in
Ó Séaghdha and Copestake (2013), 79.3% 10-
fold CV accuracy for an unpublished version of
the Tratz dataset, with 17509 noun pairs annotated
with 43 semantic relations (Tratz and Hovy, 2010)
and 77.70% 10-fold CV accuracy on a subset of
the Tratz (2011) dataset obtained in (Dima and
Hinrichs, 2015).

Our MLP architecture for semantic classifica-
tion consists of two modules: the composition
module which constructs the compound represen-
tation from the representations of its constituents
and the classification module which takes as in-
put the constructed compound representation and
uses it as a basis for classifying the compound with
respect to the semantic relations defined by each
dataset.6

In the experiments described next the architec-
ture of the composition module varies according
to the method used for creating compound rep-
resentations, while the classification module al-
ways follows the same architecture: a linear layer
Wrel ∈ Rnc×k where nc is the dimensionality of
the compound representation and k is the number
of semantic relations in the dataset, the nonlin-
earity tanh and a softmax layer that selects the
“winning” semantic relation from the k possible
relations. Another constant addition to the full ar-
chitecture is a 0.1 dropout layer for regularization
and a reLU nonlinearity between the composition
and the classification modules.

All the described models are trained using a
negative log-likelihood criterion, optimized with
mini-batch Adagrad (Duchi et al., 2011) with a
fixed initial learning rate (0.1, Tratz dataset; 5e−2,
Ó Séaghdha dataset), learning rate decay 1e − 5,
weight decay 1e− 5 and a batch size of 100 as hy-
perparameters for the optimization process. The
models are trained using early stopping with a pa-
tience of 100 epochs.

Our working hypothesis is that learning first
how to compose, and then doing the semantic re-

6The code for composing representations and for doing
automatic classification of semantic relations is available at
https://github.com/corinadima/gWordcomp

lation classification task should yield better results
than when the composition is learned based only
on the signal provided by the classification task.
We expect that pre-training the composition mod-
ule would make the semantic relation classifica-
tion task easier and that having a good compound
representation would aid its semantic interpreta-
tion.

We define as a basic composition module a
simple architecture that takes as input u and v,
the two n-dimensional constituent representations,
concatenates them, and multiplies the concate-
nated 2n-dimensional vector with a matrix W .
Depending on the output dimensions of the model
we want to compare it to, the dimensions of W
will range from ∈ R2n×n to ∈ R2n×4n.

Table 2 presents the results of the classification
models, grouped according to the number of pa-
rameters in the composition module. We used the
matrix and full additive composition models eval-
uated in Section 4.2 as pre-trained composition
modules.

The first two rows in Table 2 present the results
of doing semantic relation classification using the
composed compound representations as the only
input to the classifier. In these settings, which are
labeled compoM300×600 and compoFA300×600, the
input is the composed representation as computed
by the pretrained matrix and full additive compo-
sition models. The composed representations are
kept fixed during the classification process. This
configuration obtained the weakest results from all
the tested configurations. An explanation for this
result might be that the composition models per-
form well for only half of our test compounds,
meaning that a good portion of the compounds
have a potentially suboptimal representation.

In the next two rows the pre-trained
composition models are fine-tuned for
the semantic classification task (models
labeled pretrain matrix600×300 and pre-
train fullAdditive600×300). The input in this
case are the initial corpus-based vectors of the two
constituents.

Contrary to our hypothesis, the classification re-
sults of the basic600×300 model (the last model in
the first subsection) are on par or slightly better
than the previous results, where the classification
used the direct or fine-tuned output of a pre-trained
composition module.

This effect extends to the other settings that

32

Composition module Pre-trained? Fine-tuned? Tratz CV Ó Séaghdha CV
compoM300×600 yes no 74.22% 57.52%
compoFA300×600 yes no 73.70% 56.62%
pretrain matrix600×300 yes yes 78.05% 59.18%
pretrain fullAdditive600×300 yes yes 77.89% 59.18%
basic600×300 no no 78.57% 59.25%
pretrain matrix fullAdd600×600 yes yes 78.92% 59.39%
basic600×600 no no 78.88% 59.60%
c1c2 compoM900×900 yes no 79.06% 61.12%
c1c2 compoFA900×900 yes no 79.07% 59.60%
basic600×1200 no no 79.03% 59.60%
c1c2 compoMcompoFA1200×1200 yes no 79.16% 59.18%
basic600×2400 no no 79.36% 58.49%

Table 2: Semantic relation classification results on the Tratz and Ó Séaghdha datasets using accuracy
as a classification measure. Results obtained through 10-fold cross-validation on the Tratz dataset and
5-fold CV on the Ó Séaghdha dataset (with the original folds).

were investigated, where:

• both pre-trained composition models are
used for the composition module; the com-
pound representation is the concatenation
of the two composed representations (pre-
train matrix fullAdd600×600); even if the
combined classifier outperforms each of the
classifiers based on only one composition
model, its results are still on par with the ones
of the basic classifier with a similar num-
ber of parameters (basic600×600, see results
in Table 2, subsection 2).

• the initial vector representations of
the constituents as well as their
composed representation are used
as an input (c1c2 compoM900×900,
c1c2 compoFA900×900); the composition
is in this case not fine-tuned; the results
on the Tratz (2011) dataset are again
similar to the comparable basic model
(basic600×1200). The c1c2 compoM900×900

obtains the best overall result, 61.12%, on
the Ó Séaghdha (2008) dataset.

• the input consists of the initial vector rep-
resentations and both composed representa-
tions (c1c2 compoMcompoFA1200×1200); the
composed vectors are fixed; the results are
compared to the basic600×2400 model (again,
with a similar number of parameters). This
last section contains the best overall result for

the Tratz (2011) dataset, 79.36%, obtained by
the basic600×2400 model.

To understand this unexpected result we
analyzed the predictions made by the best
performing classification models, basic600×2400

and c1c2 compoMcompoFA1200×1200, on the
Tratz (2011) dataset. The analysis targeted the dis-
tribution of errors per semantic relation for each
of the two classifiers. As the distribution of com-
pounds labeled with a particular semantic relation
is rather skewed, we found it more informative
to look at the percentage of errors for each class
(shown in Figure 2) rather than at the absolute er-
ror values.

A first conclusion that can be drawn from this
figure is that the two models have roughly the
same distribution of errors: both struggle the
most with the semantic relations with a low com-
pound count (left side of the figure) and with the
class of lexicalized compounds. In addition, even
some of the relations with more than 500 labeled
examples (starting from SUBSTANCE-MATERIAL-
INGREDIENT) remain difficult to identify (in par-
ticular the heterogeneous OTHER relation, which
labels compounds whose relation is not covered
by the rest of the inventory, and the EQUATIVE re-
lation, which labels compounds based on subtype
or logical-and relations, i.e. mozzarella cheese, fe-
male owner).

An analysis of the classification errors revealed
that both classifiers actually struggle to generalize
above the lexical level. If a word has the majority

33

VARIE
TY

&GEN
US_

OF

JU
ST

IF
IC

ATI
ON

W
HOLE

+
ATT

RIB
UTE

&FE
ATU

RE&
QUALI

TY
_V

ALU
E_

IS
_C

HARACTE
RIS

TI
C_O

F

TO
PI
C_O

F_
COGNIT

IO
N&EM

OTI
ON

PA
RTI

AL_
ATT

RIB
UTE

_T
RANSF

ER

TI
M
E-

OF2

PE
RSO

NAL_
NAM

E

EX
PE

RIE
NCER

-O
F-

EX
PE

RIE
NCE

PE
RSO

NAL_
TI

TL
E

TO
PI
C_O

F_
EX

PE
RT

LE
XIC

ALI
ZED

M
IT

IG
ATE

&OPP
OSE

OBTA
IN

&ACCES
S&

SE
EK

AM
OUNT-

OF

USE
R_R

EC
IP
IE

NT

CONTA
IN

ADJ-L
IK

E_
NOUN

M
EA

NS

CREA
TO

R-P
ROVID

ER
-C

AUSE
_O

F

ORGANIZ
E&

SU
PE

RVIS
E&

AUTH
ORIT

Y

W
HOLE

+
PA

RT_
OR_M

EM
BER

_O
F

PA
RT&

M
EM

BER
_O

F_
COLL

EC
TI

ON&CONFI
G&SE

RIE
S

PU
RPO

SE

OW
NER

-U
SE

R

TI
M
E-

OF1

EM
PL

OYE
R

SU
BST

ANCE-
M
ATE

RIA
L-

IN
GRED

IE
NT

SU
BJE

CT

M
EA

SU
RE

CREA
TE

-P
ROVID

E-
GEN

ER
ATE

-S
EL

L

LO
CATI

ON

OTH
ER

EQ
UATI

VE

REL
ATI

ONAL-
NOUN-C

OM
PL

EM
EN

T

TO
PI
C

PE
RFO

RM
&EN

GAGE_
IN

OBJE
CTI

VE

0

20

40

60

80

100

%
 c

la
ss

if
ic

a
ti

o
n
 e

rr
o
rs

basic600× 2400

c1c2_compoMcompoFA1200× 1200

Figure 2: Error analysis for semantic relation classification on the Tratz (2011) dataset: the percentage of
errors for each semantic class for the basic600×2400 (blue, left) and the c1c2 compoMcompoFA1200×1200

(green, right) models. The semantic relations are sorted by compound count (low count to the left, high
count to the right).

of compounds labeled with a relation (e.g. TOPIC

for compounds with guide: travel guide, fishing
guide), other compounds with the head guide will
be assigned the same relation (e.g. user guide
is labeled TOPIC although the correct relation is
USER RECIPIENT). This phenomenon where the
classifier memorizes lexical associations between
words in particular slots and classification labels
as opposed to learning relations between the words
in the two slots is referred to in Levy et al. (2015)
as lexical memorization. To get a sense of how this
phenomenon affects our classification task we plot
in Figure 3 two ratios for every semantic relation
in the Tratz (2011) dataset: the number of distinct
modifiers over the total number of compounds and
the number of distinct heads over the total number
of compounds. A small ratio indicates that a large
subset of the compounds labeled with a particular
semantic relation share a common constituent: for
example, the ADJ-LIKE NOUN subclass has only
7 distinct modifiers for 254 compounds, resulting
in a very low modifier ratio (0.03). Similarly the
AMOUNT OF subclass has 168 compounds with 15
heads (head ratio: 0.09).

Comparing Figure 3 to Figure 2, one can ob-
serve that the majority of the classes with ei-
ther a low head ratio or a low modifier ra-
tio also have the lowest percentage of er-
rors per class. This is the case for relations
like TIME OF2, TOPIC OF EXPERT, AMOUNT-OF,
ADJ-LIKE NOUN and MEASURE, all of which
have under 10% error rate. A notable excep-
tion is the PERSONAL NAME semantic relation for
which the classifiers manage to have a small error

rate even with very diverse modifiers and heads
(both modifier and head ratio is 0.96). A more re-
alistic estimate of the actual performance of the
classifiers are the semantic relations which have
both a larger number of compounds and a more
diverse set of constituents, like in the case of
USER RECIPIENT, CREATOR PROVIDER CAUSE-
OF, WHOLE+PART OR MEMBER OF or PURPOSE,
which have a 40-60% error rate.

As a concluding point, the best results in our
study are comparable to the respective state-of-
the-art counterparts (79.3%/77.70% accuracy vs.
79.36% accuracy on the Tratz data; 65.4% vs.
61.12% on the Ó Séaghdha data). However, it
must be taken into account that in this study
the only available information for the classifiers
comes from the word embeddings themselves, and
from the correlations learned in the composition
process. By contrast the classifiers used in (Tratz
and Hovy, 2010; Tratz, 2011) relied on an exten-
sive feature set which included information from
the WordNet (hypernyms, synonyms, gloss, part-
of-speech indicators; “lexicalized” indicator if the
compound had an WN entry as a single term), Ro-
get’s thesaurus, surface-level features and n-gram
features extracted from the Web 1T corpus. The
state-of-the-art of the Ó Séaghdha (2008) dataset
is based on both lexical features (for the individ-
ual constituents, constructed on the basis of de-
pendency relations) and relational features (for the
typical interactions of constituents, constructed on
the basis of contexts where the constituents appear
together as separate words). The distributional
representations we use as input are likely to cap-

34

VARIE
TY

&GEN
US_

OF

JU
ST

IF
IC

ATI
ON

W
HOLE

+
ATT

RIB
UTE

&FE
ATU

RE&
QUALI

TY
_V

ALU
E_

IS
_C

HARACTE
RIS

TI
C_O

F

TO
PI
C_O

F_
COGNIT

IO
N&EM

OTI
ON

PA
RTI

AL_
ATT

RIB
UTE

_T
RANSF

ER

TI
M
E-

OF2

PE
RSO

NAL_
NAM

E

EX
PE

RIE
NCER

-O
F-

EX
PE

RIE
NCE

PE
RSO

NAL_
TI

TL
E

TO
PI
C_O

F_
EX

PE
RT

LE
XIC

ALI
ZED

M
IT

IG
ATE

&OPP
OSE

OBTA
IN

&ACCES
S&

SE
EK

AM
OUNT-

OF

USE
R_R

EC
IP
IE

NT

CONTA
IN

ADJ-L
IK

E_
NOUN

M
EA

NS

CREA
TO

R-P
ROVID

ER
-C

AUSE
_O

F

ORGANIZ
E&

SU
PE

RVIS
E&

AUTH
ORIT

Y

W
HOLE

+
PA

RT_
OR_M

EM
BER

_O
F

PA
RT&

M
EM

BER
_O

F_
COLL

EC
TI

ON&CONFI
G&SE

RIE
S

PU
RPO

SE

OW
NER

-U
SE

R

TI
M
E-

OF1

EM
PL

OYE
R

SU
BST

ANCE-
M
ATE

RIA
L-

IN
GRED

IE
NT

SU
BJE

CT

M
EA

SU
RE

CREA
TE

-P
ROVID

E-
GEN

ER
ATE

-S
EL

L

LO
CATI

ON

OTH
ER

EQ
UATI

VE

REL
ATI

ONAL-
NOUN-C

OM
PL

EM
EN

T

TO
PI
C

PE
RFO

RM
&EN

GAGE_
IN

OBJE
CTI

VE

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o
 o

f
d
is

ti
n
ct

 m
o
d
if
ie

rs
 o

r
h
e
a
d
s

to
 #

co
m

p
o
u
n
d
s

(p
e
r

re
la

ti
o
n
)

distinct modifier ratio

distinct head ratio

minimum ratio

Figure 3: Diversity of modifiers and heads per relation: a low ratio for either the modifier (blue circle)
or the head (green triangle) correlates with a small error rate for the classification task.

ture both lexical and relational aspects, but do not
explicitly model pairwise constituent interactions.

6 Conclusions

In this paper we have presented a study covering
the creation of compositional distributional rep-
resentations for English noun compounds. The
representations created by the compositional mod-
els were further evaluated on the task of auto-
matic semantic relation classification for English
noun compounds, using two preexisting annotated
datasets. The experiments are, to the best of
our knowledge, the first compositional investiga-
tions focusing on English noun compounds. The
composition models have a good performance and
manage to build meaningful composed vectors for
half of the test set compounds.

The investigation of semantically annotated
compound datasets revealed that composition
models cannot represent compounds with lexical-
ized meaning. This suggests that the represen-
tations of compounds where the meaning of the
whole is substantially different from the one of
the parts should be learned directly from corpus
co-occurence data. Another vocabulary-related
observation concerns the extensive pre-processing
necessary to create distributional representations
for compounds. Spelling variation (e.g. health
care, health-care, healthcare) artificially creates
separate forms with the same meaning. Such
forms should be identified and collapsed back to a
single meaning representation when creating vec-
tor space models of language.

The semantic relation classification experi-
ments showed that state-of-the-art composition
models must be further refined before they can
be of use for downstream semantic tasks. In our
experiments compositional models were unable to
improve upon a basic model for semantic relation
identification, despite being pretrained on a large
set of compounds. Their mediocre performance on
the semantic relation classification task is likely
caused by the use of individual word representa-
tions as the exclusive source of input, combined
with the expectation that mathematical composi-
tion functions can directly extract and model pat-
terns of interaction between pairs of words. We
hypothesize that composition models can be im-
proved by first modeling the semantic relations be-
tween words and then using the semantic relation
representations together with the word representa-
tions as inputs to the composition process.

Acknowledgments

The author is indebted to Melanie Bell for the
fruitful discussions and her comprehensive com-
ments on the initial draft of the paper. The author
would also like to thank Emanuel Dima and Er-
hard Hinrichs, as well as the anonymous reviewers
for their insightful comments and suggestions. Fi-
nancial support for the research reported in this pa-
per was provided by the German Research Foun-
dation (DFG) as part of the Collaborative Research
Center “The Construction of Meaning” (SFB 833),
project A3.

35

References
Marco Baroni and Roberto Zamparelli. 2010. Nouns

are vectors, adjectives are matrices: Represent-
ing adjective-noun constructions in semantic space.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP
2010), pages 1183–1193, Massachussetts, USA.

Laurie Bauer. 1983. English word-formation. Cam-
bridge University Press.

Ronan Collobert, Koray Kavukcuoglu, and Clément
Farabet. 2011a. Torch7: A Matlab-like environment
for machine learning. In BigLearn, NIPS Workshop.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011b. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Corina Dima and Erhard Hinrichs. 2015. Auto-
matic noun compound interpretation using deep neu-
ral networks and word embeddings. In Proceedings
of the 11th International Conference on Computa-
tional Semantics (IWCS 2015), pages 173–183, Lon-
don, UK.

Georgiana Dinu, The Pham Nghia, and Marco Baroni.
2013a. DISSECT - DIStributional SEmantics Com-
position Toolkit. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2013), pages 31–36, Sofia, Bulgaria.

Georgiana Dinu, The Pham Nghia, and Marco Baroni.
2013b. General estimation and evaluation of com-
positional distributional semantic models. In ACL
Workshop on Continuous Vector Space Models and
their Compositionality, Sofia, Bulgaria.

David R. Dowty, Robert Wall, and Stanley Peters.
1981. Introduction to Montague semantics, vol-
ume 11 of Synthese Language Library. Springer
Science & Business Media.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, 12:2121–2159.

Emiliano Guevara. 2010. A regression model of
adjective-noun compositionality in distributional se-
mantics. In Proceedings of the 2010 Workshop on
GEometrical Models of Natural Language Seman-
tics, pages 33–37. Association for Computational
Linguistics.

Mark Lauer. 1995. Designing statistical language
learners: Experiments on compound nouns. Ph.D.
thesis, Macquarie University.

Omer Levy, Steffen Remus, Chris Biemann, Ido Da-
gan, and Israel Ramat-Gan. 2015. Do Supervised

Distributional Methods Really Learn Lexical Infer-
ence Relations? In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics - Human Lan-
guage Technologies (NAACL HLT 2015), Denver,
CO, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Thomas Müller and Hinrich Schütze. 2015. Robust
morphological tagging with word representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies
(NAACL HLT 2015), Denver, CO, USA.

Preslav Nakov. 2013. On the interpretation of noun
compounds: Syntax, semantics, and entailment.
Natural Language Engineering, 19(03):291–330.

Diarmuid Ó Séaghdha and Ann Copestake. 2013. In-
terpreting compound nouns with kernel methods.
Natural Language Engineering, 19(03):331–356.

Diarmuid Ó Séaghdha. 2008. Learning compound
noun semantics. Ph.D. thesis, Computer Laboratory,
University of Cambridge. Published as University
of Cambridge Computer Laboratory Technical Re-
port 735.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of the Em-
piricial Methods in Natural Language Processing
(EMNLP 2014), volume 12.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for NLP. In Compu-
tational Linguistics and Intelligent Text Processing,
pages 1–15. Springer.

Roland Schäfer. 2015. Processing and querying large
web corpora with the COW14 architecture. In
Challenges in the Management of Large Corpora
(CMLC-3).

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2011), pages 151–161.
Association for Computational Linguistics.

36

Stephen Tratz and Eduard Hovy. 2010. A taxonomy,
dataset, and classifier for automatic noun compound
interpretation. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics (ACL-10), Uppsala, Sweden.

Stephen Tratz. 2011. Semantically-enriched parsing
for natural language understanding. Ph.D. thesis,
University of Southern California.

Wenpeng Yin and Hinrich Schütze. 2014. An explo-
ration of embeddings for generalized phrases. In
ACL 2014 Student Research Workshop, pages 41–
47, Baltimore, USA.

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating Linear Models for Compositional Distri-
butional Semantics. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics, pages 1263–1271.

37

A Overview of the Semantic Relations in the Tratz (2011) and Ó Séaghdha (2008)
Datasets

Category name Dataset percentage Example

Objective
OBJECTIVE 17.1% leaf blower

Doer-Cause-Means
SUBJECT 3.5% police abuse
CREATOR-PROVIDER-CAUSE OF 1.5% ad revenue
JUSTIFICATION 0.3% murder arrest
MEANS 1.5% faith healer

Purpose/Activity Group
PERFORM&ENGAGE IN 11.5% cooking pot
CREATE-PROVIDE-GENERATE-SELL 4.8% nicotine patch
OBTAIN&ACCESS&SEEK 0.9% shrimp boat
MITIGATE&OPPOSE 0.8% flak jacket
ORGANIZE&SUPERVISE&AUTHORITY 1.6% ethics authority
PURPOSE 1.9% chicken spit

Ownership, Experience, Employment, Use
OWNER-USER 2.1% family estate
EXPERIENCER-OF-EXPERIENCE 0.5% family greed
EMPLOYER 2.3% team doctor
USER RECIPIENT 1.0% voter pamphlet

Temporal Group
TIME-OF1 2.2% night work
TIME-OF2 0.5% birth date

Location and Whole+Part/Member of
LOCATION 5.2% hillside home
WHOLE+PART OR MEMBER OF 1.7% robot arm

Composition and Containment Group
CONTAIN 1.2% shoe box
SUBSTANCE-MATERIAL-INGREDIENT 2.6% plastic bag
PART&MEMBER OF COLLECTION&CONFIG&SERIES 1.8% truck convoy
VARIETY&GENUS OF 0.1% plant species
AMOUNT-OF 0.9% traffic volume

Topic Group
TOPIC 7.0% travel story
TOPIC OF COGNITION&EMOTION 0.3% auto fanatic
TOPIC OF EXPERT 0.7% policy expert

Other Complements Group
RELATIONAL-NOUN-COMPLEMENT 5.6% eye shape
WHOLE+ATTRIBUTE&FEATURE 0.3% earth tone
&QUALITY VALUE IS CHARACTERISTIC OF

Attributive and Equative
EQUATIVE 5.4% fighter plane
ADJ-LIKE NOUN 1.3% core activity
PARTIAL ATTRIBUTE TRANSFER 0.3% skeleton crew
MEASURE 4.2% hour meeting

Other
LEXICALIZED 0.8% pig iron
OTHER 5.4% contact lense

Personal*
PERSONAL NAME 0.5% Ronald Reagan
PERSONAL TITLE 0.5% Gen. Eisenhower

Table 3: Semantic relations in the Tratz inventory - abbreviated version of Table 4.5 from Tratz (2011).

38

Relation Frequency Proportion Examples

BE 191 13.2% guide dog, rubber wheel, cat burglar
HAVE 199 13.8% family firm, coma victim, sentence structure, computer clock, star cluster
IN 308 21.3% pig pen, air disaster, evening edition, dawn attack
ACTOR 266 18.4% army coup, project organiser
INST 236 16.4% cereal cultivation, foot imprint
ABOUT 243 16.8% history book, waterways museum, embryo research, house price

Table 4: Semantic relations in the Ó Séaghdha inventory - Table 6.2 from Ó Séaghdha (2008), augmented
with examples from Table 3.1.

39

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 40–52,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Functional Distributional Semantics

Guy Emerson and Ann Copestake
Computer Laboratory

University of Cambridge
{gete2,aac10}@cam.ac.uk

Abstract

Vector space models have become popu-
lar in distributional semantics, despite the
challenges they face in capturing various
semantic phenomena. We propose a novel
probabilistic framework which draws on
both formal semantics and recent advances
in machine learning. In particular, we sep-
arate predicates from the entities they refer
to, allowing us to perform Bayesian infer-
ence based on logical forms. We describe
an implementation of this framework us-
ing a combination of Restricted Boltz-
mann Machines and feedforward neural
networks. Finally, we demonstrate the fea-
sibility of this approach by training it on a
parsed corpus and evaluating it on estab-
lished similarity datasets.

1 Introduction

Current approaches to distributional semantics
generally involve representing words as points in
a high-dimensional vector space. However, vec-
tors do not provide ‘natural’ composition oper-
ations that have clear analogues with operations
in formal semantics, which makes it challenging
to perform inference, or capture various aspects
of meaning studied by semanticists. This is true
whether the vectors are constructed using a count
approach (e.g. Turney and Pantel, 2010) or an em-
bedding approach (e.g. Mikolov et al., 2013), and
indeed Levy and Goldberg (2014b) showed that
there are close links between them. Even the ten-
sorial approach described by Coecke et al. (2010)
and Baroni et al. (2014), which naturally captures
argument structure, does not allow an obvious ac-
count of context dependence, or logical inference.

In this paper, we build on insights drawn from
formal semantics, and seek to learn representa-

tions which have a more natural logical structure,
and which can be more easily integrated with other
sources of information.

Our contributions in this paper are to introduce a
novel framework for distributional semantics, and
to describe an implementation and training regime
in this framework. We present some initial results
to demonstrate that training this model is feasible.

2 Formal Framework of Functional
Distributional Semantics

In this section, we describe our framework, ex-
plaining the connections to formal semantics, and
defining our probabilistic model. We first motivate
representing predicates with functions, and then
explain how these functions can be incorporated
into a representation for a full utterance.

2.1 Semantic Functions

We begin by assuming an extensional model struc-
ture, as standard in formal semantics (Kamp and
Reyle, 1993; Cann, 1993; Allan, 2001). In the
simplest case, a model contains a set of entities,
which predicates can be true or false of. Mod-
els can be endowed with additional structure, such
as for plurals (Link, 2002), although we will not
discuss such details here. For now, the important
point is that we should separate the representation
of a predicate from the representations of the enti-
ties it is true of.

We generalise this formalisation of predicates
by treating truth values as random variables,1

1The move to replace absolute truth values with probabil-
ities has parallels in much computational work based on for-
mal logic. For example, Garrette et al. (2011) incorporate dis-
tributional information in a Markov Logic Network (Richard-
son and Domingos, 2006). However, while their approach
allows probabilistic inference, they rely on existing distribu-
tional vectors, and convert similarity scores to weighted logi-
cal formulae. Instead, we aim to learn representations which
are directly interpretable within in a probabilistic logic.

40

0

1

Figure 1: Comparison between a semantic function and a distribution over a space of entities. The veg-
etables depicted above (five differently coloured bell peppers, a carrot, and a cucumber) form a discrete
semantic space X . We are interested in the truth t of the predicate for bell pepper for an entity x ∈ X .
Solid bars: the semantic function P (t|x) represents how much each entity is considered to be a pepper,
and is bounded between 0 and 1; it is high for all the peppers, but slightly lower for atypical colours.
Shaded bars: the distribution P (x|t) represents our belief about an entity if all we know is that the pred-
icate for bell pepper applies to it; the probability mass must sum to 1, so it is split between the peppers,
skewed towards typical colours, and excluding colours believed to be impossible.

which enables us to apply Bayesian inference. For
any entity, we can ask which predicates are true of
it (or ‘applicable’ to it). More formally, if we take
entities to lie in some semantic spaceX (whose di-
mensions may denote different features), then we
can take the meaning of a predicate to be a func-
tion from X to values in the interval [0, 1], denot-
ing how likely a speaker is to judge the predicate
applicable to the entity. This judgement is variable
between speakers (Labov, 1973), and for border-
line cases, it is even variable for one speaker at dif-
ferent times (McCloskey and Glucksberg, 1978).

Representing predicates as functions allows us
to naturally capture vagueness (a predicate can be
equally applicable to multiple points), and using
values between 0 and 1 allows us to naturally cap-
ture gradedness (a predicate can be more applica-
ble to some points than to others). To use Labov’s
example, the predicate for cup is equally applica-
ble to vessels of different shapes and materials, but
becomes steadily less applicable to wider vessels.

We can also view such a function as a classifier
– for example, the semantic function for the pred-
icate for cat would be a classifier separating cats
from non-cats. This ties in with a view of concepts
as abilities, as proposed in both philosophy (Dum-
mett, 1978; Kenny, 2010), and cognitive science
(Murphy, 2002; Bennett and Hacker, 2008). A
similar approach is taken by Larsson (2013), who
argues in favour of representing perceptual con-
cepts as classifiers of perceptual input.

Note that these functions do not directly de-
fine probability distributions over entities. Rather,
they define binary-valued conditional distribu-

tions, given an entity. We can write this as P (t|x),
where x is an entity, and t is a stochastic truth
value. It is only possible to get a correspond-
ing distribution over entities given a truth value,
P (x|t), if we have some background distribution
P (x). If we do, we can apply Bayes’ Rule to get
P (x|t) ∝ P (t|x)P (x). In other words, the truth
of an expression depends crucially on our knowl-
edge of the situation. This fits neatly within a ver-
ificationist view of truth, as proposed by Dummett
(1976), who argues that to understand a sentence
is to know how we could verify or falsify it.

By using bothP (t|x) and P (x|t), we can distin-
guish between underspecification and uncertainty
as two kinds of ‘vagueness’. In the first case, we
want to state partial information about an entity,
but leave other features unspecified; P (t|x) rep-
resents which kinds of entity could be described
by the predicate, regardless of how likely we think
the entities are. In the second case, we have uncer-
tain knowledge about the entity; P (x|t) represents
which kinds of entity we think are likely for this
predicate, given all our world knowledge.

For example, bell peppers come in many
colours, most typically green, yellow, orange or
red. As all these colours are typical, the semantic
function for the predicate for bell pepper would
take a high value for each. In contrast, to define
a probability distribution over entities, we must
split probability mass between different colours,2

2In fact, colour would be most properly treated as a con-
tinuous feature. In this case, P (x) must be a probability den-
sity function, not a probability mass function, whose value
would further depend on the parametrisation of the space.

41

and for a large number of colours, we would only
have a small probability for each. As purple and
blue are atypical colours for a pepper, a speaker
might be less willing to label such a vegetable a
pepper, but not completely unwilling to do so –
this linguistic knowledge belongs to the semantic
function for the predicate. In contrast, after ob-
serving a large number of peppers, we might con-
clude that blue peppers do not exist, purple pep-
pers are rare, green peppers common, and red pep-
pers more common still – this world knowledge
belongs to the probability distribution over enti-
ties. The contrast between these two quantities is
depicted in figure 1, for a simple discrete space.

2.2 Incorporation with Dependency Minimal
Recursion Semantics

Semantic dependency graphs have become popu-
lar in NLP. We use Dependency Minimal Recur-
sion Semantics (DMRS) (Copestake et al., 2005;
Copestake, 2009), which represents meaning as
a directed acyclic graph: nodes represent predi-
cates/entities (relying on a one-to-one correspon-
dence between them) and links (edges) repre-
sent argument structure and scopal constraints.
Note that we assume a neo-Davidsonian approach
(Davidson, 1967; Parsons, 1990), where events are
also treated as entities, which allows a better ac-
count of adverbials, among other phenomena.

For example (simplifying a little), to represent
“the dog barked”, we have three nodes, for the
predicates the, dog, and bark, and two links: an
ARG1 link from bark to dog, and a RSTR link
from the to dog. Unlike syntactic dependencies,
DMRS abstracts over semantically equivalent ex-
pressions, such as “dogs chase cats” and “cats
are chased by dogs”. Furthermore, unlike other
types of semantic dependencies, including Ab-
stract Meaning Representations (Banarescu et al.,
2012), and Prague Dependencies (Böhmová et
al., 2003), DMRS is interconvertible with MRS,
which can be given a direct logical interpretation.

We deal here with the extensional fragment of
language, and while we can account for different
quantifiers in our framework, we do not have space
to discuss this here – for the rest of this paper,
we neglect quantifiers, and the reader may assume
that all variables are existentially quantified.

We can use the structure of a DMRS graph to
define a probabilistic graphical model. This gives
us a distribution over lexicalisations of the graph –

y zx
ARG2ARG1

∈ X

tc, x tc, y tc, z

∈ {⊥,>} |V |

Figure 2: A situation composed of three entities.
Top row: the entities x, y, and z lie in a semantic
space X , jointly distributed according to DMRS
links. Bottom row: each predicate c in the vocab-
ulary V has a stochastic truth value for each entity.

given an abstract graph structure, where links are
labelled but nodes are not, we have a process to
generate a predicate for each node. Although this
process is different for each graph structure, we
can share parameters between them (e.g. accord-
ing to the labels on links). Furthermore, if we have
a distribution over graph structures, we can incor-
porate that in our generative process, to produce a
distribution over lexicalised graphs.

The entity nodes can be viewed as together rep-
resenting a situation, in the sense of Barwise and
Perry (1983). We want to be able to represent the
entities without reference to the predicates – intu-
itively, the world is the same however we choose
to describe it. To avoid postulating causal struc-
ture amongst the entities (which would be difficult
for a large graph), we can model the entity nodes
as an undirected graphical model, with edges ac-
cording to the DMRS links. The edges are undi-
rected in the sense that they don’t impose condi-
tional dependencies. However, this is still compat-
ible with having ‘directed’ semantic dependencies
– the probability distributions are not symmetric,
which maintains the asymmetry of DMRS links.

Each node takes values in the semantic spaceX ,
and the network defines a joint distribution over
entities, which represents our knowledge about
which situations are likely or unlikely. An exam-
ple is shown in the top row of figure 2, of an entity
y along with its two arguments x and z – these
might represent an event, along with the agent and
patient involved in the event. The structure of the
graph means that we can factorise the joint distri-
bution P (x, y, z) over the entities as being pro-
portional to the product P (x, y)P (y, z).

For any entity, we can ask which predicates
are true of it. We can therefore introduce a

42

y zx
ARG2ARG1

∈ X

tc, x tc, y tc, z

∈ {⊥,>} |V |

p q r

∈ V
Figure 3: The probabilistic model in figure 2, ex-
tended to generate utterances. Each predicate in
the bottom row is chosen out of all predicates
which are true for the corresponding entity.

node for every predicate in the vocabulary, where
the value of the node is either true (>) or false
(⊥). Each of these predicate nodes has a sin-
gle directed link from the entity node, with the
probability of the node being true being deter-
mined by the predicate’s semantic function, i.e.
P (tc, x = >|x) = tc(x). This is shown in the sec-
ond row of figure 2, where the plate denotes that
these nodes are repeated for each predicate c in the
vocabulary V . For example, if the situation repre-
sented a dog chasing a cat, then nodes like tdog, x,
tanimal, x, and tpursue, y would be true (with high
probability), while tdemocracy, x or tdog, z would be
false (with high probability).

The probabilistic model described above
closely matches traditional model-theoretic
semantics. However, while we could stop our
semantic description there, we do not generally
observe truth-value judgements for all predicates
at once;3 rather, we observe utterances, which
have specific predicates. We can therefore define
a final node for each entity, which takes values
over predicates in the vocabulary, and which is
conditionally dependent on the truth values of all
predicates. This is shown in the bottom row of
figure 3. Including these final nodes means that
we can train such a model on observed utterances.
The process of choosing a predicate from the true
ones may be complex, potentially depending on
speaker intention and other pragmatic factors –
but in section 3, we will simply choose a true
predicate at random (weighted by frequency).

3This corresponds to what Copestake and Herbelot (2012)
call an ideal distribution. If we have access to such informa-
tion, we only need the two rows given in figure 2.

The separation of entities and predicates allows
us to naturally capture context-dependent mean-
ings. Following the terminology of Quine (1960),
we can distinguish context-independent standing
meaning from context-dependent occasion mean-
ing. Each predicate type has a corresponding
semantic function – this represents its standing
meaning. Meanwhile, each predicate token has a
corresponding entity, for which there is a posterior
distribution over the semantic space, conditioning
on the rest of the graph and any pragmatic factors
– this represents its occasion meaning.

Unlike previous approaches to context depen-
dence, such as Dinu et al. (2012), Erk and Padó
(2008), and Thater et al. (2011), we represent
meanings in and out of context by different kinds
of object, reflecting a type/token distinction. Even
Herbelot (2015), who explicitly contrasts individ-
uals and kinds, embeds both in the same space.

As an example of how this separation of pred-
icates and entities can be helpful, suppose we
would like “dogs chase cats” and “cats chase
mice” to be true in a model, but “dogs chase mice”
and “cats chase cats” to be false. In other words,
there is a dependence between the verb’s argu-
ments. If we represent each predicate by a single
vector, it is not clear how to capture this. However,
by separating predicates from entities, we can have
two different entities which chase is true of, where
one co-occurs with a dog-entity ARG1 and cat-
entity ARG2, while the other co-occurs with a cat-
entity ARG1 and a mouse-entity ARG2.

3 Implementation

In the previous section, we described a general
framework for probabilistic semantics. Here we
give details of one way that such a framework
can be implemented for distributional semantics,
keeping the architecture as simple as possible.

3.1 Network Architecture
We take the semantic spaceX to be a set of binary-
valued vectors,4 {0, 1}N . A situation s is then
composed of entity vectors x(1), · · · , x(K) ∈ X
(where the number of entities K may vary), along
with links between the entities. We denote a link
from x(n) to x(m) with label l as: x(n) l−→ x(m).
We define the background distribution over sit-
uations using a Restricted Boltzmann Machine

4We use the term vector in the computer science sense of
a linear array, rather than in the mathematical sense of a point
in a vector space.

43

(RBM) (Smolensky, 1986; Hinton et al., 2006),
but rather than having connections between hidden
and visible units, we have connections between
components of entities, according to the links.

The probability of the network being in the
particular configuration s depends on the energy
of the configuration, Eb(s), as shown in equa-
tions (1)-(2). A high energy denotes an unlikely
configuration. The energy depends on the edges
of the graphical model, plus bias terms, as shown
in (3). Note that we follow the Einstein sum-
mation convention, where repeated indices indi-
cate summation; although this notation is not typ-
ical in NLP, we find it much clearer than matrix-
vector notation, particularly for higher-order ten-
sors. Each link label l has a corresponding weight
matrix W (l), which determines the strength of as-
sociation between components of the linked enti-
ties. The first term in (3) sums these contributions
over all links x(n) l−→ x(m) between entities. We
also introduce bias terms, to control how likely an
entity vector is, independent of links. The second
term in (3) sums the biases over all entities x(n).

P (s) =
1
Z

exp
(
−Eb(s)

)
(1)

Z =
∑
s′

exp
(
−Eb(s′)

)
(2)

−Eb(s) =
∑

x(n)
l−→x(m)

W
(l)
ij x

(n)
i x

(m)
j −

∑
x(n)

bix
(n)
i (3)

Furthermore, since sparse representations have
been shown to be beneficial in NLP, both for ap-
plications and for interpretability of features (Mur-
phy et al., 2012; Faruqui et al., 2015), we can en-
force sparsity in these entity vectors by fixing a
specific number of units to be active at any time.
Swersky et al. (2012) introduce this RBM variant
as the Cardinality RBM, and also give an efficient
exact sampling procedure using belief propaga-
tion. Since we are using sparse representations, we
also assume that all link weights are non-negative.

Now that we’ve defined the background distri-
bution over situations, we turn to the semantic
functions tc, which map entities x to probabilities.
We implement these as feedforward networks, as
shown in (4)-(5). For simplicity, we do not in-
troduce any hidden layers. Each predicate c has
a vector of weights W ′(c), which determines the
strength of association with each dimension of the
semantic space, as well as a bias term b′(c). These

together define the energy Ep(x, c) of an entity x
with the predicate, which is passed through a sig-
moid function to give a value in the range [0, 1].

tc(x) = σ(−Ep(x, c)) =
1

1 + exp (Ep)
(4)

−Ep(x, c) = W
′(c)
i xi − b′(c) (5)

Given the semantic functions, choosing a predi-
cate for a entity can be hard-coded, for simplicity.
The probability of choosing a predicate c for an
entity x is weighted by the predicate’s frequency
fc and the value of its semantic function tc(x)
(how true the predicate is of the entity), as shown
in (6)-(7). This is a mean field approximation to
the stochastic truth values shown in figure 3.

P (c|x) =
1
Zx
fctc(x) (6)

Zx =
∑
c′
fc′tc′(x) (7)

3.2 Learning Algorithm
To train this model, we aim to maximise the likeli-
hood of observing the training data – in Bayesian
terminology, this is maximum a posteriori estima-
tion. As described in section 2.2, each data point
is a lexicalised DMRS graph, while our model de-
fines distributions over lexicalisations of graphs.
In other words, we take as given the observed
distribution over abstract graph structures (where
links are given, but nodes are unlabelled), and try
to optimise how the model generates predicates
(via the parameters W (l)

ij , bi,W
′(c)
i , b′(c)).

For the family of optimisation algorithms based
on gradient descent, we need to know the gradient
of the likelihood with respect to the model param-
eters, which is given in (8), where x ∈ X is a latent
entity, and c ∈ V is an observed predicate (corre-
sponding to the top and bottom rows of figure 3).
Note that we extend the definition of energy from
situations to entities in the obvious way: half the
energy of an entity’s links, plus its bias energy. A
full derivation of (8) is given in the appendix.

∂

∂θ
logP (c) = Ex|c

[
∂

∂θ

(
−Eb(x)

)]
− Ex

[
∂

∂θ

(
−Eb(x)

)]
+ Ex|c

[
(1− tc(x)) ∂

∂θ
(−Ep(x, c))

]
− Ex|c

[
Ec′|x

[
(1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]]
(8)

44

There are four terms in this gradient: the first
two are for the background distribution, and the
last two are for the semantic functions. In both
cases, one term is positive, and conditioned on the
data, while the other term is negative, and repre-
sents the predictions of the model.

Calculating the expectations exactly is infeasi-
ble, as this requires summing over all possible
configurations. Instead, we can use a Markov
Chain Monte Carlo method, as typically done for
Latent Dirichlet Allocation (Blei et al., 2003; Grif-
fiths and Steyvers, 2004). Our aim is to sample
values of x and c, and use these samples to ap-
proximate the expectations: rather than summing
over all values, we just consider the samples. For
each token in the training data, we introduce a la-
tent entity vector, which we use to approximate the
first, third, and fourth terms in (8). Additionally,
we introduce a latent predicate for each latent en-
tity, which we use to approximate the fourth term
– this latent predicate is analogous to the negative
samples used by Mikolov et al. (2013).

When resampling a latent entity conditioned on
the data, the conditional distribution P (x|c) is un-
known, and calculating it directly requires sum-
ming over the whole semantic space. For this rea-
son, we cannot apply Gibbs sampling (as used in
LDA), which relies on knowing the conditional
distribution. However, if we compare two enti-
ties x and x′, the normalisation constant cancels
out in the ratio P (x′|c)/P (x|c), so we can use
the Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970). Given the current sam-
ple x, we can uniformly choose one unit to switch
on, and one to switch off, to get a proposal x′. If
the ratio of probabilities shown in (9) is above 1,
we switch the sample to x′; if it’s below 1, it is the
probability of switching to x′.

P (x′|c)
P (x|c) =

exp
(−Eb(x′)) 1

Zx′ tc(x
′)

exp (−Eb(x)) 1
Zx
tc(x)

(9)

Although Metropolis-Hastings avoids the need
to calculate the normalisation constant Z of the
background distribution, we still have the nor-
malisation constant Zx of choosing a predicate
given an entity. This constant represents the num-
ber of predicates true of the entity (weighted by
frequency). The intuitive explanation is that we
should sample an entity which few predicates are
true of, rather than an entity which many predi-
cates are true of. We approximate this constant

by assuming that we have an independent contri-
bution from each dimension of x. We first aver-
age over all predicates (weighted by frequency), to
get the average predicate W avg. We then take the
exponential of W avg for the dimensions that we
are proposing switching off and on – intuitively,
if many predicates have a large weight for a given
dimension, then many predicates will be true of
an entity where that dimension is active. This is
shown in (10), where x and x′ differ in dimensions
i and i′ only, and where k is a constant.

Zx
Zx′
≈ exp

(
k
(
W avg
i −W avg

i′
))

(10)

We must also resample latent predicates given a
latent entity, for the fourth term in (8). This can
similarly be done using the Metropolis-Hastings
algorithm, according to the ratio shown in (11).

P (c′|x)
P (c|x) =

fc′tc′(x)
fctc(x)

(11)

Finally, we need to resample entities from
the background distribution, for the second term
in (8). Rather than recalculating the samples from
scratch after each weight update, we used fantasy
particles (persistent Markov chains), which Tiele-
man (2008) found effective for training RBMs.
Resampling a particle can be done more straight-
forwardly than resampling the latent entities – we
can sample each entity conditioned on the other
entities in the situation, which can be done exactly
using belief propagation (see Yedidia et al. (2003)
and references therein), as Swersky et al. (2012)
applied to the Cardinality RBM.

To make weight updates from the gradients, we
used AdaGrad (Duchi et al., 2011), with exponen-
tial decay of the sum of squared gradients. We also
used L1 and L2 regularisation, which determines
our prior over model parameters.

We found that using a random initialisation is
possible, but seems to lead to a long training time,
due to slow convergence. We suspect that this
could be because the co-occurrence of predicates
is mediated via at least two latent vectors, which
leads to mixing of semantic classes in each di-
mension, particularly in the early stages of train-
ing. Such behaviour can happen with compli-
cated topic models – for example, Ó Séaghdha
(2010) found this for their “Dual Topic” model.
One method to reduce convergence time is to ini-
tialise predicate parameters using pre-trained vec-
tors. The link parameters can then be initialised

45

as follows: we consider a situation with just one
entity, and for each predicate, we find the mean-
field entity vector given the pre-trained predicate
parameters; we then fix all entity vectors in our
training corpus to be these mean-field vectors, and
find the positive pointwise mutual information of
each each pair of entity dimensions, for each link
label. In particular, we initialised predicate pa-
rameters using our sparse SVO Word2Vec vectors,
which we describe in section 4.2.

4 Training and Initial Experiments

In this section, we report the first experiments car-
ried out within our framework.

4.1 Training Data

Training our model requires a corpus of DMRS
graphs. In particular, we used WikiWoods, an
automatically parsed version of the July 2008
dump of the full English Wikipedia, distributed
by DELPH-IN5. This resource was produced by
Flickinger et al. (2010), using the English Re-
source Grammar (ERG; Flickinger, 2000), trained
on the manually treebanked subcorpus WeScience
(Ytrestøl et al., 2009), and implemented with
the PET parser (Callmeier, 2001; Toutanova et
al., 2005). To preprocess the corpus, we used
the python packages pydelphin6 (developed by
Michael Goodman), and pydmrs7 (Copestake et
al., 2016).

For simplicity, we restricted attention to
subject-verb-object (SVO) triples, although we
should stress that this is not an inherent limita-
tion of our model, which could be applied to ar-
bitrary graphs. We searched for all verbs in the
WikiWoods treebank, excluding modals, that had
either an ARG1 or an ARG2, or both. We kept all
instances whose arguments were nominal, exclud-
ing pronouns and proper nouns. The ERG does
not automatically convert out-of-vocabulary items
from their surface form to lemmatised predicates,
so we applied WordNet’s morphological processor
Morphy (Fellbaum, 1998), as available in NLTK
(Bird et al., 2009). Finally, we filtered out situa-
tions including rare predicates, so that every pred-
icate appears at least five times in the dataset.

As a result of this process, all data was of the
form (verb, ARG1, ARG2), where one (but not

5http://moin.delph-in.net/WikiWoods
6https://github.com/delph-in/pydelphin
7https://github.com/delph-in/pydmrs

both) of the arguments may be missing. A sum-
mary is given in table 1. In total, the dataset con-
tains 72m tokens, with 88,526 distinct predicates.

Situation type No. instances
Both arguments 10,091,234
ARG1 only 6,301,280
ARG2 only 14,868,213
Total 31,260,727

Table 1: Size of the training data.

4.2 Evaluation

As our first attempt at evaluation, we chose to look
at two lexical similarity datasets. The aim of this
evaluation was simply to verify that the model was
learning something reasonable. We did not expect
this task to illustrate our model’s strengths, since
we need richer tasks to exploit its full expressive-
ness. Both of our chosen datasets aim to evalu-
ate similarity, rather than thematic relatedness: the
first is Hill et al. (2015)’s SimLex-999 dataset, and
the second is Finkelstein et al. (2001)’s WordSim-
353 dataset, which was split by Agirre et al. (2009)
into similarity and relatedness subsets. So far, we
have not tuned hyperparameters.

Results are given in table 2. We also trained
Mikolov et al. (2013)’s Word2Vec model on the
SVO data described in section 4.1, in order to
give a direct comparison of models on the same
training data. In particular, we used the continu-
ous bag-of-words model with negative sampling,
as implemented in Řehůřek and Sojka (2010)’s
gensim package, with off-the-shelf hyperparame-
ter settings. We also converted these to sparse vec-
tors using Faruqui et al. (2015)’s algorithm, again
using off-the-shelf hyperparameter settings. To
measure similarity of our semantic functions, we
treated each function’s parameters as a vector and
used cosine similarity, for simplicity.

For comparison, we also include the perfor-
mance of Word2Vec when trained on raw text. For
SimLex-999, we give the results reported by Hill
et al. (2015), where the 2-word window model
was the best performing model that they tested.
For WordSim-353, we trained a model on the full
WikiWoods text, after stripping all punctuation
and converting to lowercase. We used the gensim
implementation with off-the-shelf settings, except
for window size (2 or 10) and dimension (200, as
recommended by Hill et al.). In fact, our re-trained
model performed better on SimLex-999 than Hill

46

Model SimLex Nouns SimLex Verbs WordSim Sim. WordSim Rel.
Word2Vec (10-word window) .28 .11 .69 .46
Word2Vec (2-word window) .30 .16 .65 .34
SVO Word2Vec .44 .18 .61 .24
Sparse SVO Word2Vec .45 .27 .63 .30
Semantic Functions .26 .14 .34 .01

Table 2: Spearman rank correlation of different models with average annotator judgements. Note that we
would like to have a low score on the final column (which measures relatedness, rather than similarity).

flood / water (related verb and noun) .06
flood / water (related nouns) .43
law / lawyer (related nouns) .44
sadness / joy (near-antonyms) .77
happiness / joy (near-synonyms) .78
aunt / uncle (differ in a single feature) .90
cat / dog (differ in many features) .92

Table 3: Similarity scores for thematically related
words, and various types of co-hyponym.

et al. reported (even when we used less preprocess-
ing or a different edition of Wikipedia), although
still worse than our sparse SVO Word2Vec model.

It is interesting to note that training Word2Vec
on verbs and their arguments gives noticeably bet-
ter results on SimLex-999 than training on full
sentences, even though far less data is being used:
∼72m tokens, rather than ∼1000m. The better
performance suggests that semantic dependencies
may provide more informative contexts than sim-
ple word windows. This is in line with previous
results, such as Levy and Goldberg (2014a)’s work
on using syntactic dependencies. Nonetheless, this
result deserves further investigation.

Of all the models we tested, only our semantic
function model failed on the relatedness subset of
WordSim-353. We take this as a positive result,
since it means the model clearly distinguishes re-
latedness and similarity.

Examples of thematically related predicates and
various kinds of co-hyponym are given in table 3,
along with our model’s similarity scores. How-
ever, it is not clear that it is possible, or even de-
sirable, to represent these varied relationships on a
single scale of similarity. For example, it could be
sensible to treat aunt and uncle either as synonyms
(they refer to relatives of the same degree of re-
latedness) or as antonyms (they are “opposite” in
some sense). Which view is more appropriate will
depend on the application, or on the context.

Nouns and verbs are very strongly distin-
guished, which we would expect given the struc-
ture of our model. This can be seen in the simi-
larity scores between flood and water, when flood
is considered either as a verb or as a noun.8

SimLex-999 generally assigns low scores to near-
antonyms, and to pairs differing in a single fea-
ture, which might explain why the performance of
our model is not higher on this task. However, the
separation of thematically related predicates from
co-hyponyms is a promising result.

5 Related Work

As mentioned above, Coecke et al. (2010) and Ba-
roni et al. (2014) introduce a tensor-based frame-
work that incorporates argument structure through
tensor contraction. However, for logical inference,
we need to know how one vector can entail an-
other. Grefenstette (2013) explores one method
to do this; however, they do not show that this
approach is learnable from distributional informa-
tion, and furthermore, they prove that quantifiers
cannot be expressed with tensors.

Balkır (2014), working in the tensorial frame-
work, uses the quantum mechanical notion of a
“mixed state” to model uncertainty. However, this
doubles the number of tensor indices, so squares
the number of dimensions (e.g. vectors become
matrices). In the original framework, expressions
with several arguments already have a high dimen-
sionality (e.g. whose is represented by a fifth-order
tensor), and this problem becomes worse.

Vilnis and McCallum (2015) embed predicates
as Gaussian distributions over vectors. By assum-
ing covariances are diagonal, this only doubles
the number of dimensions (N dimensions for the
mean, and N for the covariances). However, simi-
larly to Mikolov et al. (2013), they simply assume

8We considered the ERG predicates flood v cause
and flood n of, which were the most frequent predicates
in WikiWoods for flood, for each part of speech.

47

that nearby words have similar meanings, so the
model does not naturally capture compositionality
or argument structure.

In both Balkır’s and Vilnis and McCallum’s
models, they use the probability of a vector
given a word – in the notation from section 2.1,
P (x|t). However, the opposite conditional prob-
ability, P (t|x), more easily allows composition.
For instance, if we know two predicates are true
(t1 and t2), we cannot easily combine P (x|t1) and
P (x|t2) to get P (x|t1, t2) – intuitively, we’re gen-
erating x twice. In contrast, for semantic func-
tions, we can writeP (t1, t2|x) = P (t1|x)P (t2|x).

Gärdenfors (2004) argues concepts should be
modelled as convex subsets of a semantic space.
Erk (2009) builds on this idea, but their model re-
quires pre-trained count vectors, while we learn
our representations directly. McMahan and Stone
(2015) also learn representations directly, consid-
ering colour terms, which are grounded in a well-
understood perceptual space. Instead of consider-
ing a single subset, they use a probability distribu-
tion over subsets: P (A|t) forA ⊂ X . This is more
general than a semantic function P (t|x), since we
can write P (t|x) =

∑
A3v P (A|t). However, this

framework may be too general, since it means we
cannot determine the truth of a predicate until we
know the entire set A. To avoid this issue, they
factorise the distribution, by assuming different
boundaries of the set are independent. However,
this is equivalent to considering P (t|x) directly,
along with some constraints on this function. In-
deed, for the experiments they describe, it is suffi-
cient to know a semantic function P (t|x). Fur-
thermore, McMahan and Stone find expressions
like greenish which are nonconvex in perceptual
space, which suggests that representing concepts
with convex sets may not be the right way to go.

Our semantic functions are similar to Cooper et
al. (2015)’s probabilistic type judgements, which
they introduce within the framework of Type The-
ory with Records (Cooper, 2005), a rich seman-
tic theory. However, one difference between our
models is that they represent situations in terms
of situation types, while we are careful to define
our semantic space without reference to any pred-
icates. More practically, although they outline
how their model might be learned, they assume we
have access to type judgements for observed situ-
ations. In contrast, we describe how a model can
be learned from observed utterances, which was

necessary for us to train a model on a corpus.
Goodman and Lassiter (2014) propose another

linguistically motivated probabilistic model, using
the stochastic λ-calculus (more concretely, prob-
abilistic programs written in Church). However,
they rely on relatively complex generative pro-
cesses, specific to individual semantic domains,
where each word’s meaning may be represented
by a complex expression. For a wide-scale sys-
tem, such structures would need to be extended to
cover all concepts. In contrast, our model assumes
a direct mapping between predicates and seman-
tic functions, with a relatively simple generative
structure determined by semantic dependencies.

Finally, our approach should be distinguished
from work which takes pre-trained distributional
vectors, and uses them within a richer semantic
model. For example, Herbelot and Vecchi (2015)
construct a mapping from a distributional vector
to judgements of which quantifier is most appro-
priate for a range of properties. Erk (2016) uses
distributional similarity to probabilistically infer
properties of one concept, given properties of an-
other. Beltagy et al. (2016) use distributional sim-
ilarity to produce weighted inference rules, which
they incorporate in a Markov Logic Network. Un-
like these authors, we aim to directly learn in-
terpretable representations, rather than interpret
given representations.

6 Conclusion

We have introduced a novel framework for distri-
butional semantics, where each predicate is rep-
resented as a function, expressing how applica-
ble the predicate is to different entities. We have
shown how this approach can capture semantic
phenomena which are challenging for standard
vector space models. We have explained how our
framework can be implemented, and trained on a
corpus of DMRS graphs. Finally, our initial eval-
uation on similarity datasets demonstrates the fea-
sibility of this approach, and shows that themati-
cally related words are not given similar represen-
tations. In future work, we plan to use richer tasks
which exploit the model’s expressiveness.

Acknowledgments

This work was funded by a Schiff Foundation Stu-
dentship. We would also like to thank Yarin Gal,
who gave useful feedback on the specification of
our generative model.

48

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of the 2009 Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 19–27.

Keith Allan. 2001. Natural Language Semantics.
Blackwell Publishers.

Esma Balkır. 2014. Using density matrices in a com-
positional distributional model of meaning. Mas-
ter’s thesis, University of Oxford.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2012. Abstract meaning representation
(amr) 1.0 specification. In Proceedings of the 11th
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Marco Baroni, Raffaela Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program of compo-
sitional distributional semantics. Linguistic Issues
in Language Technology, 9.

Jon Barwise and John Perry. 1983. Situations and At-
titudes. MIT Press.

Islam Beltagy, Stephen Roller, Pengxiang Cheng, Ka-
trin Erk, and Raymond J. Mooney. 2016. Repre-
senting meaning with a combination of logical and
distributional models.

Maxwell R Bennett and Peter Michael Stephan Hacker.
2008. History of cognitive neuroscience. John Wi-
ley & Sons.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python. O’Reilly
Media, Inc.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent Dirichlet Allocation. the Journal of
Machine Learning Research, 3:993–1022.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague dependency treebank. In
Treebanks, pages 103–127. Springer.

Ulrich Callmeier. 2001. Efficient parsing with large-
scale unification grammars. Master’s thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany.

Ronnie Cann. 1993. Formal semantics: An intro-
duction. Cambridge Textbooks in Linguistics. Cam-
bridge University Press.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen
Clark. 2010. Mathematical foundations for a com-
positional distributional model of meaning. Linguis-
tic Analysis, 36:345–384.

Robin Cooper, Simon Dobnik, Staffan Larsson, and
Shalom Lappin. 2015. Probabilistic type theory and
natural language semantics. LiLT (Linguistic Issues
in Language Technology), 10.

Robin Cooper. 2005. Austinian truth, attitudes and
type theory. Research on Language and Computa-
tion, 3(2-3):333–362.

Ann Copestake and Aurelie Herbelot. 2012. Lexi-
calised compositionality. Unpublished draft.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal Recursion Semantics:
An introduction. Research on Language and Com-
putation.

Ann Copestake, Guy Emerson, Michael Wayne Good-
man, Matic Horvat, Alexander Kuhnle, and Ewa
Muszyńska. 2016. Resources for building appli-
cations with Dependency Minimal Recursion Se-
mantics. In Proceedings of the 10th International
Conference on Language Resources and Evaluation
(LREC 2016). European Language Resources Asso-
ciation (ELRA).

Ann Copestake. 2009. Slacker semantics: Why super-
ficiality, dependency and avoidance of commitment
can be the right way to go. In Proceedings of 12th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Donald Davidson. 1967. The logical form of action
sentences. In Nicholas Rescher, editor, The Logic of
Decision and Action, chapter 3, pages 81–95. Uni-
versity of Pittsburgh Press.

Georgiana Dinu, Stefan Thater, and Sören Laue. 2012.
A comparison of models of word meaning in con-
text. In Proceedings of the 13th Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 611–615.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, 12:2121–2159.

Michael Dummett. 1976. What is a theory of mean-
ing? (II). In Gareth Evans and John McDowell, ed-
itors, Truth and Meaning, pages 67–137. Clarendon
Press (Oxford).

Michael Dummett. 1978. What Do I Know When
I Know a Language? Stockholm University.
Reprinted in Dummett (1993) Seas of Language,
pages 94–105.

Katrin Erk and Sebastian Padó. 2008. A structured
vector space model for word meaning in context.
In Proceedings of the 13th Conference on Empiri-
cal Methods in Natural Language Processing, pages
897–906. Association for Computational Linguis-
tics.

49

Katrin Erk. 2009. Representing words as regions in
vector space. In Proceedings of the 13th Confer-
ence on Computational Natural Language Learning,
pages 57–65. Association for Computational Lin-
guistics.

Katrin Erk. 2016. What do you know about an alliga-
tor when you know the company it keeps? Seman-
tics and Pragmatics, 9(17):1–63.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcomplete
word vector representations. In Proceedings of the
53rd Annual Conference of the Association for Com-
putational Linguistics.

Christiane Fellbaum. 1998. WordNet. Blackwell Pub-
lishers.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th Inter-
national Conference on the World Wide Web, pages
406–414. Association for Computing Machinery.

Dan Flickinger, Stephan Oepen, and Gisle Ytrestøl.
2010. WikiWoods: Syntacto-semantic annotation
for English Wikipedia. In Proceedings of the 7th In-
ternational Conference on Language Resources and
Evaluation.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering.

Peter Gärdenfors. 2004. Conceptual spaces: The ge-
ometry of thought. MIT Press, second edition.

Dan Garrette, Katrin Erk, and Raymond Mooney.
2011. Integrating logical representations with prob-
abilistic information using Markov logic. In Pro-
ceedings of the 9th International Conference on
Computational Semantics (IWCS), pages 105–114.
Association for Computational Linguistics.

Noah D Goodman and Daniel Lassiter. 2014. Prob-
abilistic semantics and pragmatics: Uncertainty in
language and thought. Handbook of Contemporary
Semantic Theory.

Edward Grefenstette. 2013. Towards a formal distri-
butional semantics: Simulating logical calculi with
tensors. In Proceedings of the 2nd Joint Conference
on Lexical and Computational Semantics.

Thomas L Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl 1):5228–5235.

W. Keith Hastings. 1970. Monte Carlo sampling
methods using Markov chains and their applications.
Biometrika, 57(1):97–109.

Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: Mapping distributional to
model-theoretic semantic spaces. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 22–32. Association
for Computational Linguistics.

Aurélie Herbelot. 2015. Mr Darcy and Mr Toad, gen-
tlemen: distributional names and their kinds. In
Proceedings of the 11th International Conference on
Computational Semantics, pages 151–161.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh. 2006. A fast learning algorithm for deep be-
lief nets. Neural computation, 18(7):1527–1554.

Hans Kamp and Uwe Reyle. 1993. From discourse
to logic; introduction to modeltheoretic semantics of
natural language, formal logic and discourse repre-
sentation theory.

Anthony Kenny. 2010. Concepts, brains, and be-
haviour. Grazer Philosophische Studien, 81(1):105–
113.

William Labov. 1973. The boundaries of words and
their meanings. In Charles-James N. Bailey and
Roger W. Shuy, editors, New ways of analyzing vari-
ation in English, pages 340–73. Georgetown Univer-
sity Press.

Staffan Larsson. 2013. Formal semantics for percep-
tual classification. Journal of Logic and Computa-
tion.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 302–308.

Omer Levy and Yoav Goldberg. 2014b. Neural
word embedding as implicit matrix factorization.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
2177–2185. Curran Associates, Inc.

Godehard Link. 2002. The logical analysis of plurals
and mass terms: A lattice-theoretical approach. In
Paul Portner and Barbara H. Partee, editors, Formal
semantics: The essential readings, chapter 4, pages
127–146. Blackwell Publishers.

Michael E McCloskey and Sam Glucksberg. 1978.
Natural categories: Well defined or fuzzy sets?
Memory & Cognition, 6(4):462–472.

Brian McMahan and Matthew Stone. 2015. A
Bayesian model of grounded color semantics.
Transactions of the Association for Computational
Linguistics, 3:103–115.

50

Nicholas Metropolis, Arianna W Rosenbluth, Mar-
shall N Rosenbluth, Augusta H Teller, and Edward
Teller. 1953. Equation of state calculations by
fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the 1st
International Conference on Learning Representa-
tions.

Brian Murphy, Partha Pratim Talukdar, and Tom M
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embed-
ding. In Proceedings of the 24th International
Conference on Computational Linguistics (COLING
2012), pages 1933–1950. Association for Computa-
tional Linguistics.

Gregory Leo Murphy. 2002. The Big Book of Con-
cepts. MIT Press.

Diarmuid Ó Séaghdha. 2010. Latent variable mod-
els of selectional preference. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 435–444. Association for
Computational Linguistics.

Terence Parsons. 1990. Events in the Semantics of
English: A Study in Subatomic Semantics. Current
Studies in Linguistics. MIT Press.

Willard Van Orman Quine. 1960. Word and Object.
MIT Press.

Radim Řehůřek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45–50. ELRA.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning, 62(1-
2):107–136.

Paul Smolensky. 1986. Information processing in dy-
namical systems: Foundations of harmony theory.
In Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, volume 1, pages
194–281. MIT Press.

Kevin Swersky, Ilya Sutskever, Daniel Tarlow,
Richard S Zemel, Ruslan R Salakhutdinov, and
Ryan P Adams. 2012. Cardinality Restricted Boltz-
mann Machines. In Advances in Neural Information
Processing Systems, pages 3293–3301.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2011. Word meaning in context: A simple and ef-
fective vector model. In Proceedings of the 5th In-
ternational Joint Conference on Natural Language
Processing, pages 1134–1143.

Tijmen Tieleman. 2008. Training restricted Boltz-
mann machines using approximations to the likeli-
hood gradient. In Proceedings of the 25th Inter-
national Conference on Machine Learning, pages
1064–1071. Association for Computing Machinery.

Kristina Toutanova, Christoper D. Manning, Dan
Flickinger, and Stephan Oepen. 2005. Stochastic
HPSG parse selection using the Redwoods corpus.
Journal of Research on Language and Computation.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of seman-
tics. Journal of Artificial Intelligence Research.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via Gaussian embedding. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations.

Jonathan S. Yedidia, William T. Freeman, and Yair
Weiss. 2003. Understanding Belief Propagation
and its generalizations. In Exploring Artificial In-
telligence in the New Millennium, chapter 8, pages
239–269.

Gisle Ytrestøl, Stephan Oepen, and Daniel Flickinger.
2009. Extracting and annotating Wikipedia sub-
domains. In Proceedings of the 7th International
Workshop on Treebanks and Linguistic Theories.

Appendix: Derivation of Gradients

In this section, we derive equation (8). As our
model generates predicates from entities, to find
the probability of observing the predicates, we
need to sum over all possible entities. After then
applying the chain rule to log, and expanding
P (x, c), we obtain the expression below.

∂

∂θ
logP (c) =

∂

∂θ
log
∑
x

P (x, c)

=
∂
∂θ

∑
x P (x, c)∑

x′ P (x′, c)

=
∂
∂θ

∑
x

1
Zx
fctc(x) 1

Z exp
(−Eb(x))∑

x′ P (x′, c)

When we now apply the product rule, we will
get four terms, but we can make use of the fact
that the derivatives of all four terms are multiples
of the original term:

∂

∂θ
e−E

b(x) = e−E
b(x) ∂

∂θ

(
−Eb(x)

)
∂

∂θ
tc(x) = tc(x) (1− tc(x)) ∂

∂θ
(−Ep(x, c))

∂

∂θ

1
Zx

=
−1
Z2
x

∂

∂θ
Zx

∂

∂θ

1
Z

=
−1
Z2

∂

∂θ
Z

51

This allows us to derive:

=
∑
x

P (x, c)∑
x′ P (x′, c)

[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

− 1
Zx

∂

∂θ
Zx

]
−
∑

x P (x, c)∑
x′ P (x′, c)

1
Z

∂

∂θ
Z

We can now simplify using conditional proba-
bilities, and expand the derivatives of the normali-
sation constants:

=
∑
x

P (x|c)
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

− 1
Zx

∂

∂θ

∑
c′
fc′tc′(x)

]

− 1
Z

∂

∂θ

∑
x

exp
(
−Eb(x)

)

=
∑
x

P (x|c)
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

−
∑
c′

fc′tc′(x)
Zx

(1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]

−
∑
x

exp
(−Eb(x))
Z

∂

∂θ

(
−Eb(x)

)

=
∑
x

P (x|c)
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

−
∑
c′
P (c′|x) (1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]

−
∑
x

P (x)
∂

∂θ

(
−Eb(x)

)

Finally, we write expectations instead of sums
of probabilities:

=Ex|c
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

− Ec′|x
[
(1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]]
− Ex

[
∂

∂θ

(
−Eb(x)

)]

52

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 53–61,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Assisting Discussion Forum Users using Deep Recurrent Neural Networks

Jacob Hagstedt P Suorra, Olof Mogren

Chalmers University of Technology, Sweden

jacob.hagstedt@gmail.com
mogren@chalmers.se

Abstract

We present a discussion forum assistant
based on deep recurrent neural networks
(RNNs). The assistant is trained to per-
form three different tasks when faced with
a question from a user. Firstly, to rec-
ommend related posts. Secondly, to rec-
ommend other users that might be able
to help. Thirdly, it recommends other
channels in the forum where people may
discuss related topics. Our recurrent fo-
rum assistant is evaluated experimentally
by prediction accuracy for the end–to–end
trainable parts, as well as by performing
an end-user study. We conclude that the
model generalizes well, and is helpful for
the users.

1 Introduction

Discussion forums pose an interesting setting for
human interaction. Chat systems, social media,
and customer support systems are closely related,
and in this paper, we will use the term “discus-
sion forum” for all of them. These platforms play
an increasingly important role for people, both in
their professional and personal lives. For exam-
ple, many software developers are familiar with
web services such as Stack Overflow where you
ask questions and other users can respond. Simi-
lar approaches are also used in customer support
systems, allowing for quick turnaround time and
a growing database of queries that can be made
available to customers along with their responses.

In this paper, we will discuss how an automated
system can help people make better use of ex-
isting platforms, and we propose a system that
solves some of the associated problems. More
specifically, our system helps people find their
way around a discussion forum and gives intelli-

xt-2 xt-1 xt

Softmax output

LSTMLSTMLSTM

User
recommendations

Channel
recommendations

Softmax output

Figure 1: The layout of our recommendation
model. The recommendations of users and chan-
nels are modelled as two different softmax out-
put layers, attached to the end of a deep recurrent
LSTM network modelling the input.

gent suggestions on where to get the information
that they need.

The proposed system is based on deep recurrent
neural networks (RNNs) and solves three differ-
ent problems for discussion forum users. Firstly,
faced with a question from a forum user, our sys-
tem can suggest related posts from other channels
in the system, based on a similarity measure com-
puted on representations learned by a Long Short
Term Memory (LSTM) RNN (Schmidhuber and
Hochreiter, 1997). Secondly, we train a similar
network end–to–end to recommend other forum
users that might be knowledgeable about the cur-
rent question. Finally, the model is also trained to
suggest other channels where similar discussions
have been held previously.

The assistant is evaluated on data from a corpo-
rate discussion forum on the chat-platform Slack.
We show experimental results by evaluating the
generalization of our model, as well as perform-
ing and analysing a study based on collecting data
from users who interact with the discussion forum
assistant.

53

2 Background

A recurrent neural network (RNN) is an artificial
neural network that can model a sequence of arbi-
trary length. The basic layout is simply a feedfor-
ward neural network with weight sharing at each
position in the sequence, making it a recursive
function on the hidden state ht. The network has
an input layer at each position t in the sequence,
and the input xt is combined with the the previ-
ous internal state ht−1. In a language setting, it is
common to model sequences of words, in which
case each input xt is the vector representation of
a word. In the basic variant (“vanilla” RNN), the
transition function is a linear transformation of the
hidden state and the input, followed by a pointwise
nonlinearity.

ht = tanh(Wxt + Uht−1 + b),

where W and U are weight matrices, and b is a
bias term.

Basic “vanilla” RNNs have some shortcomings.
One of them is that these models are unable to
capture longer dependencies in the input. Another
one is the vanishing gradient problem that affects
many neural models when many layers get stacked
after each other, making these models difficult to
train (Hochreiter, 1998; Bengio et al., 1994).

The Long Short Term Memory
(LSTM) (Schmidhuber and Hochreiter, 1997) was
presented as a solution to these shortcomings. An
LSTM is an RNN where the layer at each timestep
is a cell that contains three gates controlling what
parts of the internal memory will be kept (the
forget gate ft), what parts of the input that will be
stored in the internal memory (the input gate it),
as well as what will be included in the output (the
output gate ot). In essence, this means that the
following expressions are evaluated at each step in
the sequence, to compute the new internal mem-
ory ct and the cell output ht. Here “�” represents
element-wise multiplication.

it = σ(W (i)xt + U (i)ht−1 + b(i)),

ft = σ(W (f)xt + U (f)ht−1 + b(f)),

ot = σ(W (o)xt + U (o)ht−1 + b(o)),

ut = tanh(W (u)xt + U (u)ht−1 + b(u)),
ct = it � ut + ft � ct−1,

ht = ot � tanh(ct). (1)

xi-1 xi xi+1

yiyi-1 yi+1

Figure 2: A recurrent neural language model. At
each input xi, the model is trained to output a pre-
diction yi of the next token in the sequence, xi+1.
In this paper, each block is a deep LSTM cell,
and the network is trained using backpropagation
through time (BPTT).

LSTM networks have been used successfully
for language modelling (predicting the distribution
of the word following after a given sequence) (see
Figure 2), sentiment analysis (Tang et al., 2015),
textual entailment (Rocktäschel et al., 2016), and
machine translation (Sutskever et al., 2014). In the
following section, we will see that the learned fea-
tures are also suitable for relating forum posts to
each other, and as a building block for the recom-
mendation system in our virtual forum assistant.

3 The Recurrent Forum Assistant

In this section, we present a virtual forum assistant
built using LSTM networks.

The assistant solves three different tasks in a
discussion forum at an IT consultant organization.
The forum is used internally and contains discus-
sions regarding both technical topics and more
everyday issues. When a user enters a question
(defined simply by containing a question mark),
the assistant produces one output corresponding
to each task, and posts this back to the channel
where the question was asked. The first task is
recommending forum posts, the goal of which is
to suggest related posts that might be of help to
the user. The second task is to recommend other
forum users that are suited to answer the question,
and the third task is to suggest other forum chan-
nels where you could look for an answer to the
question. See Figure 3 for an illustration of the
assistant in action.

All three tasks are solved using the same un-
derlying model, a deep recurrent LSTM network
initially pretrained as a language model (see Fig-
ure 2). The pretraining is first performed us-
ing a general corpus (Wikipedia), and then using

54

the posts from the discussion forum. Finally the
model is trained in a supervised fashion to perform
the recommendation tasks (see Figure 1).

The following sections will go through how the
agent solves the three different tasks.

3.1 Recommending Related Posts

The subsystem for recommending related forum
posts works by first feeding each post p through
the recurrent network to compute the final internal
representation, rp = cT (see Equation 1). The fo-
rum post representations are then compared using
cosine similarity to get a similarity score between
different forum posts:

sim(r1, r2) =
r1 · r2
‖r1‖‖r2‖ . (2)

When posed with a question q from a user, the as-
sistant finds the post p that maximizes sim(q, p).

Representing the posts using the internal repre-
sentations learned by a recurrent neural network
has a number of benefits. Firstly, we can repre-
sent a sequence of arbitrary length. Secondly, the
structure of the LSTM cells gives us a model that
takes into account the order of the words.

3.2 End–to–End Learning of
Recommendations

The second part of our virtual forum assistant is
trained in an end–to–end fashion with the aim
of recommending relevant (a) forum users, and
(b) forum channels that might be of help to the
user.

The recommendation model is built on the post
recommendation model, and hence first pretrained
as a language model. In order to recommend users
and forum channels, we attach two multiclass clas-
sification output layers to our recurrent neural net-
work (see Figure 1 on page 1). These are softmax
layers with the number of outputs corresponding
to the number of users and the number of channels
in the forum, respectively. During training, the au-
thor of each post is assigned as the target value
for the user recommendation layer. Similarly, the
channel in which the post was made, is assigned
as the target value for the channel recommenda-
tion layer. This means that we can get recommen-
dations for forum posts, forum users, and forum
channels at the same time, from the same source
forum post, using the same underlying model.

Figure 3: Screenshot of the Slack user interface
when asking a question to which the recurrent as-
sistant provides responses. Names and usernames
have been anonymized.

4 Experimental Setup

This section explains the setup of the empirical
study of our model. How it is designed, trained,
and evaluated.

4.1 Model Layout

The same recurrent neural network is used both in
the forum post recommendation step and for the
recommendations for users and channels. We use
a deep recurrent neural network with LSTM cells.
The depth of the network is 2, and we use 650 hid-
den units in the LSTM cells.

For the pretraining phase, the output layer of
the model is a softmax layer with 45985 outputs
(the number of words in the vocabulary). For the
user and channel recommendations, two softmax
layers are attached to the last output of the recur-
rent network, one for user recommendations and
one for channel recommendations (see Figure 1 on
page 1). As pretraining, only the language model
is trained. Then, both the recommendation output
layers are trained simultaneously.

55

4.2 Baselines

For the related forum post recommendations,
a baseline was implemented and evaluated
using precomputed word embeddings from
Word2Vec1 (Mikolov et al., 2013). The precom-
puted model contains 300 dimensional vectors for
3 million words that were trained on the Google
News corpus. For each post, a representation
was computed by simply summing the vectors
for each word. The forum post representations
were then compared using cosine similarity (see
Equation 2).

For forum user and channel recommendations,
the baseline reported is a naı̈ve solution, consis-
tently recommending the same top-2 items; the
items that maximizes the score, i.e. the 2 most
common targets.

4.3 Datasets

Two datasets were used during the training; the
English Wikipedia and data exported from a fo-
rum on the Slack platform.

The Wikipedia data was used to prime the
model with generic English language. For this,
the complete dump from 20150315 was used2.
The dump was cleaned using Wiki-Extractor3, and
then tokenized using the Punkt tokenizer in Python
NLTK.

In the discussion data from Slack, we collected
all public posts made by an IT consultant organi-
zation. The discussions contain questions and an-
swers about programming practices; different li-
braries and languages and what they are best suited
for. The nature of the discussions are similar to
that of the well known online system Stack Over-
flow4, where software developers ask questions
and anyone can respond. In both environments,
the responses can then receive feedback and reac-
tions.

At the time of exporting data from Slack, this
forum contained 1.7 million messages written by
799 users in 664 channels. Many of these are pri-
vate messages that were not used in this work.
Non-public messages, inactive users (having au-

1https://code.google.com/p/word2vec/
2https://dumps.wikimedia.org/
3https://github.com/bwbaugh/

wikipedia-extractor
4https://stackoverflow.com/

Figure 4: T-SNE projections of forum post repre-
sentations.
Top: posts are represented as a sum of embed-
dings from Word2Vec over the words in each post.
Bottom: the internal state of an LSTM network is
used as the representation.
The posts were taken from a discussion channel
about mobile app development. You can see that
while the word-embedding sum baseline are all
clustered together, the representations created us-
ing LSTMs result in easily separable clusters.

thored less than 10 posts) and channels with fewer
than 50 messages were removed, leaving 184.637
public messages, 660 users, and 321 channels that
were used for training. The messages were in av-
erage 17 words long (minimum 0 and maximum
1008). A random split was made, reserving 369
posts for the validation set, and a separate ex-
port of data from the following month, resulted in
14.000 posts for the (separate) test set.

56

Cosine (a) Word Embedding Baseline

0.854 Having a edge on differen javascript frameworks would be very cool. We could have multi-
ple [...]

0.848 So I have a lot of javascript that will be used across about 40 sites. [...]
0.842 Hey guys! Me myself and <user> are having a discussion regarding using Typescript with

Angular.js [...]

Cosine (b) Recurrent Forum Assistant

0.927 can someone recommend testing frameworks for Python?
0.921 Does anyone have experience in using Zend Server (for debugging) with Eclipse?
0.918 are you using any framework? such as phpspec?

Table 1: Top 3 responses from (a) the baseline method (see Section 4.2), (b) the recurrent forum assistant,
when asking the question: “Do we have any experience with using angular and javascript two way
databinding?”. The first 15 words of each post was included.

4.4 Training

Preliminary results showed that training the model
on the discussion forum data alone was not enough
to give good suggestions of related posts. Given
the limited nature of this data, we decided to
pretrain the model (as a language model) us-
ing one pass through the whole Wikipedia dump.
The model was then trained for 39 epochs as
a language model on the discussion data from
Slack, whereafter finally the two recommenda-
tion output layers (for forum user recommenda-
tions and forum channel recommendations) were
trained simultaneously for 19 epochs. Using the
Wikipedia pretraining substantially improved the
performance of the system. Training time was de-
cided using early stopping (Wang et al., 1994).

Training was done with backpropagation
through time (BPTT) and minibatch stochastic
gradient descent.

Training the user recommendation classification
was done by having the author of each forum post
as the classification target. Similarly, the train-
ing target for the forum channel classification was
the channel in which the corresponding post was
made.

4.5 Evaluation

To evaluate the performance of the proposed vir-
tual assistant system, two different approaches
were used. Firstly, a separate test set (see Sec-
tion 4.3) was constructed to evaluate the gener-
alization of the model in the user and channel
recommendations. Secondly, a user study was

performed, evaluating actual performance of the
agent in a live setting in the live system with users
interacting with it.

When evaluating the recommendations pro-
duced by the assistant on the held–out test set, sev-
eral recommendations could be reasonable choices
to any one question. Therefore, we employed a
top-2 testing approach, where the system was al-
lowed to produce two recommendations for each
query. If the correct target was one of the two rec-
ommendations, it was counted as “correct”. The
top-2 evaluation also reflects the live implementa-
tion of our system, where two recommendations
are always produced.

In the user study, the agent collected a number
of data-points for the evaluation after each recom-
mendation produced. These included an identifier
of the questioner, the agent’s response, a times-
tamp, what kind of recommendation that the agent
provided (posts, users, or channels), and a list of
reactions that was provided by the users towards
the agent’s action. Positive and negative reactions
were then counted and reported, as well as recom-
mendations from the assistant that did not receive
any user reactions. Along with each recommen-
dation, the assistant encourages users to provide
reactions to them (see Figure 3).

For the post recommendations in the user study,
each question was served either by the LSTM state
representation, or by the word embedding repre-
sentation baseline, randomly picked with equal
probability.

57

5 Results

This section presents the results of the experimen-
tal evaluation of the recurrent forum assistant.

Table 1 shows example forum post recommen-
dation outputs from the assistant using (a) the
word-embedding sum representations, and (b) the
LSTM representations when posed with the
example question:

“Do we have any experience with using an-
gular and javascript two way databinding?”.

We present the top-3 outputs from the word-
embedding baseline method and from the
recurrent forum assistant, along with the cosine
similarity to the representation for the question.

For recommending forum users and channels,
we report accuracy scores for the test set (see
Table 3). The accuracy score is the percentage
of recommendations performed on the previously
unseen test-set, compared to the naı̈ve baseline
of consistently recommending the top-2 users or
channels respectively; the fixed recommendation
that maximizes the score.

We also report results from the user study (see
Table 2). For each recommendation that the as-
sistant post in the forum, positive and negative re-
actions are counted. If more than 60 minutes go
without a reaction, we count this as one “No re-
action”. Hence, you can get more than one posi-
tive reaction and more than one negative reaction
for each recommendation, but only one “No reac-
tion”.

In total, 123 reactions were collected in the user
study.

6 Related Work

Machines that can communicate with humans in
natural language have fascinated people a long
time. Alan Turing defined and gave name to a test
that he meant aimed to measure a machine’s abil-
ity to exhibit intelligent behavior (Turing, 1950).
Taking place in a chat setting, the task is for the
machine to appear like a human to a panel of
judges. The test has been debated by some for not
measuring intelligent behavior at all. However, the
topic is at the heart of artificial intelligence, and a
machine that can communicate in natural language
is not only fascinating, but can also be very useful.

Positive Negative No reaction

Users 70.4% 6.1% 23.5%
Channels 80.9% 4.8% 14.3%
Posts LSTM 42.1% 47.4% 10.5%
Posts W2V 35.7% 57.1% 7.1%

Table 2: The results from the live user study. Per-
centage is based on the total number of reactions
to the agent’s actions (and an action from the agent
that resulted in no reaction from users is counted
as “no reaction”). For users and channels recom-
mendations most reactions are positive, suggesting
that our assistant is useful to the forum users.

User Channel

Recurrent assistant 14.39% 22.01%
Naı̈ve baseline 2.46% 5.54%

Table 3: Accuracy of the recommendations from
the agent regarding forum users and channels, re-
spectively, on the separate test set. The proposed
assistant beats the naı̈ve baseline by a large mar-
gin.

There has been a number of different ap-
proaches to neural representations of sentences
and documents. A common way of representing
sequences of words is to use some form of word
embeddings, and for each word in the sequence,
do an element-wise addition (Mitchell and Lap-
ata, 2010). This approach works well for many
applications, such as phrase similarity and multi-
document summarization (Mogren et al., 2015),
even though it disregards the order of the words.
Paragraph vectors (Le and Mikolov, 2014) trains
a model to predict the word following a sequence.
The paragraph vectors are trained, using gradient
descent, at the same time as the word vectors in the
model. Our approach for embedding forum posts
(as described in Section 3) is more similar to (Cho
et al., 2014), where the authors use a recurrent
LSTM network for machine translation, by encod-
ing an input sequence into a fixed representation
which is then decoded into a sequence in another
language. Other approaches have been using con-
volutional neural networks (Blunsom et al., 2014),
and sequential denoising autoencoders (Hill et al.,
2016).

58

Dialog systems, also known as conversational
agents, typically focus on learning to produce a
well-formed response, and put less emphasis on
the message that they convey in their responses.
Partially observed Markov descision processes
(POMDPs) have been applied to this task (Young
et al., 2013), but they typically require hand-
crafted features. (Sordoni et al., 2015) used a
recurrent encoder–decoder model to perform re-
sponse generation from questions as input, and
training the model using two posts as input and the
following response as target. (Serban et al., 2016)
presented a dialog system built as a hierarchical
recurrent LSTM encoder–decoder, where the dia-
logue is seen as a sequence of utterances, and each
utterance is modelled as a sequence of words.

QA systems attempt to give the answer to a
question given a knowledgebase as input. (Her-
mann et al., 2015) used LSTM networks with an
attention mechanism to answer questions about an
input text. (Bordes et al., 2015) used memory net-
works to answer questions with data from Free-
base.

7 Discussion

The results in the empirical evaluation of the sys-
tem proposed in this paper show some interesting
points.

The accuracy of the model on the test set (see
Table 3) shows that the model beats the naı̈ve base-
line by a large margin for forum user and chan-
nel recommendations. Since we employed a top-
2 testing approach (see Section 4.5), the baseline
system were allowed to recommend the two most
frequent targets, resulting in a score of 2.46% and
5.54%, for user and channel recommendations, re-
spectively. However, with the corresponding accu-
racy scores of 14.39% and 22.01% for the recur-
rent forum assistant, we have a solid improvement.

The user study (see Table 2) shows that fo-
rum users give positive reactions to most recom-
mendations made by the recurrent assistant when
recommending forum users and channels (70.4%
and 80.9%, respectively). Some recommendations
did not receive any reactions, and although peo-
ple were encouraged to give reactions, it is hard to
say what the reason is for the missing ones. How-
ever, even if you interpret each missing reaction
as one negative reaction, the positive reactions are
still many more.

For the related post recommendations, the num-
ber of positive user reactions are much lower
(42.1% and 35.7%, respectively). We note that
the two evaluated methods for representing forum
posts give recommendations of comparable qual-
ity. You can see in the examples in Table 1 that
using the LSTM state to represent forum posts re-
sults in a system that is able to generalize very
well, which might be desirable or not depending
on application. The system finds responses that
are less specific compared to the ones found by
using the word embedding representations. This
seems like a reasonable result from a network that
was trained as a language model. E.g: a language
model will compute a similar distribution over the
next word after observing the word “Python”, as
compared to observing the word “Java”. In a fo-
rum post recommendation system, however, the
difference between the two are crucial. Even if
the network was in the end trained to recommend
users and channels (something that we presumed
would help learn features that were well suited
also for the forum post recommendations), per-
haps some other strategy for training the network,
using more direct feedback from the learning ob-
jective, would work better for this task.

Figure 4 shows clustering of forum posts cre-
ated with T-SNE, using (top) word-embedding
representations, and (bottom) LSTM representa-
tions. The bottom plot shows how forum posts are
clearly separated into clusters based on the LSTM
representations, but this technique seems unable
to separate the posts into clusters using word-
embeddings. We believe that the reason might
be connected to the observation in previous para-
graph, as the LSTM representations are trained us-
ing a different objective.

In this paper, we stated the problem (and the
three subproblems) as the task of finding relevant
information (posts, users, and channels) whithin
the current forum. The same approach can be used
to find things from other sources. In the same
setting, recommending posts in other forums, or
pages on Wikipedia would be reasonable choices.
In a customer support setting, a database of pre-
defined statements or solution suggestions would
be more suitable. With subtle changes to the im-
plementation, the system can learn to choose from
a number of output templates, and then fill in the
related information from the context.

59

8 Conclusions

In this paper, we have proposed a virtual assistant
for discussion forum users, built using deep recur-
rent neural networks with LSTM cells. Our solu-
tion relies heavily on learning useful representa-
tions for the data in discussion forums.

We found that using the representations from a
deep recurrent neural network can be useful for the
retrieval of relevant posts. However, in this par-
ticular task we found that using a representation
based on summing word-embeddings works com-
parably well. We also found that pretraining the
RNN as a language model with a general corpus
such as Wikipedia gave substantially better sug-
gestions of related posts.

Given an input question, the proposed model
is able to give good recommendations for forum
users and forum channels. This is evaluated both
as a prediction task on an unseen test-set, and in a
user study where we measure user reactions when
interacting with our assistant.

Our joint model learns to produce recommenda-
tions for both users and channels, and generalize
well to unseen data.

Our results from the user study clearly shows
that the users find the suggestions from the assis-
tant to be positive and useful. More experiments
and A/B testing is left for future work to determine
how the assistant can create the most useful sug-
gestions.

In this work, we have taken an approach that
we have not seen in previous work. Our aim was
to create a useful virtual assistant for professional
users of a discussion forum in an IT organization,
and to help point users in the right directions for
further reading. Vast amounts of knowledge can
potentially reside inside a discussion platform, but
the tools for navigating it are often primitive at
best. We have seen that some of the tasks oth-
erwise performed by helpful forum members can
also be performed by a virtual recurrent forum as-
sistant.

8.1 Future Work

Even though we have presented ways to learn
good representations to perform recommendations
of forum users and channels, more research is
needed to find out how to best learn the represen-
tations for the post recommendation task.

We are currently working on a complete con-
versational agent that generates responses using a

sequence–to–sequence learning approach with an
attention mechanism. We believe that this, in com-
bination with using external sources of informa-
tion such as Wikipedia pages or databases contain-
ing information for customer support, can result in
a promising virtual assistant.

Another exciting direction for this research will
be to use the collected data from user reactions and
create a model using deep reinforcement learning
that can improve as it collects more data.

Acknowledgments

This work has been done within the project “Data-
driven secure business intelligence”, grant IIS11-
0089 from the Swedish Foundation for Strategic
Research (SSF).

References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157–166.

Phil Blunsom, Edward Grefenstette, and Nal Kalch-
brenner. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics. Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. CoRR,
abs/1506.02075.

Kyunghyun Cho, Bart van Merrienboer, aglar Glehre,
Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Alessandro
Moschitti, Bo Pang, and Walter Daelemans, editors,
EMNLP, pages 1724–1734. ACL.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 1693–1701. Curran Associates,
Inc.

F. Hill, K. Cho, and A. Korhonen. 2016. Learning
Distributed Representations of Sentences from Un-
labelled Data. ArXiv e-prints, February.

Sepp Hochreiter. 1998. The vanishing gradient
problem during learning recurrent neural nets and

60

problem solutions. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems,
6(02):107–116.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Tony
Jebara and Eric P. Xing, editors, Proceedings of the
31st International Conference on Machine Learning
(ICML-14), pages 1188–1196. JMLR Workshop and
Conference Proceedings.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388–1429.

Olof Mogren, Mikael Kågebäck, and Devdatt Dub-
hashi. 2015. Extractive summarization by aggre-
gating multiple similarities. In Recent Advances in
Natural Language Processing, page 451.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In International Conference on Learning Represen-
tations.

Jürgen Schmidhuber and Sepp Hochreiter. 1997.
Long short-term memory. Neural computation,
7(8):1735–1780.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In Dale
Schuurmans and Michael P. Wellman, editors, AAAI,
pages 3776–3784. AAAI Press.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In Rada Mi-
halcea, Joyce Yue Chai, and Anoop Sarkar, editors,
HLT-NAACL, pages 196–205. The Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1422–1432.

Alan M Turing. 1950. Computing machinery and in-
telligence. Mind, 59(236):433–460.

C. Wang, S. S. Venkatesh, and J. S. Judd. 1994. Op-
timal stopping and effective machine complexity in
learning. In Advances in Neural Information Pro-
cessing Systems 6. Morgan Kaufmann.

Stephanie Young, Milica Gasic, Blaise Thomson, and
John D Williams. 2013. Pomdp-based statistical
spoken dialog systems: A review. Proceedings of
the IEEE, 101(5):1160–1179.

61

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 62–69,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Adjusting Word Embeddings with Semantic Intensity Orders

Joo-Kyung Kim†, Marie-Catherine de Marneffe‡, Eric Fosler-Lussier†
†Department of Computer Science and Engineering,

‡Department of Linguistics,
The Ohio State University,

Columbus, Ohio 43210, USA
kimjook@cse.ohio-state.edu, mcdm@ling.ohio-state.edu,

fosler@cse.ohio-state.edu

Abstract

Semantic lexicons such as WordNet and
PPDB have been used to improve the
vector-based semantic representations of
words by adjusting the word vectors.
However, such lexicons lack semantic in-
tensity information, inhibiting adjustment
of vector spaces to better represent seman-
tic intensity scales. In this work, we ad-
just word vectors using the semantic inten-
sity information in addition to synonyms
and antonyms from WordNet and PPDB,
and show improved performance on judg-
ing semantic intensity orders of adjective
pairs on three different human annotated
datasets.

1 Introduction

Word embedding models that represent words
as real-valued vectors have been directly used
in word-level NLP tasks such as word similar-
ity (Mikolov et al., 2013b), antonym detection
(Ono et al., 2015; Pham et al., 2015; Chen
et al., 2015), knowledge relations (Toutanova et
al., 2015; Socher et al., 2013; Bordes et al.,
2013), and semantic scale inference (Kim and de
Marneffe, 2013). Word embedding models such
as Word2Vec (continuous bag-of-words (CBOW)
and skip-gram) (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014), widely used to gener-
ate word vectors, are trained following the distri-
butional hypothesis (Harris, 1954) which assumes
that the meaning of words can be represented by
their context.

However, word embedding models based solely
on the distributional hypothesis often place words
improperly in vector spaces. For example, in a
vector space, a word and its antonym should be
sufficiently far apart, but they can be quite close

because they can have similar contexts in many
cases.

For better semantic representations, different
approaches using semantic lexicons as well as lex-
ical knowledge to adjust word vectors have re-
cently been introduced. Faruqui et al. (2015)
adjusted each word vector to be in the middle
between the initial position and its synonymous
words. Mrkšić et al. (2016) used max-margin
approaches to adjust each word vector with syn-
onyms and antonyms while keeping the relative
similarities to the neighbors. While these two ap-
proaches are post-processing models that adjust
preexisting word vectors, Ono et al. (2015), Pham
et al. (2015), and Liu et al. (2015) jointly train
models that augment the skip-gram (Mikolov et
al., 2013a) objective function to include knowl-
edge from semantic lexicons. The common goal
in these approaches is to make semantically close
words closer and semantically distant words far-
ther apart while keeping each word vector not to
be too far from the original position. Although
the joint training models can even indirectly adjust
words that are not listed in the semantic lexicons
(Pham et al., 2015), the post-processing models
are much more efficient and can be applied to word
vectors from any kinds of models, which can even-
tually perform better than the joint training models
(Mrkšić et al., 2016).

Although Faruqui et al. (2015), Mrkšić et al.
(2016), Ono et al. (2015), Pham et al. (2015),
and Liu et al. (2015)’s adjustment approaches have
been shown to represent word semantics better
in vector spaces, their coarse modeling of words
as synonyms or antonyms may be insufficient for
modeling words lying along a semantic intensity
scale. For example, assume that “great” is er-
roneously between “bad” and “good” in a vec-
tor space (“bad” should be closer to “good” than
“great”). Since semantic lexicons such as Word-

62

Net (Fellbaum, 1998) and the Paraphrase Database
(PPDB) (Pavlick et al., 2015) only inform us that
“good” and “great” are semantically similar and
“good” is semantically opposite to “bad”, adjust-
ing word vectors with those semantic lexicons
does not permit to retrieve the appropriate seman-
tic intensity ordering: bad < good < great.

Accurate representation of such semantic inten-
sity scales can help correct processing in down-
stream tasks that require robust textual under-
standing. For instance, given an assertion such as
the movie is outstanding, statements that contain a
semantically weaker expression (e.g., the movie is
good, the movie is okay) are entailed, whereas the
movie is okay does not entail that the movie is out-
standing. Similarly, correct information about se-
mantic scales can also provide accurate inferences:
when answers to a yes/no question that contains a
gradable adjective does not explicitly contain a yes
or a no, we can derive the intended answer by fig-
uring out whether the answer entails or implicates
the question (Horn, 1972; Hirschberg, 1985; de
Marneffe et al., 2010). For example, for the ques-
tion Was the talk good?, if the answer is It was ex-
cellent, the answer entails “yes”, but if the answer
is It was okay, “no” will be implied.

To deal with the representation of semantic in-
tensity scales, we infer semantic intensity orders
with de Melo and Bansal (2013)’s approach and
then use the intensity orders to adjust the word
vectors. Evaluating on three different human an-
notated datasets, we show that the adjustment with
intensity orders in addition to adjustments with
synonyms and antonyms performs best in repre-
senting semantic intensities.

2 Adjusting word embeddings with
semantic lexicons

In this study, we start from one of three different
off-the-shelf word vector types as a baseline for
our studies: GloVe, CBOW, and Paragram-SL999
(Wieting et al., 2015); we adjust each of these
sets of vectors with a variety of contrastive meth-
ods. Our first contrastive system is a baseline us-
ing synonyms and antonyms (“syn&ant”) follow-
ing Mrkšić et al. (2016)’s approach, which adjusts
word vectors so that the sum of the following three
max-margin objective functions are minimized.

Adjusting with antonyms We adjust word vec-
tors so that the cosine similarity between each

word and its antonyms is zero or lower:

AF (V) =
∑

(u,w)∈A

τ (cos (vu, vw)) , (1)

where τ (x) = max (0, x), V is the vocabulary
matrix, A is the set of antonym pairs, and vi is the
i-th row of V (i-th word vector). The antonym
pairs consist of the antonyms from WordNet and
Exclusion relations from PPDB word pairs.

Adjusting with synonyms We let the cosine
similarities between each word and its synonyms
be increased:

SC (V) =
∑

(u,w)∈S

τ (1− cos (vu, vw)) , (2)

where S is the set of synonym pairs. The syn-
onym pairs consist of the Equivalence relations
from PPDB word pairs.

Keeping the similarity to the initial neighboring
words We encourage the cosine similarity be-
tween the initial vectors of each word and a neigh-
bor word to be equal to or higher than the current
cosine similarity between them:

KN
(
V, V 0

)
=

N∑
i=1

∑
j∈N(i)

τ
(
cos (vi, vj)− cos

(
v0
i , v

0
j

))
, (3)

where V 0 is the initial vocabulary matrix, N is
the vocabulary size, and N (i) is the set of the
initial neighbors of the i-th word. Word pairs with
cosine similarities equal to or higher than 0.8 are
regarded as neighbors.

The objective function for the word vector adjust-
ment is represented as the sum of the three terms:

C
(
V, V 0

)
= AF (V) + SC (V) +KN

(
V, V 0

)
(4)

This function is minimized with stochastic gradi-
ent descent with learning rate 0.1 for 20 iterations.

3 Adjusting word embeddings with
semantic intensity orders

In order to better model semantic intensity order-
ing, we augment the synonym and antonym ad-
justed model with semantic intensity information
to adjust word vectors. We first cluster semanti-
cally related words, infer semantic intensity orders
of words in each cluster, and then adjust word vec-
tors based on the intensity orders.

63

3.1 Clustering words for intensity ordering

de Melo and Bansal (2013) used WordNet dumb-
bells (Gross and Miller, 1990), each of which con-
sists of an adjective antonym pair and each adjec-
tive’s synonyms, to define a set of words along a
semantic intensity scale. Words in each half of
a dumbbell form a cluster. This clustering is ef-
fective since synonyms are semantically highly re-
lated but their intensities may be different. How-
ever, this approach can only cluster words listed in
WordNet.

Shivade et al. (2015) clustered word vectors
from the CBOW model with k-means++ cluster-
ing (Arthur and Vassilvitskii, 2007). This ap-
proach depends on the current word vector place-
ment and does not require semantic lexicons.
However, a word can only belong to one cluster
since k-means++ is a hard clustering, thus caus-
ing issues with polysemous words. For example,
“hot” is both on the temperature scale (e.g., It’s
hot today) and on the interestingness scale (e.g.,
It’s a hot topic). If “hot” is adjusted for the for-
mer scale, “hot” may not properly be placed on
the latter scale. Another issue of using clustering
algorithms is that unrelated or antonymous words
can belong to a cluster, which may hinder correct
intensity ordering.

We evaluated both clustering approaches and
their combination to cluster words for intensity or-
ders. In Table 2, by default, WordNet dumbbells
and Equivalence relations of PPDB word pairs are
used as the intensity clusters. “kmeans only” de-
notes that only clusters from k-means++ are used,
and “+kmeans” means that WordNet, PPDB, and
clusters from k-means++ are used altogether. Fol-
lowing Shivade et al. (2015), when clustering with
k-means++, we set k to be 5,798, which is the
number of all observed adjectives (17,394) divided
by 3 so that the average number of adjectives in a
cluster is 3.

3.2 Inferring intensity ordering

We follow de Melo and Bansal (2013)’s approach
to order the adjectives in each cluster. For every
possible pair of adjectives in the cluster, we search
for regular expressions like “〈∗〉 but not 〈∗〉” in
Google N -gram (Brants and Franz, 2006). These
patterns give us the direction of the ordering be-
tween the adjectives. For example, if “good but
not great” appears frequently in Google N -gram,
we infer that “great" is semantically stronger than

“good".1 Once we have the intensity differences
of adjective pairs in a cluster, mixed integer linear
programming (MILP) is used for optimal ordering
of all the adjectives in the cluster given the pair-
wise intensity information of the adjective pairs,
following de Melo and Bansal (2013).

3.3 Adjusting word vectors based on
intensity orders

Now that we have word clusters whose constituent
words are ordered according to their semantic in-
tensities, we adjust the word vectors in two ways,
as follows.

3.3.1 Adjusting words with the same
intensity order to be closer

When intensity orders are assigned to words in a
cluster, different words can have the same rank.
For example, given a word cluster {“interesting”,
“provocative”, “exciting”, “sexy”, “exhilarating”,
“thrilling”}, both “exhilarating” and “thrilling”
are assigned the highest order, and “exciting”
and “sexy” are assigned the second highest order.
Since words in a same cluster are considered to be
very close in both the meaning and the intensity,
it is desirable to let them to be similar in the vec-
tor space. Therefore, we formulate a max-margin
function:

SO (V) =
∑

(u,w)∈E

τ (1− cos (vu, vw)) , (5)

where E is the word pairs of the same intensities
from the intensity clusters.

3.3.2 Adjusting weaker/stronger word pairs
based on antonyms

For two similar words with different intensities
(e.g., “good” and “great”), the similarity between
the weaker word vector and its antonym vector
should be higher than the similarity between the
stronger word vector and the antonym vector. Fig-
ure 1 shows an example of word vectors which are
wrongly ordered.

To reduce wrong orderings, we formulate a

1Shivade et al. (2015) used Tregex (Levy and Andrew,
2006) to extract patterns including more words but it is not
necessary when we extract patterns from phrases consisting
of less or equal to five words.

64

great
bad

good

Figure 1: An example of incoherent word vector
positions, where “bad” should be closer to “good”
than “great” but the similarity between “bad” and
“good” is lower than the similarity between “bad”
and “great”.

max-margin function:

AO (V) =∑
(w,a)∈A

∑
s∈Str(w)

τ {cos (vs, va)− cos (vw, va)} ,

(6)

where A is the set of antonym pairs and Str (w)
is a set of words semantically stronger than w. By
minimizing this function, out-of-order vectors are
adjusted so that the stronger word vector gets far-
ther from the antonym vector and the weaker word
vector gets closer to the antonym vector.

Both equations 5 and 6 can be either solely used
or summed to others like equation 4 to serve as a
term of the objective function.

4 Evaluation

We evaluate the representation of semantic in-
tensities on the three following human-annotated
datasets.

4.1 WordNet synset pairs

We obtained a dataset of 670 synonymous adjec-
tive pairs coming from synsets in WordNet from
Christopher Potts. Each adjective pair was an-
notated for intensity order on Mechanical Turk.
For each adjective pair <A, B> (e.g., “good” and
“great”), ten different Turkers were asked to judge
whether A is semantically stronger than B, B is
semantically stronger than A, or A is equal to
B. For consistency of annotation with the other
datasets, we mapped “A is semantically stronger
than B" to “no”, “B is semantically stronger than
A" to “yes”, and “A is equal to B" to “uncertain”.

For 77.3% of adjective pairs, at least 6 out of
the 10 Turkers agreed with each other on the same
annotation. Table 1 gives a breakdown of how
often Turkers agree with each other. The inter-

Max # Turkers agreeing Coverage (%)

10 17.5
9 17.2
8 13.3
7 14.6
6 14.9
5 16.7
4 6

Table 1: Percentage of adjective pairs and the
maximum number of Turkers who agree with each
other on the annotation.

annotator agreement (Fleiss’ kappa) of this dataset
is 0.359. Note that Fleiss’ kappa is a very conser-
vative measure given the partial order in the anno-
tation, which is not taken into account in Fleiss’
kappa.

4.2 Indirect question-answer pairs (IQAP)

IQAP (de Marneffe et al., 2010) is a corpus con-
sisting of 127 indirect question-answer pairs in
which both the question and the answer contain
a gradable adjective (Is Obama qualified? I think
he’s young.). For each pair, 30 Turkers decided
whether the answer implies a “yes”, “no” or “un-
certain" response to the question. A majority
“yes” response implies that the adjective in the
question entails the adjective in the answer.

The ordering between the adjectives in the ques-
tion and in the answer can be used to infer a “yes"
or “no" answer: if the adjective in the answer is
semantically equivalent or stronger to the adjec-
tive in the question, we infer a “yes” answer (Was
the movie good? It was excellent.); if not, we infer
a “no” answer.

4.3 Word intensity orders in clusters

We also use the test set from de Melo and Bansal
(2013) consisting of 507 pairs of adjectives in 88
clusters annotated by two native English speakers
for intensity ordering. From this set, we generated
all the possible adjective pairs from the ordered
list in a cluster. For example, for “known” < “fa-
mous” < “legendary” in the test set, we generated
“known” < “famous”, “known” < “legendary”,
and “famous” < “legendary”.

4.4 Evaluation results

In our evaluation of the semantic orderings of ad-
jective pairs, we decide which adjective in a pair
<A, B> is semantically stronger following Kim
and de Marneffe (2013)’s approach. First, we look

65

Adjustment methods WordNet synset pairs IQAP de Melo & Bansal (2013)

GloVe CBOW Pgrm GloVe CBOW Pgrm GloVe CBOW Pgrm

baseline 0.5614 0.5092 0.5224 0.7044 0.7016 0.7591 0.9468 0.9347 0.9803
syn&ant 0.5106 0.5516 0.5572 0.8143 0.8045 0.8307 0.9632 0.9444 0.9791
same_ord (kmeans only) 0.5762 0.5163 0.5196 0.7044 0.7016 0.7473 0.9480 0.9359 0.9791
same_ord, diff_ord 0.5505 0.5331 0.5167 0.7119 0.6889 0.7718 0.9456 0.9371 0.9701
syn&ant,same_ord 0.5364 0.5639 0.5782 0.7922 0.7818 0.8284 0.9632 0.9492 0.9803
syn&ant,diff_ord 0.5300 0.5551 0.5765 0.8143 0.7922 0.8307 0.9735 0.9539 0.9825
syn&ant,same_ord,diff_ord 0.5467 0.5730 0.5960 0.8143 0.8033 0.8395 0.9758 0.9539 0.9825
syn&ant,same_ord,diff_ord
(kmeans only) 0.5186 0.5516 0.5729 0.8033 0.8045 0.8194 0.9609 0.9468 0.9803

syn&ant,same_ord,diff_ord
(+kmeans) 0.5512 0.5828 0.5960 0.8033 0.8033 0.8395 0.9735 0.9609 0.9814

Table 2: F1 scores for determining semantic intensity ordering on three datasets, across three baseline
models (GloVe, CBOW, Paragram), using different compositions of adjustment techniques, including
synonyms, antonyms, same intensity orders, and different intensity orders.

Datasets # pairs # syn # ant

WordNet synset pairs 670 79 0
IQAP 127 7 9

de Melo & Bansal 507 54 1

Table 3: The numbers of total adjective pairs, syn-
onymous pairs, and antonymous pairs for each
dataset.

for an antonym ofA.2 Then, we check whether the
word vector for B is more similar to the vector for
A than to the vector for A’s antonym, or whether
the vector for B is more similar to the vector for
A’s antonym. We infer a “yes” answer in the for-
mer case, and a “no” in the other case. If A has
more than one antonym, we select the antonym
that is most collinear with the vectors for A and B
assuming that the most collinear antonym is most
semantically related to A and B.

Table 2 shows the F1 scores of different combi-
nations of the adjustments on the three datasets,3

whereas Table 3 shows the number of total adjec-
tive pairs in each dataset, as well as the number
of pairs in which both adjectives are synonyms
(Equivalence relations from PPDB) and the num-
ber of pairs in which both adjectives are antonyms
(Exclusion relations from PPDB and antonyms
from WordNet).

Expanding on the results in Table 2, as the base-
lines, we used three different 300 dimensional

2If there are no antonyms of A in WordNet, we obtain
antonyms from Roget’s thesaurus (Kipfer, 2009).

3For simplicity of the evaluation in vector spaces, we cal-
culate F1 scores without “uncertain” cases.

off-the-shelf word vectors: GloVe,4 CBOW,5

and Paragram-SL999.6 Following Mrkšić et al.
(2016), for each of the word vector sets, we ex-
tracted word vectors corresponding to the 76,427
most frequent words from Open-Subtitles.7

Table 4 indicates whether the differences in per-
formance of the adjustment methods in Table 2 are
statistically significant (McNemar’s χ2 test with p-
value < 0.05). In the table, “merged” columns are
the results of the concatenation of all the datasets.
For each comparison, ‘+’ denotes that the per-
formance of the latter is significantly higher than
that of the former, and ‘-’ denotes the opposite,
whereas no value indicates that the difference in
performance is not statistically significant. For
Paragram vectors, only one case (“baseline” vs
“syn&ant,same_ord") is significantly different.

In Table 2, “baseline” shows the performance
of the baseline word vectors without any adjust-
ments. Since Paragram-SL999 are optimized to
perform best on evaluating SimLex-999 dataset,
the baseline performance of Paragram-SL999 on
SimLex-999 as well as two of the other datasets
are noticeably better than word vectors from
GloVe and CBOW.

In “syn&ant”, corresponding to the optimiza-
tion with equation 4, 15,509 words are adjusted
with the synonyms and 6,162 words are adjusted
with the antonyms. This adjustment significantly

4Available from http://nlp.stanford.edu/
projects/glove/

5Available from https://code.google.com/p/
word2vec/

6Available from https://drive.google.com/
file/d/0B9w48e1rj-MOck1fRGxaZW1LU2M/

7Available from invokeit.wordpress.com/
frequency-word-lists

66

Compared adjustment methods GloVe CBOW
WN IQAP dM&B merged WN IQAP dM&B merged

baseline v. syn&ant - + + +
baseline v. syn&ant,same_ord,diff_ord - + + + + +
syn&ant v. syn&ant,same_ord,diff_ord + +
baseline v. syn&ant,same_ord,diff_ord (+kmeans) + + + + +
syn&ant v. syn&ant,same_ord,diff_ord (+kmeans) + + + +

Table 4: McNemar’s χ2 test results (p-value < 0.05) for different methods of GloVe/CBOW adjustments
across WordNet synset (WN), IQAP, and de Melo & Bansal (dM&B) datasets, as well as concatenating
the three datasets (merged). For x v. y, ‘+’ denotes that y’s score is significantly higher than that of x,
‘’-’ denotes the opposite, and no value denotes that the difference is not statistically significant.

improves the performance of CBOW vectors and
Paragram vectors on the IQAP and de Melo and
Bansal (2013)’s datasets. Specifically, for the
IQAP dataset, where many of the pairs are either
synonyms or antonyms, “syn&ant” showed better
performance than including adjustments with se-
mantic intensity orders. However, this adjustment
makes GloVe vectors yield significantly worse
performance on the WordNet synset pair dataset.
This shows that the adjustment with just synonyms
and antonyms can worsen the representation of
subtle semantics considering intensities. In this
case, using just the adjustment with semantic in-
tensity orders can be helpful. “same_ord (kmeans
only)”, corresponding to equation 5, adjusts word
vectors by just making vectors of words with the
same intensity order to be more similar without
using synonyms and antonyms. For GloVe vec-
tors, “same_ord (kmeans only)” showed the high-
est score for the WordNet synset pair dataset.
For adjustments with semantic intensity orders,
616 words are adjusted when WordNet dumbbells
and Equivalence relations from PPDB word pairs
are used as the clusters. When clusters from k-
means++ are used, several hundreds of words are
adjusted, where the adjusted words vary depend-
ing on the vector space for each iteration.

For the WordNet synset pair dataset and de
Melo and Bansal (2013)’s dataset, where the sub-
tle semantic intensity differences are more critical,
using synonyms, antonyms, and semantic intensity
orders altogether (“syn&ant,same_ord,diff_ord”)
showed significantly higher scores than “syn&ant”
in many settings. Here, “diff_ord” corresponds to
equation 6.

Table 5 shows the adjective pairs whose inten-
sity judgements were changed by including ad-
justments with semantic intensity orders. The
pairs are from the WordNet synset pairs and

baseline v.
same_ord (kmeans only)

syn&ant v. syn&ant,
same_ord,diff_ord(+kmeans)

satisfactory < superb mediocre < severe
unfavorable < poor troublesome < rocky
crazy < ardent upfront < blunt
outspoken < expansive solid < redeeming
sad < tragic warm < uneasy
deserving < sacred valuable < sacred

Table 5: Adjective pairs whose incorrect decisions
with the former models are corrected by the latter
models. For those model comparisons, there were
no pairs that were correctly judged with the former
models but not with the latter models.

GloVe vectors were used as the baseline. “base-
line” is compared to “same_ord (kmeans only)”
in the first column and “syn&ant” is compared to
“syn&ant,same_ord,diff_ord(+kmeans)”. In both
cases, we observe that some of the incorrectly
judged pairs are corrected when adding the ad-
justment with semantic intensity orders. In these
cases, there were no pairs that were correctly
judged by the adjustments without semantic inten-
sity orders but incorrectly judged with semantic
intensity orders.

Since the numbers of adjectives pairs in the
datasets and the numbers of words that are ad-
justed with semantic intensity orders are small, not
all the cases comparing the adjustments using just
synonyms and antonyms to the adjustments in-
cluding semantic intensity orders were significant
for p-value < 0.05, as shown in Table 4. However,
since many of them are slightly insignificant (like
p-value=0.07) and the scores noticeably increased
in many cases, using semantic intensity orders for
the adjustments seem promising.

In addition, to show that the adjustments are
not harmful for the representation of the gen-
eral semantics of the words, we also evaluated on
SimLex-999 (Hill et al., 2015), where 999 word

67

GloVe CBOW Pgrm

baseline 0.4453 0.4567 0.6920
syn&ant 0.5969 0.5768 0.7268
same_ord (kmeans only) 0.4420 0.4585 0.6926
same_ord, diff_ord 0.4522 0.4613 0.6872
syn&ant,same_ord 0.5969 0.5768 0.7261
syn&ant,diff_ord 0.5958 0.5767 0.7274
syn&ant,same_ord,diff_ord 0.5962 0.5773 0.7271
syn&ant,same_ord,diff_ord
(kmeans only) 0.5980 0.5769 0.7269

syn&ant,same_ord,diff_ord
(+kmeans) 0.5956 0.5771 0.7273

Table 6: Spearman’s ρ on SimLex-999.

pairs were annotated on Mechanical Turk to score
the degree of semantic similarities. This dataset
has been widely used to evaluate the quality of se-
mantic representations of words.

Table 6 shows Spearman’s ρ scores on the
SimLex-999 dataset for the different adjustment
methods. Since SimLex-999 dataset is not di-
rectly related to semantic intensities compared to
the other evaluation datasets, there were no signifi-
cant gains for the adjustments with semantic inten-
sity orders. However, no significant drops indicate
that the adjustments with semantic intensity orders
are not harmful for the representation of general
word semantics.

5 Discussion and Conclusion

In this work, we adjusted word vectors with in-
ferred semantic intensity orders as well as infor-
mation from WordNet and PPDB, and showed that
adjusting word vectors with semantic intensity or-
ders, synonyms, and antonyms altogether showed
the best performance for all the three datasets we
evaluated on. Using the semantic intensity orders
for adjusting word vectors can help represent se-
mantic intensities of words in vector spaces. In
addition, we showed the adjustments including se-
mantic intensity orders are not harmful for the rep-
resentation of semantics in general by evaluating
on SimLex-999.

In future work, we plan to investigate cluster-
ing techniques beyond WordNet dumbbells and k-
means++ as preprocessing in the semantic order-
ing. The clusters using WordNet dumbbells de-
pend on a preexisting semantic lexicon that may
not cover all the semantically related words. With
k-means++, clusters may contain semantically op-
posite words and a word can belong to only one
cluster. As both techniques have limitations, by

using another clustering method, the performance
could be further improved. In addition, we plan to
use larger corpora than GoogleN -gram so that we
can find more intensity orderings within clusters.
We can also further improve the performance by
using semantic intensity information from other
linguistic resources. For example, given a list of
base, comparative, and superlative forms of ad-
jectives and adverbs, we can let those adjectives
aligned more correctly in vector spaces. We can
also use word definitions from dictionaries. For
example, from American Heritage Dictionary, one
of the definitions of “furious” is “extremely angry”
and one of that of “excellent” is “exceptionally
good”. Therefore, by analyzing word definitions,
we can obtain word intensity orders.

Acknowledgments

We are very grateful to Christopher Potts for shar-
ing with us the judgements on the WordNet synset
pairs that he gathered on Mechanical Turk. We
also thank our anonymous reviewers for their com-
ments.

References
David Arthur and Sergei Vassilvitskii. 2007. K-

means++: The advantages of careful seeding. In
Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1027–
1035.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26, pages 2787–2795.

Thorsten Brants and Alex Franz. 2006. The Google
Web 1T 5-gram Version 1.1.

Zhigang Chen, Wei Lin, Qian Chen, Xiaoping Chen,
Si Wei, Hui Jiang, and Xiaodan Zhu. 2015. Revis-
iting word embedding for contrasting meaning. In
Proceedings of ACL, pages 106–115.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, and Christopher Potts. 2010. Was it good? It
was provocative. Learning the meaning of scalar ad-
jectives. In Proceedings of the 48th Meeting of the
Association for Computational Linguistics (ACL),
pages 167–176.

Gerald de Melo and Mohit Bansal. 2013. Good, Great,
Excellent: Global Inference of Semantic Intensities.
Transactions of the Association for Computational
Linguistics (TACL), 1:279–290.

68

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of NAACL, pages 1606–1615.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. MIT Press.

Derek Gross and Katherine J. Miller. 1990. Adjectives
in WordNet. International Journal of Lexicography,
3(4):265–277.

Zellig Harris. 1954. Distributional structure. Word,
10:146–162.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating Semantic Models with
(Genuine) Similarity Estimation. Computational
Linguistics, 41(4):665–695.

Julia B. Hirschberg. 1985. A Theory of Scalar Impli-
cature. Ph.D. thesis, University of Pennsylvania.

Lawrence Horn. 1972. On the Semantic Properties of
Logical Operators in English. Bloomington, Indi-
ana: Indianan University Linguistics Club.

Joo-Kyung Kim and Marie-Catherine de Marneffe.
2013. Deriving Adjectival Scales from Continuous
Space Word Representations. In Proceedings of the
Empirical Methods in Natural Language Processing
(EMNLP), pages 1625–1630.

Barbara Ann Kipfer. 2009. Rogets 21st Century The-
saurus. Dell.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. In Proceedings of the Fifth Interna-
tional Conference on Language Resources and Eval-
uation (LREC), pages 2231–2234.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and
Yu Hu. 2015. Learning semantic word embed-
dings based on ordinal knowledge constraints. In
Proceedings of ACL, pages 1501–1511.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Rep-
resentations in Vector Space. In International Con-
ference on Learning Representations (ICLR) work-
shop.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 746–
751.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting word vectors to lin-
guistic constraints. In NAACL, pages 142–148.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki.
2015. Word embedding-based antonym detection
using thesauri and distributional information. In
Proceedings of NAACL, pages 984–989.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevich,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the Asso-
ciation for Computational Linguistics (ACL 2015),
pages 425–430.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Nghia The Pham, Angeliki Lazaridou, and Marco Ba-
roni. 2015. A multitask objective to inject lexical
contrast into distributional semantics. In Proceed-
ings of ACL, pages 21–26.

Chaitanya Shivade, Marie-Catherine de Marneffe, Eric
Fosler-Lussier, and Albert M. Lai. 2015. Corpus-
based discovery of semantic intensity scales. In Pro-
ceedings of NAACL, pages 483–493.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning With Neural
Tensor Networks For Knowledge Base Completion.
In Advances in Neural Information Processing Sys-
tems 26, pages 926–934.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1499–
1509.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. Transactions of the ACL (TACL), 3:345–358.

69

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 70–77,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Towards Abstraction from Extraction: Multiple Timescale Gated
Recurrent Unit for Summarization

Minsoo Kim
School of Electronics Engineering
Kyungpook National University

Daegu, South Korea
minsoo9574@gmail.com

Moirangthem Dennis Singh
School of Electronics Engineering
Kyungpook National University

Daegu, South Korea
mdennissingh@gmail.com

Minho Lee
School of Electronics Engineering
Kyungpook National University

Daegu, South Korea
mholee@gmail.com

Abstract
In this work, we introduce temporal hi-
erarchies to the sequence to sequence
(seq2seq) model to tackle the problem of
abstractive summarization of scientific ar-
ticles. The proposed Multiple Timescale
model of the Gated Recurrent Unit (MT-
GRU) is implemented in the encoder-
decoder setting to better deal with the
presence of multiple compositionalities in
larger texts. The proposed model is com-
pared to the conventional RNN encoder-
decoder, and the results demonstrate that
our model trains faster and shows signifi-
cant performance gains. The results also
show that the temporal hierarchies help
improve the ability of seq2seq models to
capture compositionalities better without
the presence of highly complex architec-
tural hierarchies.

1 Introduction and Related Works

Summarization has been extensively researched
over the past several decades. Jones (2007) and
Nenkova et al. (2011) offer excellent overviews
of the field. Broadly, summarization methods
can be categorized into extractive approaches and
abstractive approaches (Hahn and Mani, 2000),
based on the type of computational task. Extrac-
tive summarization is a selection problem, while
abstractive summarization requires a deeper se-
mantic and discourse understanding of the text, as
well as a novel text generation process. Extractive
summarization has been the focus in the past, but
abstractive summarization remains a challenge.

Recently, sequence-to-sequence (seq2seq) re-
current neural networks (RNNs) have seen wide

application in a number of tasks. Such RNN
encoder-decoders (Cho et al., 2014; Bahdanau et
al., 2014) combine a representation learning en-
coder and a language modeling decoder to perform
mappings between two sequences. Similarly, re-
cent works have proposed to cast summarization
as a mapping problem between an input sequence
and a summary sequence. Recent successes such
as Rush et al. (2015);Nallapati et al. (2016) have
shown that the RNN encoder-decoder performs re-
markably well in summarizing short text. Such
seq2seq approaches offer a fully data-driven solu-
tion to both semantic and discourse understanding
and text generation.

While seq2seq presents a promising way for-
ward for abstractive summarization, extrapolating
the methodology to other tasks, such as the sum-
marization of a scientific article, is not trivial. A
number of practical and theoretical concerns arise:
1) We cannot simply train RNN encoder-decoders
on entire articles: For the memory capacity of cur-
rent GPUs, scientific articles are too long to be
processed whole via RNNs. 2) Moving from one
or two sentences, to several sentences or several
paragraphs, introduces additional levels of com-
positionality and richer discourse structure. How
can we improve the conventional RNN encoder-
decoder to better capture these? 3) Deep learning
approaches depend heavily on good quality, large-
scale datasets. Collecting source-summary data
pairs is difficult, and datasets are scarce outside
of the newswire domain.

In this paper, we present a first, intermedi-
ate step towards end-to-end abstractive summa-
rization of scientific articles. Our aim is to ex-
tend seq2seq based summarization to larger text
with a more complex summarization task. To ad-

70

dress each of the issues above, 1) We propose a
paragraph-wise summarization system, which is
trained via paragraph-salient sentence pairs. We
use Term Frequency-Inverse Document Frequency
(TF-IDF) (Luhn, 1958; Jones, 1972) scores to ex-
tract a salient sentence from each paragraph. 2)
We introduce a novel model, Multiple Timescale
Gated Recurrent Unit (MTGRU), which adds a
temporal hierarchy component that serves to han-
dle multiple levels of compositionality. This is
inspired by an analogous concept of temporal hi-
erarchical organization found in the human brain,
and is implemented by modulating different layers
of the multilayer RNN with different timescales
(Yamashita and Tani, 2008). We demonstrate that
our model is capable of understanding the seman-
tics of a multi-sentence source text and knowing
what is important about it, which is the first nec-
essary step towards abstractive summarization. 3)
We build a new dataset of Computer Science (CS)
articles from ArXiv.org, extracting their Introduc-
tions from the LaTeX source files. The Introduc-
tions are decomposed into paragraphs, each para-
graph acting as a natural unit of discourse.

Finally, we concatenate the generated summary
of each paragraph to create a non-expert summary
of the article’s Introduction, and evaluate our re-
sults against the actual Abstract. We show that
our model is capable of summarizing multiple sen-
tences to its most salient part on unseen data, fur-
ther supporting the larger view of summarization
as a seq2seq mapping task. We demonstrate that
our MTGRU model satisfies some of the major re-
quirements of an abstractive summarization sys-
tem. We also report that MTGRU has the capa-
bility of reducing training time significantly com-
pared to the conventional RNN encoder-decoder.

The paper is structured as follows: Section 2 de-
scribes the proposed model in detail. In Section 3,
we report the results of our experiments and show
the generated summary samples. In Section 4 we
analyze the results of our model and comment on
future work.

2 Proposed Model

In this section we discuss the background related
to our model, and describe in detail the newly de-
veloped architecture and its application to summa-
rization.

x
ht-1

xt

zt rt ut

x1-

ht

x

+

Figure 1: A gated recurrent unit.

2.1 Background

The principle of compositionality defines the
meaning conveyed by a linguistic expression as a
function of the syntactic combination of its con-
stituent units. In other words, the meaning of
a sentence is determined by the way its words
are combined with each other. In multi-sentence
text, sentence-level compositionality (the way sen-
tences are combined with one another) is an ad-
ditional function which will add meaning to the
overall text. When dealing with such larger texts,
compositionality at the sentence and even para-
graph levels should be considered, in order to cap-
ture the text meaning completely. An approach ex-
plored in recent literature is to create dedicated ar-
chitectures in a hierarchical fashion to capture sub-
sequent levels of compositionality: Li et al. (2015)
and Nallapati et al. (2016) build dedicated word
and sentence level RNN architectures to capture
compositionality at different levels of text-units,
leading to improvements in performance.

However, architectural modifications to the
RNN encoder-decoder such as these suffer from
the drawback of a major increase in both train-
ing time and memory usage. Therefore, we pro-
pose an alternative enhancement to the architec-
ture that will improve performance with no such
overhead. We draw our inspiration from neu-
roscience, where it has been shown that func-
tional differentiation occurs naturally in the human
brain, giving rise to temporal hierarchies (Meunier
et al., 2010; Botvinick, 2007). It has been well
documented that neurons can hierarchically orga-
nize themselves into layers with different adapta-
tion rates to stimuli. The quintessential example of
this phenomenon is the auditory system, in which
syllable level information in a short time window
is integrated into word level information over a
longer time window, and so on. Previous works
have applied this concept to RNNs in movement
tracking (Paine and Tani, 2004) and speech recog-

71

x
ht-1

xt

zt rt ut

x1-

1/τ

ht

x

+

1-

+

x

x

Figure 2: Proposed multiple timescale gated re-
current unit.

nition (Heinrich et al., 2012).

2.2 Multiple Timescale Gated Recurrent Unit

Our proposed Multiple Timescale Gated Recur-
rent Unit (MTGRU) model applies the tempo-
ral hierarchy concept to the problem of seq2seq
text summarization, in the framework of the RNN
encoder-decoder. Previous works such as (Ya-
mashita and Tani, 2008)’s Multiple Timescale
Recurrent Neural Network (MTRNN) have em-
ployed temporal hierarchy in motion prediction.
However, MTRNN is prone to the same problems
present in the RNN, such as difficulty in captur-
ing long-term dependencies and vanishing gradi-
ent problem (Hochreiter et al., 2001). Long Short
Term Memory network (Hochreiter et al., 2001)
utilizes a complex gating architecture to aid the
learning of long-term dependencies and has been
shown to perform much better than the RNN in
tasks with long-term temporal dependencies such
as machine translation (Sutskever et al., 2014).
Gated Recurrent Unit (GRU) (Cho et al., 2014),
which has been proven to be comparable to LSTM
(Chung et al., 2014), has a similar complex gating
architecture, but requires less memory. The stan-
dard GRU architecture is shown in Fig. 1.

Because seq2seq summarization involves po-
tentially many long-range temporal dependencies,
our model applies temporal hierarchy to the GRU.
We apply a timescale constant at the end of a GRU,
essentially adding another constant gating unit that
modulates the mixture of past and current hidden
states. The reset gate rt, update gate zt, and the
candidate activation ut are computed similarly to
that of the original GRU as shown in Eq.(1).

rt = σ(Wxrxt +Whrht−1)
zt = σ(Wxzxt +Whzht−1)

ut = tanh(Wxuxt +Whu(rt � ht−1))
(1)

ht = ((1− zt)ht−1 + ztut)
1
τ

+ (1− 1
τ
)ht−1

(2)
The time constant τ added to the activation ht

of the MTGRU is shown in Eq.(2). τ is used to
control the timescale of each GRU cell. Larger τ
meaning slower cell outputs but it makes the cell
focus on the slow features of a dynamic sequence
input. The proposed MTGRU model is illustrated
in Fig. 2. The conventional GRU will be a special
case of MTGRU where τ = 1, where no attempt is
made to organize layers into different timescales.

δE

δht−1
=

1
τ
[
δE

δht
� (ut − ht−1)� σ′(zt)Wzh]

+
1
τ
[((
δE

δht
� zt � tanh′(ut))Wuh)� rt]

+
1
τ
[(((

δE

δht
� zt � tanh′(ut))Wuh)

�σ′(rt)� ht−1)Wrh]

+
1
τ
[
δE

δht
� (1− zt)] + (1− 1

τ
)
δE

δht
(3)

Eq. (3) shows the learning algorithm derived for
the MTGRU according to the defined forward pro-
cess and the back propagation through time rules.
δE
δht−1

is the error of the cell outputs at time t − 1
and δE

δht
is the current gradient of the cell outputs.

Different timescale constants are set for each layer
where larger τ means slower context units and
τ = 1 defines the default or the input timescale.
Based on our hypothesis that later layers should
learn features that operate over slower timescales,
we set larger τ as we go up the layers.

In this application, the question is whether the
word sequences being analyzed by the RNN pos-
sess information that operates over different tem-
poral hierarchies, as they do in the case of the con-
tinuous audio signals received by the human audi-
tory system. We hypothesize that they do, and that
word level, clause level, and sentence level com-
positionalities are strong candidates. In this light,
the multiple timescale modification functions as a
way to explicitly guide each layer of the neural
network to facilitate the learning of features op-
erating over increasingly slower timescales, corre-

72

RNN Type Layers Hidden Units
GRU 4 1792
MTGRU 4 1792

Table 1: Network Parameters for each model.

sponding to subsequent levels in the compositional
hierarchy.

2.3 Summarization

To apply our newly proposed multiple timescale
model to summarization, we build a new dataset
of academic articles. We collect LaTeX source
files of articles in the CS.{CL,CV,LG,NE} do-
mains from the arXiv preprint server, extracting
their Introductions and Abstracts. We decompose
the Introduction into paragraphs, and pair each
paragraph with its most salient sentence as the tar-
get summary. These target summaries are gen-
erated using the widely adopted TF-IDF scoring.
Fig. 3 shows the structure of our summarization
model.

Our dataset contains rich compositionality and
longer text sequences, increasing the complexity
of the summarization problem. The temporal hier-
archy function has the biggest impact when com-
plex compositional hierarchies exist in the input
data. Hence, the multiple timescale concept will
play a bigger role in our context compared to
previous summarization tasks such as Rush et al.
(2015).

The model using MTGRU is trained using these
paragraphs and their targets. The generated sum-
maries of each Introduction is evaluated using the
Abstracts of the collected articles. We chose the
Abstracts as gold summaries, because they usu-
ally contain important discourse structures such as
goal, related works, methods, and results, making
them good baseline summaries. To test the ef-
fectiveness of the proposed method, we compare
it with the conventional RNN encoder-decoder in
terms of training speed and performance.

3 Experiments and Results

We trained two seq2seq models, the first model us-
ing the conventional GRU in the RNN encoder de-
coder, and the second model using the newly pro-
posed MTGRU. Both models are trained using the
same hyperparamenter settings with the optimal
configuration which fits our existing hardware ca-
pability.

Following Sutskever et al. (2014), the inputs are
divided into multiple buckets. Both GRU and MT-

Summary

MTGRU model

Introduction

Paragraph 1 Paragraph 2 Paragraph N

Summary 1 Summary 2 Summary N

Slow Context Units

Fast Context Units

Slowest Context Units

Slower Context Units

Figure 3: Paragraph level approach to summariza-
tion.

Steps RNN Train Perplexity Test Perplexity
74750 GRU 6.8 29.72
74750 MTGRU 5.87 18.53

Table 2: Training results of the Models.

GRU models consist of 4 layers and 1792 hidden
units. As our models take longer input and tar-
get sequence sizes, the hidden units size and num-
ber of layers are limited. An embedding size of
512 was used for both networks. The timescale
constant τ for each layer is set to 1, 1.25, 1.5, 1.7,
respectively. The models are trained on 110k text-
summary pairs. The source text are the paragraphs
extracted from the introduction of academic ar-
ticles and the targets are the most salient sen-
tence extracted from the paragraphs using TF-IDF
scores. For comparison of the training speed of the
models, Fig. 4 shows the plot of the training curve
until the train perplexity reaches 9.5. Both of the
models are trained using 2 Nvidia Ge-Force GTX
Titan X GPUs which takes roughly 4 days and 3
days respectively. During test, greedy decoding
was used to generate the most likely output given
a source Introduction.

For evaluation, we adopt the Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) met-
rics (Lin, 2004) proposed by Lin and Hovy (2003).
ROUGE is a recall-oriented measure to score sys-
tem summaries which is proven to have a strong
correlation with human evaluations. It measures

Evaluation Metric Recall Precision F–Score
ROUGE-1 0.48135 0.59030 0.50835
ROUGE-2 0.32399 0.39505 0.34089
ROUGE-L 0.46588 0.57218 0.49234

Table 3: ROUGE scores of GRU Model

73

Evaluation Metric Recall Precision F–Score
ROUGE-1 0.50901 0.61571 0.53870
ROUGE-2 0.34148 0.40824 0.35925
ROUGE-L 0.49406 0.59830 0.52318

Table 4: ROUGE scores of MTGRU Model

Number of Steps
6250 11750 17250 22750 28250 33750 39250 44750 50250 55750 61250

P
er

pl
ex

ity

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150
Training Speed Comparison

MTGRU
GRU

Figure 4: Comparison of Training Speed between
GRU and MTGRU.

the n-gram recall between the candidate summary
and gold summaries. In this work, we only have
one gold summary which is the Abstract of an ar-
ticle, thus the ROUGE score is calculated as given
in Li et al. (2015). ROUGE-1, ROUGE-2 and
ROUGE-L are used to report the performance of
the models. For the performance evaluation, both
the models are trained up to 74750 steps where
the training perplexity of GRU and MTGRU are
shown in Table 2. This step was chosen as the
early stopping point as at this step we get the low-
est test perplexity of the GRU model. The ROUGE
scores calculated using these trained networks are
shown in Table 3 and Table 4 for the GRU and MT-
GRU models, respectively. A sample summary
generated by the MTGRU model is shown in Fig.
5.

Input Text:
The input is the Introduction of this paper.

Generated Summary:
1. Summarization has been the topic explored as a challenge of text semantic
understanding
2. Recently , _UNK neural networks have emerged as a success in wide range of practical
problems
3. In particular , we need to use a new way to evaluate three important questions into
the algorithms
4. We use a concept to define the temporal hierarchy of each sentence in the context of
paragraph
5. We demonstrate that our model outperforms a conventional _UNK system and
significantly lead to optimize
6. In section # , we evaluate the experimental results on our model and evaluate our
results in Section #

Figure 5: An example of the generated summary
with MTGRU.

The paper is structured as follows: Section 2 describes the related works.
Section 3 describes the data collection and processing steps. Section 4
describes the proposed models in detail. In section 5, we report the
results of our experiments and show the sample generated summaries. In
section 6 we analyze the results of our models.

Section describes the data collection, models and the experimental
results.

In section 5, we report the results of our experiments and show the
sample generated summaries.

MTGRU Output Summary

Input

TF-IDF Extracted Summary

Figure 6: An example of the output summary vs
the extracted targets

4 Discussion and Future Work

The ROUGE scores obtained for the summariza-
tion model using GRU and MTGRU show that the
multiple timescale concept improves the perfor-
mance of the conventional seq2seq model without
the presence of highly complex architectural hier-
archies. Another major advantage is the increase
in training speed by as much as 1 epoch. More-
over, the sample summary shown in Fig. 5 demon-
strates that the model has successfully generalized
on the difficult task of summarizing a large para-
graph into a one line salient summary.

In setting the τ timescale parameters, we fol-
low (Yamashita and Tani, 2008) . We gradually
increase τ as we go up the layers such that higher
layers have slower context units. Moreover, we
experiment with multiple settings of τ and com-
pare the training performance, as shown in Fig.
7. The τ of MTRGU-2 and MTRGU-3 are set as
{1, 1.42, 2, 2.5} and {1, 1, 1.25, 1.25}, respec-
tively. MTGRU-1 is the final model adopted in
our experiment described in the previous section.
MTGRU-2 has comparatively slower context lay-
ers and MTGRU-3 has two fast and two slow con-
text layers. As shown in the comparison, the train-
ing performance of MTRGU-1 is superior to the
remaining two, which justifies our selection of the
timescale settings.

The results of our experiment provide evidence
that an organizational process akin to functional
differentiation occurs in the RNN in language
tasks. The MTGRU is able to train faster than the
conventional GRU by as much as 1 epoch. We
believe that the MTRGU expedites a type of func-
tional differentiation process that is already ocur-
ring in the RNN, by explicitly guiding the lay-
ers into multiple timescales, where otherwise this
temporal hierarchical organization occurs more
gradually.

74

Number of Steps
5500 11250 17000 22750 28500 34250 40000 45750 51500 57250 63000

P
er

pl
ex

ity

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220
Comparison of Multiple Timescales

MTGRU-1
MTGRU-2
MTGRU-3

Figure 7: Comparison of Training performance
between multiple time constants.

In Fig. 6, we show the comparison of a gen-
erated summary of the input paragraph to an ex-
tracted summary. As seen in the example, our
model has successfully extracted the key infor-
mation from multiple sentences and reproduces
it into a single line summary. While the sys-
tem was trained only on the extractive summary,
the abstraction of the entire paragraph is possi-
ble because of the generalization capability of
our model. The seq2seq objective maximizes
the joint probability of the target sequence con-
ditioned on the source sequence. When a sum-
marization model is trained on source-extracted
salient sentence target pairs, the objective can be
viewed as consisting of two subgoals: One is to
correctly perform saliency finding (importance ex-
traction) in order to identify the most salient con-
tent, and the other is to generate the precise order
of the sentence target. In fact, during training, we
observe that the optimization of the first subgoal
is achieved before the second subgoal. The second
subgoal is fully achieved only when overfitting oc-
curs on the training set. The generalization capa-
bility of the model is attributable to the fact that
the model is expected to learn multiple points of
saliency per given paragraph input (not only a sin-
gle salient section corresponding to a single sen-
tence) as many training examples are seen. This
explains how the results such as those in Fig. 6
can be obtained from this model.

We believe our work has some meaningful im-
plications for seq2seq abstractive summarization
going forward. First, our results confirm that it
is possible to train an encoder-decoder model to
perform saliency identification, without the need
to refer to an external corpus at test time. This

has already been shown, implicitly, in previous
works such as Rush et al. (2015; Nallapati et al.
(2016), but is made explicit in our work due to
our choice of data consisting of paragraph-salient
sentence pairs. Secondly, our results indicate
that probabilistic language models can solve the
task of novel word generation in the summariza-
tion setting, meeting a key criteria of abstractive
summarization. Bengio et al. (2003) originally
demonstrated that probabilistic language models
can achieve much better generalization over simi-
lar words. This is due to the fact that the probabil-
ity function is a smooth function of the word em-
bedding vectors. Since similar words are trained
to have similar embedding vectors, a small change
in the features induces a small change in the pre-
dicted probability. This makes a strong case for
RNN language models as the best available so-
lution for abstractive summarization, where it is
necessary to generate novel sentences. For ex-
ample, in Fig. 5, the first summary shows that
our model generates the word “explored” which is
not present in the paper. Furthermore, our results
suggest that if given abstractive targets, the same
model could train a fully abstractive summariza-
tion system.

In the future, we hope to explore the organi-
zational effect of the MTGRU in different tasks
where temporal hierarchies can arise, as well
as investigating ways to effectively optimize the
timescale constant. Finally, we will work to move
towards a fully abstractive end-to-end summariza-
tion system of multi-paragraph text by utilizing a
more abstractive target which can potentially be
generated with the help of the Abstract from the
articles.

5 Conclusion

In this paper, we have demonstrated the capabil-
ity of the MTGRU in the multi-paragraph text
summarization task. Our model fulfills a funda-
mental requirement of abstractive summarization,
deep semantic understanding of text and impor-
tance identification. The method draws from a
well-researched phenomenon in the human brain
and can be implemented without any hierarchical
architectural complexity or additional memory re-
quirements during training. Although we show
its application to the task of capturing composi-
tional hierarchies in text summarization only, MT-
GRU also shows the ability to enhance the learning

75

speed thereby reducing training time significantly.
In the future, we hope to extend our work to a
fully abstractive end-to-end summarization system
of multi-paragraph text.

Acknowledgment

This research was supported by Basic Science
Research Program through the National Re-
search Foundation of Korea(NRF) funded by
the Ministry of Science, ICT and future Plan-
ning(2013R1A2A2A01068687) (50%), and by the
Industrial Strategic Technology Development Pro-
gram (10044009) funded by the Ministry of Trade,
Industry and Energy (MOTIE, Korea) (50%).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. journal of machine learning research,
3(Feb):1137–1155.

Matthew M Botvinick. 2007. Multilevel structure in
behaviour and in the brain: a model of fuster’s hi-
erarchy. Philosophical Transactions of the Royal
Society B: Biological Sciences, 362(1485):1615–26,
September.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Udo Hahn and Inderjeet Mani. 2000. The challenges
of automatic summarization. Computer, 33(11):29–
36, November.

Stefan Heinrich, Cornelius Weber, and Stefan Wermter,
2012. Artificial Neural Networks and Machine
Learning – ICANN 2012: 22nd International Con-
ference on Artificial Neural Networks, Lausanne,
Switzerland, September 11-14, 2012, Proceedings,
Part I, chapter Adaptive Learning of Linguistic Hi-
erarchy in a Multiple Timescale Recurrent Neural
Network, pages 555–562. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Sepp Hochreiter, Yoshua Bengio, and Paolo Frasconi.
2001. Gradient flow in recurrent nets: the difficulty
of learning long-term dependencies. In J. Kolen and

S. Kremer, editors, Field Guide to Dynamical Re-
current Networks. IEEE Press.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of Documentation, 28(1):11–21.

Karen Sparck Jones. 2007. Automatic summaris-
ing: the state of the art. Information Process-
ing and Management: an International Journal,
43(6):1449–1481.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. CoRR, abs/1506.01057.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, pages 71–78.
Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop, volume 8.

H. P. Luhn. 1958. The automatic creation of literature
abstracts. IBM J. Res. Dev., 2(2):159–165, April.

D. Meunier, R. Lambiotte, A. Fornito, K. D. Ersche,
and E. T. Bullmore. 2010. Hierarchical modularity
in human brain functional networks. ArXiv e-prints,
April.

Ramesh Nallapati, Bing Xiang, and Bowen Zhou.
2016. Sequence-to-sequence rnns for text summa-
rization. 4th International Conference on Learning
Representations - Workshop Track (ICLR 2016).

Ani Nenkova, Sameer Maskey, and Yang Liu. 2011.
Automatic summarization. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Tutorial Abstracts of ACL
2011, HLT ’11, pages 3:1–3:86, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Rainer W. Paine and Jun Tani. 2004. Motor primi-
tive and sequence self-organization in a hierarchi-
cal recurrent neural network. Neural Networks,
17(89):1291 – 1309. New Developments in Self-
Organizing Systems.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for sentence summa-
rization. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 379–389. Association for Computational
Linguistics, Lisbon, Portugal.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes,

76

N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

Yuichi Yamashita and Jun Tani. 2008. Emergence
of functional hierarchy in a multiple timescale neu-
ral network model: A humanoid robot experiment.
PLoS Comput Biol, 4(11):1–18, 11.

77

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 78–86,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

An Empirical Evaluation of doc2vec with
Practical Insights into Document Embedding Generation

Jey Han Lau1,2 and Timothy Baldwin2

1 IBM Research
2 Dept of Computing and Information Systems,

The University of Melbourne
jeyhan.lau@gmail.com, tb@ldwin.net

Abstract

Recently, Le and Mikolov (2014) pro-
posed doc2vec as an extension to
word2vec (Mikolov et al., 2013a) to
learn document-level embeddings. De-
spite promising results in the original pa-
per, others have struggled to reproduce
those results. This paper presents a rig-
orous empirical evaluation of doc2vec
over two tasks. We compare doc2vec
to two baselines and two state-of-the-art
document embedding methodologies. We
found that doc2vec performs robustly
when using models trained on large ex-
ternal corpora, and can be further im-
proved by using pre-trained word embed-
dings. We also provide recommendations
on hyper-parameter settings for general-
purpose applications, and release source
code to induce document embeddings us-
ing our trained doc2vec models.

1 Introduction

Neural embeddings were first proposed by Bengio
et al. (2003), in the form of a feed-forward neu-
ral network language model. Modern methods use
a simpler and more efficient neural architecture to
learn word vectors (word2vec: Mikolov et al.
(2013b); GloVe: Pennington et al. (2014)), based
on objective functions that are designed specifi-
cally to produce high-quality vectors.

Neural embeddings learnt by these methods
have been applied in a myriad of NLP applica-
tions, including initialising neural network mod-
els for objective visual recognition (Frome et
al., 2013) or machine translation (Zhang et al.,
2014; Li et al., 2014), as well as directly mod-
elling word-to-word relationships (Mikolov et al.,

2013a; Zhao et al., 2015; Salehi et al., 2015; Vy-
lomova et al., to appear),

Paragraph vectors, or doc2vec, were pro-
posed by Le and Mikolov (2014) as a simple
extension to word2vec to extend the learning
of embeddings from words to word sequences.1

doc2vec is agnostic to the granularity of the
word sequence — it can equally be a word n-gram,
sentence, paragraph or document. In this paper,
we use the term “document embedding” to refer
to the embedding of a word sequence, irrespective
of its granularity.
doc2vec was proposed in two forms: dbow

and dmpv. dbow is a simpler model and ignores
word order, while dmpv is a more complex model
with more parameters (see Section 2 for details).
Although Le and Mikolov (2014) found that as a
standalone method dmpv is a better model, others
have reported contradictory results.2 doc2vec
has also been reported to produce sub-par per-
formance compared to vector averaging methods
based on informal experiments.3 Additionally,
while Le and Mikolov (2014) report state-of-the-
art results over a sentiment analysis task using
doc2vec, others (including the second author of
the original paper in follow-up work) have strug-
gled to replicate this result.4

Given this background of uncertainty regarding
the true effectiveness of doc2vec and confusion
about performance differences between dbow and
dmpv, we aim to shed light on a number of em-

1The term doc2vec was popularised by Gensim
(Řehůřek and Sojka, 2010), a widely-used implementation of
paragraph vectors: https://radimrehurek.com/gensim/

2The authors of Gensim found dbow outperforms
dmpv: https://github.com/piskvorky/gensim/blob/

develop/docs/notebooks/doc2vec-IMDB.ipynb
3https://groups.google.com/forum/#!topic/

gensim/bEskaT45fXQ
4For a detailed discussion on replicating the results of Le

and Mikolov (2014), see: https://groups.google.com/

forum/#!topic/word2vec-toolkit/Q49FIrNOQRo

78

pirical questions: (1) how effective is doc2vec
in different task settings?; (2) which is better out
of dmpv and dbow?; (3) is it possible to improve
doc2vec through careful hyper-parameter opti-
misation or with pre-trained word embeddings?;
and (4) can doc2vec be used as an off-the-shelf
model like word2vec? To this end, we present
a formal and rigorous evaluation of doc2vec
over two extrinsic tasks. Our findings reveal that
dbow, despite being the simpler model, is supe-
rior to dmpv. When trained over large external
corpora, with pre-trained word embeddings and
hyper-parameter tuning, we find that doc2vec
performs very strongly compared to both a sim-
ple word embedding averaging and n-gram base-
line, as well as two state-of-the-art document em-
bedding approaches, and that doc2vec performs
particularly strongly over longer documents. We
additionally release source code for replicating our
experiments, and for inducing document embed-
dings using our trained models.

2 Related Work

word2vec was proposed as an efficient neural
approach to learning high-quality embeddings for
words (Mikolov et al., 2013a). Negative sampling
was subsequently introduced as an alternative to
the more complex hierarchical softmax step at the
output layer, with the authors finding that not only
is it more efficient, but actually produces better
word vectors on average (Mikolov et al., 2013b).

The objective function of word2vec is to max-
imise the log probability of context word (wO)
given its input word (wI), i.e. logP (wO|wI). With
negative sampling, the objective is to maximise the
dot product of the wI and wO while minimising
the dot product ofwI and randomly sampled “neg-
ative” words. Formally, logP (wO|wI) is given as
follows:

log σ(v′wO

ᵀvwI)+
k∑

i=1

wi ∼ Pn(w)
[
log σ(−v′wi

ᵀvwI)
]

(1)

where σ is the sigmoid function, k is the number of
negative samples, Pn(w) is the noise distribution,
vw is the vector of word w, and v′w is the negative
sample vector of word w.

There are two approaches within word2vec:
skip-gram (“sg”) and cbow. In skip-gram,
the input is a word (i.e. vwI is a vector of one word)

and the output is a context word. For each input
word, the number of left or right context words
to predict is defined by the window size hyper-
parameter. cbow is different to skip-gram in
one aspect: the input consists of multiple words
that are combined via vector addition to predict
the context word (i.e. vwI is a summed vector of
several words).
doc2vec is an extension to word2vec for

learning document embeddings (Le and Mikolov,
2014). There are two approaches within
doc2vec: dbow and dmpv.
dbow works in the same way as skip-gram,

except that the input is replaced by a special token
representing the document (i.e. vwI is a vector rep-
resenting the document). In this architecture, the
order of words in the document is ignored; hence
the name distributed bag of words.
dmpv works in a similar way to cbow. For the

input, dmpv introduces an additional document
token in addition to multiple target words. Un-
like cbow, however, these vectors are not summed
but concatenated (i.e. vwI is a concatenated vector
containing the document token and several target
words). The objective is again to predict a context
word given the concatenated document and word
vectors..

More recently, Kiros et al. (2015) proposed
skip-thought as a means of learning docu-
ment embeddings. skip-thought vectors are
inspired by abstracting the distributional hypothe-
sis from the word level to the sentence level. Using
an encoder-decoder neural network architecture,
the encoder learns a dense vector presentation of a
sentence, and the decoder takes this encoding and
decodes it by predicting words of its next (or pre-
vious) sentence. Both the encoder and decoder use
a gated recurrent neural network language model.
Evaluating over a range of tasks, the authors found
that skip-thought vectors perform very well
against state-of-the-art task-optimised methods.

Wieting et al. (2016) proposed a more direct
way of learning document embeddings, based on
a large-scale training set of paraphrase pairs from
the Paraphrase Database (PPDB: Ganitkevitch et
al. (2013)). Given a paraphrase pair, word em-
beddings and a method to compose the word em-
beddings for a sentence embedding, the objective
function of the neural network model is to opti-
mise the word embeddings such that the cosine
similarity of the sentence embeddings for the pair

79

is maximised. The authors explore several meth-
ods of combining word embeddings, and found
that simple averaging produces the best perfor-
mance.

3 Evaluation Tasks

We evaluate doc2vec in two task settings,
specifically chosen to highlight the impact of doc-
ument length on model performance.

For all tasks, we split the dataset into 2 par-
titions: development and test. The development
set is used to optimise the hyper-parameters of
doc2vec, and results are reported on the test set.
We use all documents in the development and test
set (and potentially more background documents,
where explicitly mentioned) to train doc2vec.
Our rationale for this is that the doc2vec training
is completely unsupervised, i.e. the model takes
only raw text and uses no supervised or annotated
information, and thus there is no need to hold out
the test data, as it is unlabelled. We ultimately re-
lax this assumption in the next section (Section 4),
when we train doc2vec using large external cor-
pora.

After training doc2vec, document embed-
dings are generated by the model. For the
word2vec baseline, we compute a document
embedding by taking the component-wise mean of
its component word embeddings. We experiment
with both variants of doc2vec (dbow and dmpv)
and word2vec (skip-gram and cbow) for all
tasks.

In addition to word2vec, we experiment with
another baseline model that converts a document
into a distribution over words via maximum like-
lihood estimation, and compute pairwise docu-
ment similarity using the Jensen Shannon diver-
gence.5 For word types we explore n-grams of or-
der n = {1, 2, 3, 4} and find that a combination of
unigrams, bigrams and trigrams achieves the best
results.6 Henceforth, this second baseline will be
referred to as ngram.

3.1 Forum Question Duplication

We first evaluate doc2vec over the task of du-
plicate question detection in a web forum setting,
using the dataset of Hoogeveen et al. (2015). The

5We multiply the divergence value by −1.0 to invert the
value, so that a higher value indicates greater similarity.

6That is, the probability distribution is computed over the
union of unigrams, bigrams and trigrams in the paired docu-
ments.

dataset has 12 subforums extracted from StackEx-
change, and provides training and test splits in two
experimental settings: retrieval and classification.
We use the classification setting, where the goal is
to classify whether a given question pair is a du-
plicate.

The dataset is separated into the 12 subforums,
with a pre-compiled training–test split per subfo-
rum; the total number of instances (question pairs)
ranges from 50M to 1B pairs for the training par-
titions, and 30M to 300M pairs for the test par-
titions, depending on the subforum. The propor-
tion of true duplicate pairs is very small in each
subforum, but the setup is intended to respect the
distribution of true duplicate pairs in a real-world
setting.

We sub-sample the test partition to create a
smaller test partition that has 10M document
pairs.7 On average across all twelve subforums,
there are 22 true positive pairs per 10M ques-
tion pairs. We also create a smaller development
partition from the training partition by randomly
selecting 300 positive and 3000 negative pairs.
We optimise the hyper-parameters of doc2vec
and word2vec using the development partition
on the tex subforum, and apply the same hyper-
parameter settings for all subforums when evalu-
ating over the test pairs. We use both the ques-
tion title and body as document content: on aver-
age the test document length is approximately 130
words. We use the default tokenised and lower-
cased words given by the dataset. All test, devel-
opment and un-sampled documents are pooled to-
gether during model training, and each subforum
is trained separately.

We compute cosine similarity between docu-
ments using the vectors produced by doc2vec
and word2vec to score a document pair. We
then sort the document pairs in descending order
of similarity score, and evaluate using the area un-
der the curve (AUC) of the receiver operating char-
acteristic (ROC) curve . The ROC curve tracks the
true positive rate against the false positive rate at
each point of the ranking, and as such works well
for heavily-skewed datasets. An AUC score of 1.0
implies that all true positive pairs are ranked be-
fore true negative pairs, while an AUC score of .5
indicates a random ranking. We present the full
results for each subforum in Table 1.

7Uniform random sampling is used so as to respect the
original distribution.

80

Subforum doc2vec word2vec
ngram

dbow dmpv sg cbow
android .97 .96 .86 .93 .80
english .84 .90 .76 .73 .84
gaming 1.00 .98 .97 .97 .94

gis .93 .95 .94 .97 .92
mathematica .96 .90 .81 .81 .70

physics .96 .99 .93 .90 .88
programmers .93 .83 .84 .84 .68

stats 1.00 .95 .91 .88 .77
tex .94 .91 .79 .86 .78

unix .98 .95 .91 .91 .75
webmasters .92 .91 .92 .90 .79
wordpress .97 .97 .79 .84 .87

Table 1: ROC AUC scores for each subforum.
Boldface indicates the best score in each row.

Domain DLS
doc2vec word2vec

ngram
dbow dmpv sg cbow

headlines .83 .77 .78 .74 .69 .61
ans-forums .74 .66 .65 .62 .52 .50
ans-students .77 .65 .60 .69 .64 .65

belief .74 .76 .75 .72 .59 .67
images .86 .78 .75 .73 .69 .62

Table 2: Pearson’s r of the STS task across 5 do-
mains. DLS is the overall best system in the com-
petition. Boldface indicates the best results be-
tween doc2vec and word2vec in each row.

Comparing doc2vec and word2vec to
ngram, both embedding methods perform sub-
stantially better in most domains, with two excep-
tions (english and gis), where ngram has compa-
rable performance.

doc2vec outperforms word2vec embed-
dings in all subforums except for gis . Despite
the skewed distribution, simple cosine similarity
based on doc2vec embeddings is able to detect
these duplicate document pairs with a high degree
of accuracy. dbow performs better than or as well
as dmpv in 9 out of the 12 subforums, showing
that the simpler dbow is superior to dmpv.

One interesting exception is the english sub-
forum, where dmpv is substantially better, and
ngram — which uses only surface word forms
— also performs very well. We hypothesise that
the order and the surface form of words possibly
has a stronger role in this subforum, as questions
are often about grammar problems and as such the
position and semantics of words is less predictable
(e.g. Where does “for the same” come from?)

Hyper-Parameter Description
Vector Size Dimension of word vectors

Window Size Left/right context window size
Min Count Minimum frequency threshold

for word types
Sub-sampling Threshold to downsample high

frequency words
Negative Sample No. of negative word samples

Epoch Number of training epochs

Table 3: A description of doc2vec hyper-
paramters.

3.2 Semantic Textual Similarity

The Semantic Textual Similarity (STS) task is a
shared task held as part of *SEM and SemEval
over a number of iterations (Agirre et al., 2013;
Agirre et al., 2014; Agirre et al., 2015). In STS,
the goal is to automatically predict the similarity
of a pair of sentences in the range [0, 5], where 0
indicates no similarity whatsoever and 5 indicates
semantic equivalence.

The top systems utilise word alignment, and fur-
ther optimise their scores using supervised learn-
ing (Agirre et al., 2015). Word embeddings are
employed, although sentence embeddings are of-
ten taken as the average of word embeddings (e.g.
Sultan et al. (2015)).

We evaluate doc2vec and word2vec embed-
dings over the English STS sub-task of SemEval-
2015 (Agirre et al., 2015). The dataset has 5 do-
mains, and each domain has 375–750 annotated
pairs. Sentences are much shorter than our previ-
ous task, at an average of only 13 words in each
test sentence.

As the dataset is also much smaller, we com-
bine sentences from all 5 domains and also sen-
tences from previous years (2012–2014) to form
the training data. We use the headlines do-
main from 2014 as development, and test on all
2015 domains. For pre-processing, we tokenise
and lowercase the words using Stanford CoreNLP
(Manning et al., 2014).

As a benchmark, we include results from the
overall top-performing system in the competition,
referred to as “DLS” (Sultan et al., 2015). Note,
however, that this system is supervised and highly
customised to the task, whereas our methods are
completely unsupervised. Results are presented in
Table 2.

Unsurprisingly, we do not exceed the overall
performance of the supervised benchmark system
DLS, although doc2vec outperforms DLS over

81

Method Task Training Vector Window Min Sub- Negative EpochSize Size Size Count Sampling Sample

dbow
Q-Dup 4.3M 300 15 5 10−5 5 20

STS .5M 300 15 1 10−5 5 400

dmpv
Q-Dup 4.3M 300 5 5 10−6 5 600

STS .5M 300 5 1 10−6 5 1000

Table 4: Optimal doc2vec hyper-parameter values used for each tasks. “Training size” is the total word
count in the training data. For Q-Dup training size is an average word count across all subforums.

the domain of belief . ngram performs substan-
tially worse than all methods (with an exception
in ans-students where it outperforms dmpv and
cbow).

Comparing doc2vec and word2vec,
doc2vec performs better. However, the per-
formance gap is lower compared to the previous
two tasks, suggesting that the benefit of using
doc2vec is diminished for shorter documents.
Comparing dbow and dmpv, the difference is
marginal, although dbow as a whole is slightly
stronger, consistent with the observation of
previous task.

3.3 Optimal Hyper-parameter Settings

Across the two tasks, we found that the optimal
hyper-parameter settings (as described in Table 3)
are fairly consistent for dbow and dmpv, as de-
tailed in Table 4 (task abbreviations: Q-Dup =
Forum Question Duplication (Section 3.1); and
STS = Semantic Textual Similarity (Section 3.2)).
Note that we did not tune the initial and mini-
mum learning rates (α and αmin, respectively),
and use the the following values for all experi-
ments: α = .025 and αmin = .0001. The learning
rate decreases linearly per epoch from the initial
rate to the minimum rate.

In general, dbow favours longer windows for
context words than dmpv. Possibly the most
important hyper-parameter is the sub-sampling
threshold for high frequency words: in our experi-
ments we find that task performance dips consider-
ably when a sub-optimal value is used. dmpv also
requires more training epochs than dbow. As a
rule of thumb, for dmpv to reach convergence, the
number of epochs is one order of magnitude larger
than dbow. Given that dmpv has more parameters
in the model, this is perhaps not a surprising find-
ing.

4 Training with Large External Corpora

In Section 3, all tasks were trained using small in-
domain document collections. doc2vec is de-
signed to scale to large data, and we explore the
effectiveness of doc2vec by training it on large
external corpora in this section.

We experiment with two external corpora: (1)
WIKI, the full collection of English Wikipedia;8

and (2) AP-NEWS, a collection of Associated Press
English news articles from 2009 to 2015. We to-
kenise and lowercase the documents using Stan-
ford CoreNLP (Manning et al., 2014), and treat
each natural paragraph of an article as a document
for doc2vec. After pre-processing, we have ap-
proximately 35M documents and 2B tokens for
WIKI, and 25M and .9B tokens for AP-NEWS. See-
ing that dbow trains faster and is a better model
than dmpv from Section 3, we experiment with
only dbow here.9

To test if doc2vec can be used as an off-the-
shelf model, we take a pre-trained model and in-
fer an embedding for a new document without up-
dating the hidden layer word weights.10 We have
three hyper-parameters for test inference: initial
learning rate (α), minimum learning rate (αmin),
and number of inference epochs. We optimise
these parameters using the development partitions
in each task; in general a small initial α (= .01)
with low αmin (= .0001) and large epoch number
(= 500–1000) works well.

For word2vec, we train skip-gram on the

8Using the dump dated 2015-12-01, cleaned us-
ing WikiExtractor: https://github.com/attardi/

wikiextractor
9We use these hyper-parameter values for WIKI (AP-

NEWS): vector size = 300 (300), window size = 15 (15),
min count = 20 (10), sub-sampling threshold = 10−5 (10−5),
negative sample = 5, epoch = 20 (30). After removing low
frequency words, the vocabulary size is approximately 670K
for WIKI and 300K for AP-NEWS.

10That is, test data is held out and not including as part of
doc2vec training.

82

Task Metric Domain pp skip-thought dbow skip-gram
ngram

PPDB BOOK-CORPUS WIKI AP-NEWS WIKI AP-NEWS GL-NEWS

Q-Dup AUC

android .92 .57 .96 .94 .77 .76 .72 .80
english .82 .56 .80 .81 .62 .63 .61 .84
gaming .96 .70 .95 .93 .88 .85 .83 .94

gis .89 .58 .85 .86 .79 .83 .79 .92
mathematica .80 .57 .84 .80 .65 .58 .59 .70

physics .97 .61 .92 .94 .81 .77 .74 .88
programmers .88 .69 .93 .88 .75 .72 .64 .68

stats .87 .60 .92 .98 .70 .72 .66 .77
tex .88 .65 .89 .82 .75 .64 .73 .78

unix .86 .74 .95 .94 .78 .72 .66 .75
webmasters .89 .53 .89 .91 .77 .73 .71 .79
wordpress .83 .66 .99 .98 .61 .58 .58 .87

STS r

headlines .77 .44 .73 .75 .73 .74 .66 .61
ans-forums .67 .35 .59 .60 .46 .44 .42 .50
ans-students .78 .33 .65 .69 .67 .69 .65 .65

belief .78 .24 .58 .62 .51 .51 .52 .67
images .83 .18 .80 .78 .72 .73 .69 .62

Table 5: Results over all two tasks using models trained with external corpora.

same corpora.11 We also include the word vectors
trained on the larger Google News by Mikolov et
al. (2013b), which has 100B words.12 The Google
News skip-gram vectors will henceforth be re-
ferred to as GL-NEWS.
dbow, skip-gram and ngram results for all

two tasks are presented in Table 5. Between the
baselines ngram and skip-gram, ngram ap-
pears to do better over Q-Dup, while skip-gram
works better over STS.

As before, doc2vec outperforms word2vec
and ngram across almost all tasks. For tasks with
longer documents (Q-Dup), the performance gap
between doc2vec and word2vec is more pro-
nounced, while for STS, which has shorter docu-
ments, the gap is smaller. In some STS domains
(e.g. ans-students) word2vec performs just as
well as doc2vec. Interestingly, we see that GL-
NEWS word2vec embeddings perform worse
than our WIKI and AP-NEWS word2vec embed-
dings, even though the Google News corpus is or-
ders of magnitude larger.

Comparing doc2vec results with in-domain
results (1 and 2), the performance is in general
lower. As a whole, the performance difference be-
tween the dbow models trained using WIKI and
AP-NEWS is not very large, indicating the robust-
ness of these large external corpora for general-
purpose applications. To facilitate applications us-

11Hyper-parameter values for WIKI (AP-NEWS): vector
size = 300 (300), window size = 5 (5), min count = 20 (10),
sub-sampling threshold = 10−5 (10−5), negative sample =
5, epoch = 100 (150)

12https://code.google.com/archive/p/word2vec/

ing off-the-shelf doc2vec models, we have pub-
licly released code and trained models to induce
document embeddings using the WIKI and AP-
NEWS dbow models.13

4.1 Comparison with Other Document
Embedding Methodologies

We next calibrate the results for doc2vec
against skip-thought (Kiros et al., 2015) and
paragram-phrase (pp: Wieting et al. (2016)), two
recently-proposed competitor document embed-
ding methods. For skip-thought, we use the
pre-trained model made available by the authors,
based on the BOOK-CORPUS dataset (Zhu et al.,
2015); for pp, once again we use the pre-trained
model from the authors, based on PPDB (Gan-
itkevitch et al., 2013). We compare these two
models against dbow trained on each of WIKI

and AP-NEWS. The results are presented in Ta-
ble 5, along with results for the baseline method
of skip-gram and ngram.
skip-thought performs poorly: its per-

formance is worse than the simpler method of
word2vec vector averaging and ngram. dbow
outperforms pp over most Q-Dup subforums, al-
though the situation is reversed for STS. Given
that pp is based on word vector averaging, these
observations support the conclusion that vector
averaging methods works best for shorter docu-
ments, while dbow handles longer documents bet-
ter.

It is worth noting that doc2vec has the upper-

13https://github.com/jhlau/doc2vec

83

hand compared to pp in that it can be trained on
in-domain documents. If we compare in-domain
doc2vec results (1 and 2) to pp (Table 5), the
performance gain on Q-Dup is even more pro-
nounced.

5 Improving doc2vec with Pre-trained
Word Embeddings

Although not explicitly mentioned in the original
paper (Le and Mikolov, 2014), dbow does not
learn embeddings for words in the default configu-
ration. In its implementation (e.g. Gensim), dbow
has an option to turn on word embedding learn-
ing, by running a step of skip-gram to update
word embeddings before running dbow. With the
option turned off, word embeddings are randomly
initialised and kept at these randomised values.

Even though dbow can in theory work with ran-
domised word embeddings, we found that perfor-
mance degrades severely under this setting. An in-
tuitive explanation can be traced back to its objec-
tive function, which is to maximise the dot prod-
uct between the document embedding and its con-
stituent word embeddings: if word embeddings
are randomly distributed, it becomes more difficult
to optimise the document embedding to be close to
its more critical content words.

To illustrate this, consider the two-dimensional
t-SNE plot (Van der Maaten and Hinton, 2008)
of doc2vec document and word embeddings in
Figure 1(a). In this case, the word learning op-
tion is turned on, and related words form clusters,
allowing the document embedding to selectively
position itself closer to a particular word cluster
(e.g. content words) and distance itself from other
clusters (e.g. function words). If word embeddings
are randomly distributed on the plane, it would be
harder to optimise the document embedding.

Seeing that word vectors are essentially learnt
via skip-gram in dbow, we explore the pos-
sibility of using externally trained skip-gram
word embeddings to initialise the word embed-
dings in dbow. We repeat the experiments de-
scribed in Section 3, training the dbow model us-
ing the smaller in-domain document collections
in each task, but this time initialise the word
vectors using pre-trained word2vec embeddings
from WIKI and AP-NEWS. The motivation is that
with better initialisation, the model could converge
faster and improve the quality of embeddings.

Results using pre-trained WIKI and AP-NEWS

Task Domain dbow
dbow + dbow +

WIKI AP-NEWS

Q-Dup

android .97 .99 .98
english .84 .90 .89
gaming 1.00 1.00 1.00

gis .93 .92 .94
mathematica .96 .96 .96

physics .96 .98 .97
programmers .93 .92 .91

stats 1.00 1.00 .99
tex .94 .95 .92

unix .98 .98 .97
webmasters .92 .93 .93
wordpress .97 .96 .98

STS

headlines .77 .78 .78
ans-forums .66 .68 .68
ans-students .65 .63 .65

belief .76 .77 .78
images .78 .80 .79

Table 6: Comparison of dbow performance using
pre-trained WIKI and AP-NEWS skip-gram em-
beddings.

skip-gram embeddings are presented in Ta-
ble 6. Encouragingly, we see that using pre-
trained word embeddings helps the training of
dbow on the smaller in-domain document collec-
tion. Across all tasks, we see an increase in perfor-
mance. More importantly, using pre-trained word
embeddings never harms the performance. Al-
though not detailed in the table, we also find that
the number of epochs to achieve optimal perfor-
mance (based on development data) is fewer than
before.

We also experimented with using pre-trained
cbowword embeddings for dbow, and found sim-
ilar observations. This suggests that the initialisa-
tion of word embeddings of dbow is not sensitive
to a particular word embedding implementation.

6 Discussion

To date, we have focused on quantitative eval-
uation of doc2vec and word2vec. The
qualitative difference between doc2vec and
word2vec document embeddings, however, re-
mains unclear. To shed light on what is be-
ing learned, we select a random document from
STS — tech capital bangalore costliest indian
city to live in: survey — and plot the docu-
ment and word embeddings induced by dbow and
skip-gram using t-SNE in Figure 1.14

14We plotted a larger set of sentences as part of this analy-
sis, and found that the general trend was the same across all
sentences.

84

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

4

2

0

2

4
tech

capital

bangalore

costliestindian

city

to

live

in
:

survey

doc2vec_sent_emb

tech capital bangalore costliest indian city to live in :
 survey

(a) doc2vec (dbow)

3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

tech

capital

bangalore

costliest

indian

city

to

live

in

:
survey

word2vec_sent_emb

tech capital bangalore costliest indian city to live in :
 survey

(b) word2vec (skip-gram)

Figure 1: Two-dimentional t-SNE projection of doc2vec and word2vec embeddings.

For word2vec, the document embedding is a
centroid of the word embeddings, given the sim-
ple word averaging method. With doc2vec, on
the other hand, the document embedding is clearly
biased towards the content words such as tech,
costliest and bangalore, and away from the func-
tion words. doc2vec learns this from its ob-
jective function with negative sampling: high fre-
quency function words are likely to be selected as
negative samples, and so the document embedding
will tend to align itself with lower frequency con-
tent words.

7 Conclusion

We used two tasks to empirically evaluate
the quality of document embeddings learnt by
doc2vec, as compared to two baseline meth-
ods — word2vec word vector averaging and an
n-gram model — and two competitor document
embedding methodologies. Overall, we found
that doc2vec performs well, and that dbow is
a better model than dmpv. We empirically ar-
rived at recommendations on optimal doc2vec
hyper-parameter settings for general-purpose ap-
plications, and found that doc2vec performs ro-
bustly even when trained using large external cor-
pora, and benefits from pre-trained word embed-
dings. To facilitate the use of doc2vec and en-
able replication of these results, we release our
code and pre-trained models.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-

Agirre, and Weiwei Guo. 2013. *sem 2013 shared

task: Semantic textual similarity. In Proceedings of
the Second Joint Conference on Lexical and Compu-
tational Semantics (*SEM 2013), pages 32–43, At-
lanta, USA.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 81–91, Dublin, Ireland.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, USA.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy
Bengio, Jeff Dean, Marc Aurelio Ranzato, and
Tomas Mikolov. 2013. DeViSE: A deep visual-
semantic embedding model. In Advances in Neu-
ral Information Processing Systems 26 (NIPS-13),
pages 2121–2129.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL HLT 2013), pages 758–764, At-
lanta, USA.

85

Doris Hoogeveen, Karin Verspoor, and Timothy Bald-
win. 2015. CQADupStack: A benchmark data
set for community question-answering research. In
Proceedings of the Twentieth Australasian Docu-
ment Computing Symposium (ADCS 2015), pages
3:1–3:8, Sydney, Australia.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antionio Torralba, Raquel Ur-
tasun, and Sanja Fidler. 2015. Skip-thought vec-
tors. In Advances in Neural Information Processing
Systems 28 (NIPS-15), pages 3294–3302, Montreal,
Canada.

Q. Le and T. Mikolov. 2014. Distributed representa-
tions of sentences and documents. In Proceedings
of the 31st International Conference on Machine
Learning (ICML 2014), pages 1188–1196, Beijing,
China.

Peng Li, Yang Liu, Maosong Sun, Tatsuya Izuha,
and Dakun Zhang. 2014. A neural reordering
model for phrase-based translation. In Proceedings
of the 25th International Conference on Compu-
tational Linguistics (COLING 2014), pages 1897–
1907, Dublin, Ireland.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60, Baltimore, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at the International Conference on Learning Repre-
sentations, 2013, Scottsdale, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014), pages 1532–
1543, Doha, Qatar.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta.

Bahar Salehi, Paul Cook, and Timothy Baldwin. 2015.
A word embedding approach to predicting the com-
positionality of multiword expressions. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics — Human Language Technologies (NAACL
HLT 2015), pages 977–983, Denver, USA.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2015. DLS@CU: Sentence similarity from
word alignment and semantic vector composition.
In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015), pages 148–
153, Denver, Colorado.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(2579–2605):85.

Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and
Timothy Baldwin. to appear. Take and took, gag-
gle and goose, book and read: Evaluating the util-
ity of vector differences for lexical relation learning.
Berlin, Germany.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of the Inter-
national Conference on Learning Representations
2016, San Juan, Puerto Rico.

Jiajun Zhang, Shujie Liu, Mu Li, Ming Zhou, and
Chengqing Zong. 2014. Bilingually-constrained
phrase embeddings for machine translation. In Pro-
ceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2014),
pages 111–121, Baltimore, USA.

Jiang Zhao, Man Lan, Zheng-Yu Niu, and Yue Lu.
2015. Integrating word embeddings and traditional
nlp features to measure textual entailment and se-
mantic relatedness of sentence pairs. In Proceedings
of the International Joint Conference on Neural Net-
works (IJCNN2015), pages 1–7, Killarney, Ireland.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. Arxiv, abs/1506.06724.

86

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 87–93,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Quantifying the vanishing gradient and long distance dependency
problem in recursive neural networks and recursive LSTMs

Phong Le and Willem Zuidema
Institute for Logic, Language and Computation

University of Amsterdam, the Netherlands
{p.le,zuidema}@uva.nl

Abstract

Recursive neural networks (RNN) and
their recently proposed extension recur-
sive long short term memory networks
(RLSTM) are models that compute rep-
resentations for sentences, by recursively
combining word embeddings according to
an externally provided parse tree. Both
models thus, unlike recurrent networks,
explicitly make use of the hierarchical
structure of a sentence. In this paper, we
demonstrate that RNNs nevertheless suf-
fer from the vanishing gradient and long
distance dependency problem, and that
RLSTMs greatly improve over RNN’s on
these problems. We present an artificial
learning task that allows us to quantify the
severity of these problems for both mod-
els. We further show that a ratio of gra-
dients (at the root node and a focal leaf
node) is highly indicative of the success of
backpropagation at optimizing the relevant
weights low in the tree. This paper thus
provides an explanation for existing, supe-
rior results of RLSTMs on tasks such as
sentiment analysis, and suggests that the
benefits of including hierarchical structure
and of including LSTM-style gating are
complementary.

1 Introduction

The recursive neural network (RNN) model be-
came popular since the work of Socher et al.
(2010). It has been employed to tackle several
NLP tasks, such as syntactic parsing (Socher et al.,
2013a), machine translation (Liu et al., 2014), and
word embedding learning (Luong et al., 2013).
However, like traditional recurrent neural net-
works, the RNN seems to suffer from the vanish-

ing gradient problem, in which error signals prop-
agating from the root in a parse tree to the child
nodes shrink very quickly. Moreover, it encoun-
ters difficulties in capturing long range dependen-
cies: information propagating from child nodes
deep in a parse tree can be obscured before reach-
ing the root node.

In the recurrent neural network world, the long
short term memory (LSTM) architecture (Hochre-
iter and Schmidhuber, 1997) is often used as a so-
lution to these two problems. A natural extension
of the LSTM can be defined for tree structures,
which we call Recursive LSTM (RLSTM), as pro-
posed independently by Tai et al. (2015), Zhu et
al. (2015), and Le and Zuidema (2015). How-
ever, while there is intensive research showing
how the LSTM architecture can overcome those
two problems compared to traditional recurrent
models (e.g., Gers and Schmidhuber (2001)), such
research is, to our knowledge, still absent for the
comparison between RNNs and RLSTMs. There-
fore, in the current paper we investigate the fol-
lowing two questions:

1. Is the RLSTM more capable of capturing
long range dependencies than the RNN?

2. Does the RLSTM overcome the vanishing
gradient problem more effectively than the
RNN?

Supervised learning requires annotated data,
which is often expensive to collect. As a result, ex-
amining a model on natural data on many different
aspects can be difficult because the portion of data
that fits a specific aspect could not be sufficient.
Moreover, studying individual aspects separately
is hard since many aspects are often correlated
with each other. This, unfortunately, is true in our
case: answering those two questions requires us to
evaluate the examined models on datasets of dif-

87

x y z t

softmax

p q

s

F F

F

Figure 1: A recursive model (such as RNN and
RLSTM) employ a composition function F in a
bottom-up manner to compute a vector represen-
tation for each internal node in a tree. If the model
is used for classification on the sentence level, a
softmax layer is put on the top of the root node to
compute a distribution over all possible classes.

ferent tree depths, in which the key nodes which
contain decisive information in a parse tree must
be identified. Using available annotated corpora
such as the Stanford Sentiment Treebank (Socher
et al., 2013b) and the Penn Treebank is thus inap-
propriate, as they are too small for this purpose
(10k, 40k trees, respectively, compared to 240k
trees in our experiments), and key nodes are not
marked. Our solution is an artificial task where
sentences and parse trees can be randomly gener-
ated under any arbitrary constraints on tree depth
and key node’s position.

2 Background

Both the RNN and the RLSTM model are in-
stances of a general framework which takes a sen-
tence, syntactic tree, and vector representations for
the words in the sentence as input, and applies a
composition function to recursively compute vec-
tor representations for all the phrases in the tree
and the complete sentence. Technically speaking,
given a production p→ x y, and x,y ∈ Rn repre-
senting x, y, we compute p ∈ Rn for p by

p = F (x,y)

where F is a composition function (Figure 1).
In the RNN, F is a one-layer feed-forward neu-

ral network:

p = f(W1x + W2y + b)

where W1,W2 ∈ Rn×n are weight matrices and
b ∈ Rn is a bias vector. f is an activation function.

In the RLSTM, a node p is represented by the
vector [p; cp] resulting from concatenating a vec-
tor representing the phrase that the node covers
and a memory vector. F could be any LSTM
that can compute two such concatenation vectors,
such as Structure-LSTM (Zhu et al., 2015), Tree-
LSTM (Tai et al., 2015), and LSTM-RNN (Le and
Zuidema, 2015). In the current paper, we use the
implementation1 of Le and Zuidema (2015) where
an LSTM (for binary trees) has two input gates
i1, i2, two forget gates f1, f2, an output gate o,
and a memory cell c. The vector representation
and memory vector for node p are computed as
follows:

i1 = σ
(
Wi1x + Wi2y + Wci1cx + Wci2cy + bi

)
i2 = σ

(
Wi1y + Wi2x + Wci1cy + Wci2cx + bi

)
f1 = σ

(
Wf1x + Wf2y + Wcf1cx + Wcf2cy + bf

)
f2 = σ

(
Wf1y + Wf2x + Wcf1cy + Wcf2cx + bf

)
cp = f1 � cx + f2 � cy+

g
(
Wc1x� i1 + Wc2y � i2 + bc

)
o = σ

(
Wo1x + Wo2y + Wcoc + bo

)
p = o� g(cp)

where u and cu are the output and the state of the
memory cell at node u; i1, i2, f1, f2, o are the
activations of the corresponding gates; W’s and
b’s are weight matrices and bias vectors; and g is
an activation function.

3 Experiments

We now examine how the two problems, the van-
ishing gradient problem and the problem of how
to capture long range dependencies, affect the
RLSTM model and the RNN model. To do so,
we propose the following artificial task, which re-
quires a model to distinguish useful signals from
noise. We define:

• a sentence is a sequence of tokens which are
integer numbers in the range [0, 10000];

• a sentence contains one and only one keyword
token which is an integer number smaller
than 1000;

• a sentence is labeled with the integer result-
ing from dividing the keyword by 100. For

1https://github.com/lephong/lstm-rnn

88

6

0

0

0

2 7 5 7

0

7 7 5 9

0

0

0

6 0 9 5

0

6 0 7

0

0

0

5 8 4 6

0

5 8 4 5

0

0

0

5 9 8 2

0

4 0 1 5

0

0

5 4 8 4

0

0

1 8 9 3

0

4 5 7 1

0

0

7 4 5 0

0

0

0

4 5 8 2

0

4 9 9 3

0

2 5 0 2

Figure 2: Example binary tree for the artificial task. The number enclosed in the box is the keyword of
the sentence.

instance, if the keyword is 607, the label is
6. In this way, there are 10 classes, ranging
from 0 to 9.

The task is to predict the class of a sentence, given
its binary parse tree (Figure 2). Because the label
of a sentence is determined solely by the keyword,
the two models need to identify the keyword in the
parse tree and allow only the information from the
leaf node of the keyword to affect the root node. It
is worth noting that this task resembles sentiment
analysis with simple cases in which the sentiment
of a whole sentence is determined by one key-
word (e.g. “I like the movie”). Simulating com-
plex cases involving negation, composition, etc. is
straightforward and for future work. But here we
believe that the current task is adequate to answer
our two questions raised in Section 1.

The two models, RLSTM and RNN, were im-
plemented with the dimension of vector represen-
tations and vector memories 50. Following Socher
et al. (2013b), we used tanh as the activation
function, and initialized word vectors by randomly
sampling each value from a uniform distribution
U(−0.0001, 0.0001). We trained the two models
using the AdaGrad method (Duchi et al., 2011)
with a learning rate of 0.05 and a mini-batch size
of 20 for the RNN and of 5 for the RLSTM. De-
velopment sets were employed for early stopping
(training is halted when the accuracy on the de-
velopment set is not improved after 5 consecutive
epochs). It is worth noting that we also tried other
values for the hyper-parameters but did not gain
significantly better results on development sets.

3.1 Experiment 1

We randomly generated 10 datasets. To generate a
sentence of length l, we shuffle a list of randomly
chosen l− 1 non-keywords and one keyword. The
i-th dataset contains 12k sentences of lengths from
10i−9 tokens to 10i tokens, and is split into train,
dev, test sets with sizes of 10k, 1k, 1k sentences.
We parsed each sentence by randomly generating
a binary tree whose number of leaf nodes equals
to the sentence length.

The test accuracies of the two models on the 10
datasets are shown in Figure 3; For each dataset
we run each model 5 times and reported the high-
est accuracy for the RNN model, and the distribu-
tion of accuracies (via boxplot) for the RLSTM
model. We can see that the RNN model per-
forms reasonably well on very short sentences
(less than 11 tokens). However, when the sentence
length exceeds 10, the RNN’s performance drops
so quickly that the difference between it and the
random guess’ performance (10%) is negligible.
Trying different learning rates, mini-batch sizes,
and values for n (the dimension of vectors) did not
give significant differences. On the other hand,
the RLSTM model achieves more than 90% ac-
curacy on sentences shorter than 31 tokens. Its
performance drops when the sentence length in-
creases, but is still substantially better than the ran-
dom guess when the sentence length does not ex-
ceed 70. When the sentence length exceeds 70,
both the RLSTM and RNN perform similarly.

3.2 Experiment 2

In Experiment 1, it is not clear whether the tree
size or the keyword depth is the main factor of the
rapid drop of the RNN’s performance. In this ex-

89

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
0

2

4

6

8

10

datasetu(minLength-maxLength)

0

20

40

60

80

100

w

RNN’suaccuracy
averageukeywordudepth

ac
cu

ra
cy

depth

Figure 3: Test accuracies of the RNN (red solid curve, the best among 5 runs) and the RLSTM (boxplots)
on datasets of different sentence lengths.

periment, we kept the tree size fixed and vary the
keyword depth. We generated a pool of sentences
of lengths from 21 to 30 tokens and parsed them by
randomly generating binary trees. We then created
10 datasets each of which has 12k trees (10k for
training, 1k for development, and 1k for testing).
The i-th dataset consists of only trees in which dis-
tances from keywords to roots are i or i + 1 (to
stop the networks from exploiting keyword depths
directly).

Figure 4 shows test accuracies of the two mod-
els on those 10 datasets. Similarly in Experiment
1, for each dataset we run each model 5 times
and reported the highest accuracy for the RNN
model, and the distribution of accuracies for the
RLSTM model. As we can see, the RNN model
achieves very high accuracies when the keyword
depth does not exceed 3. Its performance then
drops rapidly and gets close to the performance
of the random guess. This is evidence that the
RNN model has difficulty capturing long range de-
pendencies. By contrast, the RLSTM model per-
forms at above 90% accuracy until the depth of the
keyword reaches 8. It has difficulty dealing with
larger depths, but the performance is always better
than the random guess.

3.3 Experiment 3
We now examine whether the two models can en-
counter the vanishing gradient problem. To do so,
we looked at the the back-propagation phase of
each model in Experiment 1 on the third dataset
(the one containing sentences of lengths from 21
to 30 tokens). For each tree, we calculated the ra-

tio
‖ ∂J

∂xkeyword
‖

‖ ∂J
∂xroot

‖
where the numerator is the norm of the error vector
at the keyword node and the denominator is the
norm of the error vector at the root node. This ratio
gives us an intuition how the error signals develop
when propagating backward to leaf nodes: if the
ratio� 1, the vanishing gradient problem occurs;
else if the ratio � 1, we observe the exploding
gradient problem.

Figure 5 reports the ratios w.r.t. the keyword
node depth in each epoch of training the RNN
model. The ratios in the first epoch are always
very small. In each following epoch, the RNN
model successfully lifts up the ratios steadily (see
Figure 7a for a clear picture at the keyword depth
10), but a clear decrease when the depth becomes
larger is observable. For the RLSTM model (see
Figure 6 and 7b), the story is somewhat different.
The ratios go up after two epochs so rapidly that
there are even some exploding error signals sent
back to leaf nodes. They subsequently go down
and remain stable with substantially less explod-
ing error signals. This is, interestingly, concurrent
with the performance of the RLSTM model on the
development set (see Figure 7b). It seems that the
RLSTM model, after one epoch, quickly locates
the keyword node in a tree and relates it to the root
by building a strong bond between them via error
signals. After the correlation between the keyword
and the label at the root is found, it tries to stabilize
the training by reducing the error signals sent back

90

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11
0

20

40

60

80

100

dataset (minDepth-maxDepth)

%
ac

cu
ra

cy

Figure 4: Test accuracies of the RNN (red solid curve, the best among 5 runs) and the RLSTM (boxplots)
on datasets of different keyword depths.

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 1

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 2

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 3

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 4

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 5

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 6

Figure 5: Ratios of norms of error vectors at keyword nodes to norms of error vectors at root nodes w.r.t.
the keyword node depth in each epoch of training the RNN. Gradients gradually vanish with greater
depth.

to the keyword node. Comparing the two models
by aligning Figure 5 with Figure 6, and Figure 7a
with Figure 7b, we can see that the RLSTM model
is more capable of transmitting error signals to leaf
nodes.

It is worth noting that we do see the vanish-
ing gradient problem happening when training the
RNN model in Figure 5; but Figure 7a suggests
that the problem can become less serious after a

long enough training time. This might be because
depth 10 is still manageable for the RNN model.
(Notice that in the Stanford Sentiment Treebank,
more than three quarters of leaf nodes are at depths
less than 10.) The fact the the RNN model still
doesnot perform better than random guessing can
be explained using the arguments given by Ben-
gio et al. (1994), who show that there is a trade-off
between avoiding the vanishing gradient problem

91

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 1

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 2

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 3

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 4

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 5

0 2 4 6 8 10 12 14
0
1
2
3
4
5

depth

epoch 6

Figure 6: Ratios of norms of error vectors at keyword nodes (at different depths) to norms of error vectors
at root nodes, in the RLSTM. Many gradients explode in epoch 2, but stabilize later. Gradients do not
vanish, even at depth 12 and 13.

and capturing long term dependencies when train-
ing traditional recurrent networks.

4 Conclusion

Because long range dependencies and vanishing
gradients are serious challenges in deep learning,
evaluating how well a model overcome these chal-
lenges is necessary. In this current paper, we focus
on two recursive models, RNN and RLSTM. Due
to lack of natural data, we proposed a novel arti-
ficial task where the label of a sentence is solely
determined by a key word it contains. The exper-
imental results show that the RLSTM is superior
to the RNN. This is in parallel with general con-
clusions about the power of the LSTM architec-
ture compared to traditional Recurrent neural net-
works.

Although our proposed task is simple, it is suf-
ficient for testing recursive models since solving
the task requires models to be capable of captur-
ing long range dependencies and propagating er-
rors to leaf nodes far from the root. It is, moreover,
straightforward to extend the task such that more
complex cases can be taken into account. For in-
stance, for compositionality, a sentence can con-
tain more than one keywords and the sentence la-
bel is determined by some kind of interaction be-

tween those keywords (such as addition).

References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157–166.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, pages 2121–2159.

Felix A Gers and Jürgen Schmidhuber. 2001. Lstm
recurrent networks learn simple context-free and
context-sensitive languages. Neural Networks,
IEEE Transactions on, 12(6):1333–1340.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Phong Le and Willem Zuidema. 2015. Compositional
distributional semantics with long short term mem-
ory. In Proceedings of the Joint Conference on Lex-
ical and Computational Semantics (*SEM). Associ-
ation for Computational Linguistics.

Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. 2014.
A recursive recurrent neural network for statistical
machine translation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational

92

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

epoch

(a) RNN

0 2 4 6 8 10 12
0

20

40

60

80

100

epoch

%

0

0.5

1

1.5

2

2.5

3
accuracy

accuracy

(b) RLSTM (with development accuracies)

Figure 7: Ratios at depth 10 in each epoch of training the RNN (a) and the RLSTM (b).

Linguistics (Volume 1: Long Papers), pages 1491–
1500, Baltimore, Maryland, June. Association for
Computational Linguistics.

Minh-Thang Luong, Richard Socher, and Christo-
pher D Manning. 2013. Better word representa-
tions with recursive neural networks for morphol-
ogy. CoNLL-2013, 104.

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning
Workshop.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013a. Parsing with compo-
sitional vector grammars. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics, pages 455–465.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013b. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings EMNLP.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China, July. Association
for Computational Linguistics.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In Proceedings of International Confer-
ence on Machine Learning, July.

93

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 94–99,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

LSTM-based Mixture-of-Experts for Knowledge-Aware Dialogues

Phong Le∗
University of Amsterdam

p.le@uva.nl

Marc Dymetman, Jean-Michel Renders
Xerox Research Centre Europe

{firstname.lastname}@xrce.xerox.com

Abstract

We introduce an LSTM-based method
for dynamically integrating several word-
prediction experts to obtain a conditional
language model which can be good simul-
taneously at several subtasks. We illus-
trate this general approach with an appli-
cation to dialogue where we integrate a
neural chat model, good at conversational
aspects, with a neural question-answering
model, good at retrieving precise infor-
mation from a knowledge-base, and show
how the integration combines the strengths
of the independent components. We hope
that this focused contribution will attract
attention on the benefits of using such mix-
tures of experts in NLP and dialogue sys-
tems specifically.

1 Introduction

The mainstream architecture for virtual agents in
dialogue systems (McTear, 2004; Jokinen and
McTear, 2009; Rieser and Lemon, 2011; Young et
al., 2013) involves a combination of several com-
ponents, which require a lot of expertise in the
different technologies, considerable development
and implementation effort to adapt each compo-
nent to a new domain, and are only partially train-
able (if at all). Recently, Vinyals and Le (2015),
Serban et al. (2015), Shang et al. (2015) pro-
posed to replace this complex architecture by a
single network (such as a Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997))
that predicts the agent’s response from the dia-
logue history up to the point where it should be
produced: this network can be seen as a form of
conditional neural language model (LM), where

∗Work performed during Phong Le’s internship at XRCE
in 2015.

the dialogue history provides the context for the
production of the next agent’s utterance.

Despite several advantages over the traditional
architecture (learnability, adaptability, better ap-
proximations to human utterances), this approach
is inferior in one dimension: it assumes that all the
knowledge required for the next agent’s utterance
has to be implicitly present in the dialogues over
which the network is trained, and to then be pre-
cisely memorized by the network, while the tra-
ditional approach allows this knowledge to be dy-
namically accessed from external knowledge-base
(KB) sources, with guaranteed accuracy.

To address this issue, we propose the following
approach. As in Vinyals and Le (2015), we first
do train a conditional neural LM based on exist-
ing dialogues, which we call our chat model; this
model can be seen as an “expert” about the con-
versational patterns in the dialogue, but not about
its knowledge-intensive aspects. Besides, we train
another model, which this time is an expert about
these knowledge aspects, which we call our QA
model, due to its connections to Question Answer-
ing (QA). We then combine these two expert mod-
els through an LSTM-based integration model,
which at each time step, encodes the whole his-
tory into a vector and then uses a softmax layer to
compute a probability mixture over the two mod-
els, from which the next token is then sampled.

While here we combine in this way only two
models, this core contribution of our paper is im-
mediately generalizable to several expert mod-
els, each competent on a specific task, where the
(soft) choice between the models is done through
the same kind of contextually-aware “attention”
mechanism. Additional smaller contributions con-
sist in the neural regime we adopt for training the
QA model, the way in which we reduce the mem-
orization requirements on this model.

It is worth noting that concurrently with our

94

work, Yin et al. (2015) have proposed a similar
idea focusing only on QA in a traditional set-up.
Our case is more difficult because of the chat inter-
action; and the integration framework we propose
is generally applicable to situations where a pool
of word-prediction “experts” compete for atten-
tion during the generation of text. Outside of di-
alogue applications, also independently and even
more recently, Ling et al. (2016) have proposed a
“Latent Predictor Network for Code Generation”,
which has some close similarities to our LSTM-
based mixture of experts.

2 LSTM-based Mixture of Experts

The method is illustrated in Figure 1. Let wt
1 =

w1...wt be a history over words. We suppose
that we have K models each of which can com-
pute a distribution over its own vocabulary Vk :
pk(w ∈ Vk|wt

1), for k ∈ [1,K]. We use an LSTM
to encode the history word-by-word into a vector
ht which is the hidden state of the LSTM at time
step t. We then use a softmax layer to compute the
probabilities

p(k|wt
1) =

eu(k,ht)∑K
k′=1 e

u(k′,ht)

where [u(1,ht), ..., u(K,ht)]
T = Wht+b, W ∈

RK×dim(ht),b ∈ RK . The final probability of the
next word is then:

p(w|wt
1) =

K∑
k=1

p(k|wt
1) pk(w|wt

1). (1)

Our proposal can be seen as bringing together
two previous lines of research within an LSTM
framework. Similar to the mixture-of-experts tech-
nique of Jacobs et al. (1991), we predict a label by
using a “gating” neural network to mix the pre-
dictions of different experts based on the current
situation. Similar to the approach of Florian and
Yarowsky (1999), we dynamically combine dis-
tributions on words to produce an integrated LM.
However Florian and Yarowsky (1999) focus on
the combination of topic-dependent LMs, while in
our case, the components can be arbitrary distri-
butions over words — we later use a component
that produces answers to questions appearing in
the text. In our case, the labels are words, the gat-
ing neural network is an LSTM that stores a rep-
resentation of a long textual prefix, and the com-
bination mechanism is trained by optimizing the

parameters of this LSTM.

3 Data

Our corpus consists of 165k dialogues from a
“tech company” in the domain of mobile tele-
phony support. We split them into train, devel-
opment, and test sets whose sizes are 145k, 10k,
and 10k dialogues. We then tokenize and low-
ercase each dialogue, and remove unused infor-
mation such as head, tail, chat time (Figure 2).
For each response utterance found in a dialogue,
we create a context-response pair whose context
consists of all sentences appearing before the re-
sponse. This process gives us 973k/74k/75k pairs
for training/development/testing.

Knowledge-base The KB we use in this work
consists of 1,745k device-attribute-value triples,
e.g., (Apple iPhone 5; camera megapixels; 8.0).
There are 4729 devices and 608 attributes. Be-
cause we consider only numeric values, only
triples that have numeric attributes are chosen, re-
sulting in a set of 65k triples of 34 attributes.

Device-specification context-response pairs
Our target context-response pairs are those in
which the client asks about numeric value at-
tributes. We employ a simple heuristic to select
target context-response pairs: a context-response
pair is chosen if its response contains a number
and one of the following keywords: cpu, pro-
cessor, ghz, mhz, memory, mb(s), gb(s), byte,
pixel, height, width, weigh, size, camera, mp,
hour(s), mah. Using this heuristic, we col-
lect 17.6k/1.3k/1.4k pairs for training/dev/testing.
These sets are significantly smaller than those ex-
tracted above.

4 KB-aware Chat Model

4.1 Neural Chat Model

Ouur corpus is comparable to the one described in
Vinyals and Le (2015)’s first experiment, and we
use here a similar neural chat model.

Without going into the details of this model for
lack of space, it uses a LSTM to encode into a vec-
tor the sequence of words observed in a dialogue
up to a certain point, and then this vector is used
by another LSTM for generating the next utterance
also word-by-word. The approach is reminiscent
of seq2seq models for machine translation such as
(Sutskever et al., 2014), where the role of “source

95

wi-4
wi-3 wi-2

 …

wi-1

LSTM LSTM LSTM LSTM

 … …
...

 … ... … ...

p1(w ∈ V1) pK(w ∈ VK)

p(w ∈ V1∪...∪VK)

output of model 1 output of model K

softmax

...

Figure 1: LSTM-based mixture-of-experts for Language modelling. ⊗ denotes multiplication,⊕ denotes
sum.

7760 | 121686798 | log started fri may 06 10:50:43 pdt 2011
-lsb- 10:51:33 -rsb- you have been connected to X .

-lsb- 10:51:49 -rsb- X : hello and thanks for contacting Z ! my name is X , how can i assist
-------------------------you today ?
-lsb- 10:52:13 -rsb- Y : how do i change the text notification on my htc evo
-lsb- 10:53:06 -rsb- X : sorry you are having problems with that but you are in the right
-------------------------place . before we begin can i start with you name please ?
-lsb- 10:53:28 -rsb- Y : Y test
-lsb- 10:53:55 -rsb- X : thank you Y . one moment while i pull up the information on that
-------------------------device .
-lsb- 10:54:36 -rsb- Y : i am using this to showcase the shack support to an employee if you
-------------------------guys are busy we can try this later

-lsb- -- end of transcript as seen by customer -- -rsb-
-lsb- 10:55:10 -rsb- the customer has ended the chat session .
...

head

tail

time

Figure 2: An example dialogue.

96

sentence” is played by the dialogue prefix, and that
of “target sentence” by the response utterance.

4.2 Neural Question Answering Model

In a standard setting, a question to query a KB
must be formal (e.g., SQL). However, because a
human-like QA system should take natural ques-
tions as input, we build a neural model to translate
natural questions to formal queries. This model
employs an LSTM to encode a natural question
into a vector. It then uses two softmax layers to
predict the device name and the attribute. This
model is adequate here, since we focus on the QA
situation where the client asks about device speci-
fications. For more complex cases, more advanced
QA models should be considered (e.g., Bordes et
al. (2014), Yih et al. (2015)).

Given question wl
1, the two softmax layers give

us a distribution over devices pd(•|wl
1) and a dis-

tribution over attributes pa(•|wl
1). We can then

compute a distribution over the set Vqa of all val-
ues found in the KB, by marginalizing over d, a:

pqa(v|wl
1) =

∑
〈d,a,v〉∈T

pd(d|wl
1)pa(a|wl

1), (2)

where T is the set of all triples in the KB.
Initial experiments showed that predicting val-

ues in this indirect way significantly improves the
accuracy compared to employing a single softmax
layer to predict values directly, because it does not
require the hidden states to directly memorize the
value for each device-attribute pair.

Data Generation One serious difficulty is that
we do not have a corpus of natural questions on
which to train the QA model, so we have to re-
sort to a method for generating virtual question/an-
swer pairs, on which to train our QA model. How-
ever, existing corpora and methods for generating
such data (e.g., Fader et al. (2013)) hardly meet
our needs here. This is because our case is very
different from (and somewhat more difficult than)
traditional QA set-ups in which questions are inde-
pendent. In our case several scenarios are possible,
resulting from the chat interaction (e.g., in a chat,
questions can be related as in Figure 3). We there-
fore propose a simple heuristic method for gener-
ating artificial QA data that can cover several sce-
narios.

For each pair <device name, attribute>,
we paraphrase the device name by randomly
dropping some words (e.g., “apple iphone 4”

becomes “iphone 4”), and paraphrase the attribute
using a small handcrafted dictionary and also
randomly dropping some words (“battery talk
time” becomes “battery life” which can become
“battery”). We then draw a sequence of l words
from a vocabulary w.r.t word frequency, where
l ∼ Gamma(k, n) (e.g., “i what have”), and
shuffle these words. The output of the final step is
used as a training datapoint like: have iphone
4 what battery i → apple iphone 4
battery talk time. To make it more re-
alistic, we also generate complex questions by
concatenating two simple ones. Such questions
are used to cover the dialogue scenario where the
client continues asking about another device and
attribute. In this case, the system should focus on
the latest device and attribute. Using this method,
we generate a training set of 7.6m datapoints and
a development set of 10k.

4.3 Integration

We now show how we integrate the chat model
with the QA model using the LSTM-based
mixture-of-experts method. The intuition is the
following: the chat model is in charge of gener-
ating smooth responses into which the QA model
“inserts” values retrieved from the KB. Ideally,
we should employ an independent LSTM for the
purpose of computing mixture weights, as in Sec-
tion 2. However, due to the lack of training
data, our integration model makes use of the chat
model’s hidden state to compute these weights.
Because this hidden state captures the uncertainty
of generating the next word, it is also able to detect
whether or not the next word should be generated
by the chat model.

The chat model is the backbone because it gen-
erates most tokens. The QA model, on the other
hand, is crucial since we want the system to gen-
erate correct values. (E.g., the chat model alone
cannot provide the precise information shown in
Figure 3.) More importantly, in the future when
new devices are released, we do not need to col-
lect new chat data, which are often expensive, to
retrain the chat model.

Let C and wt
1 be a context and words generated

up to this point. pc(•|wt
1, C) and pqa(•|wt

1, C) are
given by the chat model and the QA model. We
then compute the distribution p(•|wt

1, C) over Vc∪

97

Vqa as a mixture of pc and pqa:

p(w|wt
1, C) = α.pc(w|wt

1, C)
+ (1− α).pqa(w|wt

1, C)

where α = σ(wThc
t + b), hc

t is the hidden state of
the chat model, σ is the sigmoid function; w ∈
Rdim(hc

t) and b ∈ R. Note that the sigmoid is
equivalent to the softmax for two output units.

Training To train this integration model, we
keep the chat model and the QA model frozen, and
minimize the objective:

J(θ) =−
∑

(C,wl
1)∈D

l−1∑
t=0

β(wt+1) log p(wt+1|wt
1, C; θ)

+
λ

2
||θ||2

w.r.t. θ = (w, b), where β(w) = 100 if w ∈ Vqa \
Vc, β(w) = 1 otherwise. λ is the regularization
parameter and D is the training set. We set β(w ∈
Vqa \ Vc) high because we want the training phase
to focus on those tokens representing values in the
KB but not supported by the chat model.

Decoding To find the most probable re-
sponses, our decoder employs the uniform-cost-
search algorithm (Russell and Norvig, 2003),
which is guaranteed to find optimal solutions and
is feasible with our search space. We stipulate a
constraint that a response is to answer not more
than one question.

5 Experiments

We implement our models in C++ using CUDA.
Since automatically evaluating a conversation sys-
tem is still challenging, we, following Vinyals and
Le (2015), use word perplexity only. In our exper-
iments, every LSTM has 1024 hidden units and
1024 memory cells. The vocabulary of the chat
model has 19.3k words, that of the QA model
12.7k words.

We firstly train the chat model on all chat data
with the learning rate 0.01, and continue training
it on the device-specification data with the learn-
ing rate 0.001. Using this smaller learning rate we
expect that the model will not forget what it has
learnt on all the chat corpus. Next, we train the QA
model on the data generated in Section 4.2 with
the learning rate 0.01. Finally, we train the inte-
gration model on the device-specification training
data also with the learning rate 0.01.

Our initial results are as follows. The integra-
tion slightly increases the perplexity on all tokens
(15.4, compared to 14.7 of the chat model), but it
does help to significantly decrease perplexity 38%
on the numeric tokens (46.8, compared to 75.8 of
the chat model). This decrease is due to the im-
proved ability of the integration model to detect
places where a numeric value associated with a
device-attribute information request should be in-
serted and to predict this value. Not all numeric
values are associated with information requests of
this type, but the reported perplexities are over all
numeric values. The decrease in perplexity over
the numeric values is not enough to decrease over-
all perplexity because the numeric tokens repre-
sent only 6.7% of the tokens, and the integration
model wrongly puts some small probability mass
on the QA expert also in the case of the many non-
numeric tokens. However, the fact that the per-
plexity decreases over the numeric tokens shows
that the integration model is useful for predicting
correct values, which are informationally much
more critical to the user than general words (ad-
mittedly, perplexity is here a weak proxy for what
a human evaluation of usefulness would provide.)

Figure 3 shows a chat example with our integra-
tion model.

6 Conclusions

We introduce a general LSTM-based mixture-of-
experts method for language modelling and illus-
trate the approach by integrating a neural chat
model with a neural QA model. The experimen-
tal results, while limited to measures of perplex-
ity, do show that the integration model is capable
of handling chats inside of which the user may ask
about device specifications; a more thorough and
convincing evaluation would require human asses-
ments of the quality of the produced responses.

We believe that the proposed integration method
has potential for a wide range of applications. It al-
lows to pool a number of different language mod-
els, each expert in a specific domain or class of
problems (possibly trained independently based
on the most appropriate data) and to generate the
next word based on a competition between these
models, under the supervision of an LSTM-based
attention mechanism.

98

Client: i want to know about how fast is the processor of apple ipad 2
Machine: that 's an excellent question , i can definitely help you with that !
 1 ghz
 was there anything else i could help you out with today ?
Client: and its ram ?
Machine: 0.5 gigabytes
Client: thanks
Machine: was there anything else i could help you out with today ?

Figure 3: A dialogue with the integration model. The first value is produced by the pair <apple ipad 2,
cpu maximum frequency>, the second value by <apple ipad 2, internal ram>.

References
Antoine Bordes, Sumit Chopra, and Jason Weston.

2014. Question answering with subgraph embed-
dings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 615–620, Doha, Qatar, Octo-
ber. Association for Computational Linguistics.

Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In ACL (1), pages 1608–1618. Citeseer.

Radu Florian and David Yarowsky. 1999. Dynamic
nonlocal language modeling via hierarchical topic-
based adaptation. In Proceedings of the 37th annual
meeting of the Association for Computational Lin-
guistics on Computational Linguistics, pages 167–
174. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Robert A Jacobs, Michael I Jordan, and Andrew G
Barto. 1991. Task decomposition through compe-
tition in a modular connectionist architecture: The
what and where vision tasks. Cognitive Science,
15(2):219–250.

Kristiina Jokinen and Michael F. McTear. 2009. Spo-
ken Dialogue Systems. Synthesis Lectures on Hu-
man Language Technologies. Morgan & Claypool
Publishers.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomás Kociský, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016. Latent pre-
dictor networks for code generation. CoRR,
abs/1603.06744.

Michael F. McTear. 2004. Spoken Dialogue Tech-
nology: Towards the Conversational User Interface.
Springer.

Verena Rieser and Oliver Lemon. 2011. Reinforce-
ment learning for adaptive dialogue systems : a
data-driven methodology for dialogue management
and natural language generation. Theory and appli-
cations of natural language processing monographs.
Springer, Heidelberg, New York.

Stuart J. Russell and Peter Norvig. 2003. Artificial In-
telligence: A Modern Approach. Pearson Education,
2 edition.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2015. Hierar-
chical neural network generative models for movie
dialogues. arXiv preprint arXiv:1507.04808.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conver-
sation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, Volume 1: Long Papers,
pages 1577–1586.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1321–1331, Beijing, China, July. As-
sociation for Computational Linguistics.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang,
Hang Li, and Xiaoming Li. 2015. Neural genera-
tive question answering. CoRR, abs/1512.01337.

Steve Young, Milica Gasic, Blaise Thomson, and Ja-
son D. Williams. 2013. Pomdp-based statistical
spoken dialog systems: A review. Proceedings of
the IEEE, 101(5):1160–1179.

99

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 100–110,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Mapping Unseen Words to Task-Trained Embedding Spaces

Pranava Swaroop Madhyastha∗ Mohit Bansal† Kevin Gimpel† Karen Livescu†
∗Universitat Politècnica de Catalunya

pranava@cs.upc.edu
†Toyota Technological Institute at Chicago

{mbansal,kgimpel,klivescu}@ttic.edu

Abstract

We consider the supervised training set-
ting in which we learn task-specific word
embeddings. We assume that we start
with initial embeddings learned from unla-
belled data and update them to learn task-
specific embeddings for words in the su-
pervised training data. However, for new
words in the test set, we must use ei-
ther their initial embeddings or a single
unknown embedding, which often leads
to errors. We address this by learning a
neural network to map from initial em-
beddings to the task-specific embedding
space, via a multi-loss objective func-
tion. The technique is general, but here
we demonstrate its use for improved de-
pendency parsing (especially for sentences
with out-of-vocabulary words), as well as
for downstream improvements on senti-
ment analysis.

1 Introduction
Performance on NLP tasks drops significantly

when moving from training sets to held-out
data (Petrov et al., 2010). One cause of this drop
is words that do not appear in the training data but
appear in test data, whether in the same domain or
in a new domain. We refer to such out-of-training-
vocabulary (OOTV) words as unseen words. NLP
systems often make errors on unseen words and, in
structured tasks like dependency parsing, this can
trigger a cascade of errors in the sentence.

Word embeddings can counter the effects of
limited training data (Necsulescu et al., 2015;
Turian et al., 2010; Collobert et al., 2011). While
the effectiveness of pretrained embeddings can be
heavily task-dependent (Bansal et al., 2014), there

is a great deal of work on updating embeddings
during supervised training to make them more
task-specific (Kalchbrenner et al., 2014; Qu et al.,
2015; Chen and Manning, 2014). These task-
trained embeddings have shown encouraging re-
sults but raise some concerns: (1) the updated em-
beddings of infrequent words are prone to overfit-
ting, and (2) many words in the test data are not
contained in the training data at all. In the lat-
ter case, at test time, systems either use a single,
generic embedding for all unseen words or use
their initial embeddings (typically derived from
unlabelled data) (Søgaard and Johannsen, 2012;
Collobert et al., 2011). Neither choice is ideal: A
single unknown embedding conflates many words,
while the initial embeddings may be in a space that
is not comparable to the trained embedding space.

In this paper, we address both concerns by
learning to map from the initial embedding space
to the task-trained space. We train a neural net-
work mapping function that takes initial word em-
beddings and maps them to task-specific embed-
dings that are trained for the given task, via a
multi-loss objective function. We tune the map-
per’s hyperparameters to optimize performance
on each domain of interest, thereby achieving
some of the benefits of domain adaptation. We
demonstrate significant improvements in depen-
dency parsing across several domains and for the
downstream task of dependency-based sentiment
analysis using the model of Tai et al. (2015).

2 Mapping Unseen Representations
Let V = {w1, . . . , wV } be the vocabulary of

word types in a large, unannotated corpus. Let
eo
i denote the initial (original) embedding of word

wi computed from this corpus. The initial em-
beddings are typically learned in an unsupervised

100

loss(et
i, e

m
i)

Model
Parameters

W

Annotated
Training

Sentences

Initial
Embeddings

eo
i

Non-Linear
Layer

Mapper Function

Task-Trained
Embeddings

et
i

Parser
Training

Mapped
Embeddings

em
i

(a) Mapper Training

Initial
Embeddings

eo
i

Testing
Sentences

Model
Parameters
W

Non-Linear
Layer

Mapper Function

Unseen
Mapped

Embeddings
em
i

Seen
Task-Trained
Embeddings

et
i

Parser

(b) Test-time: Parsing with Mapped Embed-
dings

Figure 1: System Pipeline

way, but for our purposes they can be any ini-
tial embeddings. Let T ⊆ V be the subset of
words that appear in the annotated training data
for some supervised task-specific training. We de-
fine unseen words as those in the set V \T . While
our approach is general, for concreteness, we con-
sider the task of dependency parsing, so the anno-
tated data consists of sentences paired with depen-
dency trees. We assume a dependency parser that
learns task-specific word embeddings et

i for word
wi ∈ T , starting from the original embedding eo

i .
In this work, we use the Stanford neural depen-
dency parser (Chen and Manning, 2014).

The goal of the mapper is as follows.
We are given a training set of N pairs
of initial and task-trained embeddings D ={(

eo
1, e

t
1

)
, . . . ,

(
eo
N , et

N

)}
, and we want to learn a

function G that maps each initial embedding eo
i to

be as close as possible to its corresponding output
embedding et

i. We denote the mapped embedding
em
i , i.e., em

i = G (eo
i).

Figure 1a describes the training procedure of
the mapper. We use a supervised parser which is
trained on an annotated dataset and initialized with
pre-trained word embeddings eo

i . The parser uses
back-propagation to update these embeddings dur-
ing training, producing task-trained embeddings et

i

for all wi ∈ T . After we train the parser, the map-
ping function G is trained to map an initial word
embedding eo

i to its parser-trained embedding et
i.

At test (or development) time, we use the trained

mapper G to transform the original embeddings of
unseen test words to the parser-trained space (see
Figure 1b). When parsing held-out data, we use
the same parser model parameters (W) as shown
in Figure 1b. The only difference is that now some
of the word embeddings (i.e., for unseen words)
have changed to mapped ones.

2.1 Mapper Architecture
Our proposed mapper is a multi-layer feedfor-

ward neural network that takes an initial word em-
bedding as input and outputs a mapped represen-
tation of the same dimensionality. In particular,
we use a single hidden layer with a hardtanh non-
linearity, so the function G is defined as:

G(eo
i) = W2(hard tanh(W1e

o
i + b1)) + b2 (1)

where W1 and W2 are parameter matrices and b1

and b2 are bias vectors.
The ‘hardtanh’ non-linearity is the standard

‘hard’ version of hyperbolic tangent:

hard tanh(z) =

−1 if z < −1
z if −1 ≤ z ≤ 1
1 if z > 1

In preliminary experiments we compared with
other non-linear functions (sigmoid, tanh, and
ReLU), as well as with zero and more than one
non-linear layers. We found that fewer or more
non-linear layers did not improve performance.

101

2.2 Loss Function
We use a weighted, multi-loss regression ap-

proach, optimizing a weighted sum of mean
squared error and mean absolute error:

loss(y, ŷ) =

α
n∑

j=1

|yj − ŷj |+ (1− α)
n∑

j=1

|yj − ŷj |2 (2)

where y = et
i (the ground truth) and ŷ = em

i (the
prediction) are n-dimensional vectors. This multi-
loss approach seeks to make both the conditional
mean of the predicted representation close to the
task-trained representation (via the squared loss)
and the conditional median of the predicted rep-
resentation close to the task-trained one (via the
mean absolute loss). A weighted multi-criterion
objective allows us to avoid making strong as-
sumptions about the optimal transformation to
be learned. We tune the hyperparameter α on
domain-specific held-out data. We try to minimize
the assumptions in our formulation of the loss, and
let the tuning determine the particular mapper con-
figuration that works best for each domain. Strict
squared loss or an absolute loss are just special
forms of this loss function.

For optimization, we use batch limited memory
BFGS (L-BFGS) (Liu and Nocedal, 1989). In pre-
liminary experiments comparing with stochastic
optimization, we found L-BFGS to be more sta-
ble to train and easier to check for convergence
(as has recently been found in other settings as
well (Ngiam et al., 2011)).

2.3 Regularization
We use elastic net regularization (Liu and No-

cedal, 1989), which linearly combines ℓ1 and ℓ2

penalties on the parameters to control the capacity
of the mapper function. This equates to minimiz-
ing:

F (θ) = L(θ) + λ1‖θ‖1 +
λ2

2
‖θ‖2

2

where θ is the full set of mapper parameters and
L(θ) is the loss function (Eq. 2 summed over map-
per training examples). We tune the hyperparam-
eters of the regularizer and the loss function sep-
arately for each task, using a task-specific devel-
opment set. This gives us additional flexibility to
map the embeddings for the domain of interest, es-
pecially when the parser training data comes from
a particular domain (e.g., newswire) and we want

to use the parser on a new domain (e.g., email).
We also tried dropout-based regularization (Sri-
vastava et al., 2014) for the non-linear layer but
did not see any significant improvement.

2.4 Mapper-Parser Thresholds
Certain words in the parser training data T are

very infrequent, which may lead to inferior task-
specific embeddings et

i learned by the parser. We
want our mapper function to be learned on high-
quality task-trained embeddings. After learning a
strong mapping function, we can use it to remap
the inferior task-trained embeddings.

We thus consider several frequency thresholds
that control which word embeddings to use to train
the mapper and which to map at test time. Below
are the specific thresholds that we consider:

Mapper-training Threshold (τt) The mapper is
trained only on embedding pairs for words seen at
least τt times in the training data T .

Mapping Threshold (τm) For test-time infer-
ence, the mapper will map any word whose count
in T is less than τm. That is, we discard parser-
trained embeddings et

i of these infrequent words
and use our mapper to map the initial embeddings
eo
i instead.

Parser Threshold (τp) While training the
parser, for words that appear fewer than τp times
in T , the parser replaces them with the ‘unknown’
embedding. Thus, no parser-trained embeddings
will be learned for these words.

In our experiments, we explore a small set of
values from this large space of possible threshold
combinations (detailed below). We consider only
relatively small values for the mapper-training (τt)
and parser thresholds (τp) because as we increase
them, the number of training examples for the
mapper decreases, making it harder to learn an ac-
curate mapping function1.

3 Related Work
There are several categories of related ap-

proaches, including those that learn a single

1Note that the training of the mapper tends to be very
quick because training examples are word types rather than
word tokens. When we increase τt, the number of training
examples reduces further. Hence, since we do not have many
examples, we want the mapping procedure to have as much
flexibility as possible, so we use multiple losses and regular-
ization strategies, and then tune their relative strengths.

102

embedding for unseen words (Søgaard and Jo-
hannsen, 2012; Chen and Manning, 2014; Col-
lobert et al., 2011), those that use character-level
information (Luong et al., 2013; Botha and Blun-
som, 2014; Ling et al., 2015; Ballesteros et al.,
2015), those using morphological and n-gram in-
formation (Candito and Crabbé, 2009; Habash,
2009; Marton et al., 2010; Seddah et al., 2010;
Attia et al., 2010; Bansal and Klein, 2011; Keller
and Lapata, 2003), and hybrid approaches (Dyer
et al., 2015; Jean et al., 2015; Luong et al., 2015;
Chitnis and DeNero, 2015). The representation for
the unknown token is either learned specifically or
computed from a selection of rare words, for ex-
ample by averaging their embedding vectors.

Other work has also found improvements by
combining pre-trained, fixed embeddings with
task-trained embeddings (Kim, 2014; Paulus et
al., 2014). Also relevant are approaches devel-
oped specifically to handle large target vocabular-
ies (including many rare words) in neural machine
translation systems (Jean et al., 2015; Luong et al.,
2015; Chitnis and DeNero, 2015).

Closely related to our approach is that of
Tafforeau et al. (2015). They induce embeddings
for unseen words by combining the embeddings
of the k nearest neighbors. In Sec. 4, we show that
our approach outperforms theirs. Also related is
the approach taken by Kiros et al. (2015). They
learn a linear mapping of the initial embedding
space via unregularized linear regression. Our ap-
proach differs by considering nonlinear mapping
functions, comparing different losses and mapping
thresholds, and learning separately tuned mappers
for each domain of interest. Moreover, we focus
on empirically evaluating the effect of the map-
ping of unseen words, showing statistically signif-
icant improvements on both parsing and a down-
stream task (sentiment analysis).

4 Experimental Setup
4.1 Dependency Parser

We use the feed-forward neural network depen-
dency parser of Chen and Manning (2014). In all
our experiments (unless stated otherwise), we use
the default arc-standard parsing configuration and
hyperparameter settings. For evaluation, we com-
pute the percentage of words that get the correct
head, reporting both unlabelled attachment score
(UAS) and labelled attachment score (LAS). LAS
additionally requires the predicted dependency la-
bel to be correct. To measure statistical signifi-

cance, we use a bootstrap test (Efron and Tibshi-
rani, 1986) with 100K samples.

4.2 Pre-Trained Word Embeddings
We use the 100-dimensional GloVe word em-

beddings from Pennington et al. (2014). These
were trained on Wikipedia 2014 and the Gigaword
v5 corpus and have a vocabulary size of approxi-
mately 400,000.2

4.3 Datasets
We consider a number of datasets with varying

rates of OOTV words. We define the OOTV rate
(or, equivalently, the unseen rate) of a dataset as
the percentage of the vocabulary (types) of words
occurring in the set that were not seen in training.

Wall Street Journal (WSJ) and
OntoNotes-WSJ We conduct experiments
on the Wall Street Journal portion of the English
Penn Treebank dataset (Marcus et al., 1993).
We follow the standard splits: sections 2-21 for
training, section 22 for validation, and section 23
for testing. We convert the original phrase struc-
ture trees into dependency trees using Stanford
Basic Dependencies (De Marneffe and Manning,
2008) in the Stanford Dependency Parser. The
POS tags are obtained using the Stanford POS
tagger (Toutanova et al., 2003) in a 10-fold
jackknifing setup on the training data (achieving
an accuracy of 96.96%). The OOTV rate in the
development and test sets is approximately 2-3%.

We also conduct experiments on the OntoNotes
4.0 dataset (which we denote OntoNotes-WSJ).
This dataset contains the same sentences as the
WSJ corpus (and we use the same data splits),
but has significantly different annotations. The
OntoNotes-WSJ training data is used for the Web
Treebank test experiments. We perform the same
pre-processing steps as for the WSJ dataset.

Web Treebank We expect our mapper to be
most effective when parsing held-out data with
many unseen words. This often happens when the
held-out data is drawn from a different distribution
than the training data. For example, when train-
ing a parser on newswire and testing on web data,

2
http://www-nlp.stanford.edu/data/glove.6B.100d.txt.gz;

We have also experimented with the downloadable 50-
dimensional SENNA embeddings from Collobert et al.
(2011) and with word2vec (Mikolov et al., 2013) embed-
dings that we trained ourselves; in preliminary experiments
the GloVe embeddings performed best, so we use them for
all experiments below.

103

many errors occur due to differing patterns of syn-
tactic usage and unseen words (Foster et al., 2011;
Petrov and McDonald, 2012; Kong et al., 2014;
Wang et al., 2014).

We explore this setting by training our parser
on OntoNotes-WSJ and testing on the Web Tree-
bank (Petrov and McDonald, 2012), which in-
cludes five domains: answers, email, newsgroups,
reviews, and weblogs. Each domain contains ap-
proximately 2000-4000 manually annotated syn-
tactic parse trees in the OntoNotes 4.0 style. In
this case, we are adapting the parser which is
trained on OntoNotes corpora using the small de-
velopment set for each of the sub-domains (the
size of the Web Treebank dev corpora is only
around 1000-2000 trees so we use it for valida-
tion instead of including it in training). As be-
fore, we convert the phrase structure trees to de-
pendency trees using Stanford Basic Dependen-
cies. The parser and the mapper hyperparameters
were tuned separately on the development set for
each domain. The unseen rate is typically 6-10%
in the domains of the Web Treebank. We used
the Stanford tagger (Toutanova et al., 2003), which
was trained on the OntoNotes training corpus, for
part-of-speech tagging the Web Treebank corpora.
The tagger used bidirectional architecture and it
included word shape and distributional similarity
features. We train a separate mapper for each do-
main, tuning mapper hyperparameters separately
for each domain using the development sets. In
this way, we obtain some of the benefits of domain
adaptation for each target domain.

Downstream Task: Sentiment Analysis with
Dependency Tree LSTMs We also perform ex-
periments to analyze the effects of embedding
mapping on a downstream task, in this case senti-
ment analysis using the Stanford Sentiment Tree-
bank (Socher et al., 2013). We use the de-
pendency tree long short-term memory network
(Tree-LSTM) proposed by Tai et al. (2015), sim-
ply replacing their default dependency parser with
our version that maps unseen words. The de-
pendency parser is trained on the WSJ corpus
and mapped using the WSJ development set. We
use the same mapper that was optimized for the
WSJ development set, without further hyperpa-
rameter tuning for the mapper. For the Tree-
LSTM model, we use the same hyperparameter
tuning as described in Tai et al. (2015). We
use the standard train/development/test splits of

6820/872/1821 sentences for the binary classifica-
tion task and 8544/1101/2210 for the fine-grained
task.

4.4 Mapper Settings and Hyperparameters
The initial embeddings given to the mapper

are the same as the initial embeddings given to
the parser. These are the 100-dimensional GloVe
embeddings mentioned above. The output di-
mensionality of the mapper is also fixed to 100.
All model parameters of the mappers are initial-
ized to zero. We set the dimensionality of the
non-linear layer to 400 across all experiments.
The model parameters are optimized by maximiz-
ing the weighted multiple-loss objective using L-
BFGS with elastic-net regularization (Section 2).
The hyperparameters include the relative weight
of the two objective terms (α) and the regulariza-
tion constants (λ1, λ2). For α, we search over val-
ues in {0, 0.1, 0.2, . . . , 1}. For each of λ1 and λ2,
we consider values in {10−1, 10−2, . . . , 10−9, 0}.
The hyperparameters are tuned via grid search to
maximize the UAS on the development set.

5 Results and Analysis
5.1 Results on WSJ, OntoNotes, and

Switchboard
The upper half of Table 1 shows our main test

results on WSJ, OntoNotes, and Switchboard, the
low-OOTV rate datasets. Due to the small initial
OOTV rates (<3%), we only see modest gains of
0.3-0.4% in UAS, with statistical significance at
p < 0.05 for WSJ and OntoNotes and p < 0.07
for Switchboard. The initial OOTV rates are cut
in half by our mapper, with the remaining un-
known words largely being numerical strings and
misspellings.3 When only considering test sen-
tences containing OOTV words (the row labeled
“OOTV subset”), the gains are significantly larger
(0.5-0.8% UAS at p < 0.05).

5.2 Results on Web Treebank
The lower half of Table 1 shows our main test

results on the Web Treebank’s five domains, the
high-OOTV rate datasets. As expected, the map-
per has a much larger impact when parsing these
out-of-domain datasets with high OOTV word

3We could potentially train the initial embeddings on a
larger corpus or use heuristics to convert unknown numbers
and misspellings to forms contained in our initial embed-
dings.

104

Lower OOTV word rate Higher OOTV word rate
WSJ OntoNotes Avg. Answers Emails Newsgroups Reviews Weblogs Avg.

UAS 91.85→92.21 90.17→90.49 90.38→90.70 82.67→83.21 81.76→82.42 84.68→85.13 84.25→84.99 87.73→88.43 84.22→84.84
LAS 89.49→89.73 87.68→87.92 87.92→88.14 78.98→79.59 77.93→78.56 81.88→82.71 81.26→81.92 85.68→86.29 81.01→81.81
OOTV % 2.72→1.45 2.72→1.4 − 8.53→1.22 10.56→3.01 10.34→1.04 6.84→0.73 8.45→0.38 −
OOTV UAS 89.88→90.51 89.27→89.81 89.12→89.78 80.88→81.75 79.29→81.02 82.54→83.71 81.17→82.22 86.43→87.31 82.06→83.20
#Sents 337 329 − 671 644 579 632 541 −

Table 1: Results of dependency parsing on various treebanks. Entries of the form A→B give results for parsing without mapped
embeddings (A) and with mapped embeddings (B). “OOTV %” entries A→B indicate that A% of the test set vocabulary was
unseen in the parser training, and B% remain unknown after mapping the embeddings. “OOTV UAS” refers to UAS measured
on the subset of the test set sentences that contain at least one OOTV word, and “#Sents” gives the number of sentences in this
subset.

Wife and I attempted to adopt a dog and was nothing but frustrating

nsubj

nsubj

cc

conj

nsubj

conj

cc

xcomp

det
dobj

cc aux

xcomp

nn

conj

attr

Unseen Word

cc

(a) We obtain correct attachments and correct tree after the mapper maps the unseen word ‘attempted’.

Try google to find the title . . .

xcomp
aux

dobj

xcomp

aux

dobj

det

Unseen Word

(b) The mapper incorrectly maps ‘google’, resulting in wrong attachments and wrong tree.

Figure 2: Examples where the mapper helps and hurts: In the above examples the top arcs are before mapping and bottom ones
are after mapping; dotted lines refer to incorrect attachment.

rates.4

The OOTV rate reduction is much larger than
for the WSJ-style datasets, and the parsing im-
provements (UAS and LAS) are statistically sig-
nificant at p < 0.05. On subsets containing at
least one OOTV word (that also has an initial
embedding), we see an average gain of 1.14%
UAS (see row labeled “OOTV subset”). In this
case, all improvements are statistically significant
at p < 0.02. We observe that the relative reduction
in OOTV% for the Web Treebanks is larger than
for the WSJ, OntoNotes, or Switchboard datasets.
In particular, we are able to reduce the OOTV%
by 71-95% relative. We also see the intuitive trend

4As stated above, we train the parser on the OntoNotes
dataset, but tune mapper hyperparameters to maximize pars-
ing performance on each development section of the Web
Treebank’s five domains. We then map the OOTV word vec-
tors on each test set domain using the learned mapper for that
domain.

that larger relative reductions in OOTV rate corre-
late with larger accuracy improvements.

5.3 Downstream Results
We now report results using the Dependency

Tree-LSTM of Tai et al. (2015) for sentiment anal-
ysis on the Stanford Sentiment Treebank. We con-
sider both the binary (positive/negative) and fine-
grained classification tasks ({very negative, nega-
tive, neutral, positive, and very positive}). We use
the implementation provided by Tai et al. (2015),
changing only the dependency parses that are fed
to their model. The sentiment dataset contains ap-
proximately 25% OOTV words in the training set
vocabulary, 5% in the development set vocabulary,
and 9% in the test set vocabulary. We map un-
seen words using the mapper tuned on the WSJ
development set. We use the same Dependency
Tree-LSTM experimental settings as Tai et al. Re-

105

Fine-Grained Binary
48.4→49.5 85.7→ 86.1

Table 2: Improvements on Stanford Sentiment Treebank test
set using our parser with the Dependency Tree-LSTM.

Baseline t1 t3 t5 t∞
84.11 84.89 84.97 84.81 84.14

Table 3: Average Web Treebank development UAS at differ-
ent threshold settings.

sults are shown in Table 2. We improve upon the
original accuracies in both binary and fine-grained
classification. 5 We also reduce the OOTV rate
from 25% in the training set vocabulary to about
6%, and from 9% in the test set vocabulary down
to 4%.

5.4 Effect of Thresholds
We also experimented with different values for

the thresholds described in Section 2. For the map-
ping threshold τm, mapper-training threshold τt,
and parser threshold τp, we consider the following
four settings:

t1 : τm = τt = τp = 1
t3 : τm = τt = τp = 3
t5 : τm = τt = τp = 5

t∞ : τm = ∞, τp = τt = 5

Using τm = ∞ corresponds to mapping all words
at test time, even words that we have seen many
times in the training data and learned task-specific
embeddings for.

We report the average development set UAS
over all Web Treebank domains in Table 3. We
see that t3 performs best, though settings t1 and
t5 also improve over the baseline. At threshold t3
we have approximately 20,000 examples for train-
ing the mapper, while at threshold t5 we have only
about 10,000 examples. We see a performance
drop at t∞, so it appears better to directly use
the task-specific embeddings for words that appear
frequently in the training data. In other results re-
ported in this paper, we used t3 for the Web Tree-
bank test sets and t1 for the rest.

5.5 Effect of Weighted Multi-Loss Objective
We analyzed the results when varying α, which

balances between the two components of the map-
5Note that we report accuracies and improvements on the

dependency parse based system of Tai et al. (2015) because
the neural parser that we use is dependency-based.

per’s multi-loss objective function. We found that,
for all domains except Answers, the best results
are obtained with some α between 0 and 1. The
optimal values outperformed the cases with α = 0
and α = 1 by 0.1-0.3% UAS absolute. However,
on the Answers domain, the best performance was
achieved with α = 0; i.e., the mapper preferred
mean squared error. For other domains, the opti-
mal α tended to be within the range [0.3, 0.7].

5.6 Comparison with Related Work
We compare to the approach presented by

Tafforeau et al. (2015). They propose to refine em-
beddings for unseen words based on the relative
shifts of their k nearest neighbors in the original
embeddings space. Specifically, they define “arti-
ficial refinement” as:

φr(t) = φo(t) +
K∑

k=1

αk(φr(nk)− φo(nk)) (3)

where φr(.) is the vector in the refined embedding
space and φo(.) is the vector in the original em-
bedding space. They define αk to be proportional
to the cosine similarity between the target unseen
word (t) and neighbor (nk):

αk = s(t, nk) =
φo(t).φo(nk)
|φ(t)||φo(nk)|

Avg. UAS Avg. LAS
Baseline 84.11 81.02
k-NN 84.54 81.38
Our Mapped 84.97 81.79

Table 4: Comparison to k-nearest neighbor matching of
Tafforeau et al. (2015).

Table 4 shows the average performance of the
models over the development sets of the Web Tree-
bank. On average, our mapper outperforms the k-
NN approach (k = 3).

5.7 Dependency Parsing Examples
In Figure 2, we show two sentences: an instance

where the mapper helps and another where the
mapper hurts the parsing performance.6 In the first
sentence (Figure 2a), the parsing model has not
seen the word ‘attempted’ during training. Note
that the sentence contains 3 verbs: ‘attempted’,
‘adopt’, and ‘was’. Even with the POS tags, the

6Sentences in Figure 2 are taken from the development
portion of the Answers domain from the Web Treebank.

106

parser was unable to get the correct dependency
attachment. After mapping, the parser correctly
makes ‘attempted’ the root and gets the correct
arcs and the correct tree. The 3 nearest neighbors
of ‘attempted’ in the mapped embedding space are
‘attempting’, ‘tried’, and ‘attempt’. We also see
here that a single unseen word can lead to multi-
ple errors in the parse.

In the second example (Figure 2b), the default
model assigns the correct arcs using the POS in-
formation even though it has not seen the word
‘google’. However, using the mapped represen-
tation for ‘google’, the parser makes errors. The
3-nearest neighbors for ‘google’ in the mapped
space are ‘damned’, ‘look’, and ‘hash’. We hy-
pothesize that the mapper has mapped this noun
instance of ‘google’ to be closer to verbs instead
of nouns, which would explain the incorrect at-
tachment.

5.8 Analyzing Mapped Representations

To understand the mapped embedding space,
we use t-SNE (Van der Maaten and Hinton, 2008)
to visualize a small subset of embeddings. In Fig-
ure 3, we plot the initial embeddings, the parser-
trained embeddings, and finally the mapped em-
beddings. We include four unseen words (shown
in caps): ‘horrible’, ‘poor’, ‘marvelous’, and
‘magnificent’. In Figure 3a and Figure 3b, the em-
beddings for the unseen words are identical (even
though t-SNE places them in different places when
producing its projection). In Figure 3c, we ob-
serve that the mapper has placed the unseen words
within appropriate areas of the space with respect
to similarity with the seen words. We contrast this
with Figure 3b, in which the unseen words appear
to be within a different region of the space from
all seen words.

6 Conclusion

We have described a simple method to resolve
unseen words when training supervised models
that learn task-specific word embeddings: a feed-
forward neural network that maps initial embed-
dings to the task-specific embedding space. We
demonstrated significant improvements in depen-
dency parsing accuracy across several domains, as
well as improvements on a downstream task. Our
approach is simple, effective, and applicable to
many other settings, both inside and outside NLP.

(a) Initial Representational Space

(b) Learned Representational Space

(c) Mapped Representational Space

Figure 3: t-SNE plots on initial, parser trained, and mapped
representations.

Acknowledgments

We would like to thank the anonymous review-
ers for their useful comments. This research was
supported by a Google Faculty Research Award to
Mohit Bansal, Karen Livescu and Kevin Gimpel.

107

References
Mohammed Attia, Jennifer Foster, Deirdre Hogan,

Joseph Le Roux, Lamia Tounsi, and Josef Van Gen-
abith. 2010. Handling unknown words in statis-
tical latent-variable parsing models for arabic, en-
glish and french. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 67–75. As-
sociation for Computational Linguistics.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–
359, Lisbon, Portugal, September. Association for
Computational Linguistics.

Mohit Bansal and Dan Klein. 2011. Web-scale fea-
tures for full-scale parsing. In Proceedings of ACL.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of ACL.

Jan A. Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In International Conference on Machine
Learning (ICML).

Marie Candito and Benoı̂t Crabbé. 2009. Improving
generative statistical parsing with semi-supervised
word clustering. In Proceedings of the 11th Inter-
national Conference on Parsing Technologies, pages
138–141. Association for Computational Linguis-
tics.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing (EMNLP).

Rohan Chitnis and John DeNero. 2015. Variable-
length word encodings for neural translation models.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2088–2093, Lisbon, Portugal, September. Associa-
tion for Computational Linguistics.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research, 12:24932537.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Stanford University.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China, July. Asso-
ciation for Computational Linguistics.

B. Efron and R. Tibshirani. 1986. Bootstrap meth-
ods for standard errors, confidence intervals, and
other measures of statistical accuracy. Statist. Sci.,
1(1):54–75, 02.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, and Josef Van Genabith. 2011. #
hardtoparse: Pos tagging and parsing the twitter-
verse. In AAAI 2011 Workshop on Analyzing Mi-
crotext, pages 20–25.

Nizar Habash. 2009. Remoov: A tool for online han-
dling of out-of-vocabulary words in machine trans-
lation. In Proceedings of the 2nd International Con-
ference on Arabic Language Resources and Tools
(MEDAR), Cairo, Egypt.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large
target vocabulary for neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1–10, Beijing, China, July. Association for Compu-
tational Linguistics.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
655–665, Baltimore, Maryland, June. Association
for Computational Linguistics.

Frank Keller and Mirella Lapata. 2003. Using the web
to obtain frequencies for unseen bigrams. Computa-
tional linguistics, 29(3):459–484.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1746–
1751, Doha, Qatar, October. Association for Com-
putational Linguistics.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
arXiv preprint arXiv:1506.06726.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1001–1012, Doha, Qatar, October.
Association for Computational Linguistics.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Rámon Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding func-
tion in form: Compositional character models for
open vocabulary word representation. In Proc. of
EMNLP.

108

D. C. Liu and J. Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Math. Programming, 45(3, (Ser. B)):503–528.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104–113,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 11–19,
Beijing, China, July. Association for Computational
Linguistics.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Compu-
tational linguistics, 19(2):313–330.

Yuval Marton, Nizar Habash, and Owen Rambow.
2010. Improving arabic dependency parsing with
lexical and inflectional morphological features. In
Proceedings of the NAACL HLT 2010 First Work-
shop on Statistical Parsing of Morphologically-Rich
Languages, pages 13–21, Los Angeles, CA, USA,
June. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Silvia Necsulescu, Sara Mendes, David Jurgens, Núria
Bel, and Roberto Navigli. 2015. Reading between
the lines: Overcoming data sparsity for accurate
classification of lexical relationships. In Proceed-
ings of the Fourth Joint Conference on Lexical and
Computational Semantics, pages 182–192, Denver,
Colorado, June. Association for Computational Lin-
guistics.

Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby
Prochnow, Quoc V. Le, and Andrew Y. Ng. 2011.
On optimization methods for deep learning. In Pro-
ceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 265–272.

Romain Paulus, Richard Socher, and Christopher D
Manning. 2014. Global belief recursive neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 2888–2896.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,

Qatar, October. Association for Computational Lin-
guistics.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. Notes of
the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for accurate de-
terministic question parsing. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 705–713. Association
for Computational Linguistics.

Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Wei-
wei Hou, Nathan Schneider, and Timothy Baldwin.
2015. Big data small data, in domain out-of domain,
known word unknown word: The impact of word
representation on sequence labelling tasks. arXiv
preprint arXiv:1504.05319.

Djamé Seddah, Grzegorz Chrupała, Ozlem Cetinoglu,
Josef van Genabith, and Marie Candito. 2010.
Lemmatization and lexicalized statistical parsing of
morphologically-rich languages: the case of french.
In Proceedings of the NAACL HLT 2010 First Work-
shop on Statistical Parsing of Morphologically-Rich
Languages, pages 85–93, Los Angeles, CA, USA,
June. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642, Seattle, Washington, USA,
October. Association for Computational Linguistics.

Anders Søgaard and Anders Johannsen. 2012. Ro-
bust learning in random subspaces: Equipping NLP
for OOV effects. In Proceedings of COLING 2012:
Posters, Mumbai, India, December.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Jeremie Tafforeau, Thierry Artieres, Benoit Favre, and
Frederic Bechet. 2015. Adapting lexical represen-
tation and oov handling from written to spoken lan-
guage with word embedding. In Interspeech.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China, July. Association
for Computational Linguistics.

109

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semisupervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, page 384394. Association for
Computational Linguistics.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(2579-2605):85.

William Yang Wang, Lingpeng Kong, Kathryn
Mazaitis, and William W Cohen. 2014. Depen-
dency parsing for weibo: An efficient probabilis-
tic logic programming approach. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1152–
1158, Doha, Qatar, October. Association for Com-
putational Linguistics.

110

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 111–120,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Multilingual Modal Sense Classification using a Convolutional Neural
Network

Ana Marasović and Anette Frank
Research Training Group AIPHES

Department of Computational Linguistics
Heidelberg University

69120 Heidelberg, Germany
{marasovic,frank}@cl.uni-heidelberg.de

Abstract

Modal sense classification (MSC) is a
special WSD task that depends on the
meaning of the proposition in the modal’s
scope. We explore a CNN architecture
for classifying modal sense in English and
German. We show that CNNs are superior
to manually designed feature-based clas-
sifiers and a standard NN classifier. We
analyze the feature maps learned by the
CNN and identify known and previously
unattested linguistic features. We bench-
mark the CNN on a standard WSD task,
where it compares favorably to models us-
ing sense-disambiguated target vectors.

1 Introduction

Factuality recognition (de Marneffe et al., 2012;
Lee et al., 2015) is a subtask in information extrac-
tion that differentiates facts from hypotheses and
speculation, expressed through signals of modal-
ity, most prominently, modal verbs and adverbs.
Modal verbs are, however, ambiguous between an
epistemic sense (possibility) as opposed to non-
epistemic deontic (permission/obligation) or dy-
namic (capability) senses, as in: He could be at
home (epistemic), You can enter now (deontic) and
Only John can solve this problem (capability).

Modal sense classification (MSC) is a special
case of sense disambiguation that is also relevant
in areas of dialogue act and plan recognition in AI,
as well as novel tasks such as argumentation min-
ing. Prior work (Ruppenhofer and Rehbein, 2012;
Zhou et al., 2015) addressed the task with feature-
based classification. However, even with carefully
designed semantic features the models have diffi-
culties beating the majority sense baseline in cases
of difficult sense distinctions and when applying
the models to heterogenous text genres.

We cast modal sense classification as a novel se-
mantic sentence classification task using a convo-
lutional neural network (CNN) architecture. Our
contributions are: (i) our experiments on MSC
confirm the adequacy of CNNs for modeling
propositions in semantic sentence classification
tasks (cf. Kim (2014)); (ii) we show that automati-
cally learned features in a CNN outperform manu-
ally designed features for difficult modal verbs and
novel genres; (iii) we demonstrate that the CNN
approach can be generalized across languages, by
adapting the model to German. (iv) We offer in-
sights into the linguistic properties captured by the
learned feature maps. Finally, (v) we benchmark
the CNN on a standard WSD task, comparing it
to a WSD model using rich sense-disambiguated
embeddings and obtain comparable results.

2 Prior and related work

Modal sense classification (MSC). We focus
on disambiguation of modal verbs, adopting the
sense inventory established in formal seman-
tics: epistemic, deontic/bouletic and circumstan-
tial/dynamic.1 We compare to prior work in Rup-
penhofer and Rehbein (2012) and follow-up work
in Zhou et al. (2015) (henceforth, R&R and Z+).
R&R induced modal sense classifiers from man-
ual annotations on the MPQA corpus (Wiebe et al.,
2005) using word-based and syntactic features. Z+
propose an extended semantically informed model
that significantly outperforms R&R’s results. Z+
also create heuristically sense-annotated training
data from parallel corpora, to overcome sparsity
and bias in the MPQA corpus. However, their
models do not beat the majority sense baseline for
the difficult modal verbs, may, can and could.

1These senses correspond to (Baker et al., 2010)’s modal
categories (with deontic split into requirement and permis-
sive), and R&Rs inventory, with regrouping of concessive,
conditional and circumstantial, cf. Zhou et al. (2015).

111

Modal sense classification interacts with genre
and domain differences. Prabhakaran et al.
(2012) observe strong cross-genre effects and
missing generalization capacities when applying
their modality classifier to out-of-domain genres.

Word Embeddings and Sense Disambiguation.
Taghipour and Ng (2015) investigate the impact
of word embeddings on classical WSD, using pre-
trained embeddings and tuning them to the task us-
ing a NN. Both variants, integrated into the state-
of-the-art system IMS (Zhong and Ng, 2012), im-
prove WSD performance on benchmark tasks.

Ordinary word embeddings do not differenti-
ate word senses. Rothe and Schütze (2015) ex-
plore supervised WSD using sense-specific em-
beddings, which they induce by exploiting sense
encodings and constraints given by a lexical re-
source.2 Integrating the sense-specific vectors into
IMS yields significant improvements and small
gains relative to Taghipour and Ng (2015). Hence,
word embeddings – tuned to the task or sense-
specific – prove beneficial for supervised WSD.

The CNN approach we investigate in our work
does not employ a fixed feature space or a pre-
defined window around the target word. It flexi-
bly learns feature maps for variable window sizes
over the embedding matrix for the full sentence. In
contrast to Rothe and Schütze (2015), embeddings
used by our CNNs models are knowledge-lean and
do not encode senses of the target words.

Sentence classification using CNNs. Recent
work investigates NN architectures and their abil-
ity to capture the semantics of sentences for vari-
ous classification tasks. Kalchbrenner et al. (2014)
construct a dynamic CNN that builds on unparsed
input and achieves performance beyond strong
baselines for sentiment and question type classi-
fication. By contrast, recursive neural networks
(Socher et al., 2013) take parsed input, recursively
generate representations for intermediate phrases,
and perform classification on the basis of the full
sentence representation.

Kim (2014) evaluates a one-layer CNN on var-
ious benchmark tasks for sentence classification.
CNNs trained on pre-trained (static) embeddings
perform well and can be further improved by tun-
ing them to the task (non-static). Using two chan-

2Modal verbs are not or not systematically covered in
WordNets or VerbNet; FrameNet relates modal verbs to their
predominant sense only. Also, FrameNet’s frame-to-frame
relations are known to lack coverage (Burchardt et al., 2009).

nels did not significantly improve results. Overall,
the CNNs show consistently strong performance,
improving on state-of-the-art results in 4 out of 7
tasks, i.a., sentiment and opinion classification.

3 A CNN for modal sense classification

We aim at a NN approach to MSC that (i) im-
proves over existing feature-based classifiers, (ii)
alleviates manual crafting of features, (iii) gener-
alizes over various text genres, and (iv) is easily
portable to novel languages. Besides this, MSC is
a special kind of WSD, in that modal verbs have a
restricted sense inventory shared across languages,
and act as operators that take a full proposition
as argument. We thus cast MSC as a semantic
sentence classification task in a CNN architecture,
adopting the one-layer CNN model of Kim (2014),
a variant of Collobert et al. (2011). Unlike Kim
(2014) we will use only one channel, but experi-
ment with various types of word vectors.

A CNN represents a sentence with a fixed size
vector, passed to classifier to classify the sentence
into task-specific target categories. In our case, it
will classify sentences into three modal sense cate-
gories. The input layer is a matrix x ∈ Rs×d, with
each row corresponding to a d-dimensional word
embedding xi ∈ Rd of a word in the sentence
of length s. Word embeddings can be randomly
initialized or pre-trained vectors, e.g. word2vec
(Mikolov et al., 2013) or dependency-based (Levy
and Goldberg, 2014) embeddings. Based on the
input layer, a CNN builds up one or more convo-
lutional layers. A convolution is an operation be-
tween sub-matrices of the input matrix x ∈ Rs×d

and a filter parametrised by a weight matrix w ∈
Rn×d, that returns a vector usually referred to as
a feature map. Formally, let xi−n+1:i be the sub-
matrix of the input matrix x from the (i−n+1)-th
row to the i-th row and let 〈. , .〉F denote the sum
of elements of the component-wise inner product
of two matrices, known as Frobenius inner prod-
uct. The i-th component of the feature map c is
obtained by taking the Frobenius inner product of
the sub-matrix xi−n+1:i with the filter matrix w

ci = 〈xi−n+1:i,w〉F , (1)

for i ∈ {n, . . . , s}3. Afterwards, we add a bias
term, b ∈ R to every component of the feature
map and apply an activation function f ,

c̃i = f(ci + b) . (2)
3We apply the narrow type of convolution.

112

Finally, max-over-time pooling (Collobert et al.,
2011) is applied over a single feature map that ex-
tracts the maximum value ĉ = max{c̃}, which
represents the chosen feature for this feature map.
Like Kim (2014) we don’t use just one filter as
described, but multiple filters with different re-
gion sizes n, resulting in multiple feature maps.
Features obtained through max-pooling from each
feature map are concatenated to a vector represen-
tation of the input sentence that is passed to the
softmax layer. Parameters to learn are elements of
the filter matrices and the input matrix when word
vectors are tuned.

Filters are trained to be especially active when
they encounter a sequence of words relevant for
the given classification task. Kalchbrenner et al.
(2014) present n-grams of different feature de-
tectors that capture positive or negative sentiment
phrases, and also more abstract semantic cate-
gories, such as negation or degree particles (’too’)
that are relevant in compositional sentiment detec-
tion. In the modal sense classification task, we
expect the feature maps to capture semantic cat-
egories found to be relevant in prior work, such
as tense, aspectual classes, negation and seman-
tic properties of verbs and phrases. Moreover,
prior work has shown that MSC profits from fea-
tures that model the wider syntactic context, esp.
subject and embedded verb and their semantics
(abstractness, semantic class, aspect, tense). Ex-
plicit modeling of these features as in Z+ improves
performance, but requires feature design for each
new language. Also, modeling semantic features
through lexical resources is subject to sparsity, and
relying on parsed input leads to lack of robustness.

Given that MSC profits from semantic features
in the wider syntactic context, we expect that a
CNN that applies filters of variable sizes to vari-
ous regions of the sentence to learn feature maps
can capture diverse linguistic features, and of-
fers greater flexibility compared to a conventional
WSD model with a fixed window size centered
around the target word. To investigate these spe-
cial properties of the CNN model, we test it on En-
glish and German data. While in English, subject,
modal and embedded verb are in a close syntactic
context, in German, they can be distributed over
wider distances, and the feature maps are expected
to capture properties over wider distances.

We perform experiments for MSC for English
and German, using various data sets. Section 4

presents the data, experimental settings and the
model variations we investigate. We perform de-
tailed quantitative and qualitative evaluation of our
experimental results. In Section 5, we evaluate the
CNN approach in a lexical sample WSD task, to
benchmark its performance on a well-studied data
set, and to investigate the potential advantage of
learning feature maps based on flexible window
sizes. To our knowledge, this constitutes the first
attempt to apply a CNN model in a WSD task.

4 Modal sense classification

4.1 Data
Our experiments are based on three data sets.
Their basic composition is given in Table 1.4

1) MPQA + EPOSE The English benchmark
data set MPQA from R&R was further enriched
through balanced heuristically tagged training
data, EPOSE , by Z+. The EPOSE data set was
obtained using a cross-lingual sense projection
approach. Z+ identified paraphrases for modal
senses (e.g. brauchen-need; erlauben-permit for
deontic, schaffen-able to for dynamic sense), ex-
tracted sentences from a parallel corpus with a
modal verb aligned to a sense-identifying para-
phrase, and tagged them with the identified modal
sense. Z+ measured 0.92 accuracy on 420 in-
stances of the heuristically tagged corpora. To
alleviate distributional bias stemming from the
MPQA dataset, Z+ balanced the blend of MPQA
with EPOSE using under- and oversampling. We
experiment with both versions (± balanced).5

2) MASC A subset of the multi-genre corpus
MASC (Ide et al., 2008), consisting of 19 genres
was manually annotated (Anonymous) with modal
senses for the same modal verbs. The annotated
data consists of ≈100 instances for each genre.6

3) EPOSG Following the method of Z+, we con-
structed a German data set EPOSG from the Eu-
roparl and OpenSubtitles corpora of OPUS (Tiede-
mann, 2012) by projecting modal sense categories
from English to German, using selected modal
sense identifying English paraphrases. The result-
ing corpus with sense-tagged German modal verbs

4More detailed information will be provided through ac-
companying material with the final version. The annotated
MASC and EPOSG data sets will be made publicly available.

5Their data is publicly available through their website. We
omit shall from MPQA, due to low number of occurrences.

6Exceptions with less than 100 instances are journal,
newspaper, technical, travel guides, and telephone.

113

can could may must should

MPQA
ep 2 156 130 11 26
de 115 17 9 83 248
dy 271 67 – – –

EPOSE

ep 150 40 950 800 150
de 150 40 950 800 150
dy 150 40 – – –

MASC
ep 88 144 217 29 27
de 72 16 43 115 224
dy 710 251 3 – –

dürfen können müssen sollen

EPOSG (train)
ep 1000 1000 1000 1000
de 1000 1000 1000 1000
dy – 1000 – –

EPOSG (test)
ep 98 100 32 100
de 98 47 100 100
dy – 100 – –

Table 1: Composition of MPQA, EPOSE , MASC
and EPOSG

können (can), müssen (must), sollen (should),
dürfen (may) consists of a manually validated test
section consisting of up to 100 instances for each
sense. Annotation was done by two independent
judges and one adjudicator. Balanced training data
of 1000 instances per sense for each modal verb
was constructed from heuristically tagged sen-
tences that were judged high-quality by validating
20 instances for each paraphrase. For modal verbs
with rare extractions, we added training data from
modal verbs of shared senses, changing their verb
forms to the verb form of the target verb.7

4.2 Experimental settings
MSC on MPQA using CNN-EB and CNN-EU,
CV For MSC we benchmark the CNN approach
against the latest state-of-the-art results in Z+.
We reimplemented their maximum entropy clas-
sifier (henceforth, MaxEnt) and trained it on their
balanced and unbalanced blend of MPQA and
EPOS.8 As in Z+ we train independent classifiers
for each modal verb on their respective training
data.9 For evaluation, we perform 5-fold cross val-
idation as in Z+. Each fold for training holds a
stratified 80% section of the MPQA data together
with the full EPOSE data set, and we use the re-
maining 20% of MPQA data for testing. We refer
to the CNN models trained on the ±balanced ver-
sions of this data as CNN-EB and CNN-EU.

MSC on MASC using CNN-EB and CNN-EU
Besides MPQA, we evaluate the CNN on the

7Replacing e.g. könnte with dürfte in Es könnte Dir
gefallen extracted from You might get a taste for it.

8We omit shall with a small number of instances.
9This holds for all our experiments.

multi-genre MASC (sub)corpus. For compara-
bility with Z+, for training we use one training
fold from the previous setting,10 and evaluate on
MASC as test. We analyze the performance of the
CNN model overall and on different genre subcor-
pora (not reported here).

Both English data sets are characterized by
modest training set sizes and involve a consider-
able distributional biases, with high most frequent
sense majority baselines (cf. Tables 3 and 4).

MSC on EPOSG using CNN-G In constrast to
the English data sets, the German EPOSG data set
provides larger training set sizes of 1000 instances
for all modal verbs and senses. This eliminates
distributional bias from the data, so that the dis-
criminating power of the classifier model is not
masqued by distributional information.

4.3 Model variations
Hyperparameters Model-specific hyperparam-
eters of the CNN are the number of filters, filter
region size, and the depth of the network. We re-
strict our model to a one-dimensional CNN archi-
tecture.

Following the advices in Zhang and Wallace
(2015), we used following setting: ReLU (recti-
fied linear unit) as activation function, filter re-
gion sizes of 3, 4, and 5 with 100 feature maps
each, dropout keep probability of 0.5, l2 regulari-
sation coefficient of 10−3, number of iterations of
100111 and mini-batch size of 50. Training is done
with the Adam optimisation algorithm (Kingma
and Ba, 2014) with learning rate of 10−4. Filter
weights are initialized using Glorot-Bengio strat-
egy (Glorot and Bengio, 2010). We experimented
with some parameter variations (using nested CV),
but found no consistently better results. In all fol-
lowing MSC experiments we thus used this hyper-
parameter setting for CNN training.

Word embeddings In the first and third ex-
perimental setting we investigate the impact of
static and tuned versions of different word vectors:
word2vec (Mikolov et al., 2013), dependency-
based (Levy and Goldberg, 2014) and randomly
initialized embeddings.

We used publicly available word2vec vec-
tors that were trained on Google News for En-

10Hence, one 80% fold of MPQA plus EPOSE . Despite
this small difference, we refer to the CNN models as above,
as CNN-EB and CNN-EU.

11We did not perform early stopping.

114

glish12 and various datasets for German (Reimers
et al., 2014)13, as well as English dependency-
based vectors trained on Wikipedia14. The Ger-
man dependency-based embeddings were trained
on the SdeWaC corpus (Faaß and Eckart, 2013),
parsed with Malt parser. We used 300 dimensions
for English embeddings and 100 for German.

For words without a pre-trained vector and in
the random initialization setting, each dimension
of the random vector was sampled from U ∼
[−a, a] with parameter a picked such that the vari-
ance of the uniform distribution equals the vari-
ance of the available pre-trained vectors.

Baselines For MPQA and MASC, the classifiers
are compared against strong majority sense base-
lines, BLmaj , due to skewed sense distributions in
the training data. Further, we compare the CNN
results to the reconstructed MaxEnt classifier from
Z+, trained on the blend of MPQA and EPOS with
R&R’s shallow lexical and syntactic path features
and the newly designed semantic features of Z+.

To our knowledge, there is no work on modal
sense classification using a neural network. We
thus compare our CNN models with a simple, one-
layer neural network NN to investigate the impact
offered by the more complex CNN architecture.

Input to the NN is the sum of all vectors of the
words in the sentence. As for the CNN, we exper-
imented with different types of word vectors.

The hyperparameter setting for the NN is:
ReLU as activation function, l2 regularisation co-
efficient of 10−3, hidden layer size of 1024, num-
ber of iterations of 3001, dropout keep probabil-
ity of 0.5, and mini-batch size of 50. Training is
again done with the Adam optimisation algorithm
(Kingma and Ba, 2014) with learning rate of 10−4.
Weights are initialized using Glorot-Bengio strat-
egy (Glorot and Bengio, 2010).15

4.4 Results
English
In Table 2 we report results for CNN-EB and
CNN-EU with diverse input representations. For
balanced training, dependency based vectors yield
the best (can, could) or equally good results (may,

12https://code.google.com/archive/p/word2vec
13https://www.ukp.tu-darmstadt.de/research/ukp-in-

challenges/germeval-2014
14https://levyomer.wordpress.com/2014/04/25/dependency-

based-word-embeddings
15This is clearly not shown to be the best hyperparameter

setting, as we chose it heuristically without tuning.

CNN-EB can could may must should

w2v-static 65.02 51.67 93.57 93.82 90.77
w2v-tuned 63.73 54.17 93.57 93.82 90.77
dep-static 65.78 56.67 93.57 93.82 90.77
dep-tuned 59.89 67.50 93.57 93.29 90.42
rand-static 63.99 46.67 93.57 92.79 90.77
rand-tuned 64.50 48.33 93.57 92.79 90.77

CNN-EU can could may must should

w2v-static 70.10 65.27 93.49 94.97 90.59
w2v-tuned 70.62 66.10 93.49 94.97 90.59
dep-static 69.85 65.27 93.49 94.46 90.59
dep-tuned 69.59 66.55 93.49 93.95 90.59
rand-static 70.36 64.45 93.49 93.45 90.59
rand-tuned 70.87 64.86 93.49 93.45 90.59

CNN-G dürfen können müssen sollen

w2v-static 91.92 68.82 77.61 71.64
w2v-tuned 99.49 74.09 83.58 72.14
dep-static 91.92 63.56 75.37 73.13
dep-tuned 97.47 73.28 82.83 74.63
rand-static 96.46 77.33 81.34 74.13
rand-tuned 98.48 78.95 85.07 73.63

Table 2: CV accuracy for CNN-EB, CNN-EU, test
accuracy for CNN-G, with different input repre-
sentations.

must, should). Could is the only case with large
performance differences depending on the choice
of embeddings. For can and could choosing ei-
ther static or tuned versions of vectors is benefi-
cial. With unbalanced training, dependency-based
vectors are outperformed by word2vec for must
and by randomly initialized vectors for can. Large
differences in the results for could w.r.t. the choice
of embeddings, are no longer present.

In Table 3 we report overall results for CNN-
EB and CNN-EU on MPQA compared to the base-
lines. As representations for the NN and CNN we
selected, for each modal verb, the embedding type
that yielded the best results (Table 2)16.

For each training data set, scores of the CNN
which are significantly better17 than the next lower
score among the baselines are underlined. If CNN
does not yield the best results, significance be-
tween the baseline with the best score and CNN is
reported. Overlining is used if CNN with unbal-
anced training performs significantly better than
CNN with balanced training, and vice versa.

With balanced training, CNN outperforms all
baselines for every modal verb and in terms of mi-
cro average. However, differences between CNN

16For NN the impact of word vectors was investigated as
well.

17By conducting the mid-p-value McNemar test (Fager-
land et al., 2013) with p <0.05.

115

can could may must should micro

BLrand 33.33 33.33 50.00 50.00 50.00 41.49
MaxEnt 59.64 61.25 92.14 87.60 90.11 74.88

NN 56.01 55.42 90.00 75.24 88.68 69.74

CNN-EB 65.78 67.50 93.57 93.82 90.77 79.29

can could may must should micro

BLmaj 69.92 65.00 93.57 94.32 90.81 80.18
MaxEnt 64.76 63.33 92.14 92.78 91.48 78.01

NN 67.29 66.08 94.23 86.37 90.96 77.93

CNN-EU 70.87 66.55 93.49 94.97 90.59 80.74

Table 3: Comparison of CV accuracies on MPQA of CNN-
EB (upper table) and CNN-EU (lower table) with baselines.

and MaxEnt are significant only for can, could
and micro average. Moving to unbalanced train-
ing, CNN has difficulties beating the baselines (cf.
may, should), but yields the best micro average.
Unbalanced training for CNN outperforms bal-
anced training in terms of micro averages, how-
ever the difference is not significant.

Table 4 summarizes the evaluation of CNN-EB
and CNN-EU on the MASC corpus. Note that
CNN with unbalanced training, CNN-EU, does not
have enough generalization capability when ap-
plied to different genres. This behavior coincides
with changes of the predominant sense between
training and test. CNN-EU, as well as MaxEnt,
is highly sensitive to such distributional changes.
Even though balanced training for CNN leads to
a slightly worse micro average when evaluated on
MPQA, on MASC CNN–EB yields a +3pp gain in
micro average compared to unbalanced training.18

In sum, our evaluation shows that the CNN
model is able to outperform strong baselines in
most configurations. Balanced training shows
more consistent results beyond the baselines and
is competitive with unbalanced training, without
significant difference except for can. In view of
genre differences in MASC, the CNN–EB model
is more robust against sense changes, and yields
overall better results. The strong behaviour on bal-
anced training data shows that the CNN model is
able to learn meaningful structure from the data.

German
In Table 2 we report results for CNN-G with
diverse input representations. Reasons for the
slightly weaker performance of dependency-based
vectors compared to word2vec (1-2 pp.) can be

18In contrast to MaxEnt, which does not profit from bal-
anced training.

can could may must should micro

BLrand 33.52 33.82 48.67 46.87 46.01 38.63
MaxEnt 66.74 62.86 87.83 83.33 84.06 72.25

CNN-EB 80.46 64.48 86.69 84.72 88.84 79.33

can could may must should micro

BLmaj 81.61 35.04 82.51 79. 86 89.24 72.86
MaxEnt 73.17 55.34 87.45 86.11 89.64 74.41

CNN-EU 81.03 49.15 86.31 86.80 89.24 76.49

Table 4: Accuracies on MASC dataset of classi-
fiers trained on MPQA+EPOSE .

dürfen können müssen sollen micro

BLrand 50.00 33.33 50.00 50.00 39.10
NN 77.73 43.32 73.88 50.25 57.69

CNN-G 99.49 78.95 85.07 74.63 84.10

Table 5: Average accuracy on EPOSG.

seen in the smaller size of the training corpus, and
possibly greater noise due to parsing errors.

In Table 5 we report overall results for CNN-G
compared to the NN baseline.19 The CNN outper-
forms both baselines by large margins, per modal
verb and in terms of micro average. Given we em-
ployed perfectly balanced training data, the classi-
fier performances reflect their ability to learn char-
acteristic information for the classes. Indeed, the
NN has great difficulties distinguishing the senses
for können (3 senses) and sollen, and is outper-
formed by CNN-G by +35.6 and +24.4 pp. gains.
The confusion matrices for CNN-G show a clear
separation of these classes, in contrast to the NN.

While German is a more difficult language than
English due to its syntactic properties (word or-
der, degree of inflection), CNN-G reaches overall
higher performance levels compared to English,
especially for difficult cases.20 One reason can be
the morphological distinction between indicative
and subjunctive (Konjunktiv), which – in interac-
tion with tense and other factors – can ease the dis-
tinction of epistemic vs. deontic/dynamic sense.
For sollen this morphological division is masqued,
and this can explain the weaker results compared
to other binary classes. Generally, CNN-G profits
from larger and perfectly balanced training data.

19We did not construct a MaxEnt classifier for German.
For NN and CNN-G we chose the best performing embed-
ding types per modal verb.

20Clearly, we cannot draw any strict comparison here.

116

4.5 Semantic feature detectors

Z+ provided a thorough analysis of the impact of
semantic features by ablating individual feature
groups. Their ablation analysis confirmed that fea-
ture groups relating to tense and aspect of the em-
bedded verb, negation, abstractness of the subject
and semantic features of the embedded verb yield
significant effects on classification performance.

For must, Z+ found clear patterns for the occur-
rence of specific features and the ability to prop-
erly classify a specific sense. However, they did
not identify precise features that differentiate epis-
temic and dynamic readings with can. We spefi-
cically investigated whether the learned filters for
must can be related to the semantic categories Z+
found to be important for distinguishing its senses.
In addition, we investigated whether the CNN is
able to capture unattested features that differenti-
ate epistemic and dynamic readings with can.

For every modal verb and every filter, we sort
sentences in the training data by the maximum
value obtained by applying 1-max pooling to the
feature map acquired by applying the respective
filter to a sentence. For each filter and each of the
top-ranked 15 sentences, we extract the ngram that
corresponds to the maximum value w.r.t. the fil-
ter, i.e. the argmax of the feature map. The ngram
vector is the sum of all vectors of words in the
ngram. The obtained ngram vectors were plotted
using the t-SNE algorithm (Van der Maaten and
Hinton, 2008) and textually displayed with their
surrounding context.

For must we found many feature detectors that
relate to observations in Z+. Many filters detect
past (you must have been out last night; ep) vs.
non-past (we must make further efforts; de) and a
dynamic event (we must develop a policy; de) vs.
stative (you must think me a perfect fool; ep) read-
ing of the embedded verb. Among others the fea-
ture detectors capture passive constructions (ac-
tual steps must be taken; de) and negation (we
must not fear; de). Some filters were trained to
capture domain vocabulary which intuitively goes
along with deontic sense (European parliament;
present regulation; fisheries policy). One filter
captures telic clauses (to address these problems;
to prevent both forum; to exert maximum influ-
ence), identifying deontic sense. Novel features
not considered in Z+ are discourse markers (but;
and (then)) that correlate with deontic sense. All
in all, the CNN learns meaningful features that are

known to be important for differentiating senses
for must, and in contrast to manual feature design,
it detects relevant unattested features by itself.

For can many filters recognise accomplish-
ments which go along with dynamic sense, e.g.
You can do it/make it to NY. Others detect words
indicating possibility (ep), negation (de), discourse
markers, animate subject (de and dy), passive con-
struction (de and dy). However, without a system-
atic classification of these features it remains un-
clear how important they are for differentiating the
senses of can. Also, similar to Z+ we did not find
clear-cut features that recognize epistemic sense.

We performed a corresponding analysis of fea-
ture maps for German, following the same extrac-
tion procedure. We found the typical state (ep) vs.
event (de) contrast for the embedded verb, nega-
tion and tense, and again previously unattested
factors such as discourse relation markers21 (but;
without; thereby; in order to (dy)). For Ger-
man we identified various indicators for epistemic
sense (for müssen and können): attitude predi-
cates (believe, not know; tell me; have an idea,
be afraid), adverbials (possibly), conditionals (if);
counterfactual and negative polarity contexts (not
be the case; how; ever). Further detectors for epis-
temic sense are abstract subjects: placeholders for
propositions (it), abstract concepts (idea; music;
grades; application); indefinite subjects (one). We
find a tendency for 1st or 2nd person subjects to
co-occur with de/dy and 3rd person pronouns with
ep. For können (dy) we find achievements (present
report; move mountains; find compromise). For
deontic readings, next to negation with 1st and 2nd
person we find typical verb-object combinations
for actions that can be granted: use telephone;
communicate with third parties.

We extracted statistics about the distance of the
extracted ngrams from the modal verb (distance
overall; to the left/right and ngrams starting with
the modal). There are no greater overall distances
for German compared to English. However, for
German we find significantly more ngrams that
include the modal verb, especially for epistemic
readings of können, müssen, dürfen that clearly
mark subjunctive mood, whereas for sollen, with
ambiguous forms for subjunctive and past tense,
no such tendency is observed. Thus, the feature
maps identify subjunctive marking (in conjunction
with other factors) as relevant for classifying epis-

21For reasons of space we provide translations to English.

117

temic sense, whereas for sollen the lack of this in-
dicator goes along with lower performance. Fi-
nally, we observe, for English and German, strik-
ingly larger distances to the left of the modal verb
for epistemic readings compared to non-epistemic
readings. This can be traced back to indicators
in the wider left-embedding context: embedding
predicates, subjects, if clauses, etc.

5 Word sense disambiguation

Next to modal sense classification, we evaluate
our CNN model in a classical WSD task. As
benchmark corpus we chose the SensEval-3 lexi-
cal sample data set (Mihalcea et al., 2004), which
was recently applied in Rothe and Schütze (2015)
(henceforth R&S) and Taghipour and Ng (2015),
using sense-specific embeddings and a NN archi-
tecture, respectively (cf. Section 2).

The training data size for the 57 target word
types ranges from 14 to 263 instances. Sense
labels of test instances of a given target word
are predicted using the CNN model trained on
the training instances for the respective word
type.22 We set the CNN hyperparameters to
be the same as for MSC, except for mini-batch
size and region sizes. Since the training data for
some words is below 50 instances, mini-batch
size was set to 10. For tuning of the region
sizes, we split the training data for each word
(80:20 for training and validation) and used static
word2vec for the input representation. Among
{(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7)}
the best results were obtained for (5, 6, 7).23

The final hyperparameter setting was used to in-
vestigate the impact of representations. Among
word2vec, dependency-based and randomly ini-
tialised, word2vec performed the best, the tuned
version being slightly better than static vectors.
We report results for tuned word2vec vectors.

We compare our results to the results R&S
obtained when using only sense-specific embed-
dings. These are not the state-of-the-art WSD re-
sults they obtain with additional features, namely
POS tags of words in a small window around the
target word, their discrete representation and local
collocations. For sentence representation, R&S
used every word in the target word sentence. For

22Training instances in the SensEval-3 dataset can have
more than one sense label. For training we randomly picked
one of possible labels. Instances which contain more than
one marked target word were omitted.

23However, the differences in the results were minor.

Snaive-prod 62.20 S-prod 64.30
S-cosine 60.50 S-raw 63.10

CNN 66.50

Table 6: WSD accuracy on SensEval-3 dataset.

sense prediction, they used the following feature
vectors that are fed into a linear SVM classifier:

S-cosine = 〈cos(c, s(1)), . . . , cos(c, s(k))〉 ,

S-product = 〈c1s
(1)
1 , . . . , cns(1)

n , . . . , c1s
(k)
1 , . . . , cns(k)

n 〉 ,

S-raw = 〈c1, . . . , cn, . . . , s
(k)
1 , . . . , s(k)

n 〉 ,

where w is a target word with k senses, c is the
centroid defined as the sum of all word2vec vec-
tors of words in the sentence and s(j) is the em-
bedding of the j-th synset of w.24 They propose
a variant of the S-prod feature vector, Snaive-prod,
for which the synset embeddings are the sum of
the word2vec vectors of all words in that sysnet.

The results are summarised in Table 6. The
CNN model compares favorably to the competi-
tor models of R&S using AutoExtend embeddings
for WSD. It achieves slightly higher results with-
out explicitly marking the target word, whereas
the AutoExtend embeddings encode much richer
information: what is the target word, how many
possible sense it has, and knowledge-intense sense
embeddings for each of its synsets. The CNN is
able to compete with the rich AutoExtend model,
and future work needs to investigate whether –
similar to the S-product setting in R&S – the CNN
model can achieve competitive state-of-the-art re-
sults by incorporating features corresponding to
those of the IMS system of Zhong and Ng (2010).

6 Conclusion and future work

We presented an account for multilingual modal
sense classification using a CNN architecture. We
apply the same architecture in a standard WSD
task and achieve competitive results compared to
a system using richer embedding information.

Our one-layer CNN architecture outperforms
strong baselines and prior art for MSC in English,
including a NN and MaxEnt model, and proves
particularly robust in cross-genre classification.

We applied the CNN model to German, on
a data set of modest size, obtained using cross-
lingual projection techniques. The CNN-G clas-
sifier outperforms a NN model by large margins.

24Obtained using the AutoExtend method of R&S.

118

Our approach can be easily generalized to novel
languages without tedious and resource-intensive
feature engineering. Through analysis of learned
feature maps we gave evidence that the CNN
learns both known and novel features for MSC.

The attractiveness of the CNN framework lies in
its ability to learn (semantic) features from flexible
window regions without syntactic processing, and
the ensuing robustness on difficult text genres and
its ease in generalizing to novel languages.

Acknowledgments

We thank Mengfei Zhou for her support with the
German corpus construction. This work has been
supported by the German Research Foundation as
part of the Research Training Group ”Adaptive
Preparation of Information from Heterogeneous
Sources” (AIPHES) under grant No. GRK 1994/1.

References
Kathryn Baker, Michael Bloodgood, Bonnie J Dorr,

Nathaniel W Filardo, Lori Levin, and Christine Pi-
atko. 2010. A Modality Lexicon and its use in Au-
tomatic Tagging. In Proceedings of LREC, pages
1402–1407.

Aljoscha Burchardt, Marco Pennacchiotti, Stefan
Thater, and Manfred Pinkal. 2009. Assessing the
impact of frame semantics on textual entailment.
Natural Langugae Engineering, 15(4):527–550.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, and Christopher Potts. 2012. Did It Happen?
The Pragmatic Complexity of Veridicality Assess-
ment. Computational Linguistics, 38(2):301–333.
Special Issue: Modality and Negation.

Gertrud Faaß and Kerstin Eckart. 2013. Language
Processing and Knowledge in the Web: 25th In-
ternational Conference, GSCL 2013, Darmstadt,
Germany, September 25-27, 2013. Proceedings.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Morten W Fagerland, Stian Lydersen, and Petter Laake.
2013. The mcnemar test for binary matched-pairs
data: mid-p and asymptotic are better than exact
conditional. BMC medical research methodology,
13(1):1.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In International conference on artificial
intelligence and statistics, pages 249–256.

Nancy Ide, Collin Baker, Christiane Fellbaum, and
Charles Fillmore. 2008. MASC: The manually an-
notated sub-corpus of American English. In Pro-
ceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC-2008).

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 655–665, Baltimore, Mary-
land.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), page 17461751, Doha,
Qatar.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kenton Lee, Yoav Artzi, Yejin Choi, and Luke Zettle-
moyer. 2015. Event detection and factuality as-
sessment with non-expert supervision. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1643–1648,
Lisbon, Portugal, September.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In ACL (2), pages 302–
308.

R. Mihalcea, T. Chklovski, and A. Kilgarriff. 2004.
The Senseval-3 English lexical sample task. In
Proceedings of SENSEVAL-3: Third International
Workshop on the Evaluation of Systems for the Se-
mantic Analysis of Text [CD-ROM], pages 25–28.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Vinodkumar Prabhakaran, Michael Bloodgood, Mona
Diab, Bonnie Dorr, Lori Levin, Christine D. Piatko,
Owen Rambow, and Benjamin Van Durme. 2012.
Statistical modality tagging from rule-based anno-
tations and crowdsourcing. In Proceedings of the
Workshop on Extra-Propositional Aspects of Mean-
ing in Computational Linguistics, pages 57–64, Jeju,
Republic of Korea, July.

Nils Reimers, Judith Eckle-Kohler, Carsten Schnober,
Jungi Kim, and Iryna Gurevych. 2014. Germeval-
2014: Nested named entity recognition with neu-
ral networks. In Gertrud Faaß and Josef Rup-
penhofer, editors, Workshop Proceedings of the
12th Edition of the KONVENS Conference, pages
117–120, Hildesheim, October. Universitätsverlag
Hildesheim.

119

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1793–1803, Beijing,
China.

Josef Ruppenhofer and Ines Rehbein. 2012. Yes we
can !? Annotating the senses of English modal
verbs. In Proceedings of the LREC 2012 Confer-
ence, pages 1538–1545.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642, Seattle, Washington, USA.

Kaveh Taghipour and Hwee Tou Ng. 2015. Semi-
supervised word sense disambiguation using word
embeddings in general and specific domains. In
The 2015 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 314–323.

Jörg Tiedemann. 2012. Parallel Data, Tools and In-
terfaces in OPUS. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Mehmet Uğur Doğan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and
Stelios Piperidis, editors, Proceedings of LREC-
2012, pages 2214–2218, Istanbul, Turkey, May.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(2579-2605):85.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2-3):165 – 210.

Ye Zhang and Byron C. Wallace. 2015. A sensi-
tivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classifica-
tion. Technical report, University of Texas at Austin.
arXiv:1510.03820v2.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 Sys-
tem Demonstrations, pages 78–83. Association for
Computational Linguistics.

Zhi Zhong and Hwee Tou Ng. 2012. Word sense dis-
ambiguation improves information retrieval. In Pro-
ceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 273–282, Jeju Island, Korea.

Mengfei Zhou, Anette Frank, Annemarie Friedrich,
and Alexis Palmer. 2015. Semantically Enriched

Models for Modal Sense Classification. In Proceed-
ings of the EMNLP 2015 Workshop LSDSem: Link-
ing Models of Lexical, Sentential and Discourse-
level Semantics, Lisbon, Portugal.

120

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 121–126,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Towards cross-lingual distributed representations without parallel text
trained with adversarial autoencoders

Antonio Valerio Miceli Barone
The University of Edinburgh

Informatics Forum, 10 Crichton Street
Edinburgh

amiceli@inf.ed.ac.uk

Abstract

Current approaches to learning vector rep-
resentations of text that are compatible be-
tween different languages usually require
some amount of parallel text, aligned at
word, sentence or at least document level.
We hypothesize however, that different
natural languages share enough semantic
structure that it should be possible, in prin-
ciple, to learn compatible vector represen-
tations just by analyzing the monolingual
distribution of words.

In order to evaluate this hypothesis, we
propose a scheme to map word vectors
trained on a source language to vectors se-
mantically compatible with word vectors
trained on a target language using an ad-
versarial autoencoder.

We present preliminary qualitative results
and discuss possible future developments
of this technique, such as applications to
cross-lingual sentence representations.

1 Introduction

Distributed representations that map words, sen-
tences, paragraphs or documents to vectors real
numbers have proven extremely useful for a va-
riety of natural language processing tasks (Bengio
et al., 2006; Collobert and Weston, 2008; Turian et
al., 2010; Maas et al., 2011; Mikolov et al., 2013b;
Socher et al., 2013; Pennington et al., 2014; Levy
and Goldberg, 2014; Le and Mikolov, 2014; Ba-
roni et al., 2014; Levy et al., 2015), as they provide
an effective way to inject into machine learning
models general prior knowledge about language
automatically obtained from inexpensive unanno-
tated corpora. Based on the assumption that dif-
ferent languages share a similar semantic struc-

ture, various approaches succeeded to obtain dis-
tributed representations that are compatible across
multiple languages, either by learning mappings
between different embedding spaces (Mikolov et
al., 2013a; Faruqui and Dyer, 2014) or by jointly
training cross-lingual representations (Klementiev
et al., 2012; Hermann and Blunsom, 2013; Chan-
dar et al., 2014; Gouws et al., 2014). These ap-
proaches all require some amount of parallel text,
aligned at word level, sentence level or at least
document level, or some other kind of parallel re-
sources such as dictionaries (Ammar et al., 2016).

In this work we explore whether the assumption
of a shared semantic structure between languages
is strong enough that it allows to induce compati-
ble distributed representations without using any
parallel resource. We only require monolingual
corpora that are thematically similar between lan-
guages in a general sense.

We hypothesize there exist a suitable vectorial
space such that each language can be viewed as
a random process that produces vectors at some
level of granularity (words, sentences, paragraphs,
documents) which are then encoded as discrete
surface forms, and we hypothesize that, if lan-
guages are used to convey thematically similar in-
formation in similar contexts, these random pro-
cesses should be approximately isomorphic be-
tween languages, and that this isomorphism can
be learned from the statistics of the realizations of
these processes, the monolingual corpora, in prin-
ciple without any form of explicit alignment.

We motivate this hypothesis by observing that
humans, especially young children, who acquire
multiple languages, can often do so with rela-
tively little exposure to explicitly aligned paral-
lel linguistic information, at best they may have
access to distant and noisy alignment information
in the form of multisensorial environmental clues.
Nevertheless, multilingual speakers are always au-

121

tomatically able to translate between all the lan-
guages that they can speak, which suggests that
their brain either uses a shared conceptual repre-
sentations for the different surface features of each
language, or uses distinct but near-isomorphic rep-
resentations that can be easily transformed into
each other.

2 Learning word embedding
cross-lingual mappings with
adversarial autoencoders

The problem of learning transformations between
probability distributions of real vectors has been
studied in the context of generative neural net-
work models, with approaches such as Genera-
tive Moment Matching Networks (GMMNs) (Li
et al., 2015) and Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). In this work we
consider GANs, since their effectiveness has been
demonstrated in the literature more thoroughly
than GMMNs.

In a typical GAN, we wish to train a genera-
tor model, usually a neural network, to transform
samples from a known, easy to sample, uninfor-
mative distribution (e.g. Gaussian or uniform) into
samples distributed according to a target distribu-
tion defined implicitly by a training set. In order
to do so, we iteratively alternate between training
a differentiable discriminator model, also a neural
network, to distinguish between training samples
and artificial samples produced by the generator,
and training the generator to fool the discriminator
into misclassifying the artificial examples as train-
ing examples. This can be done with conventional
gradient-based optimization because the discrim-
inator is differentiable thus it can backpropagate
gradients into the generator.

It can be proven that, with sufficient model
capacity and optimization power, sufficient en-
tropy (information dimension) of the generator in-
put distribution, and in the limit of infinite train-
ing set size, the generator learns to produce sam-
ples from the correct distribution. Intuitively, if
there is any computable test that allows to dis-
tinguish the artificial samples from the training
samples with better than random guessing prob-
ability, then a sufficiently powerful discriminator
will eventually learn to exploit it and then a suffi-
ciently powerful generator will eventually learn to
counter it, until the generator output distribution
becomes undistinguishable from the true training

Generator

Source
embedding

Transformed
embedding

OR

Target
embedding

Discriminator

Adversarial
prediction

Figure 1: Generative adversarial network for
cross-lingual embedding mapping

distribution. In practice, actual models have fi-
nite capacity and gradient-based optimization al-
gorithms can become unstable or stuck when ap-
plied to this multi-objective optimization problem,
though hey have been successfully used to gener-
ate fairly realistic-looking images (Denton et al.,
2015; Radford et al., 2015).

In our preliminary experiments we attempted to
adapt GANs to our problem, by training the gen-
erator to learn a transformation between word em-
beddings trained on different languages (fig. 1).
Let d be the embedding dimensionality, GθG

:
Rd → Rd be the generator parametrized by
θG, DθD

: Rd → [0, 1] be the discriminator
parametrized by θD.

At each training step:

1. draw a sample {f}n of n source embeddings,
according to their (adjusted) word frequen-
cies

2. transform them into target-like embeddings
{ê}n = GθG

({f}n)

3. evaluate them with the discriminator, esti-
mating their probability of having been sam-
pled from the true target distribution {p}n =
DθD

({ê})

4. update the generator parameters θG to re-
duce the average adversarial loss La =
− log({p}n)

122

5. draw a sample {e}n of n true target embed-
dings

6. update the discriminator parameters θD to re-
duce its binary cross-entropy loss on the clas-
sification between {e}n (positive class) and
{ê} (negative class)

repeat these steps until convergence.
Unfortunately we found that in this setup, even

with different network architectures and hyperpa-
rameters, the model quickly converges to a patho-
logical solution where the generator always emits
constant or near-constant samples that somehow
can fool the discriminator. This appears to be an
extreme case of the know mode-seeking issue of
GANs (Radford et al., 2015; Theis et al., 2015;
Salimans et al., 2016), which is probably exac-
erbated in our settings because of the point-mass
nature of our probability distributions where each
word embedding is a mode on its own.

In order to avoid these pathological solutions,
we needed a way to penalize the generator for
destroying too much information about its input.
Therefore we turned our attention to Adversarial
Autoencoders (AAE) (Makhzani et al., 2015). In
an AAE, the generator, now called encoder, is
paired with another model, the decoder RθR

:
Rd → Rd parametrized by θR which attempts to
transform the artificial samples emitted by the en-
coder back into the input samples. The encoder
and the decoder are jointly trained to minimize
a combination of the average reconstruction loss
Lr({f}n, RθR

(GθG
({f}n))) and the adversarial

loss defined as above. The discriminator is trained
as above. In the original formulation of the AAE,
the discriminator is used to enforce a known prior
(e.g. Gaussian or Gaussian mixture) on the inter-
mediate, latent representation, in our setting in-
stead we use it to match the latent representation
to the target embedding distribution so that the en-
coder can be used to transform source embeddings
into target ones (fig. 2).

In our experiments, we use the cosine dissim-
ilarity as reconstruction loss, and as a further
penalty we also include the pairwise cosine dis-
similarity between the generated latent samples
{ê} and the true target samples {e}n. Therefore,
the total loss incurred by the encoder-decoder at
each step is
LGR = λrLr({f}n, RθR

(GθG
({f}n))) −

λa log({p}n) + λcLr({e}n, GθG
({f}n))

Encoder
(Generator)

Source
embedding

Transformed
embedding

OR

Target
embedding

Discriminator

Adversarial
prediction

Decoder

Reconstructed
source

embedding

Figure 2: Adversarial autoencoder for cross-
lingual embedding mapping (loss function blocks
not shown).

where λr, λa and λc are hyperparameters (all set
equal to 1 in our experiments).

3 Experiments

We performed some preliminary exploratory ex-
periments on our model. In this section we report
salient results.

The first experiment is qualitative, to assess
whether our model is able to learn any semanti-
cally sensible transformation at all. We consider
English to Italian embedding mapping.

We train English and Italian word embeddings
on randomly subsampled Wikipedia corpora con-
sisting of about 1.5 million sentences per lan-
guage. We use word2vec (Mikolov et al., 2013b)
in skipgram mode to generate embeddings with di-
mension d = 100. Our encoder and decoder are
linear models with tied matrices (one the trans-
pose of the other), initialized as random orthog-
onal matrices (we also explored deep non-linear
autoencoders but we found that they make the op-
timization more difficult without providing appar-
ent benefits).

Our discriminator is a Residual Network (He et
al., 2015) without convolutions, one leaky ReLU
non-linearity (Maas et al., 2013) per block, no
non-linearities on the passthrough path, batch nor-
malization (Ioffe and Szegedy, 2015) and dropout
(Nitish et al., 2014). The block (layer) equation is:

ht+1 = φ(Wt × ht−1) + ht−1 (1)

where Wt is a weight matrix and φ is batch nor-
malization (with its internal parameters) followed

123

by leaky ReLU and ht is a k-dimensional block
state (in our experiments k = 40). The network
has T = 10 blocks followed by a 1-dimensional
output layer with logistic sigmoid activation. We
found that using a Residual Network as discrim-
inator rather than a standard multi-layer percep-
tron yields larger gradients being backpropagated
to the generator, facilitating training. We actu-
ally train two discriminators per experiment, with
identical structure but different random initializa-
tions, and use one to train the generator and the
other for monitoring in order to help us determine
whether overfitting or underfitting occurs.

At each step, word embeddings are sampled
according to their frequency in the original cor-
pora, adjusted to subsample frequent words, as in
word2vec. Updates are performed using the Adam
optimizer (Kingma and Ba, 2014) with learning
rate 0.001 for the encoder-decoder and 0.01 for the
discriminator.

The code1 is implemented in Python, Theano
(Theano Development Team, 2016) and Lasagne.

We qualitatively analyzed the quality of the
embeddings by considering the closest Italian em-
beddings to a sample of transformed English em-
beddings. We notice that in some cases the closest
or nearly closest embedding is the true translation,
for instance ’computer’ (en) ->’computer’ (it). In
other cases, the closest terms are not translations
but subjectively appear to be semantically related,
for instance ’rain’ (en) ->’gelo’, ’gela’, ’in-
tensissimo’, ’galleggiava’, ’rigidissimo’, ’arida’,
’semi-desertico’, ’fortunale’, ’gelata’, ’piovosa’ (it
10-best), or ’comics’ (en) ->’Kadath’, ’Microci-
ccio’,’Cugel’,’Promethea’,’flashback’,’episodio’,
’Morimura’, ’Chatwin’, ’romanzato’,’Deedlit’ (it
10-best), or ’anime’ (en) ->’Zatanna’, ’Alita’,
’Yuriko’, ’Wildfire’, ’Carmilla’, ’Batwoman’,
’Leery’, ’Aquarion’, ’Vampirella’, ’Minaccia’ (it
10-best). Other terms, such as names of places
however, tend to be transformed incorrectly,
for instance ’France’ (en) ->’Radiomobile’,
’Cartubi’, ’Freniatria’, ’UNUCI’, ’Cornhole’,
’Internazione’, ’CSCE’, ’Folklorica’, ’UECI’,
’Rientro’ (it 10-best).

We further evaluate our model on German to
English and English to German embedding trans-
formations, using the same evaluation setup as
(Klementiev et al., 2012) with embeddings trained

1Code with full hyperparameters available at:
https://github.com/Avmb/clweadv

on the concatenation of the Reuters corpora and
the News Commentary 2015 corpora, with embed-
ding dimension d = 40 and discriminator depth
T = 4. On a qualitative analysis notice simi-
lar partial semantic similarity patterns. However
the cross-lingual document classification task we
were able to improve over the baseline only for
the smallest training set size.

4 Discussion and future work

From the qualitative analysis of the word embed-
ding mappings it appears that the model does learn
to transfer some semantic information, although
it’s not competitive with other cross-lingual rep-
resentation approaches. This may be possibly an
issue of hyperparameter choice and architectural
details, since, to our knowledge, this is the first
work to apply adversarial training techniques to
point-mass distribution arising from NLP tasks.

Further experimentation is needed to determine
whether the model can be improved or whether we
already hit a fundamental limit on how much se-
mantic transfer can be performed by monolingual
distribution matching alone. This additional ex-
perimentation may help to test how strongly our
initial hypothesis of semantic isomorphism be-
tween languages holds, in particular across lan-
guages of different linguistic families.

Even if this hypothesis does not hold in a strong
sense and semantic transfer by monolingual text
alone turns out to be infeasible, our technique
might help in conjunction with training on paral-
lel data. For instance, in neural machine transla-
tion ”sequence2sequence” transducers without at-
tention (Cho et al., 2014), it could be useful to
train as usual on parallel sentences and train in
autoencoder mode on monolingual sentences, us-
ing an adversarial loss computed by a discrimi-
nator on the intermediate latent representations to
push them to be isomorphic between languages. A
modification of this technique that allows for the
latent representation to be variable-sized could be
also applied to the attentive ”sequence2sequence”
transducers (Bahdanau et al., 2014), as an alterna-
tive or in addition to monolingual dataset augmen-
tation by backtranslation (Sennrich et al., 2015).

Furthermore, it may be worth to evaluate ad-
ditional distribution learning approaches such as
the aforementioned GMMs, as well as the more
recent BiGAN/ALI framework (Donahue et al.,
2016; Dumoulin et al., 2016) which uses an adver-

124

sarial discriminator loss both to match latent dis-
tributions and to enforce reconstruction, and also
to consider more recent GAN training techniques
(Salimans et al., 2016).

In conclusion we believe that this work initi-
ates a potentially promising line of research in
natural language processing consisting of apply-
ing distribution matching techniques such as ad-
versarial training to learn isomorphisms between
languages.

Acknowledgements

This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme under grant agreement 645452
(QT21).

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL (1),
pages 238–247.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137–186.
Springer.

Sarath Chandar, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In Advances in Neural Information Processing Sys-
tems, pages 1853–1861.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Emily L Denton, Soumith Chintala, Rob Fergus, et al.
2015. Deep generative image models using a lapla-
cian pyramid of adversarial networks. In Advances
in Neural Information Processing Systems, pages
1486–1494.

J. Donahue, P. Krähenbühl, and T. Darrell. 2016. Ad-
versarial Feature Learning. ArXiv e-prints, May.

V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Ar-
jovsky, O. Mastropietro, and A. Courville. 2016.
Adversarially Learned Inference. ArXiv e-prints,
June.

Manaal Faruqui and Chris Dyer. 2014. Improving
vector space word representations using multilingual
correlation. Association for Computational Linguis-
tics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2014. Bilbowa: Fast bilingual distributed repre-
sentations without word alignments. arXiv preprint
arXiv:1410.2455.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385.

Karl Moritz Hermann and Phil Blunsom. 2013. Mul-
tilingual distributed representations without word
alignment. arXiv preprint arXiv:1312.6173.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed rep-
resentations of words. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING), Bombay, India, December.

Quoc V Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. arXiv
preprint arXiv:1405.4053.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

125

Yujia Li, Kevin Swersky, and Richard Zemel. 2015.
Generative moment matching networks. arXiv
preprint arXiv:1502.02761.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 142–150. As-
sociation for Computational Linguistics.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. ICML, volume 30,
page 1.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
and Ian Goodfellow. 2015. Adversarial autoen-
coders. arXiv preprint arXiv:1511.05644.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever.
2013a. Exploiting similarities among lan-
guages for machine translation. arXiv preprint
arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in neural information processing
systems, pages 3111–3119.

Srivastava Nitish, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Alec Radford, Luke Metz, and Soumith Chintala.
2015. Unsupervised representation learning with
deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. 2016. Improved Tech-
niques for Training GANs. ArXiv e-prints, June.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013. Parsing with composi-
tional vector grammars. In ACL (1), pages 455–465.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688, May.

Lucas Theis, Aäron van den Oord, and Matthias
Bethge. 2015. A note on the evaluation of gener-
ative models. arXiv preprint arXiv:1511.01844.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

126

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 127–136,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Decomposing Bilexical Dependencies into Semantic and Syntactic Vectors

Jeff Mitchell
mitchelljeff@hotmail.com

Abstract

Bilexical dependencies have been com-
monly used to help identify the most likely
parses of a sentence. The probability of
a word occurring as the dependent of a
given head within a particular structure
provides a measure of semantic plausibil-
ity that complements the purely syntactic
part of the parsing model.

Here, we attempt to use the distribu-
tional information within these bilexical
dependencies to construct representations
that decompose into semantic and syntac-
tic components. In particular, we com-
pare two different approaches to compos-
ing vectors to explore how syntactic and
semantic representations should interact
within such a model.

Our results suggest a tensor product ap-
proach has advantages, which we believe
could be exploited in making more ef-
fective use of the information captured in
these bilexical dependencies.

1 Introduction

Using points within the geometry of a vector space
to represent the way words are distributed across
contexts has proven to be a fruitful tactic for many
language processing tasks. For example, Landauer
and Dumais (1997) projected raw tf-idf scores
of occurrence across a set of documents down
into lower dimensional vectors using a technique
called singular value decomposition. The result-
ing semantic representations were then applied to
semantic dismbiguation and to predict synonyms
in a TOEFL test. Working instead with the linear
structure of raw text, Collobert et al. (2011) trained
a neural language model to induce word vectors in

the hidden layer of their network. These versatile
representations were then applied to a wide range
of tasks including part-of-speech tagging, chunk-
ing, named entity recognition, and semantic role
labeling.

Two key elements within any such approach
to constructing representations are the contexts
across which the distribution of a word is tracked
and how vectors are constructed from these oc-
currences. Here, we investigate the construction
of distributional representations from bilexical de-
pendencies found in a parser and explore how such
vectors can be decomposed into semantic and syn-
tactic components.

Although, distributional approaches have com-
monly become most strongly associated with se-
mantic representations and tasks, they have also
seen applications to syntax. In fact, distributional
analysis was first applied by linguists to syntactic
categories rather than the representation of mean-
ing and Ross (1972) presented a continuous, or at
least graded, conception of syntax long before the
recent surge of interest in vectorial approaches to
semantics.

Practical applications of these distributional
techniques to syntactic problems have included
work on the induction (Brown et al., 1992) or
learning (Mintz, 2003) of categories and the com-
putational problems of tagging (Tsuboi, 2014) and
parsing (Socher et al., 2013). The latter problem
of parsing brings to the foreground the question
of how syntactic and semantic representations re-
late to and interact with each other, as the optimal
parse must maximise both syntactic and semantic
plausibility, in an integrated structure.

An unmodified PCFG, modelling just the de-
pendencies between syntactic categories, is gen-
erally inadequate to derive robust parses, and lexi-
calisation is commonly used to enhance such mod-
els. In particular, bilexical dependencies introduce

127

a measure of the plausibility of combining specific
heads and dependents within the possible syntactic
structures.

These dependencies contain much the same in-
formation used by Lin (1998) and Padó and Lapata
(2007) to construct semantic representations, and
we can easily see that the plausibility of cake as an
object of bake, eat and regret tells us something
about the semantic properties of cake. Nonethe-
less, these dependencies contain substantial quan-
tities of syntactic information, too. The depen-
dencies observed for cake and eat, for example,
are substantially different because the former is a
noun while the latter is a verb.

However, the sparsity of the resulting counts
can mean these dependencies may contribute lit-
tle to parser performance, particulaly on out of
domain data. One solution, proposed by Rei and
Briscoe (2013), is to smooth the bilexical depen-
dencies using a similarity measure. For example,
if counts for publication as an object of read are
lacking we might instead leverage the similarity
of publication to book to use the counts for book
as an object of read to make a reasonable infer-
ence about the unseen dependency. Alternatively,
we might try to use some form of dimensionality
reduction to smooth out the sparsity.

Levy and Goldberg (2014) use a modified ver-
sion of word2vec (Mikolov et al., 2013) to in-
duce 300 dimensional representations from word
distributions across 900,000 dependency contexts.
They find that these word vectors capture a form
of functional similarity, with the closest words in
the space typically being cohyponyms within the
same syntactic class. This syntactic specificity is
not particularly surprising, as we would expect the
strongest effects within these dependencies to re-
late to the syntactic class of a word - e.g. only a
noun can be the subject of a verb - with semantic
factors having a weaker influence merely on word
choice within the correct syntactic class.

In this paper, we will consider a couple of ap-
proaches that attempt to separate out semantic and
syntactic components of the dependencies, boost-
ing performance on both types of task. One popu-
lar method of boosting semantic performance has
been to ignore or average over syntactic structure.
By treating the context a target occurs in as a bag-
of-words (Landauer and Dumais, 1997; Blei et
al., 2003; Mikolov et al., 2013), syntactic infor-
mation is washed out and semantic information

is retained. Conversely, distributional approaches
to syntactic tasks typically make use of the se-
quential structure contained in bigrams (Brown et
al., 1992; Clark, 2003) or longer n-grams (Mintz,
2003; Redington et al., 1998).

Recent work, (Mitchell, 2013; Mitchell and
Steedman, 2015), has attempted to use both types
of information in a single model that decomposes
representations into syntactic and semantic com-
ponents. An open question, however, is the most
effective way of forming these combined represen-
tations. Mitchell and Steedman (2015) explicitly
employ a direct sum - i.e. concatenation - of se-
mantic and syntactic vectors. On the other hand,
the multiplicative combination used by Mitchell
(2013) is much closer to a tensor product formula-
tion.

Griffiths et al. (2005) also pursue the represen-
tation of semantics and syntax in a single distri-
butional model. They integrate a topic model and
HMM to produce a model of the sequential struc-
ture of raw text in which each word is either se-
mantic - chosen by the topic model to fit the long
range semantic context - or syntactic - chosen to fit
the short range dependencies of the HMM. This ei-
ther/or assumption is rejected by Boyd-graber and
Blei (2009) who moreover work with parsed sen-
tences, rather than raw text. In this model, each
word is chosen based on a product of a document
topic distribution and a set of syntactic transi-
tion probabilities, determined top-down within the
parse tree. Socher et al. (2010) are also concerned
with inducing distributional representations within
the stucture of parse trees. Their neural network
model composes vectors recursively from the bot-
tom up to represent possible phrases and from
those representations computes how likely each is
to be a valid constituent.

Although, parsing may seem, initially, to be the
ideal task in which to explore the relationship be-
tween semantic and syntactic representations, the
complexity of a working system - which Bikel
(2004a) describes as an intractable behemoth -
makes it difficult to isolate and investigate just
this question on its own. Parser performance de-
pends on a multitiude of interacting components,
and could only obliquely produce insights into the
merit of the approaches to representation we want
to consider here.

Instead, we follow the advice of Bikel (2004b)
to treat the model as data, and make direct eval-

128

uations of distributional representations induced
from the parameters of a wide coverage model.
We focus in on just the bilexical dependencies
within the BLLIP parser (Charniak and Johnson,
2005; McClosky et al., 2006) and explore models
of these parameters in which the representation for
each word decomposes into a semantic and a syn-
tactic vector. We evaluate both a direct sum and a
tensor product approach to this decomposition of
the representation space and find that the latter has
advantages.

In the next section, we describe the BLLIP
parser and the data we extract from the wide cov-
erage model of McClosky et al. (2006). Then in
Sections 3 and 4 we describe the models applied to
this data and their evaluation. Finally, we present
our results and conclusions in Sections 5 and 6.

2 BLLIP Parser

The BLLIP parser (Charniak and Johnson, 2005)
uses a two stage approach, based on discriminative
reranking applied to candidate parses produced by
a generative lexicalised PCFG. That first stage of
the model takes inspiration from loglinear models
to express the overall parse probability in terms of
a product of multiplicative factors.

Here we are specifically interested in the bilex-
ical dependencies, which are stored in the model
as a probability, p(d|h, t), of a dependent, d, given
a head, h within some tree structure, t, along with
a count for the occurence of that head-tree com-
bination. The tree structure, t, is only specified
in terms of the tags on the head and dependent
leaves, the node from which they branch, and the
category of the dependent branch below that point.
Thus, many distinct trees are collapsed into a sin-
gle class. For example, the model fails to distin-
guish between subjects and objects of a verb.

McClosky et al. (2006) expanded the domain of
the standard Penn Treebank (Marcus et al., 1993)
trained BLLIP model, applying self-training to
2.5M sentences from the NANC corpus (Graff,
1995). The resulting model has a large vocab-
ulary, with reliable estimates of probabilities for
many words, which provides a useful basis for our
investigations.

We extract the bilexical dependencies and head-
tree counts from the model file, replacing words
that occur less than 5 times with an 〈UNK〉 tag,
and also excluding any word that does not occur in
both the head and dependent positions. The head-

tree contexts are similarly filtered, with items that
occur less then 5 times replaced with a dummy
catch-all context.

3 Models

The models we discuss here derive a probability of
a dependent word, d, within the context of a tree,
t, with a head, h, in terms of latent variables, e.g.
i, j, k. So, the simplest model we will consider has
the form:

p(d|h, t) =
∑

i

p(d|i)p(i|h, t) (1)

It will be useful, notationally and conceptually,
to think of these models in terms of vectors. The
equation above already has a superficial similar-
ity to a dot product, being a sum over a series of
products.

We can rewrite this:

p(d|h, t) = p(d)
∑

i

p(i)
p(i|d)
p(i)

p(i|h, t)
p(i)

(2)

We will think of p(i|x)
p(i) as being the components,

vx
i , of a vector, vx, representing x and define an in-

ner product in terms of a weighted 1 sum of com-
ponent products as follows:

u · v =
∑

i

λiuivi (3)

Taking λi = p(i), we can rewrite Eq. 2 as fol-
lows:

p(d|h, t) = p(d)vd · vht (4)

More generally, this model form will need to
include normalisation:

p(d|h, t) =
p(d)vd · vht

N(h, t)
(5)

One of the benefits of this model form is that
the normalising constant for each head-tree can be
calculated fairly efficiently in terms of a single in-
ner product.

N(h, t) = n · vht (6)

Here, n is a sum over all dependent probabilities
and vectors.

1The use of such a weighting implies we are working with
unnormalised basis vectors.

129

n =
∑

d

p(d)vd (7)

Given this model form, we must then specify
how the vectors v are constructed. In particular,
if our representations are based on semantic vec-
tors, a, and syntactic vectors, b, then we must de-
cide how these are to be combined. One obvious
choice is between a direct sum (Eq. 8) and a tensor
product (Eq. 9).

v̄ = ā⊕ b̄ (8)

ṽ = ã⊗ b̃ (9)

Although both these constructions consist of a
combination of vectors, a and b, the actual vec-
tors induced during EM training will inevitably
turn out to be substantially different for each ap-
proach. In fact, our purpose is precisely to in-
vestigate how this choice of combination affects
the representations induced in our trained models.
We therefore notationally distinguish the two ap-
proaches: using a bar, v̄, to indicate direct sum
vectors and a tilde, ṽ, for tensor product vectors.
However, we will also employ bare symbols with-
out bar or tilde when discussing general properties
across both types of structure.

So, if a and b are m and n dimensional vec-
tors respectively, then Eq. 8 corresponds to form-
ing the n+m dimensional concatenation of those
vectors, while Eq. 9 results in the n ×m dimen-
sional vector of all products of their components.
From a probabilistic perspective, a reasonable in-
terpretation would be that our models using the di-
rect sum representations in Eq. 8 assume that the
dependencies between head and dependent are ei-
ther syntactic or semantic, whereas tensor product
models, Eq. 9, assume that each word has both
semantic and syntactic characteristics.

Given some method for combining vectors a
and b, we also need to specify the form of their
components. In particular, we are interested here
in separating semantic and syntactic dependen-
cies.

Mitchell (2013) and Mitchell and Steedman
(2015) both exploit word order to decompose rep-
resentations into semantic and syntactic compo-
nents, with semantic dependencies being modelled
in terms of a similarity measure that is indepen-
dent of word order, while the syntactic part of the
model captures sequential information. However,

the bilexical dependencies we are working with
here do not explicitly relate to surface word or-
der. Nonetheless, the relationship is still directed,
distinguishing a head and a dependent, and we
can exploit this directedness to define a symmetric
semantic component and an asymmetric syntactic
component.

In each of the models below, any word has a sin-
gle semantic vector, a, whether it occurs in head or
dependent position, with components aj given by:

aj =
p(j|w)
p(j)

(10)

Ignoring the syntactic component of the model
for a moment, we can define a semantics only
model (leaving out the normalising constant for
brevity):

p(d|h, t) ∝ p(d)
∑

j

p(j)
p(j|wd)
p(j)

p(j|wh)
p(j)

= p(d)ad · ah (11)

This employs an inner product defined by
ad · ah =

∑
j λja

d
ja

h
j with λj = p(j). However,

this semantic only model ignores the tree t the
words occur in and gives words the same repre-
sentations whether they occur in head or depen-
dent position. It is therefore symmetric in relation
to these roles, and we can think of this model as
capturing what head and dependent have in com-
mon.

In contrast, there are two forms of syntactic vec-
tors, bd and bht, distinguishing between depen-
dents and the head-tree contexts they occur in,
with components given by:

bht
k =

p(k|h, t)
p(k)

(12)

bdk =
p(k|d)
p(k)

(13)

Again we can ignore the other part of the model
and consider this part on its own:

p(d|h, t) ∝ p(d)
∑

k

p(k)
p(k|d)
p(k)

p(k|h, t)
p(k)

= p(d)bd · bht (14)

This is exactly equivalent to the simple model
Eq. 4 above.

130

Taking the direct sum approach first (Eq. 8), we
concatenate the semantic vectors, ā, and syntac-
tic vectors, b̄, to form a combined vector, v̄, with
indices ranging over both j and k.

v̄i =
{
āj if i = j;
b̄k if i = k.

(15)

Inner products of such vectors will consist of a
sum over the j component products followed by
a sum over the k component products, with some
appropriate weighting. The simplest model having
this structure is an interpolation of the two models
above (Eq. 11 and Eq. 14) with proportions qa and
qb.

p(d|ht) ∝ qap(d)ād · āh + qbp(d)b̄d · d̄ht (16)

In terms of the model form of Eq. 5, this is
equivalent to defining an inner product on the di-
rect sum vectors, v̄d · v̄ht, with weightings λ of
qap(j) and qbp(k) for the two sets of components
respectively.

v̄d · v̄ht =

qa
∑

j

p(j)
p(j|wd)
p(j)

p(j|wh)
p(j)

+

qb
∑

k

p(k)
p(k|d)
p(k)

p(k|h, t)
p(k)

(17)

For the tensor product model (Eq. 9), the in-
dices of the combined vector, ṽ, range over all
combinations of j and k.

ṽjk = ãj b̃k (18)

The components of ṽht are then given by prod-
ucts of terms, which suggests conditional indepen-
dence of j and k on ht.

ṽjk =
p(k|h, t)
p(k)

p(j|h)
p(j)

=
p(j, k|h, t)
p(j)p(k)

(19)

Making a similar assumption of conditional in-
dependence in relation to ṽd is enough to derive a
model for p(d|h, t).

p(d|h, t) =
∑
jk

p(d|j, k)p(j, k|h, t)

∝ p(d)
∑
jk

p(j|d)p(k|d)
p(j, k)

p(j|h)p(k|h, t) (20)

This can be put into the form of Eq. 5 by defin-
ing the inner product ṽd · ṽht as follows:

ṽd · ṽht =
∑
j,k

λjkã
d
j b̃

d
k × ãh

j b̃
ht
k =

∑
j,k

p(j)2p(k)2

p(j, k)

p(j|wd)
p(j)

p(k|d)
p(k)

×
p(j|wh)
p(j)

p(k|h, t)
p(k)

 (21)

Here, the weighting λjk = p(j)2p(k)2

p(j,k) is based on
the assumption that j and k are both conditionally
independent of d and ht.

As described above, the tensor product of a pair
of vectors (Eq. 9) of dimension m and n produces
a vector of dimension n×m. However, these vec-
tors only form a subset of the full n × m dimen-
sional space. Moreover, the form of the model in
both the direct sum and tensor product cases as-
sumes that the semantic relation of head and de-
pendent is independent of the syntactic relation.
That is, we employ the same semantic vectors to
represent head and dependent irrespective of the
tree they occur in. We could begin to address both
these issues by considering representations that lie
in the full n×m dimensional tensor product space.
This would essentially allow us to represent the
dependence of semantic content on syntactic con-
text. However, for now we restrict ourselves to the
models described above.

We calculate the cross-entropy between the
model and the BLLIP bilexical dependencies for
each head-tree context and our objective function
is then an average of these values, weighted by the
occurence of that context. Training maximises this
measure over 200 iterations of the EM algorithm.

4 Evaluation

We evaluate our models in a number of ways. We
assess the quality of the word representations in
terms of two similarity tasks on the semantic vec-
tors, a, and a POS induction task on the syntactic
vectors, b. In addition, both these tasks are ap-
plied to the raw data and to the vectors induced by
the undecomposed models, Eq. 2 and Eq. 11. We
also investigate the ability of our models to dif-
ferentiate semantically and syntactically implausi-
ble adjective-noun constructions. Finally, we list a
sample of nearest neighbours to allow a qualitative
insight into the best performing model.

131

Our semantic similarity tasks are based on the
ratings in two datasets, on both of which we eval-
uate our models using Spearman correlation. The
first is the WordSim353 dataset (Finkelstein et al.,
2002) containing ratings from 16 participants be-
tween pairs of nouns. The second dataset contains
similarity ratings for noun-verb pairs (Mitchell,
2013). The former measures the ability of the
model to capture semantic similarity within a POS
class, while the latter tells about its representa-
tion of similarity across classes. This cross-class
measure is useful in determining how effective the
model has been in separating semantic from syn-
tactic information. A model that bundles both into
a single representation may identify the similarity
in disappear-vanish but will typically fail to make
the same judgement about disappearance-vanish.
Making that judgement requires ignoring the syn-
tactic difference between nouns and verbs, which
we achieve in our models by representing that in-
formation separately.

Our syntactic task is POS induction. We clus-
ter the vocabulary into 45 classes using k-means,
and evaluate in terms of the many-to-one measure
using the PTB POS classes as a gold standard. Al-
though POS class information is already present in
the bilexical dependency data, we use this task as
a means of determining the quality of syntactic in-
formation contained in the vectors, rather than as
an example of a practical application.

We then examine how our models differentiate
semantic and syntactic plausibility. Our seman-
tic plausibility dataset is constructed by combin-
ing a set of food nouns (e.g. milk, meat, bread,
etc.) with either food appropriate adjectives (e.g.
hot, bitter, sweet, etc.) or implausible political
adjectives (e.g. bipartisan, legislative, constitu-
ional, etc.). To create an equivalent syntactic
plausibility dataset we combine common singu-
lar and plural nouns (e.g. year - years, player
- players, etc.) with the modifier several. In
each case, we calculate a semantic plausibility
(ad · ah =

∑
p(j)ad

ja
h
j) and a syntactic plausi-

bility (bd · bht =
∑
p(k)bdkb

ht
k) for the resulting

adjective-noun phrase. Comparing the distribution
of these measures in the high and low plausibility
cases allows us to investigate further the extent to
which the model separates semantic and syntactic
dependencies.

Finally, we evaluate the best performing model
- based on a tensor product of vectors - qualita-

tively by examining the closest neighbours of set
of nouns, adjectives and verbs.

5 Results

Table 1 gives the correlations and many-to-one
measures for the raw data, the simple undecom-
posed model (Eq. 2), the symmetric undecom-
posed model (Eq. 11), the direct sum model (Eq.
8) and the tensor product model (Eq. 9). Look-
ing at the first two rows of the table, to compare
the raw data to the simple model, we can see that
the latter outpeforms the fomer on the POS clus-
tering task, but is worse on the semantic similar-
ity tasks. The improvement in performance on
the clustering task can probably be put down to
the excessive dimensionality (= number of head-
tree contexts) of the input space in the case of
the raw data. Reduction of this space using a la-
tent variable model appears to make the cluster-
ing more effective. On the other hand, achiev-
ing this dimensionality reduction requires preserv-
ing the strongest, typically syntactic, dependen-
cies and discarding weaker, frequently semantic,
dependencies with the result that performance on
semantic similarity tasks degrades. The predicted
noun-verb similarities for both approaches is only
weakly correlated with the human ratings, which
we ascribe to the fact that neither model has a
mechanism for finding the commonalities between
words found in distinct sets of syntactic contexts.

The undecomposed symmetric model, a, pro-
duces a better performance on the semantic tasks,
but is worse on the syntactic task. This is not sur-
prising, as the form of this model ignores the dif-
ference between heads and dependents, essentially
treating the dependencies as a bag-of-words.

Both the direct sum and tensor product models
also contain a similarity based component. How-
ever, only the tensor product model achieves an
improvement in performance over the undecom-
posed models. In fact, this model outperforms
the other models on all three measures, includ-
ing achieving a reasonable level of correlation on
the noun-verb dataset. This difference between the
two decomposed models can be related to the fact
that the form of the tensor product assumes that
a dependent should be semantically and syntacti-
cally appropriate to its head-tree context, while the
direct sum model uses an or condition between the
two parts of the model.

Figures 1 and 2 present the results of exper-

132

Model NV WS353 MTO
raw 0.15 0.37 0.39
v -0.06 0.22 0.73
a 0.24 0.42 0.42

ā⊕ b̄ 0.03 0.17 0.61
ã⊗ b̃ 0.38 0.49 0.74

Table 1: Correlations of model cosines with hu-
man similarity ratings on the noun-verb (NV) and
WordSim353 (WS353) datasets, alongside many-
to-one (MTO) measures of cluster quality on the
POS clustering task, for the raw data (raw), the
simple undecomposed model (v), the symmetric
undecomposed model (a), the direct sum model
(ā⊕ b̄) and the tensor product model (ã⊗ b̃).

iments on how these representations predict the
plausibility of various adjective-noun phrases. In
particular, these boxplots give an insight into the
ability of these models to differentiate semanti-
cally from syntactically implausible constructions.
Each plot contrasts the distribution of a logarithm
of a dot product for high and low plausibility
items. This dot product is either taken of seman-
tic vectors, a, or syntactic vectors, b, providing
a measure of, respectively, semantic and syntactic
plausibility as predicted by the model. The results
for each model are organised into a 2 × 2 array
of plots, with the left hand column relating to the
syntactic task and the right hand column to the se-
mantic task.

Examining the results for the tensor product
model in Figure 1 first, we find that of the syntactic
plots, 1a and 1c, the contrast between high and low
plausibility items is greatest for the ln(b̃ · b̃) mea-
sure. This indicates that these vectors have cap-
tured more of the syntactic information necessary
to identify phrases such as several year as implau-
sible. In contrast, the semantic plots, 1b and 1d,
show the reverse pattern. There, it is the ln(ã · ã)
measure which shows the largest contrast between
high and low plausibility items. Thus, the differ-
ence in plausibility between hot bread and bipar-
tisan bread is more effectively captured in the ã
vectors.

Turning to the results for the direct sum model
in Figure 2, this differentiation between semantic
and syntactic plausibility is no longer as clear, and
the largest contrast between high and low plausi-
bility items is always found in the ln(b̄ · b̄) mea-
sure. Specifically, in the plots for the semantic

Word ã⊗ b̃ ã b̃

black

khaki hispanic female

baggy latino decrepit

cashmere midterm handmade

plaid D.C. antique

lace Merle year-old

political

tribal cultural biomedical

tax-and-spend favoritism mechanical

populist sect sole

cultural dissidents mystical

staunch enlightenment forensic

found

discovered evidence unveiled

examined takers snared

pleaded fossils rejected

revealed researchers knocked

flagged conclusive backfired

help

blame strain permit

reprimand psychological resolve

inflict blisters nudge

relieve suffering laugh

prevent suffers jump-start

company

firm manufacturer think-tank

insurer maker nobody

unit pharmacuetical everybody

corporation conglomerate everyone

consortium subsidiary foreman

game

opener missed speech

finale preseason rotation

rout opener shootout

rematch games balloting

tournament NFC opener

Table 2: Nearest neighbours within the full tensor
product space (ã⊗ b̃) and its semantic (ã) and syn-
tactic (b̃) components for a sample of adjectives,
verbs and nouns.

task, 2b and 2d, the ln(ā · ā) measure does not pro-
duce a convincingly smaller prediction for the low
plausibility items. In other words, the ā vectors
do not contain the semantic information needed to
identify the implausibility of phrases such as bi-
partisan bread or constitutional milk.

Thus, the tensor product space appears to be
most effective in separating semantic and syntac-
tic information and its structure can be understood
more concretely in terms of the sample of nearest
neighbours shown in Table 2. Taking the adjective
black as an example, the first column, ã ⊗ b̃, lists
its nearest neighbours within the full tensor prod-

133

high low

ln
(b~

⋅b~
)

Syntactic

(a)

high low

ln
(b~

⋅b~
)

Semantic

(b)

high low

ln
(a~

⋅a~
)

Syntactic

(c)

high low

ln
(a~

⋅a~
)

Semantic

(d)

Figure 1: Boxplots of plausibility factors for ten-
sor product representations on syntactic and se-
mantic tasks.

uct space, which appear to be other descriptors of
material appearance or structure. In contrast, the
neighbours within the semantic space, ã, listed in
the second column, seem to be words with cultural
or political associations to black, while the syn-
tactic neighbours in the third column, b̃, are other
adjectives drawn from a much wider domain.

6 Conclusions

We have shown that the bilexical dependencies
within a parser capture useful semantic informa-
tion, and also that it is possible to, at least par-
tially, begin to separate out this semantic informa-
tion from the syntactic information. Our experi-
ments with vectors based on ratios of probabilities
suggest that a tensor product approach to decom-
posing the space of representations has advantages
over a direct sum approach. While the latter is
conceptually simpler, being just a concatenation of
the two vectors, the resulting model corresponds
to an assumption that semantic and syntactic de-
pendencies are disjoint, i.e. that the relationship
between head and dependent is either semantic or
syntactic. In contrast, the tensor product approach
leads to a model in which a dependent must be
syntactically and semantically appropriate to the
context of tree and head word, and this seems to
be more effective in practice.

These conclusions apply only to the ratio of

high low

ln
(b

⋅b
)

Syntactic

(a)

high low

ln
(b

⋅b
)

Semantic

(b)

high low

ln
(a

⋅a
)

Syntactic

(c)

high low

ln
(a

⋅a
)

Semantic

(d)

Figure 2: Boxplots of plausibility factors for di-
rect sum representations on syntactic and semantic
tasks.

probabilities type vectors that were investigated
here. Log-linear vectors, as produced by neural
network models, are likely to show substantially
different behaviours. In fact, Mitchell and Steed-
man (2015) have shown that a direct sum approach
can be effective for this type of model. Future
work should investigate tensor product models in
this setting.

Furthermore, there are theoretical reasons to
pursue the tensor product approach further. While
the models considered here are based on combin-
ing separate, independent semantic and syntactic
vectors, the tensor product approach also allows us
to consider the interaction of the two components.
The direct sum approach, on the other hand, is less
expressive.

In addition, implementation of parsers based on
these representations may also be a fertile direc-
tion for future work. Our results suggest the tech-
niques we investigated are effective in construct-
ing semantic representations. We would also like
to know whether capturing that semantic informa-
tion effectively has benefits in modelling the over-
all probability of the whole dependency. However,
our initial investigations suggest the syntactic part
of the dependency needs a more sophisticated ap-
proach.

134

References
Daniel Bikel. 2004a. A distributional analysis of a lex-

icalized statistical parsing mode. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing, pages 182–189.

Daniel M. Bikel. 2004b. On the parameter space
of generative lexicalized statistical parsing models.
Ph.D. thesis, University of Pennsylvania, Philadel-
phia, PA, USA.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022, March.

Jordan L. Boyd-graber and David M. Blei. 2009. Syn-
tactic topic models. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neu-
ral Information Processing Systems 21, pages 185–
192. Curran Associates, Inc.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist., 18(4):467–479, Decem-
ber.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
ACL ’05, pages 173–180, Ann Arbor, Michigan. As-
sociation for Computational Linguistics.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proceedings of the tenth Annual Meeting
of the European Association for Computational Lin-
guistics (EACL), pages 59–66.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537,
November.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing search in context: The
concept revisited. ACM Trans. Inf. Syst., 20(1):116–
131, January.

David Graff. 1995. North american news text corpus.
LDC95T21.

Thomas L. Griffiths, Mark Steyvers, David M. Blei,
and Joshua B. Tenenbaum. 2005. Integrating topics
and syntax. In In Advances in Neural Information
Processing Systems 17, pages 537–544. MIT Press.

Thomas K Landauer and Susan T. Dumais. 1997.
A solution to platos problem: The latent semantic
analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological Review,
104(2):211–240.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, ACL, Volume 2: Short Papers,
pages 302–308, Baltimore, MD, USA.

Dekang Lin. 1998. An information-theoretic def-
inition of similarity. In Proceedings of the Fif-
teenth International Conference on Machine Learn-
ing, ICML ’98, pages 296–304, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Com-
put. Linguist., 19(2):313–330, June.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of the Main Conference on Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, HLT-NAACL ’06, pages 152–159, New
York, New York. Association for Computational
Linguistics.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia, June. Association for Computational Lin-
guistics.

Toben H. Mintz. 2003. Frequent frames as a cue
for grammatical categories in child directed speech.
Cognition., 90(1):91–117.

Jeff Mitchell and Mark Steedman. 2015. Orthogo-
nality of syntax and semantics within distributional
spaces. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1301–1310, Beijing, China, July. Association
for Computational Linguistics.

Jeff Mitchell. 2013. Learning semantic representa-
tions in a bigram language model. In Proceedings
of the 10th International Conference on Computa-
tional Semantics (IWCS 2013) – Short Papers, pages
362–368, Potsdam, Germany, March. Association
for Computational Linguistics.

Sebastian Padó and Mirella Lapata. 2007.
Dependency-based construction of semantic
space models. Comput. Linguist., 33(2):161–199,
June.

Martin Redington, Nick Chater, and Steven Finch.
1998. Distributional information: A powerful cue
for acquiring syntactic categories. Cognitive Sci-
ence, 22(4):425–469.

135

Marek Rei and Ted Briscoe. 2013. Parser lexicali-
sation through self-learning. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 391–400, At-
lanta, Georgia, June. Association for Computational
Linguistics.

John R. Ross. 1972. The category squish: End-
station Hauptwort. In Papers from the Eighth Re-
gional Meeting, pages 316–328, Chicago. Chicago
Linguistic Society.

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning Continuous Phrase
Representations and Syntactic Parsing with Recur-
sive Neural Networks. In Proceedings of the Deep
Learning and Unsupervised Feature Learning Work-
shop of NIPS 2010, pages 1–9.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with composi-
tional vector grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
455–465, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Yuta Tsuboi. 2014. Neural networks leverage corpus-
wide information for part-of-speech tagging. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 938–950, Doha, Qatar, October. Association
for Computational Linguistics.

136

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 137–147,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Learning Semantic Relatedness in Community Question Answering
Using Neural Models

Henry Nassif, Mitra Mohtarami, James Glass
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, USA
{hnassif, mitram, glass}@mit.edu

Abstract

Community Question Answering forums,
such as Quora and Stackoverflow contain
millions of questions and answers. Au-
tomatically finding the relevant questions
from the existing questions and finding
the relevant answers to a new question are
Natural Language Processing tasks. In
this paper, we aim to address these tasks,
which we refer to as similar-Question Re-
trieval and Answer Selection. We present a
neural-based model with stacked bidirec-
tional LSTMs and MLP to address these
tasks. The model generates the vector
representations of the question-question or
question-answer pairs and computes their
semantic similarity scores, which are then
employed to rank and predict relevancies.
Extensive experiments demonstrate our re-
sults outperform the baselines.

1 Introduction

Community Question Answering (cQA) websites
such as Quora1 and Stackoverflow2 are rapidly ex-
panding. Managing such platforms has become
increasingly difficult because of the exponential
growth in content, triggered by wider access to
the internet. Traditionally, websites used to keep
track of a list of frequently asked questions (FAQ)
that they expect visitors to consult before asking
a question. Now, with a wider range of ques-
tions being asked, a need has emerged for a better
and more scalable system to automatically identify
similarities between any two questions on the plat-
form. In addition, with many users contributing to
a single question, it has become harder to identify

1https://www.quora.com/
2http://stackexchange.com/

which answers are more relevant than others. We
summarize these two problems as follows:

• Question Retrieval: given a new question and
a list of questions, we automatically rank the
questions in the list according to their rele-
vancy to the new question.

• Answer Selection: given a cQA thread con-
taining a question and a list of answers, we
automatically rank the answers according to
their relevance to the question.

The increase in the number of community-
based Q&A platforms has lead to a rapid build
up of large archives of user-generated questions
and answers. When a new question is asked on
the platform, the system searches for questions
that are semantically similar in the archives. If a
similar question is found, the corresponding cor-
rect answer is retrieved and returned immediately
to the user as the final answer. The quality of
the answer depends on the effectiveness of the
question-similarity calculation. However, measur-
ing semantic relatedness between questions and
answers is not trivial. Sometimes, similar ques-
tions or relevant answers use very different word-
ing. For instance, the two questions “Is down-
loading movies illegal?” and “Can I share a
copy of a DVD online” have an almost identical
meaning but are lexically very different. Tradi-
tional text-based similarity metrics for measuring
sentence distance such as the Jaccard coefficient
and the overlap coefficient (Manning and Schütze,
1999), perform poorly. In this paper, we present
a neural-based model including stacked Bidirec-
tional Long Short-Term Memory (BLSTM) net-
works and Multi-Layer Perceptron (MLP) to ad-
dress the question retrieval and answer selection
problems. The model computes the representa-
tions of the Q&As and then their semantic simi-

137

larity scores. These scores are subsequently em-
ployed to rank the list of existing questions and
answers with respect to the given question. We
evaluate our model on a public benchmark cQA
data (Nakov et al., 2016), and show that the results
of our model outperform the baselines.

2 Related Work

2.1 Question Retrieval

As explained in Section 1, two questions that are
worded very differently can be similar in mean-
ing. Three types of approaches have been de-
veloped in the literature to solve this word mis-
match problem among similar questions. The first
type of approach uses knowledge databases such
as dictionaries. For example, Frequently Asked
Question (FAQ) Finder (Burke et al., 1997) heuris-
tically combined statistical similarities computed
using conventional vector space models with se-
mantic similarities between questions estimated
using WordNet (Fellbaum, 1998) to rank FAQs.
Song et al. (2007) presented an approach which
is a linear combination of statistic similarity, cal-
culated based on word co-occurrence, and seman-
tic similarity, calculated using WordNet and a bi-
partite mapping. Auto-FAQ (Whitehead, 1995)
applied shallow language understanding into au-
tomatic FAQ answering, where the matching of
a question to FAQs is based on keyword com-
parison enhanced by limited language processing
techniques. However, the quality and structure of
current knowledge databases are, based on the re-
sults of previous experiments, not good enough for
reliable performance.

The second type of approach employed man-
ual rules or templates. These methods are expen-
sive and hard to scale for large size collections.
Sneiders (2002) proposed template based FAQ re-
trieval systems, while Kim and Seo (2006) pro-
posed using user click logs to find similar queries.
Lai et al. (2002) proposed an approach to auto-
matically mine FAQs from the web; However, they
did not study the use of these FAQs after they were
collected. Berger et al. (2000) proposed a statis-
tical lexicon correlation method. These previous
approaches were tested with relatively small sized
collections and are hard to scale because they are
based on specific knowledge databases or hand-
crafted rules.

The third type of approach uses statistical tech-
niques developed in information retrieval and nat-

ural language processing (Berger et al., 2000).
Jeon et al. (2005) presented question retrieval
methods that are based on using the similarity be-
tween answers in the archive to estimate probabil-
ities for a translation-based retrieval model. They
run the IBM model 1 (Brown et al., 1993) to learn
word translation probabilities on a collection of
question pairs. Given a new question, a trans-
lation based information retrieval model exploits
the word relationships to retrieve similar questions
from Q&A archives. They show that with this
model it is possible to find semantically similar
questions with relatively little word overlap.

2.2 Answer Selection

Passage reordering or reranking has always been
an essential step of automatic answer selection
(Radlinski and Joachims, 2005; Jeon et al., 2005;
Shen and Lapata, 2007; Moschitti et al., 2007;
Severyn and Moschitti, 2015a; Moschitti, 2008;
Tymoshenko and Moschitti, 2015; Surdeanu et al.,
2008). Many methods have been proposed, such
as exploring web redundancy information for an-
swer validation (Magnini et al., 2002) and using
non-textual features (Jeon et al., 2006).

Recently, many advanced models have been de-
veloped for automating answer selection based
on syntactic structures (Severyn and Moschitti,
2012; Severyn and Moschitti, 2013; Grundström
and Nugues, 2014) and textual entailment. These
models include quasi-synchronous grammar to
learn syntactic transformations from the question
to the candidate answers (Wang et al., 2007); Con-
tinuous word and phrase vectors to encode seman-
tic similarity (Belinkov et al., 2015); Tree Edit
Distance (TED) to learn tree transformations in
pairs (Heilman and Smith, 2010); probabilistic
model to learn tree-edit operations on dependency
parse trees (Wang and Manning, 2010); and lin-
ear chain CRFs with features derived from TED
to automatically learn associations between ques-
tions and candidate answers (Yao et al., 2013).

In addition to the usual local features that only
look at the question-answer pair, automatic answer
selection algorithms can rely on global thread-
level features, such as the position of the answer in
the thread (Hou et al., 2015), or the context of an
answer in a thread (Nicosia et al., 2015), or depen-
dencies between thread answers using structured
prediction models (Barrón-Cedeno et al., 2015).

Joty et al. (2015) modeled the relations between

138

pairs of answers at any distance in the thread,
which they combine in a graph-cut and in an Inte-
ger Linear Programming (ILP) frameworks. They
then proposed a fully connected pairwise CRFs
(FCCRF) with global normalization and an Ising-
like edge potential.

2.3 Neural Networks
Neural based approaches have wide applications
including speech recognition (Graves and Jaitly,
2014), language modeling (Mikolov et al., 2010;
Mikolov et al., 2011; Sutskever et al., 2011), trans-
lation (Liu et al., 2014; Sutskever et al., 2014;
Auli et al., 2013), and image captioning (Karpa-
thy and Fei-Fei, 2015). In addition, recent work
shows the effectiveness of neural models in an-
swer selection (Severyn and Moschitti, 2015b; Tan
et al., 2015; Feng et al., 2015) and question simi-
larity (dos Santos et al., 2015) in community ques-
tion answering.

Dos Santos et al. (2015) developed CNN and
bag-of-words (BOW) representation models for
the question similarity task. Cosine similarity be-
tween the representations of the input questions
were used to compute the CNN and BOW simi-
larity scores for the question-question pairs. The
convolutional representations in conjunction with
other vectors are then passed to a MLP to compute
the similarity score of the question pair. Further-
more, recent research has shown the effectiveness
of CNNs for answer ranking of short textual con-
tents (Severyn and Moschitti, 2015b).

In this paper, we present a neural model based
on stacked bidirectional LSTMs and MLP to cap-
ture the long dependencies in longer-length ques-
tions and answers.

3 Method

In this paper, we present a neural based model
using stacked bidirectional LSTMs and MLP to
address the question retrieval and answer selec-
tion problems. We first briefly explain recurrent
neural networks (RNNs), Long Short-Term Mem-
ory (LSTM) networks and their bidirectional net-
works. Then, we present the stacked bidirectional
LSTMs for capturing the semantic similarity of
questions and answers in cQA.

Recurrent Neural Networks: A recurrent neu-
ral network (RNN) has the form of a chain of re-
peating modules of neural network. This architec-
ture is pertinent to learning sequences of informa-

tion because it allows information to persist across
states. The output of each loop is utilized as input
to the following loop through hidden states that
capture information about the preceding sequence.

RNNs are trained using backpropagation
through time (BPTT) where the gradient at each
output depends on the current and previous time
steps. The BPTT approach is not effective at
learning long term dependencies because of
the exploding gradients problem (Pascanu et
al., 2012; Bengio et al., 1994). A certain type
of RNN, Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) has been
designed to improve the learning of long-term
dependencies.

Long Short-Term Memory Recurrent Neu-
ral Networks: Similar to Recurrent Neural
Networks, Long Short-Term Memory Networks
(LSTM) (Hochreiter and Schmidhuber, 1997)
have a chain like architecture, with a different
module structure. Instead of having a single neu-
ral network layer, each module has four layers fill-
ing different purposes. Each LSTM unit contains
a memory cell with self-connections, as well as
three multiplicative gates - forget, input, output
- to control information flow. Each gate is com-
posed of a sigmoid neural net layer and a point-
wise multiplication operation.

Given input vector xt, previous hidden outputs
ht−1, and previous cell state ct−1, the LSTM unit
performs the following operations:

ft = σ(Wf .[ht−1, xt] + bf)
it = σ(Wi.[ht−1, xt] + bi)
ct = ft � ct−1 + it � tanh(Wc.[ht−1, xt] + bc)
ot = σ(Wo.[ht−1, xt] + bo)
ht = ot � tanh(ct)

where ft, it, ot and ht respectively represent the
forget gate, input gate, output gate and the hidden
layer.

Many variants of LSTMs were later introduced,
such as depth gated RNNs (Yao et al., 2015),
clockwork RNNS (Koutnik et al., 2014), and
Gated Recurrent Unit RNNs (Cho et al., 2014).

Bidirectional Recurrent Neural Networks:
Bidirectional RNNs (Schuster and Paliwal, 1997)
or BRNN use past and future context sequences
to predict or label each element. This is done
by combining the outputs of two RNN, one

139

Figure 1: Bidirectional Long Short-Term Recurrent Neural
Network. Bidirectional LSTMs are equivalent to two LSTMs
independently updating their parameters by processing the in-
put either in forward or backward direction.

processing the sequence forward (or left to right),
the other one processing the sequence backwards
(from right to left) as shown in Figure 1. This
technique proved to be especially useful when
combined with LSTM (Graves and Schmidhuber,
2005).

3.1 Stacked Bidirectional LSTMs for cQA
Given a question, we aim to rank a list of ques-
tions for question retrieval and a list of answers
for answer selection. To address these ranking
problems, we propose a neural model to com-
pute the semantic similarities for the question-
question (q, q′) or question-answer (q, a) pairs.
These scores are then employed to rank the list of
questions and answers with respect to the given
question q. Figure 2 shows the general architec-
ture of our model. We explain our model by refer-
ring to the pair (q, a), but the same applies to the
pair (q, q′). The question q and answer a contain
the lists of words:

q = {wq
1, w

q
2, w

q
3, ..., w

q
k}

a = {wa
1 , w

a
2 , w

a
3 , ..., w

a
m}

where wq
i and wa

i are the ith word of the q and a
respectively.

First, the q and a are truncated to have similar
length3, and two lists of vectors corresponding to
the words for the question q and a are generated
and randomly initialized:

Vq = {X1, X2, X3, ..., Xn/2}
Va = {Xn/2+1, Xn/2+2, Xn/2+3, ..., Xn}

where Xi with i ∈ [1, n/2] is the vector of wq
i for

the q, Xi with i ∈ [n/2 + 1, n] is the vector of
wa

i−n/2 for the a4.

3We truncate the length of questions and answers to a
maximum of 100 words. The questions and answers with
less than 100 words are padded with zeros.

4n equals to 200

Figure 2: The general architecture of our model including the
stacked Bidirectional LSTMs and MLP. The model is built
on two bidirectional LSTMs whose output can be augmented
with extra features and fed into the multi-layer perceptron.

The word vectors for the q (i.e., Vq) are passed
to the model as shown in Figure 2. The model
computes the representation of the question q af-
ter passing its last word vector to the model. Then
the q representation along with the word vectors of
the answer a (i.e., Va) are passed to the model. The
model generates the representation of the given
pair (q, a) after processing the last word vector
of the answer a affected by the representation of
q. This information processing is performed at
the forward layer of the first bidirectional LSTM
shown in the figure (left to right). Similar process-
ing in the reverse direction (right to left) is further
applied on the given pair at the first bidirectional
LSTM. The output vectors of the hidden layers
for these two directions of the first bidirectional
LSTM are then concatenated and inputted into the
second bidirectional LSTM as shown in the Figure
2.

While the second bidirectional LSTM processes
the input vectors similarly to the first one, its out-
put vectors from two directions are summed5 in-
stead of concatenated. Finally, the resulting vec-

5Using summation instead of concatenation is selected
based on the experimental results on the development set.

140

Embedding initialized, updated
Weights for Two LSTMs not shared
Optimizer Adam
Learning rate 0.001
Dropout rate 0.5
Batch Size 16

Table 1: The hyper-parameters of the stacked bidirectional
LSTM model.

Category Train Dev Test
New Coming Questions 267 50 70
Related Questions 2,669 500 700
– Perfect-Match 235 59 81
– Relevant 848 155 152
– Irrelevant 1,586 286 467
Related Answers 17,900 2,440 7,000
– Good 6651 818 2,767
– Bad 8,139 1,209 3,090
– Potentially-Useful 3,110 413 1,143

Table 2: The statistics for the cQA data (Nakov et al., 2016)
that we employ to evaluate our neural model.

tors can be augmented with the additional features
and passed to the MLP with two hidden layers in
order to compute the semantic similarity score of
the q and a.

4 Results and Discussion

Hyper-parameters: Table 1 shows the hyper-
parameters used in our model. The values for
the hyper-parameters are optimized with respect
to the results on the development set. The word
vectors are randomly initialized and updated dur-
ing the training step as explained in Section 3, and
the weights for the two bidirectional LSTMs of the
model are not shared. We employ Adam (Kingma
and Ba, 2014) as the optimization method and
mean squared error as loss function for our model.
We further use the values 0.001, 0.5 and 16 for
learning rate, dropout rate and batch size respec-
tively.

Dataset: We evaluate our model on the cQA
data (Nakov et al., 2016) in which the questions
and answers have been manually labeled by a
community of annotators in a crowdsourcing plat-
form. Table 2 shows the statistics for the train,
development and test data. The related questions
are labeled as Perfect-Match, Relevant and Irrel-
evant with respect to an original question in the
question retrieval task. The Irrelevant questions
should be ranked lower than the other questions
by the model. In addition, the answers are labeled
as Good, Bad and Potentially-Useful with respect
to a question in the answer selection task. The

Text-based features
– Longest Common Substring
– Longest Common Subsequence
– Greedy String Tiling
– Monge Elkan Second String
– Jaro Second String
– Jaccard coefficient
– Containment similarity
Vector-based features
– Normalized Averaged Word Vectors using word2vec
(Mikolov et al., 2013)
– Most similar sentence pair for a given (q, a) using
sentence vector representation
– Most similar chunk pair for a given (q, a) using
chunk vector representation
Metadata-based features
– User information, like user id

Table 3: Some of the most important text- and vector- based
features employed in the Bag-of-Vectors (BOV) baseline (Be-
linkov et al., 2015).

expected result is that both Good and Potentially-
Useful answers have useful information, while the
Good answers should be ranked higher than both
Potentially-Useful and Bad answers.

Baselines: We compare our neural model with
the BOV, BM25, IR and TF-IDF baselines that are
briefly explained below:

• Bag-of-Vectors (BOV): This baseline em-
ployed various text- and vector- based fea-
tures for the cQA problems (Belinkov et al.,
2015). We highlight some of those features
in Table 3.

• BM25: We use the BM25 similarity mea-
sure trained on the cQA raw data provided
by (Màrquez et al., 2015).

• IR: This is the order of the related questions
provided by the search engine for question re-
trieval task and is the chronological ranking,
in which answers are ordered by their time of
posting, for the answer selection task.

• TF-IDF: This is computed using the cQA raw
data provided by (Màrquez et al., 2015), and
the ranking is defined by the cosine similarity
of the TF-IDF vectors for the questions and
answers.

We evaluate our models using F1-score for a
global assessment of the models in addition to the
following ranking metrics: Mean Average Preci-
sion (MAP), Average Recall (AveRec) and Mean
Reciprocal Rank (MRR). For the MAP, we use the
average of MAP@1 to MAP@10.

141

Method Dev
MAP AveRec MRR F1 R P

BOV 63.18 82.56 69.36 56.84 52.08 62.56
BM25 55.16 73.18 63.33 - - -
IR 53.84 72.78 63.13 - - -
TF-IDF 52.52 72.34 60.20 - - -
Single LSTM - Faug 61.25 81.76 68.57 - - -
Single BLSTM - Faug 62.51 82.35 69.61 51.69 42.91 65.00
Single BLSTM 65.46 85.22 72.78 62.47 63.69 61.29
Double BLSTMs 66.27 85.52 73.33 60.36 59.66 61.08

(a) Results on development data for answer selection.

Method Test
MAP AveRec MRR F1 R P

BOV 75.06 85.76 82.14 59.21 50.56 71.41
BM25 59.57 72.57 67.06 - - -
IR 59.53 72.60 67.83 - - -
TF-IDF 59.65 72.06 66.62 - - -
Single LSTM - Faug 71.55 83.54 79.00 - - -
Single BLSTM - Faug 73.29 84.58 80.82 53.00 42.89 69.34
Single BLSTM 74.03 85.49 82.53 62.91 59.67 66.53
Double BLSTMs 74.98 85.98 83.05 63.53 59.89 67.63

(b) Results on test data for answer selection.

Table 4: Results on (a) development and (b) test data for answer selection task in cQA.

Performance for Answer selection: The results
of the answer selection task on development and
test data are respectively shown in Tables 4a and
4b. In the tables, the first four rows show the
baseline results, and the following rows show the
neural models results. The “Single LSTM - Faug”
row shows the results of the model presented by
Mohtarami et al. (2016) when only one LSTM
is used instead of two bidirectional LSTMs, and
no augmented features Faug are used. The “Sin-
gle BLSTM - Faug” row indicates the results when
one bidirectional LSTM is used in our model, and
no augmented features Faug are used. Using a
BLSTM improves the performance compared to
the single LSTM, as can be seen in Tables 4a and
4b. The “Single BLSTM” row shows the results
for one bidirectional LSTM using Faug. Faug is
a 10-length binary vector that encodes the order
of the answers in their threads corresponding to
their time of posting. Faug helps improve the per-
formance, as can be seen by comparing the re-
sults with the ones obtained using a single BLSTM
without Faug. The “Double BLSTM” row shows
the results generated by the complete model illus-
trated in Figure 2. For the development set rep-
resented in Table 4a, the highest results over all
the evaluation metrics are obtained using the neu-
ral models. The “Double BLSTM” achieves the
highest performance over the ranking metrics. In
addition, the results on the test set shown in Ta-

ble 4b indicate that while the MAPs of the “Dou-
ble BLSTM” and BOV baseline are comparable,
the “Double BLSTM” achieves the highest perfor-
mance over the other metrics, especially F1.

Performance for Question Retrieval: The re-
sults of question retrieval task on development and
test data are respectively shown in Tables 5a and
5b. In the tables, the first four rows show the
baseline results, and the following rows show the
neural models results. The neural models are the
ones described in the previous section. In this task,
we employ the order of the related questions, pro-
vided by the search engine, as augmented features
Faug explained under IR baseline in Section 4. As
shown in the tables, the neural models using Faug

outperform the models without Faug for both de-
velopment and test data. For the development set
shown in Table 5a, the “Double BLSTM” model
achieves the highest performance over the evalua-
tion metrics. For the test set shown in Table 5b, the
result of the “Single BLSTM” model is comparable
with the IR and TF-IDF over the ranking metrics,
while the highest F1 is obtained using BOV base-
line. There are several points to highlight regard-
ing the performance of the neural models com-
pared to the baselines, : First, the size of the data
for this task is small, which makes it harder to train
our neural models. Second, the baselines have ac-
cess to external resources; for example IR had ac-

142

Method Dev
MAP AveRec MRR F1 R P

BOV 64.60 80.83 71.42 59.55 49.53 74.65
BM25 61.31 79.42 69.27 - - -
IR 71.35 86.11 76.67 - - -
TF-IDF 63.40 81.74 70.43 - - -
Single LSTM - Faug 54.49 73.39 62.00 - - -
Single BLSTM - Faug 57.00 74.54 62.85 51.64 51.40 51.89
Single BLSTM 67.40 83.14 75.87 44.94 37.38 56.34
Double BLSTMs 70.75 86.2 76.83 62.83 66.36 59.66

(a) Results on development data for question retrieval.

Method Test
MAP AveRec MRR F1 R P

BOV 66.27 82.40 77.96 56.81 51.93 62.69
BM25 67.27 83.41 79.12 - - -
IR 74.75 88.30 83.79 - - -
TF-IDF 73.95 87.50 84.55 - - -
Single LSTM - Faug 45.24 67.12 52.07 - - -
Single BLSTM - Faug 48.00 70.39 54.18 40.88 48.07 35.56
Single BLSTM 73.20 86.99 83.38 48.15 44.64 52.26
Double BLSTMs 71.98 85.86 81.16 51.27 64.81 42.42

(b) Results on test data for question retrieval.

Table 5: Results on (a) development and (b) test data for question retrieval task in cQA.

cess to the click log of the users and TF-IDF is
trained on a large cQA raw dataset (Màrquez et al.,
2015). Finally, the number of out-of-vocabulary
(OOV) words in the test data is higher than the
development data, and the OOV word vectors are
randomly initialized and do not get updated dur-
ing the training phase. This results in a smaller
improvement on the test data.

4.1 Visualization
In order to gain better intuition on our neural
model, we consider our complete model with two
bidirectional LSTMs as illustrated in Figure 2,
and represent the outputs of the hidden layers for
each bidirectional LSTM. The represented out-
puts correspond to the cosine similarities between
word vector representations of words in question-
question pairs or question-answer pairs. Figure
3 shows the heatmaps for the first bidirectional
LSTM (top) and the second bidirectional LSTM
(bottom) for the question retrieval task with the
following two questions:

• q1: Which is the best Pakistani school for
children in Qatar ? Which is the best Pak-
istani school for children in Qatar ?

• q2: Which Indian school is better for the kids
? I wish to admit my kid to one of the In-
dian schools in Qatar Which is better DPS or
Santhinekethan ? please post your comments

Figure 3: Example of a pair of questions that is correctly
predicted as similar by the first (top) and second (bottom)
bidirectional LSTMs. The dark blue squares represent areas
of high similarity.

The areas of high similarity are highlighted in
the red squares in figure 3. While both bidi-
rectional LSTMs correctly predict that the ques-
tions are similar, the heatmaps show that the sec-
ond bidirectional LSTM performs better than the
first one, and that the areas of similarities (de-
limited by the red rectangles) are much better de-
fined by the second bidirectional LSTM. For ex-

143

Figure 4: Example of a pair of questions that is incorrectly
predicted as similar by the first bidirectional LSTM (top) and
correctly predicted by the the second bidirectional LSTM
(bottom). The dark blue squares represent areas of high sim-
ilarity.

ample, the first bidirectional LSTM identifies sim-
ilarities between the part “for children in qatar ?
Which is the” from the question q1 with the parts
”is better for the kids ?” and “is better DPS or
Santhinekethan ? please post” from the question
q2. The second bidirectional LSTM accurately up-
dates those parts from the question q2 to ”for the
kids ? I wish to admit my” and “Qatar which is
better DPS or Santhinekethan” respectively. This
shows that the second bidirectional LSTM assigns
smaller values to the non-important words (e.g.,
“please post”) while highlighting important words
(e.g., “admit”).

Figure 4 shows the heatmaps for the first bidi-
rectional LSTM (top) and the second bidirectional
LSTM (bottom) for another example of the ques-
tion retrieval task with the following two ques-
tions:

• q3: New car price guide. Can anyone tell me
prices of new German cars in Qatar and deals
available

• q4: Reliable and honest garages in Doha. Can
anyone recommend a reliable garage that is
also low priced ? I have been around the in-
dustrial area but it is hard to know who is reli-
able and who is not. The best way is if I hear
from the experience of the qatarliving mem-

bers . I am looking to do some work on my
land cruiser

As shown in the figure, the areas highlighted in
dark blue in the first bidirectional LSTM are much
larger than the second bidirectional LSTM. These
results show that the first bidirectional LSTM in-
correctly predicts that the questions q3 and q4 are
similar, while the second bidirectional LSTM cor-
rectly predicts that the questions are dissimilar.

5 Conclusion

In this paper, we present a neural-based model
with stacked bidirectional LSTMs to generate the
vector representations of questions and answers,
and predict their semantic similarities. These simi-
larity scores are then employed to rank elements in
a list of questions in the question retrieval task, and
a list of answers in the answer selection task for
a given question. The experimental results show
that our model can perform better than the base-
lines, even though the baselines use various text-
and vector-based features and have access to ex-
ternal resources. We also demonstrate the impact
of the OOV words, and the size of the train data
on the performance of the neural model.

Acknowledgments

This work is supported by the Qatar Computing
Research Institute (QCRI). We thank members of
the MIT Spoken Language Systems (SLS) group
and the reviewers for their helpful comments.

References
Michael Auli, Michel Galley, Chris Quirk, and Ge-

offrey Zweig. 2013. Joint language and transla-
tion modeling with recurrent neural networks. In
EMNLP, volume 3.

Alberto Barrón-Cedeno, Simone Filice, Giovanni
Da San Martino, Shafiq Joty, Lluıs Marquez,
Preslav Nakov, and Alessandro Moschitti. 2015.
Threadlevel information for comment classification
in community question answering. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing,
ACLIJCNLP, volume 15, pages 687–693.

Yonatan Belinkov, Mitra Mohtarami, Scott Cyphers,
and James Glass. 2015. Vectorslu: A continuous
word vector approach to answer selection in com-
munity question answering systems. SemEval-2015,
page 282.

144

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157–166.

Adam Berger, Rich Caruana, David Cohn, Dayne Fre-
itag, and Vibhu Mittal. 2000. Bridging the lexical
chasm: statistical approaches to answer-finding. In
Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 192–199. ACM.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263–311.

Robin D Burke, Kristian J Hammond, Vladimir Ku-
lyukin, Steven L Lytinen, Noriko Tomuro, and Scott
Schoenberg. 1997. Question answering from fre-
quently asked question files: Experiences with the
faq finder system. AI magazine, 18(2):57.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Cicero dos Santos, Luciano Barbosa, Dasha Bog-
danova, and Bianca Zadrozny. 2015. Learning hy-
brid representations to retrieve semantically equiva-
lent questions. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 694–699, Beijing, China, July. Asso-
ciation for Computational Linguistics.

Christiane Fellbaum. 1998. A semantic network
of english verbs. WordNet: An electronic lexical
database, 3:153–178.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep
learning to answer selection: A study and an open
task. CoRR, abs/1508.01585.

Alex Graves and Navdeep Jaitly. 2014. Towards end-
to-end speech recognition with recurrent neural net-
works. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages
1764–1772.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Jakob Grundström and Pierre Nugues. 2014. Using
syntactic features in answer reranking. In AAAI
2014 Workshop on Cognitive Computing for Aug-
mented Human Intelligence, pages 13–19.

Michael Heilman and Noah A Smith. 2010. Tree edit
models for recognizing textual entailments, para-
phrases, and answers to questions. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 1011–1019.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yongshuai Hou, Cong Tan, Xiaolong Wang, Yaoyun
Zhang, Jun Xu, and Qingcai Chen. 2015. Hitszicrc:
Exploiting classification approach for answer selec-
tion in community question answering. In Proceed-
ings of the 9th International Workshop on Semantic
Evaluation, SemEval, volume 15, pages 196–202.

Jiwoon Jeon, W Bruce Croft, and Joon Ho Lee. 2005.
Finding similar questions in large question and an-
swer archives. In Proceedings of the 14th ACM in-
ternational conference on Information and knowl-
edge management, pages 84–90. ACM.

Jiwoon Jeon, W Bruce Croft, Joon Ho Lee, and Soyeon
Park. 2006. A framework to predict the quality of
answers with non-textual features. In Proceedings
of the 29th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 228–235. ACM.

Shafiq Joty, Alberto Barrón-Cedeno, Giovanni
Da San Martino, Simone Filice, Lluıs Marquez,
Alessandro Moschitti, and Preslav Nakov. 2015.
Global thread-level inference for comment clas-
sification in community question answering. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP,
volume 15.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
3128–3137.

Harksoo Kim and Jungyun Seo. 2006. High-
performance faq retrieval using an automatic clus-
tering method of query logs. Information processing
& management, 42(3):650–661.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juer-
gen Schmidhuber. 2014. A clockwork rnn. arXiv
preprint arXiv:1402.3511.

Yu-Sheng Lai, Kuao-Ann Fung, and Chung-Hsien Wu.
2002. Faq mining via list detection. In proceedings
of the 2002 conference on multilingual summariza-
tion and question answering-Volume 19, pages 1–7.
Association for Computational Linguistics.

145

Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. 2014.
A recursive recurrent neural network for statistical
machine translation. In ACL (1), pages 1491–1500.

Bernardo Magnini, Matteo Negri, Roberto Prevete, and
Hristo Tanev. 2002. Is it the right answer?: exploit-
ing web redundancy for answer validation. In Pro-
ceedings of the 40th Annual Meeting on Association
for Computational Linguistics, pages 425–432. As-
sociation for Computational Linguistics.

Christopher D Manning and Hinrich Schütze. 1999.
Foundations of statistical natural language process-
ing, volume 999. MIT Press.

Lluı́s Màrquez, James Glass, Walid Magdy, Alessan-
dro Moschitti, Preslav Nakov, and Bilal Randeree.
2015. SemEval-2015 Task 3: Answer Selection in
Community Question Answering. In Proceedings of
the 9th International Workshop on Semantic Evalu-
ation (SemEval 2015).

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH, volume 2, page 3.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget,
Jan Honza Černockỳ, and Sanjeev Khudanpur.
2011. Extensions of recurrent neural network lan-
guage model. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011 IEEE International Confer-
ence on, pages 5528–5531. IEEE.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Mitra Mohtarami, Yonatan Belinkov, Wei-Ning Hsu,
Yu Zhang, Tao Lei, Kfir Bar, Scott Cyphers, and
James Glass. 2016. Sls at semeval-2016 task 3:
Neural-based approaches for ranking in community
question answering. In Proceedings of NAACL-HLT
Workshop on Semantic Evaluation, pages 753–760,
San Diego, California, June. Association for Com-
putational Linguistics.

Alessandro Moschitti, Silvia Quarteroni, Roberto
Basili, and Suresh Manandhar. 2007. Ex-
ploiting syntactic and shallow semantic kernels
for question answer classification. In Annual
meeting-association for computational linguistics,
volume 45, page 776.

Alessandro Moschitti. 2008. Kernel methods, syn-
tax and semantics for relational text categorization.
In Proceedings of the 17th ACM conference on In-
formation and knowledge management, pages 253–
262. ACM.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2016.

SemEval-2016 task 3: Community question answer-
ing. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval ’16, San
Diego, California, June. Association for Computa-
tional Linguistics.

Massimo Nicosia, Simone Filice, Alberto Barrón-
Cedeno, Iman Saleh, Hamdy Mubarak, Wei Gao,
Preslav Nakov, Giovanni Da San Martino, Alessan-
dro Moschitti, Kareem Darwish, et al. 2015.
Qcri: Answer selection for community question an-
sweringexperiments for arabic and english. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation, SemEval, volume 15, pages 203–
209.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. On the difficulty of training recurrent neural
networks. arXiv preprint arXiv:1211.5063.

Filip Radlinski and Thorsten Joachims. 2005. Query
chains: learning to rank from implicit feedback. In
Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data
mining, pages 239–248. ACM.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. Signal Processing,
IEEE Transactions on, 45(11):2673–2681.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of
answer re-ranking. In Proceedings of the 35th inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 741–
750. ACM.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In EMNLP, pages 458–467.

Aliaksei Severyn and Alessandro Moschitti. 2015a.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
373–382. ACM.

Aliaksei Severyn and Alessandro Moschitti. 2015b.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’15, pages 373–382, New York, NY, USA. ACM.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In EMNLP-
CoNLL, pages 12–21.

Eriks Sneiders. 2002. Automated question answering
using question templates that cover the conceptual
model of the database. In Natural Language Pro-
cessing and Information Systems, pages 235–239.
Springer.

146

Wanpeng Song, Min Feng, Naijie Gu, and Liu Wenyin.
2007. Question similarity calculation for faq an-
swering. In Semantics, Knowledge and Grid, Third
International Conference on, pages 298–301. IEEE.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2008. Learning to rank answers on large
online qa collections. In ACL, volume 8, pages 719–
727.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer
selection. CoRR, abs/1511.04108.

Kateryna Tymoshenko and Alessandro Moschitti.
2015. Assessing the impact of syntactic and seman-
tic structures for answer passages reranking. In Pro-
ceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management,
pages 1451–1460. ACM.

Mengqiu Wang and Christopher D Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In Proceedings of the 23rd International Con-
ference on Computational Linguistics, pages 1164–
1172. Association for Computational Linguistics.

Mengqiu Wang, Noah A Smith, and Teruko Mita-
mura. 2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In EMNLP-CoNLL,
volume 7, pages 22–32.

Steven D Whitehead. 1995. Auto-faq: An experiment
in cyberspace leveraging. Computer Networks and
ISDN Systems, 28(1):137–146.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013. Answer extraction
as sequence tagging with tree edit distance. In HLT-
NAACL, pages 858–867. Citeseer.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova,
Kevin Duh, and Chris Dyer. 2015. Depth-
gated recurrent neural networks. arXiv preprint
arXiv:1508.03790.

147

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 148–157,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Learning Text Similarity with Siamese Recurrent Networks

Paul Neculoiu, Maarten Versteegh and Mihai Rotaru
Textkernel B.V. Amsterdam

{neculoiu,versteegh,rotaru}@textkernel.nl

Abstract

This paper presents a deep architecture for
learning a similarity metric on variable-
length character sequences. The model
combines a stack of character-level bidi-
rectional LSTM’s with a Siamese archi-
tecture. It learns to project variable-
length strings into a fixed-dimensional em-
bedding space by using only informa-
tion about the similarity between pairs of
strings. This model is applied to the task
of job title normalization based on a manu-
ally annotated taxonomy. A small data set
is incrementally expanded and augmented
with new sources of variance. The model
learns a representation that is selective to
differences in the input that reflect seman-
tic differences (e.g., “Java developer” vs.
“HR manager”) but also invariant to non-
semantic string differences (e.g., “Java de-
veloper” vs. “Java programmer”).

1 Introduction

Text representation plays an important role in nat-
ural language processing (NLP). Tasks in this field
rely on representations that can express the seman-
tic similarity and dissimilarity between textual el-
ements, be they viewed as sequences of words or
characters. Such representations and their asso-
ciated similarity metrics have many applications.
For example, word similarity models based on
dense embeddings (Mikolov et al., 2013) have re-
cently been applied in diverse settings, such as
sentiment analysis (dos Santos and Gatti, 2014)
and recommender systems (Barkan and Koenig-
stein, 2016). Semantic textual similarity measures
have been applied to tasks such as automatic sum-
marization (Ponzanelli et al., 2015), debate anal-
ysis (Boltuzic and Šnajder, 2015) and paraphrase
detection (Socher et al., 2011).

Measuring the semantic similarity between
texts is also fundamental problem in Information
Extraction (IE) (Martin and Jurafsky, 2000). An
important step in many applications is normaliza-
tion, which puts pieces of information in a stan-
dard format, so that they can be compared to other
pieces of information. Normalization relies cru-
cially on semantic similarity. An example of nor-
malization is formatting dates and times in a stan-
dard way, so that “12pm”, “noon” and “12.00h” all
map to the same representation. Normalization is
also important for string values. Person names, for
example, may be written in different orderings or
character encodings depending on their country of
origin. A sophisticated search system may need to
understand that the strings “李小龙”, “Lee, Jun-
fan” and “Bruce Lee” all refer to the same person
and so need to be represented in a way that in-
dicates their semantic similarity. Normalization
is essential for retrieving actionable information
from free, unstructured text.

In this paper, we present a system for job title
normalization, a common task in information ex-
traction for recruitment and social network anal-
ysis (Javed et al., 2014; Malherbe et al., 2014).
The task is to receive an input string and map it to
one of a finite set of job codes, which are prede-
fined externally. For example, the string “software
architectural technician Java/J2EE” might need to
be mapped to “Java developer”. This task can be
approached as a highly multi-class classification
problem, but in this study, the approach we take
focuses on learning a representation of the strings
such that synonymous job titles are close together.
This approach has the advantage that it is flexi-
ble, i.e., the representation can function as the in-
put space to a subsequent classifier, but can also
be used to find closely related job titles or explore
job title clusters. In addition, the architecture of
the learning model allows us to learn useful repre-
sentations with limited supervision.

148

2 Related Work

The use of (deep) neural networks for NLP has
recently received much attention, starting from
the seminal papers employing convolutional net-
works on traditional NLP tasks (Collobert et al.,
2011) and the availability of high quality seman-
tic word representations (Mikolov et al., 2013).
In the last few years, neural network models have
been applied to tasks ranging from machine trans-
lation (Zou et al., 2013; Cho et al., 2014) to
question answering (Weston et al., 2015). Cen-
tral to these models, which are usually trained on
large amounts of labeled data, is feature repre-
sentation. Word embedding techniques such as
word2vec (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014) have seen much use in such
models, but some go beyond the word level and
represent text as a sequence of characters (Kim et
al., 2015; Ling et al., 2015). In this paper we take
the latter approach for the flexibility it affords us
in dealing with out-of-vocabulary words.

Representation learning through neural net-
works has received interest since autoencoders
(Hinton and Salakhutdinov, 2006) have been
shown to produce features that satisfy the two
desiderata of representations; that they are invari-
ant to differences in the input that do not matter
for that task and selective to differences that do
(Anselmi et al., 2015).

The Siamese network (Bromley et al., 1993)
is an architecture for non-linear metric learning
with similarity information. The Siamese network
naturally learns representations that embody the
invariance and selectivity desiderata through ex-
plicit information about similarity between pairs
of objects. In contrast, an autoencoder learns in-
variance through added noise and dimensionality
reduction in the bottleneck layer and selectivity
solely through the condition that the input should
be reproduced by the decoding part of the network.
In contrast, a Siamese network learns an invariant
and selective representation directly through the
use of similarity and dissimilarity information.

Originally applied to signature verification
(Bromley et al., 1993), the Siamese architecture
has since been widely used in vision applica-
tions. Siamese convolutional networks were used
to learn complex similarity metrics for face veri-
fication (Chopra et al., 2005) and dimensionality
reduction on image features (Hadsell et al., 2006).
A variant of the Siamese network, the triplet net-

work (Hoffer and Ailon, 2015), was used to learn
an image similarity measure based on ranking data
(Wang et al., 2014).

In other areas, Siamese networks have been ap-
plied to such diverse tasks as unsupervised acous-
tic modelling (Synnaeve et al., 2014; Thiolliere
et al., 2015; Kamper et al., 2016; Zeghidour et
al., 2015), learning food preferences (Yang et al.,
2015) and scene detection (Baraldi et al., 2015). In
NLP applications, Siamese networks with convo-
lutional layers have been applied to matching sen-
tences (Hu et al., 2014). More recently, (Mueller
and Thyagarajan, 2016) applied Siamese recurrent
networks to learning semantic entailment.

The task of job title normalization is often
framed as a classification task (Javed et al., 2014;
Malherbe et al., 2014). Given the large number of
classes (often in the thousands), multi-stage clas-
sifiers have shown good results, especially if in-
formation outside the string can be used (Javed et
al., 2015). There are several disadvantage to this
approach. The first is the expense of data acquisi-
tion for training. With many thousands of groups
of job titles, often not too dissimilar from one an-
other, manually classifying large amounts of job
title data becomes prohibitively expensive. A sec-
ond disadvantage of this approach is its lack of
corrigibility. Once a classification error has been
discovered or a new example has been added to
a class, the only option to improve the system is
to retrain the entire classifier with the new sam-
ple added to the correct class in the training set.
The last disadvantage is that using a traditional
classifier does not allow for transfer learning, i.e.,
reusing the learned model’s representations for a
different task.

A different approach is the use of string similar-
ity measures to classify input strings by proximity
to an element of a class (Spitters et al., 2010). The
advantage of this approach is that there is no need
to train the system, so that improvements can be
made by adding job title strings to the data. The
disadvantages are that data acquisition still needs
to be performed by manually classifying strings
and that the bulk of the problem is now shifted to
constructing a good similarity metric.

By modeling similarity directly based on pairs
of inputs, Siamese networks lend themselves well
to the semantic invariance phenomena present in
job title normalization: typos (e.g. “Java de-
velopeur”), near-synonymy (e.g., “developer” and

149

“programmer”) and extra words (e.g., “experi-
enced Java developer”). This is the approach we
take in this study.

3 Siamese Recurrent Neural Network

Recurrent Neural Networks (RNN) are neural net-
works adapted for sequence data (x1, . . . , xT).
At each time step t ∈ {1, . . . , T}, the hidden-
state vector ht is updated by the equation ht =
σ(Wxt + Uht−1), in which xt is the input at
time t, W is the weight matrix from inputs to the
hidden-state vector and U is the weight matrix on
the hidden-state vector from the previous time step
ht−1. In this equation and below the logistic func-
tion is denoted by σ(x) = (1 + e−x)−1.

The Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) variant of RNNs in particular
has had success in tasks related to natural language
processing, such as text classification (Graves,
2012) and language translation (Sutskever et al.,
2014). Standard RNNs suffer from the vanish-
ing gradient problem in which the backpropagated
gradients become vanishingly small over long se-
quences (Pascanu et al., 2013). The LSTM model
was proposed as a solution to this problem. Like
the standard RNN, the LSTM sequentially updates
a hidden-state representation, but it introduces a
memory state ct and three gates that control the
flow of information through the time steps. An
output gate ot determines how much of ct should
be exposed to the next node. An input gate it con-
trols how much the input xt matters at this time
step. A forget gate ft determines whether the pre-
vious time step’s memory should be forgotten. An
LSTM is parametrized by weight matrices from
the input and the previous state for each of the
gates, in addition to the memory cell. We use the
standard formulation of LSTMs with the logistic
function (σ) on the gates and the hyperbolic tan-
gent (tanh) on the activations. In the equations
(1) below, ◦ denotes the Hadamard (elementwise)
product.

it = σ(Wixt + Uiht−1) (1)

ft = σ(Wfxt + Ufht−1) (2)

ot = σ(Woxt + Uoht−1) (3)

c̃t = tanh(Wcxt + Ucht−1) (4)

ct = it ◦ c̃t + ft ◦ ct−1 (5)

ht = ot ◦ tanh(ct) (6)

Bidirectional RNNs (Schuster and Paliwal,
1997) incorporate both future and past context by
running the reverse of the input through a sep-
arate RNN. The output of the combined model
at each time step is simply the concatenation of
the outputs from the forward and backward net-
works. Bidirectional LSTM models in particular
have recently shown good results on standard NLP
tasks like Named Entity Recognition (Huang et al.,
2015; Wang et al., 2015) and so we adopt this tech-
nique for this study.

Siamese networks (Chopra et al., 2005) are
dual-branch networks with tied weights, i.e., they
consist of the same network copied and merged
with an energy function. Figure 1 shows an
overview of the network architecture in this study.
The training set for a Siamese network consists of
triplets (x1, x2, y), where x1 and x2 are charac-
ter sequences and y ∈ {0, 1} indicates whether x1

and x2 are similar (y = 1) or dissimilar (y = 0).
The aim of training is to minimize the distance
in an embedding space between similar pairs and
maximize the distance between dissimilar pairs.

3.1 Contrastive loss function

The proposed network contains four layers of
Bidirectional LSTM nodes. The activations at
each timestep of the final BLSTM layer are aver-
aged to produce a fixed-dimensional output. This
output is projected through a single densely con-
nected feedforward layer.

Let fW(x1) and fW(x2) be the projections of
x1 and x2 in the embedding space computed by
the network function fW. We define the energy of
the model EW to be the cosine similarity between
the embeddings of x1 and x2:

EW(x1, x2) =
〈fW(x1), fW(x2)〉
‖fW(x1)‖‖fW(x2)‖ (7)

For brevity of notation, we will denote
EW(x1, x2) by EW. The total loss function over a
data set X =

{
〈x(i)

1 , x
(i)
2 , y(i)〉

}
is given by:

LW(X) =
N∑

i=1

L
(i)
W(x(i)

1 , x
(i)
2 , y(i)) (8)

The instance loss function L(i)
W is a contrastive loss

function, composed of terms for the similar (y =

150

Figure 1: Overview of the Siamese Recurrent Network architecture used in this paper. The weights of
all the layers are shared between the right and the left branch of the network.

1) case (L+), and the dissimilar (y = 0) case (L−):

L
(i)
W = y(i)L+(x(i)

1 , x
(i)
2)+ (9)

(1− y(i))L−(x(i)
1 , x

(i)
2) (10)

(11)

The loss functions for the similar and dissimilar
cases are given by:

L+(x1, x2) =
1
4
(1− EW)2 (12)

L−(x1, x2) =

{
E2

W if EW < m

0 otherwise
(13)

Figure 2 gives a geometric perspective on the
loss function, showing the positive and negative
components separately. Note that the positive loss
is scaled down to compensate for the sampling ra-
tios of positive and negative pairs (see below).

The network used in this study contains four
BLSTM layers with 64-dimensional hidden vec-
tors ht and memory ct. There are connections at
each time step between the layers. The outputs
of the last layer are averaged over time and this
128-dimensional vector is used as input to a dense
feedforward layer. The input strings are padded to

Figure 2: Positive and negative components of the
loss function.

produce a sequence of 100 characters, with the in-
put string randomly placed in this sequence. The
parameters of the model are optimized using the
Adam method (Kingma and Ba, 2014) and each
model is trained until convergence. We use the
dropout technique (Srivastava et al., 2014) on the
recurrent units (with probability 0.2) and between
layers (with probability 0.4) to prevent overfitting.

151

4 Experiments

We conduct a set of experiments to test the model’s
capabilities. We start from a small data set based
on a hand made taxonomy of job titles. In each
subsequent experiment the data set is augmented
by adding new sources of variance. We test the
model’s behavior in a set of unit tests, reflecting
desired capabilities of the model, taking our cue
from (Weston et al., 2015). This section discusses
the data augmentation strategies, the composition
of the unit tests, and the results of the experiments.

4.1 Baseline
Below we compare the performance of our model
against a baseline n-gram matcher (Daelemans et
al., 2004). Given an input string, this matcher
looks up the closest neighbor from the base tax-
onomy by maximizing a similarity scoring func-
tion. The matcher subsequently labels the input
string with that neighbor’s group label. The sim-
ilarity scoring function is defined as follows. Let
Q = 〈q1, . . . , qM 〉 be the query as a sequence of
characters and C = 〈c1, . . . , cN 〉 be the candidate
match from the taxonomy. The similarity function
is defined as:

sim(Q,C) = M −match(Q,C)
match(Q,C) = |TQ 	 TC | − |TQ ∩ TC |

where
A	B = (A \B) ∪ (B \A)

TQ =
M−2⋃
i=1

{〈qi, qi+1, qi+2〉}

TC =
N−2⋃
i=1

{〈ci, ci+1, ci+2〉}

This (non-calibrated) similarity function has the
properties that it is easy to compute, doesn’t re-
quire any learning and is particularly insensitive
to appending extra words in the input string, one
of the desiderata listed below.

In the experiments listed below, the test sets
consist of pairs of strings, the first of which is
the input string and the second a target group la-
bel from the base taxonomy. The network model
projects the input string into the embedding space
and searches for its nearest neighbor under co-
sine distance from the base taxonomy. The test

records a hit if and only if the neighbor’s group
label matches the target.

4.2 Data and Data Augmentation

The starting point for our data is a hand made pro-
prietary job title taxonomy. This taxonomy parti-
tions a set of 19,927 job titles into 4,431 groups.
Table 1 gives some examples of the groups in the
taxonomy. The job titles were manually and semi-
automatically collected from résumés and vacancy
postings. Each was manually assigned a group,
such that the job titles in a group are close to-
gether in meaning. In some cases this closeness
is an expression of a (near-)synonymy relation be-
tween the job titles, as in “developer” and “devel-
oper/programmer” in the “Software Engineer” cat-
egory. In other cases a job title in a group is a spe-
cialization of another, for example “general opera-
tor” and “buzz saw operator” in the “Machine Op-
erator” category. In yet other cases two job titles
differ only in their expression of seniority, as in
“developer” and “senior developer” in the “Soft-
ware Engineer” category. In all cases, the relation
between the job titles is one of semantic similar-
ity and not necessarily surface form similarity. So
while, “Java developer” and “J2EE programmer”
are in the same group, “Java developer” and “real
estate developer” should not be.

Note that some groups are close together in
meaning, like the “Production Employee” and
“Machine Operator” groups. Some groups could
conceivably be split into two groups, depending
on the level of granularity that is desired. We
make no claim to completeness or consistency of
these groupings, but instead regard the wide va-
riety of different semantic relations between and
within groups as an asset that should be exploited
by our model.

The groups are not equal in size; the sizes fol-
low a broken power-law distribution. The largest
group contains 130 job titles, the groups at the
other end of the distribution have only one. This
affects the amount of information we can give to
the system with regards to the semantic similar-
ity between job titles in a group. The long tail of
the distribution may impact the model’s ability to
accurately learn to represent the smallest groups.
Figure 3 shows the distribution of the group sizes
of the original taxonomy.

We proceed from the base taxonomy of job titles
in four stages. At each stage we introduce (1) an

152

Customer Service Agent Production Employee Software Engineer Machine Operator Software Tester

support specialist assembler developer operator punch press tester sip
service desk agent manufacturing assistant application programmer machinist test consultant
support staff production engineer software architect buzz saw operator stress tester
customer care agent III factory employee cloud engineer operator turret punch press kit tester
customer service agent casting machine operator lead software engineer blueprint machine operator agile java tester
customer interaction helper production senior developer general operator test engineer
customer care officer production laborer developer/programmer operator nibbler QTP tester

Table 1: Example job title groups from the taxonomy. The total taxonomy consists of 19,927 job titles
in 4,431 groups.

Figure 3: The distributions of group sizes in the
original taxonomy (blue) and the taxonomy aug-
mented with synonym substitutions (green) follow
broken power-law distributions. Note that both
axes are on a logarithmic scale. The figure shows
the long tail of the distribution, in which groups
contain one or only a few job titles.

augmentation of the data which focuses on a par-
ticular property and (2) a test that probes the model
for behavior related to that property. Each stage
builds on the next, so the augmentations from the
previous stage are always included. Initially, the
data set consists of pairs of strings sampled from
the taxonomy in a 4:1 ratio of between-class (neg-
ative) pairs to within-class (positive) pairs. This
ratio was empirically determined but other studies
have found a similar optimal ratio of negative to
positive pairs in Siamese networks (Synnaeve and
Dupoux, 2016). In the subsequent augmentations,
we keep this ratio constant.

1. Typo and spelling invariance. Users of the
system may supply job titles that differ in spelling
from what is present in the taxonomy (e.g., “la-

borer” vs “labourer”) or they may make a typo and
insert, delete or substitute a character. To induce
invariance to these we augment the base taxonomy
by extending it with positive sample pairs consist-
ing of job title strings and the same string but with
20% of characters randomly substituted and 5%
randomly deleted. Of the resulting training set,
10% consists of these typo pairs. The correspond-
ing test set (Typos) consists of all the 19,928 job
title strings in the taxonomy with 5% of their char-
acters randomly substituted or deleted. This corre-
sponds to an approximate upper bound on the pro-
portion of spelling errors (Salthouse, 1986).

2. Synonyms. Furthermore, the model must
be invariant to synonym substitution. To continue
on the example given above, the similarity be-
tween “Java developer” and “Java programmer”
show that in the context of computer science “de-
veloper” and “programmer” are synonyms. This
entails that, given the same context, “developer”
can be substituted for “programmer” in any string
in which it occurs without altering the meaning of
that string. So “C++ developer” can be changed
into “C++ programmer” and still refer to the same
job. Together with the selectivity constraint, the
invariance to synonym substitution constitutes a
form of compositionality on the component parts
of job titles. A model with this compositionality
property will be able to generalize over the mean-
ings of parts of job titles to form useful represen-
tations of unobserved inputs. We augment the data
set by substituting words in job titles by synonyms
from two sources. The first source is a manually
constructed job title synonym set, consisting of
around 1100 job titles, each with between one and
ten synonyms for a total of 7000 synonyms. The
second source of synonyms is by induction. As
in the example above, we look through the taxon-
omy for groups in which two job titles share one
or two words, e.g., “C++”. The complements of
the matching strings form a synonym candidate,
e.g., “developer” and “programmer”. If the can-

153

didate meets certain requirements (neither part oc-
curs in isolation, the parts do not contain special
characters like ‘&’, the parts consist of at most
two words), then the candidate is accepted as a
synonym and is substituted throughout the group.
The effect of this augmentation on the group sizes
is shown in figure 3. The corresponding test set
(Composition) consists of a held out set of 7909
pairs constructed in the same way.

3. Extra words. To be useful in real-world
applications, the model must also be invariant to
the presence of superfluous words. Due to pars-
ing errors or user mistakes the input to the nor-
malization system may contain strings like “look-
ing for C++ developers (urgent!)”, or references
to technologies, certifications or locations that are
not present in the taxonomy. Table 2 shows some
examples of real input. We augment the data set
by extracting examples of superfluous words from
real world data. We construct a set by selecting
those input strings for which there is a job title
in the base taxonomy which is the complete and
strict substring of the input and which the base-
line n-gram matcher selects as the normalization.
As an example, in table 2, the input string “public
relations consultant business business b2c” con-
tains the taxonomy job title “public relations con-
sultant”. Part of this set (N = 1949) is held out
from training and forms the corresponding test set
(Extra Words).

Input string

supervisor dedicated services share plans
part II architectural assistant or architect at
geography teacher 0.4 contract now
customer relationship management developer super user â
forgot password
public relations consultant business business b2c
teaching assistant degree holders only contract

Table 2: Example input strings to the system.

4. Feedback. Lastly, and importantly for indus-
trial applications, we would like our model to be
corrigible, i.e., when the model displays undesired
behavior or our knowledge about the domain in-
creases, we want the model to facilitate manual in-
tervention. As an example, if the trained model as-
signs a high similarity score to the string “Java de-
veloper” and “Coffee expert (Java, Yemen)” based
on the corresponding substrings, we would like to
be able to signal to the model that these particular
instances do not belong together. To test this be-
havior, we manually scored a set of 11929 predic-

tions. This set was subsequently used for training.
The corresponding test set (Annotations) consists
of a different set of 1000 manually annotated held-
out input strings.

4.3 Results

Table 3 shows the results of the experiments. It
compares the baseline n-gram system and pro-
posed neural network models on the four tests out-
lined above. Each of the neural network models
(1)-(4) was trained on augmentations of the data
set that the previous model was trained on.

The first thing to note is that both the n-gram
matching system and the proposed models have
near-complete invariance to simple typos. This is
of course expected behavior, but this test functions
as a good sanity check on the surface form map-
ping to the representations that the models learn.

In the performance of all tests except for the An-
notations test, we see a strong effect of the asso-
ciated augmentation. Model (1) shows 0.04 im-
provement over model (0) on the typo test. This
indicates that the proposed architecture is suitable
for learning invariance to typos, but that the addi-
tion of typos and spelling variants to the training
input only produces marginal improvements over
the already high accuracy on this test.

Model (2) shows 0.29 improvement over model
(1) on the Composition test. This indicates that
model (2) has successfully learned to combine the
meanings of individual words in the job titles into
new meanings. This is an important property for
a system that aims to learn semantic similarity be-
tween text data. Compositionality is arguably the
most important property of human language and it
is a defining characteristic of the way we construct
compound terms such as job titles. Note also that
the model learned this behavior based largely on
observations of combinations of words, while hav-
ing little evidence on the individual meanings.

Model (3) shows 0.45 improvement over model
(2) on the Extra Words test, jumping from 0.29 ac-
curacy to 0.76. This indicates firstly that the pro-
posed model can successfully learn to ignore large
portions of the input sequence and secondly that
the evidence of extra words around the job title is
crucial for the system to do so. Being able to ig-
nore subsequences of an input sequence is an im-
portant ability for information extraction systems.

The improvements on the Annotations test is
also greatest when the extra words are added to the

154

Typos Composition Extra Words Annotations
(N = 19928) (N = 7909) (N = 1949) (N = 1000)

n-gram 0.99 0.61 1.00* 0.83

(0) RNN base taxonomy 0.95 0.55 0.40 0.69
(1) + typos 0.99 0.54 0.36 0.77
(2) + synonyms 1.00 0.83 0.29 0.76
(3) + extra words 1.00 0.84 0.76 0.87
(4) + feedback 1.00 0.79 0.82 0.84

Table 3: Accuracy of the baseline and models on each of the four test cases. The best performing neural
network in each column is indicated in bold. Note that the performance of the n-gram match system (*)
on the Extra Words test is 1.00 by construction.

training set. Model (4) actually shows a decrease
in performance with respect to model (3) on this
test. The cause for this is likely the fact that the
Extra Words test and the held out Annotations tests
show a lot of similarity in the structure of their in-
puts. Real production inputs often consist of ad-
ditional characters, words and phrases before or
after the actual job title. It is unclear why model
(4) shows an improvement on the Extra Words
test while simultaneously showing a decrease in
performance on the Composition and Annotations
tests. This matter is left to future investigation.

5 Discussion

In this paper, we presented a model architec-
ture for learning text similarity based on Siamese
recurrent neural networks. With this architec-
ture, we learned a series of embedding spaces,
each based on a specific augmentation of the
data set used to train the model. The experi-
ments demonstrated that these embedding spaces
captured important invariances of the input; the
models showed themselves invariant to spelling
variation, synonym replacements and superfluous
words. The proposed architecture made no as-
sumptions on the input distribution and naturally
scales to a large number of classes.

The ability of the system to learn these in-
variances stems from the contrastive loss function
combined with the stack of recurrent layers. Using
separate loss functions for similar and dissimilar
samples helps the model maintain selectivity while
learning invariance over different sources of vari-
ability. The experiment shows that the explicit use
of prior knowledge to add these sources of invari-
ance to the system was crucial in learning. With-
out this knowledge extra words and synonyms will

negatively affect the performance of the system.
We would like to explore several directions in

future work. The possibility space around the
proposed network architecture could be explored
more fully, for example by incorporating convolu-
tional layers in addition to the recurrent layers, or
by investigating a triplet loss function instead of
the contrastive loss used in this study.

The application used here is a good use case for
the proposed system, but in future work we would
also like to explore the behavior of the Siamese
recurrent network on standard textual similarity
and semantic entailment data sets. In addition, the
baseline used in this paper is relatively weak. A
comparison to a stronger baseline would serve the
further development of the proposed models.

Currently negative samples are selected ran-
domly from the data set. Given the similarity be-
tween some groups and the large differences in
group sizes, a more advanced selection strategy is
likely to yield good results. For example, nega-
tive samples could be chosen such that they always
emphasize minimal distances between groups. In
addition, new sources of variation as well as the
sampling ratios between them can be explored.

Systems like the job title taxonomy used in the
current study often exhibit a hierarchical structure
that we did not exploit or attempt to model in the
current study. Future research could attempt to
learn a single embedding which would preserve
the separations between groups at different lev-
els in the hierarchy. This would enable sophisti-
cated transfer learning based on a rich embedding
space that can represent multiple levels of similar-
ities and contrasts simultaneously.

155

References
Fabio Anselmi, Lorenzo Rosasco, and Tomaso Poggio.

2015. On invariance and selectivity in representa-
tion learning. arXiv preprint arXiv:1503.05938.

Lorenzo Baraldi, Costantino Grana, and Rita Cuc-
chiara. 2015. A deep siamese network for scene
detection in broadcast videos. In Proceedings of the
23rd Annual ACM Conference on Multimedia Con-
ference, pages 1199–1202. ACM.

Oren Barkan and Noam Koenigstein. 2016. Item2vec:
Neural item embedding for collaborative filtering.
arXiv preprint arXiv:1603.04259.

Filip Boltuzic and Jan Šnajder. 2015. Identifying
prominent arguments in online debates using seman-
tic textual similarity. In Proceedings of the 2nd
Workshop on Argumentation Mining, pages 110–
115.

Jane Bromley, James W Bentz, Léon Bottou, Is-
abelle Guyon, Yann LeCun, Cliff Moore, Eduard
Säckinger, and Roopak Shah. 1993. Signature ver-
ification using a “siamese” time delay neural net-
work. International Journal of Pattern Recognition
and Artificial Intelligence, 7(04):669–688.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
539–546. IEEE.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot,
and Antal van den Bosch. 2004. Timbl: Tilburg
memory-based learner. Tilburg University.

Cı́cero Nogueira dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In COLING, pages 69–78.

Alex Graves. 2012. Supervised sequence labelling.
Springer.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In Computer vision and pattern recog-
nition, 2006 IEEE computer society conference on,
volume 2, pages 1735–1742. IEEE.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning
using triplet network. In Similarity-Based Pattern
Recognition, pages 84–92. Springer.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.
In Advances in Neural Information Processing Sys-
tems, pages 2042–2050.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Faizan Javed, Matt McNair, Ferosh Jacob, and Meng
Zhao. 2014. Towards a job title classification sys-
tem. In WSCBD 2014: Webscale Classification:
Classifying Big Data from the Web, WSDM Work-
shop.

Faizan Javed, Qinlong Luo, Matt McNair, Ferosh Ja-
cob, Meng Zhao, and Tae Seung Kang. 2015.
Carotene: A job title classification system for the
online recruitment domain. In Big Data Computing
Service and Applications (BigDataService), 2015
IEEE First International Conference on, pages 286–
293. IEEE.

H. Kamper, W. Wang, and K. Livescu. 2016.
Deep convolutional acoustic word embeddings us-
ing word-pair side information. In Proceedings
ICASSP.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural lan-
guage models. arXiv preprint arXiv:1508.06615.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding function
in form: Compositional character models for open
vocabulary word representation. arXiv preprint
arXiv:1508.02096.

Emmanuel Malherbe, Mamadou Diaby, Mario Cataldi,
Emmanuel Viennet, and Marie-Aude Aufaure.
2014. Field selection for job categorization and
recommendation to social network users. In Ad-
vances in Social Networks Analysis and Mining
(ASONAM), 2014 IEEE/ACM International Confer-
ence on, pages 588–595. IEEE.

James H. Martin and Daniel Jurafsky. 2000. Speech
and language processing. International Edition.

156

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In Thirtieth AAAI Conference on Artificial Intel-
ligence.

R. Pascanu, T. Mikolov, and Y. Bengio. 2013. On
the difficulty of training recurrent neural networks.
Journal of Machine Learning Research.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, volume 14, pages
1532–1543.

Luca Ponzanelli, Andrea Mocci, and Michele Lanza.
2015. Summarizing complex development artifacts
by mining heterogeneous data. In Proceedings of
the 12th Working Conference on Mining Software
Repositories, pages 401–405. IEEE Press.

Timothy A. Salthouse. 1986. Perceptual, cognitive,
and motoric aspects of transcription typing. Psycho-
logical bulletin, 99(3):303.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. Signal Processing,
IEEE Transactions on, 45(11):2673–2681.

Richard Socher, Eric H. Huang, Jeffrey Pennin,
Christopher D Manning, and Andrew Y. Ng. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in
Neural Information Processing Systems, pages 801–
809.

Martijn Spitters, Remko Bonnema, Mihai Rotaru, and
Jakub Zavrel. 2010. Bootstrapping information ex-
traction mappings by similarity-based reuse of tax-
onomies. In CEUR Workshop Proceedings, volume
673. Citeseer.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Gabriel Synnaeve and Emmanuel Dupoux. 2016. A
temporal coherence loss function for learning unsu-
pervised acoustic embeddings. Procedia Computer
Science, 81:95–100.

Gabriel Synnaeve, Thomas Schatz, and Emmanuel
Dupoux. 2014. Phonetics embedding learning with
side information. In Spoken Language Technology
Workshop (SLT), 2014 IEEE, pages 106–111. IEEE.

Roland Thiolliere, Ewan Dunbar, Gabriel Synnaeve,
Maarten Versteegh, and Emmanuel Dupoux. 2015.
A hybrid dynamic time warping-deep neural net-
work architecture for unsupervised acoustic model-
ing. In Proc. Interspeech.

Jiang Wang, Yang Song, Thomas Leung, Chuck Rosen-
berg, Jingbin Wang, James Philbin, Bo Chen, and
Ying Wu. 2014. Learning fine-grained image simi-
larity with deep ranking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 1386–1393.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and
Hai Zhao. 2015. A unified tagging solution: Bidi-
rectional lstm recurrent neural network with word
embedding. arXiv preprint arXiv:1511.00215.

Jason Weston, Antoninipe Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Longqi Yang, Yin Cui, Fan Zhang, John P Pollak,
Serge Belongie, and Deborah Estrin. 2015. Plate-
click: Bootstrapping food preferences through an
adaptive visual interface. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management, pages 183–192.
ACM.

Neil Zeghidour, Gabriel Synnaeve, Maarten Versteegh,
and Emmanuel Dupoux. 2015. A deep scattering
spectrum - deep siamese network pipeline for unsu-
pervised acoustic modeling. In IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing.

Will Y Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
EMNLP, pages 1393–1398.

157

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 158–165,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

A Two-stage Approach for Extending Event Detection to New Types via
Neural Networks

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho and Ralph Grishman
Computer Science Department, New York University, New York, NY 10003, USA

thien@cs.nyu.edu lisheng@cs.nyu.edu
kyunghyun.cho@nyu.edu grishman@cs.nyu.edu

Abstract

We study the event detection problem in
the new type extension setting. In particu-
lar, our task involves identifying the event
instances of a target type that is only speci-
fied by a small set of seed instances in text.
We want to exploit the large amount of
training data available for the other event
types to improve the performance of this
task. We compare the convolutional neu-
ral network model and the feature-based
method in this type extension setting to in-
vestigate their effectiveness. In addition,
we propose a two-stage training algorithm
for neural networks that effectively trans-
fers knowledge from the other event types
to the target type. The experimental results
show that the proposed algorithm outper-
forms strong baselines for this task.

1 Introduction

Event detection (ED) is an important task of infor-
mation extraction that seeks to locate instances of
events with some types in text. Each event men-
tion is associated with a phrase, the event trigger1,
which evokes that event. Our task, more precisely
stated, involves identifying event triggers of some
types of interest. For instance, in the sentence “A
cameramen was shot in Texas today”, an ED sys-
tem should be able to recognize the word “shot”
as a trigger for the event “Attack”. ED is a crucial
component in the overall task of event extraction,
which also involves event argument discovery.

There have been two major approaches to ED
in the literature. The first approach extensively
leverages linguistic analysis and knowledge re-
sources to capture the discrete structures for ED,
focusing on the combination of various properties

1most often a single verb or nominalization

such as lexicon, syntax, and gazetteers. This is
called the feature-based approach that has domi-
nated the ED research in the last decade (Ji and
Grishman, 2008; Gupta and Ji, 2009; Liao and Gr-
ishman, 2011; McClosky et al., 2011; Riedel and
McCallum, 2011; Li et al., 2013; Venugopal et al.,
2014). The second approach, on the other hand,
is proposed very recently and uses convolutional
neural networks (CNN) to exploit the continuous
representations of words. These continuous repre-
sentations have been shown to effectively capture
the underlying structures of a sentence, thereby
significantly improving the performance for ED
(Nguyen and Grishman, 2015; Chen et al., 2015).

The previous research has mainly focused on
building an ED system in a supervised setting. The
performance of such systems strongly depends on
a sufficient amount of labeled instances for each
event type in the training data. Unfortunately,
this setting does not reflect the real world situa-
tion very well. In practice, we often have a large
amount of training data for some old event types
but are interested in extracting instances of a new
event type. The new event type is only specified by
a small set of seed instances provided by clients
(the event type extension setting). How can we
effectively leverage the training data of old event
types to facilitate the extraction of the new event
type?

Inspired by the work on transfer learning and
domain adaptation (Blitzer et al., 2006; Jiang and
Zhai, 2007; Daume III, 2007; Jiang, 2009), in this
paper, we systematically evaluate the representa-
tive methods (i.e, the feature based model and the
CNN model) for ED to gain an insight into which
kind of method performs better in the new exten-
sion setting. In addition, we propose a two-stage
algorithm to train a CNN model that effectively
learns and transfers the knowledge from the old
event types for the extraction of the target type.

158

The experimental results show that this two-stage
algorithm significantly outperforms the traditional
methods in the type extension setting for ED and
demonstrates the benefit of CNN in transfer learn-
ing. To our knowledge, this is the first work on the
type extension setting as well as on transferring
knowledge with neural networks for ED of natural
language processing.

2 Task Definition

The event type extension setting in this work is as
follow. We are given a document set D annotated
for a large set DA of trigger words (positive in-
stances) of some event types (the auxiliary types,
denoted by A). However, we are interested in ex-
tracting trigger words of a new event type T (the
target type, T /∈ A) that is only specified by a
small annotated set DT of positive instances (the
seeds) in D. Note that while DA involves all the
positive instances of the auxiliary types, DT might
only be partial and not necessarily include all the
trigger words of type T in D.

Also, we call DN the set of the negative in-
stances generated from D under this setting (to be
discussed in more details later). In general, DN

might contains unannotated trigger words of T
(false negatives), making this task more challeng-
ing. Eventually, our goal is to learn an event de-
tector for T , leveraging the training data DT , DA

and DN for both the target and auxiliary types.
Note that our work is related to Jiang (2009) who
studies the relation type extension problem.

3 Models for Event Detection

In this section, we first present the representative
approaches for ED. The two-stage algorithm will
be discussed in the next section.

We treat the event detection problem for the tar-
get type T as a binary classification problem. For
every token in a given sentence, we want to predict
if the current token is an event trigger of type T or
not? The current token along with its context in
the sentence constitute an event trigger candidate
or an example in the binary classification terms.

3.1 The Feature-based Model

In the feature-based model (denoted by FET), the
event trigger candidates are first transformed into
rich feature vectors to encapsulate linguistically
useful properties for ED. These vectors are then
fed into a statistical classifier such as maximum

entropy (MaxEnt) and classified as the type T or
not. In this work, we employ the feature set for ED
from (Li et al., 2013), which is the state-of-the-art
FET.

3.2 The Convolutional Neural Networks

In a CNN for ED, we limit the context of the
trigger candidates to a fixed window size by
trimming longer sentences and padding shorter
sentences with a special token when neces-
sary. Let 2w + 1 be the fixed window size,
and x = [x−w, x−w+1, . . . , x0, . . . , xw−1, xw] be
some trigger candidate where the current token
is positioned in the middle of the window (token
x0). Before entering CNN, each token xi is trans-
formed into a real-valued vector xi by concatenat-
ing the continuous look-up vectors from the fol-
lowing tables:

1. Word Embedding Table E (Turian et al.,
2010; Mikolov et al., 2013a; Mikolov et al.,
2013b).

2. Position Embedding Table: to embed the
relative distance i of xi to the current token x0.

3. Entity Type Embedding Table: to capture
the entity type information for each token. Follow-
ing Nguyen and Grishman (2015), we assign the
entity type labels to each token using the heads of
the entity mentions in x with the BIO schema.

As a result, the original event trigger can-
didate x is transformed into a matrix x =
[x−w,x−w+1, . . . ,x0, . . . ,xw−1,xw]. This ma-
trix will serve as the input for CNN.

For CNN, the matrix x is first passed through a
convolution layer and then a max pooling layer to
compute the global representation vector RC for
the trigger candidate x (Nguyen and Grishman,
2015). In addition, we obtain the local represen-
tation vector RL by concatenating the embedding
vectors of the words in a window size 2d + 1 of
x0, motivated by the models in Chen et al. (2015):

RL = [E[x−d], . . . , E[x0], . . . , E[xd]]

Finally, the concatenation of the global and lo-
cal vectors RC and RL is used as the input for a
feed-forward neural network with a softmax layer
in the end to perform trigger identification for T .
Note that our CNN model is similar to (Nguyen
and Grishman, 2015) and applies multiple window
sizes for the feature maps in the convolution layer.

159

4 Event Type Extension Systems

4.1 The Baseline Systems
For each of the two models presented above (i.e,
FET and CNN), we have two baseline mechanisms
to train an event detector for T (Jiang, 2009). In
the first baseline (denoted by TARGET), we use
the small instance set DT of the target type T to-
gether with the negative instances in DN to train
a binary classifier for T . In the second baseline
(denoted by UNION), we combine the positive in-
stances in both DT and DA as well as the negative
instances in DN to train a binary classifier for T .

Eventually, we have 4 baseline systems corre-
sponding to the two choices of models (i.e, FET,
CNN) and the two choices of the training mecha-
nisms (i.e, TARGET, UNION). We denote these
four baselines by: FET-TARGET, FET-UNION,
CNN-TARGET, and CNN-UNION.

4.2 Hypothesis About the Baselines
The underlying assumption of transfer learning for
type extension is the existence of the general fea-
tures that are effective for prediction across dif-
ferent types (Jiang, 2009). The performance of
a model for a given target type, thus, depends on
two factors: (i) how well the model identifies and
quantifies general features, and (ii) how effectively
the model transfers the knowledge about the gen-
eral features and adapt it to the target type.

Hypothesis: the UNION training mechanism is
more effective than TARGET when the number
of seed instances of the target type is small. The
reason originates from the inclusion of the train-
ing data DA of the auxiliary types in UNION that
would provide more evidences to estimate the im-
portance of the general features better (factor (i)).

4.3 The Two-stage Algorithm
Although UNION can help to learn the general
features, its major limitation lies in the lack of the
directing mechanisms to make the model specific
to the target type (factor (ii)). Essentially, UNION
treats the positive instances of the target and aux-
iliary types similarly, making it more about a gen-
eral purpose event detector rather than a specific
detector for the target type. Therefore, we propose
to consider the positive instances of the target DT

and the auxiliary types DA in two separate stages.
In the first stage, a large amount of the training

data DA of the auxiliary types are used by a CNN
to learn the general feature extractors across event

types. In the second stage, the seed instances of
the target type in DT are used to adapt the models
to the target type. In order to transfer the knowl-
edge from the auxiliary types to the target type
between these two stages, we propose to utilize
a CNN that facilitates the transferring process via
the weight initialization. The two-stage algorithm
(CNN-2-STAGE) is presented below.

Algorithm 1: CNN-2-STAGE
Input : DT , DA and DN

Output: An event detector for T
1 Stage I: Train a CNN model on DA ∪ DN with

randomly initialized weight matrices and embedding.
2 Let P be the set of weight matrices and embedding

tables after the training process of CNN in stage I.
3 Stage II: Train a CNN on DT ∪ DN with the weight

matrices and embedding tables initialized by the
corresponding elements in P .

4 Return the CNN model trained in Stage II

Note that similar to stage I of the algorithm and
previous work on neural networks (Nguyen and
Grishman, 2015; Chen et al., 2015), the weight
matrices and embedding tables are also initialized
randomly in the training mechanisms UNION and
TARGET. The only exception is the word embed-
ding table that is pre-trained on a large corpus for
UNION, TARGET as well as the stage I.

All the weight matrices and embedding tables
are optimized during training (for UNION, TAR-
GET as well as CNN-2-STAGE) to achieve the op-
timal state. This is especially important in Stage II
of CNN-2-STAGE as it helps to adapt the general
feature extractors in Stage I to the target type T .

5 Training

Following Nguyen and Grishman (2015), we train
the NN models using stochastic gradient descent
with shuffled mini-batches, the AdaDelta update
rule, back-propagation and dropout. Finally, we
rescale the weights whose l2-norms exceed a pre-
defined threshold.

6 Experiments

6.1 Parameters and Resources
For all the experiments below, we utilize the pre-
trained word embeddings word2vec (300 di-
mensions) from Mikolov et al. (2013a) to initial-
ize the word embedding table. The parameters
for CNN and training the network are inherited
from the previous studies, i.e, the fixed window
size w = 15, the window size set for feature maps

160

= {2, 3, 4, 5}, 150 feature maps for each window
size, 50 dimensions for all the embedding tables
(except the word embedding table), the dropout
rate = 0.5, the mini-batch size = 50, the hyper-
parameter for the l2 norms = 3 and the window for
local context d = 5 (Nguyen and Grishman, 2015;
Chen et al., 2015).

6.2 Dataset and Settings
Following the previous work (Li et al., 2013; Chen
et al., 2015; Nguyen and Grishman, 2015), we
consider the ED task of the 2005 Automatic Con-
text Extraction (ACE) evaluation that annotates 8
event types and 33 event subtypes 2. As the num-
bers of event mentions (triggers) for each subtype
in ACE are small, in this work, we focus on the
extraction of the event types: “Life”, “Movement”,
“Transaction”, “Business”, “Conflict”, “Contact”,
“Personell”, and “Justice”. We remove the event
triggers of types “Transaction” and “Business”
due to their small numbers of occurrences, result-
ing in the dataset with six remaining event types
(denoted from 1 to 6).

In the experiments, we use the same data split in
Li et al. (2013) with 40 newswire documents as a
test set, 30 other documents as a development set
and the 529 remaining documents as a training set.
Note that the training documents correspond to our
original dataset D above. Let Pi be the positive
instance set of the type i in D (i = 1 to 6).

We take each event type i as the target type T
and treat the other 5 types as the auxiliary types,
constituting 6 sets of experiments. In each set of
experiments for a target type i (T), we randomly
select S positive instances of T for the seed set
DT (S = |DT |) and treat the remaining target in-
stances Pi \DT as negative. Note that this essen-
tially introduces false negatives into the training
data and makes the task more challenging.

In order to deal with false negatives, we remove
all the sentences that do not contain any events in
the original dataset D. In this way, we remove a
large number of true negatives along with a frac-
tion of the false negatives, leading to the reduced
dataset D′. We do the experiments on D′ with:

DA =
6⋃

j=1(j 6=i)

Pj

DN = D′ \DT \DA

2
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/

english-events-guidelines-v5.4.3.pdf

0 20 40 60 80 100 120 140
0

30

50

|DT |

A
ve

F-
m

ea
su

re

FET-TARGET
FET-UNION
JIANG
CNN-TARGET
CNN-UNION
CNN-2-STAGE

Figure 1: Average F measures vs |DT |.

We note that (Jiang, 2009) uses a different set-
ting in training where she removes all the remain-
ing target instances Pi \DT directly. In our opin-
ion, this is unrealistic as it assumes the label of the
instances in Pi \ DT while we are only provided
with the label of the seed set DT in practice.

Finally, similar to (Jiang, 2009), we remove the
positive instances of the auxiliary event types from
the test set to concentrate on the classification ac-
curacy for the target type. We also remove all the
positive instances of the target type in the develop-
ment set to make it more realistic.

6.3 Evaluation

This section compares the four baseline models
in Section 4.1 with the proposed two-stage model
CNN-2-STAGE. For completeness, we also eval-
uate the transfer learning model in Jiang (2009),
adapted to the event type extension task (called
JIANG). For JIANG, we apply the automatic fea-
ture separation method as the general syntactic
patterns and type constraints for relation in Jiang
(2009) are not applicable to our ED task.

For each described model, we perform six sets
of experiments in Section 6.2, where the number
of seed instances |DT | is varied from 0 to 150. We
then report the average F-scores of the six experi-
ment sets for each value of S. Figure 1 shows the
curves.

Assuming the same kind of model (i.e, either
FET or CNN), we see that UNION is better than
TARGET when |DT | is small, confirming our hy-
pothesis in Section 4.2. This demonstrates the
benefit of UNION and the training data DA of the
auxiliary types when there are not enough training

161

Target FET FET JIANG CNN CNN CNN

Type TARGET UNION TARGET UNION 2-STAGE

Movement 21.8 9.2 9.6 4.1 4.0 19.7
Personnel 19.4 15.8 17.3 27.3 16.4 40.5
Conflict 12.8 18.0 17.9 12.8 29.8 43.0
Contact 45.4 35.7 34.6 62.5 19.2 54.6
Life 29.8 21.8 22.5 22.2 24.7 50.0
Justice 24.6 20.9 19.4 47.4 15.3 48.0
Average 25.6 20.2 20.2 29.4 18.2 42.6

Table 1: System Performance

Event Type Examples

Personnel Georgia fired football coach Jim Donnan Monday after a disappointing 7-4 season
. . .
The bad doctors are removed from the practice of medicine.

Conflict U.S. forces continued to bomb Fallujah.
Israel retaliated with rocket attacks and terrorists blew a hole in a United States
warship in Yemen.
Protesters rallied on the White House lawn.

Life . . . and two Israeli soldiers were wounded, one critically.
Witnesses said the soldiers responded by firing tear gas and rubber bullets, which
led to ten demonstrators being injured.
John Hinckley attempted to assassinate Ronald Reagan.

Justice Since May, Russia has jailed over 20 suspected terrorists without a trial.
A judicial source said today, Friday, that five Croatians were arrested last Tuesday
during an operation . . .

Table 2: Examples for the trigger words with the latent semantic. The trigger words are underlined.

instances for T . However, when we are provided
with more seed instances for the target type (i.e,
|DT | becomes larger), TARGET turns out to be
significantly better than UNION.

We also observe that CNN outperforms FET
in the TARGET mechanism. This is consistent
with the previous studies for ED (Nguyen and Gr-
ishman, 2015). However, in the UNION mecha-
nism, CNN is less effective than FET, suggesting
that UNION is not a good mechanism to transfer
knowledge in CNN.

We do not see much performance improvement
of JIANG over FET-UNION. This can be ex-
plained by the lack of explicit linguistic guidance
(i.e, the syntactic patterns and type constraints) for
the general features in the event extension task that
are crucial to the success of the model in Jiang
(2009).

Finally and most importantly, we see that the
two-stage model CNN-2-STAGE outperforms all
the compared models regardless of |DT |. This is
significant when |DT | is greater than 50. These
results suggest the effectiveness of the two-stage
training algorithm on transferring knowledge from

the auxiliary types to the target type for CNN.

6.4 Analysis

In order to further understand the systems on the
separate event types, Table 1 presents the perfor-
mance of the compared systems for the six exper-
iment sets in Section 6.2 (corresponding to the 6
different choices of the event target type T in the
dataset) when S is set to 100.

One of the most important observations from
the table is that CNN-2-STAGE is significantly
better than JIANG, CNN-TARGET and CNN-
UNION on five target types (i.e, Y = {Movement,
Personnel, Conflict, Life, Justice})3 and only
worse than CNN-TARGET on the Contact type.
This raises a question on the distinction between
Contact and the other event types in Y that affects
the transferring effectiveness of CNN-2-STAGE.
Also, what is the common feature of the event
types in Y that helps CNN-2-STAGE successfully
transfers knowledge between them?

The key insight of our system output analysis
is the shared latent semantic among a large por-

3Although it is less pronounced for Justice

162

Even Type Event Subtypes Most Frequent Triggers

Contact Meet, Phone-Write
meeting, talks, meet, call, summit,
meetings, met, letters, talked, conference

Movement Transport
go, come, arrived, get, trip, leave, went,
moving, moved, take

Personnel
Start-Position, End-Position, Nominate,
Elect

election, elections, former, elected,
appointed, resigned, fired, retired, won,
leaving

Conflict Attack, Demonstrate
war, attack, fighting, attacks, fire,
bombing, fight, hit, combat, shot

Life Be-Born, Marry, Divorce, Injure, Die
killed, death, died, suicide, injured, dead,
killing, divorce, married, die

Justice

Arrest-Jail, Release-Parole,
Trial-Hearing, Charge-Indict, Sue,
Convict, Sentence, Fine, Execute,
Extradite, Acquit, Appeal, Pardon

trial, convicted, sentence, charges,
arrested, appeal, sentenced, charged,
sued, parole

Table 3: Event types, subtypes and the most frequent trigger words.

tion of trigger words of the four event types in Y \
{Movement}. In particular, all the four event types
in Y \ {Movement} includes trigger words that in-
duce some level of conflict between their subjects
and objects. These conflicts are often manifested
by some physical and irritating actions between
the two engaged parties. Some examples of the
trigger words with the latent semantic for the event
types in Y \ {Movement} are given in Table 24.
This latent semantic is first captured by word em-
beddings and CNN in Stage I of CNN-2-STAGE,
and then transferred to the target type in Stage II.
The feature-based transfer learning systems like
JIANG, on the other hand, cannot encode such la-
tent semantics effectively as they rely on the dis-
crete features with the symbolic representation of
words.

In the ACE 2005 corpus, the event type Move-
ment only has one subtype of Transport which
mainly focuses on the transportation of weapons,
vehicles or people. The context of the trigger
words of the subtype Transport often involves
the military or struggling objects such as soldiers,
Iraq, forces etc. These context words are similar to
those of the trigger words of the types Conflict and
Life. As a result, the CNN-2-STAGE algorithm
can learn these general features from the trigger
words of Conflict and Life, and then transfer them
to improve the extraction of Movement. We show
some examples of Movement below:

1. After today’s air strikes, 13 Iraqi soldiers

4Taken from the ACE 2005 Annotation Guideline

abandoned their posts and surrendered to Kurdish
fighters.

2. The convoy was escorted by U.S. soldiers.
3. Israeli forces moved into Hebron’s Al-Sheikh

district where his family lived . . .
Finally, regarding the event type Contact, it oc-

curs when two or more entities engage in discus-
sion either directly or remotely5. The purpose of
such discussions are often about information or
opinion exchange rather than a mean to express
discussions or conflicts with irritating actions (as
the event types in Y do). This divergence between
Contact and Y leads to the poor quality of the gen-
eral features learnt by the transfer learning meth-
ods (i.e, JIANG and CNN-2-STAGE), eventually
degrading their performances. Some examples of
the Contact event type are given below:

1. People can communicate with international
friends without the hefty phone bills.

2. I’m chewing gum and talking on the phone
while writing this note.

3. Mr. Erekat is due to travel to Washington
to meet with US Secretary of State Madeleine Al-
bright and other US officials . . .

In order to further demonstrate the difference
between Contact and the other event types, Table
3 enumerates the event subtypes and the most fre-
quent trigger words for each event. The event sub-
types in Table 3 can be considered as the concepts
or topics covered by the corresponding event types
in the ACE 2005 corpus. As we can see from the

5Defined by the annotation guideline.

163

table, the Meet and Phone-Write subtypes or top-
ics of Contact are quite separate from those of the
other types.

7 Related Work

Early research on event extraction has primarily
focused on local sentence-level representations in
a pipelined architecture (Grishman et al., 2005;
Ahn, 2006). Afterward, higher level features have
been found to improve the performance (Ji and
Grishman, 2008; Gupta and Ji, 2009; Patward-
han and Riloff, 2009; Liao and Grishman, 2010;
Liao and Grishman, 2011; Hong et al., 2011; Mc-
Closky et al., 2011; Huang and Riloff, 2012; Li
et al., 2013). Some recent research has proposed
joint models for EE, including the methods based
on Markov Logic Networks (Riedel et al., 2009;
Poon and Vanderwende, 2010; Venugopal et al.,
2014), structured perceptron (Li et al., 2013; Li et
al., 2014b), and dual decomposition (Riedel et al.
(2009; 2011b)).

The application of neural networks to EE is very
recent. In particular, Zhou et al. (2014) and Boros
et al. (2014) use neural networks to learn word
embeddings from a corpus of specific domains
and then directly utilize these embeddings as fea-
tures in statistical classifiers. Chen et al. (2015)
apply dynamic multi-pooling CNNs for EE in a
pipelined framework, while Nguyen et al. (2016)
propose joint event extraction using recurrent neu-
ral networks.

Finally, domain adaptation and transfer learn-
ing have been studied extensively for various NLP
tasks, including part of speech tagging (Blitzer et
al., 2006), name tagging (Daume III, 2007), pars-
ing (McClosky et al., 2010), relation extraction
(Plank and Moschitti, 2013; Nguyen and Grish-
man, 2014; Nguyen et al., 2015a), to name a few.
For event extraction, Miwa et al. (2013) study
instance weighting and stacking models while
Riedel and McCallum (2011b) examine joint mod-
els with domain adaptation. However, none of
them studies the new type extension setting for ED
using neural networks like we do.

8 Conclusion

We systematically evaluate the ED models on the
new type extension setting. A two-stage algorithm
to train the CNN model and transfer knowledge
is introduced, yielding the state-of-the-art perfor-
mance for the extension task. In the future, we

plan to apply the two-stage algorithm to other
tasks such as relation extension to further verify
its effectiveness.

References
David Ahn. 2006. The stages of event extraction.

In Proceedings of the Workshop on Annotating and
Reasoning about Time and Events.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In EMNLP.

Emanuela Boros, Romaric Besançon, Olivier Ferret,
and Brigitte Grau. 2014. Event role extraction using
domain-relevant word representations. In EMNLP.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In
ACL-IJCNLP.

Hal Daume III. 2007. Frustratingly easy domain adap-
tation. In ACL.

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. Nyus english ace 2005 system description. In
ACE 2005 Evaluation Workshop.

Prashant Gupta and Heng Ji. 2009. Predicting un-
known time arguments based on cross-event prop-
agation. In ACL-IJCNLP.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In ACL.

Ruihong Huang and Ellen Riloff. 2012. Modeling tex-
tual cohesion for event extraction. In AAAI.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL.

Jing Jiang and ChengXiang Zhai. 2007. A two-stage
approach to domain adaptation for statistical class-
fiers. In CIKM.

Jing Jiang. 2009. Multi-task transfer learning for
weakly-supervised relation extraction. In ACL-
IJCNLP.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In ACL.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014b.
Constructing information networks using one single
model. In EMNLP.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In ACL.

164

Shasha Liao and Ralph Grishman. 2011. Acquiring
topic features to improve event extraction: in pre-
selected and balanced collections. In RANLP.

David McClosky, Eugene Charniak, , and Mark John-
son. 2010. Automatic domain adaptation for pars-
ing. In NAACL-HLT.

David McClosky, Mihai Surdeanu, and Christopher
Manning. 2011. Event extraction as dependency
parsing. In BioNLP Shared Task Workshop.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS.

Makoto Miwa, Paul Thompson, and Sophia Anani-
adou. 2013. Boosting automatic event extrac-
tion from the literature using domain adaptation and
coreference resolution. In Bioinformatics.

Thien Huu Nguyen and Ralph Grishman. 2014. Em-
ploying word representations and regularization for
domain adaptation of relation extraction. In ACL.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In ACL-IJCNLP.

Thien Huu Nguyen, Barbara Plank, and Ralph Grish-
man. 2015a. Semantic representations for domain
adaptation: A case study on the tree kernel-based
method for relation extraction. In ACL-IJCNLP.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In NAACL-HLT.

Siddharth Patwardhan and Ellen Riloff. 2009. A uni-
fied model of phrasal and sentential evidence for in-
formation extraction. In EMNLP.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding semantic similarity in tree kernels for do-
main adaptation of relation extraction. In ACL.

Hoifung Poon and Lucy Vanderwende. 2010. Joint
inference for knowledge extraction from biomedical
literature. In NAACL-HLT.

Sebastian Riedel and Andrew McCallum. 2011. Fast
and robust joint models for biomedical event extrac-
tion. In EMNLP.

Sebastian Riedel and Andrew McCallum. 2011b. Ro-
bust biomedical event extraction with dual decom-
position and minimal domain adaptation. In BioNLP
Shared Task 2011 Workshop.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi,
and Jun’ichi Tsujii. 2009. A markov logic approach
to bio-molecular event extraction. In BioNLP 2009
Workshop.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In ACL.

Deepak Venugopal, Chen Chen, Vibhav Gogate, and
Vincent Ng. 2014. Relieving the computational
bottleneck: Joint inference for event extraction with
high-dimensional features. In EMNLP.

Deyu Zhou, Dayou Zhong, and Yulan He. 2014. Event
trigger identification for biomedical events extrac-
tion using domain knowledge. In Bioinformatics
Journal.

165

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 166–173,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Parameterized context windows in Random Indexing

Tobias Norlund
Schibsted Products and Technology

Västra Järnvgsgatan 21
111 64 Stockholm

Sweden
tobias.norlund@schibsted.com

David Nilsson
Nepa

Maria Skolgata 83
118 53 Stockholm

Sweden
david.nilsson@nepa.com

Magnus Sahlgren
Gavagai

Slussplan 9
111 30 Stockholm

Sweden
magnus.sahlgren@gavagai.se

Abstract

This paper introduces a parameterization
for word embeddings produced by the
Random Indexing framework. The pa-
rameterization introduces position specific
weights in the context windows, and the
approach is shown to improve the perfor-
mance in both word similarity and senti-
ment classification tasks. We also demon-
strate the relation between Random Index-
ing and Convolutional Neural Networks.

1 Introduction

Quantifying the importance of contextual infor-
mation for semantic representation is the goal of
distributional semantics, in which contextual in-
formation is used to quantify semantic similarities
between words (Turney and Pantel, 2010). How-
ever, standard practice in distributional semantics
is to weight the importance of context items based
on either its frequency (Sahlgren et al., 2016), its
distance to the focus word (Lund et al., 1995), or
its global co-occurrence statistics (Niwa and Nitta,
1994). Thus far, there has not been much work on
applying machine learning to this in order to select
useful context items for distributional semantics.

The idea with the proposed parameterization is
to weight the items in the context window based
on their usefulness for accomplishing some spe-
cific task, such as sentiment classification or word
similarity rating. In this paper, we introduce a
simple parameterization for the Random Indexing
processing model. We first show that Random In-
dexing can be formulated in terms of a convolu-
tion, in order to situate the framework in the con-
text of neural networks. We then introduce a sim-
ple parameterization of the positions on the con-
text windows, and we show that it improves the

performance of the embeddings in some word sim-
ilarity and sentiment classification tasks. 1

2 Notation

Using a vocabulary V of words wi for i =
1, . . . , |V|, we seek word embeddings vi ∈
Rd by collecting statistics from a corpus C =
{w1, . . . , wt, . . . , wN}. We will interchangeably
mix subscripts i and t of words and embeddings to
index the vocabulary and corpus respectively.

3 Random Indexing as Convolution

Random Indexing (RI) (Kanerva et al., 2000; Kan-
erva, 2009) is a distributional semantic model that
updates the embedding vectors v∗ in an online
fashion by summing the sparse random vectors
e∗ that represent the context items (these vectors
are called random index vectors and act as unique
identifiers for the context items, words in this
case):

vt ← vt +
k∑

l=−k
l 6=0

h(wt+l)et+l (1)

k is the context window size and h(w) some
weight that quantifies the importance of the con-
text item (the standard setting is h(w) = 1 for all
w). Here et+l is the random index vector to corpus
item wt+l.

Equation (1) describes the update rule of RI and
the final embeddings vi can be expressed as:

vi =
k∑

l=−k
l 6=0

N∑
t=1

wt=wi

h(wt+l)et+l (2)

To establish the equivalence between RI and
convolution, we can reformulate the update rule

1The code is available at: http://github.com/
TobiasNorlund/Attention_RI

166

in Equation (1) as follows; let h ∈ R(2k+1)×d be a
filter function where

hlj =

{
1, ∀(l, j) ∈ {(0, d2), . . . , (k − 1, d2), (k + 1, d2), . . . , (2k, d2)}
0, else

Furthermore, let S ∈ RN×d be a matrix of stacked
sparse random vectors et. Now, if we use h and
S, we can rewrite the second term of the random
indexing update rule in Equation (1):

Ztv =
2k∑
l=0

d∑
j=0

(et−l+k)v−j+dhlj . (3)

Equation (3) is a 2D discrete convolution between
S and h, hence:

Ztv = (S ∗ h)[t, v] =
∑2k

l=0

∑d
j=0(et−l+k)v−j+dhlj .

(4)
Because h has been defined with zeros everywhere
except for column d

2 , Equation (4) can been seen
as a 1D convolution over each column vector in S,

Ztv = (STv ∗ hTd
2

)[t] =
2k∑
l=0

(et−l+k)vht d
2
. (5)

4 Dealing with Redundant Features

Since word embeddings (produced by RI or some
other distributional model) are constructed unsu-
pervised by collecting co-occurrence information
from a large corpus, it is likely that the resulting
embeddings are very general, which may lower
the expressiveness of the embeddings if they are
going to be used in a very specific domain. Take
the example of training a text categorization clas-
sifier within a financial context; corpus occur-
rences of the words “bank” and “stock” in the
senses of LARGE COLLECTION and INVENTORY

will likely not provide useful information for the
embeddings in this domain. In word embeddings,
different senses are represented by co-occurrences
with different context items (Cuba Gyllensten and
Sahlgren, 2015). We refer to context items that are
less useful for a specific task as redundant features
of the embeddings.

Unfortunately, it is not, in the general case, pos-
sible to know a priori which context items will
be useful to construct embeddings for a particu-
lar task. Such context (i.e. feature) selection in-
stead needs to be performed jointly with training
the classifier. When backpropagation is used as
optimization strategy of the classifier, one can also

treat the word embeddings as parameters to up-
date. It is straightforward to take the derivatives of
the objective function with respect to the input and
apply Stochastic Gradient Descent (SGD) updates
just as for the model parameters. This strategy is
well known (Zhang and Wallace, 2015), and will
be referred to as SGD Random Indexing (SGD-
RI).

5 Parameterization of context window

Another strategy is to parameterize the word em-
beddings, and to optimize those parameters jointly
with the task using backpropagation. The RI al-
gorithm, as defined in (Sahlgren et al., 2016),
weights the importance of context items based on
their relative frequency according to Equation (6):

h(wt) = exp
(
−c · f(wt)

|V|
)

(6)

where c is a constant, f(wt) is the corpus fre-
quency of itemwt, and |V| is the size of the vocab-
ulary (i.e. the number of unique words seen thus
far).

We would however like to parameterize context
items not only depending on relative frequency
but also on their usefulness for the specific task at
hand. To describe the suggested parametrization,
recall the Random Indexing algorithm in Equation
(1) where we look at each word and its context in
the corpus in a streaming fashion, and construct
embedding vectors by summing the index vectors
of all words occurring in the context. A fairly ob-
vious refinement of this algorithm would be to pa-
rameterize the relative positions within the context
window depending on their usefulness for the task
at hand. Equation (7) formalizes the parameter-
ization by introducing an additional factor to the
weighting scheme:

h(wt+l) = θwt
l exp

(
−c · f(wt)

|V|
)

(7)

Inserting this parameterization into the update
rule in Equation (1), we get:

vt ← vt +
k∑

l=−k
l 6=0

θwt
l exp

(
−c · f(wt+l)

|V|
)

et+l

(8)
which is equivalent to:

167

vi =
k∑

l=−k
l 6=0

N∑
t=1

wt=wi

θwt
l exp

(
−c · f(wt+l)

|V|
)

et+l

(9)
By careful inspection, the θwt

l can be moved
outside the inner sum, while swapping the sub-
script to i since wt = wi:

vi =
k∑

l=−k
l 6=0

θwi
l

N∑
t=1

wt=wi

exp
(
−c · f(wt+l)

|V|
)

et+l

︸ ︷︷ ︸
ṽl

i

(10)
The rewrite now allows the inner sum to be cal-

culated before fitting the θwi
l s which makes the

algorithm much more efficient. In practice, this
means we aggregate an embedding vector ṽli for
each relative window position l, for each word wi.
Stacking these 2k context vectors into a matrix Vi

and collecting the θwi
l s in a vector yields:

Vi =
[
ṽ−ki . . . ṽ−1

i ṽ+1
i . . . ṽ+k

i

]
(11)

θi =

θwi
−k
...
θwi−1

θwi
+1
...
θwi
+k

(12)

Equation (10) can now be rewritten as a matrix
vector multiplication:

vi = Viθi. (13)

In other words, this suggests instead of aggre-
gating embedding vectors vi according to (9), to
aggregate matrices Vi upon parsing the corpus.
The embedding vectors are then calculated as a
multiplication with a parameter vector θi accord-
ing to (13). Note that when θi = 1 you recover
the vanilla Random Indexing embeddings.

We will refer to this strategy as Parameterized
Random Indexing (PAR-RI).

6 Example: Word Similarity

To exemplify the effectiveness of the proposed pa-
rameterization, we use the SimLex-999 (Hill et al.,

2015) test in order to see how much the Spearman
rank correlation can be improved by fitting the θis
such that cosine similarity between the embedding
vectors correspond to the similarity ratings. For-
mally, we seek to minimize the following objec-
tive function:

min
θ∗

∑
(wi,wj)∈S

1
2

(cosαij − s(wi, wj))2︸ ︷︷ ︸
f(wi,wj)

(14)

where (wi, wj) ∈ S corresponds to each word
pair in SimLex. s(wi, wj) is the SimLex similar-
ity score for the word pair (scaled to [0, 1]) and
cosαij is the cosine similarity between the word’s
corresponding vectors:

αij =
vTi vj

‖vi‖2‖vj‖2 (15)

where vi and vj are wi and wj’s corresponding
word vectors, calculated as in equation (13). Since
this is a non-convex problem, SGD is applied as
optimization strategy. Calculating the gradient of
f with respect to θi and θj is straightforward:

δf

δθi
= (cosαij − s(wi, wj)) δ cosαij

δθi
(16)

δf

δθj
= (cosαij − s(wi, wj)) δ cosαij

δθj
. (17)

Applying the chain rule, the gradient of cosαij
becomes:

δ cosαij
δθi

=
δ cosαij
δvi

δvi
δθi

δ cosαij
δvi

=
vj‖vi‖2 − vi

vT
i vj

‖vi‖2
‖vi‖22‖vj‖2

δvi
δθi

= Vi.

(18)

The expression for δ cosαij

δθj
is the same, but with

the subscripts interchanged. We now apply SGD
to optimize the θis iteratively using the following
update rules:

θ
(t+1)
i = θti − η

δf

δθi

θ
(t+1)
j = θtj − η

δf

δθj
.

(19)

168

This procedure is performed using V∗ matrices
generated from a dump of Wikipedia with the Ran-
dom Indexing hyper-parameters listed in Table 1.
The θis are initialized to one-vectors (θ∗ = 1) and
updated according to equation (19) with a learning
rate η = 1.0 until convergence.

Table 1: Hyper-parameters for PAR-RI.
Parameter Value Description
d 2,000 Dimensionality
k 10 Window size
c 60 Constant in frequency weight

ε 10 Non-zero elements in index vectors
randomly drawn from {−1,+1}

The results are summarized in Table 2. We can
see that the Spearman correlation is drastically im-
proved with the optimized θis. This experiment
can be seen as, for each word wi, finding a linear
combination in the column space of Vi that opti-
mizes the cosine similarity of the word vectors to
match the SimLex similarity scores. It is remark-
able that optimizing the θis in the relatively small
20-dimensional (R2k) subspaces of the full word
space (R2000) yields such a big improvement.

Table 2: Results of the SimLex experiment.
Avg. error Spearman

Initial θis (θ∗ = 1) 0.28 0.21
Optimized θis 0.19 0.62

7 Example: Sentiment Classification

The improvements reported in the previous sec-
tion should motivate the parameterization to be vi-
able for improving the performance in text clas-
sification as well. In this section, we parameter-
ize the embeddings for sentiment classification us-
ing two standard benchmarks; the Pang and Lee
Sentence Polarity Dataset v1.0 (PL05) (Pang and
Lee, 2005) and the Stanford Sentiment Treebank
(SST) (Socher et al., 2013). The PL05 data con-
sists of 10,662 short movie reviews that are clas-
sified as either positive or negative. Experiments
using this dataset are split into 25% test and 75%
train/validation sets and evaluated by 5-fold cross
validation on the training/validation set. We make
two consecutive runs, in total 10 trainings, and re-
port their maximum, minimum and mean accuracy
as well as their standard deviation. The SST data
is an extension of PL05 with train/validation/test
splits provided. The dataset also provides fine-
grained labels (very positive, positive, neutral,

negative, very negative). In this study we have
however omitted the neutral labels and treated it
as a binary classification problem by merging the
very positive, positive, very negative and negative
classes into two. We report the maximum, mini-
mum and mean accuracy as well as the standard
deviation of 10 consecutive runs using the pro-
vided train/val/test splits.

We use two different classifiers in these exper-
iments. The first is a standard neural network
(referred to as MLP for Multi-Layer Perceptron)
(Rumelhart et al., 1986) with one hidden layer of
120 nodes with sigmoid activations and one sig-
moid output unit. All word vectors are normal-
ized to an l2 norm of 1 and naively summed to
produce document vectors. The weights in the
neural network are also l2 regularized with a con-
stant factor of λ = 0.001. The second classifier
is the model proposed by Kim (2014) which im-
plements a Convolutional Neural Network (CNN).
The hyper-parameters used are listed in table 3.
Like the MLP model, the word embeddings are
also normalized to unit length.

Table 3: Hyper-parameters for CNN.
Parameter Value Description

n 300 Number of filters,
100 of height 3,4,5 respectively

p 0.5 Dropout rate
s 3 Filter max l2-norm

As comparison with the different RI-based em-
beddings (RI, SGD-RI, and PAR-RI), we also
include results using embeddings produced with
SGNS (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014), both with 300-dimensional vec-
tors and a window size of 2. We also include re-
sults using embeddings randomly sampled from
a uniform U(−0.25, 0.25) distribution (RAND).
All word embeddings (except for the RAND vec-
tors) are pre-trained (unsupervised) on a dump of
Wikipedia. We list all hyper-parameters for RI,
SGNS and GloVe in table 4, 5 and 6

Table 4: Hyper-parameters for RI
Parameter Value Description
d 2,000 Dimensionality
k 2 Window size
c 60 Constant

ε 10
non-zero elements in index
vectors randomly drawn from
{−1,+1}

The results of all experiments are shown in ta-

169

Table 5: Hyper-parameters for SGNS
Parameter Value Description
d 300 Dimensionality
k 2 Window size

negative 5 Number of negative samples
per positive

down sampling no No down sampling is applied
α 0.025 Initial learning rate
iter 5 Number of iterations

Table 6: Hyper-parameters for GloVe
Parameter Value Description
d 300 Dimensionality
k 2 Window size
iter 15 Number of training iterations
x-max 10 Cutoff in weighting function

α 0.75 Constant in exponent of weighting
function

η 0.05 Initial learning rate

ble 7 (next page).2 Comparing the various em-
beddings, it is obvious that the performance dif-
ferences are very small, and thus not likely to be
of any significant practical importance. This is es-
pecially true for the MLP experiments where the
variances reach over two points in many cases. On
the other hand, all embeddings outperform the ran-
domized RAND vectors, which demonstrates that
classification performance is improved when the
model can take semantic information into account.
The best performing embedding for the MLP clas-
sifier is PAR-RI, while SGNS performs better us-
ing the CNN model. The GloVe embeddings, de-
spite their theoretical similarities to the SGNS em-
beddings (Suzuki and Nagata, 2015), consistently
underperform both in comparison with SGNS and
PAR-RI (and, in the case of the MLP classifier,
also the SGD-RI embeddings). This is in contrast
to the experiments performed by (Zhang and Wal-
lace, 2015) where the difference was minor.

Comparing the PAR-RI embeddings with SGD-
RI and standard RI, it seems PAR-RI performs
well, with the highest mean accuracy on the SST
dataset, using the MLP model. SGD-RI improves
the results compared to the standard RI embed-
dings for the MLP model, but not for the CNN
model. Updating of the SGNS embeddings just
like SGD-RI for the CNN have also been studied
in Zhang and Wallace (2015), who report a perfor-
mance boost of about ∼0.8%. This also contrasts
to our results with SGD-RI using the CNN model,

2Since our focus in this paper is the effect of the word
embeddings, we will not comment further on the performance
differences between the MLP and CNN classifiers.

which instead decrease the performance compared
to standard RI. This could be due to the RI embed-
dings being more high dimensional than SGNS,
yielding a larger and harder parameter space to op-
timize.

Comparing our results to other reported results
in the literature, Kim (2014) and Zhang and Wal-
lace (2015) manage to push the boundaries up to
80.10 for the PL05 data, and up to 84.88 for the
SST data using SGNS embeddings pre-trained on
a much larger 100 billion tokens Google News
dataset. We believe this somewhat increased per-
formance is partly due to the bigger dataset. An-
other factor could also be that the language style
in news articles is more similar to the movie re-
views compared to Wikipedia, arguably yielding
better-suited embeddings.

8 Optimized Context Profiles

When the PAR-RI parametrization was proposed,
the hypothesis was that certain relative positions
in the context windows would be more important
in describing the context of a word than others.
The results in the two previous sections demon-
strate that the proposed parameterization is able to
improve the embeddings in both a word similarity
task, and (to a lesser extent) a sentiment classifi-
cation task. This indicates that the parameteriza-
tion is actually able to find useful context profiles
for terms used in the various test settings. In this
section, we exemplify the kinds of context profiles
learned when trained for the sentiment classifica-
tion task.

Figure 1 (on page 7) shows the learned weights
per context window position for four different ad-
jectives (top row), four different determiners (mid-
dle row), and four different nouns (bottom row).
The parameterization obviously has a larger effect
for some words than for others; as an example, the
windows for “good” and “bad” is much more pa-
rameterized than the windows for “reliable” and
“positive”, and the windows for the determiners
are in general much more parameterized than the
windows for nouns. It is interesting to note that
there is a small tendency that the windows for the
adjectives have a higher weight in the +1 posi-
tion, which is consistent with a linguistic analysis
of adjectives as qualifiers of succeeding nouns. By
contrast, the window positions for the determiners
seem to have a higher weight in the positions just
preceding the focus word, while the windows for

170

Table 7: Experiment results. Mean accuracies in %. The parentheses contain the maximum achieved
accuracy, the standard deviation and the minimum achieved accuracy of the consecutive runs

Emb + Model PL05 SST

RAND MLP 68.23 (↑ 69.58, ±0.98, ↓ 66.32) 69.89 (↑ 71.11, ±0.83, ↓ 68.64)
RI MLP 72.45 (↑ 74.91, ±2.99, ↓ 66.54) 75.13 (↑ 77.98, ±2.54, ↓ 73.75)
SGD-RI MLP 73.62 (↑ 74.16, ±0.77, ↓ 71.42) 77.91 (↑ 78.80, ±0.82, ↓ 76.11)
ATT-RI MLP 72.45 (↑ 74.83, ±2.20, ↓ 68.90) 78.03 (↑ 79.63, ±1.60, ↓ 74.46)
SGNS MLP 73.84 (↑ 74.76, ±1.14, ↓ 71.57) 77.27 (↑ 79.57, ±3.13, ↓ 70.02)
GLOVE MLP 71.29 (↑ 73.67, ±1.67, ↓ 68.60) 76.26 (↑ 77.32, ±1.66, ↓ 71.61)
RAND CNN 72.12 (↑ 72.91, ±0.50, ↓ 71.28) 76.99 (↑ 77.94, ±0.76, ↓ 75.50)
RI CNN 76.18 (↑ 76.60, ±0.35, ↓ 75.51) 81.83 (↑ 82.72, ±0.39, ↓ 81.39)
SGD-RI CNN 75.67 (↑ 76.26, ±0.63, ↓ 74.22) 81.31 (↑ 81.89, ±0.38, ↓ 80.78)
ATT-RI CNN 77.55 (↑ 78.08, ±0.31, ↓ 77.09) 81.77 (↑ 82.64, ±0.60, ↓ 80.66)
SGNS CNN 77.92 (↑ 78.34, ±0.24, ↓ 77.55) 83.44 (↑ 84.00, ±0.51, ↓ 82.00)
GLOVE CNN 77.35 (↑ 77.77, ±0.34, ↓ 76.79) 81.56 (↑ 82.06, ±0.34, ↓ 80.78)

nouns seem to have very small parameterization.
It thus seems as if the parameterization is able to
learn slightly different window profiles for differ-
ent parts of speech.

As noted in the introduction, is is common prac-
tice in distributional semantics to weight the con-
text windows by the distance to the focus word. If
this is an optimal strategy, we should see a bell-
like curve leaning to zero at the edges. Such a
shape is partially present for some of the words,
for example in “and”, “of”, “good” and “bad”, but
for most words, the weights are almost unchanged.
We believe this could be due to the vanishing gra-
dient problem where the gradient seems to vanish
deeper down the model. In addition, the less com-
mon the word is in the training set, the less it is
updated. Another interesting aspect of the learned
weights is that by inspecting the l1 norm of the
weight vectors, we get a hint of the words’ relative
importance for the given task. We can see that the
l1 norm for the words “good” and “bad” are larger
than for “the” and “of”, which feels natural for the
sentiment classification task.

9 Conclusion

This paper has introduced a simple parameteriza-
tion for the RI framework, which has also been de-
rived in terms of convolution. It parameterizes the
positions in the context windows and optimizes
with respect to the performance of the embeddings
in some given task, such as word similarity or text
classification. Our experiments show that the pro-
posed PAR-RI model is able to improve the per-
formance of the embeddings in many cases, and

that the results are competitive in comparison with
other well-known embeddings. The idea of pa-
rameterizing the window positions could also be
applied to other distributional semantic models,
such as SGNS.

We note that all embeddings used in the senti-
ment classification task produce very similar re-
sults. This indicates that in practice, the word em-
beddings included in this paper are more or less
equivalent. It is therefore doubtful whether it is
possible to draw any conclusions based on these
results regarding the question whether any single
embedding is superior to the others in the general
case.

The examples of context profiles provided as
examples of the parameterization shows some in-
teresting effects. However, training the position-
dependent weights is non-trivial, and one could
probably think of better initializations of the
weights than just one-vectors, for example using
a bell-like shape. The vanishing gradient problem
would however remain, and the weights for un-
common words will not change significantly.

The conclusion of the experiments using SGD-
RI is that updating the embeddings jointly with the
classification model using SGD does not necessar-
ily improve generalization. This is in fact not so
strange. Moving around only a subset of the words
(i.e. the words present in the training set), while
leaving the rest untouched produces an inconsis-
tent space with undefined distributional properties
between updated and non-updated embeddings. It
could therefore be an idea to use randomized em-
beddings for all words not present in the training

171

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0
W

e
ig

h
t

good

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

reliable

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

positive

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

bad

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

the

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

and

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

of

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

but

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

tolkien

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

show

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

tv

10 5 0 5 10
Window position

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t

warfare

Figure 1: The learned weights for four adjectives (top row), four determiners (middle row), and four
nouns (bottom row).

set because they then can be regarded as approx-
imately orthogonal, and thus should not interfere
with the semantic structure.

References

Amaru Cuba Gyllensten and Magnus Sahlgren. 2015.
Navigating the semantic horizon using relative
neighborhood graphs. In Proceedings of EMNLP,
pages 2451–2460.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Pentti Kanerva, Jan Kristofersson, and Anders Holst.
2000. Random Indexing of text samples for Latent
Semantic Analysis. In Proceedings of CogSci, page
1036.

Pentti Kanerva. 2009. Hyperdimensional computing.
Cognitive Computation, 1(2):139–159.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1746–
1751, Doha, Qatar, October. Association for Com-
putational Linguistics.

Kevin Lund, Curt Burgess, and Ruth A. Atchley.
1995. Semantic and associative priming in high-
dimensional semantic space. In Proceedings of the
17th Annual Conference of the Cognitive Science
Society, pages 660–665. Hillsdale, NJ: Erlbaum.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Yoshiki Niwa and Yoshihiko Nitta. 1994. Co-
occurrence vectors from corpora vs. distance vec-
tors from dictionaries. In Proceedings of the 15th
Conference on Computational Linguistics - Volume

172

1, COLING ’94, pages 304–309, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of ACL,
pages 115–124.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vec-
tors for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1532–
1543.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Parallel distributed processing:
Explorations in the microstructure of cognition, vol.
1. chapter Learning Internal Representations by Er-
ror Propagation, pages 318–362. MIT Press, Cam-
bridge, MA, USA.

Magnus Sahlgren, Amaru Cuba Gyllensten, Fredrik
Espinoza, Ola Hamfors, Anders Holst, Jussi Karl-
gren, Fredrik Olsson, Per Persson, and Akshay
Viswanathan. 2016. The Gavagai Living Lexicon.
In Proceedings of LREC.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer.

Jun Suzuki and Masaaki Nagata. 2015. A unified
learning framework of skip-grams and global vec-
tors. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers),
pages 186–191, Beijing, China, July. Association for
Computational Linguistics.

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37(1):141–188, January.

Ye Zhang and Byron Wallace. 2015. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
CoRR, abs/1510.03820.

173

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 174–183,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Making Sense of Word Embeddings

Maria Pelevina1, Nikolay Arefyev2, Chris Biemann1 and Alexander Panchenko1

1Technische Universität Darmstadt, LT Group, Computer Science Department, Germany
2Moscow State University, Faculty of Computational Mathematics and Cybernetics, Russia

panchenko@lt.informatik.tu-darmstadt.de

Abstract

We present a simple yet effective approach
for learning word sense embeddings. In
contrast to existing techniques, which ei-
ther directly learn sense representations
from corpora or rely on sense invento-
ries from lexical resources, our approach
can induce a sense inventory from ex-
isting word embeddings via clustering of
ego-networks of related words. An in-
tegrated WSD mechanism enables label-
ing of words in context with learned sense
vectors, which gives rise to downstream
applications. Experiments show that the
performance of our method is comparable
to state-of-the-art unsupervised WSD sys-
tems.

1 Introduction

Term representations in the form of dense vectors
are useful for many natural language processing
applications. First of all, they enable the com-
putation of semantically related words. Besides,
they can be used to represent other linguistic units,
such as phrases and short texts, reducing the inher-
ent sparsity of traditional vector-space representa-
tions (Salton et al., 1975).

One limitation of most word vector models,
including sparse (Baroni and Lenci, 2010) and
dense (Mikolov et al., 2013) representations, is
that they conflate all senses of a word into a single
vector. Several architectures for learning multi-
prototype embeddings were proposed that try to
address this shortcoming (Huang et al., 2012; Tian
et al., 2014; Neelakantan et al., 2014; Nieto Piña
and Johansson, 2015; Bartunov et al., 2016). Li
and Jurafsky (2015) provide indications that such
sense vectors improve the performance of text pro-

cessing applications, such as part-of-speech tag-
ging and semantic relation identification.

The contribution of this paper is a novel method
for learning word sense vectors. In contrast to pre-
viously proposed methods, our approach relies on
existing single-prototype word embeddings, trans-
forming them to sense vectors via ego-network
clustering. An ego network consists of a single
node (ego) together with the nodes they are con-
nected to (alters) and all the edges among those
alters. Our method is fitted with a word sense dis-
ambiguation (WSD) mechanism, and thus words
in context can be mapped to these sense represen-
tations. An advantage of our method is that one
can use existing word embeddings and/or exist-
ing word sense inventories to build sense embed-
dings. Experiments show that our approach per-
forms comparably to state-of-the-art unsupervised
WSD systems.

2 Related Work

Our method learns multi-prototype word embed-
dings and applies them to WSD. Below we briefly
review both strains of research.

2.1 Multi-Prototype Word Vector Spaces
In his pioneering work, Schütze (1998) induced
sparse sense vectors by clustering context vectors
using the EM algorithm. This approach is fitted
with a similarity-based WSD mechanism. Later,
Reisinger and Mooney (2010) presented a multi-
prototype vector space. Sparse TF-IDF vectors
are clustered using a parametric method fixing the
same number of senses for all words. Sense vec-
tors are centroids of the clusters.

While most dense word vector models repre-
sent a word with a single vector and thus conflate
senses (Mikolov et al., 2013; Pennington et al.,
2014), there are several approaches that produce
word sense embeddings. Huang et al. (2012) learn

174

 Calculate Word
Similarity Graph

Learning Word Vectors

Word Sense Induction

Text Corpus

Word Vectors

Word Similarity Graph

Pooling of Word Vectors
Sense Inventory

Sense Vectors

1 2

4 3

Figure 1: Schema of the word sense embeddings learning method.

dense vector spaces with neural networks. First,
contexts are represented with word embeddings
and clustered. Second, word occurrences are re-
labeled in the corpus according to the cluster they
belong to. Finally, embeddings are re-trained on
this sense-labeled terms. Tian et al. (2014) intro-
duced a probabilistic extension of the Skip-gram
model (Mikolov et al., 2013) that learns multi-
ple sense-aware prototypes weighted by their prior
probability. These models use parametric clus-
tering algorithms that produce a fixed number of
senses per word.

Neelakantan et al. (2014) proposed a multi-
sense extension of the Skip-gram model that was
the first one to learn the number of senses by itself.
During training, a new sense vector is allocated if
the current context’s similarity to existing senses is
below some threshold. Li and Jurafsky (2015) use
a similar idea by integrating the Chinese Restau-
rant Process into the Skip-gram model. All men-
tioned above sense embeddings were evaluated on
the contextual word similarity task, each one im-
proving upon previous models.

Nieto and Johansson (2015) presented another
multi-prototype modification of the Skip-gram
model. Their approach outperforms that of Nee-
lakantan et al. (2014), but requires as an input the
number of senses for each word.

Li and Jurafsky (2015) show that sense embed-
dings can significantly improve the performance
of part-of-speech tagging, semantic relation iden-
tification and semantic relatedness tasks, but yield
no improvement for named entity recognition and
sentiment analysis.

Bartunov et al. (2016) introduced AdaGram, a
non-parametric method for learning sense embed-
dings based on a Bayesian extension of the Skip-
gram model. The granularity of learned sense em-
beddings is controlled by the parameter α. Com-
parisons of their approach to (Neelakantan et al.,
2014) on three SemEval word sense induction and

disambiguation datasets show the advantage of
their method. For this reason, we use AdaGram
as a representative of the state-of-the-art methods
in our experiments.

Several approaches rely on a knowledge base
(KB) to provide sense information. Bordes et
al. (2011) propose a general method to represent
entities of any KB as a dense vector. Such repre-
sentation helps to integrate KBs into NLP systems.
Another approach that uses sense inventories of
knowledge bases was presented by Camacho-
Collados et al. (2015). Rothe and Schütze (2015)
combined word embeddings on the basis of Word-
Net synsets to obtain sense embeddings. The ap-
proach is evaluated on lexical sample tasks by
adding synset embeddings as features to an exist-
ing WSD system. They used a weighted pooling
similar to the one we use, but their method is not
able to find new senses in a corpus. Finally, Nieto
Piña and Johansson (2016) used random walks on
the Swedish Wordnet to generate training data for
the Skip-gram model.

2.2 Word Sense Disambiguation (WSD)

Many different designs of WSD systems were pro-
posed, see (Agirre and Edmonds, 2007; Navigli,
2009). Supervised approaches use an explicitly
sense-labeled training corpus to construct a model,
usually building one model per target word (Lee
and Ng, 2002; Klein et al., 2002). These ap-
proaches demonstrate top performance in compe-
titions, but require considerable amounts of sense-
labeled examples.

Knowledge-based approaches do not learn a
model per target, but rather derive sense represen-
tation from information available in a lexical re-
source, such as WordNet. Examples of such sys-
tem include (Lesk, 1986; Banerjee and Pedersen,
2002; Pedersen et al., 2005; Moro et al., 2014)

Unsupervised WSD approaches rely neither
on hand-annotated sense-labeled corpora, nor on

175

Figure 2: Visualization of the ego-network of “ta-
ble” with furniture and data sense clusters. Note
that the target “table” is excluded from clustering.

handcrafted lexical resources. Instead, they auto-
matically induce a sense inventory from raw cor-
pora. Such unsupervised sense induction meth-
ods fall into two categories: context clustering,
such as (Pedersen and Bruce, 1997; Schütze,
1998; Reisinger and Mooney, 2010; Neelakantan
et al., 2014; Bartunov et al., 2016) and word (ego-
network) clustering, such as (Lin, 1998; Pantel
and Lin, 2002; Widdows and Dorow, 2002; Bie-
mann, 2006; Hope and Keller, 2013). Unsuper-
vised methods use disambiguation clues from the
induced sense inventory for word disambiguation.
Usually, the WSD procedure is determined by the
design of sense inventory. It might be the high-
est overlap between the instance’s context words
and the words of the sense cluster, as in (Hope
and Keller, 2013) or the smallest distance between
context words and sense hubs in graph sense rep-
resentation, as in (Véronis, 2004).

3 Learning Word Sense Embeddings

Our method consists of the four main stages de-
picted in Figure 1: (1) learning word embeddings;
(2) building a graph of nearest neighbours based
on vector similarities; (3) induction of word senses
using ego-network clustering; and (4) aggregation
of word vectors with respect to the induced senses.

Our method can use existing word embeddings,
sense inventories and word similarity graphs. To
demonstrate such use-cases and to study the per-
formance of the method in different settings, as
variants of the complete pipeline presented in Fig-
ure 1, we experiment with two additional setups.
First, we use an alternative approach to compute

the word similarity graph, which relies on depen-
dency features and is expected to provide more
accurate similarities (therefore, the stage (2) is
changed). Second, we use a sense inventory con-
structed using crowdsourcing (thus, stages (2) and
(3) are skipped). Below we describe each of the
stages of our method in detail.

3.1 Learning Word Vectors

To learn word vectors, we use the word2vec
toolkit (Mikolov et al., 2013), namely we train
CBOW word embeddings with 100 or 300 dimen-
sions, context window size of 3 and minimum
word frequency of 5. We selected these param-
eters according to prior evaluations, e.g. (Baroni
et al., 2014), and tested them on the develop-
ment dataset (see Section 5.1). Initial experiments
showed that this configuration is superior to oth-
ers, e.g. the Skip-gram model, with respect to
WSD performance.

For training, we modified the standard imple-
mentation of word2vec1 so that it also saves con-
text vectors needed for one of our WSD ap-
proaches. For experiments, we use two commonly
used corpora for training distributional models:
Wikipedia2 and ukWaC (Ferraresi et al., 2008).

3.2 Calculating Word Similarity Graph

At this step, we build a graph of word similari-
ties, such as (table, desk, 0.78). For each word we
retrieve its 200 nearest neighbours. This num-
ber is motivated by prior studies (Biemann and
Riedl, 2013; Panchenko, 2013): as observed, only
few words have more strongly semantically re-
lated words. This graph is computed either based
on word embeddings learned during the previous
step or using semantic similarities provided by the
JoBimText framework (Biemann and Riedl, 2013).

Similarities using word2vec (w2v). In this
case, nearest neighbours of a term are terms with
the highest cosine similarity of their respective
vectors. For scalability reasons, we perform sim-
ilarity computations via block matrix multiplica-
tions, using blocks of 1000 vectors.

Similarities using JoBimText (JBT). In this
unsupervised approach, every word is represented

1https://code.google.com/p/word2vec
2We used an English Wikipedia dump of Octo-

ber 2015: http://panchenko.me/data/joint/
corpora/en59g/wikipedia.txt.gz

176

as a bag of sparse dependency-based features ex-
tracted using the Malt parser and collapsed using
an approach similar to (Ruppert et al., 2015). Fea-
tures are normalized using the LMI score (Church
and Hanks, 1990) and further pruned down ac-
cording to the recommended defaults: we keep
1000 features per word and 1000 words per fea-
ture. Similarity of two words is equal to the num-
ber of common features.

Multiple alternatives exist for computation of
semantic relatedness (Zhang et al., 2013). JBT has
two advantages in our case: (1) accurate estima-
tion of word similarities based on dependency fea-
tures; (2) efficient computation of nearest neigh-
bours for all words in a corpus. Besides, we ob-
served that nearest neighbours of word embed-
dings often tend to belong to the dominant sense,
even if minor senses have significant support in
the training corpus. We wanted to test if the same
problem remains for a principally different method
for similarity computation.

Algorithm 1: Word sense induction.
input : T – word similarity graph, N –

ego-network size, n – ego-network
connectivity, k – minimum cluster size

output: for each term t ∈ T , a clustering St of its
N most similar terms

foreach t ∈ T do
V ← N most similar terms of t from T
G← graph with V as nodes and no edges E

foreach v ∈ V do
V ′ ← n most similar terms of v from T
foreach v′ ∈ V ′ do

if v′ ∈ V then add edge (v, v′) to E
end

end
St ← ChineseWhispers(G)
St ← {s ∈ St : |s| ≥ k}

end

3.3 Word Sense Induction

We induce a sense inventory using a method sim-
ilarly to (Pantel and Lin, 2002) and (Biemann,
2006). A word sense is represented by a word
cluster. For instance the cluster “chair, bed, bench,
stool, sofa, desk, cabinet” can represent the sense
“table (furniture)”. To induce senses, first we con-
struct an ego-network G of a word t and then per-
form graph clustering of this network. The iden-

Vector Nearest Neighbours

table
tray, bottom, diagram, bucket, brackets, stack,
basket, list, parenthesis, cup, trays, pile, play-
field, bracket, pot, drop-down, cue, plate

table#0
leftmost#0, column#1, randomly#0, tableau#1,
top-left0, indent#1, bracket#3, pointer#0,
footer#1, cursor#1, diagram#0, grid#0

table#1
pile#1, stool#1, tray#0, basket#0, bowl#1,
bucket#0, box#0, cage#0, saucer#3, mirror#1,
birdcage#0, hole#0, pan#1, lid#0

Table 1: Neighbours of the word “table” and its
senses produced by our method. The neighbours
of the initial vector belong to both senses, while
those of sense vectors are sense-specific.

tified clusters are interpreted as senses (see Ta-
ble 2). Words referring to the same sense tend to
be tightly connected, while having fewer connec-
tions to words referring to different senses.

The sense induction presented in Algorithm 1
processes one word t of the word similarity graph
T per iteration. First, we retrieve nodes V of
the ego-network G: these are the N most similar
words of t according to T . The target word t itself
is not part of the ego-network. Second, we con-
nect the nodes in G to their n most similar words
from T . Finally, the ego-network is clustered with
the Chinese Whispers algorithm (Biemann, 2006).
This method is parameter free, thus we make no
assumptions about the number of word senses.

The sense induction algorithm has three meta-
parameters: the ego-network size (N) of the tar-
get ego word t; the ego-network connectivity (n)
is the maximum number of connections the neigh-
bour v is allowed to have within the ego-network;
the minimum size of the cluster k. The n param-
eter regulates the granularity of the inventory. In
our experiments, we set theN to 200, n to 50, 100
or 200 and k to 5 or 15 to obtain different granu-
lates, cf. (Biemann, 2010).

Each word in a sense cluster has a weight which
is equal to the similarity score between this word
and the ambiguous word t.

3.4 Pooling of Word Vectors

At this stage, we calculate sense embeddings for
each sense in the induced inventory. We assume
that a word sense is a composition of words that
represent the sense. We define a sense vector as
a function of word vectors representing cluster
items. Let W be a set of all words in the train-
ing corpus and let Si = {w1, . . . , wn} ⊆ W be

177

TWSI JBT w2v

table (furniture)
counter, console, bench, dinner
table, dining table, desk, sur-
face, bar, board

chair, room, desk, pulpit,
couch, furniture, fireplace,
bench, door, box, railing, tray

tray, bottom, bucket, basket,
cup, pile, bracket, pot, cue,
plate, jar, platter, ladder

table (data)
chart, list, index, graph,
columned list, tabulation,
standings, diagram, ranking

procedure, system, datum, pro-
cess, mechanism, tool, method,
database, calculation, scheme

diagram, brackets, stack, list,
parenthesis, playfield, drop-
down, cube, hash, results, tab

table (negotiations)
surface, counter, console, bar-
gaining table, platform, nego-
tiable, machine plate, level

— —

table (geo)
level, plateau, plain, flatland,
saturation level, water table, ge-
ographical level, water level

— —

Table 2: Word sense clusters from inventories derived from the Wikipedia corpus via crowdsourcing
(TWSI), JoBimText (JBT) and word embeddings (w2v). The sense labels are introduced for readability.

a sense cluster obtained during the previous step.
Consider a function vecw : W → Rm that maps
words to their vectors and a function γi : W → R
that maps cluster words to their weight in the clus-
ter Si. We experimented with two ways to cal-
culate sense vectors: unweighted average of word
vectors:

si =
∑n

k=1 vecw (wk)
n

;

and weighted average of word vectors:

si =
∑n

k=1 γi(wk)vecw (wk)∑n
k=1 γi(wk)

.

Table 1 provides an example of weighted pool-
ing results. While the original neighbours of the
word “table” contain words related to both furni-
ture and data, the neighbours of the sense vectors
are either related to furniture or data, but not to
both at the same time. Besides, each neighbour of
a sense vector has a sense identifier as we calculate
cosine between sense vectors, not word vectors.

4 Word Sense Disambiguation

This section describes how sense vectors are used
to disambiguate a word in a context.

Given a target word w and its context words
C = {c1, . . . , ck}, we first map w to a set of its
sense vectors according to the inventory: S =
{s1, . . . , sn}. We use two strategies to choose
a correct sense taking vectors for context words
either from the matrix of context embeddings or
from the matrix of word vectors. The first one is
based on sense probability in given context:

s∗ = arg max
i

P (C|si) = arg max
i

1
1 + e−c̄c·si

,

where c̄c is the mean of context embeddings:
k−1

∑k
i=1 vecc(ci) and functions vecc : W → Rm

map context words to context embeddings. Us-
ing the mean of context embeddings to calculate
sense probability is natural with the CBOW be-
cause this model optimises exactly the same mean
to have high scalar product with word embeddings
for words occurred in context and low scalar prod-
uct for random words (Mikolov et al., 2013).

The second disambiguation strategy is based on
similarity between sense and context:

s∗ = arg max
i

sim(si, C) = arg max
i

c̄w · si

‖c̄w‖ ·‖si‖ ,

where c̄w is the mean of word embeddings:
k−1

∑k
i=1 vecw(ci). The latter method uses only

word vectors (vecw) and require no context vec-
tors (vecc). This is practical, as the standard im-
plementation of word2vec does not save context
embeddings and thus most pre-computed models
provide only word vectors.

To improve WSD performance we also apply
context filtering. Typically, only several words in
context are relevant for sense disambiguation, like
“chairs” and “kitchen” are for “table” in “They
bought a table and chairs for kitchen.” For each
word cj in context C = {c1, . . . , ck} we calculate
a score that quantifies how well it discriminates
the senses:

max
i
f(si, cj)−min

i
f(si, cj),

where si iterates over senses of the ambiguous
word and f is one of our disambiguation strate-
gies: either P (cj |si) or sim(si, cj). The p most
discriminative context words are used for disam-
biguation.

178

Full TWSI Balanced TWSI
w2v JBT w2v JBT

no filter 0.676 0.669 0.383 0.397
filter, p = 5 0.679 0.674 0.386 0.403
filter, p = 3 0.681 0.676 0.387 0.409
filter, p = 2 0.683 0.678 0.389 0.410
filter, p = 1 0.683 0.676 0.390 0.410

Table 4: Influence of context filtering on disam-
biguation in terms of F-score. The models were
trained on Wikipedia corpus; the w2v is based
on weighted pooling and similarity-based disam-
biguation. All differences between filtered and un-
filtered models are significant (p < 0.05).

5 Experiments

We evaluate our method on two complementary
datasets: (1) a crowdsourced collection of sense-
labeled contexts; and (2) a commonly used Se-
mEval dataset.

5.1 Evaluation on TWSI

The goal of this evaluation is to test different
configurations of our approach on a large-scale
dataset, i.e. it is used for development purposes.

Dataset. This test collection is based on a large-
scale crowdsourced resource by Biemann (2012)
that comprises 1,012 frequent nouns with aver-
age polysemy of 2.26 senses per word. For these
nouns the dataset provides 145,140 annotated sen-
tences sampled from Wikipedia. Besides, it is ac-
companied by an explicit sense inventory, where
each sense is represented with a list of words that
can substitute target noun in a given sentence.

The sense distribution across sentences in the
dataset is skewed, resulting in 79% of contexts as-
signed to the most frequent senses. Therefore, in
addition to the full TWSI dataset, we also use a
balanced subset that has no bias towards the Most
Frequent Sense (MFS). This dataset features 6,165
contexts with five contexts per sense excluding
monosemous words.

Evaluation metrics. To compute WSD perfor-
mance, we create an explicit mapping between the
system-provided sense inventory and the TWSI
senses: senses are represented as bag of words
vectors, which are compared using cosine similar-
ity. Every induced sense gets assigned to at most
one TWSI sense. Once the mapping is completed,
we can calculate precision and recall of sense pre-
diction with respect to the original TWSI labeling.

Performance of a disambiguation model de-
pends on quality of the sense mapping. These
baselines facilitate interpretation of results:

• Upper bound of the induced inventory se-
lects the correct sense for the context, but
only if the mapping exist for this sense.

• MFS of the TWSI inventory assigns the
most frequent sense in the TWSI dataset.

• MFS of the induced inventory assigns the
identifier of the largest sense cluster.

• Random sense baseline of the TWSI and in-
duced sense inventories.

Discussion of results. Table 2 presents exam-
ples of the senses induced via clustering of nearest
neighbours generated by word embeddings (w2v)
and JBT as compared to the inventory produced
via crowdsourcing (TWSI). The TWSI contains
more senses (2.26 on average), while induced ones
have less senses (1.56 and 1.64, respectively). The
senses in the table are arranged in the way they are
mapped to TWSI during evaluation.

Table 3 illustrates how the granularity of the in-
ventory influences WSD performance. The more
granular the sense inventory, the better the match
between the TWSI and the induced inventory can
be established (mind that we map every induced
sense to at most one TWSI sense). Therefore, the
upper bound of WSD performance is maximal for
the most fine-grained inventories.

However, the relation of actual WSD perfor-
mance to granularity is inverse: the lower the num-
ber of senses, the higher the WSD performance
(in the limit, we converge to the strong MFS base-
line). We select a coarse-grained inventory for our
further experiments (n=200, k = 15).

Table 4 illustrates the fact that using context fil-
tering positively impacts disambiguation perfor-
mance, reaching optimal characteristics when two
context words are used.

Finally, Figure 3 presents results of our ex-
periments on the full and sense-balanced TWSI
datasets. First of all, our models significantly out-
perform random sense baseline of both TWSI and
induced inventories. Secondly, we observe that
pooling vectors using similarity scores as weights
is better than unweighted pooling. Indeed, some
clusters may contain irrelevant words and thus
their contribution should be discounted. Third, we
observe that using similarity-based disambigua-
tion mechanism yields better results as compared

179

Inventory #Senses Upper-bound of Inventory Probability-based WSD
Prec. Recall F-score Prec. Recall F-score

TWSI 2.26 1.000 1.000 1.000 0.484 0.483 0.484

w2v wiki, k = 15 1.56 1.000 0.479 0.648 0.367 0.366 0.366
JBT wiki, n = 200, k = 15 1.64 1.000 0.488 0.656 0.383 0.383 0.383
JBT ukWaC, n = 200, k = 15 1.89 1.000 0.526 0.690 0.360 0.360 0.360
JBT wiki, n = 200, k = 5 2.55 1.000 0.598 0.748 0.338 0.338 0.338
JBT wiki, n = 100, k = 5 3.59 1.000 0.671 0.803 0.305 0.305 0.305
JBT wiki, n = 50, k = 5 5.13 1.000 0.724 0.840 0.275 0.275 0.275

Table 3: Upper-bound and actual value of the WSD performance on the sense-balanced TWSI dataset,
function of sense inventory used for unweighted pooling of word vectors.

Figure 3: WSD performance of our method trained on the Wikipedia corpus on the full (on the left) and
on the sense-balanced (on the right) TWSI dataset. The w2v models are based on the CBOW with 300
dimensions and context window size 3. The JBT models are computed using the Malt parser.

to the mechanism based on probabilities. Indeed,
cosine similarity between embeddings proved to
be useful for semantic relatedness, yielding state-
of-the-art results (Baroni et al., 2014), while there
is less evidence about successful use-cases of the
CBOW as a language model.

Fourth, we confirm our observation that filter-
ing context words positively impacts WSD perfor-
mance. Finally, we note that models based on JBT-
and w2v-induced sense inventories yield compa-
rable results. However, the JBT inventory shows
higher performance (0.410 vs 0.390) on the bal-
anced TWSI, indicating the importance of a pre-
cise sense inventory. Finally, using the ”gold”
TWSI inventory significantly improves the per-
formance on the balanced dataset outperforming
models based on induced inventories.

5.2 Evaluation on SemEval-2013 Task 13

The goal of this evaluation is to compare the per-
formance of our method to state-of-the-art unsu-
pervised WSD systems.

Dataset. The SemEval-2013 task 13 “Word
Sense Induction for Graded and Non-Graded
Senses” (Jurgens and Klapaftis, 2013) provides 20
nouns, 20 verbs and 10 adjectives in WordNet-
sense-tagged contexts. It contains 20-100 contexts
per word, and 4,664 contexts in total, which were
drawn from the Open American National Corpus.
Participants were asked to cluster these 4,664 in-
stances into groups, with each group correspond-
ing to a distinct word sense.

Evaluation metrics. Performance is measured
with three measures that require a mapping
of sense inventories (Jaccard Index, Tau and
WNDCG) and two cluster comparison measures
(Fuzzy NMI and Fuzzy B-Cubed).

Discussion of results. We compare our ap-
proach to SemEval participants and the AdaGram
sense embeddings. The AI-KU system (Baskaya et
al., 2013) directly clusters test contexts using the
k-means algorithm based on lexical substitution
features. The Unimelb system (Lau et al., 2013)
uses a hierarchical topic model to induce and dis-

180

Supervised Evaluation Clustering Evaluation
Model Jacc. Ind. Tau WNDCG F.NMI F.B-Cubed

Baselines One sense for all 0.171 0.627 0.302 0.000 0.631
One sense per instance 0.000 0.953 0.000 0.072 0.000
Most Frequent Sense (MFS) 0.579 0.583 0.431 – –

SemEval AI-KU (add1000) 0.176 0.609 0.205 0.033 0.317
AI-KU 0.176 0.619 0.393 0.066 0.382
AI-KU (remove5-add1000) 0.228 0.654 0.330 0.040 0.463
Unimelb (5p) 0.198 0.623 0.374 0.056 0.475
Unimelb (50k) 0.198 0.633 0.384 0.060 0.494
UoS (#WN senses) 0.171 0.600 0.298 0.046 0.186
UoS (top-3) 0.220 0.637 0.370 0.044 0.451
La Sapienza (1) 0.131 0.544 0.332 – –
La Sapienza (2) 0.131 0.535 0.394 – –

Sense emb. AdaGram, α = 0.05, 100 dim. vectors 0.274 0.644 0.318 0.058 0.470

Our models w2v – weighted – sim. – filter (p = 2) 0.197 0.615 0.291 0.011 0.615
w2v – weighted – sim. – filter (p = 2): nouns 0.179 0.626 0.304 0.011 0.623
JBT – weighted – sim. – filter (p = 2) 0.205 0.624 0.291 0.017 0.598
JBT – weighted – sim. – filter (p = 2): nouns 0.198 0.643 0.310 0.031 0.595
TWSI – weighted – sim. – filter (p = 2): nouns 0.215 0.651 0.318 0.030 0.573

Table 5: The best configurations of our method selected on the TWSI dataset on the SemEval 2013 Task
13 dataset. The w2v-based methods rely on the CBOW model with 100 dimensions and context window
size 3. The JBT similarities were computed using the Malt parser. All systems were trained on the
ukWaC corpus.

ambiguate word senses. The UoS system (Hope
and Keller, 2013) is most similar to our approach:
to induce senses it builds an ego-network of a word
using dependency relations, which is subsequently
clustered using a simple graph clustering algo-
rithm. The La Sapienza system (Agirre and Soroa,
2009), relies on WordNet to get word senses and
perform disambiguation.

Table 5 shows a comparative evaluation of our
method on the SemEval dataset. Like above,
dependency-based (JBT) word similarities yield
slightly better results than word embedding sim-
ilarity (w2v) for inventory induction. In addi-
tion to these two configurations, we also built a
model based on the TWSI sense inventory (only
for nouns as the TWSI contains nouns only). This
model significantly outperforms both JBT- and
w2v-based models, thus precise sense inventories
greatly influence WSD performance.

As one may observe, performance of the best
configurations of our method is comparable to
the top-ranked SemEval participants, but is not
systematically exceeding their results. AdaGram
sometimes outperforms our method, sometimes it
is on par, depending on the metric. We interpret
these results as an indication of comparability of
our method to state-of-the-art approaches.

Finally, note that none of the unsupervised
WSD methods discussed in this paper, includ-

ing the top-ranked SemEval submissions and Ada-
Gram, were able to beat the most frequent sense
baselines of the respective datasets (with the ex-
ception of the balanced version of TWSI). Similar
results are observed for other unsupervised WSD
methods (Nieto Piña and Johansson, 2016).

6 Conclusion

We presented a novel approach for learning of
multi-prototype word embeddings. In contrast to
existing approaches that learn sense embeddings
directly from the corpus, our approach can oper-
ate on existing word embeddings. It can either in-
duce or reuse a word sense inventory. Experiments
on two datasets, including a SemEval challenge on
word sense induction and disambiguation, show
that our approach performs comparably to the state
of the art.

An implementation of our method with several
pre-trained models is available online.3

Acknowledgments

We acknowledge the support of the Deutsche For-
schungsgemeinschaft (DFG) foundation under the
project ”JOIN-T: Joining Ontologies and Seman-
tics Induced from Text”.

3https://github.com/tudarmstadt-lt/
sensegram

181

References
Eneko Agirre and Philip Edmonds. 2007. Word sense

disambiguation: Algorithms and applications, vol-
ume 33. Springer Science & Business Media.

Eneko Agirre and Aitor Soroa. 2009. Personalizing
PageRank for Word Sense Disambiguation. In Pro-
ceedings of the 12th Conference of the European
Chapter of the ACL, pages 33–41, Athens, Greece.

Satanjeev Banerjee and Ted Pedersen. 2002. An
adapted Lesk algorithm for word sense disambigua-
tion using WordNet. In Proceedings of the Third In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 136–145,
Mexico City, Mexico.

Marco Baroni and Alessandro Lenci. 2010. Dis-
tributional memory: A general framework for
corpus-based semantics. Computational Linguis-
tics, 36(4):673–721.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics, pages 238–247, Bal-
timore, Maryland. Association for Computational
Linguistics.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2016. Breaking sticks and am-
biguities with adaptive skip-gram. In Proceedings
of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS).

Osman Baskaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. AI-KU: Using Substitute Vectors and
Co-Occurrence Modeling for Word Sense Induction
and Disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM):
SemEval 2013), volume 2, pages 300–306, Atlanta,
Georgia, USA.

Chris Biemann and Martin Riedl. 2013. Text: Now
in 2D! a framework for lexical expansion with con-
textual similarity. Journal of Language Modelling,
1(1):55–95.

Chris Biemann. 2006. Chinese Whispers: An Effi-
cient Graph Clustering Algorithm and Its Applica-
tion to Natural Language Processing Problems. In
Proceedings of the First Workshop on Graph Based
Methods for Natural Language Processing, pages
73–80, New York City, USA.

Chris Biemann. 2010. Co-occurrence cluster features
for lexical substitutions in context. In Proceedings
of the 5th Workshop on TextGraphs in conjunction
with ACL 2010, Uppsala, Sweden.

Chris Biemann. 2012. Turk Bootstrap Word Sense
Inventory 2.0: A Large-Scale Resource for Lexical
Substitution. In Proceedings of the 8th International

Conference on Language Resources and Evaluation,
pages 4038–4042, Istanbul, Turkey.

Antoine Bordes, Weston Jason, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Proc. AAAI, San Fran-
cisco, CA, USA.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. A unified multilingual
semantic representation of concepts. In Proceed-
ings of the Association for Computational Linguis-
tics, pages 741–751, Beijing, China.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational linguistics, 16(1):22–29.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukwac, a very large web-derived corpus of english.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google, pages 47–54.

David Hope and Bill Keller. 2013. MaxMax: A
Graph-based Soft Clustering Algorithm Applied to
Word Sense Induction. In Proceedings of the 14th
International Conference on Computational Lin-
guistics and Intelligent Text Processing - Volume
Part I, pages 368–381, Samos, Greece. Springer-
Verlag.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the ACL, pages 873–
882, Jeju Island, Korea.

David Jurgens and Ioannis Klapaftis. 2013. Semeval-
2013 task 13: Word sense induction for graded
and non-graded senses. In Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), volume 2, pages 290–299, At-
lanta, Georgia, USA.

Dan Klein, Kristina Toutanova, H. Tolga Ilhan, Sepa-
ndar D. Kamvar, and Christopher D. Manning.
2002. Combining Heterogeneous Classifiers for
Word-Sense Disambiguation. In Proceedings of the
ACL-02 Workshop on Word Sense Disambiguation:
Recent Successes and Future Directions, volume 8,
pages 74–80, Philadelphia, PA.

Jey Han Lau, Paul Cook, and Timothy Baldwin. 2013.
unimelb: Topic Modelling-based Word Sense Induc-
tion. In Second Joint Conference on Lexical and
Computational Semantics (*SEM): SemEval 2013),
volume 2, pages 307–311, Atlanta, Georgia, USA.

Yoong Keok Lee and Hwee Tou Ng. 2002. An em-
pirical evaluation of knowledge sources and learn-
ing algorithms for word sense disambiguation. In
Proceedings of the Empirical Methods in Natural
Language Processing, volume 10, pages 41–48,
Philadelphia, PA.

182

Michael Lesk. 1986. Automatic Sense Disambigua-
tion Using Machine Readable Dictionaries: How
to Tell a Pine Cone from an Ice Cream Cone. In
Proceedings of the 5th International Conference on
Systems Documentation, pages 24–26, Toronto, ON,
Canada. ACM.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Conference on Empirical Methods in Natural
Language Processing, EMNLP’2015, pages 1722–
1732, Lisboa, Portugal.

Dekang Lin. 1998. An information-theoretic defini-
tion of similarity. In Proceedings of ICML, vol-
ume 98, pages 296–304, Madison, WI, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Workshop at International
Conference on Learning Representations (ICLR).,
pages 1310–1318, Scottsdale, AZ, USA.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR), 41(2):10.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient
non-parametric estimation of multiple embeddings
per word in vector space. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1059–1069, Doha, Qatar.

Luis Nieto Piña and Richard Johansson. 2015. A sim-
ple and efficient method to generate word sense rep-
resentations. In Proceedings of the International
Conference Recent Advances in Natural Language
Processing, Hissar, Bulgaria, September.

Luis Nieto Piña and Richard Johansson. 2016. Em-
bedding senses for efficient graph-based word sense
disambiguation. In Proceedings of TextGraphs-10,
Proceedings of the Human Language Technology
Conference of the NAACL, San Diego, United States.

Alexander Panchenko. 2013. Similarity measures for
semantic relation extraction. Ph.D. thesis, Univer-
sité catholique de Louvain, Louvain-la-Neuve, Bel-
gium.

Patrick Pantel and Dekang Lin. 2002. Discovering
word senses from text. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 613–619.
ACM.

Ted Pedersen and Rebecca Bruce. 1997. Distinguish-
ing word senses in untagged text. In Proceedings
of the Second Conference on Empirical Methods
in Natural Language Processing, pages 197–207,
Providence, RI.

Ted Pedersen, Satanjeev Banerjee, and Siddharth Pat-
wardhan. 2005. Maximizing semantic relatedness
to perform word sense disambiguation. University
of Minnesota supercomputing institute research re-
port UMSI, 25:2005.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, Doha, Qatar.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 109–117, Los Angeles, California.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of the
Association for Computational Linguistics, pages
1793–1803, Beijing, China. Association for Com-
putational Linguistics.

Eugen Ruppert, Jonas Klesy, Martin Riedl, and Chris
Biemann. 2015. Rule-based dependency parse col-
lapsing and propagation for german and english. In
Proceedings of the GSCL 2015, pages 58–66, Duis-
burg, Germany.

Gerard Salton, Anita Wong, and Chung-Shu Yang.
1975. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620.

Hinrich Schütze. 1998. Automatic word sense dis-
crimination. Computational linguistics, 24(1):97–
123.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In COLING, pages 151–160, Dublin, Ireland.

Jean Véronis. 2004. HyperLex: Lexical cartogra-
phy for information retrieval. Computer Speech and
Language, 18:223–252.

Dominic Widdows and Beate Dorow. 2002. A graph
model for unsupervised lexical acquisition. In Pro-
ceedings of the 19th international conference on
Computational linguistics, pages 1–7, Taipei, Tai-
wan.

Ziqi Zhang, Anna Lisa Gentile, and Fabio Ciravegna.
2013. Recent advances in methods of lexical se-
mantic relatedness–a survey. Natural Language En-
gineering, 19(04):411–479.

183

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 184–192,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Pair Distance Distribution:
a Model of Semantic Representation

Yonatan Ramni Oded Maimon
Department of Industrial Engineering

Tel-Aviv University
Tel-Aviv, Israel

{yona5;maimon;xmel}@post.tau.ac.il

Evgeni Khmelnitsky

Abstract

We introduce PDD (Pair Distance Distri-
bution), a novel corpus-based model of se-
mantic representation. Most corpus-based
models are VSMs (Vector Space Models),
which while being successful, suffer from
both practical and theoretical shortcom-
ings. VSM models produce very large,
sparse matrices, and dimensionality reduc-
tion is usually performed, leading to high
computational complexity, and obscuring
the meaning of the dimensions. Similarity
in VSMs is constrained to be both sym-
metric and transitive, contrary to evidence
from human subject tests. PDD is feature-
based, created automatically from corpora
without producing large, sparse matrices.
The dimensions along which words are
compared are meaningful, enabling better
understanding of the model and providing
an explanation as to how any two words
are similar. Similarity is neither symmet-
ric nor transitive. The model achieved ac-
curacy of 97.6% on a published semantic
similarity test.

1 Introduction

Semantic representation models are described by
Mitchell and Lapata (2008) as belonging to one of
three families, semantic networks, feature-based
models and semantic spaces. Briefly, semantic
networks represent words as nodes in a graph and
the semantic relations between them as edges, and
similarity between words is represented by the
path length between them. Edges may represent a
variety of different relations. Feature-based mod-
els assign a list of discrete features to each word,
and similarity of words is obtained from the com-
monalities and differences of their feature sets. As

indicated by Mitchell and Lapata (2008), seman-
tic networks and feature-based models are often
manually created by modelers, so that an effort is
required to produce them, and the results are sub-
jective.

Semantic spaces, also named DSMs (distribu-
tional semantic models) by Baroni and Lenci
(2010), rely on the distributional hypothesis, that
words that occur in the same contexts tend to have
similar meanings (Harris, 1954). At their most ba-
sic form, word co-occurrences in various contexts
are used to form feature vectors of words. DSMs
are divided by Baroni and Lenci (2010) into un-
structured DSMs, where word co-occurrences are
counted without regard to the relation between the
words, and structured DSMs, where triples of two
words and particular syntactic or lexico-syntactic
relations between them are counted. Various fea-
ture weighting schemes are employed, and a VSM
(vector space model) is usually formed using the
feature vectors (topic modeling (Griffiths et al.,
2007) is a notable exception). Similarities be-
tween words are measured by distances between
vectors in this multi-dimensional space, usually
following a dimensionality reduction. VSMs have
been successful in a number of tasks, such as word
similarity and word-relation similarity tests. How-
ever, VSMs have several shortcomings. Placing all
words in a multi-dimensional space, with greater
distance between any two words signifying lower
similarity between them, implies:

• All words have some similarity with one an-
other.

• For any word, all other words can be ordered
by their similarity to the given word.

• All pairs of words can be ordered by their
similarity.

• Similarity is symmetric.

184

• Transitivity - if any two words are both very
similar to a third word, they cannot be very
dissimilar.

• All instances of a word, whether the word is
ambiguous, polysemous, or attains different
meanings in different contexts, are mapped
to the same position in space.

It is our view that for similarity to exist between
two concepts (represented in our case by words),
they must have something in common, such as a
common dimension along which they have (possi-
bly different) values. With nothing in common,
two concepts bear no similarity to one another,
which is not the same as having little similarity.
As with relatives, some are close relatives of a per-
son, others are more distant relations of his, and
yet others are not related to him at all. Further-
more, similarity is ordinal, with numerical values,
when given by human subjects, serving as an aid
in ranking similarity, as is done with feelings of
pain, or happiness. Let’s illustrate some limita-
tions of VSMs with examples.
Example 1: is ’bank’ more similar to ’embank-
ment’ or to ’stock exchange’? ’bank’ is ambigu-
ous, so a possible solution would be to map these
two different senses independently to different po-
sitions in multi-dimensional space, assuming one
could automatically disambiguate them.
Example 2: is ’break’ more similar to ’interrupt’,
’separate’, ’breach’, ’burst’, or ’violate’? ’break’
is polysemous, with WordNet1 listing 59 senses,
which are in various degrees related to one an-
other, just for the verb. In this case, it does not
seem right to map each sense independently, as
they share some meaning.
Example 3: is ’queen’ more similar to ’king’ or to
’woman’? The court advisers may have one opin-
ion, and the queen’s physician another. It depends
on context. Similarly for ’man’ vs. ’woman’ and
’boy’, or ’cat’ vs. ’stuffed cat’ and ’dog’. When
VSMs are formed from a corpus, context is given
by the corpus for all instances of all words as a
package deal, and vectors of words are based on
that context.
Example 4: How similar is ’cat’ to ’submarine’?
If we find nothing in common, there is no similar-
ity, and the question doesn’t seem to make sense.
As with partially ordered sets, some pairs of words
are related to one another, while others are not.

1http://wordnet.princeton.edu

Example 5: Is ’flat’ more similar to ’apartment’,
or ’chair’ to ’table’? ’dog’ to ’cat’ or ’cow’ to
’sheep’? ’fork’ to ’shirt’ or ’stone’ to ’computer’?
For some questions of this kind we may have a
firm opinion, for others we may not be so sure,
and some questions don’t really make sense.
However, a VSM will have definite answers to
all questions in the above examples, regardless of
sense or context. Moreover, the symmetry and
transitivity of similarity imposed by VSMs contra-
dict human similarity judgments (Tversky, 1977).
These constraints of VSMs are due to the sym-
metry and triangle inequality conditions that must
be satisfied by any distance function. In addition,
Tversky and Hutchinson (1986) show that geomet-
ric models impose an upper bound on the number
of points that can share the same nearest neighbor,
and that particularly for conceptual data (such as
categorical ratings or associations of words), val-
ues for these exceed those possible in geometric
models. It has been suggested by Tversky and
Gati (1982) that ”similarity may be better char-
acterized as a feature-matching process based on
the weighting of common and distinctive features
than as a metric-distance function”. The model
we propose makes use of word co-occurrence in a
corpus to build a feature-based model of semantic
representation. We use sentence limits as our con-
text window, and measure the distance (counted in
the number of intervening words) between pairs
of words that co-occur in sentences. It is found
that for a word, its mean pmf (probability mass
function) of distance with its pair-words (hence
termed PDD - pair distance distribution) character-
izes it across corpora, and that semantically sim-
ilar words have a similar mean PDD. Given a
word, its features in our model are its pair-words
(those that co-occur with it within sentences), to-
gether with the frequency of pair occurrence and
its PDD. Thus we take into account word order,
which is disregarded by ’bag-of-words’ models.
As no sparse matrices are created, no dimension-
ality reduction is required. This makes our model
scalable both in computation and in storage, but
more importantly, the ’dimensions’ along which
we compare words are the feature words, which
are clear and meaningful. This stands in contrast
to the dimensions obtained following a dimen-
sionality reduction, the meanings of which often
aren’t clear. As words are not mapped into high-
dimensional spaces, and consequently similarities

185

are not measured with distances, the shortcomings
of VSMs are avoided. The rest of this paper is
structured as follows: Section 2 gives details of the
semantic representation model. In section 3, an
algorithm for evaluating similarity, based on our
model, is presented. In section 4, experiments and
their results are presented. Section 5 discusses the
scalability of our method, and section 6 concludes
the paper.

2 Model Details

Let w1, w2 be two distinct word forms (hence re-
ferred to as words). Given a corpus of docu-
mentsC, let S be the collection of all sentences
in C in which bothw1, w2 appear at least once,
S = {s1, s2, . . . sN}, for a total ofN such sen-
tences inS. For each sentencesi ∈ S, let p1, p2 be
the positions in the sentence of the wordsw1, w2

respectively. Define the distance between the two
wordsw1, w2 in the sentencesi:

d(si) = p2 − p1 (1)

For sentences of maximal lengthL,

|d(si)| ≤ L− 1, d(si) 6= 0 (2)

As an example, in the sentence ”The cat drank
some milk”, ’cat’ and ’milk’ are in positions2 and
5 respectively, and the distance between ’cat’ and
’milk’ is 3. DefineSj as the collection of sen-
tencessi in S in which d(si) = j, and|Sj | as the
number of sentences inSj , then for corpusC and
word-pair 〈w1, w2〉, the probability that the dis-
tance between the words (given a sentence con-
taining both words) isj is:

pr(d(si) = j) =

 |Sj |
N

, |j| ≤ L− 1, j 6= 0

0, otherwise (3)

whereN is the total number of sentences inS,
and L is the maximal sentence length. (if either
w1 or w2 appear more than once insi , only the
nearest pair is counted). In this manner, the Cor-
pus pmf, termedPDDC(w1, w2), of word-pair
〈w1, w2〉 distance in corpusC is obtained, for any
word-pair. GivenS and the positionp1 of word
w1 for eachsi ∈ S, it is also possible to calculate
the pmf of positionp2 of w2 in each sentencesi ,
assuming random distribution ofp2. Denoting the
length of sentencesi asli, the probability for the

positionp2 of w2 in the sentence to bek is:

pr(p2 = k) =

1

li − 1
, 1 ≤ k ≤ li, k 6= p1

0, otherwise (4)

From this, it follows that the probability for any
distancej between the two wordsw1, w2 in the
sentencesi (givenp1 and assuming random distri-
bution ofp2) is:

pr(d(si) = j) =
1/(li − 1), 1− p1 ≤ d(si) ≤ li − p1,

d(si) 6= 0
0, otherwise (5)

The probability for any particular distancej for
the word-pair〈w1, w2〉 in any sentence in corpus
C, pr(d(S) = j), given that the pair occurs in
the sentence, the positionp1 of w1 in the sentence
and assuming random distribution ofp2 may be
obtained by averaging the probability for that dis-
tance over all sentencessi ∈ S:

pr(d(S) = j) =
1
N

∑
i

pr(d(si) = j) (6)

Hence another pmf for word-pair〈w1, w2〉 dis-
tance in corpusC is obtained. Denote this, the
Random PDD, asPDDR(w1, w2). Whereas the
Corpus pmf,PDDC(w1, w2), is based on the cor-
pus data, the Random pmf,PDDR(w1, w2), is
based on the position ofw1 in sentences where the
word-pair occurs and on the sentences’ lengths,
and assumes random position ofw2 in those sen-
tences. Given a corpusC and a wordw1, denote
the set of all sentences inC in which w1 appears
asSw1 . The company ofw1, Co(w1) are defined
as those words which appear in a number of sen-
tences inSw1 above some threshold. Calculating
both Corpus and Random pmfs (as outlined above)
for each word-pair〈w1, wi〉 , wi ∈ Co(w1), it is
now possible to calculate the average Corpus and
Random pmfs forw1 with its companion words,
PDDC(w1) andPDDR(w1) respectively, by av-
eraging the distance probabilities for all compan-
ion words weighted by their frequency of occur-
rence in sentences ofSw1 ,

PDDC(w1) =
∑

i(PDDC(w1, wi)× n(i))∑
i n(i)

,

wi ∈ Co(w1) (7)

186

PDDR(w1) =
∑

i(PDDR(w1, wi)× n(i))∑
i n(i)

,

wi ∈ Co(w1) (8)

wheren(i) is the number of sentences in which
the pair of words〈w1, wi〉 appears. By us-
ing KLD (Kullback-Leibler Divergence) between
Corpus and Random pmfs,D(PDDC‖PDDR),
we can measure the amount of information that
is lost when the Random pmf of a wordw1,
PDDR(w1), is used to approximate its Corpus
pmf, PDDC(w1), as in the case of rectangular
context windows of unstructured DSMs.

D (PDDC‖PDDR) =∑
j

(
log

(
PDDC(j)
PDDR(j)

)
PDDC(j)

)
,

1− L ≤ j ≤ L− 1, j 6= 0 (9)

where j is the distance betweenw1 and its com-
pany words (all PDDs in eq. 9 are ofw1, which
has been omitted for clarity). This statistic is a
property of wordw1 in corpusC, which indicates
the amount of information contained in the order
of the words that are in the context ofw1, above
the information that is carried by their mere pres-
ence there. It is also possible to calculate the in-
formation in any specific position in the context,
by replacing thePDDR value for that position
with the PDDC value, multiplying the remain-
ing probabilities by a suitable factor to keep the
sum of probabilities one, and calculating KLD be-
tweenPDDC and the amendedPDDR. The dif-
ference between this KLD value and the former
KLD value indicates the information for that posi-
tion.
Most previous research on unstructured DSMs has
used, in any one study, the same context win-
dow for all words in the corpus, as regards win-
dow size, position and weights. Even when sev-
eral different window parameters have been com-
pared,(Bullinaria and Levy, 2007; Levy et al.,
1999; Lund and Burgess, 1996; Sahlgren, 2006),
each window configuration was used for the whole
corpus, and comparison made on basis of the final
results. We know of no attempt to test different
window configurations for different words. How-
ever, there is no evidence to suggest that the same
window configuration is the optimal one for all

words. We suggest a scheme that could be use-
ful in determining weighting due to word order.
PPMI (positive pointwise mutual information),
which compares context window co-occurrence
frequency with expected frequency, has been suc-
cessfully used to weight words found in rectangu-
lar context windows (Bullinaria and Levy, 2007;
Church and Hanks, 1990; Niwa and Nitta, 1994),
based on their occurrence regardless of order. In
our case,PDDR(k) represents the chance proba-
bility of observing one of a word’s company words
a distance ofk words from it, andPDDC(k) rep-
resents the probability of this occurring in the cor-
pus (given they co-occur in a sentence). We pro-
pose the following additional weight,Wt(k), be
used for wordw1, for positionk words away from
it,

Wt(k) = log
PDDC(k)
PDDR(k)

, PDDC(k) > PDDR(k),

0, otherwise (10)

wherePDDC is the Corpus pmf of wordw1, and
PDDR is its Random pmf.

3 Similarity Algorithm

Though differences between word PDDs could be
used to measure similarity between words, this
would lead to some of difficulties associated with
VSMs, as in effect we would be measuring dis-
tances in a high-dimensional space. By treating a
word’s company as its features, we can compare
two words based on their common pair-words.
The algorithm we adopt is as follows:

• For every vocabulary wordw1:

– For every other vocabulary wordw2,:

∗ Determine wordsCo(w1, w2) that are in the
company of bothw1 andw2,

Co(w1, w2) = Co(w1) ∩ Co(w2) (11)

∗ For every wf ∈ Co(w1, w2), calculate
PDDC(w1, wf) and PDDC(w2, wf) using
Eq. (3), and determine the difference between
w1 and w2, based onwf , as the cosine “dis-
tance” between them,

dwf
(w1, w2) =

1− PDDC(w1, wf)PDDC(w2, wf)
|PDDC(w1, wf)||PDDC(w2, wf)| (12)

187

∗ For all wf ∈ Co(w1, w2), sortdwf
(w1, w2) in

ascending order,

Dw1,w2 ={
dwf1

(w1, w2), dwf2
(w1, w2) . . .

}
(13)

∗ Set the dissimilarity ofw1 to w2 to be the
sum of the firstn elements ofDw1,w2 , (n is an
experimentally determined parameter):

Diss(w1, w2) =
n∑

i=1

Dw1,w2(i) (14)

w1 is considered to have no similarity with
wordsw2 that do not have common pair-words
with it.

– Order all vocabulary words that have common
pair-words withw1, by increasing dissimilarity
of w1 to them.

We now have, for each vocabulary wordw1, all
other vocabulary words that have common pair-
words withw1, sorted by the dissimilarity ofw1

to them. We define the dissimilarity ofw1 to
any other wordwx in this list to be the rank of
wx in this sorted list, not the numerical value
Diss(w1, wx). The differences used above, in
Equation (12), do not take into account the cor-
pus frequency of the words and pairs of words,
and are termed unweighted differences. Another
possibility is to use weighting that expresses these
frequencies. The following weighting has been
shown to give good results (see Section 4):

Weighted Differencewf
(w1, w2) =

dwf
(w1, w2)× log

(
Cf

C1,f

)d

× log(C2)
d
2 (15)

wheredwf
(w1, w2) is the unweighted difference,

Cf is the corpus count ofwf , C1,f is the corpus
count of co-occurrence ofw1 andwf in sentences,
C2 is the corpus count ofw2, andd is an experi-
mentally determined parameter. The weighted dif-
ference is then used in place of the unweighted
difference in the next stages. It will be noted

that log
(

Cf

C1,f

)
is non-negative, and increases as

the PMI (pointwise mutual information) between
w1 andwf decreases (the corpus count ofw1 is
constant when ordering the similarity ofw1 to all
other words, and is therefore omitted), so this term
penalizes pair-words with low PMI tow1. The
last term penalizes, in the ordering of all corpus

words by similarity ofw1 to them, wordsw2 with
high corpus frequency. Note that the dissimilar-
ity Diss(w1, w2) based on weighted differences is
not symmetric with respect tow1 andw2. Dissim-
ilarities based on both weighted and unweighted
differences do not obey the triangle inequality, so
that w1 may be very similar to bothw2 andw3,
without requiring any minimal similarity between
w2 and w3. Both dissimilarities also do not re-
strict the number of words that can share a nearest
neighbor - any number of words can havew1 as
the word they are most similar to.

4 Experimental Details

4.1 ComputingPDDC

An initial experiment was carried out on 17,000
medical papers on diseases in eight different, but
related, domains. The papers were returned by
Google Scholar using search words relating to
each domain, downloaded in pdf format and con-
verted to text, to form eight corpora. The texts
were tokenized, and lower-cased (using raw sur-
face forms of words means different parts of
speech, as well as different senses, are conflated).
For vocabulary purpose, the text was filtered for
stop words, numbers and any word not beginning
with an alphanumeric character, and only words
appearing at least 100 times were used. Sentences
were delimited, and sentences with a length of
over 50 words were discarded. Word-pairs were
obtained from the eight corpora, for word-pair dis-
tance of up to 25 words, for word-pairs appearing
in at least 10 sentences.PDDC was calculated
for all pair words, which ranged in number from
6,300 to 13,700 words for each domain, and a total
number of 14,900 unique words, and 2.95 million
unique pairs, for all domains combined. Fig. 1
below showsPDDC for ’effect’, ’cell’, ’red’ and
’show’, respectively, for the eight domains super-
imposed. It may be seen that each word has a char-
acteristicPDDC across domains, and that differ-
ent words have a differentPDDC .

4.2 ComputingPDDC and PDDR

Google Scholar was again used to download arti-
cles from journals with the word ’science’ in their
title. Seven search words were used: ’physics’,
’chemistry’, ’biology’, ’engineering’, ’medicine’,
’information’ and ’environment’. Over 27,000
pdfs were downloaded, and processed as in the
previous experiment. Again, only words appear-

188

−20 −10 1 10 20
0

0.02

0.04

0.06

0.08
effect

−20 −10 1 10 20
0

0.02

0.04

0.06

0.08
cell

−20 −10 1 10 20
0

0.05

0.1

0.15

0.2
red

Distance in Words

P
ro

ba
bi

lit
y

−20 −10 1 10 20
0

0.02

0.04

0.06

0.08
show

Figure 1: PDDC for ’effect’, ’cell’, ’red’ and
’show’ across eight domains

ing at least 100 times were used (32,341 words),
pair distance of up to 25 words was considered,
andPDDC andPDDR for all pairs appearing at
least 10 times calculated. This resulted in 23,155
words and 3.9 million word pairs. Figure 2 be-
low showsPDDC and PDDR for four words,
’black’, ’show’, ’study’ and ’significantly’. The
PDDR of a word is determined by its position in
sentences and the length of these sentences. The
PDDC is determined by the usage of the word
with its company. It may be seen that as we move
in the sentence away from the word, itsPDDC

eventually follows itsPDDR from below. This is
expected, as a word’s company are more likely to
be near it (and hence less likely to be farther away)
than predicted by random chance, and because not
much information is expected to be found in the
order of a word’s company that is not near it. How-
ever, the more interesting part is the one near the
word, where thePDDC andPDDR differ con-
siderably. Each word has a distinctive pattern,
from which we may learn the amount of informa-
tion in the order of the words around it, as detailed
in Section 2. For ’black’ and ’significantly’, it is
the following word that holds the most informa-
tion, for ’show’ it is the second word following,
and for ’study’ it is the third word following, with
positions immediately around it held by company
words less often than by chance (presumably be-
cause they are held by function words). This be-
havior is probably affected by each word’s most
frequent part-of-speech usage in the corpus, for
example, ’black’ as an adjective is likely to have
a related content word following it.

−20 −10 1 10 20
0

0.04

0.08

0.12
black

−20 −10 1 10 20
0

0.02

0.04

0.06

show

−20 −10 1 10 20
0

0.01

0.03

0.05

Distance in Words

P
ro

ba
bi

lit
y

study

−20 −10 1 10 20
0

0.02

0.04

0.06

0.08
significantly

PDDc
PDDr

Figure 2:PDDC andPDDR for ’black’, ’show’,
’study’, and ’significantly’

Fig. 3 compares thePDDC of 10 adjectives, 5
colors (’black’, ’red’, ’blue’, ’white’, ’green’) and
5 size adjectives (’huge’, ’big’, ’great’, ’large’,
’enormous’). The top row shows the five colors
and five sizesPDDC . The bottom row shows on
the left the mean color and sizePDDC , and on
the right all color and sizePDDC . It may be seen
that though color and sizePDDC are similar, they
differ, particularly in positions nearest the word.
Clustering the tenPDDC into two clusters, us-
ing kmeans clustering and cityblock distance, sep-
arates them correctly into colors and sizes. This
illustrates that (at least in this case) thePDDC is
related also to their semantic content, and not only
to their part-of-speech.

−20 −10 1 10 20
0

0.1

0.2
5 colors

−20 −10 1 10 20
0

0.1

0.2
5 sizes

−6 −4 −2 1 2 4 6
0

0.1

0.2
mean color vs. mean size

Distance in Words

P
ro

ba
bi

lit
y

mean size
mean color

−6 −4 −2 1 2 4 6
0

0.1

0.2
colors and sizes

size
color

Figure 3:PDDC Comparison for Color and Size
Adjectives

189

4.3 Computing Weights for Positions in the
Context Window

Using eq. 10, weights were calculated for posi-
tions in the context window of all words that have
pairs. These weights are meant to reflect the infor-
mation in the order of the words, given that they
occur in the window (a fact that by itself carries
information). It turns out that these weights differ
from one word to another. Fig. 4.3 shows on the
top rowPDDC vs. PDDR for ’red’ and ’year’.
The bottom row shows the weights calculated for
their context windows, together with the weights
for another, semantically similar word (’black’
and ’day’ respectively). Weights not shown are
zero. The adjectives get the greatest weight for
the following word, and zero weight for the pre-
ceding word. The nouns ’year’ and ’day’ get zero
weight for both the preceding and the following
words, with ’year’ getting the greatest weights for
the fourth word preceding and the third word fol-
lowing, and ’day’ for the second word preceding
and the third word following. The nouns also
have weights for wider contexts than the adjec-
tives. This example shows that different words
have different optimal context windows, both in
width and in weight, as regards the information in
word order.

−20 −10 1 10 20
0

0.02

0.04

0.06

0.08

0.1
red PDD

P
ro

ba
bi

lit
y

PDDc
PDDr

−20 −10 1 10 20
0

0.01

0.02

0.03

0.04

0.05
year PDD

PDDc
PDDr

−6−5−4−3−2−1 1 2 3 4 5
0

0.5

1

1.5
Weights for ’red’ and ’black’

Distance in Words

W
ei

gh
t

red
black

−12−10−8 −6 −4 −2 2 4 6 8
0

0.1

0.2

0.3

0.4

Weights for ’year’ and ’day’

year
day

Figure 4: Context Window Weights

4.4 TOEFL Test

In order to increase vocabulary size, the ukWaC
corpus2 holding over a billion words in documents
crawled from the internet was used (Baroni et al.,

2http://wacky.sslmit.unibo.it

2009). The same processing as in the previous ex-
periments was applied. This resulted in a vocabu-
lary of 136,812 words with a frequency of at least
100 in the corpus. The TOEFL synonym dataset
(Landauer and Dumais, 1997) consists of 80 ques-
tion words, for each of which 4 answer words are
given, and the task is to select the answer word
most similar to the question word. The test con-
tains 391 unique words, 7 of which were miss-
ing in our vocabulary. Three questions had one
wrong answer word missing, and these were at-
tempted without the missing word. One question
had all but one wrong answer word missing, and
was marked as wrong. For each TOEFL word,
word-pairs that appear in at least 10 sentences in
the corpus were extracted. The method we used
to select the correct answer is by ordering the an-
swer words by decreasing similarity of the ques-
tion word to them as outlined in section 3, and
choosing as correct the top word. Cosine distance
was used, and values forn, the number of common
feature words, from 1 to 50 were evaluated. Both
unweighted and weighted differences were calcu-
lated. A grid search was performed for the best
combination ofn andd, and the values of 5 and
3.5 respectively give a result of 86%. However
any combination of values forn in the range 3-9
and ford in the range 2-5, give a result of 80% and
above. Fig. 5 shows the results with both weighted
(d = 3.5) and unweighted differences, as a func-
tion of the number of feature words used. It will
be noticed that with the weighted differences, it
takes 3-5 feature words to get optimal results. Bet-
ter results on the TOEFL test have been achieved
by (Rapp, 2003; Han, 2014; Pilehvar et al., 2013;
Turney et al., 2003; Bullinaria and Levy, 2012),
ranging from 92.5 to 100%. Han (2014) and Tur-
ney et al. (2003) are hybrid approaches, combin-
ing the results of several methods. Pilehvar et al.
(2013) relies on WordNet3 for sense inventory of
words, and uses a substantially different version
of the test. Both Bullinaria and Levy (2012) and
Rapp (2003), after obtaining a vocabulary from a
corpus, artificially introduce into their data out-
of-vocabulary TOEFL words, which would not be
possible for open-ended questions.

4.5 Distance Test

This experiment uses the same corpus and the
same processing as the previous experiment. The

3http://wordnet.princeton.edu

190

0 10 20 30 40 50

75

80

85
P

er
ce

nt
 A

ns
w

er
s

C
or

re
ct

n, Number of Feature Words
 used for Sum

Weighted (d = 3.5)
Unweighted

Figure 5: TOEFL Test Results

distance comparison test (Bullinaria and Levy,
2007), for which the data has kindly been made
available by the authors on their website, is also
similar to the TOEFL test. This test consists of 200
pairs of semantically related words. For each pair,
one word is set as the question word. The other
pair word, the answer word, is included in a list
with 10 additional words, chosen at random from
the other pairs. The task is to sort this list in order
of decreasing similarity to the question word, and
points are awarded according to the position of the
answer word in this list (1 point for 1st position,
0.9 for 2nd, etc.). Using the same method as in the
previous experiment, results for unweighted and
weighted distance (d = 3) are shown in fig. 6 be-
low. A value of 97.6% is obtained for this weight,
d=3, and forn with a value of 7 or 8. However any
combination of values ford in the range 2-4.5 and
n in the range 4-11 yields a result of over 97%.

0 10 20 30 40 50

86

90

94

98

n, Number of Feature Words used for Sum

P
er

ce
nt

 A
ns

w
er

s
C

or
re

ct

Weighted (d = 3)
Unweighted

Figure 6: Distance Test Results

5 Scalability

The model size is governed by the numberP of
distinct word-pairs that occur in sentences of the
corpus, which is related to the vocabulary size,V,
which in turn depends onN, the number of tokens
in the corpus. For the ukWac corpus,V ∼ cN0.53,

and for pairs with a distance of up to 6 words, that
appear at least 5 times,P grows asN0.80. This
shows that the model size is scalable with corpus
size. Withp as the maximal pair distance used, the
complexity of building thePDD model is bounded
by 2pN , and is thereforeO(N), again scalable
with corpus size. In order to arrange all vocab-
ulary wordsV by similarity of a single wordw
to them, it is necessary to find the bestn features
each vocabulary word has in common withw, and
calculate the similarity based on the sum of differ-
ences for then features. Doing this for all vocab-
ulary words (i.e. arranging all words in order of
similarity of every word to them) is governed by
C, the number of common features all vocabulary
words have with all other vocabulary words. For
the ukWac corpus, (again for pairs with a distance
of up to 6 words, that appear at least 5 times),
C grows asN1.21. While this grows faster than
corpus size, it is feasible to calculate this for the
ukWac corpus. For larger corpora it may be nec-
essary to limit, for each word, the calculation of its
similarity to words that have a number of common
pair-words with it above some threshold.

6 Discussion and Conclusions

We have presented a novel model of semantic rep-
resentation, that is scalable and does not suffer
from the shortcomings of VSMs. Two words that
have no common features are not considered sim-
ilar, and are not given a similarity value. Simi-
larity is not symmetric, in accordance with human
similarity judgments. Similarity is not transitive,
so that a given word may be similar to two other
words, to each with different senses of the given
word, or in different contexts, without necessitat-
ing any similarity between the two other words.
The features with which the similarity between a
pair of words is evaluated are clear and meaning-
ful - the common pair-words. The model makes
it possible to select which features of a word to
use when evaluating similarity, thus enabling one
to take into account different senses and different
contexts of a word. The model has been shown
to work well on word similarity tasks. Further
work could use the model for word disambigua-
tion tasks, as different senses of a word are ex-
pected to have different PDDs. The current work
has used pair distance distribution, and compared
words based on their common features. Future
work could use triplet distance distribution, and

191

take into account distinctive word features as well
as the common features.

References

Marco Baroni and Alessandro Lenci. 2010. Dis-
tributional memory: A general framework for
corpus-based semantics.Computational Linguis-
tics, 36(4):673–721.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The wacky wide
web: a collection of very large linguistically pro-
cessed web-crawled corpora.Language resources
and evaluation, 43(3):209–226.

John A Bullinaria and Joseph P Levy. 2007. Extracting
semantic representations from word co-occurrence
statistics: A computational study.Behavior re-
search methods, 39(3):510–526.

John A Bullinaria and Joseph P Levy. 2012. Extracting
semantic representations from word co-occurrence
statistics: stop-lists, stemming, and svd.Behavior
research methods, 44(3):890–907.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy.Computational linguistics, 16(1):22–29.

Thomas L Griffiths, Mark Steyvers, and Joshua B
Tenenbaum. 2007. Topics in semantic representa-
tion. Psychological review, 114(2):211–244.

Lushan Han. 2014.Schema free querying of semantic
data. Ph.D. thesis, University of Maryland.

Zellig S Harris. 1954. Distributional structure.Word,
10(2-3):146–162.

Thomas K Landauer and Susan T Dumais. 1997. A
solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and rep-
resentation of knowledge.Psychological review,
104(2):211–240.

Joseph P Levy, John A Bullinaria, and Malti Patel.
1999. Explorations in the derivation of word co-
occurrence statistics.South Pacific Journal of Psy-
chology, 10(01):99–111.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instru-
ments, & Computers, 28(2):203–208.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. InACL-08: HLT,
pages 236–244.

Yoshiki Niwa and Yoshihiko Nitta. 1994. Co-
occurrence vectors from corpora vs. distance vec-
tors from dictionaries. InProceedings of the 15th
conference on Computational linguistics-Volume 1,
pages 304–309. Association for Computational Lin-
guistics.

Mohammad Taher Pilehvar, David Jurgens, and
Roberto Navigli. 2013. Align, disambiguate and
walk: A unified approach for measuring semantic
similarity. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1341–1351.

Reinhard Rapp. 2003. Word sense discovery based on
sense descriptor dissimilarity. InProceedings of the
ninth machine translation summit, pages 315–322.

Magnus Sahlgren. 2006.The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Stockholm
University.

Peter Turney, Michael L Littman, Jeffrey Bigham, and
Victor Shnayder. 2003. Combining independent
modules to solve multiple-choice synonym and anal-
ogy problems. InProceedings of the International
Conference on Recent Advances in Natural Lan-
guage Processing (RANLP-03), pages 482–489.

Amos Tversky and Itamar Gati. 1982. Similarity, sep-
arability, and the triangle inequality.Psychological
review, 89(2):123–154.

Amos Tversky and J Hutchinson. 1986. Nearest neigh-
bor analysis of psychological spaces.Psychological
review, 93(1):3–22.

Amos Tversky. 1977. Features of similarity.Psycho-
logical review, 84(4):327–352.

192

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 193–200,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Measuring semantic similarity of words using concept networks

Gábor Recski
Research Institute for Linguistics
Hungarian Academy of Sciences
H-1068 Budapest, Benczúr u. 33
recski@mokk.bme.hu

Eszter Iklódi
Dept of Automation and Applied Informatics
Budapest U of Technology and Economics
H-1117 Budapest, Magyar tudósok krt. 2

eszter.iklodi@gmail.com

Katalin Pajkossy
Department of Algebra

Budapest U of Technology and Economics
H-1111 Budapest, Egry J. u. 1
pajkossy@mokk.bme.hu

András Kornai
Institute for Computer Science

Hungarian Academy of Sciences
H-1111 Budapest, Kende u. 13-17

andras@kornai.com

Abstract

We present a state-of-the-art algorithm
for measuring the semantic similarity of
word pairs using novel combinations of
word embeddings, WordNet, and the con-
cept dictionary 4lang. We evaluate our
system on the SimLex-999 benchmark
data. Our top score of 0.76 is higher than
any published system that we are aware of,
well beyond the average inter-annotator
agreement of 0.67, and close to the 0.78
average correlation between a human rater
and the average of all other ratings, sug-
gesting that our system has achieved near-
human performance on this benchmark.

0 Introduction

We present a hybrid system for measuring the se-
mantic similarity of word pairs. The system relies
both on standard word embeddings, the WordNet
database, and features derived from the 4lang
concept dictionary, a set of concept graphs built
from entries in monolingual dictionaries of En-
glish. 4lang-based features improve the perfor-
mance of systems using only word embeddings
and/or WordNet, our top configurations achieve
state-of-the-art results on the SimLex-999 data,
which has recently become a popular benchmark
of word similarity metrics.

In Section 1 we summarize earlier work on
measuring word similarity and review the latest
results achieved on the SimLex-999 data. Sec-
tion 2 describes our experimental setup, Sec-
tions 2.1 and 2.2 documents the features obtained

using word embeddings and WordNet. In Sec-
tion 3 we briefly introduce the 4lang resources
and the formalism it uses for encoding the mean-
ing of words as directed graphs of concepts, then
document our efforts to develop novel 4lang-
based similarity features. Besides improving the
performance of existing systems for measuring
word similarity, the goal of the present project is to
examine the potential of 4lang representations in
representing non-trivial lexical relationships that
are beyond the scope of word embeddings and
standard linguistic ontologies.

Section 4 presents our results and pro-
vides rough error analysis. Section 5 offers
some conclusions and plans for future work.
All software presented in this paper is avail-
able for download under an MIT license at
http://github.com/recski/wordsim.

1 Background

Measuring the semantic similarity of words is a
fundamental task in various natural language pro-
cessing applications. The ability to judge the
similarity in meaning of any two linguistic struc-
tures reflects on the quality of the representations
used. Vector representations (word embeddings)
are commonly used as the component encoding
(lexical) semantics in virtually all NLP applica-
tions. The similarity of word vectors is by far the
most common source of information for semantic
similarity in state-of-the-art systems, e.g. nearly
all top-scoring systems at the 2015 SemEval Task
on measuring semantic similarity (Agirre et al.,
2015) rely on word embeddings to score sentence
pairs (see e.g. (Sultan et al., 2015; Han et al.,

193

2015)).
Hill et al. (2015) proposed the SimLex-999

dataset as a benchmark for word similarity, argu-
ing that pre-existing gold standards measure as-
sociation, not similarity, of word pairs; e.g. the
words cup and coffee receive a high score by an-
notators in the widely used wordsim353 data
(Finkelstein et al., 2002). SimLex has since been
used to evaluate various algorithms for measur-
ing word similarity. Hill et al. (2015) reports a
Spearman correlation of 0.414 achieved by an em-
bedding trained on Wikipedia using word2vec
(Mikolov et al., 2013). Schwartz et al. (2015)
achieves a score of 0.56 using a combination of
a standard word2vec-based embedding and the SP
model, which encodes the cooccurrence of words
in symmetric patterns such as X and Y or X as well
as Y.

Banjade et al. (2015) combined multiple word
embeddings with the word similarity algorithm of
(Han et al., 2015) used in a top-scoring SemEval
system, and simple features derived from Word-
Net (Miller, 1995) indicating whether word pairs
are synonymous or antonymous. Their top sys-
tem achieved a correlation of 0.64 on SimLex.
The highest score we are aware of is achieved
using the Paragram embedding (Wieting et al.,
2015), a set of vectors obtained by training pre-
existing embeddings on word pairs from the Para-
phrase Database (Ganitkevitch et al., 2013). The
top correlation of 0.69 is measured when using
300-dimension embedding created from the same
GloVe-vectors that have been introduced in this
section (trained on 840 billion tokens). Hyper-
parameters of this database have been tuned for
maximum performance on SimLex, another ver-
sion tuned for the WS-353 dataset achieves a cor-
relation of 0.667.

2 Setup

Our system is trained on a variety of real-valued
and binary features generated using word embed-
dings, WordNet, and 4lang definition graphs.
Each class of features will be presented in de-
tail below. We perform support vector regres-
sion (with RBF kernel) over all features using the
numpy library, the model is trained on 900 pairs
of the SimLex data and used to obtain scores for
the remaining 99 pairs. We compute the Spearman
correlation of the output with SimLex scores. We

evaluate each of our models using tenfold cross-
validation and by averaging the ten correlation fig-
ures. The changes in performance caused by pre-
viously used feature classes are described next, the
performance of all major configurations are sum-
marized in Section 4.

2.1 Word embeddings

Features in the first group are based on word vec-
tor similarity. For each word pair the cosine sim-
ilarity of the corresponding two vectors is cal-
culated for all embeddings used. Three sets of
word vectors in our experiments were built using
the neural models compared by Hill et al. (2015):
the SENNA1 (Collobert and Weston, 2008), and
Huang2 (Huang et al., 2012) embeddings contain
50-dimension vectors and were downloaded from
the authors’ webpages. The word2vec (Mikolov
et al., 2013) vectors are of 300 dimensions and
were trained on the Google News dataset3.

We extend this set of models with GloVe vec-
tors4 (Pennington et al., 2014), trained on 840
billion tokens of Common Crawl data5, and the
two word embeddings mentioned in Section 1
that have recently been evaluated on the SimLex
dataset: the 500-dimension SP model6 (Schwartz
et al., 2015) (see Section 1) and the 300-dimension
Paragram vectors7 (Wieting et al., 2015). The
model trained on 6 features corresponding to the 6
embeddings mentioned achieves a Spearman cor-
relation of 0.72, the performance of individual em-
beddings is listed in Table 1.

2.2 Wordnet

Another group of features are derived using
WordNet (Miller, 1995). WordNet-based metrics
proved to be useful in the Semeval-system of Han
et al. (2013), who used these metrics for calcu-
lating a boost of word similarity scores. The top
system of Banjade et al. (2015) also includes a
subset of these features. We chose to use four
of these metrics as binary features in our system;

1http://ronan.collobert.com/senna/
2http://www.socher.org
3https://code.google.com/archive/p/

word2vec/
4http://nlp.stanford.edu/projects/

glove/
5https://commoncrawl.org/
6http://www.cs.huji.ac.il/˜roys02/

papers/sp_embeddings/sp_embeddings.html
7http://ttic.uchicago.edu/˜wieting/

194

System Spearman’s ρ

Huang 0.14
SENNA 0.27
GloVe 0.40
Word2Vec 0.44
SP 0.50
Paragram 0.68

6 embeddings 0.72

Table 1: Performance of word embeddings on
SimLex

these indicate whether one word is a direct or two-
link hypernym of the other, whether the two are
derivationally related, and whether one word ap-
pears frequently in the glosses of the other (and its
direct hypernym and its direct hyponyms). Each
of these features improved our system indepen-
dently, adding all of them brought the system’s
performance to 0.73. A model trained on the 4
WordNet-based features alone achieves a corre-
lation of 0.33.

3 4lang

The 4lang theory of semantics was introduced
and motivated in Kornai (2010) and Kornai
(2012). The name refers to the initial concept dic-
tionary, which had bindings in four languages, rep-
resentative samples of the major language fami-
lies spoken in Europe; Germanic (English), Slavic
(Polish), Romance (Latin), and Finno-Ugric (Hun-
garian). Today, bindings exist in over 40 lan-
guages (Ács et al., 2013). We only present a
bird’s-eye view here, and refer the reader to the
book-length presentation (Kornai, in preparation)
for details. In brief, 4lang is an algebraic (sym-
bolic) system that puts the emphasis on lexical def-
initions at the word and sub-word level, and on
valency (slot-filling) on the phrase and sentence
level. Paragraphs and yet higher (discourse) units
are not well worked out, but these play no role in
any of the approaches to analogy and similarity
that we are aware of.

Historically, 4lang falls in the AI/KR tradi-
tion, following on the work of Quillian (1969),
Schank (1975), and more recently Banarescu et al.
(2013). Linguistically, it is closest to Wierzbicka
(1972), Goddard (2002) and to modern theories of
case grammar and linking theory (see Butt (2006)

for a summary). Computationally, 4lang is in
the finite state tradition (Koskenniemi, 1983), ex-
cept it relies on an extension of finite state au-
tomata (FSA) introduced by Eilenberg (1974) to
machines.

In addition to the usual state machine (where
letters of the alphabet correspond to directed edges
running between the states), an Eilenberg machine
will also have a base set X, with each letter of the
alphabet corresponding to a binary relation over
X . As the machine consumes letters one by one,
the corresponding relations are composed. How
this mechanism can be used to account for slot-
filling in a variable-free setting is described in Kor-
nai (2010).

Central to the goals of the current paper is the
structure ofX . As a first approximation, X can be
thought of as a hypergraph, where each hypernode
is a lexeme (for a total of about 105 such hypern-
odes), and hyperedges run from (hyper)node a to
b if b appears in the definition of a. Since the defi-
nition of fox includes the word clever, we have
a link from fox to clever, but not conversely,
since the definition of clever does not refer to
fox. Edges are of three types: 0, correspond-
ing both to attribution and IS A relations; 1, cor-
responding to grammatical subjects; and 2, corre-
sponding to grammatical objects. Indirect objects
are handled by the decomposition methods pio-
neered in generative semantics, without recourse
to a ‘3’ link type (Kornai, 2012).

Each lexeme is a small Eilenberg machine, with
only a few states in its FSA, so the state space
X of the entire lexicon is best viewed as a large
graph with about 106 states (assuming 10 states
per hypernode). This base set is shared across
the individual machines and functions analogously
to the blackboard long familiar from AI (Nii,
1986). The primary purpose of the machine ap-
paratus is to formalize the classical distributed
model of semantic interpretation, spreading acti-
vation (Collins and Loftus, 1975; Nemeskey et
al., 2013), by a series of changes in the hyper-
node activation levels, described by the relations
on X. Manual grammar writing in this style can
lead to very high precision high recall grammars
(Karlsson et al., 1995; Tapanainen and Järvinen,
1997), but for now we rely on the Stanford Parser
(Chen and Manning, 2014) to produce the depen-
dency structures that we process into simplified

195

4lang representations (ordinary edge-colored di-
rected graphs rather than hypergraphs) we call def-
inition graphs and describe briefly in Section 3.1.

We derive several similarity features from pairs
of definition graphs built using the 4lang li-
brary8. Words that are not part of the manually
built 4lang dictionary9 are defined by graphs
built from entries in monolingual dictionaries of
English using the Stanford Dependency Parser
and a small hand-written mapping from depen-
dency relations to 4lang connections (see Recski
(2016) for details). The set of all words used in
definitions of the Longman Dictionary of Contem-
porary English (Bullon, 2003), also known as the
Longman Defining Vocabulary (LDV), is included
in the ca. 3000 words that are defined manually
in the 4lang dictionary. Recski and Ács (2015)
used a word similarity metric based on 4lang
graphs in their best STS submission, their findings
served as our starting point when defining features
over pairs of 4lang graphs.

3.1 The formalism
For the purposes of word similarity calculations
we find it expedient to abstract away from some
of the hypergraph/machine aspects of 4lang dis-
cussed above and represent the meaning of both
words and utterances as directed graphs, similarly
to the Abstract Meaning Representations (AMRs)
of Banarescu et al. (2013). Nodes correspond to
language-independent concepts, edges may have
one of three labels (0, 1, 2). 0-edges represent
attribution (dog 0−→ friendly), the IS A rela-
tion (hypernymy) (dog 0−→ animal), and unary
predication (dog 0−→ bark). Since concepts do
not have grammatical categories, phrases like wa-
ter freezes and frozen water would both be rep-
resented as water 0−→ freeze. 1- and 2-edges
connect binary predicates to their arguments, e.g.
cat

1←− catch
2−→ mouse). The meaning of each

4lang concept is represented as a 4lang graph
over other concepts, e.g. the concept bird is de-
fined by the graph in Figure 1.

3.2 Graph-based features
We experimented with various features over
pairs of 4lang graphs as a source of word

8http://www.github.com/kornai/4lang
9http://hlt.bme.hu/en/resources/4lang_

dict

Figure 1: 4lang definition of bird.

similarity. The simple metric defined by Recski
and Ács (2015) is based on the intuition that
similar concepts will overlap in the elementary
configurations they take part in: they might share
a 0-neighbor, e.g. train 0−→ vehicle

0←− car,
or they might be on the same path of 1- and
2-edges, e.g. park

1←− IN
2−→ town and

street
1←− IN

2−→ town. The metric used
by Recski and Ács (2015) defines the sets of
predicates of each concept based on this intuition:
given the example definition of bird in Fig-
ure 1, predicates of the concept bird (P (bird))
are {vertebrate; (HAS, feather);
(HAS, wing); (MAKE, egg)}. Predi-
cates are also inherited via paths of 0-edges,
e.g. (HAS, wing) will be a predicate of all
concepts for which 0−→ bird holds.

Our first feature extracted for each word pair is
the Jaccard similarity of the sets of predicates of
each concept, i.e.

S(w1, w2) =
|P (w1) ∩ P (w2)|
|P (w1) ∪ P (w2)|

A second similar feature takes into account all
nodes accessible from each concept in its defini-
tion graph. Recski and Ács (2015) observe that
this allows us to capture minor similarities be-
tween concepts, e.g. the definitions of casualty
and army do not share predicates but do have a
common node war (see Figure 2).

Based on boosting factors in the original met-
ric we also generated three binary features. The
links contain feature is true iff either con-
cept is contained in a predicate of the other,
nodes contain holds iff either concept is
included in the other’s definition graph, and
0 connected is true if the two nodes are con-
nected by a path of 0-edges in either definition

196

Figure 2: Overlap in the definitions of casualty
(built from LDOCE) and army (defined in
4lang)

feature definition

links jaccard J(P (w1), P (w2))
nodes jaccard J(N(w1), N(w2))

links contain iff w1 ∈ P (w2) or w2 ∈ P (w1)
nodes contain iff w1 ∈ N(w2) or w2 ∈ N(w1)

0 connected iff w1 and w2 are on a path of 0-edges

Table 2: 4lang word similarity features

graph. All features are listed in Table 2.
The dict to 4lang module used to build

graphs from dictionary definitions allowed us to
perform expansion on each graph, which involves
adjoining the definition graphs of all words to the
initial graph; an example is show in Figure 3.

Using only these features in initial experi-
ments resulted in many “false positives”: pairs
of antonyms in SimLex were often assigned high
similarity scores because this feature set is not
sensitive to the 4lang nodes LACK, representing
negation (dumb 0−→ intelligent

0−→ LACK),
and BEFORE, indicating that something was only
true in the past (forget 0−→ know

0−→ before),

Figure 3: Expanded 4lang definition of
forget. Nodes of the unexpanded graph are
shown in gray.

We attempt to model the effect of these nodes in
two ways. First, we implement the is antonym
feature, a binary set to true if one word is within
the scope (i.e. 0-connected to) an instance of ei-
ther lack or before in the other word’s graph.
Next, we transform the input graphs of remaining
features so that all nodes within the scope of lack
or before are prefixed by lack and are not
considered identical with their non-negated coun-
terparts when computing each of the features in
Table 2. An example of such a transformation is
shown in Figure 4.

before

forget

know

0

remember

0

0

lack

0

before

forget

lack_know

0

lack_remember

0

0

lack

0

Figure 4: 4lang definition of forget and its mod-
ified version

197

Early experiments show that a system trained on
4lang-based features only can achieve a Pearson
correlation in the range of 0.32−0.34 on the Sim-
Lex data, this was increased to 0.38 by the han-
dling of LACK and BEFORE described above. This
score is competitive with some word embeddings,
but well below the 0.58− 0.68 range achieved by
the state-of-the-art vector-based systems cited in
Section 1 and reproduced in Section 2.1.

After testing 4lang features’ impact on purely
vector-based configurations we came to the con-
clusion that the only 4lang-based features
that improve their performance significantly are
0-connected and is antonym. Adding these
two features to the vector-based system brings cor-
relation to 0.76.

4 Results

Performance of our main configurations is pre-
sented in Table 3. The system relying on word em-
beddings achieves a Spearman correlation of 0.72.
WordNet and 4lang features both improve the
vector-based system, combining all three feature
classes yields our top correlation of 0.76, higher
than any previously published results. Since the
average correlation between a human rater and
the average of all other raters is 0.78, this figure
suggests that our system has achieved near-human
performance on this benchmark.

System Spearman’s ρ

embeddings 0.72

embeddings+wordnet 0.73

embeddings+4lang 0.75

embeddings+wordnet+4lang 0.76

Table 3: Performance of major configurations on
SimLex

For the purposes of error analysis we sorted
word pairs by the difference between gold similar-
ity values from SimLex and the output of our top-
scoring model. The top of this list is clearly domi-
nated by two error classes. The largest group con-
sists of (near-)synonyms that have not been identi-
fied as related by our model, Table 4 shows the top
5 word pairs from this category. The second error
group contains word pairs that have been falsely
rewarded for being associated, but not similar by

the definition used when creating the SimLex data.
Table 5 shows the top 5 word pairs of this error
class. This second error class is an indication of a
well-known shortcoming of word similarity mod-
els: (Hill et al., 2015) observes that similarity of
vectors in word embeddings tend to encode asso-
ciation (or relatedness) rather than the similarity
of concepts.

word1 word2 output gold diff

bubble suds 2.97 8.57 5.59
dense dumb 1.71 7.27 5.56
cop sheriff 3.50 9.05 5.55
alcohol gin 3.43 8.65 5.22
rationalize think 3.50 8.25 4.75

Table 4: Top 5 “false negative” errors

word1 word2 output gold diff

girl maid 7.72 2.93 -4.79
happiness luck 6.59 2.38 -4.21
crazy sick 7.49 3.57 -3.92
arm leg 6.74 2.88 -3.86
breakfast supper 8.01 4.40 -3.61

Table 5: Top 5 “false positive” errors

Since our main purpose was to experiment with
4lang representations and identify its shortcom-
ings, we examined 4lang graphs of top erro-
neous word pairs. As expected, the value of the
0-connected feature was −1 for each “false
negative” pair, i.e. word pairs such as those
in Table 4 were not on the same path of 0-
edges. In most cases this is due to the cur-
rent lack of simple inferencing on 4lang rep-
resentations. For example, suds are defined in
LDOCE as the mass of bubbles formed on the top
of water with soap in it, yet the resulting 4lang
subgraph bubble

1←− HAS
2−→ mass

0←− suds
will not trigger any mechanism that would derive
suds

0−→ bubble. Inference will also be respon-
sible for deriving all uses of polysemous words,
the 4lang representation of dense is therefore
built from its first definition in LDOCE: made of
or containing a lot of things or people that are very
close together. A method of inference that will
relate this definition with that of dumb is clearly
out of reach. Better short-term results could be

198

obtained by using all definitions in a dictionary
to build 4lang representations, for dense this
would include its third definition: not able to un-
derstand things easily.

Other shortcomings of 4lang representations
are of a more technical nature, e.g. the lemmatizer
used to map words of definitions to concepts failed
to map alcoholic to alcohol in the definition of
gin: a strong alcoholic drink made mainly from
grain. Yet other errors could be addressed by re-
warding the overlap between two representations,
e.g. that the graphs for cop and sheriff both
contain 0−→ officer.

5 Conclusions, future work

The purpose of experimenting with 4lang-based
features was to gain a better understanding of
how 4lang may implicitly encode semantic re-
lations that are difficult to model with standard
tools such as word embeddings or WordNet. We
found that simple features describing the relation
between two concepts in 4lang improve vector-
based systems significantly. Since less explicit re-
lationships may be encoded by more distant rela-
tionships in the network of 4lang concepts, in
the future we plan to examine portions of this
network larger than the union of two (expanded)
definition graphs. Errors made by 4lang-based
systems also indicate that a more sophisticated
form of lexical inference on 4lang graphs may
be necessary to establish the more distant connec-
tions between pairs of concepts. In the near fu-
ture we plan to experiment with features defined
on larger 4lang networks. We also plan to ex-
tend our system to include the task of measuring
phrase similarity, which can also be pursued using
supervised learning given new resources such as
the Annotated-PPDB and ML-Paraphrase
datasets introduced by (Wieting et al., 2015).

References
Judit Ács, Katalin Pajkossy, and András Kornai. 2013.

Building basic vocabulary across 40 languages. In
Proceedings of the Sixth Workshop on Building and
Using Comparable Corpora, pages 52–58, Sofia,
Bulgaria. ACL.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce

Wiebe. 2015. SemEval-2015 Task 2: Semantic Tex-
tual Similarity, English, Spanish and Pilot on Inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
Denver, CO, U.S.A.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Rajendra Banjade, Nabin Maharjan, Nobal B. Niraula,
Vasile Rus, and Dipesh Gautam. 2015. Lemon and
tea are not similar: Measuring word-to-word simi-
larity by combining different methods. In Alexander
Gelbukh, editor, Proc. CICLING15, pages 335–346.
Springer.

Stephen Bullon. 2003. Longman Dictionary of Con-
temporary English 4. Longman.

Miriam Butt. 2006. Theories of Case. Cambridge
University Press.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

A.M. Collins and E.F. Loftus. 1975. A spreading-
activation theory of semantic processing. Psycho-
logical Review, 82:407–428.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New
York, NY, USA. ACM.

Samuel Eilenberg. 1974. Automata, Languages, and
Machines, volume A. Academic Press.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, , and Ey-
tan Ruppin. 2002. Placing search in context: The
concept revisited. ACM Transactions on Informa-
tion Systems, 20(1):116–131, January.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In HLT-NAACL, pages 758–764.

Cliff Goddard. 2002. The search for the shared seman-
tic core of all languages. In Cliff Goddard and Anna
Wierzbicka, editors, Meaning and Universal Gram-
mar – Theory and Empirical Findings, volume 1,
pages 5–40. Benjamins.

Lushan Han, Abhay Kashyap, Tim Finin,
James Mayfield, and Jonathan Weese. 2013.

199

UMBC EBIQUITY-CORE: Semantic textual
similarity systems. In Proceedings of the 2nd
Joint Conference on Lexical and Computational
Semantics, pages 44–52.

Lushan Han, Justin Martineau, Doreen Cheng, and
Christopher Thomas. 2015. Samsung: Align-and-
Differentiate Approach to Semantic Textual Similar-
ity. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
172–177, Denver, Colorado. Association for Com-
putational Linguistics.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers - Volume 1, ACL ’12, pages 873–
882, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Fred Karlsson, Atro Voutilainen, Juha Heikkila, and
Arto Anttila. 1995. Contraint Grammar, A
Language-Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter, Berlin, New-York.

András Kornai. 2010. The algebra of lexical seman-
tics. In Christian Ebert, Gerhard Jäger, and Jens
Michaelis, editors, Proceedings of the 11th Mathe-
matics of Language Workshop, LNAI 6149, pages
174–199. Springer.

András Kornai. 2012. Eliminating ditransitives. In
Ph. de Groote and M-J Nederhof, editors, Revised
and Selected Papers from the 15th and 16th Formal
Grammar Conferences, LNCS 7395, pages 243–
261. Springer.

András Kornai. in preparation. Semantics.
http://kornai.com/Drafts/sem.pdf.

Kimmo Koskenniemi. 1983. Two-Level Morphol-
ogy: A General Computational Model for Word-
Form Recognition and Production. PhD thesis, Uni-
versity of Helsinki.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Y. Bengio and Y. LeCun,
editors, Proceedings of the ICLR 2013.

George A. Miller. 1995. Wordnet: a lexical
database for English. Communications of the ACM,
38(11):39–41.

Dávid Nemeskey, Gábor Recski, Márton Makrai, Attila
Zséder, and András Kornai. 2013. Spreading activa-
tion in language understanding. In Proc. CSIT 2013,
pages 140–143, Yerevan, Armenia. Springer.

H. Penny Nii. 1986. Blackboard application systems,
blackboard systems and a knowledge engineering
perspective. AI Magazine, 7(3):82–110.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for
word representation. In Conference on Empirical
Methods in Natural Language Processing (EMNLP
2014).

M. Ross Quillian. 1969. The teachable language com-
prehender. Communications of the ACM, 12:459–
476.

Gábor Recski and Judit Ács. 2015. MathLingBu-
dapest: Concept networks for semantic similarity.
In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015), pages 543–
547, Denver, Colorado. Association for Computa-
tional Linguistics.

Gábor Recski. 2016. Building concept graphs from
monolingual dictionary entries. In Nicoletta Cal-
zolari, Khalid Choukri, Thierry Declerck, Marko
Grobelnik, Bente Maegaard, Joseph Mariani, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Roger C. Schank. 1975. Conceptual Information Pro-
cessing. North-Holland.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. CoNLL 2015,
page 258.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2015. DLS@CU: Sentence similarity from
word alignment and semantic vector composition.
In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015), pages 148–
153, Denver, Colorado. Association for Computa-
tional Linguistics.

Pasi Tapanainen and Timo Järvinen. 1997. A non-
projective dependency parser. In Proceedings of the
5th Conference on Applied Natural Language Pro-
cessing, pages 64–71.

Anna Wierzbicka. 1972. Semantic Primitives.
Athenäum, Frankfurt.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. TACL, 3:345–358.

200

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 201–205,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Using Embedding Masks for Word Categorization

Stefan Ruseti, Traian Rebedea and Stefan Trausan-Matu
University Politehnica of Bucharest

{stefan.ruseti, traian.rebedea, stefan.trausan}@cs.pub.ro

Abstract

Word embeddings are widely used nowa-
days for many NLP tasks. They reduce the
dimensionality of the vocabulary space,
but most importantly they should capture
(part of) the meaning of words. The new
vector space used by the embeddings al-
lows computation of semantic distances
between words, while some word embed-
dings also permit simple vector operations
(e.g. summation, difference) resembling
analogical reasoning. This paper pro-
poses a new operation on word embed-
dings aimed to capturing categorical infor-
mation by first learning and then apply-
ing an embedding mask for each analyzed
category. Thus, we conducted a series
of experiments related to categorization of
words based on their embeddings. Sev-
eral classical approaches were compared
together with the one introduced in the pa-
per which uses different embedding masks
learnt for each category.

1 Introduction

The idea of using vector representations of words
for various natural language processing (NLP) and
machine learning tasks has become more and more
popular in the last years. Most of these represen-
tations are based on the idea that the meaning of
a word can be determined by the context in which
each word is used.

Sometimes, additional information about the
words is available or can be computed and this
might be used along with the embedding for each
word. This information may consist of relations
between words (e.g. syntactic dependencies),
part of speech (POS) tags, word categories, word
senses, etc.

In this paper, we propose to encode this extra
information in the form of a vector mask that can
be applied on the word embedding before being
used as an input by any classifier, such as a neural
network, or before computing any semantic dis-
tance between the word embeddings. We explore
the possibility of using vector masks for assign-
ing WordNet (Miller, 1995) categories to words.
We define a word category as one of the top con-
cepts in the WordNet taxonomy as will be later ex-
plained in more detail. Using the trained masks for
a subset of words, we then test whether they im-
prove the accuracy of determining the correct cate-
gory for new words that are not part of the training
corpus.

2 Related Work

Distributed words’ embeddings based on word co-
occurrences can be computed using various mech-
anisms and theories. Some of them employ alge-
braic decompositions of the original vector space,
others use mixture models to compute a distri-
bution of words in topics from a large collection
of texts, while newer methods make use of neu-
ral embeddings to train word representations on
even larger corpora of texts than the previous mod-
els. All the methods described in this section
are completely unsupervised and are based on the
frequency of words in documents and their co-
occurrences.

Latent Semantic Analysis (LSA) (Landauer and
Dumais, 1997) is a commonly used vector rep-
resentation for words. The word vectors are ob-
tained through a Singular Value Decomposition
(SVD). The main reasoning behind LSA is that the
decomposed space can generalize the relationships
between words and documents existing in the orig-
inal term-document matrix and will remove noisy
features. While SVD is generally used for LSA,

201

other matrix factorizations such as Non-negative
Matrix Factorization (Lee et al., 2010) have been
successfully employed for various tasks.

A newer approach which can also be used for
computing embeddings is Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003). This model assumes
that each document is a mixture of topics and each
topic is defined as a distribution over the words in
the corpus. Although LDA is mainly used for topic
modelling, it can also be employed for computing
word embeddings, which are represented by the
probabilities that each word is included in a topic.

One of the most recent and popular models for
training word embeddings is Word2Vec (Mikolov
et al., 2013a) which makes use of neural embed-
ding models. The word representations are com-
puted by a neural network that predicts the prob-
abilities of a word occuring in a context window.
Levy and Goldberg (2014) showed that this model
performs, in fact, a factorization of a word-context
matrix. The main advantage of this model over
other similar ones is the fact that it can be trained
on much larger texts, which could produce better
embeddings.

GloVe (Pennington et al., 2014) is a word rep-
resentation model based on the global word co-
occurrence matrix which is reduced to a lower-
dimensional representation after normalization
and log-smoothing. The model achieves better re-
sults than Word2Vec, at least for the word analogy,
word similarity and named entity recognition tasks
presented in the paper (Pennington et al., 2014).

Recent work was also focused on improving
given vector representations. Usually, the vec-
tors are computed with an unsupervised method
and a post-processing step is applied on the final
vectors that do not depend on the representation
model. Mrki et al. (2016) use pairs of synonyms
and antonyms to bring words closer or apart, while
keeping as much of the original topology as pos-
sible. A similar method, that uses WordNet rela-
tions between words, was proposed by Faruqui et
al. (2014).

Tsubaki et al. (2013) proposed a method of im-
proving vectors in the training step. For each word
and syntactic relations, a group of frequent words
was computed. Based on them, the representation
of a word can be projected in another space de-
pending on the words connected to it.

All representations presented so far learn, for
simplicity, only one embedding vector per word.

Neelakantan et al. (2014) propose a Multi-Sense
Skip-gram that learns different representations for
each sense of a word. The advantage over other
multi-sense representations is the fact that sense
discrimination and embedding learning are per-
formed in the same step.

3 Problem Description

In our approach we considered WordNet for ex-
tracting word categories. WordNet contains sets
of synonym words (synsets) with various linguis-
tic relations between them. In our case, the im-
portant relations are hyponymy and hypernymy,
which describe specializations/generalizations be-
tween concepts. These relations form a tree, with
”entity” as the top concept in the case of nouns.

Our experiment starts from the assumption that
word embeddings should partially capture the hy-
pernym/hyponym relations from Wordnet. To test
this supposition, we decided to split the nouns
synset tree into several top-level subtrees rooted
in concepts who subsum a somehow similar size
set of words. These top-level concepts denote the
word categories. We opted to use only a small
number of categories, because of their hierarchi-
cal structure of the tree. In order to determine a
balanced set of categories, a top-down approach
was used where a candidate concept for a category
was split if its subtree contained too many words
or if it had more than one child containing most of
the words in that subtree.

One of the problems that we encountered was
the fact that there is a many-to-many relation be-
tween words and synsets. Since the hierarchy was
based on synsets and the embeddings are com-
puted on words, a simply greedy approach was
chosen by taking the first word for each synset.

In the filtering process, which established the
initial balanced categories for our experiment, we
kept only the synsets corresponding to single word
lemmas that had a corresponding vector in our pre-
trained Word2Vec representations.

After computing the mapping between words
and categories, a corpus was built in order to
test the hypothesis that embeddings can be used
to determine the category of a word. The gen-
erated dataset consists of triples of the form
(word, category, result), where result is 1 when
the first synset of the word is part of category and
0 otherwise. For simplicity, the number of positive
and negative examples in the dataset is equal.

202

4 Vector Operations and Masks for
Word Embeddings

We start from the more complex assumption that
two adjacent words in a sentence should have a
combined meaning depending on their individual
senses and the type of syntactical dependency be-
tween them. If a mathematical function may be
learned for each dependency type, then the mean-
ing of the sentence may be recursively computed
by combining embeddings two by two.

The word embeddings computed using the skip-
gram method presents another interesting feature.
Mikolov et al. (2013b) showed that vectors can
be combined to resemble analogies. A famous ex-
ample is ”King −Man + Woman = Queen”,
where the operations are applied on the corre-
sponding vectors of each word, and the closest
vector to the result is the one corresponding to the
word Queen. We hope to detect other relations be-
tween words, relations that could be expressed by
more complicated mathematical functions in the
embedding space.

Assuming that we use word embeddings of size
d, we have to find a function that combines the
two vectors and the dependency to produce an-
other vector of size d. Considering that the depen-
dency also uses some embedding, of size d’, the
function to generate the combined embedding can
be expressed like Wd,2d+d′ ∗ [w1;w2; dep]. The
problem with this representation is that it cannot
capture relations similar to w1 − w2 which exist
in the vector space. Thus the dependency should
not be added as a distinct feature, but rather define
how the two embeddings are combined.

The simplest solution is to consider differ-
ent networks for each dependency type. This
would allow us to represent any function between
the words, but requires a very large number of
weights. This might not be possible due to the
limited training examples and because some de-
pendency types are too rare.

In order to decrease the number of required
weights, the dependency can be represented as a
mask. The mask can be applied as a point-wise
multiplication with the [w1;w2] vector, which al-
lows learning transformations like w1 − w2.

In a first experiment, we decided to test the vec-
tor masks on the word categorization dataset. The
assumption is that some part of the representation
of words in the same category might be common,
while the other corresponds to specific context for

each word. This means that two words can become
closer in the vector space by neutralizing the spe-
cific dimensions for that category. In order to do
this, we computed an embedding for each category
in the dataset having the same size with the word
embeddings. These category embeddings are used
as a mask, multiplying them pointwise with a word
embedding. This operation is actually a scaling in
the word embedding space which should cluster
the words from the same category.

5 Experiments

The solutions below were tested in similar condi-
tions on the generated dataset. A brief description
of each method was added when needed. Most
of the models (Support Vector Machines - SVM,
random forest and logistic regression) were devel-
oped in Weka 1, while the neural networks were
implemented in Tensorflow2.

Cosine Similarity
A common way of comparing embeddings is using
the cosine similarity. A threshold can be used as
a boundary between positive and negative exam-
ples. For word categorization, the best threshold
was chosen based on the training set.

Multilayer Perceptron (MLP)
The network consists of one hidden layer with
100 neurons and an softmax output layer with 2
neurons representing the probabilities for the two
classes. The tanh activation function was used and
a dropout with probability 0.4 on the hidden layer
was added to reduce the effect of overfitting. For
training, we opted for cross-entropy loss function
and Adagrad Optimizer for 500 epochs.

Cosine with Vector Mask
Given a word and a category, the embedding of
the category is applied as pointwise multiplica-
tion both to the embedding of the word and the
word depicting the category. The resulting vectors
are then compared using cosine. The following
loss function was used during training the vector
masks:

max((y−y′
)2−0.25, 0)+α∗

√ ∑
w w

2

noweights
(1)

, where:
1http://www.cs.waikato.ac.nz/ml/weka/
2https://www.tensorflow.org/

203

• y the output of the network (the cosine simi-
larity between vectors, normalized to 0-1)

• y’ the target value (0 for negative and 1 for
positive examples)

• w a parameter from the network (a value in
the category embedding matrix)

The first term tries to achieve a maximum 0.5
difference between the output and the target value,
while the second term is a regularizer to avoid
overfitting.

Mask + MLP
This network combines the mask embeddings with
the same MLP described earlier. First, the word
and category embeddings are transformed by ap-
plying the mask. The resulting vectors are used as
inputs for the MLP.

6 Results

The described methods are compared on the gen-
erated dataset for word categorization based on
WordNet. The accuracy scores from Table 1 were
obtained using 10-fold cross-validation.

Method Accuracy (%)
Cosine 60.59
SVM 59.69
Logistic regression 60.12
Random forest 77.79
MLP 83.00
Mask + cosine 77.00
Mask + MLP 85.50

Table 1: Accuracy of the compared methods.

The poor results obtained by the SVM are
not very surprising. While the words from the
same category might be grouped together in the
Word2Vec embedding space, the training exam-
ples consisted in pairs of words and categories.
Positive pairs have no reason to be close to each
other, meaning that the positive and negative ex-
amples are not linearly separable in this case.

Comparing cosine similarity with the mask-
cosine method, an important improvement of 27%
can be observed. This demonstrates that scaling
both the word and its category will make them
closer, while scaling a word and a different cat-
egory will make them more distant. This means
that each mask successfully minimizes the effect

of dimensions in the space that are not related to
the given category.

It was also expected that the mask+MLP ap-
proach to work better than a simple MLP because
the first one has more parameters. In our experi-
ments, the improvement was not impressive (about
3%), but we observed a much faster training rate.
While the MLP needed 500 epochs to reach this
accuracy, the version with masks achieved the
same performance in 50 epochs. The masks accel-
erate training, but also have a tendency to quickly
over-fit on the training data.

7 Conclusion

Mask embeddings proved to be useful for the pro-
posed word categorization task. Although this is
an artificial task (the category of each word is al-
ready known from WordNet), the method can be
applied in other scenarios. The results show that
such masks can learn which dimensions are impor-
tant in a given situation. Also, the masks can be
learnt much faster than a regular fully-connected
layer.

An alternative for masks would be the use of
different networks for each category. This solu-
tion is more general than the method proposed
in this paper which uses embeddings masks and
MLP; for this reason they will have more parame-
ters than the Mask+MLP technique. Further test-
ing is needed on this subject, but masks seem a
viable solution for limiting the number of parame-
ters of a network, which can be crucial when deal-
ing with small datasets.

References
David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

2003. Latent dirichlet allocation. The Journal of
Machine Learning Research, 3:993–1022, mar.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2014.
Retrofitting Word Vectors to Semantic Lexicons.
nov.

Thomas K Landauer and Susan T. Dumais. 1997. A
solution to Plato ’ s problem: The Latent Semantic
Analysis Theory of Acquisition, Induction, and Rep-
resentation of Knowledge. Psychological Review,
104(2):211–240.

Hyekyoung Lee, Jiho Yoo, and Seungjin Choi. 2010.
Semi-Supervised Nonnegative Matrix Factorization.
IEEE Signal Processing Letters, 17(1):4–7, jan.

204

Omer Levy and Yoav Goldberg. 2014. Neural Word
Embedding as Implicit Matrix Factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Rep-
resentations in Vector Space. Proceedings of the
International Conference on Learning Representa-
tions (ICLR 2013), pages 1–12.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. Proceedings of NAACL-HLT,
(June):746–751.

George A. Miller. 1995. WordNet: a lexical
database for English. Communications of the ACM,
38(11):39–41, nov.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting Word Vectors to Lin-
guistic Constraints. mar.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew Mccallum. 2014. Efficient Non-
parametric Estimation of Multiple Embeddings per
Word in Vector Space. Emnlp-2014, pages 1059–
1069.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1532–1543.

Masashi Tsubaki, Kevin Duh, Masashi Shimbo, and
Yuji Matsumoto. 2013. Modeling and Learning Se-
mantic Co-Compositionality through Prototype Pro-
jections and Neural Networks. In EMNLP, pages
130–140.

205

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 206–214,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Sparsifying Word Representations for Deep Unordered Sentence
Modeling

Prasanna Sattigeri
IBM T. J. Watson Research Center

Yorktown Heights, NY
psattig@us.ibm.com

Jayaraman J. Thiagarajan
Lawrence Livermore National Laboratory

Livermore, CA
jayaramanthi1@llnl.gov

Abstract

Sparsity often leads to efficient and inter-
pretable representations for data. In this
paper, we introduce an architecture to in-
fer the appropriate sparsity pattern for the
word embeddings while learning the sen-
tence composition in a deep network. The
proposed approach produces competitive
results in sentiment and topic classifica-
tion tasks with high degree of sparsity.
It is computationally cheaper to compute
sparse word representations than existing
approaches. The imposed sparsity is di-
rectly controlled by the task considered
and leads to more interpretability.

1 Introduction

The recent surge in representation learning has re-
sulted in remarkable advances in a variety of ap-
plications including computer vision and speech
processing. In the context of natural language
processing, much effort has been focused on con-
structing vector space representations for words
through neural language models (Mikolov et al.,
2013; Pennington et al., 2014) and designing ap-
propriate composition functions to apply word
embeddings for modeling sentences or documents.
By design, the goal of neural word embedding ap-
proaches is to build dense vector representations
that capture syntactic and semantic similarities in
data (e.g., beautiful, and attractive have similar
meanings, as opposed to ugly, and repulsive), that
the classic categorical representation of words as
indices of a vocabulary fails to capture.

The composition function based on these em-
beddings can be either unordered (e.g. average
of the word representations) or syntactic, wherein
the word order is explicity modeled (Socher et al.,
2013a; Sutskever et al., 2011; Bowman, 2013).

(a) Original word vectors. (b) Sparsified word vectors.

Figure 1: t-SNE embedding of the sentence repre-
sentations obtained as the average of word vectors
for a random set of 1000 sentences from the SUBJ
dataset.

While the former class of approaches results in
simple architectures that are easily scalable, the
latter can provide richer models with much se-
vere computational complexity during training.
Furthermore, the input word vectors are often
fine-tuned during the training phase to improve
the sentence (or document) classification perfor-
mance. However, this can lead to severe over-
fitting and hence regularization strategies such as
word-dropout are used (Iyyer et al., 2015) and
in other cases the original word vectors are aug-
mented to the input as a static channel (Kim, 2014;
Zhang and Wallace, 2015).

Alternately, approaches that build word repre-
sentations using different forms of regularization
inspired by the linguistic study of word meanings
have been effective in modeling sentences. For ex-
ample, sparsity regularization can be been used to
construct distributed representations (Eisenstein et
al., 2011) that capture some of the crucial lexi-
cal semantics largely based on familiar, discrete
classes (e.g., supersenses) and relations (e.g., syn-
onymy and hypernymy).

Instead of employing sparsity to regularize
word embeddings, we propose to infer appropri-
ate sparsity patterns for pre-learned word vectors

206

Figure 2: Sparsity has been commonly used to regularize word embeddings in order to effectively govern
the relationship between word dimensions and provide interpretable representations. Examples include
the approaches in (Yogatama et al., 2015) (left-top) and (Faruqui et al., 2015) (left-bottom). In contrary,
we propose to infer sparsity patterns for pre-learned word embeddings in order to preserve only the key
semantics required for the sentence classification task (right).

to improve the discrimination of sentence repre-
sentations. In particular, we consider a unordered
composition setting, similar to (Iyyer et al., 2015),
wherein the sentence representation is obtained
as the average of the words. Intuitively, spar-
sity is imposed to govern the relationship between
word dimensions to capture only the semantics
crucial to the particular task considered. For ex-
ample, in a sentiment analysis task, opposite re-
lationships between adjectives such as beautiful
and ugly are more important than gender relation-
ships such as king and queen. Surprisingly, with-
out any additional regularization such as word-
dropout or static channel of word vectors, the pro-
posed approach produces competitive results in
sentiment and topic classification tasks with high
degree of sparsity. While it is cheaper to com-
pute sparse word representations than existing ap-
proaches (Faruqui et al., 2015; Yogatama et al.,
2015) the imposed sparsity is not merely based on
the semantics of the space of words, but directly
controlled by the task considered. Furthermore,
by automatically learning sparsity masks that pre-
serve only the semantic relationships appropriate
for the task at hand, the resulting sentence models
are highly discriminative. For example, in Figures
6(a) and 6(b), we show the sentence representa-
tions (word averaging) obtained using the origi-
nal Glove word embeddings and the proposed ap-

Figure 3: Tensorflow architecture for the proposed
approach of sparsifying word embeddings based
on labeled sentence data.

proach.

2 Sparsity in Word Embeddings

Though neural word representations are highly ef-
fective in enabling inference of complex seman-
tic relationships between words, the interpretabil-
ity of the word dimensions themselves is highly
opaque. Hence, there is a disconnect between such
dense representations and the word representa-

207

Figure 4: Convergence behavior of the pro-
posed approach on the SUBJ dataset - Both the
%Sparsity of the inferred mask and the testing ac-
curacy are shown. Interestingly, only less than
50% of the entries are retained.

tions typically found in lexical semantics, wherein
each word can be represented sparsely in terms of
an extensive set of discrete classes. For exam-
ple, the word apple can be sparsely represented
in terms of discrete concepts such as fruit, edi-
ble food, red etc. In contrast, learned word rep-
resentations such as the Word2vec produces dense
vectors, where the word dimensions that actually
reveal a particular semantic relationship are not
transparent. This motivated NLP researchers to
explicitly impose sparsity into the word embed-
ding inference. Sparse modeling with an over-
complete set of features is well known to pro-
duce simple, interpretable representations, while
retaining the approximation power of dense mod-
els. Authors in (Andreas and Klein, 2014), use the
creation of a word such as northeast from words
north and east to illustrate that linguistic descrip-
tors orient along a sparse set of perceptual basis.
In the context of nlp tasks, it has been showed that
sparse codes inferred from the pre-learned word
embeddings (Figure 2) are more interpretable and
hence sparsity can be used to govern relationships
between word dimensions (Fyshe et al., 2014;
Faruqui et al., 2015). Since sparsity can reveal the
word dimensions pertinent to specific semantics,
the resulting sparse representations were more ef-
fective in sentence classification. Similarly Chang
et.al. found that sparse word vectors performed
better in the behavioral task used to quantify in-
terpretability (Chang et al., 2009). Furthermore,
in (Yogatama and Smith, 2014), the authors ad-

(a) Average `1 norm per dimension

(b) Average `1 norm for the top 500 words based
with the largest `1 norm in the original word vector
space.

Figure 5: Measuring changes in the original dense
word vectors and word vectors sparsified using
mask inferred from the newswire dataset.

vocate several sparsity based structural regular-
ization schemes as a more suitable inductive bias
and show improvements over dense representa-
tions several NLP tasks. In addition to the inher-
ent computational complexity, an important down-
side of these approaches is that sparsity is merely
used to regularize the word embeddings and hence
cannot directly improve the discrimination of sen-
tence representations constructed using these word
vectors.

A striking similarity between all existing ap-
proaches for learning sparse word embeddings is
that they aim to make the word dimensions cor-
responding to different semantic groups disjoint.
However, given the large range of potential seman-
tic relationships, it becomes computationally chal-
lenging to infer sparse representations that can dis-
criminate all of them. This challenge is even more
severe when word embeddings are applied to NLP
tasks such as sentence classification. This moti-
vates the need to infer the appropriate sparsity pat-
terns for word embeddings such that they can eas-
ily discriminate the semantic concepts crucial for

208

Model SST-fine IMDB SUBJ Reuters
CNN-MC (Kim, 2014) 47.4 – 93.2 –
F-Dropout (Wang and Manning, 2013) – 91.1 93.6 –
TreeLSTM (Tai et al., 2015) 50.6 – – –
PVEC (Le and Mikolov, 2014) 48.7 92.6 – –
DAN + Word-Drop (Iyyer et al., 2015) 46.9 89.4 92.4 72.6
DAN + Sparsity-Mask 47.4 91.1 92.9 73.7
DAN + Binary-Mask 47.2 88.7 92.4 72.1

Table 1: Sentence classification performance of the proposed approach in comparison to other meth-
ods. In addition to outperforming the deep averaging architecture, our approach achieves competitive
performances in comparison to state-of-the-art syntactic sentence classification methods.

Word / NNs Sentiment Mask Newswire Mask Original
uncomfortable uneasy, enough, renovations, racket, awkward, uneasy,

terribly, hence contingent, competing unpleasant, bothered
president being, concerned, between, growth, vice, chief,

nothing, then bank, earnings executive, former

Table 2: Neighborhood of words obtained with two different sparsity masks: (a) sentiment mask from the
SST dataset, (b) Newswire mask from the Reuters newswire dataset. In addition, we show the neighbors
identified using the original word embeddings.

the NLP task at hand. Such a task-driven approach
has two important advantages: (a) By inferring
sparsity patterns specific to the task/dataset there
is improved discrimination, (b) We can circum-
vent the computationally intensive sparse learning
by adding this as a layer into the traditional deep
learning architectures used for sentence classifica-
tion. In the rest of paper, we describe our approach
to couple the process of sparsifying word embed-
dings in deep undordered sentence classification
framework similar to (Iyyer et al., 2015).

3 Proposed Approach

The proposed architecture shown in Figure
2(right) aims to infer a sparsity mask for the word
embeddings using a deep unordered composition
network (Iyyer et al., 2015). Note that, the sen-
tence modeling corresponds to simply averaging
the word vectors in that sentence. Let the word
vectors be denoted by a matrix W 2 RV,d. In our
architecture, we introduce the sparsity mask M
which is applied to the word vector matrix W as an
element-wise product. The mask is a real valued
matrix which is passed through Relu non-linear
activation to transform into a sparse mask with
non-negative entries. This mask is applied in a
multiplicative manner on W to obtain the masked
word vector matrix Ŵ = W � Relu(M) and is

optimized such that the sentence-level classifica-
tion performance is maximized. We also consider
a variant of this architecture, wherein the entries
are thresholded to discrete values 0 or 1 based on
the sign of entries in the real valued mask.

For all analysis and results reported in this pa-
per, we used the pre-trained 300�dimensional
Glove (Pennington et al., 2014) word vectors. As
described earlier, a sentence level representation
is created by averaging the word vectors corre-
sponding to the constituent words. This 300-
dimensional representation is then passed through
a series of fully connected layers and finally a soft-
max layer for prediction of labels. In contrast to
the architecture in (Iyyer et al., 2015) no word-
dropout regularization is used. Apart form the
standard cross-entropy loss with a weight-decay
regularization, we also include a term in the loss
function to minimize the `1-norm of the mask to
explicitly enforce sparsity on the latter. We im-
plemented the architectures for both the real mask
and binary mask versions using Tensorflow and
Figure 3 shows the masking operation in detail us-
ing the tensorboard network architecture. visual-
izer.

The fully-connected deep network (FCN) on
top of the sentence model is maintained the same
for all datasets. The FCN is made up of three non-

209

(a) Original Antonym Word Vectors (b) Original Gender Word Vectors

(c) Antonym Word Vectors with Sentiment Mask (d) Gender Word Vectors with Sentiment Mask

Figure 6: t-SNE plots of original and sparsified word vectors illustrating the ability of the learned mask
to retain only semantic relationships relevant to the task at hand.

linear layers followed by the soft-max layer. The
non-linear layer consisted of a linear transforma-
tion followed by the ReLu unit. The hidden layers
have a constant dimension of 300 and dropout is
applied at each of these layers. The same hyperpa-
rameters were used across all datasets. Adam opti-
mizer was used with learning rate set to 1e�4 and
the dropout out rate was set 0.5. The `2 regulariza-
tion parameter for weight-decay was set to 1e�4..
The weights of the FCN layers were initialized
randomly from uniform distribution [�1, 1] and
scaled with a factor of 0.08. 10-fold CV was ap-
plied to datasets with no explicit train/test splits.

4 Experiments and Results

We evaluated the proposed approaches using a set
of commonly used text classification datasets both
at the sentence level and the document level. We
report the performance of the proposed architec-
ture with respect to the classification task pertain-
ing to each dataset. This is followed up by investi-
gation of the properties of the sparsified word vec-
tors. For all classification performance compar-

isons we used the vanilla DAN with word-dropout
regularization (Iyyer et al., 2015), and the pro-
posed DAN + sparsity mask and DAN + binary
mask variants.
Datasets:

• IMDB (document level): This dataset (Maas
et al., 2011) consists of 50,000 labeled in-
stances of movie reviews taken form the
movie review site, IMDB. Each review can be
made up of several sentences and is labeled as
either positive or negative. The dataset also
provides a balanced split of 25,000 instances
for training and 25,000 instances for testing.

• SST-fine (sentence level): This sentence level
dataset was created by (Pang and Lee, 2005)
and extended by (Socher et al., 2013b). The
sentences are taken from movie review site,
Rotten Tomatoes (RT). In our experiments,
we use the fine-grain labels for the classifi-
cation task. The dataset provides three set
for training, validation and testing with each
containing and, respectively. Note that, sev-

210

original: fanatically, stylings, melding, inimitable, ardently
masked: whole-heartedly, uncompromising, rosily, principled, hard-driving

original: post-camp, larceny, family-friendly, light-years, matchmaking
masked: post-camp, family-friendly, voyages, four-star, cabins

original: ballot, ontiveros, candidate, nomination, badge
masked: candidate, nomination, laziest, vote, voting

original: 95, shave, grad, veggietales, colgate
masked: shave, grad, veggietales, colgate, golf

Table 3: Words in the newswire dataset with largest coefficient along a random dimension of word
vectors. Each row belongs to different dimension.

Original blinddate, micro-device, bible-study, greenfingers, fever-pitched,
bogosian, darabont, navona, 66-day, murri

Masked screenplay, cinematic, entertaining, fascinating, movie,
daughter, he, micro-device, secret, discovers

Table 4: Demonstration of the discriminative power of sparsified word embeddings - Words with largest
`1-norm in the SUBJ dataset. The words colored in blue occur most commonly found in sentences from
the subjective class while words marked in red occur commonly in objective sentences.

eral existing syntactic approaches also utilize
the phrase level labels by augmenting them
to the training set. However, we evaluate the
three DAN architectures without the phrase-
level labels.

• SUBJ (sentence level): This dataset called as
the Subjective dataset (Pang and Lee, 2004)
involves classifying a sentence as either being
subjective or objective. This dataset provides
10,000 instances in total and contain separate
validation/test set.

• Reuters (document level): This dataset com-
prises of 11228 newswires from Reuters. The
task is to classify the newswires into one of
the given 46 topics. There is no standard
train/test split for this dataset.

The classification performance on these datasets
is reported in table 1. As it can be observed,
the sparsified word vectors ourperform the con-
ventional word embeddings with the DAN archi-
tecture and perform competitively with respect to
state-of-the-art syntactic methods. Investigating
the properties of the masked work vectors and
comparing them to original work vectors can shed
some light on the behavior of the sparsification
procedure. Figure 5(a) shows the mean `1-norm
of each dimension of the word vector across all
the words in the vocabulary for the SST sentiment

classification dataset. The dimensions are ordered
by their `1-norm in the original word vector space.
The general behavior remains the same, however
with an overall reduction in norm that can be at-
tributed to the sparsity in the masked word vec-
tors. Similar analysis can be performed with re-
spect to words instead of each word vector dimen-
sions. In figure 5(b), the blue line corresponds to
`1-norm of the top 500 words ordered by the norm.
The norm for the same words in the masked space
is shown in red, which indicates that the mask is
word-specific and can tune the entries as suited for
the task in hand.

Analysis of task-specific mask: To understand
the effect of the task-specific mask, we study the
similarity of words and compare them in the origi-
nal word vector space and the sparsified word vec-
tor spaces. Table 4 shows a couple of example
neighborhoods of words in these spaces. Subjec-
tively, we can see that the word vector semantic
space is modified such that word neighborhoods
that are more important for the task are preserved
and enhanced. We can draw similar inferences by
looking at the t-SNE (Van der Maaten and Hinton,
2008; Faruqui and Dyer, 2014) plots as seen in fig-
ure 6.

Another approach is to investigate the individ-
ual dimensions of word vector and how the mask
affects their behavior is isolation. In table 3,
we show the top words for 4 random dimensions

211

original: officials, he, government, who, political
masked: she, he, local, until, decision

original: societal, well-defined, physiological, mechanisms, perceptible
masked: predictable, least, familial, elements, unconditional

original: wanna, song, lil, bitch, gonna
masked: movies, laugh, fans, moments, wit

original: voltage, layer, cells, surface, battery
masked: easy, i, velocity, provides, functions
original: goldie, knowles, hailey, dick, dildo
masked: rachel, peter, patricia, alex, johnny

Table 5: Words from SUBJ dataset with largest coefficient along the top-5 dimensions (in terms of `1-
norm) of word vectors.

of the original word vectors and the correspond-
ing dimensions from the masked counterparts ob-
tained from the SST-fine sentiment classification
task. The top words are obtained by sorting the
absolute value of the words along each of those di-
mensions. Since, there is a direct correspondence
between original and masked word vector dimen-
sions, we can directly compare them. The exam-
ples in table 3 show that mask improves the se-
mantic consistency and hence improves interpre-
tation of individual dimensions. Similar analysis
is carried our for the SUBJ dataset and the results
are reported in Table 5

Finally, we use the SUBJ dataset to demonstrate
the discriminative power of sparsified word em-
beddings in sentence classification. The words
with the largest `1-norm in the masked vector
space in Table 4 reveal that the sparsity mask iden-
tifies a set of words crucial for discriminating the
two classes. Finally, we consider an example sen-
tence in each of the two classes and show the aver-
age `1 norms for words in the sentences in Figure
7. As it can be observed, words such as emotional
and material are crucial to identifying the subjec-
tive nature of the sentence while words such as
125 � year which has prominence in the original
word vector space has no relevance.

5 Conclusions

We have described an architecture that performs
fine tuning of the word vectors in a classifi-
cation setup while promoting sparsity in them.
The resulting network achieves competitive re-
sults on several text classification datasets. This
approach of inducing sparsity is computationally
much cheaper than the traditional sparse models.
The fine-tuned word vectors are also shown to be

more interpretable, task specific and in process
enhance the effectiveness of architectures based
on simple unordered composition model. Also,
the resulting word vectors posses improved dis-
criminatory power suggesting that the use of this
method as a pre-processing step can potentially
lead to improved performance in other tasks which
utilize word vectors.

References
Jacob Andreas and Dan Klein. 2014. Grounding lan-

guage with points and paths in continuous spaces. In
CoNLL, pages 58–67.

Samuel R Bowman. 2013. Can recursive neural tensor
networks learn logical reasoning? arXiv preprint
arXiv:1312.6192.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L
Boyd-Graber, and David M Blei. 2009. Reading
tea leaves: How humans interpret topic models. In
Advances in neural information processing systems,
pages 288–296.

Jacob Eisenstein, Noah A Smith, and Eric P Xing.
2011. Discovering sociolinguistic associations with
structured sparsity. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 1365–1374. Association for Computational
Linguistics.

Manaal Faruqui and Chris Dyer. 2014. Community
evaluation and exchange of word vectors at word-
vectors.org. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, Baltimore, USA,
June. Association for Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcom-
plete word vector representations. arXiv preprint
arXiv:1506.02004.

212

Figure 7: An example from the SUBJ dataset demonstrating the ability of the proposed sparisification to
choose words that easily discriminate the two classes.

Alona Fyshe, Partha P Talukdar, Brian Murphy, and
Tom M Mitchell. 2014. Interpretable semantic
vectors from a joint model of brain-and text-based
meaning. In Proceedings of the conference. Associ-
ation for Computational Linguistics. Meeting, vol-
ume 2014, page 489. NIH Public Access.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing, volume 1, pages 1681–1691.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Quoc V Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. arXiv
preprint arXiv:1405.4053.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 142–150. As-
sociation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-

tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics, page 271. Association for Com-
putational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting on Association for Computa-
tional Linguistics, pages 115–124. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013a. Reasoning with neural ten-
sor networks for knowledge base completion. In Ad-
vances in Neural Information Processing Systems,
pages 926–934.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013b. Recursive deep

213

models for semantic compositionality over a senti-
ment treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
1017–1024.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. arXiv preprint arXiv:1503.00075.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(2579-2605):85.

Sida Wang and Christopher Manning. 2013. Fast
dropout training. In Proceedings of the 30th In-
ternational Conference on Machine Learning, pages
118–126.

Dani Yogatama and Noah A Smith. 2014. Linguistic
structured sparsity in text categorization.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and Noah
Smith. 2015. Learning word representations with
hierarchical sparse coding. In Proceedings of the
32nd International Conference on Machine Learn-
ing (ICML-15), pages 87–96.

Ye Zhang and Byron Wallace. 2015. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
arXiv preprint arXiv:1510.03820.

214

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 215–221,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Why “Blow Out”? A Structural Analysis of the Movie Dialog Dataset

Richard Searle
Eccentric Data, Cambridge

richard@eccentricdata.com

Megan Bingham-Walker
Eccentric Data, Cambridge

megan@eccentricdata.com

Abstract

A long-term goal of machine learning is
to build an intelligent dialogue agent that
is capable of learning associations within
data and using them to understand and an-
swer questions and make relevant recom-
mendations. The Facebook Movie Dialog
Dataset (MDD) was recently proposed in
Dodge et al. (2016) to evaluate the com-
parative performance of dialogue agent
systems. However, a structural analysis of
the data for the recommendation tasks sug-
gests that there may be some flaws in the
design of the dataset.

1 Introduction

There has been a recent upsurge of commercial in-
terest in the development of intelligent dialogue
systems to answer questions, provide personal-
ized recommendations and deliver services across
a range of different domains. Some of the chal-
lenges that an intelligent dialogue agent will need
to overcome in order to fulfill these objectives are:
to be able to learn incrementally from heterege-
nous sources; to be able to adapt to changes in
context; and to hold information in a long-term
structured memory for rapid recall (Bordes et al.,
2015).

Facebook recently proposed the Movie Dialog
dataset (MDD) in Dodge et al. (2016) to encourage
new research on this topic by providing a bench-
mark to evaluate the specific strengths and weak-
nesses of such systems. The MDD is part of the
bAbI project of research into methods for auto-
matic text understanding and reasoning (Weston
et al., 2015). The MDD supports four question an-
swering tasks featuring information retrieval and
movie recommendation.

We had already developed an efficient, struc-
tural approach to incrementally learn clusters of
associated products from high-dimensional, time-
series data, for marketing personalized structured
products to the clients of a financial services com-
pany. A structured product is an investment prod-
uct that comprises a basket of underlying financial
instruments, for example, equities, debt issuance,
commodities, currencies or a combination of glob-
ally traded securities. In this case, the sparse
hyper-dynamic nature of the product combinations
and customer preferences necessitated an auto-
mated, algorithmic ranking metric. User prefer-
ences are conditioned with respect to the charac-
teristics of a particular product offer, whereas indi-
vidual products are a function of their underlying
components. This decoupling of user preferences
from the attributes of the structured product proves
problematic when trying to identify an affinity be-
tween discrete users and potential product offers
using techniques such as latent factorization.

Since our prior work constituted a generic, un-
supervised approach, we were curious to see how
it could perform against recommendation tasks in
other domains and whether the structural model
could be extended to act as a long-term memory
for question answering.

One of the benefits of a structural approach, en-
compassing graphical learning representation, is
that it is possible to track the reasons why certain
recommendations are made, which can be bene-
ficial to users (Tintarev and Masthoff, 2007) and
enables accurate evaluation of the performance of
the system. We report results from the applica-
tion of a dynamic structural model as a contex-
tual memory for Task 2 and Task 3, as defined in
Dodge et al. (2016). Analysis of our findings re-
veals a possible flaw in the design of the Facebook
Movie Dialog Dataset which may explain the re-
sults obtained by our method and those previously

215

reported by Dodge et al. (2016).

2 Recommendation Tasks

2.1 Task 2 - Undirected recommendations

Task 2 aims to test whether an intelligent dialogue
agent is able to make valid personalized recom-
mendations for a user.

Dodge et al. (2016) selected ∼11k movies from
the MovieLens dataset. They randomly sampled
∼110k users and for each of these users selected
1-8 movies that the user had rated 5. A state-
ment was generated to express the user’s opinion
of these movies from a template, and this forms
the statement input text (see Table 1 below). From
the list of other movies that the same user had also
rated 5, they randomly selected one to be the tar-
get answer representing a valid recommendation
based on the composition of the basket of movies
in the statement.

Statement
Gentlemen of Fortune, Revanche,
Eternal Sunshine of the Spotless Mind,
Prometheus, Fanny and Alexander, The Hurt
Locker, and 127 Hours are films I really like.
Would you recommend something to watch?
Answer
Blow Out

Table 1: Task 2 Example.

Data from ∼110k users was sampled multiple
times to generate 1M training samples, data from
∼1k users was used to generate 10k development
samples and data from a further ∼1k users was
used to generate 10k test samples.

An important aspect of the MDD defined by
Dodge et al. (2016) is that the number of users
in each dataset is expanded by a factor of ∼10
through random sampling with replacement. The
resultant datasets do not, however, identify unique
users and, thus, preferred aggregations of movies
by user. This characteristic of the MDD prevents
user profiling and restricts the selection of recom-
mended movies in Task 2 and Task 3 to a proba-
bilistic similarity measure.

2.2 Task 3 - QA and contextual
recommendations

Task 3 evaluates a short three-stage dialogue in-
volving a combination of QA and recommenda-

tions that draws on additional contextual infor-
mation. The first question is in the same format
as Task 2, with the addition of a selection crite-
rion - the writer and director Brian De Palma, in
the example shown in Table 2. The second ques-
tion is a factoid question about the response to the
first question. The third question is a request for
a follow-up recommendation, which refers to the
context provided in the first question and a sec-
ondary contextual criterion defined by the state-
ment in question 3 (see Table 2 below).

Statement 1
Gentlemen of Fortune, Revanche,
Eternal Sunshine of the Spotless Mind,
Prometheus, Fanny and Alexander, The Hurt
Locker, and 127 Hours are films I really like.
I’m looking for a Brian De Palma movie.
Answer 1
Blow Out
Statement 2
Who does that star?
Answer 2
John Travolta, John Lithgow,
Nancy Allen, Dennis Franz
Statement 3
I prefer Robert De Niro movies.
Can you suggest an alternative?
Answer 3
Hi, Mom!

Table 2: Task 3 Example.

3 Related Work

A network-based representational model has been
demonstrated to be an accurate and efficient
method for information retrieval, inference and
reasoning for question answering (Berant et al.,
2013; Berant et al., 2014; Hixon et al., 2015;
Guu et al., 2015). Recent research has demon-
strated some success in learning undirected graph-
ical structural models from data (Lake and Tenen-
baum, 2010; Mao et al., 2015) and it has also
been shown that associations in data, intrinsic to
a network-based architecture, form an important
element of human learning (Spelke and Kinzler,
2007; Gershman, 2015).

We sought to augment a structural network-
based representation of entities (in this case
movies) and their attribute features by using the
training data to learn statistical relationships be-

216

tween the entities from their recommendation his-
tories. This form of relationship learning is consis-
tent with the treatment of each sample as a unique
user outcome and enables a top-k for k = number
of hits (@100 for Task 2 and @10 for Task 3) rank-
ing of the distance metrics between movie titles.
The resultant ranking is used to assess the predic-
tion accuracy of the recommendations made by the
system.

4 Methodology

It is possible to conceive two primitive methods
for recommending a movie based on the sample
training data:

1. recommendation according to user movie
preferences, by movie attribute (commonly
achieved through the use of techniques such
as latent matrix factorization), and

2. recommendation according to movie similar-
ity, by movie attribute or user co-preference
(as defined by a probabilistic distance mea-
sure between items or attribute features).

Since unique user data was lost in the con-
struction of the MDD, it is not possible to asso-
ciate movies with communities of users, which is
a technique that we have found to aid both com-
putational efficiency and accuracy of personalized
user profiling in financial services. Instead, rec-
ommendations must be generated from either the
similarity of movie attributes or the frequency of
users co-rating movies as a 5. We will show that
the latter method is the only viable approach to se-
lection of a candidate recommendation using the
MDD. Dodge et al. (2016) do not disclose the ba-
sis for their calculation of discrete and cumulative
accuracy for Task 3 and the example data, shown
in Table 1 and Table 2, does not discriminate be-
tween films with identical titles (e.g. versions of
“20,000 Leagues Under the Sea” were released in
1916, 1954, and 1997). Consequently, we report
accuracy of recommendation based on hits@100
or hits@10 with respect to correct identification
of the movie title only. In Task 3, question 2
refers to a specific movie and for this task element
we report the accuracy of our system under the
assumption that a unique film was recommended
with additional discriminatory training data (i.e. a
hits@1 selection with a definitive release year, e.g.
“20,000 Leagues Under the Sea” + 1954). Since,

Task 3, question 2 cannot be accurately answered
without a definitive answer to question 1, we do
not report a mean accuracy as we consider this
to be a misleading representation of the effective
accuracy of a system over the task. Instead, we
report the cumulative accuracy, αT3, over Task 3
given by the formula:

αT3 = (P (αQ1) ∗ P (αQ2)) ∗ P (αQ3) (1)

The cumulative accuracy αT3 is shown in Table
3 for our structural approach and is applied to the
results reported by Dodge et al. (2016). We sug-
gest that the cumulative accuracy αT3 represents a
more realistic evaluation of the predicted accuracy
of system responses in a dialog exchange of the
type characterizing Task 3, whereby the success
of a system is governed by the conditional proba-
bility introduced by the question sequence.

5 Building the Structural Model

Algorithm 1 below illustrates how the structural
model is built from the movie knowledge base,
training and development data. The variable b is
defined as the movies in the basket of movies in
the statement. The variable r is the recommended
movie in the answer.

Algorithm 1 Building Structural Model
1: procedure CREATEGRAPH(K)
2: load movie knowledge base
3: for movie in knowledge base do
4: K← add node movie
5: K← add movie attributes
6: load task training data as d
7: for task in MDD tasks do
8: for user in d do
9: for b in basket and r in rec do

10: K← add edge(b, r)
11: K← count users, freq rec
12: for edge in K do
13: distance metric m(b, r)
14: freeze system memory K for testing

Algorithm 2 below provides a workflow for how
a prediction is generated from the test data for
Tasks 2 and 3. In accordance with the experimen-
tal protocols, Task 2 top-k is reported for hits@100
and Task 3 top-k is reported for hits@10.

On completion of training and development cy-
cles, the structural model comprising the system

217

Algorithm 2 Recommend using item similarity
1: procedure MAKEREC(basket, criteria)
2: load task test data as sample
3: for s in sample do
4: for b in basket and c in candidates do
5: rec[s] = edge(b,c) if c[crit]=True
6: for r in rec[s] do
7: rec ∈ rec[s] if metric e[m] in top-k

memory is frozen. However, in practice, the sys-
tem memory should continuously update to reflect
user feedback on the recommended movies, a ca-
pability that is embedded in our dynamic model
but not applied here. Such a capability is consis-
tent with some of the challenges that an intelligent
dialogue agent will need to overcome, as noted by
Bordes et al. (2015).

6 Results and Analysis

We report our results in conjunction with those re-
ported in Dodge et al. (2016) in Table 3.

Our graphical model renders the information re-
trieval Task 3, question 2 and Task 1 trivial, subject
to valid data being held in the long-term memory.
Following initial concern regarding the accuracy
of our system, we are satisfied that our structural
approach produces a valid model as a basis for
movie recommendations using the statistical rela-
tionships encoded within the graph. This begs the
question as to why the recommendation accuracy
of our system and those produced by the method
of Dodge et al. (2016) is so low?

Dodge et al. (2016) suggests that the reason
why results for Task 2 are lower than for the in-
formation retrieval Task 1 and comparable Task
3, question 2 is due to missing labels, as a con-
sequence of the sampling methodology they de-
scribe. We contend, however, that the basis of
recommendation imposed by the MDD is flawed
and that the frequency of occurrence of movies
established by the effective 1M user population
generates super-nodes that penalize valid answers
with sparse structural association. Furthermore,
our structural model of the MDD enables detailed
analysis of the causes of recommendation error, as
shown in Table 6 in the Appendix. Examination
of the statistical relationships between answer rec-
ommendations and the statement basket of movies
reveals that in many cases the sparse association
and characteristic attributes of the answer provides

no statistical basis for its inclusion as a recommen-
dation in preference to other candidate films.

We consider that the MDD construction of the
basket-recommendation relationship by arbitrary
selection of films rated 5 by a user does not in-
dicate the suitability of the proposed answer as a
recommendation, hence the title of our paper. For
the Task 3 example shown in Table 1, the movie
“Blow Out” was not rated 5 by any user that also
rated the basket movies 5. For the example in Ta-
ble 2, “Blow Out” could not, therefore, be recom-
mended by our system without recourse to joint
training and is included within the “No associa-
tion” error for Task 3 in Table 6.

For Task 2, “Blow Out” is associated with three
of the basket films; “Eternal Sunshine of the Spot-
less Mind” (ESSM), “Fanny and Alexander” (FA),
and “The Hurt Locker” (THL). However, as shown
in Table 5, the sparse association of “Blow Out”
with the basket films excludes it from the top-
k for k = 100 strongest recommendations as the
similarity metric for “Blow Out” falls below the
minimum threshold for the top-k recommenda-
tions. The weak similarity metric generated be-
tween “Blow Out” and the basket movies is a prod-
uct of the disparity between the number of users
rating the basket movie as 5 and the fact that only
158 users rated “Blow Out” as 5.

Importantly, the genre information in Table 4
also illustrates that criteria-based association of
recommendations is prevented by the heteroge-
neous nature of the MDD basket compositions.
We evaluated this approach in the development
of our system, but found reduced correlation of
movies when compared to the use of frequency of
user rating as the basis for a valid distance metric.

Furthermore, where the correct answer is iden-
tified by the system as a potential candidate, the
imposition of a statistically valid top-k ranking ex-
cludes the majority of answers in favour of super-
nodes that feature more prominently within films
rated 5 by all users. The distribution of these dom-
inant movie titles suggests a causal link between
the reported accuracy of our system and those de-
scribed by Dodge et al. (2016). The improvement
shown in the results of Dodge et al. (2016) over
our own may be attributable to the difference be-
tween our, definitive, structural method, and the
alternative, parametric methods described in their
research.

We consider that the hash lookup employed by

218

Methods Recs Task QA+Recs QA+Recs QA+Recs QA+Recs
Task 2 Task 3 Task 3 Task 3 Task 3

Question 1 Question 2 Question 3 Cumulative
hits@100 hits@10 hits@1 hits@10

LSTM 27.1 35.3 14.3 9.2 3.2
Supervised Embeddings 29.2 56.7 76.2 38.8 22.0

MemN2N 28.6
MemN2N (2 hops) 53.4 90.1 88.6 47.3
Structural Model 20.0 46.2 100.0 70.5 32.6

Table 3: Test results for Task 2, benchmarked against Dodge et al. (2016, Table 6) and test results for
the individual questions in Task 3 benchmarked against Dodge et al. (2016, Table 9). Results reported
as percentage accuracy.

Basket Movies Users rating Users rating “Blow Out” Genre
movie co-rated 5 movie 5 “Blow Out” 5 recommendations
ESSM 4511 17485 2 1 unknown

FA 2160 1801 1 0 Drama
THL 1919 1283 1 0 War

Table 4: Structural association of “Blow Out” with basket movies for Task 2 example shown in Table 1.

Dodge et al. (2016) may introduce the possibil-
ity of conflation error by virtue of the inclusion of
candidate movie titles on the basis of their seman-
tic or syntactic structure. The embedding of movie
titles without recourse to their probabilistic asso-
ciation with the expressed basket of films liked by
the user may yield false positives in the case of the
MDD, which will augment the evaluated accuracy
of a system. In practice, however, the repeatability
and accuracy of such a system may prove prob-
lematic.

7 Conclusion

Our experience of personalized user profiling in
the financial services sector and analysis of the ap-
plication of our method to the MDD tasks suggests
that a combination of different methods may rep-
resent the most efficient path to effective, contex-
tual personalized recommendations. In particular,
the use of parametric candidate selection and re-
laxation of the strict statistical association required
for candidate films helps to overcome issues of
dominance in sparse, high-dimensional datasets.
Critical factors in the success of both supervised
and unsupervised approaches to recommendation
are, however, the primacy and individual charac-
teristics of the user and distinct user communities
that support latent factorization methods. We be-
lieve that a simple reconfiguration of the MDD to
reflect these characteristics would enable a more

informative analysis of competing methods and
technologies and thus contribute to fulfilling the
objectives for intelligent dialog agents as set out
by Bordes et al. (2015).

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic Parsing on Freebase from
Question-Answer Pairs. In 2013 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1533–1544, Seattle. Association for Compu-
tational Linguistics.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Brad Huang, Christopher D. Manning, Abby Van-
der Linden, Brittany Harding, and Peter Clark.
2014. Modeling Biological Processes for Reading
Comprehension. In 2014 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1499–1510, Doha. Association for Computational
Linguistics.

Antoine Bordes, Jason Weston, Sumit Chopra, Tomas
Mikolov, Arman Joulin, and Léon Bottou. 2015.
Artificial Tasks for Artificial Intelligence. In 2015
International Conference on Learning Representa-
tions, San Diego.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine
Bordes, Sumit Chopra, Alexander Miller, Arthur
Szlam, and Jason Weston. 2016. Evaluating Pre-
requisite Qualities for Learning End-to-End Dia-
log Systems. In 2016 International Conference on
Learning Representations, San Juan.

219

Basket “Blow Out” “Blow Out” “Blow Out”
movie similarity metric Pr(recommended by basket movie) Pr(same user rating 5)
ESSM 0.00011 0.01351 0.01266

FA 0.00051 0 0.00633
THL 0.00694 0 0.00632

k rank min. 0.00980 0.3 0.25
threshold for
hits@k = 100

k rank 3906 2911 3088

Table 5: k rank of “Blow Out” for example basket of movies for Task 2 example shown in Table 1
(similarity metric and probabilistic kth rank from K = 5235 candidate movies shown).

Samuel J. Gershman. 2015. A Unifying Probabilistic
View of Associative Learning. PLoS Computational
Biology, 11(11):e1004567.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing Knowledge Graphs in Vector Space. In
2015 Conference on Empirical Methods in Natural
Language Processing, pages 318–327, Lisbon. As-
sociation for Computational Linguistics.

Ben Hixon, Peter Clark, and Hannaneh Hajishirzi.
2015. Learning Knowledge Graphs for Question
Answering through Conversational Dialog. In Hu-
man Language Technologies: The 2015 Annual
Conference of the North American Chapter of the
ACL, pages 851–861, Denver. Association for Com-
putational Linguistics.

Brenden Lake and Joshua Tenenbaum. 2010. Discov-
ering Structure by Learning Sparse Graphs. In Cog-
nition in Flux: Proceedings of the 32nd Cognitive
Science Conference, pages 778–783, Portland. Cog-
nitive Science Society.

Qi Mao, Li Wang, Ivor W. Tsang, and Yijun Sun.
2015. A Novel Regularized Principal Graph Learn-
ing Framework on Explicit Graph Representation.
arXiv preprint arXiv:1512.02752.

Elizabeth S. Spelke and Katherine D. Kinzler. 2007.
Core knowledge. Developmental Science, 10(1):89–
96.

Nava Tintarev and Judith Masthoff. 2007. A Sur-
vey of Explanations in Recommender Systems. In
WPRSIUI Associated with ICDE’07, pages 801–
810. IEEE.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M. Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards AI-Complete
Question Answering: A Set of Prerequisite Toy
Tasks. In 2016 International Conference on Learn-
ing Representations, San Juan.

A Test Data and Discussion

Table 6 below provides details of the test results
obtained for Task 2 and Task 3 using the MDD
and test protocol defined by Dodge et al. (2016).
We identified three principal causes of error:

1. the absence of an association between basket
movies and the answer movie, due to no com-
mon user rating a basket film and an answer
film 5;

2. low k rank of the answer film excluding it
from the top-k for k = 100 or k = 10 recom-
mendations for the basket of movies liked by
a user;

3. for Task 3; the absence of a selection crite-
rion from the answer film, thereby excluding
its inclusion in the list of possible candidate
recommendations. This is consistent with the
observation made by Dodge et al. (2016) re-
garding potential errors due to missing labels.

Using the movie knowledge base as a long-term
memory, we discern 17,928 unique movies and
construct >3M edges within our structural model
for both Task 2 and Task 3.

We did not apply joint training over the tasks
but note that this would yield an improvement in
the results by reducing errors due to absence of
association, as illustrated by Table 4 since “Blow
Out” is only connected to “Eternal Sunshine of the
Spotless Mind” for Task 2 and is not connected to
any of the basket movies for the Task 3 example
shown in Table 2.

Table 6 indicates that the vast majority of er-
rors are attributable to the low statistical asso-
ciation between basket films, compositions of
basket films, and the hypothesized recommenda-
tions generated by random selection from specific

220

Recs Task QA+Recs QA+Recs QA+Recs
Task 2 Task 3 Task 3 Task 3

Question 1 Question 2 Question 3
hits@100 hits@10 hits@1 hits@10

Test samples 10000 4915 4915 4470
Correct answers 1996 2269 4915 3153

Errors:
Total 8004 2646 0 1317

No association 232 146 0 716
Low k rank 7772 2428 0 532

Accuracy (%) 20.0 46.2 100.0 70.5

Table 6: Test results breakdown for Tasks 2 and 3.

users’ movie ratings. We contend that it is the un-
derlying methodology behind the construction of
the MDD that leads to the poor accuracy reported
in Table 6 and not the intrinsic design of our sys-
tem.

We attribute the improved results of Dodge et al.
(2016) shown in Table 3 to the inclusion of answer
recommendations on the basis of parametric affin-
ity with the basket movie titles, rather than their
statistical relevance as a potential user selection.

This may occur through the conflation of movie
titles with independent basket-answer instances on
account of words within their titles or character-
istic attributes. Although we explored alternative
methods for defining a statistical association based
on the propinquity of movie attributes or attribute
ranking, we were unable to identify a rigorous
methodology that improved our reported accuracy
for either Task 2 or Task 3.

221

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 222–229,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Learning Word Importance with the Neural Bag-of-Words Model

Imran Sheikh∗+, Irina Illina∗, Dominique Fohr∗, Georges Linarès+

∗Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
∗Inria, Villers-lès-Nancy, F-54600, France

∗CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
+Laboratoire Informatique d’Avignon, University of Avignon

{imran.sheikh, irina.illina, dominique.fohr}@loria.fr
georges.linares@univ-avignon.fr

Abstract

The Neural Bag-of-Words (NBOW) model
performs classification with an average of
the input word vectors and achieves an im-
pressive performance. While the NBOW
model learns word vectors targeted for
the classification task it does not explic-
itly model which words are important for
given task. In this paper we propose an
improved NBOW model with this abil-
ity to learn task specific word importance
weights. The word importance weights
are learned by introducing a new weighted
sum composition of the word vectors.
With experiments on standard topic and
sentiment classification tasks, we show
that (a) our proposed model learns mean-
ingful word importance for a given task (b)
our model gives best accuracies among the
BOW approaches. We also show that the
learned word importance weights are com-
parable to tf-idf based word weights when
used as features in a BOW SVM classifier.

1 Introduction

A Bag-of-Words BOW represents text (a sen-
tence, paragraph or a document) as a vector of
word features. Traditional BOW methods have
used word occurrence frequency and variants
of TermFrequency-InverseDocumentFrequency
(tf-idf) as the word feature (Manning et al.,
2008). Development in neural network and deep
learning based language processing has led to
the development of more powerful continuous
vector representation of words (Bengio et al.,
2003; Collobert and Weston, 2008; Turian et
al., 2010; Mikolov et al., 2013b). It was shown
that these predictive word vector representations
capture syntactic and/or semantic characteristics

of words and their surrounding context (Mikolov
et al., 2013a; Pennington et al., 2014), and that
they outperform the count based word (vector)
representations (Baroni et al., 2014).

Many approaches in text classification are now
driven by models built on word vectors. Earlier
works proposed models which learned word vec-
tors targeted for the classification task (Maas et al.,
2011). In more recent works, text classification
is performed with compositional representations
learned with neural networks or by training the
network specifically for text classification (Gold-
berg, 2015). One such network is the Neural
Bag-of-Words (NBOW) model (Kalchbrenner et
al., 2014; Iyyer et al., 2015). The NBOW model
takes an average of the word vectors in the input
text and performs classification with a logistic re-
gression layer. Essentially the NBOW model is a
fully connected feed forward network with BOW
input. The averaging operation can be attributed
to the absence of non-linearity at the hidden layer
and the BOW inputs where words are set to 1 (or
number of occurrences of that word) and 0. While
the NBOW model learns word vectors targeted
for the classification task, it does not explicitly
model which words are important for given task.
In this paper, we propose an improved NBOW
model which learns these task specific word im-
portance weights. We replace the average with a
weighted sum, where the weights applied to each
word (vector) are learned during the training of the
model. With experiments on sentiment and topic
classification tasks, we will show that our pro-
posed model learns meaningful word importance
weights and it can perform better than the NBOW
model.

The rest of the paper is organised as fol-
lows. First in Section 2 we discuss about the
related works. In Section 3 we briefly intro-
duce the NBOW model and present our proposed

222

model, termed as the Neural Bag-of-Weighted-
Words (NBOW2) model, in Section 4. In Sec-
tion 5 we give details about the experiment setup
and the tasks used in our experiments. Section
6 presents a discussion on the word importance
weights learned and the classification performance
achieved by the proposed NBOW2 model, fol-
lowed by the conclusion in Section 7.

2 Related Work

A variety of neural network architectures have
been proposed for different language processing
tasks. In context of text classification, fully con-
nected feed forward networks (Le and Mikolov,
2014; Iyyer et al., 2015; Nam et al., 2014), Con-
volutional Neural Networks (CNN) (Kim, 2014;
Johnson and Zhang, 2015; Wang et al., 2015)
and also Recurrent/Recursive Neural Networks
(RNN) (Socher et al., 2013; Hermann and Blun-
som, 2013; Dong et al., 2014; Tai et al., 2015; Dai
and Le, 2015) have been used. On one hand, the
approaches based on CNN and RNN capture rich
compositional information, and have been outper-
forming the state-of-the-art results, on the other
hand they are computationally intensive and may
require careful hyper-parameter selection and/or
regularisation (Zhang and Wallace, 2015; Dai and
Le, 2015). We focus our study to the NBOW
model which gives an impressive performance in
text classification, not far below the state-of-the-
art CNN and RNN systems. We propose an im-
proved NBOW model which learns these task spe-
cific word importance weights.

Word weights based on variants of word oc-
currence frequency or tf-idf have been commonly
used and studied in literature (Manning et al.,
2008; Paltoglou and Thelwall, 2010; Quan et al.,
2011). Supervised weighting schemes for adjust-
ing tf-idf for text classification have been proposed
earlier (Kim and Zhang, 2014; Deng et al., 2014;
Mammadov et al., 2011; Lan et al., 2006). Use of
a small number of important words against all the
words in the text was studied by Islam(2015) for
the task of text relatedness using Latent Semantic
Analysis and Google Trigram Model. Our work is
in line with recent approaches of text processing
with neural networks and learns word importance
weights along with the word vectors.

We found that the works by Ling (2015) and
Li (2014) are most related to our proposed method.
Ling (2015) proposes position based weights to

improve word vectors learned by the Continu-
ous Bag-Of-Words (CBOW) model (Mikolov et
al., 2013a). Li (2014) proposes Weighted Neural
Network (WNN) for training RNNs which learn
compositional representation of text with a parse
tree. The WNN weighs how much one specific
node contributes to the higher-level representation.
Also related are works on learning to pay attention
in a sequence of input, as applied in text (Bah-
danau et al., 2014) as well as speech (Chan et
al., 2015), image (Xu et al., 2015) and protein
sequence analysis (Sønderby et al., 2015). The
model with convolutional-pooling structures pre-
sented by Gao (2014) is also shown to capture key-
words in text.

3 Neural Bag-of-Words (NBOW) model

The Neural Bag-of-Words (NBOW)
model (Kalchbrenner et al., 2014; Iyyer et
al., 2015) is a fully connected network which
maps textX , a sequence of words, to one of k out-
put labels. The NBOW model has d dimensional
word vectors for each word in the chosen task
vocabulary. For the words w ∈ X , corresponding
word vectors vw are looked up and a hidden vector
representation z is obtained as an average of the
input word vectors

z =
1
|X|

∑
w∈X

vw (1)

The average vector z is then fed to a fully con-
nected layer to estimate probabilities for the out-
put labels as:

ŷ = softmax(Wl z + b) (2)

where Wl is k × d matrix, b is a bias vector and
softmax(q) = exp(q)/

∑k
j=1 exp(qj). For text

classification tasks, the NBOW model is trained to
minimise the categorical cross-entropy loss (Gold-
berg, 2015) using a stochastic gradient descent al-
gorithm. Additional fully connected layers can be
added into the NBOW model to form Deep Aver-
aging Networks (DAN) (Iyyer et al., 2015).

4 Proposed model: Neural
Bag-of-Weighted-Words (NBOW2)

While the NBOW model learns word vectors spe-
cialised for the classification task, it lacks to ex-
plicitly model and provide the information that
certain words are more important than the others in

223

the given classification task. While tf-idf weights
capture word importance weights over a given cor-
pus and can be used at the input of the NBOW
model, we are interested in letting the model learn
the word importance weights which are task spe-
cific. We thus propose the NBOW2 model, with
the motivation to enable the NBOW model to pro-
vide task specific word importance weights.

It is easy to realise that the NBOW model is es-
sentially a fully connected feed forward network
with a BOW input vector. The absence of non-
linearity at the hidden layer and the BOW inputs
where words are set to 1 and 0, results into a sum
of the word vectors. However average of word
vectors is used as it gives a better performance
compared to a sum. To learn the word importance
weights, we form a weighted sum composition of
the text X as follows:

z =
1
|X|

∑
w∈X

αw vw (3)

where αw are the scalar word importance weights
for each wordw ∈ X . Learning task specific word
vectors with Equation 3 ensures that words which
drive the classification task are given higher im-
portance or αw values (see example in Figure 1).
αw are obtained by introducing a vector a in the

model, and are calculated as follows:

αw = f(vw · a) (4)

where vw · a represents a dot product between in-
put word vector vw and vector a; and f scales the
importance weights to range [0, 1]. Equation 4,
which makes the scalar word importance weight
αw a function of the distance of the word w from
a in the context space, ensures that calculation of
word importance takes into account the contextual
word similarities and that it is not biased by the
frequency of occurrence of words in the training
corpus.

For f common activation functions including
softmax, sigmoid and also hyperbolic tangent can
be used. From our experiments we found that the
sigmoid function f(t) = (1 + e−t)−1 is a better
choice in terms of model convergence and accu-
racy. However, it must be noted the softmax f
could be more interesting in certain tasks because
(a) the importance of a word (αw) in an input doc-
ument will be dependent not only on the distance
of this word from vector a but also on that of the
other words in the given input document (b) be-
ing a max function the softamax f will bias the

composition of input document context vector z
(in Equation 3) to only a handful of input words.

To summarise the as compared to the NBOW
model, the NBOW2 model will include one ad-
ditional vector (a). This vector is randomly ini-
tialised before training and learned along with the
word vectors and other model parameters. The
model training, with stochastic gradient descent,
and classification (with a forward pass) both will
use Equations 3 and 4, along with the output class
probability estimates ŷ = softmax(Wl z + b)
similar to the NBOW model.

5 Experiment Setup

To analyse the working and performance of our
proposed NBOW2 model, we consider two com-
mon tasks: (a) binary sentiment classification on
IMDB (Maas et al., 2011) and Rotten Tomatoes
movie review dataset (Pang and Lee, 2005) (b)
topic classification of 20 Newsgroup dataset. We
make available the source code used in our exper-
iments1.

5.1 Sentiment Analysis
For the IMDB task we use the original dataset2

with 25000 train and 25000 test movie reviews.
For Rotten Tomatoes (RT) we obtained the v1.0
dataset3 and we do 10-fold cross-validation over
the balanced binary dataset of 10,662 sentences.
In both IMDB and RT tasks, model training pa-
rameters4 for NBOW2 are kept similar to those
chosen for NBOW by Iyyer (2015) after cross
validation. For NBOW and NBOW2 models ’-
RAND’ suffix will denote random word vector ini-
tialisation and no suffix is initialisation with pub-
licly available 300-d GloVe vectors trained over
the Common Crawl (Pennington et al., 2014)5.

5.2 20 Newsgroup Topic Classification
We use the ’bydate’ train/test splits, cleaned and
made available by Cardoso (2007)6. There are
11,293 documents in the original training set and
7,528 in the test set. For training the NBOW
and NBOW2 models, we randomly extract 15%

1Source code available at the url
https://github.com/mranahmd/nbow2-text-class

2http://ai.stanford.edu/ amaas/data/sentiment/
3https://www.cs.cornell.edu/people/pabo/movie-review-

data/
4word vector size 300, word dropout probability 0.3, L2

regularisation weight 1e-5
5http://nlp.stanford.edu/projects/glove/
6http://web.ist.utl.pt/acardoso/datasets/

224

of the original train set as the validation set and
use remaining 85% as the final training set. Train-
ing was performed with the ADADELTA (Zeiler,
2012) gradient descent algorithm. L2 regularisa-
tion weight of 1e-5 was applied to all parameters.
Further, to add robustness, we applied 75%7 word
dropout (Iyyer et al., 2015; Dai and Le, 2015). Ad-
ditionally we use early stopping when the valida-
tion error starts to increase. Similar to the sen-
timent analysis experiments ’-RAND’ suffix will
denote random word vector initialisation and no
suffix is initialisation with 300-d GloVe.

6 Analysis and Discussion

6.1 Word importance weights learned by the
NBOW2 model

We perform an analysis of the word importance
weights learned by the NBOW2 model by present-
ing some qualitative and quantitative results.

6.1.1 Visualisation of word vectors from the
RT sentiment analysis task

We visually examine the word vectors learned by
the NBOW and NBOW2 models. To visualise
word vectors they can be projected into a two di-
mensional space using the t-Distributed Stochastic
Neighbour Embedding (t-SNE) technique (van der
Maaten and Hinton, 2008). Figure 1 shows the two
dimensional t-SNE visualisations of word vectors
learned by the NBOW and NBOW2 models. Fig-
ure 1a shows a plot of the word vectors learned
by the NBOW model and Figure 1b shows a plot
of the word vectors learned by the NBOW model.
Additionally in Figure 1b each word is given a
colour based on the word importance assigned to
it by the NBOW2 model.

From Figure 1a we can see that NBOW model
tries to separate the words in the word vector
space. According to the word examples labelled in
Figure 1a the words appear to be grouped into re-
gions corresponding to positive and negative senti-
ments of the RT movie review task. Similarly the
NBOW2 model also learns to separate the words
into regions of positive and negative sentiments as
shown, by the same word examples, in Figure 1b.
If we examine the word importance assigned by
the NBOW2 model, indicated by colours in Fig-
ure 1b, it is evident that the NBOW2 model also
learns to separate words based on their importance

7choice based on accuracy on validation set

weights. To support this statement we show addi-
tional word examples labelled in different regions
in Figure 1b. For instance the words a, on, it, for,
there are not so important8 for the RT sentiment
classification task and are present together in re-
gion of lowest word importance. The words staid,
inflated, softens can contribute to (negative) polar-
ity of the reviews and hence have relatively higher
importance weights (and are present together near
the negative sentiment region in the word vector
space).

To further verify our claim that, in comparison
to the NBOW model, the NBOW2 model is able
to distinguish words based on their importance we
show Figure 1c. Figure 1c shows the word vec-
tors learned by the NBOW model (same as in Fig-
ure 1a) but it depicts each word with (a colour
based on) word importance weight learned by the
NBOW2 model. It can be seen in Figure 1c that
the NBOW model does not separate/group words
based on word importance, even if we restrict only
to the example words a, on, it, for, there.

6.1.2 Word importance weights v/s Tf-Idf
weights as classification features

In this analysis, we compare the word importance
weights learned by the NBOW2 model with tf-
idf weights and other word weight features pro-
posed in the previous works. For this compar-
ison, an SVM classifier is used for the IMDB
and RT binary classification tasks. Each train/test
document is represented as a sparse BOW fea-
ture vector in which each word feature is only
the word weight. For NBOW2 model it is the
scalar word importance weight learned by the
model. We compare it with (a) classical tf-
idf weights (b) credibility adjusted tf-idf (cred-tf-
idf) weights proposed by Kim (2014) (c) binary
cosine-normalised weights (bnc) and binary delta-
smoothed-idf cosine-normalised (b∆’c) weights
used by Maas (2011) (d) the Naive-Bayes SVM
(NBSVM) method proposed by Wang (2012). Tf-
idf, bnc and b∆’c word weights are task indepen-
dent word weights but cred-tf-idf and NBSVM are
built based on the class/task information. It should
be noted that some of these methods/features have
been the earlier state-of-the-art results for IMDB
and RT tasks.

The classification accuracies obtained by the
SVM classifiers are reported in Table 1. The tf-

8from a BOW sentiment classification perspective; for
other approaches or text analysis they might be essential

225

(a) (b) (c)

Figure 1: Visualisation of word vectors learned by the NBOW and NBOW2 models in the RT task. Word
vectors are reduced to 2 dimension using t-SNE technique and shown in each plot. Plot (a) represents
word vectors from the NBOW model, (b) represents words from NBOW2 model, with colours indicating
the word importance weights learned by the NBOW2 model, (c) represents word vectors from the NBOW
model as in (a) but depicts each word with word importance weight learned by the NBOW2 model.

Features for SVM Classifier IMDB RT
bnc (Maas et al., 2011) 87.8 -
b∆’c (Maas et al., 2011) 88.2 -
tf-idf-uni (Kim and Zhang, 2014) 88.6 77.1
cred-tf-idf-uni (Kim and Zhang, 2014) 88.8 77.5
NBSVM-uni (Wang and Manning, 2012) 88.3 78.1
NBOW2-RAND Word Importance Weights 88.2 76.7
NBOW2 Word Importance Weights 88.3 76.3

Table 1: Classification accuracy obtained for the
IMDB and Rotten Tomatoes (RT) movie reviews
sentiment classification task by training an SVM
classifier on different word weights as features.
(For IMDB 0.1% corresponds to 25 test docu-
ments. For RT 1% is about 10 test sentences.)

idf, cred-tf-id and NBSVM methods are denoted
with a ’-uni’ suffix in Table 1 following the nota-
tion used by Kim (2014) . For the SVM classifier
on 25k full length documents of IMDB task, the
NBOW2 model weights are as good as NBSVM
and b∆’c and better than bnc. But they do not
perform as good as tf-idf weights. Whereas for
the RT task with 1066 test sentences, the NBOW2
model word weights achieve accuracy closer to tf-
idf variants.

6.2 NBOW2 model Classification
Performance

After the discussion on the word importance
weights learnt by the NBOW2 model we com-
pare the classification results obtained with our
NBOW2 model. We compare the NBOW2
model classification accuracy to that obtained
from the NBOW model (Iyyer et al., 2015),

Model IMDB RT
NBOW-RAND (Iyyer et al., 2015) 88.9 76.2
NBOW (Iyyer et al., 2015) 89.0 79.0
NBOW2-RAND 88.7 78.2
NBOW2 89.1 80.5
NBSVM-uni (Wang and Manning, 2012) 88.3 78.1
NBSVM-bi (Wang and Manning, 2012) 91.2 79.4
CNN-MC (Kim, 2014) - 81.1
CNN-non-static (Kim, 2014) - 81.5
s2-bown-CNN (Johnson and Zhang, 2015) 92.3 -
SA-LSTM (Dai and Le, 2015) 92.8 83.3
LM-LSTM (Dai and Le, 2015) 92.4 78.3

Table 2: IMDB and Rotten Tomatoes (RT)
movie reviews binary classification accuracy. First
group lists BOW methods; including different ini-
tialisations of NBOW and NBOW2 (this work).
The next group shows best reported results with
bi-gram BOW and CNN methods, followed by
LSTM RNN. Best method in each group is shown
in bold. (For IMDB 0.1% corresponds to 25 test
documents. For RT 1% is about 10 test sentences.)

BOW approaches based on Restricted Boltzmann
Machines (RBM) and Support Vector Machines
(SVM) and more complex approaches based on
RNN, CNN. It must be noted that the CNN and
RNN based approaches operate on rich word se-
quence information and have been shown to per-
form better than BOW approaches on these tasks.

Table 2 compares the classification accuracy of
the NBOW2 model on IMDB and Rotten Toma-
toes (RT) movie reviews binary classification
tasks. Table 3 compares the classification accu-
racy on 20 Newsgroup topic classification. Results
in Table 2 and 3 indicate that the NBOW2 model

226

Model Accuracy (%)
NBOW-RAND 83.2
NBOW 83.2
NBOW2-RAND 82.7
NBOW2 83.4
RBM-MLP (Dauphin and Bengio, 2013) 79.5
SVM + BoW (Cardoso-Cachopo, 2007) 82.8
SA-LSTM (Dai and Le, 2015) 84.4
LM-LSTM (Dai and Le, 2015) 84.7

Table 3: 20 Newsgroup topic classification ac-
curacy. First group lists BOW methods; includ-
ing different initialisations of NBOW (Iyyer et al.,
2015) and NBOW2 (this work). The second group
shows best reported results with LSTM RNN. Best
method in each group is shown in bold. (0.2% cor-
responds to about 15 test set documents.)

gives best accuracy among the BOW approaches.
For IMDB and newsgroup task, the accuracy of
NBOW2 model is closer to that of NBOW (not
statistically significant for the 20 Newsgroup). It
is also evident that for RT and newsgroup clas-
sification, the performance of NBOW2 is not far
from CNN and LSTM methods. For further anal-
ysis we also trained the NBOW2 model by sim-
ply using fixed tf-idf weights in Equation 3. This
gave 87.6% and 79.4% accuracy for IMDB and RT
task. Thus we can state that the word importance
weights of the NBOW2 model are themselves in-
formative.

7 Conclusion and Future Work

We proposed a novel extension to the NBOW
model, which enables the model to learn task
specific word importance. With experiments
and analysis on sentiment and topic classi-
fication tasks, we showed that our proposed
NBOW2 model learns meaningful word impor-
tance weights. We showed that the NBOW2
model gives the best accuracy among the BOW ap-
proaches and it can outperform the NBOW model.
This motivates us to explore extensions to the
model, including (a) class-specific vectors aq, in-
stead of a single vector a, to obtain class-specific
word importance (b) document context specific
word importance weights.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 238–247, Baltimore, Maryland,
June. Association for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155,
March.

Ana Cardoso-Cachopo. 2007. Improving Methods for
Single-label Text Categorization. PdD Thesis, Insti-
tuto Superior Tecnico, Universidade Tecnica de Lis-
boa.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals. 2015. Listen, attend and spell. CoRR,
abs/1508.01211.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New
York, NY, USA. ACM.

Andrew M Dai and Quoc V Le. 2015. Semi-
supervised sequence learning. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 3061–3069. Curran Associates,
Inc.

Yann Dauphin and Yoshua Bengio. 2013. Stochastic
ratio matching of rbms for sparse high-dimensional
inputs. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 1340–1348. Curran Associates, Inc.

Zhi-Hong Deng, Kun-Hu Luo, and Hong-Liang Yu.
2014. A study of supervised term weighting
scheme for sentiment analysis. Expert Syst. Appl.,
41(7):3506–3513, June.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, Volume 2: Short Papers, pages 49–54.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xi-
aodong He, and Li Deng. 2014. Modeling inter-
estingness with deep neural networks. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2–13, Doha, Qatar, October. Association for Com-
putational Linguistics.

227

Yoav Goldberg. 2015. A primer on neural network
models for natural language processing. CoRR,
abs/1510.00726.

Karl Moritz Hermann and Phil Blunsom. 2013. The
Role of Syntax in Vector Space Models of Compo-
sitional Semantics. In Proceedings of ACL, August.

Aminul Islam, Evangelos Milios, and Vlado Kešelj,
2015. Text, Speech, and Dialogue: 18th Interna-
tional Conference, TSD 2015, Pilsen,Czech Repub-
lic, September 14-17, 2015, Proceedings, chapter
Do Important Words in Bag-of-Words Model of Text
Relatedness Help?, pages 569–577. Springer Inter-
national Publishing, Cham.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1681–1691, Beijing, China, July. Association for
Computational Linguistics.

Rie Johnson and Tong Zhang. 2015. Effective use
of word order for text categorization with convo-
lutional neural networks. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 103–112, Den-
ver, Colorado, May–June. Association for Compu-
tational Linguistics.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
655–665, Baltimore, Maryland, June. Association
for Computational Linguistics.

Yoon Kim and Owen Zhang. 2014. Credibility ad-
justed term frequency: A supervised term weight-
ing scheme for sentiment analysis and text classi-
fication. In Proceedings of the 5th Workshop on
Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 79–83, Bal-
timore, Maryland, June. Association for Computa-
tional Linguistics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1746–
1751, Doha, Qatar, October. Association for Com-
putational Linguistics.

Man Lan, Chew-Lim Tan, and Hwee-Boon Low. 2006.
Proposing a new term weighting scheme for text cat-
egorization. In Proceedings of the 21st National
Conference on Artificial Intelligence - Volume 1,
AAAI’06, pages 763–768. AAAI Press.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In Pro-
ceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-
26 June 2014, pages 1188–1196.

Jiwei Li. 2014. Feature weight tuning for recursive
neural networks. CoRR, abs/1412.3714.

Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fer-
mandez, Chris Dyer, Alan W Black, Isabel Tran-
coso, and Chu-Cheng Lin. 2015. Not all con-
texts are created equal: Better word representations
with variable attention. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1367–1372, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies - Volume 1, HLT ’11,
pages 142–150, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Musa Mammadov, John Yearwood, and Lei Zhao,
2011. AI 2010: Advances in Artificial Intelligence:
23rd Australasian Joint Conference, Adelaide, Aus-
tralia, December 7-10, 2010. Proceedings, chapter
A New Supervised Term Ranking Method for Text
Categorization, pages 102–111. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze, 2008. Introduction to Information
Retrieval, chapter Scoring, term weighting, and the
vector space model. Cambridge University Press,
New York, NY, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia, June. Association for Computational Lin-
guistics.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna
Gurevych, and Johannes Fürnkranz. 2014. Large-
scale multi-label text classification - revisiting neu-
ral networks. In Toon Calders, Floriana Espos-
ito, Eyke Hüllermeier, and Rosa Meo, editors, Pro-
ceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD-14), Part 2,
volume 8725 of Lecture Notes in Computer Sci-
ence, pages 437–452. Springer Berlin Heidelberg,
September.

228

Georgios Paltoglou and Mike Thelwall. 2010. A study
of information retrieval weighting schemes for sen-
timent analysis. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, ACL ’10, pages 1386–1395, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL ’05, pages 115–124,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Xiaojun Quan, Wenyin Liu, and Bite Qiu. 2011.
Term weighting schemes for question categoriza-
tion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(5):1009–1021.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642, Stroudsburg, PA, October.
Association for Computational Linguistics.

Søren Kaae Sønderby, Casper Kaae Sønderby, Hen-
rik Nielsen, and Ole Winther, 2015. Algorithms
for Computational Biology: Second International
Conference, AlCoB 2015, Mexico City, Mexico, Au-
gust 4-5, 2015, Proceedings, chapter Convolutional
LSTM Networks for Subcellular Localization of
Proteins, pages 68–80. Springer International Pub-
lishing, Cham.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China, July. Association
for Computational Linguistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, ACL ’10, pages 384–394,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Laurens van der Maaten and Geoffrey E. Hinton.
2008. Visualizing high-dimensional data using
t-sne. Journal of Machine Learning Research,
9:2579–2605.

Sida Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Short Papers - Volume 2, ACL ’12,
pages 90–94, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Peng Wang, Jiaming Xu, Bo Xu, Chenglin Liu, Heng
Zhang, Fangyuan Wang, and Hongwei Hao. 2015.
Semantic clustering and convolutional neural net-
work for short text categorization. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 352–357, Beijing,
China, July. Association for Computational Linguis-
tics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. 2015. Show,
attend and tell: Neural image caption generation
with visual attention. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pages 2048–
2057.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Ye Zhang and Byron Wallace. 2015. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
CoRR, abs/1510.03820.

229

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 230–238,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

A Vector Model for Type-Theoretical Semantics

Konstantin Sokolov
Peter the Great Polytechnic University, St. Petersburg, Russia

sokolov@dcn.icc.spbstu.ru

Abstract

Vector models of distributional semantics
can be viewed as a geometric interpreta-
tion of a fragment of dependent type the-
ory. By extending to a bigger fragment to
include the dependent product we achieve
a significant increase in expressive power
of vector models, which allows for an im-
plementation of contextual adaptation of
word meanings in the compositional set-
ting.

1 Introduction

In this paper we discuss a possibility of reconcil-
ing two distinct threads of research in computa-
tional lexical semantics, namely distributional se-
mantics (Lenci, 2008; Baroni et al., 2014) and
formal semantics based on dependent type the-
ory (Ranta, 1994; Luo, 2012). Although both
approaches focus on related problems of lexical
semantics and composition, it is hard to com-
bine them in a unified framework because of dif-
ferences in computational techniques they em-
ploy. However, their theoretical foundations are
compatible and it is possible to incorporate vec-
tor space models into a computational framework
based on dependent type theory. The extensions
of existing vector representations required for this
task are motivated by the geometric interpretation
of type theory.

The reason why such extensions are necessary
is the limitations of the function application model
of compositionality. In formal semantics com-
positionality is traditionally modeled as an ap-
plication of one logical form to another, techni-
cally realized as a reduction of concatenated log-
ical forms expressed in a variant of typed lambda
calculus (Montague, 1975). In distributional se-
mantics this approach is retained, although lambda

terms are substituted with vectors and tensors of
various ranks (Baroni et al., 2014). This model
of compositionality has difficulties with the com-
positional treatment of certain common types of
natural language expressions, that require context-
dependence of terms and a non-trivial machanism
of meaning adaptation. Paradigmatic examples of
such linguistic phenomena are logical polysemy
and co-predication, which received formal treat-
ment in the works of Pustejovsky (1995) and are
among the central problems of type-theoretical se-
mantics (Cooper, 2005; Asher, 2011; Luo, 2012).

The problems related to logical polysemy in-
clude cases where an intended aspect of meaning
of an argument requires an adaptation of a pred-
icate which is applied to it and vice versa. Con-
sider the case of an adjective applied to a noun in
red apple, red watermelon and red crystal (Lahav,
1989). In these examples a notion of “redness” is
different for each of the arguments. A red apple is
red when most of its surface is red, a watermelon
is red inside, a crystal is red entirely. It is possi-
ble to characterize a watermelon as being ripe by
saying that it is red, which is not the case for a
crystal. As a result, an adaptation of a predicate is
needed to properly account for the meaning varia-
tions in all these cases. Similarly, an argument can
have multiple aspects of meaning selected by var-
ious predicates. In heavy book and boring book
a book is treated as either a physical object or
an information content. Both aspects clearly cor-
respond to different sets of properties, which are
taken into account by the predicates and reflect in
the systemic organization of the lexicon, e. g. hy-
pernym relations between synsets or relations be-
tween word classes (Hanks, 1996). Words both
in argument and predicate positions can demon-
strate capability of contextual meaning adaptation,
sometimes even simultaneously, like in red book.
Such cases violate the direction of application of a

230

predicate and are problematic for the function ap-
plication model of composition.

Another violation occurs in cases of co-
predication, which takes place when two or more
predicates make use of conflicting meaning as-
pects of an argument, leading to the necessity to
assign at least two incompatible meaning repre-
sentations (e. g. types) to a single word. The
“lunch sentence” proposed by Pustejovsky (1995)
is a classic example:

A lunch was delicious but took forever.

Notwithstanding these obstacles, we find that
the function application model of composition
can in fact be made compatible with context-
dependent meaning alternations. An extension re-
quired for this task follows naturally from an iden-
tification of basic operations of composition in
vector models and computation rules in type the-
ory. The resulting model can in turn be given an
intuitive geometric interpretation, that greatly clar-
ifies the options for its computational implemen-
tation. Recent developments in type theory made
clear a tight connection between computation and
geometry (Univalent Foundations Program, 2013).
In the following sections we give a sketch of a
method of incorporating semantic vector spaces
within a type-theoretical framework of Luo by
interpreting primitive types as vector spaces, de-
pendent types as fibers of a vector bundle and so
forth. Currently we limit ourselves to the depen-
dent product type, leaving an analysis of the de-
pendent sum and dot types for later. However, we
give some general remarks as to how these impor-
tant constructs might be implemented in our set-
ting.

2 Related Work

In this section we give an overview of the gen-
eral framework of composition currently adopted
in distributional semantic, followed by a brief dis-
cussion of type-theoretical semantics.

2.1 Compositional Vector Models

Lack of support for compositionality remains a
serious limitation of distributional semantics, al-
though many techniques were proposed to enable
compositional treatment of vector representations.
These proposals include methods based on vector
addition and multiplication (Mitchell and Lapata,
2010), tensor operations (Smolensky, 1990; Wid-

dows, 2008), linear maps (Baroni et al., 2014; Co-
ecke et al., 2010), tensor decomposition (Van de
Cruys et al., 2013), co-composition based on vec-
tor space projections (Tsubaki et al., 2013), simul-
taneous processing of meaning and composition
in neural embeddings (Socher et al., 2013; Pen-
nington et al., 2014) and more. There is an ev-
ident tradeoff between expressiveness and com-
putational properties of the compositional vector
models. Simple additive and multiplicative mod-
els cannot capture important properties of com-
position in natural language, such as its non-
commutative character, relation to syntax, poly-
semy and contextual meaning adaptation. Com-
plex models generally make use of tensors of var-
ious ranks to represent different word types and
linear maps that operate on them and in principle
are better suited for compositional analysis. How-
ever, the actual implementations are very difficult
to train and to date no methods of training such
models on a large scale were proposed.

Although commutative (vector mixture) meth-
ods of composition are easier to implement, non-
commutativity is dictated by both linguistic prop-
erties and the properties of vector representations.
In the analysis of adjective-noun pairs Baroni and
Zamparelli (2010) used an asymmetric function
application model of compositionality, where an
adjective is represented as a matrix applied to a
noun vector to produce a new vector. This ap-
proach turned into a large research program of
compositional distributional semantics (Baroni et
al., 2014), which is currently widely accepted.

A similar program was proposed earlier by Co-
ecke et al. (2010), where category theory was used
to devise a method of validating paths of compo-
sition accross multiple vector spaces specific for
various word types in order to arrive to a distin-
guished “sentence” space, where comparison of
the meanings of sentences could be performed.
The composition here is modeled on the basis of
a linear map sending a tensor product of meaning
representations of words (i. e. their superposition)
to a vector in the sentence space. The particular
structure of this linear map is determined by the
sentence structure explicated as a reduction in the
pregroup grammar formalism. Since linear maps
V →W are actually in a bijective correspondence
with vectors in a tensor product space V ⊗ W ,
the actual procedure of computation of the sen-
tence meaning consists in “carving out” the right

231

sequence of function applications from the space
of all possible reduction paths. The model of com-
position here is slightly different, but it does not
diverge too much from Baroni’s proposal. Under
the aforementioned bijection a transitive verb can
also be viewed as a function applied to the mean-
ing representations of its participants to produce a
vector in the sentence space.

Contextual variation of meaning in relation to
word sense disambiguation and semantic similar-
ity has been investigated almost since inception
of the field (Schütze, 1998; Thater et al., 2010;
Thater et al., 2011). However, disambiguation
is different from composition (Kartsaklis et al.,
2013). Attempts to give an analysis of logical
polysemy and contextual adaptation in the com-
positional setting are limited (Erk and Padó, 2008;
Tsubaki et al., 2013).

2.2 Type-Theoretical Semantics

Type-theoretical semantics is an approach to
modeling semantics of natural language initiated
by Ranta (1994) and heavily influenced by Puste-
jovsky’s Generative Lexicon (Pustejovsky, 1991;
Pustejovsky, 1995). It proved capable of giv-
ing a convincing analysis of logical polysemy,
copredication and systemic organization of the
lexicon modeled as subtyping. Although it be-
longs roughly in the tradition of Montague Gram-
mar (Montague, 1975), it diverges from formal
semantics in a number of ways. The distinction
between a formal meaning representation and its
interpretation in a model is not present. Mean-
ing representations are type expressions and their
justification is achieved by an effective computa-
tional process. As a consequence, type-theoretical
meaning representations have a strong connection
with computability due to the Curry-Howard cor-
respondence. Unlike in Montague Grammar, in
type-theoretical semantics words are not treated as
atomic entities. Instead, their meaning is analysed
on the basis of argument-predicate structures. The
meaning of a predicate is represented as a function
type, which incorporates types of its arguments to
the effect similar to selectional restrictions in the
study of verb classes (Levin, 1993). Explication
of a word meaning through argument type restric-
tions, i. e. constraints on co-occurence, leads to a
duality between argument-predicate structure and
lexical meaning (Pustejovsky, 2013). To our view,
this notion of duality is closely related to the dis-

tibutional hypothesis of Z. Harris and justifies an
attempt to give a unified treatment of lexical se-
mantics based on both theories.

Current proposals are targeted at developing a
formal system that would incorporate words as ei-
ther terms of a certain type or as types themselves
and provide a set of type formation, introduction,
elimination and computation rules to be used in
derivations. Traditional formal semantics is based
on the simply typed lambda calculus à la Church
and is given a set-theoretical interpretation. A
type-theoretical formalism proposed by Asher and
Pustejovsky (2006) builds on a type theory which
is close to that used in formal semantics. The
distinction between terms and types is retained,
a subtyping relation is inherited from the Gener-
ative Lexicon and is modeled on the basis of a
subsumption relation. In (Asher, 2011) a conflict
between subsumptive subtyping and an intended
interpretation of dot types is resolved by modifi-
cations of the interpertation procedure, which is
based on a category-theoretic interpretation in a
topos. Other systems (Cooper, 2005; Mery et al.,
2007; Luo, 2012) are based on Martin-Löf’s de-
pendent type theory, where the boundary between
terms and types is blurred. The framework of de-
pendent type semantics (Luo, 2012) makes use of
a special mechanism of coercive subtyping, which
will be characterized in the next section.

An obvious limitation of type-theoretical se-
mantics is that to date no method of large scale
building of such representations on the basis of
real-world data has been given, which greatly hin-
ders empirical evaluation. A possible way to over-
come this limitation is to adapt logical form learn-
ing techniques developed for other types of sym-
bolic semantic representation (Zettlemoyer and
Collins, 2012; Liang and Potts, 2015).

3 Formal Background

In this section we give a motivation for the use of
dependent types in formal semantics, followed by
a brief overview of the coercive subtyping frame-
work of Luo as applied to natural language expres-
sions. The notion of a vector bundle plays a crucial
role in our interpretation, so we also give here the
definition.

3.1 Dependent Type Theory

Martin-Löf’s type theory can be viewed as a for-
mal system of deduction. When used as a meta-

232

language, a type theory can incorporate both rules
of formation of logical statements and deduction
rules of a logical system. The basic elements of
a formal system of type theory are judgements of
various forms. A judgement that proposition A
is true is written A true, a : A is a judgement
saying that a is an element of type A, a judge-
ment a = b : A says that a and b are equal ob-
jects of type A. Besides simple judgements of the
forms given above there are hypothetical judge-
ments that depend on another judgements, e. g.
f(a) : B (a : A) says that an object f(a) is of
type B given that a is an object of type A. With
hypothetical judgements and a number of deduc-
tion rules which can bind hypotheses it is possi-
ble to construct a derivation of a particular judge-
ment, which does not depend on any hypothesis,
i. e. a derivation in a system of natural deduction
for judgements. Such a system can be presented in
two forms, the so called Prawitz and Gentzen style
natural deduction, the latter uses sequents, i. e. ex-
pressions involving typing contexts and a turnstile.

As a short example, consider the introduction
and elimination rules for conjunction implemented
inside a metalanguage of type theory (Gentzen
style):

Γ ` A true Γ ` B true
I∧

Γ ` A ∧B true

Γ ` A ∧B true
E∧

Γ ` A true
Γ ` A ∧B true

E∧
Γ ` B true

Since all components of a logical system are im-
mersed in the same metalanguage, it is possible to
extend the language by allowing types to depend
on terms of another types, which significantly
raises expressivity. A dependent type is written
A(x), and two special type expressions are intro-
duced, the dependent product type Π(x : A)B(x)
and the dependent sum type Σ(x : A)B(x). When
there is no actual dependency of B(x) on the ele-
ments of A, the product type simplifies to a func-
tion type A → B, and the sum type to a direct
product A×B.

To establish an equality of two terms of a type it
is necessary to reduce each of them to their cor-
responding canonical objects. Then an equality
judgement is justified by the syntactic equivalence
of canonical objects. As an example, consider an
inductive type for natural numbers N, which has
two type constructors 0 : N and succ(n) : N (n :
N). To prove 1 + 1 = 2 : N both sides of the
equality are reduced to the form succ(succ(0)).

The rules used for reducing an object to its canon-
ical form are called computation rules, reduction
itself is often called computation.

Types and propositions are identified. For in-
stance, in the judgement A true a symbol A
is treated as a proposition assumed to be true,
whereas in a : A it is treated as a type. Under
such identification an object of typeA is treated as
an evidence (a proof object) that proposition A is
true. To prove A is to construct an object of type
A using the rules of the system. That justifies the
possibility to use type theory for formal semantics,
since to say that a proposition is provable is to say
that its truth conditions are satisfied (Ranta, 1994).

One of the main obstacles to applying depen-
dent type theory to the task of modeling lexical
semantics is that the subtyping relation, which nat-
urally represents hypernym relations between con-
cepts and is traditionally modeled as subsump-
tion (Pustejovsky, 1995), is incompatible with the
notion of canonical object (Luo et al., 2013). For
example, the subsumptive subtyping justifies in-
ferences of the form

Γ ` a : A Γ ` A < B
Γ ` a : B

In case of dependent types, an inference like

Γ ` a : List(A) Γ ` A < B

Γ ` a : List(B)

is incorrect. To justify that we would need to re-
duce both a : List(A) and a : List(B) to the
same canonical representation, which is impossi-
ble to do since canonical objects of these two types
are built with different sets of type constructors.

To solve this Luo (2012) proposed a mechanism
of type coercions, which allows for the substitu-
tion of a term of a subtype in a context where a
term of its supertype is required. The actual coer-
cion is achieved by applying a coercion function
to the term. A coercion judgement of the form
Γ ` A <c B : Type states that objects of the form
c(a), where a is an object of type A and c is a
coercion function, can be used in contexts where
objects of type B are expected. By using such a
mechanism it becomes possible to justify relations
between predicates such as [[human]]→ [[book]]→
Prop < [[man]] → Σ([[book]], [[heavy]]) → Prop
by declaring coercions [[man]] <c1 [[human]] and
Σ(A,B) <p1 A. The resulting subtyping is con-
travariant in arguments as is usually expected. Co-
ercive subtyping is a conservative extension (in the

233

weak sense) of dependent type theory, s. (Luo et
al., 2013) for details.

3.2 Vector Bundles

Intuitively, a vector bundle is a set of vector
spaces parameterized by points of some topolog-
ical space. Formal definitions follow (Luke and
Mishchenko, 2013).

A vector bundle is a continuous map p : E → B
s. t. p−1(b) is a vector space for each b ∈ B.
Additionally, there is an open cover {Uα} of B
and for each Uα there exists a homeomorphism
hα : p−1(Uα) → Uα × Rk s. t. hα(p−1(b)) is
a vector space isomorphic to {b} × Rk for each
b ∈ Uα. This is called a local trivialization con-
dition. The resulting construct is a locally trivial
real vector bundle of rank k (we say vector bundle
for short), E is the total space,B is the base space,
p−1(b) is a fiber over b.

A pair of trivializations hα : p−1(Uα)→ Uα ×
Rk and hβ : p−1(Uβ) → Uβ × Rk induces a map
hαh

−1
β : (Uα∩Uβ)×Rk → (Uα∩Uβ)×Rk called

transition function. Transitions can be thought of
as continuous changes of coordinates.

4 Vector Models for Dependent Types

In this section we discuss a geometric interpreta-
tion of a dependent type system, resulting from the
treatment of types as vector spaces. Such an inter-
pretation provides insights into a possible compu-
tational implementation.

4.1 Geometric Interpretation

The usual way to represent words in vector mod-
els is to identify them with vectors. In our ap-
proach, instead of using vectors as primitive ele-
ments, we switch to an equivalence class of vec-
tors w. r. t. multiplication by a scalar. Such a mod-
ification does not affect our ability to compute the
cosine similarity between primitive elements. We
do not identify equivalence classes of vectors with
words right away. Instead, it is more convenient to
think of a word as a region or a neighbourhood in
the space obtained from the initial vector space by
the factorization we have just described, cf. (Erk,
2009). We denote that initial vector space A and
treat it as a primitive type of our system. This ap-
proach allows to make all types and their objects
be vector spaces. For example, if A = R2, then
a : A is a one-dimensional linear subspace of A.

Function types are built recursively with an ar-
row constructor. The simplest possible function
type in our system is A → A, objects of this
type are linear operators on A. Analogously to the
primitive type, we would like to consider equiva-
lence classes of operators as objects of that type.

A dependent product Π(x : A)B(x) is inter-
preted as a vector bundle. Its fibers are vec-
tor spaces, parameterized by points of the base
space. An easy way to imagine this situation is
to consider an orthogonal complement of a one-
dimensional subspace in R3 with the usual scalar
multiplication, which is isomorphic to R2. Then
for any one-dimensional subspace in R2 there is
a corresponding orthogonal subspace of dimen-
sion two, which is a fiber of a vector bundle p :
E → B. A section of a vector bundle is a map
s : U → E, where U is an open subset of B,
such that p(s(b)) = b. We interpret predicates as
global sections, which have B as the domain and
send every point b ∈ B to some vector in the fiber
p−1(b).

Consider the previous example, where the base
space is a two-dimensional euclidean space em-
bedded in R3 and the fibers are two-dimensional
subspaces orthogonal to the lines in the base space.
We can view this construct as a real vector bundle
of rank two. A global section sends in a continu-
ous manner a vector from the base space to some
vector in the plane orthogonal to it.

We summarize corespondences between vari-
uos interpretations in Table 1.

4.2 Computation
The notion of canonical object is central to the de-
pendent type theory. The computation of a canon-
ical representation of an object of some type is
achieved by a series of reductions in an order pre-
scribed by the structure of that type. More pre-
cisely, application of an object of type Π(x :
A)B(x) to an object of type A amounts to select-
ing a point from the “result space” B(a) parame-
terized by the argument, given a point a : A as an
input:

Γ ` f : Π(x : A)B(x) Γ ` a : A
CΠ

Γ ` app(f, a, Π(x : A)B(x), A) = f(a) : B(a)

Elements of the same type are comparable,
whereas elements of different types are not. For
instance, objects of type B(x), which is the type
of a fiber, are not comparable with objects of type
A, which is the type of the base. This is exactly

234

Type theory Vector model Geometric interpretation Linguistic interpretation
element x :A a vector in R2 a point in the base space B a word
dependent type A(x) a vector space parameter-

ized by x ∈ R2
a fiber p−1(x) contextual modifications of

words w. r. t a word x
product type Π(x :A)B(x) linear maps parameterized

by vectors in R2
a vector bundle a set of predicates adapted

to an argument
element f :Π(x :A)B(x) a parameterized linear map a global section an adapted predicate

Table 1: Correspondences between interpretations.

where the coercive subtyping shows up. Recall
that coercions are formulated in such a way as to
make it possible to use an object of some type
instead of an object of its supertype in a given
context. Also note, that in the framework of Luo
coercions are maps. To make things easier, cur-
rently we impose a restriction on vector bundles
that the dimensionality of fibers be equal to the
dimensionality of the base space. Note, that the
general definition of a vector bundle does not re-
quire that. Then coersions from B(x) to A can be
implemented uniformly as trivial maps from fibers
to the base, which we normally omit writing down
explicitly. Comparing objects of B(a) to objects
of B(b), given that a and b are points in the base
space, does not require any special arrangements.
Coercions in that case are determined by the usual
transition functions.

4.3 Implementation

We give an example of the construct for the sim-
plest possible case.

Let A ≈ R2 be a distinguished plane of a three-
dimensional euclidean space. Its one-dimensional
subspaces are equivalence classes of vectors with
respect to multiplication by a scalar. We build a
vector bundle p : E → A with a fiber isomor-
phic to R2 and therefore also isomorphic to the
base space. It is natural to use an associated pro-
jective space instead of R2, denoted P (R2). Pro-
jectivization has a number of advantages. Under
identification of projective points with rotations of
an underlying R2, it can be seen as a compact
Lie group, namely a projective special orthogo-
nal group PSO(2,R). The usual cosine similarity
measure for words translates to an additive met-
ric on P (R2). In the induced topology the no-
tion of a neighborhood of a word is well-defined.
Analogously, switching to an associated projec-
tive bundle P (E) allows us to treat fibers in the
same manner. As usual, we can represent P (R2)
as a circle S1 with opposite points identified, then
the projective bundle can be represented as a torus

S1×S1, this time with four antipodal points iden-
tified. Care is needed to correctly assign orienta-
tions on the fibers.

Sections can be viewed as vector-valued func-
tions defined on the base space. Since in our
case the vectors can be obtained by an action of
PSO(2,R), a single parameter is sufficient to en-
code the vectors. This parameter is actually an an-
gle between the zero and the value vectors in the
fiber. That allows us to represent each section as
a big cirle on a torus and to encode the required
value as an angular offset assigned to each point.
Such a scalar function must be smooth and peri-
odic to satisfy the properties of a vector bundle,
and it suffices to limit its range to [0, π), since we
sum angles modulo π. The function can be ap-
proximated with a square table with entries peri-
odic accross both rows and columns. It is easy to
vizualize the scalar function on a torus as a heat
map or as a 2D surface over the square, with the
height of a point being equal to the value of the
function at that point. The periodicity and smooth-
ness requirements suggest that it should be pos-
sible to approximate that surface with a partial
weighted sum of two-dimesional harmonics.

5 Discussion

A characteristic trait of our model is that both ar-
guments and predicates are treated as entities of a
continuous nature. Their co-adaptation turns into
a process of evaluation of stability areas where
small changes of both the predicate and the argu-
ment do not lead to drastic changes in the mean-
ing of a composite expression. This is a property
that we pursue by intention and it is reminiscent
of multiple examples of zonal reasoning in cog-
nitive linguistics and perception (Stevens, 1972;
Gärdenfors, 2004). Symbolic representations are
often considered to be incompatible with that type
of meaning representations. However, a more ex-
pressive formalism like that of dependent type the-
ory makes the boundary less apparent. It is still
to be determined whether our model can be given

235

a sound interpretation in terms of cognitive lin-
gusitics.

Early vector models were based on words co-
occurence in a corpus and required very high di-
mensionality of representations (Deerwester et al.,
1990; Landauer and Dumais, 1997). Vector co-
ordinates could be interpreted as contextual co-
occurence counts or as weights of the latent fac-
tors, depending on the model. Later the field was
revolutionized by introduction of machine learn-
ing techniques, which allowed to approximate low
dimensional vector representations (Mikolov et
al., 2013; Pennington et al., 2014). It made the
problem more tractable, while at the same time it
became impossible to interpret single coordinates,
as in these approaches the size of the vectors is
determined on the basis of the desired accuracy of
approximation and not the actual counts. In our
model we consider the primitive elements of rep-
resentation as abstract vectors. We also consider
complex mathematical structures such as inverse
image and fibration as parts of our representation.
As a consequence, it would be incorrect to com-
pare the dimensionality of a local trivialization of
a vector bundle with the number of vector compo-
nents in the previous models. Usually raising the
dimensionality of vector representations is used to
achieve better approximation and numerical sta-
bility of algorithms. Whether it is more appropri-
ate to raise the dimensionality of the model (i. e.,
the rank of a vector bundle) or the number of har-
monics used for approximation to achieve these
goals in our case is an open question.

Another way of making the model more expres-
sive is to incorporate other forms of dependent
types, which are considered in type theoretical se-
mantics, namely dependent sums and dot types. In
the framework of Luo (2012) an adjective-noun
pair is treated as an element of a dependent sum
Σ(x : A)B(x), where a noun is substituted for the
x, e. g. a representation for heavy book is an object
of type Σ([[book]], [[heavy]]). Objects of this type
are pairs (a, b), where a is a noun and b is a vari-
ant of an adjective adapted to the noun similarly to
the way the verbs are adapted to their objects. In
the geometric interpretation such a pair is an ele-
ment of a direct product of the base space and the
fiber over a point in the base. Since the elements
ofA and the elements of Σ(x : A)B(x) are not di-
rectly comparable, a mechanism of type coercion
is required to make such a construct work.

6 Conclusion

In this paper we proposed a geometric interpre-
tation for a fragment of lexical semantics based
on dependent type theory. The fragment includes
the dependent product, which is the type of func-
tions with a range dependent on the argument,
therefore the fragment also includes function types
of traditional formal semantics as a special case.
The types are interpreted as vector spaces, which
makes it possible to treat vector models of dis-
tributional semantics as a computational realiza-
tion of a fragment of type-theoretical semantics.
By making extensions suggested by the geomet-
ric interpretation, we achieve a significant increase
in expressive power of the model while retaining
control over its computability. The meaning eval-
uation technique arising from the geometric inter-
pretation is compositional and allows for an anal-
ysis of non-trivial phenomena of logical polysemy
and co-predication.

References
Nicholas Asher and James Pustejovsky. 2006. A type

composition logic for generative lexicon. Journal of
Cognitive Science, 6:1–38.

Nicholas Asher. 2011. Lexical meaning in context: A
web of words. Cambridge University Press.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
1183–1193. Association for Computational Linguis-
tics.

Marco Baroni, Raffaela Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program of compo-
sitional distributional semantics. Linguistic Issues
in Language Technology, 9.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen
Clark. 2010. Mathematical foundations for dis-
tributed compositional model of meaning. Linguis-
tic Analysis, 36:345–384.

Robin Cooper. 2005. Records and record types in se-
mantic theory. Journal of Logic and Computation,
15(2):99–112.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American society for information science,
41(6):391.

236

Katrin Erk and Sebastian Padó. 2008. A structured
vector space model for word meaning in context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 897–
906. Association for Computational Linguistics.

Katrin Erk. 2009. Representing words as regions in
vector space. In Proceedings of the Thirteenth Con-
ference on Computational Natural Language Learn-
ing, pages 57–65. Association for Computational
Linguistics.

Peter Gärdenfors. 2004. Conceptual spaces: The ge-
ometry of thought. MIT press.

Patrick Hanks. 1996. Contextual dependency and lex-
ical sets. International Journal of Corpus Linguis-
tics, 1(1):75–98.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen
Pulman. 2013. Separating disambiguation from
composition in distributional semantics. In CoNLL,
pages 114–123.

Ran Lahav. 1989. Against compositionality: the case
of adjectives. Philosophical studies, 57(3):261–279.

Thomas K. Landauer and Susan T. Dumais. 1997.
A solution to Plato’s problem: The latent semantic
analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological review,
104(2):211.

Alessandro Lenci. 2008. Distributional semantics in
linguistic and cognitive research. Italian journal of
linguistics, 20(1):1–31.

Beth Levin. 1993. English verb classes and alter-
nations: A preliminary investigation. University of
Chicago press.

Percy Liang and Christopher Potts. 2015. Bringing
machine learning and compositional semantics to-
gether. Annu. Rev. Linguist., 1(1):355–376.

Glenys Luke and Alexander S. Mishchenko. 2013.
Vector bundles and their applications, volume 447.
Springer Science & Business Media.

Zhaohui Luo, Sergei Soloviev, and Tao Xue. 2013.
Coercive subtyping: theory and implementation. In-
formation and Computation, 223:18–42.

Zhaohui Luo. 2012. Formal semantics in modern type
theories with coercive subtyping. Linguistics and
Philosophy, 35(6):491–513.

Bruno Mery, Christian Bassac, and Christian Retoré.
2007. A montagovian generative lexicon. In 12th
conference on Formal Grammar (FG 2007). CSLI
Publications.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388–1429.

Richard Montague. 1975. Formal philosophy.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

James Pustejovsky. 1991. The generative lexicon.
Computational linguistics, 17(4):409–441.

James Pustejovsky. 1995. The generative lexicon.
Cambridge MA: MIT Press.

James Pustejovsky. 2013. Type theory and lexical de-
composition. In Advances in generative lexicon the-
ory, pages 9–38. Springer.

Aarne Ranta. 1994. Type-theoretical grammar.

Hinrich Schütze. 1998. Automatic word sense dis-
crimination. Computational linguistics, 24(1):97–
123.

Paul Smolensky. 1990. Tensor product variable bind-
ing and the representation of symbolic structures
in connectionist systems. Artificial intelligence,
46(1):159–216.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP), volume 1631, page 1642.

Kenneth N. Stevens. 1972. The quantal nature of
speech: Evidence from articulatory-acoustic data.
Human communication: A unified view, pages 51–
66.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2010. Contextualizing semantic representations us-
ing syntactically enriched vector models. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 948–957.
Association for Computational Linguistics.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2011. Word meaning in context: A simple and ef-
fective vector model. In IJCNLP, pages 1134–1143.

Masashi Tsubaki, Kevin Duh, Masashi Shimbo, and
Yuji Matsumoto. 2013. Modeling and learning se-
mantic co-compositionality through prototype pro-
jections and neural networks. In EMNLP, pages
130–140.

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathemat-
ics. https://homotopytypetheory.org/
book, Institute for Advanced Study.

237

Tim Van de Cruys, Thierry Poibeau, and Anna Ko-
rhonen. 2013. A tensor-based factorization model
of semantic compositionality. In Conference of the
North American Chapter of the Association of Com-
putational Linguistics (HTL-NAACL), pages 1142–
1151.

Dominic Widdows. 2008. Semantic vector products:
Some initial investigations. In Second AAAI Sympo-
sium on Quantum Interaction, volume 26.

Luke S. Zettlemoyer and Michael Collins. 2012.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. arXiv preprint arXiv:1207.1420.

238

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 239–248,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Towards Generalizable Sentence Embeddings

Eleni Triantafillou, Jamie Ryan Kiros, Raquel Urtasun, Richard Zemel
Department of Computer Science

University of Toronto
{eleni, rkiros, urtasun, zemel}@cs.toronto.edu

Abstract

In this work, we evaluate different sen-
tence encoders with emphasis on exam-
ining their embedding spaces. Specifi-
cally, we hypothesize that a “high-quality”
embedding aids in generalization, promot-
ing transfer learning as well as zero-shot
and one-shot learning. To investigate this,
we modify Skipthought vectors to learn a
more generalizable space by exploiting a
small amount of supervision. The aim is
to introduce an additional notion of sim-
ilarity in the embeddings, rendering the
vectors informative for different tasks re-
quiring less adaptation. Our embeddings
capture human intuition on similarity fa-
vorably than competing models, while we
also show positive indications of transfer
from the task of natural language inference
to paraphrase detection and paraphrase
ranking. Further, our model’s behaviour
on paraphrase detection when trained with
an increasing amount of labelled data is in-
dicative of a generalizable model. Finally,
we support our hypothesis on generaliz-
ability of our embeddings through inspec-
tion of their statistics.

1 Introduction

Natural language is an integral part of numerous
applications, such as web search, information re-
trieval, and automatic text summarization, to name
just a few. Therefore, constructing high-quality
text representations is very important. In addi-
tion, despite having well-established methods to
construct word representations, it remains an open
problem to capture the semantics of larger pieces
of text in a vector that is useful for different tasks
with minimal adaptation. In this paper we report

on our efforts towards building such generalizable
sentence representations.

Representing a sentence as a vector can be
thought of as “embedding” it into a high-
dimensional space. Therefore, a meaningful rep-
resentation relies on a function which sends “re-
lated” sentences to neighbouring points in this
vector space. There are, however, many possi-
ble notions of closeness that may be desirably
reflected in the embeddings. For instance, two
sentences could be considered similar if they are
likely to be found in the same context (“distribu-
tional similarity”), or if the second is entailed from
the first, or if they are paraphrases of each other.

We hypothesize that an embedding space which
adheres to multiple of these notions can host more
generalizable vectors. For instance our hypothesis
is that in a “generalizable” space, two sentences
that are likely to be found in the same context
and also entail each other are closer that two other
sentences which are also likely to be found in the
same context but contradict each other.

Moreover, we believe that “supervised evalua-
tion” of sentence encoders is not informative of the
embedding quality: a classifier is trained on top of
the sentence embeddings and then the accuracy for
the task is computed, and is used as a proxy for the
quality of the embeddings. This approach has the
disadvantage that it hides the embedding proper-
ties due to the extra training which allows to mend
its potential shortcomings. We instead focus our
attention on directly inspecting the model space.

In this work, we introduce a sentence encoder
that is learned by injecting supervised information
from the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015) in the com-
monly used Skipthought embeddings. The aim is
to enhance the embeddings with an additional no-
tion of similarity, rendering them more general-
izable. We experiment with this model and with

239

sentence encoders of different training objectives
in order to compare both their performance in the
commonly used supervised fashion (Kiros et al.,
2015; Collobert et al., 2011; Mikolov et al., 2013a;
Wieting et al., 2015) for reference, but more im-
portantly their embedding quality. We perform
supervised evaluation on paraphrase detection, se-
mantic relatedness, natural language inference and
various classification benchmarks. We then eval-
uate the embeddings through paraphrase ranking,
correlation of their similarity notion with human
judgements (Hill et al., 2016; Hill et al., 2015;
Levy et al., 2015; Baroni et al., 2014), through
paraphrase detection with little or no training, and
through examination of embedding statistics.

2 Related Work

The Skip-gram model for word embeddings
(Mikolov et al., 2013a; Mikolov et al., 2013b), is
trained on a text corpus with the objective of pre-
dicting the vectors of the surrounding words of a
given word, when conditioned on its vector repre-
sentation. Its success inspired Kiros et al. (2015)
to create its sentence analogue, Skipthought vec-
tors, which are trained by predicting the surround-
ing sentences when conditioned on the current
one. Despite this simple objective, Skipthoughts
perform remarkably well on various tasks: se-
mantic relatedness, paraphrase detection, image-
sentence ranking, and a number of classification
benchmarks. In this paper we investigate how we
can improve their embedding space through inject-
ing small amounts of supervised information.

Aside from Skipthoughts, there are numerous
sentence encoders. (Socher et al., 2013; Yin and
Schütze, 2015; Wang and Nyberg, 2015; Socher
et al., 2014) create sentence encoders which are
optimized for a specific task of interest. On the
other hand, methods which aim at constructing
”universal” embeddings include (Le and Mikolov,
2014; Socher et al., 2011; Li et al., 2015; Pham
et al., 2015). Le and Mikolov (2014) learn para-
graph embeddings by predicting sentences within
a paragraph when conditioned on its representa-
tion, Pham et al. (2015) predict context in all lev-
els of a syntactic tree, whereas Socher et al. (2011)
and Li et al. (2015) present autoencoder-type mod-
els.

Hill et al. (2016) presented an extensive eval-
uation of unsupervised sentence encoders. They
showed that Bag of Words (BOW) models on av-

erage perform on par with non-BOW models. Our
results agree with this and we provide a possible
explanation through examining the statistics of the
datasets used for evaluation. An important distinc-
tion between our work and theirs is that Hill et
al. (2016) focused on models that were trained in
an unsupervised fashion, whereas we also present
models finetuned or trained on SNLI for natural
language inference.

Wieting et al. (2015) learned “universal” sen-
tence vectors by exploiting a database of para-
phrases: they optimize an objective which en-
courages paraphrases to lie closer to each other
in space than to negative examples. Similarly to
their work, we also use supervised information to
construct informative embeddings, but our super-
vision comes from the task of natural language in-
ference.

Transfer learning is the process of exploiting
knowledge from one task or domain in order
to benefit from it for a different (“target”) task
or domain. This method has enjoyed consider-
able success in computer vision applications (no-
tably the use of features derived from neural net-
works trained for object classification such as
(Krizhevsky et al., 2012) for other tasks) but is less
successful in language applications. Collobert and
Weston (2008) perform mutli-task learning on var-
ious natural language processing tasks and report
a very small gain for each task. Mou et al. (2016)
presented negative results on their effort to trans-
fer from the task of natural language inference to
paraphrase detection. In this work, we show pos-
itive results on transfer from natural language in-
ference to paraphrase detection and to the related
task of paraphrase ranking.

3 Models

The success of Skipthoughts verify that predicting
the “context” of a sentence is a valuable objective.
However, sentences are also a nontrivial function
of the words comprising them, so we believe that
explicitly capturing their “content” in addition to
their “context” can yield more informative embed-
dings.

Therefore, we experimented with several ways
of capturing content, and evaluate the quality of
content-only encoders as well as that of an en-
coder that combines a content with a context ob-
jective. The content-only models we use are two
autoencoders (AEs): a BOW one which we re-

240

fer to as “BOW AE”, and a Recurrent Neural
Netowrk (RNN)-based one, referred to as “RNN
AE”. BOW AE is the model proposed in (Lauly et
al., 2014) which encodes the sentence as a vector
that indicates which vocabulary words are present
in the sentence, irrespective of their order. The ob-
jective is to reconstruct this indicator vector when
given a nonlinear function of the sum of the em-
beddings of the present words according to the in-
dicator. RNN AE, on the other hand, uses an RNN
encoder with GRU units to represent the sentence
and a similar RNN decoder which is trained to pre-
dict the same sentence when conditioned on its en-
coded representation. We trained these models on
the Toronto book corpus (Zhu et al., 2015).

We also made use of the SNLI dataset for the
purpose of capturing content, and created 3 “SNLI
models”: a BOW and an RNN-based “content
SNLI” models, which we refer to as “SNLI BOW”
and “SNLI RNN”, respectively, as well as a fine-
tuned version of Skipthoughts which we argue has
encoded a combination of context and content and
refer to as “SNLI-finetuned Skipthoughts”. These
3 SNLI models are illustrated in Figure 1.

SNLI is comprised of pairs of sentences with
a label of “entailment”, “contradiction”, or “neu-
tral” associated with each pair. Each SNLI model
creates the representation of each sentence of
the given pair separately (but using the same
encoder), and then concatenates the two sen-
tence embeddings, and feeds these into a sin-
gle hidden layer neural network, with a softmax
on top for the three-way classification of SNLI.
We backpropagate through the encoder and the
word embeddings as well. In the case of SNLI-
finetuned Skipthoughts, the encoder is initialized
from Skipthoughts, and subsequently finetuned to
add “content-based” SNLI information. On the
other hand, the encoder of SNLI BOW merely
corresponds to the sum of the word embeddings
(which are initialized from Skipthought word em-
beddings and modified during training), while the
encoder of SNLI RNN is an RNN which is initial-
ized “from scratch”.

An overview of the model space is presented in
figure 2.

4 Training Details

The Skipthought model that we compare with in
the experiments is the model which is referred
to as combine-skip in (Kiros et al., 2015). This

Figure 1: The 3 SNLI models are all formed
from the same formulation, illustrated above. For
SNLI-finetuned Skipthoughts, E1 and E2 are ini-
tialized to the Skipthought Encoder, for SNLI
BOW E1 and E2 are the sum of the word embed-
dings and for SNLI RNN E1 and E2 are an RNN
encoder which is initialized from scratch.

Figure 2: An overview of the models used in the
experiments of this paper.

model is created from the combination of two
separate encoders: a “uni-directional” and a “bi-
directional” one. The uni-directional model is
comprised of an RNN encoder with GRU units
whose hidden state consists of 4800 dimensions.
The bi-directional model is the concatenation of
a 1200-dimensional GRU RNN encoder which
reads the sentence in forward order (from left to
right) and an equally sized GRU RNN encoder
which reads the sentence in reverse order. After
the separate training of the uni-directional and bi-
directional models, their representations are com-
bined for the creation of the 4800-dimensional
combine-skip embedding.

In order to fairly compare with the combine-

241

skip model, we have created the analogous
SNLI-finetuned Skipthoughts model. The uni-
directional and bi-directional Skipthought models
were finetuned separately using the architecture
mentioned in the previous section (Figure 1) and
subsequently combined to yield 4800-dimensional
embeddings. This is the model which we refer to
as SNLI-finetuned Skipthoughts in the remainder
of this paper.

The word embeddings of all 3 SNLI models
and the 2 autoencoder models was initialized from
the Skipthought word embeddings, which are 620-
dimensional. The RNN of SNLI RNN, and the en-
coder and decoder RNNs of RNN AE have GRU
units and their hidden state is 2400-dimensional.
We initialized these recurrent weights with orthog-
onal initialization (Saxe et al., 2013). The non-
recurrent weights of the hidden and softmax layers
for the SNLI models are initialized from a uniform
distribution in the range [-0.1, 0.1].

Adam optimizer (Kingma and Ba, 2014) was
used for training all of these models.

In the following sections we present our results
in two evaluation settings: Firstly, we perform
supervised evaluation (Section 5), and then more
importantly we directly evaluate the embedding
space of the different models (Section 6).

5 Supervised Evaluation

In this section we present results on a number of
supervised tasks. These results are obtained by
encoding the sentence at hand (or each sentence
of the pair when applicable) and using this encod-
ing as the features of a logistic regression which is
trained for the given task, following the approach
in (Kiros et al., 2015). For the tasks involving
pairs of sentences, the features that were given to
the logistic classifier were computed as follows:
the element-wise product and absolute difference
between the two sentence embeddings were com-
puted and then concatenated, resulting in a 9600-
dimensional vector, as was also done in (Kiros et
al., 2015). In the next paragraph we briefly de-
scribe the tasks that we report experiments on.

Paraphrase detection (MSRP dataset) is the task
where given pairs of sentences, the goal is to as-
sign a binary label indicating whether the sen-
tences of each pair are paraphrases. For seman-
tic relatedness we use SICK (Marelli et al., 2014),
and the objective is to assign a score of related-
ness in the range 1-5 to pairs of sentences. Nat-

ural language inference is the task of predicting
a label of “entailment”, “contradiction”, or “neu-
tral” for each pair. Note that SNLI is a dataset
for this task, but the results we report here are on
SICK, which has both relatedness scores as well
as these 3-way classifications labels for each pair.
TREC is a dataset for (6-way) question-type clas-
sification and finally, MR and SUBJ come from a
movie review dataset and they are binary classifi-
cation tasks for sentiment polarity (MR) and sub-
jectivity status (SUBJ).

The results are shown in tables 1, 2, 3, and
4. In all tables, we use the following abbrevi-
ations for model names. ST: Skipthoughts, FT-
ST: SNLI-FineTuned Skipthoughts, BOW: SNLI-
BOW, RNN: SNLI-RNN. Results which outper-
form or perform on par with Skipthoughts are
shown in bold, since Skipthoughts have shown to
perform remarkably well in this supervised evalu-
ation setting as demonstrated in detail in (Kiros et
al., 2015), and verified in (Hill et al., 2016).

ST FT-ST BOW RNN BOW-AE RNN-AE
test acc 0.73 0.75 0.70 0.71 0.71 0.67
test f1 0.82 0.83 0.80 0.81 0.80 0.80

Table 1: Results on paraphrase detection (MSRP).

ST FT-ST BOW RNN BOW-AE RNN-AE
test acc 0.80 0.83 0.81 0.82 0.79 0.75

Table 2: Results on natural language inference
(SICK). Note that this is the same task as SNLI,
but different dataset.

ST FT-ST BOW RNN BOW-AE RNN-AE
test PR 0.84 0.85 0.81 0.82 0.79 0.70
test SR 0.78 0.79 0.76 0.77 0.72 0.64
test SE 0.30 0.28 0.36 0.34 0.39 0.52

Table 3: Results on semantic relatedness (SICK).
PR, SR, SE: Pearson, Spearman correlation coeffi-
cient and mean squared error, resp. between model
scores and human scores.

Overall, the most important observation is that
a lot of these results are very comparable, with
the reported numbers being within a small range
in most cases, despite the very different nature of
these models. For example, the fact that SNLI-
RNN performs comparably with Skipthoughts on
Semantic Relatedness is surprising given their
training objectives. Recall that the encoder in
SNLI-RNN was initialized from scratch. This fact

242

ST FT-ST BOW RNN BOW-AE RNN-AE
MR 0.76 0.79 0.76 0.71 0.75 0.65

SUBJ 0.94 0.94 0.93 0.89 0.92 0.86
TREC 0.92 0.92 0.86 0.87 0.85 0.82

Table 4: Results on various classification tasks.
Each row stores test accuracies of the correspond-
ing dataset.

could suggest that SNLI information, when in-
jected into an RNN encoder and fed into a logistic
regression classifier, is adequate in order to per-
form reasonably well on paraphrase detection and
semantic relatedness. But we believe that this ob-
servation underlines the weakness of this method
of evaluation.

The 2% improvment of SNLI-Finetuned
Skipthoughts over skipthoughts for paraphrase
detection is an indication of transfer from SNLI
to MSRP, on which (Mou et al., 2016) presented
negative results. Our results on transfer to the
related task of paraphrase ranking which also uses
MSRP (Section 6.1) are even more encouraging.

Further, on natural language inference all SNLI
models (slightly) outperform the non-SNLI ones.
This is not surprising given their training objec-
tive, and constitutes a less impressive sign of trans-
fer between these two datasets of the same task.

Finally, we note that SNLI-finetuned
Skipthoughts perform either better or on par
with Skipthoughts on all tasks considered. This
shows that the added SNLI information does not
hurt Skipthoughts’ performance on this evaluation
while outperforming it in terms of embedding
space quality as demonstrated in the next section,
which we argue is more important.

6 Evalutating Embedding Spaces
directly

In this section we evaluate the embedding qual-
ity directly. We do this firstly through para-
phrase ranking, secondly though correlating em-
bedding similarity with human scores, thirdly
through paraphrase detection with few or no la-
belled examples, and finally through examination
of the statistics of the embeddings.

6.1 Paraphrase Ranking

Paraphrase ranking is the task of assigning a rank
to each sentence from a pool S, representing how
likely they are to be paraphrases of a given sen-
tence. To compute the ranks that S1 assigns to the

ST FT-ST BOW RNN BOW-AE RNN-AE
accuracy@1 0.63 0.77 0.87 0.56 0.90 0.33

accuracy@10 0.74 0.86 0.93 0.67 0.96 0.40
accuracy@100 0.86 0.96 0.99 0.84 1 0.54

MRC 93 15 6 97 2 455

Table 5: Results on paraphrase ranking. accu-
racy@k is the proportion of sentences for which
the true paraphrase received rank at most k. MRC
is the Mean Rank of the Correct paraphrase.

sentences, sim(v1, v2) is computed ∀S2 6= S1 ∈
S, where sim stands for cosine similarity and v1

and v2 are the embeddings of S1 and S2, respec-
tively. Ranks are then assigned by sorting these
similarities in decreasing order. In this setting, the
sentence to which S1 assigns rank 1 is predicted to
be its paraphrase.

For this, we used the sentences from the MSRP
dataset, which is comprised of pairs of sentences
with a binary label indicating whether or not they
are paraphrases. We “break” the pair ties and treat
all sentences as members of a large pool, mak-
ing use of the (binary) labels of MSRP in order
to yield the (non-binary) label for this new task.
We use both the training and test set of MSRP for
this, totalling over 11000 sentences. The evalua-
tion metrics we used are “Mean Rank of the Cor-
rect paraphrase”, referred to as MRC from now on,
and accuracy@k which is the proportion of sen-
tences for which the true paraphrase is contained
in the top k ranked sentences.

The results are shown in Table 5. We ob-
serve that BOW AE outperforms Skipthoughts by
a large margin, with BOW following closely be-
hind. In fact, it is not a coincidence that BOW
models perform well on this task. To investigate
this effect even further, we created a very simple
BOW model which represents the sentence as the
sum of its word embeddings, which are randomly
generated 620-length vectors. Its performance is
shown in Table 6. This model is in no way infor-
mative of the semantics, syntax, structure, or any
useful property of the sentence whatsoever, and
yet it outperforms Skipthoughts for example. This
problematic behavior may be due to the fact that
sentences in pairs with positive labels in MSRP
have a very high word overlap. This suggests that
any BOW model has an unfair advantage when
evaluated on this dataset. We elaborate on this in
the Discussion section, and provide statistics from
the datasets to support this hypothesis.

However, the comparison between

243

Skipthoughts and SNLI-finetuned Skipthoughts
here is valuable. The superiority of the latter
model constitutes positive results of transfer from
SNLI to paraphrase ranking using MSRP, support-
ing our conjecture regarding the generalizability
of the SNLI-finetuned Skipthought space.

random BOW
accuracy@1 79

accuracy@10 88
accuracy@100 96

MRC 21

Table 6: Very simple baseline for paraphrase rank-
ing. random BOW is no way capturing anything
informative about the sentence (see section 5.1
for description). These results suggest that BOW
models may have an unfair advantage for MSRP.

6.2 Semantic Relatedness

SICK is comprised of pairs of sentences, each as-
sociated with a relatedness score in the range from
1 to 5. In order to directly evaluate the merit of the
embeddings in capturing semantics, we used co-
sine similarity to estimate the relatedness of each
pair. These similarity scores were then correlated
with the human-annotated scores using Pearson’s
and Spearman’s correlation coefficients and mean
squared error. The results are shown in Table 7.

ST FT-ST BOW RNN BOW-AE RNN-AE
test PR 0.50 0.57 0.69 0.62 0.64 0.39
test SR 0.48 0.56 0.65 0.59 0.57 0.39
test SE 1.53 1.10 1.12 0.98 1.21 1.84

Table 7: Results on semantic relatedness (SICK)
based on cosine distances. PR, SR, SE: Pear-
son, Spearman correlation coefficient and mean
squared error, resp. between model scores and hu-
man scores.

As was the case for the MSRP dataset, we be-
lieve that SICK offers an unfair advantage to BOW
models, therefore we do not believe that the suc-
cess of BOW AE and SNLI BOW is necessarily
indicative of their quality.

We observe that SNLI-Finetuned Skipthoughts
outperform Skipthoughts on this task as well,
supporting the conjecture that adding supervision
through SNLI has lead to a more informative
space. Moreover, the performance of SNLI RNN
is impressive, outperforming both Skipthought-
based models. Finally, out of the BOW models,

the SNLI one performs better than the AE one.
These are indications that SNLI information can
aid in inducing a notion of similarity which is
compatible with human intuition.

6.3 Towards Zero Shot Paraphrase Detection

We claimed earlier that learning an informative
embedding space would facilitate zero-shot and
one-shot learning applications. The aim of this
section is to investigate whether SNLI-finetuned
Skipthoughts are a more appropriate model for this
purpose than the other models we explored.

By zero-shot paraphrase detection, we refer to
the task of predicting a binary label for the “para-
phrase status” of a pair of sentences without per-
forming any training for this task. This amounts
to choosing a threshold so that a pair is classified
positively if and only if the similarity of its sen-
tence embeddings surpasses this threshold. Since
the choice of such a threshold is not obvious,
we present the precision-recall curve in Figure 3
which corresponds to multiple thresholds.

Figure 3: Precision-Recall curve for zero-shot
paraphrase detection. (FT-)ST stands for (SNLI-
Finetuned) Skipthoughts.

In figure 3 we have included the best-
performing model for this task for reference,
which is BOW AE, but we are more interested in
the comparison between Skipthoughts and SNLI-
Finetuned Skipthoughts. This is because we be-
lieve that the success of BOW AE on this task does
not necessarily reflect its merit as a sentence en-
coder, as we elaborate on in the Discussion sec-
tion.

The superior performance of SNLI-finetuned
Skipthoughts in Figure 3 advocates for the gen-
eralizability of the former model since it requires
less adaptation for paraphrase detection compared
to Skipthoughts.

It is also interesting to investigate the behav-
ior of our models when given various amounts of
training data for the task of paraphrase detection.

244

For this, we plot in Figure 4 how the test set accu-
racy increases as more data is fed into the models.

Figure 4: Test accuracy when an increasing
amount of data was used for training. (FT-)ST
stands for (SNLI-Finetuned) Skipthoughts.

We notice that AE BOW is less “data hun-
gry” in that its performance ceases to increase
significantly with the increase of data. SNLI-
Finetuned Skipthoughts reach higher accuracy
than Skipthoughts when given the same amount of
data, supporting its aptness for one shot learning.

Figure 4 justifies the fact that Skipthought-
based models outperform BOW AE in the super-
vised evaluation setting even though these roles
are reversed in the zero-shot setting of Section 5.
In particular, it appears that BOW AE is less capa-
ble of taking advantage of training data to improve
its quality.

6.4 Diving into Embedding Space
In this section, we use the sentences from MSRP
and examine their relationships in model space.
The histograms in Figure 5 show the distribu-
tion of the pairwise-similarity for these sentences
in Skipthought and SNLI-Finetuned Skipthought
spaces.

Crucially, we observe that in Skipthought space,
pairwise sentence similarities are significantly
higher than in its SNLI-Finetuned variant, and
there is less variation. This behavior can be at-
tributed to their training objective. In particular,
two sentences are neighbours in this space if they
are likely to be found in the same contexts, result-
ing to sentences such as “I love sushi”, “I really
really like sushi” and “I hate sushi” to be possibly
equidistant neighbours.

On the other hand, the histogram for SNLI-
Finetuned Skipthoughts contains more variation,
which we conjecture is due to the fact that a sec-
ond notion of relatedness is introduced, which
pushes sentences with contradictory meanings fur-
ther away from each other, in order to keep sen-
tences which entail each other close.

(a) Skipthought Space

(b) SNLI-Finetuned Skipthought Space

Figure 5: Distribution of Pairwise Similarities in
Embedding Space (best viewed in color). Green
and red denote positive and negative pairs, respec-
tively.

Moreover, it is of interest to examine the red
and green histograms, corresponding to the dis-
tributions of pair-wise similarities for positively
and negatively labelled pairs, respectively. In both
cases the similarity for green tends to be higher
than that for red, as desired. However, in the case
of SNLI-Finetuned Skipthoughts this separation is
more prominent, possibly justifying the better per-
formance shown in the precision recall curve in
Figure 3.

7 Discussion

In this section we discuss a limitation of the
datasets used for evaluation. Specifically, both
MSRP and SICK have a high mean proportion of
common words between the two sentences of the
pairs. Further, this average is significantly higher
for “positive pairs” (ie. labelled as paraphrases in
the case of MSRP, or assigned a high human relat-
edness score, for the case of SICK), than it is for
“negative” pairs. Figure 6 shows the histograms
for the distribution of word overlap between pairs
of sentences from these datasets, where word over-
lap for a pair is the proportion of words that are
common between its two sentences.

Therefore, it may be inappropriate to draw con-
clusions on the quality of BOW models merely
from their superior performance on these datasets.
For example, models like the baseline in Table 6
are not expected to generalize to other tasks. We

245

(a) MSRP dataset

(b) SICK dataset

Figure 6: Distribution of Pairwise Word Overlap
in MSRP and SICK (best viewed in color)

remind the reader that this model represents a sen-
tence as a sum of its word embeddings, which
are randomly-generated vectors. We do not ex-
pect this to capture any meaningful aspects of
sentences, but yet it performs well in this set-
ting. On the other hand, more complicated models
like Skipthoughts, SNLI-finetuned Skipthoughts,
SNLI RNN, and RNN AE attempt to capture a “la-
tent” notion of relatedness, which does not rely on
identifying common words. These models are un-
fairly penalized in this setting, rendering compar-
isons between these and BOW models irrelevant.

However, we believe that comparisons between
models from within this “more complicated”
group are still valid. For example, it is appropri-
ate to compare Skipthoughts with SNLI-Finetuned
Skipthoughts on these datasets: they both make
the same effort to capture the more abstract sense
of relatedness, and are in this sense equally penal-
ized when evaluated on these datasets.

The histograms in Figure 6 underline the need
for creation of high-quality datasets to evaluate a
model’s understanding of “latent” relatedness. For
this, we have put together a small number of sen-
tences, grouped into two semantically contradic-
tory groups, as shown in Figure 7. Each model
was used to compute the similarities of all pairs
and assign ranks in the same way as for paraphrase
ranking. The aim is to assign lower ranks (higher
similarities) to sentences from the same group as
the current sentence, than to sentences from the
contradictory group.

Group 1
• There is steam coming out of my soup
• My tongue got burned when I tasted my soup
• I just heated up my soup
Group 2
• My soup is very cold
• My tongue did not get burned when I tasted my

soup
• My soup is not hot anymore

Figure 7: Our small dataset for evaluating how
well the encoders have captured “latent” related-
ness (which does not rely on common word iden-
tification)

The results for the ranks and corresponding sim-
ilarities that sentence “My soup is not hot any-
more” assigns to the rest of the sentences are dis-
played in Table 8.

SNLI-Skipthoughts, SNLI BOW, SNLI RNN
and BOW AE all assign the two highest ranks to
the remaining sentences of Group 2, as desired.
This means that they all have perfect average pre-
cision, outperforming Skipthoughts. However, it
is more important to examine the “closeness” of
these sentences in space (columns “sim” of Ta-
ble 8). BOW AE, for example, produces a per-
fect ranking but sentences with ranks 2, 3 and 4
have approximately equal similarity with the “ref-
erence” sentence, casting doubts on the quality of
the embeddings.

With this in mind, maybe the best performing
method for this small group of sentences is SNLI
RNN: the similarities between sentences of Group
2 with the reference sentence are much higher than
those between Group 1 sentences and the refer-
ence sentence. Specifically, there is a gap of 13%
between the lowest similarity with a Group 2 sen-
tence and the highest with a Group 1 sentence.
SNLI BOW is second best according to this met-
ric, followed by SNLI-Skipthoughts.

This dataset is far too small to draw confident
conclusions from but these results may serve as a
preliminary indication of the benefit of SNLI in-
formation for separating semantically contradic-
tory sentences and understanding “latent” related-
ness.

8 Conclusion

In conclusion, we have exploited supervised
information from SNLI to enrich the model

246

Skipthoughts SNLI-Skipthoughts SNLI BOW SNLI RNN BOW AE
sim Sentence sim Sentence sim Sentence sim Sentence sim Sentence
0.61 My soup is 0.48 My soup is 0.59 My tongue 0.51 My tongue 0.51 My soup is

very cold very cold did not get did not get very cold
burned ... burned ...

0.43 There is 0.32 My tongue 0.45 My soup is 0.47 My soup is 0.35 My tongue
steam ... did not get very cold very cold did not get

burned ... burned ...
0.39 I just 0.29 I just 0.39 My tongue 0.34 My tongue 0.35 I just

heated ... heated ... got burned ... got burned ... heated ...
0.39 My tongue 0.29 There is 0.37 I just 0.30 I just 0.35 There is

did not get steam ... heated ... heated ... steam ...
burned ...

0.38 My tongue 0.28 My tongue 0.32 There is 0.28 There is 0.31 My tongue
got burned ... got burned ... steam ... steam ... got burned ...

Table 8: Results of the ranking task for the reference sentence My soup is not hot anymore. sim refers
to the similarity between the reference sentence and the sentence of the corresponding row in embedding
space. Sentences which are ”relevant” to this one (Group 2), and thus should receive lower ranks, are
shown in bold.

space of Skipthoughts, inducing SNLI-Finetuned
Skipthoughts. Aside from performing better or on
par with Skipthoughts on the supervised evalua-
tions, this model exhibits properties of a superior
embedding space. We report results on transfer
from SNLI to MSRP in Table 1, and more en-
couraging results from SNLI to paraphrase rank-
ing in Table 5. We also showed that SNLI-induced
embedding spaces capture human intuition about
relatedness favorably to other models. Finally,
SNLI-finetuned Skipthoughts perform better than
its competitors when few or no labelled examples
are available for paraphrase detection.

References
Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL (1),
pages 238–247.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from

scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2015. Learning to understand
phrases by embedding the dictionary. arXiv preprint
arXiv:1504.00548.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016. Learning distributed representations of
sentences from unlabelled data. arXiv preprint
arXiv:1602.03483.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors.
In Advances in Neural Information Processing Sys-
tems, pages 3276–3284.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Stanislas Lauly, Hugo Larochelle, Mitesh Khapra,
Balaraman Ravindran, Vikas C Raykar, and Amrita
Saha. 2014. An autoencoder approach to learning
bilingual word representations. In Advances in Neu-
ral Information Processing Systems, pages 1853–
1861.

Quoc V Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. arXiv
preprint arXiv:1405.4053.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned

247

from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. arXiv preprint arXiv:1506.01057.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. SemEval-2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in neural information processing
systems, pages 3111–3119.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? arXiv preprint
arXiv:1603.06111.

Nghia The Pham, Germán Kruszewski, Angeliki
Lazaridou, and Marco Baroni. 2015. Jointly opti-
mizing word representations for lexical and senten-
tial tasks with the c-phrase model. In Proceedings
of ALC.

Andrew M Saxe, James L McClelland, and Surya Gan-
guli. 2013. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural In-
formation Processing Systems, pages 801–809.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. Transactions
of the Association for Computational Linguistics,
2:207–218.

Di Wang and Eric Nyberg. 2015. A long short-
term memory model for answer sentence selection
in question answering. ACL, July.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198.

Wenpeng Yin and Hinrich Schütze. 2015. Convolu-
tional neural network for paraphrase identification.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 901–911.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
19–27.

248

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 249–257,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Domain Adaptation for Neural Networks by Parameter Augmentation

Yusuke Watanabe
SONY

1-7-1 Konan Minato-ku,
Tokyo, Japan

YusukeB.Watanabe@jp.sony.com

Kazuma Hashimoto, Yoshimasa Tsuruoka
University of Tokyo

7-3-1 Hongo, Bunkyo-ku,
Tokyo, Japan

hassy@logos.t.u-tokyo.ac.jp

tsuruoka@logos.t.u-tokyo.ac.jp

Abstract

We propose a simple domain adaptation
method for neural networks in a super-
vised setting. Supervised domain adapta-
tion is a way of improving the generaliza-
tion performance on the target domain by
using the source domain dataset, assum-
ing that both of the datasets are labeled.
Recently, recurrent neural networks have
been shown to be successful on a vari-
ety of NLP tasks such as caption genera-
tion; however, the existing domain adapta-
tion techniques are limited to (1) tune the
model parameters by the target dataset af-
ter the training by the source dataset, or
(2) design the network to have dual output,
one for the source domain and the other
for the target domain. Reformulating the
idea of the domain adaptation technique
proposed by Daumé (2007), we propose a
simple domain adaptation method, which
can be applied to neural networks trained
with a cross-entropy loss. On captioning
datasets, we show performance improve-
ments over other domain adaptation meth-
ods.

1 Introduction

Domain adaptation is a machine learning
paradigm that aims at improving the generaliza-
tion performance of a new (target) domain by
using a dataset from the original (source) domain.
Suppose that, as the source domain dataset, we
have a captioning corpus, consisting of images of
daily lives and each image has captions. Suppose
also that we would like to generate captions for
exotic cuisine, which are rare in the corpus. It is
usually very costly to make a new corpus for the
target domain, i.e., taking and captioning those

images. The research question here is how we can
leverage the source domain dataset to improve the
performance on the target domain.

As described by Daumé (2007), there are
mainly two settings of domain adaptation: fully
supervised and semi-supervised. Our focus is the
supervised setting, where both of the source and
target domain datasets are labeled. We would like
to use the label information of the source domain
to improve the performance on the target domain.

Recently, Recurrent Neural Networks (RNNs)
have been successfully applied to various tasks in
the field of natural language processing (NLP), in-
cluding language modeling (Mikolov et al., 2010),
caption generation (Vinyals et al., 2015b) and
parsing (Vinyals et al., 2015a).

For neural networks, there are two standard
methods for supervised domain adaptation (Mou
et al., 2016). The first method is fine tuning: we
first train the model with the source dataset and
then tune it with the target domain dataset (Venu-
gopalan et al., 2015; Kim, 2014). Since the ob-
jective function of neural network training is non-
convex, the performance of the trained model can
depend on the initialization of the parameters.
This is in contrast with the convex methods such as
Support Vector Machines (SVMs). We expect that
the first training gives a good initialization of the
parameters, and therefore the latter training gives
a good generalization even if the target domain
dataset is small. The downside of this approach
is the lack of the optimization objective.

The other method is to design the neural net-
work so that it has two outputs. The first output is
trained with the source dataset and the other out-
put is trained with the target dataset, where the
input part is shared among the domains. We call
this method dual outputs. This type of network ar-
chitecture has been successfully applied to multi-
task learning in NLP such as part-of-speech tag-

249

ging and named-entity recognition (Collobert et
al., 2011; Yang et al., 2016).

In the NLP community, there has been a
large body of previous work on domain adap-
tation. One of the state-of-the-art methods for
the supervised domain adaptation is feature aug-
mentation (Daumé, 2007). The central idea
of this method is to augment the original fea-
tures/parameters in order to model the source spe-
cific, target specific and general behaviors of the
data. However, it is not straight-forward to apply
it to neural network models in which the cost func-
tion has a form of log probabilities.

In this paper, we propose a new domain adapta-
tion method for neural networks. We reformulate
the method of Daumé (2007) and derive an ob-
jective function using convexity of the loss func-
tion. From a high-level perspective, this method
shares the idea of feature augmentation. We use
redundant parameters for the source, target and
general domains, where the general parameters are
tuned to model the common characteristics of the
datasets and the source/target parameters are tuned
for domain specific aspects.

In the latter part of this paper, we apply our
domain adaptation method to a neural captioning
model and show performance improvement over
other standard methods on several datasets and
metrics. In the datasets, the source and target have
different word distributions, and thus adaptation
of output parameters is important. We augment
the output parameters to facilitate adaptation. Al-
though we use captioning models in the experi-
ments, our method can be applied to any neural
networks trained with a cross-entropy loss.

2 Related Work

There are several recent studies applying do-
main adaptation methods to deep neural networks.
However, few studies have focused on improving
the fine tuning and dual outputs methods in the su-
pervised setting.

Sun et al. (2015) have proposed an unsupervised
domain adaptation method and apply it to the fea-
tures from deep neural networks. Their idea is to
minimize the domain shift by aligning the second-
order statistics of source and target distributions.
In our setting, it is not necessarily true that there
is a correspondence between the source and target
input distributions, and therefore we cannot expect
their method to work well.

Wen et al. (2016) have proposed a procedure
to generate natural language for multiple domains
of spoken dialogue systems. They improve the
fine tuning method by pre-trainig with synthe-
sized data. However, the synthesis protocol is
only applicable to the spoken dialogue system. In
this paper, we focus on domain adaptation meth-
ods which can be applied without dataset-specific
tricks.

Yang et al. (2016) have conducted a series of ex-
periments to investigate the transferability of neu-
ral networks for NLP. They compare the perfor-
mance of two transfer methods called INIT and
MULT, which correspond to the fine tuning and
dual outputs methods in our terms. They conclude
that MULT is slightly better than or comparable
to INIT; this is consistent with our experiments
shown in section 5. Although they obtain little im-
provement by transferring the output parameters,
we achieve significant improvement by augment-
ing parameters in the output layers.

3 Domain adaptation and language
generation

We start with the basic notations and formaliza-
tion for domain adaptation. Let X be the set of
inputs and Y be the outputs. We have a source
domain dataset Ds, which is sampled from some
distribution Ds. Also, we have a target domain
dataset Dt, which is sampled from another distri-
bution Dt. Since we are considering supervised
settings, each element of the datasets has a form
of input output pair (x, y). The goal of domain
adaptation is to learn a function f : X → Y that
models the input-output relation of Dt. We implic-
itly assume that there is a connection between the
source and target distributions and thus can lever-
age the information of the source domain dataset.
In the case of image caption generation, the input
x is an image (or the feature vector of an image)
and y is the caption (a sequence of words).

In language generation tasks, a sequence of
words is generated from an input x. A state-of-
the-art model for language generation is LSTM
(Long Short Term Memory) initialized by a con-
text vector computed by the input (Vinyals et al.,
2015b). LSTM is a particular form of recurrent
neural network, which has three gates and a mem-
ory cell. For each time step t, the vectors ct and
ht are computed from ut, ct−1 and ht−1 by the fol-

250

a piece

a piece

of <EOS>

plate

feature
extractor

Figure 1: A schematic view of the LSTM caption-
ing model. The first input to the LSTM is an im-
age feature. Then a sentence “a piece of chocolate
cake that is on a glass plate” is generated. The
generation process ends with the EOS symbol.

lowing equations:

i = σ(Wixut + Wihht−1)
f = σ(Wfxut + Wfhht−1)
o = σ(Woxut + Wohht−1)
g = tanh(Wgxut + Wghht−1)
ct = f ⊙ ct−1 + i⊙ g

ht = o⊙ tanh(ct),

where σ is the sigmoid function and ⊙ is the
element-wise product. Note that all the vectors in
the equations have the same dimension n, called
the cell size. The probability of the output word at
the t-th step, yt, is computed by

p(yt|y1, . . . , yt−1, x) = Softmax(Wht), (1)

where W is a matrix with a size of vocabulary size
times n. We call this matrix as the parameter of
the output layer. The input ut is given by the word
embedding of yt−1.

To generate a caption, we first compute feature
vectors of the image, and put it into the beginning
of the LSTM as

u0 = W0CNN(x), (2)

where W0 is a tunable parameter matrix and CNN
is a feature extractor usually given by a convolu-
tional neural network. Output words, yt, are se-
lected in order and each caption ends with special
symbol <EOS>. The process is illustrated in Fig-
ure 1. Note that the cost function for the generated
caption is

log p(y|x) =
∑

t

log p(yt|y1, . . . , yt−1, x),

where the conditional distributions are given by
Eq. (1). The parameters of the model are opti-
mized to minimize the cost on the training dataset.
We also note that there are extensions of the mod-
els with attentions (Xu et al., 2015; Bahdanau et
al., 2015), but the forms of the cost functions are
the same.

4 Domain adaptation for language
generation

In this section, we review standard domain adap-
tation techniques which are applicable to the neu-
ral language generation. The performance of these
methods is compared in the next section.

4.1 Standard and baseline methods

A trivial method of domain adaptation is simply
ignoring the source dataset, and train the model
using only the target dataset. This method is here-
after denoted by TGTONLY. This is a baseline and
any meaningful method must beat it.

Another trivial method is SRCONLY, where
only the source dataset is used for the training.
Typically, the source dataset is bigger than that of
the target, and this method sometimes works better
than TGTONLY.

Another method is ALL, in which the source
and target datasets are combined and used for the
training. Although this method uses all the data,
the training criteria enforce the model to perform
well on both of the domains, and therefore the per-
formance on the target domain is not necessarily
high. 1

An approach widely used in the neural network
community is FINETUNE. We first train the model
with the source dataset and then it is used as the
initial parameters for training the model with the
target dataset. The training process is stopped in
reference to the development set in order to avoid
over-fitting. We could extend this method by pos-
ing a regularization term (e.g. l2 regularization)
in order not to deviate from the pre-trained pa-
rameter. In the latter experiments, however, we
do not pursue this direction because we found no
performance gain. Note that it is hard to control
the scales of the regularization for each part of the
neural net because there are many parameters hav-

1As a variant of this method, we can weight the samples
in each domain. This is a kind of interpolation between TG-
TONLY, ALL and SRCONLY. We do not consider this method
in the latter experiments because we observe little improve-
ment over ALL.

251

ing different roles.
Another common approach for neural domain

adaptation is DUAL. In this method, the output of
the network is “dualized”. In other words, we use
different parameters W in Eq. (1) for the source
and target domains. For the source dataset, the
model is trained with the first output and the sec-
ond for the target dataset. The rest of the param-
eters are shared among the domains. This type of
network design is often used for multi-task learn-
ing.

4.2 Revisiting the feature augmentation
method

Before proceeding to our new method, we describe
the feature augmentation method (Daumé, 2007)
from our perspective. let us start with the feature
augmentation method.

Here we consider the domain adaptation of a bi-
nary classification problem. Suppose that we train
SVM models for the source and target domains
separately. The objective functions have the form
of

1
ns

∑
(x,y)∈Ds

max(0, 1− y(wT
s Φ(x))) + λ∥ws∥2

1
nt

∑
(x,y)∈Dt

max(0, 1− y(wT
t Φ(x))) + λ∥wt∥2,

where Φ(x) is the feature vector and ws, wt are
the SVM parameters. In the feature augmenta-
tion method, the parameters are decomposed to
ws = θg + θs and wt = θg + θt. The optimization
objective is different from the sum of the above
functions:

1
ns

∑
(x,y)∈Ds

max(0, 1− y(wT
s Φ(x)))

+ λ(∥θg∥2 + ∥θs∥2)

+
1
nt

∑
(x,y)∈Dt

max(0, 1− y(wT
t Φ(x)))

+ λ(∥θg∥2 + ∥θt∥2),

where the quadratic regularization terms ∥θg +
θs∥2 and ∥θg + θt∥2 are changed to ∥θg∥2 + ∥θs∥2

and ∥θg∥2 + ∥θt∥2, respectively. Since the param-
eters θg are shared, we cannot optimize the prob-
lems separately.

This change of the objective function can be un-

derstood as adding additional regularization terms

2(∥θg∥2 + ∥θt∥2)− ∥θg + θt∥2,

2(∥θg∥2 + ∥θs∥2)− ∥θg + θs∥2.

We can easily see that those are equal to ∥θg−θt∥2

and ∥θg − θs∥2, respectively and thus this addi-
tional regularization enforces θg and θt (and also
θg and θs) not to be far away. This is how the fea-
ture augmentation method shares the domain in-
formation between the parameters ws and wt.

4.3 Proposed method
Although the above formalization is for an SVM,
which has the quadratic cost of parameters, we can
apply the idea to the log probability case.

In the case of RNN language generation, the
loss function of each output is a cross entropy ap-
plied to the softmax output

− logps(y|y1, . . . , yt−1, x)

= −wT
s,yh + log Z(ws; h), (3)

where Z is the partition function and h is the hid-
den state of the LSTM computed by y0, . . . , yt−1

and x. Again we decompose the word output pa-
rameter as ws = θg + θs. Since log Z is convex
with respect to ws, we can easily show that the
Eq. (3) is bounded above by

−θT
g,yh +

1
2

log Z(2θg; x)

− θT
s,yh +

1
2

log Z(2θs;x).

The equality holds if and only if θg = θs. There-
fore, optimizing this upper-bound effectively en-
forces the parameters to be close as well as reduc-
ing the cost.

The exact same story can be applied to the target
parameter wt = θg + θt. We combine the source
and target cost functions and optimize the sum of
the above upper-bounds. Then the derived objec-
tive function is

1
ns

∑
(x,y)∈Ds

[−θT
g,yh +

1
2

log Z(2θg; x)

− θT
s,yh +

1
2

log Z(2θs;x)]

+
1
nt

∑
(x,y)∈Dt

[−θT
g,yh +

1
2

log Z(2θg; x)

− θT
t,yh +

1
2

log Z(2θt; x)].

252

Algorithm 1: Proposed Method

1 while True do
2 Select a minibatch of data from source or

target dataset
3 if source then
4 Optimize ℓ(θg) + ℓ(θs) with respect

to θg, θs, θh for the minibatch
5 end
6 else
7 Optimize ℓ(θg) + ℓ(θt) with respect to

θg, θt, θh for the minibatch
8 end
9 if development error increases then

10 break;
11 end
12 end
13 Compute wt = θg + θt and ws = θg + θs.

Use these parameters as the output parameters
for each domain.

If we work with the sum of the source and tar-
get versions of Eq. (3), the method is actually the
same as DUAL because the parameters θg is com-
pletely redundant. The difference between this ob-
jective and the proposed upper bound works as a
regularization term, which results in a good gener-
alization performance.

Although our formulation has the unique ob-
jective, there are three types of cross entropy loss
terms given by θg, θs and θt. We denote them by
ℓ(θg), ℓ(θs) and ℓ(θt), respectively. For the source
data, the sum of general and source loss terms is
optimized, and for the target dataset the sum of
general and target loss terms is optimized.

The proposed algorithm is summarized in Al-
gorithm 1. Note that θh is the parameters of the
LSTM except for the output part. In one epoch of
the training, we use all data once. We can combine
any parameter update methods for neural network
training such as Adam (Kingma and Ba, 2015).

5 Experiments

We have conducted domain adaptation experi-
ments on the following three datasets. The first
experiment focuses on the situation where the do-
main adaptation is useful. The second experiment
show the benefit of domain adaptation for both di-
rections: from source to target and target to source.
The third experiment shows an improvement in
another metric. Although our method is applicable

to any neural network with a cross entropy loss,
all the experiments use caption generation models
because it is one of the most successful neural net-
work applications in NLP.

5.1 Adaptation to food domain captioning
This experiment highlights a typical scenario in
which domain adaptation is useful. Suppose that
we have a large dataset of captioned images, which
are taken from daily lives, but we would like to
generate high quality captions for more special-
ized domain images such as minor sports and ex-
otic food. However, captioned images for those
domains are quite limited due to the annotation
cost. We use domain adaptation methods to im-
prove the captions of the target domain.

To simulate the scenario, we split the Microsoft
COCO dataset into food and non-food domain
datasets. The MS COCO dataset contains approx-
imately 80K images for training and 40K images
for validation; each image has 5 captions (Lin et
al., 2014). The dataset contains images of di-
verse categories, including animals, indoor scenes,
sports, and foods. We selected the “food cate-
gory” data by scoring the captions according to
how much those are related to the food category.
The score is computed based on wordnet similar-
ities (Miller, 1995). The training and validation
datasets are split by the score with the same thresh-
old. Consequently, the food dataset has 3,806 im-
ages for training and 1,775 for validation. The
non-food dataset has 78,976 images for training
and 38,749 for validation.

The selected pictures from the food domain are
typically a close-up of foods or people eating some
foods. Table 1 shows some captions from the food
and non-food domain datasets. Table 2 shows the
top twenty frequent words in the two datasets ex-
cept for the stop words. We observe that the fre-
quent words are largely different, but still there are
some words common in both datasets.

To model the image captaining, we use LSTMs
as described in the previous section. The image
features are computed by the trained GoogLeNet
and all the LSTMs have a single layer with 300
hidden units (Szegedy et al., 2015). We use a stan-
dard optimization method, Adam (Kingma and
Ba, 2015) with hyper parameters α = 0.001,
β1 = 0.9 and β2 = 0.999. We stop the training
based on the loss on the development set. After
the training we generate captions by beam search,
where the size of the beam is 5. These settings are

253

Closeup of bins of food that include broccoli and bread.

A woman sitting in front of a table with a plate of food.

A large pizza covered in cheese and toppings.

People shopping in an open market for vegetables.

A purse sits at the foot of one of the large beds.

A large television screen in a large room.

Table 1: Examples of annotated captions from
food domain dataset (top) and non-food dataset
(bottom).

food food, plate, table, pizza, sitting, man, white,
two, eating, people, sandwich, woman, next,
plates, vegetables, cheese, bowl,

non-food man, sitting, two, standing, people, next, white,
woman, street, holding, person, table, large,
down, top, group, field, tennis, small, near,

Table 2: Top twenty frequent words from the
food/non-food datasets.

the same in the latter experiments.
We compare the proposed method with other

baseline methods. For all the methods, we use
Adam with the same hyper parameters. In FINE-
TUNE, we did not freeze any parameters during
the target training. In DUAL, all samples in source
and target datasets are weighted equally.

We evaluated the performance of the domain
adaptation methods by the qualities of the gen-
erated captions. We used BLEU, METOR and
CIDEr scores for the evaluation. The results are
summarized in Table 3. 2 We see that the proposed
method improves in most of the metrics. The base-
line methods SRCONLY and TGTONLY are worse
than other methods, because they use limited data
for the training. Note that the CIDEr scores corre-
late with human evaluations better than BLEU and
METOR scores (Vedantam et al., 2015).

Generated captions for sample images are
shown in Table 4. In the first example, ALL fails to
identify the chocolate cake because there are birds
in the source dataset which somehow look simi-
lar to chocolate cake. We argue that PROPOSED

learns birds by the source parameters and choco-
late cakes by the target parameters, and thus suc-
ceeded in generating appropriate captions.

5.2 Adaptation between MS COCO and
Flickr30K

In this experiment, we explore the benefit of adap-
tation from both sides of the domains. Flickr30K

2We use scripts in https://github.com/tylin/

B1 B2 B3 B4 M C
SRCONLY 60.4 42.3 30.6 21.2 19.4 36.4
TGTONLY 63.0 45.5 33.0 24.0 20.9 35.8

ALL 61.0 45.1 32.7 23.7 20.2 39.9
FINETUNE 61.9 45.8 33.6 24.6 21.5 39.8

DUAL 63.3 46.3 33.7 24.7 21.2 40.7
PROPOSED 63.2 46.8 34.0 24.7 21.7 42.8

Table 3: Results of the domain adaptation to the
food dataset. The evaluation metrics are BLEU,
METOR and CIDEr. The proposed method is the
best in most of the metrics.

B1 B2 B3 B4 M C
SRCONLY 50.8 30.5 18.6 11.5 12.9 16.0
TGTONLY 52.8 34.6 22.8 15.3 15.7 22.5

ALL 52.6 34.4 22.5 14.8 15.6 23.1
FINETUNE 55.2 36.6 24.3 16.3 16.0 26.2

DUAL 56.0 36.9 24.1 16.0 15.9 25.8
PROPOSED 56.7 37.8 25.5 17.4 16.1 27.9

Table 5: Domain adaptation from MSCOCO to
Flickr30K dataset.

is another captioning dataset, consisting of 30K
images, and each image has five captions (Young
et al., 2014). Although the formats of the datasets
are almost the same, the model trained by the MS
COCO dataset does not work well for the Flickr
30K dataset and vice versa. The word distributions
of the captions are considerably different. If we
ignore words with less than 30 counts, MS COCO
has 3,655 words and Flicker30K has 2732 words;
and only 1,486 words are shared. Also, the aver-
age lengths of captions are different. The average
length of captions in Flickr30K is 12.3 while that
of MS COCO is 10.5.

The first result is the domain adaptation from
MS COCO to Flickr30K, summarized in Table 5.
Again, we observe that the proposed method
achieves the best score among the other methods.
The difference between ALL and FINETUNE is
bigger than in the previous setting because two
datasets have different captions even for similar
images. The scores of FINETUNE and DUAL are
at almost the same level.

The second result is the domain adaptation from
Flickr30K to MS COCO shown in Table 6. This
may not be a typical situation because the number
of samples in the target domain is larger than that
of the source domain. The SRCONLY model is
trained only with Flickr30K and tested on the MS
COCO dataset. We observe that FINETUNE gives
little benefit over TGTONLY, which implies that

coco-caption to compute BLEU, METEOR and CIDEr
scores.

254

True Caption A piece of chocolate cake that is on a glass plate.
SRCONLY a bird sitting on top of a tree branch
TGTONLY a piece of chocolate cake sitting on a white plate
ALL a close up of a bird on a tree branch
FINETUNE a close up of a plate of food on a plate
DUAL a close up of a plate of food
PROPOSED a close up of a piece of chocolate cake on a plate
True Caption The woman with a sandwich on her plate is drinking from a wine glass.
SRCONLY a woman holding a cake on a table
TGTONLY a woman is eating a slice of pizza
ALL a person holding a cake on a plate with a fork
FINETUNE a close up of a plate of food on a table
DUAL a group of people sitting at a table eating food
PROPOSED a woman sitting at a table with a plate of food

Table 4: Examples of generated captions for food dataset images.

B1 B2 B3 B4 M C
SRCONLY 44.0 25.1 14.1 8.6 13.5 15.5
TGTONLY 64.0 45.9 32.6 23.2 21.0 70.2

ALL 63.0 44.9 31.4 22.2 21.0 67.4
FINETUNE 63.6 45.7 32.7 23.5 20.9 70.5

DUAL 65.0 46.6 32.8 23.1 21.0 70.3
PROPOSED 64.3 46.5 33.0 23.4 21.1 71.0

Table 6: Domain adaptation from Flickr30K to
MSCOCO dataset.

Figure 2: Comparison of CIDEr score of FINE-
TUNE and PROPOSED

the difference of the initial parameters has little
effect in this case. Also, DUAL gives little benefit
over TGTONLY, meaning that the parameter shar-
ing except for the output layer is not important in
this case. Note that the CIDEr score of PROPOSED

is slightly improved.

Figure 2 shows the comparison of FINETUNE

and PROPOSED, changing the number of the Flickr
samples to 1600, 6400 and 30K. We observe that
FINETUNE works relatively well when the target
domain dataset is small.

5.3 Answer sentence selection
In this experiment, we use the captioning
model as an affinity measure of images and
sentences. TOEIC part 1 test consists of four-
choice questions for English learners. The
correct choice is the sentence that best describes
the shown image. Questions are not easy be-
cause there are confusing keywords in wrong
choices. An example of the question is shown
in Table 7. We downloaded 610 questions from
http://www.english-test.net/toeic/
listening/.

Our approach here is to select the most prob-
able choice given the image by captioning mod-
els. We train captioning models with the images
and correct answers from the training set. Since
the TOEIC dataset is small, domain adaptation can
give a large benefit. We compared the domain
adaptation methods by the percentage of correct
answers. The source dataset is 40K samples from
MS COCO and the target dataset is the TOEIC
dataset. We split the TOEIC dataset to 400 sam-
ples for training and 210 samples for testing.

The percentages of correct answers for each
method are summarized in Table 8. Since the
questions have four choices, all methods should
perform better than 25%. TGTONLY is close to
the baseline because the model is trained with only
400 samples. As in the previous experiments,
FINETUNE and DUAL are better than ALL and
PROPOSED is better than the other methods.

255

(A) Traffic is building up on the motorway.

(B) There are more lorries on this motorway than cars.

(C) Traffic is flowing freely on the motorway.

(D) The vehicles are traveling too close to one another on the motorway.

Table 7: A sample question from TOEIC part 1 test. The correct answer is (C).

correct answer
SRCONLY 29.1%
TGTONLY 28.1%

ALL 31.0%
FINETUNE 33.3%

DUAL 33.3%
PROPOSED 35.7%

Table 8: Domain adaptation to TOEIC dataset.

6 Conclusion and Future Work

We have proposed a new method for supervised
domain adaptation of neural networks. On cap-
tioning datasets, we have shown that the method
outperforms other standard adaptation methods
applicable to neural networks.

The proposed method only decomposes the out-
put word parameters, where other parameters,
such as word embedding, are completely shared
across the domains. Augmentation of parameters
in the other part of the network would be an inter-
esting direction of future work.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations (ICLR).

R Collobert, Jason Weston, and L Bottou. 2011. Natu-
ral language processing (almost) from scratch. Jour-
nal of Machine Learning Research, 12:2493–2537.

Hal Daumé, III. 2007. Frustratingly easy domain
adaptation. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics
(ACL), pages 256–263.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-

ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 740–755.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH, volume 2, page 3.

Gerge A. Miller. 1995. Wordnet: a lexical database for
english. Communications of The ACM, 38(11):39–
41.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? arXiv preprint
arXiv:1603.06111.

Baochen Sun, Jiashi Feng, and Kate Saenko. 2015.
Return of frustratingly easy domain adaptation. In
Proceedings of the 29th AAAI Conference on Artifi-
cial Intelligence.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–9.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4566–4575.

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue,
Marcus Rohrbach, Raymond Mooney, and Kate
Saenko. 2015. Translating videos to natural lan-
guage using deep recurrent neural networks. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 1494–1504.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015a. Gram-
mar as a foreign language. In Advances in Neu-

256

ral Information Processing Systems 28 (NIPS 2015),
pages 2755–2763.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015b. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3156–3164.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina M Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016. Multi-domain
neural network language generation for spoken dia-
logue systems. arXiv preprint arXiv:1603.01232.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. 2015. Show, attend and tell: Neural im-
age caption generation with visual attention. In Pro-
ceedings of the 32nd International Conference on
Machine Learning (ICML).

Zhilin Yang, Ruslan Salakhutdinov, and William
Cohen. 2016. Multi-task cross-lingual se-
quence tagging from scratch. arXiv preprint
arXiv:1603.06270.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 2:67–78.

257

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 258–266,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Neural Associative Memory for Dual-Sequence Modeling

Dirk Weissenborn
Language Technology Lab, DFKI

Alt-Moabit 91c
Berlin, Germany

dirk.weissenborn@dfki.de

Abstract

Many important NLP problems can be
posed as dual-sequence or sequence-to-
sequence modeling tasks. Recent ad-
vances in building end-to-end neural ar-
chitectures have been highly successful in
solving such tasks. In this work we pro-
pose a new architecture for dual-sequence
modeling that is based on associative
memory. We derive AM-RNNs, a recur-
rent associative memory (AM) which aug-
ments generic recurrent neural networks
(RNN). This architecture is extended to
the Dual AM-RNN which operates on
two AMs at once. Our models achieve
very competitive results on textual en-
tailment. A qualitative analysis demon-
strates that long range dependencies be-
tween source and target-sequence can be
bridged effectively using Dual AM-RNNs.
However, an initial experiment on auto-
encoding reveals that these benefits are
not exploited by the system when learn-
ing to solve sequence-to-sequence tasks
which indicates that additional supervision
or regularization is needed.

1 Introduction

Dual-sequence modeling and sequence-to-
sequence modeling are important paradigms
that are used in many applications involving
natural language, including machine translation
(Bahdanau et al., 2015; Sutskever et al., 2014),
recognizing textual entailment (Cheng et al.,
2016; Rocktäschel et al., 2016; Wang and Jiang,
2016), auto-encoding (Li et al., 2015), syntactical
parsing (Vinyals et al., 2015) or document-level
question answering (Hermann et al., 2015). We
might even argue that most, if not all, NLP

problems can (at least partially) be modeled
by this paradigm (Li and Hovy, 2015). These
models operate on two distinct sequences, the
source and the target sequence. Some tasks
require the generation of the target based on
the source (sequence-to-sequence modeling),
e.g., machine translation, whereas other tasks
involve making predictions about a given source
and target sequence (dual-sequence modeling),
e.g., recognizing textual entailment. Existing
state-of-the-art, end-to-end differentiable models
for both tasks exploit the same architectural ideas.

The ability of such models to carry information
over long distances is a key enabling factor for
their performance. Typically this can be achieved
by employing recurrent neural networks (RNN)
that convey information over time through an in-
ternal memory state. Most famous is the LSTM
(Hochreiter and Schmidhuber, 1997) that accu-
mulates information at every time step additively
into its memory state, which avoids the prob-
lem of vanishing gradients that hindered previous
RNN architectures from learning long range de-
pendencies. For example, Sutskever et al. (2014)
connected two LSTMs conditionally for machine
translation where the memory state after process-
ing the source was used as initialization for the
memory state of the target LSTM. This very sim-
ple architecture achieved competitive results com-
pared to existing, very elaborate and feature-rich
models. However, learning the inherent long range
dependencies between source and target requires
extensive training on large datasets. Bahdanau et
al. (2015) proposed an architecture that resolved
this issue by allowing the model to attend over
all positions in the source sentence when predict-
ing the target sentence, which enabled the model
to automatically learn alignments of words and
phrases of the source with the target sentence. The
important difference is that previous long range

258

dependencies could be bridged directly via atten-
tion. However, this architecture requires a larger
number of operations that scales with the product
of the lengths of the source- and target sequence
and a memory that scales with the length of the
source sequence.

In this work we introduce a novel architecture
for dual-sequence modeling that is based on as-
sociative memories (AM). AMs are fixed sized
memory arrays used to read and write content via
an associated keys. Holographic Reduced Rep-
resentations (HRR) (Plate, 1995)) enable the ro-
bust and efficient retrieval of previously written
content from redundant memory arrays. Our ap-
proach is inspired by the works of Danihelka et
al. (2016) who recently demonstrated the bene-
fits of exchanging the memory cell of an LSTM
with an associative memory on various sequence
modeling tasks. In contrast to their architecture
which directly adapts the LSTM architecture we
propose an augmentation to generic RNNs (AM-
RNNs, §3.2). Similar in spirit to Neural Turing
Machines (Graves et al., 2014) we decouple the
AM from the RNN and restrict the interaction with
the AM to read and write operations which we
believe to be important. Based on this architec-
ture we derive the Dual AM-RNN (§4) that oper-
ates on two associative memories simultaneously
for dual-sequence modeling. We conduct exper-
iments on the task of recognizing textual entail-
ment (§5). Our results and qualitative analysis
demonstrate that AMs can be used to bridge long
range dependencies similar to the attention mech-
anism while preserving the computational bene-
fits of conveying information through a single,
fixed-size memory state. Finally, an initial in-
spection into sequence-to-sequence modeling with
Dual AM-RNNs shows that there are open prob-
lems that need to be resolved to make this ap-
proach applicable to these kinds of tasks.

A TensorFlow (Abadi et al., 2015) im-
plementation of (Dual)-AM RNNs can
be found at https://github.com/
dirkweissenborn/dual_am_rnn.

2 Related Work

Augmenting RNNs by the use of memory is not
novel. Graves et al. (2014) introduced Neural Tur-
ing Machines which augment RNNs with exter-
nal memory that can be written to and read from.
It contains a predefined number of slots to write

content to. This form of memory is addressable
via content or position shifts. Neural Turing Ma-
chines inspired subsequent work on using different
kinds of external memory, like queues or stacks
(Grefenstette et al., 2015). Operations on these
memories are calculated via a recurrent controller
which is decoupled from the memory whereas
AM-RNNs apply the RNN cell-function directly
upon the content of the associative memory.

Danihelka et al. (2016) introduced Associative
LSTMs which extends standard LSTMs directly
by reading and writing operations on an associa-
tive memory. This architecture is closely related
to ours. However, there are crucial differences that
are due to the fact that we decouple the associative
array from the original cell-function. Danihelka et
al. (2016) directly include operations on the AM
in the definition of their Associative LSTM. This
might cause problems, since some operations, e.g.,
forget, are directly applied to the entire memory
array although this can affect all elements stored
in the memory. We believe that only reading and
writing operations with respect to a calculated key
should be performed on the associative memory.
Further operations should therefore only be ap-
plied on the stored elements.

Neural attention is another important mecha-
nism that realizes a form of content addressable
memory. Most famously it has been applied to
machine translation (MT) where attention models
automatically learn soft word alignments between
source and translation (Bahdanau et al., 2015). At-
tention requires memory that stores states of its in-
dividual entries, separately, e.g., states for every
word in the source sentence of MT or textual en-
tailment (Rocktäschel et al., 2016), or entire sen-
tence states as in Sukhbaatar et al. (2015) which
is an end-to-end memory network (Weston et al.,
2015) for question answering. Attention weights
are computed based on a provided input and the
stored elements. The thereby weighted memory
states are summed and the result is retrieved to be
used as input to a down-stream neural network.
Architectures based on attention require a larger
amount of memory and a larger number of oper-
ations which scales with the usually dynamically
growing memory. In contrast to attention Dual
AM-RNNs utilize fixed size memories and a con-
stant number of operations.

AM-RNNs also have an interesting connection
to LSTM-Networks (Cheng et al., 2016) which re-

259

cently demonstrated impressive results on various
text modeling tasks. LSTM-Networks (LSTMN)
select a previous hidden state via attention on a
memory tape of past states (intra-attention) op-
posed to using the hidden state of the previous
time step. The same idea is implicitly present
in our architecture by retrieving a previous state
via a computed key from the associative memory
(Equation (6)). The main difference lies in the
used memory architecture. We use a fixed size
memory array in contrast to a dynamically grow-
ing memory tape which requires growing compu-
tational and memory resources. The drawback of
our approach, however, is the potential loss of ex-
plicit memories due to retrieval noise or overwrit-
ing.

3 Associative Memory RNN

3.1 Redundant Associative Memory

In the following, we use the terminology of Dani-
helka et al. (2016) to introduce Redundant Asso-
ciative Memories and Holographic Reduced Rep-
resentations (HRR) (Plate, 1995). HRRs provide a
mechanism to encode an item x with a key r that
can be written to a fixed size memory arraym and
that can be retrieved fromm via r.

In HRR, keys r and values x refer to complex
vectors that consist of a real and imaginary part:
r = rre + i · rim, x = xre + i · xim, where
i is the imaginary unit. We represent these com-
plex vectors as concatenations of their respective
real and imaginary parts, e.g., r = [rre; rim].
The encoding- and retrieval-operation proposed
by Plate (1995) and utilized by Danihelka et
al. (2016) is the complex multiplication (Equa-
tion (1)) of a key r with its valuex (encoding), and
the complex conjugate of the key r = rre− i ·rim
with the memory (retrieval), respectively. Note,
that this requires the modulus of the key to be
equal to one, i.e.,

√
rre � rre + rim � rim = 1,

such that r = r−1. Consider a single memory ar-
ray m containing N elements xk with respective
keys rk (Equation (2)).

r ~ x =
[
rre � xre − rim � xim
rre � xim + rim � xre

]
(1)

m =
N∑
k=1

rk ~ xk (2)

We retrieve an element xk by multiplying rk

withm (Equation (3)).

x̃k = rk ~m =
N∑
k′=1

rk ~ rk′ ~ xk′

= xk +
N∑

k′=16=k
rk ~ rk′ ~ xk′

= xk + noise (3)

To reduce noise Danihelka et al. (2016) intro-
duce permuted, redundant copiesms ofm (Equa-
tion (4)). This results in uncorrelated retrieval
noises which effectively reduces the overall re-
trieval noise when computing their mean. Con-
sider Nc permutations represented by permutation
matrices Ps. The retrieval equation becomes the
following.

ms =
N∑
k=1

(Psrk) ~ xk (4)

x̃k =
1
Nc

Nc∑
s=1

N∑
k′=1

(Psrk) ~ms

= xk +
N∑

k′=16=k
xk′ ~ 1

Nc

Nc∑
s=1

Ps(rk ~ rk′)

= xk + noise

The resulting retrieval noise becomes smaller
because the mean of the permuted, complex key
products tends towards zero with increasing Nc

if the key dimensions are uncorrelated (see Dani-
helka et al. (2016) for more information).

3.2 Augmenting RNNs with Associative
Memory

A recurrent neural network (RNN) can be defined
by a parametrized cell-function fθ : RN ×RM →
RM × RH that is recurrently applied to an input
sequence X = (x1, ...,xT). At each time step t
it emits an output ht and a state st, that is used as
additional input in the following time step (Equa-
tion (5)).

fθ(xt, st−1) = (st,ht)

x ∈ RN , s ∈ RM , h ∈ RH (5)

In this work we augment RNNs, or more
specifically their cell-function fθ, with associa-
tive memory to form Associative Memory RNNs
(AM-RNN) f̃θ as follows. Let st = [ct;nt] be

260

the concatenation of a memory state ct and, op-
tionally, some remainder nt that might addition-
ally be used in f , e.g., the output of an LSTM. For
brevity, we neglect nt in the following, and thus
st = ct. At first, we compute a key given the pre-
vious output and the current input, which is in turn
used to read from the associative memory arraym
to retrieve a memory state s for the specified key
(Equation (6)).

rt = bound
(
Wr

[
xt
ht−1

])
st−1 = rt ~mt−1 (6)

The bound-operation (Danihelka et al., 2016)
(Equation (7)) guarantees that the modulus of rt is
not greater than 1. This is an important necessity
as mentioned in § 3.1.

bound(r′) =
[
r′re � d
r′im � d

]
(7)

d = max
(

1,
√
r′re � r′re + r′im � r′im

)

Next, we apply the original cell-function fθ to
the retrieved memory state (Equation (8)) and the
concatenation of the current input and last output
which serves as input to the internal RNN. We
update the associative memory array with the up-
dated state using the conjugate key of the retrieval
key (Equation (9)).

st,ht = fθ

([
xt
ht−1

]
, st−1

)
(8)

mt = mt−1 + rt ~ (st − st−1)

f̃θ(xt,mt−1) = (mt,ht) (9)

The entire computation workflow is illustrated
in Figure 1a.

4 Associative Memory RNNs for Dual
Sequence Modeling

Important NLP tasks such as machine translation
(MT) or detecting textual entailment (TE) involve
two distinct sequences as input, a source- and a
target sequence. In MT a system predicts the tar-
get sequence based on the source whereas in TE
source and target are given and an entailment-class
should be predicted. Recently, both tasks were
successfully modelled using an attention mecha-
nism that can attend over positions in the source

sentence at any time step in the target sentence
(Bahdanau et al., 2015; Rocktäschel et al., 2016;
Cheng et al., 2016). These models are able to learn
important task specific correlations between words
or phrases of the two sentences, like word/phrase
translation, or word-/phrase-level entailment or
contradiction. The success of these models is
mainly due to the fact that long range dependen-
cies can be bridged directly via attention, instead
of keeping information over long distances in a
memory state that can get overwritten.

The same can be achieved through associative
memory. Given the correct key a state that was
written at any time step in the source sentence can
be retrieved from an AM with minor noise that
can efficiently be reduced by redundancy. There-
fore, AMs can bridge long range dependencies and
can therefore be used as an alternative to attention.
The trade-off for using an AM is that memorized
states cannot be used for their retrieval. How-
ever, the retrieval operation is constant in time and
memory whereas the computational and memory
complexity of attention based architectures grow
linearly with the length of the source sequence.

We propose two different architectures for solv-
ing dual sequence problems. Both approaches
use at least one AM-RNN for processing the
source and another for the target sequence. The
first approach reads the source sequence X =
(x1, ...,xTx) and uses the final associative mem-
ory array mx(:= mx

Tx
) to initialize the memory

array my
0 = mx of the AM-RNN that processes

the target sequence Y = (y1, ...,yTy
). Note that

this is basically the the conditional encoding archi-
tecture of Rocktäschel et al. (2016).

The second approach uses the final AM array
of the source sequence mx in addition to an inde-
pendent target AM array my

t . At each time step t
the Dual AM-RNN computes another key r′t that
is used to read from mx and feeds the retrieved
value as additional input to yt to the inner RNN of
the target AM-RNN. These changes are reflected
in the Equation (10) (compared to Equation (8))

261

mt−1

rt

st−1 fθ st

ht

•∗
~ ~

⊕	[
xt
ht−1

] mt

RNN

(a) Illustration of AM-RNN for input xt at time step t.

mx
Tx •∗

r′t

φt

RNNAM-RNN

Dual AM-RNN

[
yt
hyt−1

]
(b) Illustration of a Dual AM-RNN that extends the
AM-RNN with the utilization of the final memory ar-
ray mx

Tx
of source sequence X .

Figure 1: Illustration of the computation workflow in AM-RNNs and Dual AM-RNNs. •∗ refers to
the complex multiplication with the (complex) conjugate of r·t and can be interpreted as the retrieval
operation. Similarly, ~ can be interpreted as the encoding operation.

and illustrated in Figure 1b.

r′t = bound
(
Wr′

[
yt
hyt−1

])
φt = r′t ~mx

st,h
y
t = fθ

 yt
hyt−1

φt

 , st−1

 (10)

5 Experiments

5.1 Setup
Dataset We conducted experiments on the Stan-
ford Natural Language Inference (SNLI) Corpus
(Bowman et al., 2015) that consists of roughly
500k sentence pairs (premise-hypothesis). They
are annotated with textual entailment labels. The
task is to predict whether a premise entails, con-
tradicts or is neutral to a given hypothesis.

Training We perform mini-batch (B = 50)
stochastic gradient descent using ADAM (Kingma
and Ba, 2015) with β1 = 0, β2 = 0.999 and
an initial learning rate of 10−3 for small models
(H ≈ 100) and 10−4 (H = 500) for our large
model. The learning rate was halved whenever ac-
curacy dropped over the period of one epoch. Per-
formance on the development set was checked ev-
ery 1000 mini-batches and the best model is used
for testing. We employ dropout with a probabil-
ity of 0.1 or 0.2 for the small and large models,

respectively. Following Cheng et al. (2016), word
embeddings are initialized with Glove (Penning-
ton et al., 2014) or randomly for unknown words.
Glove initialized embeddings are tuned only af-
ter an initial epoch through the training set.

Model In this experiment we compare the tradi-
tional GRU with the (Dual) AM-GRU using con-
ditional encoding (Rocktäschel et al., 2016) us-
ing shared parameters between source and target
RNNs. Associative memory is implemented with
8 redundant memory copies. For the Dual AM-
GRU we define r′t = rt (see § 4), i.e., we use
the same key for interacting with the premise and
hypothesis associative memory array while pro-
cessing the hypothesis. The rationale behind this
is that we want to retrieve text passages from the
premise that are similar to text passages of the tar-
get sequence.

All of our models consist of 2 layers with a
GRU as top-layer which is intended to summarize
outputs of the bottom layer. The bottom layer cor-
responds to our different architectures. We con-
catenate the final output of the premise and hy-
pothesis together with their absolute difference to
form the final representation that is used as input
to a two-layer perceptron with rectifier-activations
for classification.

5.2 Results
The results are presented in Table 1. They long
range that the H=100-dimensional Dual AM-

262

Model H/|θ−E | Accuracy

LSTM (Rocktäschel et al., 2016) 116/252k 80.9
LSTM shared (Rocktäschel et al., 2016) 159/252k 81.4
LSTM-Attention (Rocktäschel et al., 2016) 100/252k 83.5

GRU shared 126/321k 81.9
AM-GRU shared 108/329k 82.9
Dual AM-GRU shared 100/321k 84.4

Dual AM-GRU shared 500/5.6m 85.4
LSTM Network (Cheng et al., 2016) 450/3.4m 86.3

Table 1: Accuracies of different RNN-based architectures on SNLI dataset. We also report the respec-
tive hidden dimension H and number of parameters |θ−E | for each architecture without taking word
embeddings E into account.

GRU and conditional AM-GRU outperform our
baseline GRU system significantly. Especially the
Dual AM-GRU does very well on this task achiev-
ing 84.4% accuracy, which shows that it is im-
portant to utilize the associative memory of the
premise separately for reading only. Most no-
tably is that it achieves even better results than a
comparable LSTM architecture with two-way at-
tention between all premise and hypothesis words
(LSTM-Attention). This indicates that our Dual
AM-GRU architecture is at least able to per-
form similar or even better than an attention-based
model in this setup.

We investigated this finding qualitatively from
sampled examples by plotting heatmaps of cosine
similarities between the content that has been writ-
ten to memory at every time step in the premise
and what has been retrieved from it while the
Dual AM-GRU processes the hypothesis. Random
examples are shown in Figure 2, where we can
see that the Dual AM-GRU is indeed able to re-
trieve the content from the premise memory that is
most related with the respective hypothesis words,
thus allowing to bridge important long-range de-
pendencies for solving this task similar to atten-
tion. We observe that content for related words
and phrases is retrieved from the premise memory
when processing the hypothesis, e.g., “play” and
“video game” or “artist” and “sculptor”.

Increasing the size of the hidden dimension
to 500 improves accuracy by another percentage
point. The recently proposed LSTM Network
achieves slightly better results. However, its num-
ber of operations scales with the square of the
summed source and target sequence, which is even

larger than traditional attention.

5.3 Sequence-to-Sequence Modeling
End-to-end differentiable sequence-to-sequence
models consist of an encoder that encodes the
source sequence and a decoder which produces
the target sequence based on the encoded source.
In a preliminary experiment we applied the Dual
AM-GRU without shared parameters to the task of
auto-encoding where source- and target sequence
are the same. Intuitively we would like the AM-
GRU to write phrase-level information with dif-
ferent keys to the associative memory. However,
we found that the encoder AM-GRU learned very
quickly to write everything with the same key to
memory, which makes it work very similar to a
standard RNN based encoder-decoder architecture
where the encoder state is simply used to initialize
the decoder state.

This finding is illustrated in Figure 3. The pre-
sented heatmap shows similarities between con-
tent that has been retrieved while predicting the
target sequence and what has been written by the
encoder to memory. We observe that the similari-
ties between retrieved content and written content
are horizontally slightly increasing, i.e., towards
the end of the encoded source sentence. This indi-
cates that the encoder overwrites the the associa-
tive memory while processing the source with the
same key.

5.4 Discussion
Our experiments on entailment show that the
idea of using associative memory to bridge long
term dependencies for dual-sequence modeling
can work very well. However, this architecture is

263

Figure 2: Heatmaps of cosine similarity between content that has been written to the associative memory
at each time step of the premise (x-axis) and what has been retrieved from it by the Dual AM-GRU while
processing the hypothesis (y-axis).

264

Figure 3: Heatmap of cosine similarity between
content that has been written to the associative
memory at each time step by the encoder (x-axis)
and what has been retrieved from it by the Dual
AM-GRU while decoding (y-axis).

not naively transferable to the task of sequence-
to-sequence modeling. We believe that the main
difficulty lies in the computation of an appropri-
ate key at every time step in the target sequence to
retrieve related content. Furthermore, the encoder
should be enforced to not always use the same key.
For example, keys could be based on syntactical
and semantical cues, which might ultimately result
in capturing some form of Frame Semantics (Fill-
more and Baker, 2001). This could facilitate de-
coding significantly. We believe that this might be
achieved via regularization or by curriculum learn-
ing (Bengio et al., 2009).

6 Conclusion

We introduced the Dual AM-RNN, a recurrent
neural architecture that operates on associative
memories. The AM-RNN augments traditional
RNNs generically with associative memory. The
Dual AM-RNN extends AM-RNNs with a sec-
ond read-only memory. Its ability to capture
long range dependencies enables effective learn-
ing of dual-sequence modeling tasks such as rec-
ognizing textual entailment. Our models achieve
very competitive results and outperform a com-
parable attention-based model while preserving
constant computational and memory resources.

Applying the Dual AM-RNN to a sequence-to-
sequence modeling task revealed that the benefits
of bridging long range dependencies cannot yet be
achieved for this kind of problem. However, quan-
titative as well as qualitative results on textual en-
tailment are very promising and therefore we be-
lieve that the Dual AM-RNN can be an impor-
tant building block for NLP tasks involving two
sequences.

Acknowledgments

We thank Sebastian Krause, Tim Rocktäschel and
Leonhard Hennig for comments on an early draft
of this work. This research was supported by the
German Federal Ministry of Education and Re-
search (BMBF) through the projects ALL SIDES
(01IW14002), BBDC (01IS14013E), and Soft-
ware Campus (01IS12050, sub-project GeNIE).

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale
machine learning on heterogeneous systems. Soft-
ware available from tensorflow.org.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In The International
Conference on Learning Representations (ICLR).

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48. ACM.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733.

265

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal
Kalchbrenner, and Alex Graves. 2016. Asso-
ciative long short-term memory. arXiv preprint
arXiv:1602.03032.

Charles J Fillmore and Collin F Baker. 2001. Frame
semantics for text understanding. In Proceedings
of WordNet and Other Lexical Resources Workshop,
NAACL.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In Advances
in Neural Information Processing Systems, pages
1819–1827.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In The Inter-
national Conference on Learning Representations
(ICLR).

Jiwei Li and Eduard Hovy. 2015. The NLP engine:
A universal turing machine for nlp. arXiv preprint
arXiv:1503.00168.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. In 53nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Tony A Plate. 1995. Holographic reduced represen-
tations. Neural networks, IEEE transactions on,
6(3):623–641.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
The International Conference on Learning Repre-
sentations (ICLR).

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in Neural Information Processing Systems, pages
2431–2439.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2755–2763.

Shuohang Wang and Jing Jiang. 2016. Learning natu-
ral language inference with lstm. In Proceedings of
the 2016 Human Language Technology Conference
of the North American Chapter of the Association of
Computational Linguistics.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In The International Con-
ference on Learning Representations (ICLR).

266

Author Index

Arefiev, Nikolay, 174
Arras, Leila, 1

Baldwin, Timothy, 78
Bansal, Mohit, 100
Baudiš, Petr, 8
Biemann, Chris, 174
Bingham-Walker, Megan, 215

Cao, Kris, 18
Cho, Kyunghyun, 158
Copestake, Ann, 40

de Marneffe, Marie-Catherine, 62
Dima, Corina, 27
Dymetman, Marc, 94

Emerson, Guy, 40

Fohr, Dominique, 222
Fosler-Lussier, Eric, 62
Frank, Anette, 111
Fu, Lisheng, 158

Gimpel, Kevin, 100
Glass, James, 137
Grishman, Ralph, 158

Hagstedt P Suorra, Jacob, 53
Hashimoto, Kazuma, 249
Horn, Franziska, 1

Iklódi, Eszter, 193
Illina, Irina, 222

J. Thiagarajan, Jayaraman, 206

Khmelnitsky, Evgeni, 184
Kim, Joo-Kyung, 62
Kim, Minsoo, 70
Kiros, Jamie Ryan, 239
Kornai, Andras, 193

Lau, Jey Han, 78
Le, Phong, 87, 94
Lee, Minho, 70
Linarès, Georges, 222

Livescu, Karen, 100

Madhyastha, Pranava Swaroop, 100
Maimon, Oded, 184
Marasović, Ana, 111
Miceli Barone, Antonio Valerio, 121
Mitchell, Jeff, 127
Mogren, Olof, 53
Mohtarami, Mitra, 137
Moirangthem, Dennis Singh, 70
Montavon, Grégoire, 1
Müller, Klaus-Robert, 1

Nassif, Henry, 137
Neculoiu, Paul, 148
Nguyen, Thien Huu, 158
Nilsson, David, 166
Norlund, Tobias, 166

Pajkossy, Katalin, 193
Panchenko, Alexander, 174
Pelevina, Maria, 174

Ramni, Yonatan, 184
Rebedea, Traian, 201
Recski, Gábor, 193
Rei, Marek, 18
Renders, Jean-Michel, 94
Rotaru, Mihai, 148
Ruseti, Stefan, 201

Sahlgren, Magnus, 166
Samek, Wojciech, 1
Sattigeri, Prasanna, 206
Searle, Richard, 215
Šedivý, Jan, 8
Sheikh, Imran, 222
Sokolov, Konstantin, 230
Stanko, Silvestr, 8

Trausan-Matu, Stefan, 201
Triantafillou, Eleni, 239
Tsuruoka, Yoshimasa, 249

Urtasun, Raquel, 239

267

Versteegh, Maarten, 148

Watanabe, Yusuke, 249
Weissenborn, Dirk, 258

Zemel, Richard, 239
Zuidema, Willem, 87

	Program
	Explaining Predictions of Non-Linear Classifiers in NLP
	Joint Learning of Sentence Embeddings for Relevance and Entailment
	A Joint Model for Word Embedding and Word Morphology
	On the Compositionality and Semantic Interpretation of English Noun Compounds
	Functional Distributional Semantics
	Assisting Discussion Forum Users using Deep Recurrent Neural Networks
	Adjusting Word Embeddings with Semantic Intensity Orders
	Towards Abstraction from Extraction: Multiple Timescale Gated Recurrent Unit for Summarization
	An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding Generation
	Quantifying the Vanishing Gradient and Long Distance Dependency Problem in Recursive Neural Networks and Recursive LSTMs
	LSTM-Based Mixture-of-Experts for Knowledge-Aware Dialogues
	Mapping Unseen Words to Task-Trained Embedding Spaces
	Multilingual Modal Sense Classification using a Convolutional Neural Network
	Towards cross-lingual distributed representations without parallel text trained with adversarial autoencoders
	Decomposing Bilexical Dependencies into Semantic and Syntactic Vectors
	Learning Semantic Relatedness in Community Question Answering Using Neural Models
	Learning Text Similarity with Siamese Recurrent Networks
	A Two-stage Approach for Extending Event Detection to New Types via Neural Networks
	Parameterized context windows in Random Indexing
	Making Sense of Word Embeddings
	Pair Distance Distribution: A Model of Semantic Representation
	Measuring Semantic Similarity of Words Using Concept Networks
	Using Embedding Masks for Word Categorization
	Sparsifying Word Representations for Deep Unordered Sentence Modeling
	Why "Blow Out"? A Structural Analysis of the Movie Dialog Dataset
	Learning Word Importance with the Neural Bag-of-Words Model
	A Vector Model for Type-Theoretical Semantics
	Towards Generalizable Sentence Embeddings
	Domain Adaptation for Neural Networks by Parameter Augmentation
	Neural Associative Memory for Dual-Sequence Modeling

