
Proceedings of AKBC 2016, pages 69–74,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

An Attentive Neural Architecture for Fine-grained Entity Type Classification

Sonse Shimaoka†∗ Pontus Stenetorp‡ Kentaro Inui† Sebastian Riedel‡
{simaokasonse,inui}@ecei.tohoku.ac.jp
{p.stenetorp,s.riedel}@cs.ucl.ac.uk

†Graduate School of Information Sciences, Tohoku University
‡Department of Computer Science, University College London

Abstract

In this work we propose a novel attention-
based neural network model for the task of
fine-grained entity type classification that un-
like previously proposed models recursively
composes representations of entity mention
contexts. Our model achieves state-of-the-
art performance with 74.94% loose micro F1-
score on the well-established FIGER dataset,
a relative improvement of 2.59% . We also in-
vestigate the behavior of the attention mecha-
nism of our model and observe that it can learn
contextual linguistic expressions that indicate
the fine-grained category memberships of an
entity.

1 Introduction

Entity type classification is the task of assigning se-
mantic types to mentions of entities in sentences.
Identifying the types of entities is useful for various
natural language processing tasks, such as relation
extraction (Ling and Weld, 2012), question answer-
ing (Lee et al., 2006), and knowledge base popula-
tion (Carlson et al., 2010). Unfortunately, most en-
tity type classification systems use a relatively small
number of types (e.g. person, organization,
location, time, and miscellaneous (Gr-
ishman and Sundheim, 1996)) which may be too
coarse-grained for some NLP applications (Sekine,
2008). To address this shortcoming, a series of re-
cent work has investigated entity type classification
with a large set of fine-grained types (Lee et al.,

∗This work was conducted during a research visit to Uni-
versity College London.

LSTM	
Layers	

Word	
Embeddings	

	

Attention	
Layers	

got	 a	 Ph.D.	 from	 in	 Feb.	 1995	 .	New York	

Output layer	

Context Representation	

Mention	
Representation	

Figure 1: An illustration of our proposed model predicting fine-

grained semantic types for the mention “New York” in the sen-

tence “She got a Ph.D from New York in Feb. 1995.”.

2006; Ling and Weld, 2012; Yosef et al., 2012; Yo-
gatama et al., 2015; Del Corro et al., 2015).

Existing fine-grained entity type classification
systems have used approaches ranging from sparse
binary features to dense vector representations of
entities to model the entity mention and its con-
text. However, no previously proposed system has
attempted to learn to recursively compose represen-
tations of entity context. For example, one can see
that a phrase “got a Ph.D. from” is indicative of the
next words being an educational institution, some-
thing which would be helpful for fine-grained entity
type classification.

In this work our main contributions are two-fold:

1. A first model for fine-grained entity type classi-
fication that learns to recursively compose rep-
resentations for the context of each mention
and attains state-of-the-art performance on a

69

well-established dataset.

2. The observation that by incorporating an atten-
tion mechanism into our model, we not only
achieve better performance, but also are able
to observe that the model learns contextual lin-
guistic expressions that indicate fine-grained
category memberships of an entity.

2 Related Work

To the best of our knowledge, Lee et al. (2006)
were the first to address the task of fine-grained
entity type classification. They defined 147 fine-
grained entity types and evaluated a conditional ran-
dom fields-based model on a manually annotated
Korean dataset. Sekine (2008) advocated the neces-
sity of a large set of types for entity type classifica-
tion and defined 200 types which served as a basis
for future work on fine-grained entity type classifi-
cation.

Ling and Weld (2012) defined a set of 112 types
based on Freebase and created a training dataset
from Wikipedia using a distant supervision method
inspired by Mintz et al. (2009). For evaluation, they
created a small manually annotated dataset of news-
paper articles and also demonstrated that their sys-
tem, FIGER, could improve the performance of a
relation extraction system by providing fine-grained
entity type predictions as features. Yosef et al.
(2012) organised 505 types in a hierarchical tax-
onomy, with several hundreds of types at different
levels. Based on this taxonomy they developed a
multi-label hierarchical classification system. In Yo-
gatama et al. (2015) the authors proposed to use
label embeddings to allow information sharing be-
tween related labels. This approach lead to improve-
ments on the FIGER dataset, and they also demon-
strated that fine-grained labels can be used as fea-
tures to improve coarse-grained entity type classi-
fication performance. Del Corro et al. (2015) intro-
duced the most fine-grained entity type classification
system to-date, it operates on the the entire WordNet
hierarchy with more than 16, 000 types.

While all previous models relied on hand-crafted
features, Dong et al. (2015) defined 22 types and
created a two-part neural classifier. They used a re-
current neural networks to recursively obtain a vec-
tor representation of each entity mention and used

a fixed-size window to capture the context of each
mention. The key difference between our work and
theirs lies in that we use recursive neural networks
to compose context representations and that we em-
ploy an attention mechanism to allow our model to
focus on relevant expressions.

3 Models

3.1 Task Formulation

We formulate the entity type classification problem
as follows. Given an entity mention and its left and
right context, our task is to predict its types. For-
mally, the input is l1, ..., lC ,m1, ...,mM , r1, ..., rC ,
where C is the window size of the left and right con-
text, li and ri represents a word in those contexts,
M is the window size of the mention, and mi is a
mention word. If a context or a mention extends be-
yond the sentence length, a padding symbol is used
in-place of a word. Given this input we compute a
probability yk ∈ R for each of the K types.

At inference, the type k is predicted if yk is greater
than 0.5 or yk is the maximum value ∀k ∈ K.
The motivation of the former is that it acts as a cut-
off, while the latter enforces the constraint that each
mention is assigned at least one type.

3.2 General Model

While both mentions and contexts play important
roles in determining the types, the complexity of
learning to represent them are different. During ini-
tial experiments, we observed that our model could
learn from mentions significantly easier than from
the context, leading to poor model generalization.
This motivated us to use different models for mod-
eling mentions and contexts. Specifically, all of our
models described below firstly compute a mention
representation vm ∈ RDm×1 and context represen-
tation vc ∈ RDc×1 separately, and then concate-
nate them to be passed to the final logistic regression
layer with weight matrix Wy ∈ RK×(Dm+Dc):

y =
1

1 + exp
(
−Wy

[
vm

vc

]) (1)

Note that we did not include a bias term in the
above formulation since the type distribution in the

70

training and test corpus could potentially be signifi-
cantly different due to domain differences. That is,
in logistic regression, a bias fits to the empirical dis-
tribution of types in the training set, which would
lead to bad performance on a test set that has a dif-
ferent type distribution.

The loss L for a prediction y when the true labels
are encoded in a binary vector t ∈ {0, 1}K×1 is the
following cross entropy loss function:

L(y, t) =
K∑

k=1

−tk log(yk)− (1− tk) log(1− yk)

(2)

3.3 Mention Representation

Mention representations are computed by averag-
ing all the embeddings of the words in the men-
tion. Let the vocabulary be V and the function
u : V 7→ RDm×1 be a mapping from a word to
its embedding. Formally, the mention representation
vm is obtained as follows.

vm =
1
M

M∑
i=1

u(mi) (3)

During our experiments we were surprised by the
fact that unlike the observations made by Dong et al.
(2015), complex neural models did not work well for
learning mention representations compared to the
simpler model described above. One possible expla-
nation for this would be labeling discrepancies be-
tween the training and test set. For example, the la-
bel time is assigned to days of the week (e.g. “Fri-
day”, “Monday”, and “Sunday”) in the test set, but
not in the training set, whereas explicit dates (e.g.
“Feb. 24” and “June 4th”) are assigned the time
label in both the training and test set. This may be
harmful for complex models due to their tendency to
overfit on the training data.

3.4 Context Representation

We compare three methods for computing context
representations.

3.4.1 Averaging Encoder
Applying the same averaging approach as for the

mention representation for both the left and right

context. Thus, the concatenation of those two vec-
tors becomes the representation of the context:

vc =
1
C

C∑
i=1

[
u(li)
u(ri)

]
(4)

3.4.2 LSTM Encoder
The left and right context are encoded recursively

using an LSTM cell (Hochreiter and Schmidhuber,
1997). Given an input embedding ui ∈ RDm×1, the
previous output hi−1 ∈ RDh×1, and the previous
cell state si−1 ∈ RDh×1, the high-level formulation
of the recursive computation by an LSTM cell is as
follows:

hi, si = lstm(ui, hi−1, si−1) (5)

For the left context, the model reads sequences
l1, ..., lC from left to right to produce the outputs−→
hl

1, ...,
−→
hl

C . For the right context, the model reads
sequences rC , ..., r1 from right to left to produce the
outputs

←−
hr

1, ...,
←−
hr

C . Then the representation vc is ob-

tained by concatenating
−→
hl

C and
←−
hr

1:

vc =

[−→
hl

C←−
hr

1

]
(6)

A more detailed formulation of the LSTM used in
this work can be found in Sak et al. (2014).

3.4.3 Attentive Encoder
While an LSTM can encode sequential data, it

still finds it difficult to learn long-term dependen-
cies. Inspired by recent work using attention mech-
anisms for natural language processing (Hermann et
al., 2015; Rocktäschel et al., 2015), we circumvent
this problem by introducing a novel attention mech-
anism. We also hypothesize that by incorporating an
attention mechanism the model can recognize infor-
mative expressions for the classification and make
the model behavior more interpretable.

The computation of the attention mechanism is
as follows. Firstly, for both the right and left con-
text, we encode the sequences using bi-directional
LSTMs (Graves, 2012). We denote the outputs as−→
hl

1,
←−
hl

1, ...,
−→
hl

C ,
←−
hl

C and
−→
hr

1,
←−
hr

1, ...,
−→
hr

C ,
←−
hr

C .
For each output layer of the bi-directional

LSTMs, we compute a scalar value ãi ∈ R using a

71

two-layer feed forward neural network ei ∈ RDa×1

and weight matrices We ∈ RDa×2Dh and Wa ∈
R1×Da . We then normalize these scalar values such
that they sum to 1. We refer to these normalized
scalar values ai ∈ R as attentions. Lastly, we take
a weighted sum of the output layers of the bidirec-
tional LSTMs as the representation of the context
weighted by the attentions ai:

eli = tanh

(
We

[−→
hl

i←−
hl

i

])
(7)

ãl
i = exp(Wae

l
i) (8)

al
i =

ãl
i∑C

i=1 ã
l
i + ãr

i

(9)

vc =
C∑

i=1

al
i

[−→
hl

i←−
hl

i

]
+ ar

i

[−→
hr

i←−
hr

i

]
(10)

The equations for computing eri , ãr
i , and ar

i were
omitted for brevity and the overall picture of our pro-
posed model is illustrated in Figure 1.

4 Experiment

4.1 Dataset
To train and evaluate our model we use the pub-
licly available FIGER dataset with 112 fine-grained
types from Ling and Weld (2012). The sizes of our
datasets are 2, 600, 000 for training, 90, 000 for de-
velopment, and 563 for testing. Note that the train
and development sets were created from Wikipedia,
whereas the test set is a manually annotated dataset
of newspaper articles.

4.2 Pre-trained Word Embeddings
The only features used by our model are pre-
trained word embeddings that were not updated
during training to help the model generalize for
words not appearing in the training set. Specifi-
cally, we used the freely available 300 dimensional
cased word embeddings trained on 840 billion to-
kens from the Common Crawl supplied by Pen-
nington et al. (2014). As embeddings for out-of-
vocabulary words, we used the embedding of the
“unk” token from the pre-trained embeddings.

4.3 Evaluation Criteria
Following Ling and Weld (2012), we evaluate the
model performances by strict, loose macro, and

loose micro measures. For the i-th instance, let the
set of the predicted types be T̂i, and the set of the
true types be Ti. Then the precisions and recall for
each measure are computed as follows.

• strict

Precision = Recall =
1
N

N∑
i=1

δ(T̂i = Ti)

(11)

• loose macro

Precision =
1
N

N∑
i=1

|T̂i ∩ Ti|
|T̂i|

(12)

Recall =
1
N

N∑
i=1

|T̂i ∩ Ti|
|Ti| (13)

• loose micro

Precision =
∑N

i=1 |T̂i ∩ Ti|∑N
i=1 |T̂i|

(14)

Recall =
∑N

i=1 |T̂i ∩ Ti|∑N
i=1 |Ti|

(15)

Where N is the total number of instances.

4.4 Hyperparameter Settings
As hyperparameters, all three models used the same
Dm = 300 dimensional word embeddings, the
hidden-size of the LSTM was set to Dh = 100, and
the hidden-layer size of the attention module was set
toDa = 50. We used Adam (Kingma and Ba, 2014)
as our optimization method with a learning rate of
0.005 with a mini-batch size of 1, 000. As a regular-
izer we used dropout with probability 0.5 applied to
the mention representation.

The context window size was set to C = 15 and
mention window size was set to M = 5. It should
be noted that our approach is not restricted to using
fixed window sizes, rather this is an implementation
detail arising from current limitations of the machine
learning library used when handling dynamic-width
recurrent neural networks. For each epoch we it-
erated over the training data set ten times and then
evaluated the model performance on the develop-
ment set. After training we picked up the best model

72

Figure 2: Examples of our model attending over contexts for a given mention.

Models P R F1
Ling and Weld (2012) - - 69.30
Yogatama et al. (2015) 82.23 64.55 72.35
Averaging Encoder 68.63 69.07 68.65
LSTM Encoder 72.32 70.36 71.34
Attentive Encoder 73.63 76.29 74.94

Table 1: Loose Micro Precision (P), Recall (R), and F1-score

on the test set

Models Strict
Loose
Macro

Loose
Micro

Ling and Weld (2012) 52.30 69.90 69.30
Yogatama et al. (2015) - - 72.25
Averaging Encoder 51.89 72.24 68.65
LSTM Encoder 55.60 73.95 71.34
Attentive Encoder 58.97 77.96 74.94

Table 2: Strict, Loose Macro and Loose Micro F1-scores

on the development set as our final model and report
the performance on the test set. Our model imple-
mentation was done in Python using the TensorFlow
(Abadi et al., 2015) machine learning library.

4.5 Results

The performance of the various models are summa-
rized Tables 1 and 2. We see that the Averaging base
line performs well in spite of its relative simplicity,
the LSTM model shows some improvements, and
the attention model performs better than any previ-
ously proposed method. In Figure 2, we visualize
the attentions for several instances that were manu-
ally selected from the development set. It is clear
that our proposed model is attending over expres-
sions relevant for the entity types such as immedi-
ately adjacent to the mention such as “starring” and
“Republican Governor”, as well as more distant ex-
pressions such as “filmmakers”.

5 Conclusion

In this paper, we proposed a novel state-of-the-art
neural network architecture with an attention mech-
anism for the task of fine-grained entity type classi-
fication. We also demonstrated that the model can
successfully learn to attend over expressions that are
important for the classification of fine-grained types.

Acknowledgments

This work was supported by CREST-JST, JSPS
KAKENHI Grant Number 15H01702, a Marie Curie
Career Integration Award, and an Allen Distin-
guished Investigator Award. We would like to thank
the anonymous reviewers and Koji Matsuda for their
helpful comments and feedback.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems.

Andrew Carlson, Justin Betteridge, Richard C Wang, Es-
tevam R Hruschka Jr, and Tom M Mitchell. 2010.
Coupled semi-supervised learning for information ex-
traction. In Proceedings of the third ACM interna-
tional conference on Web search and data mining,
pages 101–110. ACM.

73

Luciano Del Corro, Abdalghani Abujabal, Rainer
Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 868–878. ACL.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, pages
1243–1249. AAAI Press.

Alex Graves. 2012. Supervised sequence labelling.
Springer.

Ralph Grishman and Beth Sundheim. 1996. Message
understanding conference-6: A brief history. In COL-
ING, volume 96, pages 466–471.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Changki Lee, Yi-Gyu Hwang, Hyo-Jung Oh, Soojong
Lim, Jeong Heo, Chung-Hee Lee, Hyeon-Jin Kim,
Ji-Hyun Wang, and Myung-Gil Jang. 2006. Fine-
grained named entity recognition using conditional
random fields for question answering. In Information
Retrieval Technology, pages 581–587. Springer.

Xiao Ling and Daniel S Weld. 2012. Fine-grained entity
recognition. In In Proc. of the 26th AAAI Conference
on Artificial Intelligence. Citeseer.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction with-
out labeled data. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume 2,
pages 1003–1011. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, volume 14, pages 1532–1543.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2015. Rea-
soning about entailment with neural attention. arXiv
preprint arXiv:1509.06664.

Hasim Sak, Andrew W Senior, and Françoise Beaufays.
2014. Long short-term memory recurrent neural net-
work architectures for large scale acoustic modeling.
In INTERSPEECH, pages 338–342.

Satoshi Sekine. 2008. Extended named entity ontology
with attribute information. In LREC, pages 52–57.

Dani Yogatama, Dan Gillick, and Nevena Lazic. 2015.
Embedding methods for fine grained entity type clas-
sification. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL, pages 26–31.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart,
Marc Spaniol, and Gerhard Weikum. 2012. Hyena:
Hierarchical type classification for entity names. In
24th International Conference on Computational Lin-
guistics, pages 1361–1370. ACL.

74

