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Abstract

We consider several antecedent prediction
models that use no pipelined features gener-
ated by upstream systems. Models trained
in this way are interesting because they al-
low for side-stepping the intricacies of up-
stream models, and because we might expect
them to generalize better to situations in which
upstream features are unavailable or unreli-
able. Through quantitative and qualitative er-
ror analysis we identify what sorts of cases are
particularly difficult for such models, and sug-
gest some directions for further improvement.

1 Introduction

Most recent approaches to identity coreference reso-
lution rely on a set of pipelined features generated by
relatively accurate upstream systems. For instance,
the CoNLL 2012 coreference datasets (Pradhan et
al., 2012), which are based on the OntoNotes cor-
pus (Hovy et al., 2006), make available both gold
and predicted parse, part-of-speech, and named-
entity information for each sentence in the corpus.
While recent systems have managed to improve on
the state of the art in coreference resolution by
taking advantage of such information (Durrett and
Klein, 2013; Wiseman et al., 2015; Björkelund and
Kuhn, 2014; Fernandes et al., 2012; Martschat and
Strube, 2015), we might be interested in systems
that do not use pipelined features for several rea-
sons: first, pipelined systems are known to accumu-
late errors throughout the stages of the pipeline. Sec-
ond, unpipelined models do not need to contend with
the intricacies of the various systems in the pipeline,

which may have little impact on the target task. Fi-
nally, models that do not require pipelined features
may be more applicable to regimes in which up-
stream features are unavailable or unreliable, such
as those arising from predicting coreference in low-
resource languages or in social media text. Indeed,
to the extent that it is easier to obtain coreference
annotations than it is to obtain (for instance) parse
annotations in such regimes, an unpipelined strategy
may be particularly practical.

Accordingly, in this paper we consider systems
that attempt to move beyond OntoNotes by making
coreference predictions without access to pipelined
features, using only a document’s words and sen-
tence boundaries. In the hopes of shedding light
on whether this is a viable strategy, we consider,
as a case study, how well coreference systems with-
out access to upstream features can perform on En-
glish. Given the amount of research that has gone
into resolving English coreference resolution with
pipelined features, by also considering the English
“unpipelined” setting we can expect to get a rather
accurate sense of how much we sacrifice by ignor-
ing these features. Moreover, in addition to the ben-
efits of unpipelined models noted above, the pro-
posed line of research is congenial to the recent trend
in NLP of using as few hand-engineered features as
possible (as advocated, for instance, in Collobert et
al. (2011)).

We report preliminary experiments on the subtask
of antecedent prediction (defined in Wiseman et al.
(2015) and reviewed below) on the CoNLL 2012
English dataset in this unpipelined setting. In par-
ticular, we will assume that we have automatically
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extracted mentions from a document, but that no
other pipelined information is available. We empha-
size that this is a strong assumption (since pipelined
features, such as parse trees, are often used to ex-
tract mentions), and so what follows should be in-
terpreted as an attempt to obtain an upper bound on
the performance possible in such a setting. We con-
clude by analyzing the errors made by the proposed
unpipelined systems, and discussing how these sys-
tems might be made more competitive.

1.1 Problem Setting

As above, we will assume we are given a set of
documents from which we are able to automati-
cally extract mentions. We denote by X the set of
these automatically extracted mentions. For a men-
tion x∈X , let A(x) denote the set of mentions ap-
pearing before x in the document, and let the set
C(x) ⊆ A(x) denote the mentions appearing be-
fore x that are coreferent with x. The problem
of antecedent ranking involves trying to predict an
antecedent y ∈ C(x) for only those x for which
C(x) 6= ∅, that is, for only those x that have coref-
erent antecedents. We will moreover require that
in making these antecedent predictions no pipelined
features are used. In particular, we will assume that
“unpipelined” systems have access only to a docu-
ment’s mention-boundaries, to the sets C(x) for each
x∈X (when training), to the words in each docu-
ment, and to the document’s sentence boundaries.

Whereas recent coreference systems typically
make use of syntactic information, named-entity
tags, word-lists containing type information (e.g.,
number, gender, animacy), and speaker informa-
tion (Durrett and Klein, 2013; Björkelund and Kuhn,
2014; Lee et al., 2013), given the aforementioned
restrictions, the only common coreference features
that remain legal are word-based features and “dis-
tance” features. Distance features are typically de-
fined in terms of the number of words, mentions, or
sentences between a mention and a candidate an-
tecedent (Durrett and Klein, 2013), and such fea-
tures can presumably be defined accurately in many
settings without the use of upstream systems.

2 Models

We will use a very simple mention-ranking style
model for our antecedent prediction. Mention-
ranking models make use of a scoring function
s(x, y) that scores the compatibility between a men-
tion x and a candidate antecedent y, and they predict
the antecedent to be y∗ = arg maxy∈C(x) s(x, y).
We will define s as

s(x, y) = uT tanh

W

 Φc(x)
Φc(y)

Φd(x, y)

 + b

 ,

where Φc extracts relevant word-based features
from a mention and its context, and Φd extracts dis-
tance based features between x and y. Thus, the
scoring function s is defined by applying a standard
multi-layer perceptron (MLP) to the (vertically) con-
catenated outputs of the functions Φc and Φd. In
particular, W represents the weight matrix of the
MLP’s first hidden layer, b the corresponding bias
vector, and u the vector of weights projecting the
first hidden layer into a scalar score. The exact di-
mensions of these weights will become clear in what
follows.

In defining Φc we will view a mention x spanning
M words as a sequence of real vectors x1, . . . ,xM ,
with each xm ∈RD obtained by looking up the m’th
word in x in an embedding matrix E ∈RD×|V|,
where V is our fixed vocabulary. Accordingly, let
X1:M ∈RD×M be the matrix formed by concatenat-
ing the embeddings of the words in a mention (in or-
der). Analogously, let X−K:−1 ∈RD×K be the con-
catenation of the embedding-vectors corresponding
to the K words preceding x on the left (padded
where necessary), and XM+1:M+K the concatena-
tion of the embedding-vectors corresponding to the
K words following x on the right (padded where
necessary).

For simplicity, we will require Φc to take the fol-
lowing form:

Φc(x) =

 h(X1:M )
h(X−K:−1)

h(XM+1:M+k)

 ,

where h(Xi:j) is some function of the matrix Xi:j .
That is, Φc(x) simply concatenates a representation
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of the words of x with representations (respectively)
of the K words preceding and following x.

For example, consider the following passage from
the development portion of the CoNLL 2012 English
development data, from which the final example in
Table 1 is taken, and in which we have highlighted
a particular mention we might like to predict an an-
tecedent for:

Suddenly we realized water came into
the engine room and it was rising and
they started to pump, of course, and
they pumped and pumped and the wa-
ter came more and more and more.
(bn/cnn/cnn 0410)

If we are interested in predicting coreferent an-
tecedents for “the water,” which we will denote by x,
then we will have M = 2, and X1:2 will be a matrix
in RD×2 with its first column equal to the embed-
ding (in E) for “the,” and its second column equal
to the embedding for “water.” Since in predicting x
we will likely also want to take into account some
of its surrounding context, we will also form matri-
ces corresponding to the K words to the left and to
the right (respectively) of x. Thus, if we set K = 1,
we will form X−1:−1 as the matrix in RD×1, which
consists of the embedding for “and,” and we would
define XM+1:M+1 analogously. Given the afore-
mentioned X matrices, we define Φc by vertically
concatenating the output of applying a function h to
each of these matrices.

We now consider three approaches to defining
h(X1:M ), in increasing order of complexity:

Max-Over-Time Model: Define h(X1:M ) to be in
RD, with h(X1:M )d = max1≤j≤M (X1:M )dj , for
each d = 1, . . . , D.1

Convolutional Model: We follow Kim (2014) in
generating F feature maps of M −h + 1 features
by applying a (non-linear) filter to each h-length
window of X1:M , and then max-pooling over time.
Thus, h(X1:M ) ∈ RF .

LSTM Model: We define h(X1:M ) to be in RH ,
where h(X1:M ) is the M ’th hidden state of an
LSTM (Hochreiter and Schmidhuber, 1997) run
over the vectors x1, . . . ,xM in X1:M .

1We found the max-pooling described here to be more ef-
fective than mean-pooling.

To define Φd we first define indicator features
(represented as one-hot vectors), which (respec-
tively) bucket the number of mentions and the num-
ber of sentences between a mention and a candidate
antecedent into 11 discrete buckets, following Dur-
rett and Klein (2013). We therefore have 22 dis-
tance indicator features in total, and they are used to
index into an embedding matrix A∈RDd×22. Ac-
cordingly, Φd(x, y) ∈ RDd represents the sum of the
(two) distance embeddings obtained from A in this
way. This approach resembles that of Sukhbaatar et
al. (2015).

3 Experiments

3.1 Methods

We conduct antecedent-ranking experiments on the
development portion of the CoNLL 2012 English
corpus. Mentions were extracted using the Berke-
ley Coreference System (Durrett and Klein, 2013).
We set K = 4 in forming word-windows, and we
trained by optimizing the margin ranking-loss de-
fined in Wiseman et al. (2015) using mini-batch
Adagrad (Duchi et al., 2011).

For the convolutional model, we used windows of
size 1, 2, and 3, and 40 filters for each. We set Dd,
the dimensionality of the distance feature embed-
dings which constitute the columns of A, to 20. We
used the element-rnn RNN package (Léonard et
al., 2015) to implement the LSTM, and we set the
LSTM’s hidden-layer size to 200. All models used
300 hidden units in the final layer (represented by
W ), and we used Dropout for regularization. All
hyperparameters including window size were tuned
on the development set.

For all models we initialized E, the word
embedding matrix, with word vectors obtained
from word2vec (Mikolov et al., 2013), and so
E ∈R300×|V|, where V is the vocabulary consisting
of words in the training or development sets (plus
an unknown word token). E was updated during
training. For the Max-Over-Time Model we found
it beneficial to untie the embedding matrices used to
embed the words in the mention, before the mention,
and after the mention, giving 3 separate embedding
matrices. For the Convolutional and LSTM Mod-
els, performance was at least as good when using a
single embedding matrix.
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x Correct Antecedent Prediction Convolutional Antecedent Prediction

the Straits [Foundation] the Straits [Foundation] the Straits [Association]
those Jewish [sacrifices] the [sacrifices] the [people] of Israel
the [water] [water] their sinking fishing [boat]

Table 1: Example mentions x which the baseline MLP correctly predicts (middle column), but the Convolutional
Model (right column) does not. Heads of each mention (unseen by the Convolutional Model) are in brackets.

Model Acc.

Wiseman et al. (2015) 82.58
Max-Over-Time Model 70.92
Convolutional Model 72.65
LSTM Model 77.40

Table 2: Accuracy of models described in text (and base-
line) on predicting antecedents on CoNLL Development
set.

3.2 Results
We are particularly interested in determining in
what situations a word-and-distance model under-
performs models with access to more sophisticated
information. In Table 2 we compare the antecedent-
prediction accuracy of the three models defined
above with the antecedent ranking performance of
the model described in Wiseman et al. (2015), which
uses an MLP over pipelined coreference features.
We will refer to this latter model as the “base-
line MLP.” We see that the word-and-distance mod-
els underperform, though the LSTM model comes
within 5.2% of the baseline MLP. (It is also worth
noting here that without the distance features Φd all
models are significantly less accurate, with accura-
cies decreasing by over 15 percentage points).

4 Discussion

In Table 3 we examine, using an analysis simi-
lar to that in Durrett and Klein (2013), where the
unpipelined models go wrong. There, we parti-
tion mentions column-wise into nominal or proper
mentions that have a head-match with some previ-
ously occurring mention, nominal or proper men-
tions that do not, and pronominal mentions. (Note
that whereas parse information must be used to de-
tect heads, this is only used in our analysis, and none
of the three models introduced here have access to
this information).

Let us first consider the Convolutional Model,

Errors
HM No HM Pron.

Wiseman et al. (2015) 588 522 1146
Max-Over-Time Model 1513 608 1646
Convolutional Model 1358 607 1577
LSTM Model 1028 537 1362

Total Mentions 4677 973 7302

Table 3: Errors of models described in text on CoNLL
2012 development set. Mentions are partitioned column-
wise as nominal or proper with (previous) head match in
the document (HM), nominal or proper with no previous
head match in the document (No HM), and pronominal.

which underperforms the baseline in all categories,
but does particularly badly in predicting antecedents
for mentions for which a previous mention in the text
has the same head.

Why is this? Further analysis shows that almost
84% of the HM examples that are correctly predicted
by the baseline MLP but incorrectly predicted by the
Convolutional Model involve the baseline MLP pre-
dicting an antecedent with an exact head-match to
the current mention, and the Convolutional Model
predicting a non-head-match antecedent. We show
some representative examples in Table 1, where we
bracket the head of each mention. As is evident from
Table 1, the model is picking antecedents that are
semantically reasonable, but which do not have a
head match. The reason the Convolutional Model
makes these errors is presumably that it is not able
to tell what the head of each mention is (because it
sees only the words in the mention, and the word-
windows preceding and following). The baseline
MLP, however, does have access to the heads of each
mention, and so can learn that head-match is a dis-
criminative feature.

As we move to the LSTM model, we find that er-
rors decrease in all categories, though follow largely
the same pattern. Indeed, over 78% of the LSTM
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Figure 1: Percentage of antecedents in the CoNLL 2012
development set predicted correctly, by mention length.

model’s errors in the HM category also involve
predicting a non-head-match antecedent when the
baseline MLP correctly predicts a head-match an-
tecedent. Thus, it seems the LSTM model too could
benefit from better head-finding. As additional ev-
idence for this hypothesis, in Figure 1 we plot the
percentage of correctly predicted antecedents in the
CoNLL 2012 development set as the length of the
current mention x increases. (Only mention-lengths
occurring ≥ 10 times in the development set are re-
ported). We see that the accuracy of both the Con-
volutional and LSTM models (as well as that of the
Max-Over-Time model) generally decreases as the
mention-length increases, though that of the base-
line MLP model does not. Of course, it stands to
reason that finding heads is more difficult in longer
mentions, which may explain this trend.

When it comes to the other major category of
errors in Table 3, namely, errors on pronominal
mentions, it is more difficult to diagnose a single
underlying cause of error. In particular, the un-
pipelined models’ errors tend to involve either pre-
dicting antecedents that are inconsistent in terms of
gender or number, or, interestingly, predicting non-
pronominal antecedents when the baseline MLP pre-
dicts a pronominal antecedent. While it is certainly
the case that the baseline MLP has access to gender
information that the unpipelined models do not, it
is not as clear why these unpipelined models learn
to disprefer predicting pronominal antecedents for
pronominal mentions, and this issue requires further
investigation.

5 Conclusion

The results presented above suggest that a major
factor holding word-and-distance-only models back
from competing with models that have access to
pipelined features is their inability to find mention-
heads and, more generally, to take advantage of syn-
tactic features. While the fact that such models
would benefit from syntactic information is not sur-
prising, the examples in Table 1 suggest that even
coarse notions of head-finding may be sufficient
to improve performance. Accordingly, one might
imagine that alignment or attention models (such
as that of Bahdanau et al. (2014)) that attempt to
model coarse head-information would be useful in
such cases.
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