
Proceedings of the 3rd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pages 138–142,
San Diego, California, June 16, 2016. c©2016 Association for Computational Linguistics

Classifying ReachOut posts with a radial basis function SVM

Chris Brew
Thomson Reuters Corporate Research and Development

1 Mark Square
London EC2A 4EG, UK
Chris.Brew@tr.com

Abstract

The ReachOut clinical psychology shared task
challenge addresses the problem of provid-
ing an automatic triage for posts to a sup-
port forum for people with a history of men-
tal health issues. Posts are classified into
green, amber, red and crisis. The
non-green categories correspond to increasing
levels of urgency for some form of interven-
tion. The Thomson Reuters submissions arose
from an idea about self-training and ensem-
ble learning. The available labeled training
set is small (947 examples) and the class dis-
tribution unbalanced. It was therefore hoped
to develop a method that would make use of
the larger dataset of unlabeled posts provided
by the organisers. This did not work, but the
performance of a radial basis function SVM
intended as a baseline was relatively good.
Therefore, the report focuses on the latter,
aiming to understand the reasons for its per-
formance.

1 Introduction

The ReachOut clinical psychology shared task chal-
lenge addresses the problem of providing an auto-
matic triage for posts to a support forum for people
with a history of mental health issues. Posts are clas-
sified into green,amber,red and crisis. The
non-green categories correspond to increasing levels
of urgency for some form of intervention, and can be
regarded as positive. Green means “all clear”, no
need for intervention. Table 1 includes manually-
created examples of posts from each class.1

1These are made-up examples, for reasons of patient confi-
dentiality. They are also much shorter than typical posts.

Class Example

green sitting in my armchair listening to the birds
amber Not over that old friendship.
red What’s the point of talking to anyone?
crisis Life is pointless. Should call psych.

Table 1: Examples of possible posts

The entry from Thomson Reuters was planned to
be a system in which an ensemble of base classi-
fiers is followed by a final system combination step
in order to provide a final answer. But this did not
pan out, so we report results on a baseline classi-
fier. All of the machine learning was done using
scikit-learn (Pedregosa et al., 2011). The first
step, shared between all runs, was to split the la-
beled data into a training partition of 625 examples
(Train) and two development sets (Dev_test1
and Dev_test2) of 161 examples each. There
were two development sets only because of the plan
to do system combination. This turns out to have
been fortunate. All data sets were first transformed
into Pandas (McKinney, 2010) data-frames for
convenient onward processing. When the test set be-
came available, it was similarly transformed into the
test data-frame (Test).

The first submitted run was an RBF SVM, in-
tended as a strong baseline. This run achieved a bet-
ter score than any of the more elaborate approaches,
and, together with subsequent analysis, sheds some
light on the nature of the task and the evaluation met-
rics used.

138

2 An RBF-based SVM

This first run used the standard
scikit-learn (Pedregosa et al., 2011)
SVM2, with a radial basis function kernel.
scikit-learn provides a grid search function
that uses stratified cross-validation to tune the
classifier parameters.

The RBF kernel is:

K(x, x′) = e−γ||x−x
′||2

where γ = 1
2σ2 and the objective function is:

min
1
2
||w||2 + C

∑
i

ξi

where ||w||2 is the `2-norm of the separating hyper-
plane and ξi is an indicator variable that is 1 when
the ith point is misclassified. The C parameter af-
fects the tradeoff between training error and model
complexity. A small C tends to produce a simpler
model, at the expense of possibly underfitting, while
a large one tends to fit all training data points, at
the expense of possibly overfitting. The approach
to multi-class classification is the “one versus one”
method used in (Knerr et al., 1990). Under this ap-
proach, a binary classifier is trained for each pair of
classes. The winning classifier is determined by vot-
ing.

2.1 Features
The features used were:

• single words and 2-grams weighted with scikit-
learn’s TFIDF vectorizer,using a vocabulary
size limit (|V |) explored by grid search. The
last example post would, inter alia, have a fea-
ture for ‘pointless’ and another for ‘call psych’

• a feature representing the author type pro-
vided by ReachOut’s metadata. This indicates
whether the poster is a ReachOut staff member,
an invited visitor, a frequent poster, or one of a
number of other similar categories.

• a feature providing the kudos that users had as-
signed to the post. This is a natural number
reflecting the number of ‘likes’ a post has at-
tracted.

2A Python wrapper for LIBSVM (Chang and Lin, 2011)

Counts
dev test1 dev test2 test train

green 92 95 166 362
amber 47 38 47 164
red 14 23 27 73
crisis 8 5 1 26

Percentages
dev test1 dev test2 test train

green 57.14% 59.00% 68.88% 57.92%
amber 29.19% 23.60% 19.50% 26.24%
red 8.69% 14.29% 11.20% 11.68%
crisis 4.97% 3.11% 0.41% 4.16%

Table 2: Class distribution for training, development and test

sets.

• a feature indicating whether the post being con-
sidered was the first in its thread. This is de-
rived from the thread IDs and post IDs in each
post.

2.2 Datasets, class distributions and evaluation
metrics

Class distributions We have four datasets: the
two sets of development data, the main training set
and the official test set distributed by the organis-
ers. Table 2 shows the class distributions for the
three evaluation sets and the training set are differ-
ent. In particular, the final test set used for official
scoring has only one instance of the crisis cate-
gory, when one might expect around ten. Of course,
none of the teams knew this at submission time. The
class distributions are always imbalanced, but it is a
surprise to see the extreme imbalance in the final test
set.

Evaluation metrics The main evaluation metric
used for the competition is a macro-averaged F1-
score restricted to amber, red and crisis. This
is very sensitive to the unbalanced class distribu-
tions, since it weights all three positive classes
equally. A classifier that correctly hits the one
positive example for crisis will achieve a large
gain in score relative to one that does not. Micro-
averaged F1, which simply counts true positives,
false positives and false negatives over all the pos-

139

itive classes, might have proven a more stable tar-
get. An alternative is the multi-class Matthews cor-
relation coefficient (Gorodkin, 2004). Or, since
the labels are really ordinal, similar to a Likert
scale, quadratic weighted kappa (Vaughn and Jus-
tice, 2015) could be used.

2.3 Grid search with unbalanced, small
datasets

Class weights Preliminary explorations revealed
that the classifier was producing results that over-
represented the ’green’ category. To rectify this,
the grid search was re-done using a non-uniform
class weight vector of 1 for ’green’ and 20 for ’cri-
sis’,’red’ and ’amber’. The effect of this was to
increase by a factor of 20 the effective classifica-
tion penalty for the three positive classes. The grid
search used for the final submission set γ=0.01,
C at 15 logarithmically spaced locations between
1 and 1000 inclusive, all vocabulary size limits in
{10, 30, 100, 300, 1000, 3000, 10000} and assumed
that author type, kudos and first in thread were al-
ways relevant and should always be used. The scor-
ing metric used for this grid search was mean accu-
racy. The optimal parameters for this setting were
estimated to be: C=51.79, |V |=3000.

The role of luck in feature selection This classi-
fier is perfect on the training set, suggesting overfit-
ting (see section 4 for a deeper dive into this point).
Classification reports for the two development sets
are shown in table 3. After submission a more com-
plete grid search was conducted allowing for the
possibility of excluding the author type, kudos and
first in thread features. All but kudos were excluded.
Comparing using Dev_test1 the second classifier
would have been chosen, but using Dev_test2 we
would have chosen the original. The major reason
for this difference is that the second classifier hap-
pened to correctly classify one of the 8 examples
for crisis in Dev_test1, but missed all the five
examples of that class in Dev_test2. In fact, on
the actual test set, the first classifier is better. The
choice to tune on Dev_test1 was arbitrary, and
fortunate. The choice not to consider turning off the
metadata features was a pure accident. Tuning via
grid search is challenging in the face of small train-
ing sets and unbalanced class distributions, and in

Dev test1
class precision recall f1-score support
green 0.88 0.93 0.91 92
amber 0.73 0.64 0.68 47
red 0.29 0.43 0.34 14
crisis 1.00 0.12 0.22 8

Dev test2
class precision recall f1-score support
green 0.81 0.95 0.87 95
amber 0.59 0.50 0.54 38
red 0.53 0.39 0.45 23
crisis 0.00 0.00 0.00 5

Table 3: Classification reports for Dev test1 and

Dev test2.

Test (using class weights)
class precision recall f1-score support
green 0.93 0.84 0.88 166
amber 0.51 0.74 0.61 47
red 0.73 0.59 0.65 27
crisis 0.00 0.00 0.00 1

Test (no class weights)
class precision recall f1-score support
green 0.89 0.94 0.91 166
amber 0.58 0.64 0.61 47
red 0.71 0.37 0.49 27
crisis 0.00 0.00 0.00 1

Table 4: Classification reports for Test with and without class

weights.

this case would have led the classifier astray.
Once optimal parameters had been selected, the

classifier was re-trained using on the concatena-
tion of Train, Dev_test1 and Dev_test2, and
predictions were generated for Test.

3 Results on official test set

Table 4 contains classification reports for the class-
weighted version that was submitted and a non-
weighted version that was prepared after submis-
sion. The source of the improved official score
achieved by the class-weighted version is a larger
F-score on the red category, at the expense of a
smaller score on the green category, which is not
one of the positive categories averaged in the official
scoring metric.

140

0 100 200 300 400 500 600 700

Training examples

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re
 (

m
a
cr

o
 F

1
)

Train

Xval

0

100

200

300

400

500

600

T
o
ta

l
S
V

s

n SVs

Figure 1: Learning curve (macro F1) (left) and number of sup-

port vectors (right)

4 Analysis

The left axis of figure 1 shows how the perfor-
mance changes as a function of the number of ex-
amples used. This graph uses the parameter set-
tings and class weights from the main submission
(i.e |V |=3000, C=51.79, γ=0.01). The lower curve
(green) shows the mean and standard deviation of
the official score for test sets selected by cross-
validation. The upper curve (red) shows perfor-
mance on the (cross-validated) training set, which
is always at ceiling. The right axis corresponds to
the blue curve in the middle of figure 1 and indi-
cates the number of support vectors used for various
sizes of training set. Almost every added example
is being catered for by a new support vector, sug-
gesting overfitting. There is just a little generalisa-
tion for the green class, almost none for the others.
Figure 2 shows the variation in macro-F1 withC and
γ. The scoring function for grid search is the official
macro-averaged F1 restricted to non-green classes,
in contrast to the average accuracy used elsewhere.
The optimal value selected by this cross-validation
is C=64 and γ=0.0085. This is roughly the same
as C=51.79, γ=0.01 chosen by cross-validation on
average accuracy.

5 Discussion

The ReachOut challenge is evidently a difficult
problem. The combination of class imbalance and
an official evaluation metric that is very sensitive
to performance on sparsely inhabited classes means
that the overall results are likely to be unstable.

It is not obvious what metric is the best fit for the

0.
00

01

0.
00

02

0.
00

03

0.
00

04

0.
00

07

0.
00

12

0.
00

19

0.
00

32

0.
00

52

0.
00

85

0.
01

39

0.
02

28

0.
03

73

0.
06

11 0.
1

γ

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

2048.0

4096.0

8192.0

16384.0

32768.0

C

Validation accuracy

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Figure 2: Heat map of variation of macro-F1 as a function of γ

and C (with |V |=3000)

therapeutic application, because the costs of mis-
classification, while clearly non-uniform, are diffi-
cult to estimate, and the rare classes are intuitively
important. It would take a detailed clinical outcome
study to determine exactly what the tradeoffs are be-
tween false positives, false negatives and misclassi-
fications within the positive classes.

The labeled data set, while of decent size, and rep-
resentative of what can reasonably be done by anno-
tators in a small amount of time, is not so large that
the SVM-based approach, with the features used,
has reached its potential. The use of the class weight
vector does appear to be helpful in improving the of-
ficial score by trading off performance on the red
label against a small loss of performance on the
green label.

Acknowledgments

Thanks to Tim Nugent for advice on understanding
and visualizing SVM performance, and to Jochen
Leidner and Khalid-Al-Kofahi for providing re-
sources, support and encouragement. Thanks to all
members of the London team for feedback and writ-
ing help.

141

References
Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:

A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

J. Gorodkin. 2004. Comparing two K-category assign-
ments by a K-category correlation coefficient. Com-
putational Biology and Chemistry, 28:367374.

Stefan Knerr, Léon Personnaz, and Gérard Dreyfus.
1990. Single-layer learning revisited: a stepwise pro-
cedure for building and training a neural network. In
Neurocomputing, pages 41–50. Springer.

Wes McKinney. 2010. Data structures for statistical
computing in python. In Stéfan van der Walt and Jar-
rod Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

David Vaughn and Derek Justice. 2015. On the direct
maximization of quadratic weighted kappa. CoRR,
abs/1509.07107.

142

