
Proceedings of 2016 NAACL Human-Computer Question Answering Workshop, pages 8–14,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Crowdsourcing for (almost) Real-time Question Answering

Denis Savenkov
Emory University

dsavenk@emory.edu

Scott Weitzner
Emory University

sweitzn@emory.edu

Eugene Agichtein
Emory University

eugene@mathcs.emory.edu

Abstract

Modern search engines have made dramatic
progress in the answering of many user’s ques-
tions about facts, such as those that might be
retrieved or directly inferred from a knowl-
edge base. However, many other questions
that real users ask are more complex, such as
asking for opinions or advice for a particular
situation, and are still largely beyond the com-
petence of the computer systems. As conver-
sational agents become more popular, QA sys-
tems are increasingly expected to handle such
complex questions, and to do so in (nearly)
real-time, as the searcher is unlikely to wait
longer than a minute or two for an answer.
One way to overcome some of the challenges
in complex question answering is crowdsourc-
ing. We explore two ways crowdsourcing can
assist a question answering system that op-
erates in (near) real time: by providing an-
swer validation, which could be used to filter
or re-rank the candidate answers, and by cre-
ating the answer candidates directly. Specifi-
cally, we focus on understanding the effects of
time restrictions in the near real-time QA set-
ting. Our experiments show that even within
a one minute time limit, crowd workers can
produce reliable ratings for up to three answer
candidates, and generate answers that are bet-
ter than an average automated system from the
LiveQA 2015 shared task. Our findings can be
useful for developing hybrid human-computer
systems for automatic question answering and
conversational agents.

1 Introduction

It has long been a dream to communicate with a
computer as one might with another human being
using natural language speech and text. Nowadays,
we are coming closer to this dream, as natural lan-
guage interfaces become increasingly popular. Our
phones are already reasonably good at recognizing
speech, and personal assistants, such as Apple Siri,
Google Now, Microsoft Cortana, Amazon Alexa,
etc., help us with everyday tasks and answer some
of our questions. Chat bots are arguably considered
“the next big thing”, and a number of startups devel-
oping this kind of technology has emerged in Silicon
Valley and around the world1.

Question answering is one of the major compo-
nents of such personal assistants. Existing tech-
niques already allow users to get direct answers to
their factoid questions. However, there is still a large
number of more complex questions, such as advice
or accepted general opinions, for which users have
to dig into the “10 blue links” and extract or syn-
thesize answers from information buried within the
retrieved documents. To cater to these informational
needs, community question answering (CQA) sites
emerged, such as Yahoo! Answers and Stack Ex-
change. These sites provide a popular way to con-
nect information seekers with answerers. Unfortu-
nately, it can take minutes or hours, and sometimes
days, for the community to respond, and some ques-
tions are left unanswered altogether.

To facilitate research on this challenge, TREC

1http://time.com/4194063/chatbots-facebook-messenger-
kik-wechat/

8

LiveQA shared task2 was started in 2015, where au-
tomated systems attempt to answer real users’ ques-
tions within a 1 minute period. This task was suc-
cessful, with the winning system able to automati-
cally return a reasonable answer to more than half
of the submitted questions, as assessed for TREC by
the trained judges from NIST. Nevertheless, many
questions were unable to be answered well by any
of the participating systems.

In this work we explore two ways common
crowdsourcing can be used to help an automated
system answer complex user questions in near real-
time scenario, e.g., within a minute. More specif-
ically, we study if crowd workers can quickly and
reliably judge the quality of the proposed answer
candidates, and if it is possible to obtain reason-
able written answers from the crowd within a lim-
ited amount of time. Our research questions can be
stated as:

1. RQ1. Can crowdsourcing be used to judge the
quality of answers to non-factoid questions un-
der a time limit?

2. RQ2. Is it possible to use crowdsourcing to col-
lect answers to real user questions under a time
limit?

3. RQ3. How does the quality of crowdsourced
answers to non-factoid questions compare to
original CQA answers, and to automatic an-
swers from TREC LiveQA systems?

2 Methodology

To answer the research questions, we conducted a
series of crowdsourcing experiments using the Ama-
zon Mechanical Turk platform3. We used questions
from the TREC LiveQA 2015 shared task, along
with the system answers, rated by the NIST as-
sessors4. The questions for the task were selected
by the organizers from the live stream of questions
posted to the Yahoo! Answers CQA platform on the
day of the challenge (August 31, 2015). For these
questions we also crawled their community answers,
that were eventually posted on Yahoo! Answers5.

2www.trec-liveqa.org
3http://mturk.com
4https://sites.google.com/site/trecliveqa2016/liveqa-qrels-

2015
5As the answer we took the top question, which was selected

as the “Best answer” by the author of the question or by the

To check if crowdsourcing can be used to judge
the quality of answers under a time limit (RQ1), we
asked workers to rate answers to a sample of 100
questions using the official TREC rating scale:

1. Bad - contains no useful information
2. Fair - marginally useful information
3. Good - partially answers the question
4. Excellent - fully answers the question

Figure 1: Answer validation form

We chose to display 3 answers for a question,
which were generated by three of the top-10 auto-
matic systems from TREC LiveQA 2015 evaluation
(Agichtein et al., 2015). To study the effect of time
pressure on the quality of judgments we split partic-
ipants into two groups. One group made their as-
sessments with a 1 minute countdown timer shown
to them, while the other could complete the task
without worrying about a time limit. Within each
group, we assigned three different workers per ques-
tion, and the workers were compensated at a rate of
$0.05 per question for this task.

The interface for collecting answer ratings is illus-
trated in Figure 16. On top of the interface workers
were shown the instructions on the task, and ques-
tion and answers were hidden at this time. They

community.
6The screenshots show the final state of the form, as we de-

scribe later in this sections fields were unhidden step-by-step
for proper timing of reading, answering and validation

9

Figure 2: Answer crowdsourcing form

were instructed to read the question, read the an-
swers, and rate each answer’s quality on a scale from
1 (Bad) to 4 (Excellent), and finally choose a subset
of candidates that best answer the question. Upon
clicking a button to indicate that they were done
reading the instructions, the question, a 60 second
countdown timer and 3 answers to the question ap-
peared on the screen. At the 15 second mark the
timer color changed from green to red. In the exper-
iments without time pressure the timer was hidden,
but we still tracked the time it took for the workers
to complete the task.

In another experiment, designed to answer RQ2
and check whether crowd workers can provide an
answer to a given question within a limited amount
of time, we asked different workers to answer the
questions from TREC LiveQA 2015. We split the
workers into two groups and displayed a one minute
countdown timer for one of them. We left a grace
period and let the workers submit their answers af-
ter the timer had run out. The workers received a
$0.10 compensation for each answer. The form for

answer crowdsourcing is shown in Figure 2, and
similar to the answer rating form, it starts with a
set of instructions for the task. We let the users
browse the internet if they were not familiar with
the topic or could not answer the question them-
selves. To prevent them from finding the original
question on Yahoo! Answers, we included a link
to Google search engine with a date filter enabled7.
Using this link, workers could search the web as it
was on 8/30/2015, before TREC LiveQA 2015 ques-
tions were posted and therefore workers were in the
same conditions as automatic systems on the day of
challenge8. Initially, the question was hidden for
proper accounting of question-reading and answer-
ing times. Upon clicking a button to indicate that
they were done reading the instructions, a question
appeared along with a button, which needed to be
clicked to indicate that they were done reading the
question. After that, the answering form appears, it
contained four fields:

1. Does the question make sense: “yes” or “no” to
see if the question was comprehensible

2. Are you familiar with the topic: A yes or no
question to evaluate whether the worker has
had prior knowledge regarding the question
topic

3. Answer: the field to be used for the user’s an-
swer to the given question

4. Source: the source used to find the answer:
URL of a webpage or NA if the worker used
his own expertise

Finally, to compare the quality of the collected
answers with automatic system and CQA responses
(RQ3) we pooled together the crowdsourced an-
swers, the answers from the winning and other top-
10 LiveQA’15 systems, and the original answers
crawled from Yahoo! Answers. Each set of answers
was given to mechanical turk workers for ratings.

3 Results and Discussion

In this section we will describe our results and dis-
cuss some of the implications. We start from the
results on answer rating (Section 3.1), and then de-
scribe the answer crowdsourcing experiment (Sec-
tion 3.2).

7https://www.google.com/webhp?tbs=cdr:1,cd max:8/30/2015
8The ranking of search results could be different on the day

of the challenge and for our workers

10

Figure 3: Correlation between NIST assessor scores
and crowdsourced ratings with and without time
limit on the work time

3.1 Answer rating

In the answer rating experiment we collected 6 rat-
ings (3 with and 3 without time pressure) for each of
three answers for a sample of 100 questions, which
makes it a total of 1800 judgments. Each answer
also has an official NIST assessor rating on the same
scale. Figure 3 shows correlation between official
NIST assessor relevance judgments and ratings pro-
vided by our workers. The Pearson correlation be-
tween the scores is ρ = 0.52. The distribution of
scores shows that official assessors were very strict
and assigned many extreme scores of 1 or 4, whereas
mechanical turk workers preferred intermediate 2s
and 3s. The results did not show any significant
differences between experiments with and without
time pressure. Figure 4 shows that even though the
median time to rate all three answers is around 22-
25 seconds in both experiments, the upper bound is
significantly lower in the experiment with the time
pressure.

Therefore, we conclude that in general we can
trust crowdsourced ratings, and on average one
minute is enough to judge the quality of three an-
swers to CQA questions.

3.2 Answer crowdsourcing

In the answer crowdsourcing experiment we col-
lected 6 answers (3 with and without time pressure)
for each of the 1087 LiveQA’15 questions. Since we
have answers from different sources, let’s introduce

Figure 4: Box plot of answer rating time with and
without time pressure

the following notations:

• Yahoo! Answers - answers eventually posted
by users on Yahoo! Answers for the original
questions

• Crowd - answers collected from Mechanical
Turk workers without time pressure

• Crowd-time - answers collected from Mechani-
cal Turk workers with one minute time pressure

• LiveQA winner - answers from the TREC
LiveQA’15 winning system

• LiveQA top10 - answers from another top 10
TREC LiveQA’15 system.

Table 1 summarizes some statistics on the an-
swers. The first thing to notice is that, unlike CQA
websites, where some questions are left unanswered,
by paying the crowd workers we were able to get at
least one answer for all LiveQA questions (after fil-
tering “No answer” and “I don’t know” kind of re-
sponses). The length of the answers, provided by
Mechanical turk users is lower, and time pressure
forces users to be even more concise. The majority
of workers (∼ 90%) didn’t use the web search and
provided answers based on their experience, opin-
ions and common knowledge.

From Figure 5 we can see that adding time pres-
sure shifts the distribution of answering times9. The
tail of longer work times for no time limit exper-
iment becomes thin with time restrictions and the
distribution peaks around one minute.

To estimate the quality of answers, we took a sam-
ple of 100 questions and repeated the answer rating

9We had separate timers for reading the instructions, the
question, and writing the answer, the inclusion of instruction-
reading time is why the total time could be more than 1 minute

11

Table 1: Statistics of different types of answers for Yahoo! Answers questions

Statistic Y!A mTurk mTurk-time LiveQA’15 winning system
% answered 78.7% 100.0% 100.0% 97.8%
Length (chars) 354.96 190.83 126.65 790.41
Length (words) 64.54 34.16 22.82 137.23

Figure 5: Distribution of answering times for exper-
iments with and without time pressure

experiment on this data. Each answer was judged
by 3 different workers (without time pressure), and
their scores were averaged. Figure 6 displays the
plot with average score for answers from different
sources. Quite surprisingly the quality of collected
answers turned out be comparable to those of CQA
website users. Average rating of answers produced
by the winning TREC LiveQA system is also pretty
close to human answers. Finally, as expected, time
pressure had its negative effect on the quality, how-
ever it is still significantly better than quality of an
average top 10 QA system.

Figure 6: Average scores of different types of an-
swers to Yahoo! Answers questions

Analysis of the score distribution (Figure 7) sheds
some light on the nature of the problems with au-
tomatic and human answers. The automatic sys-
tems generate non-relevant answers (score = 1)

Figure 7: Distribution of scores for different types
of answers to Yahoo! Answers questions

more often than human, either because the systems
fail to retrieve relevant information, or to distinguish
between useful and non-useful answer candidates.
However, by having a larger information store, e.g.,
the Web, automated QA systems can often find a
perfect answer (score = 4), while crowd workers
tend to give generally useful, but less perfect re-
sponses (score = 2, 3).

Our results suggest that the “crowd” can quickly
give a reasonable answer to most CQA questions.
However, some questions require a certain expertise,
which a common crowd worker might not possess.
One idea to tackle this challenge is to design a QA
information support system, which a worker can use
to help them find additional information. For ex-
ample, in our experiment, we let workers use web
search to find answers, if they were unfamiliar with
the topic; more effective search interfaces may be
helpful.

Overall, the results of our study are encourag-
ing, but there are a number of questions, that need
to be addressed in order to build an efficient real-
time human-computer QA system, which we leave
to future work. For example, in order for a hybrid
crowd-automatic QA system to scale to a large num-
ber user questions, an efficient crowd gathering and
job assignment components are required(Bernstein
et al., 2011). One potential approach to scalability is
selective crowdsourcing, i.e., that a system consult

12

the crowd only if it does not believe it has a good
candidate, or cannot decide between multiple good
answers based on internal quality scores. Another
promising direction is for a QA system to use the
crowd data as a feedback loop, and improve its per-
formance over time, e.g., to update the answer selec-
tion and ranking models.

4 Related Work

Using the wisdom of a crowd to help users satisfy
their information needs has been studied before in
the literature. Bernstein et al. (2012) explored the
use of crowdsourcing for offline preparation of an-
swers to tail search queries. In this work log mining
techniques were used to identify potential question-
answer fragment pairs, which were then processed
by the crowd to generate the final answer. This of-
fline procedure allows a search engine to increase
the coverage of direct answers to user questions.
In our work, however, the focus is on online ques-
tion answering, which requires fast responses to the
user, who is unlikely to wait more than a minute.
Another related work is targeting a different do-
main, namely SQL queries. The CrowdDB system
(Franklin et al., 2011) is an SQL-like processing sys-
tem for queries, that cannot be answered by ma-
chines only. In CrowdDB human input is used to
collect missing data, perform computationally diffi-
cult functions or matching against the query. In Ay-
din et al. (2014) authors explored efficient ways to
combine human input for multiple choice questions
from the “Who wants to be a millionaire?” TV show.
In this scenario going with the majority for complex
questions isn’t effective, and certain answerer confi-
dence weighting schemas can improve the results.

Using crowdsourcing for relevance judgments has
been studied extensively in the information retrieval
community, e.g., (Alonso et al., 2008; Alonso and
Baeza-Yates, 2011; Grady and Lease, 2010) to name
a few. The focus in these works is on document rel-
evance, and the quality of crowdsourced judgments.
Whereas in our paper we are investigating the abil-
ity of a crowd to quickly assess the quality of the
answers in a nearly real-time setting.

Crowdsourcing is usually associated with offline
data collection, which requires significant amount of
time. Its application to (near) real-time scenarios

poses certain additional challenges. Bernstein et al.
(2011) introduced the retainer model for recruiting
synchronous crowds for interactive real-time tasks
and showed their effectiveness on the best single im-
age and creative generation tasks. We are planning
to build on these ideas and integrate a crowd into a
real-time question answering system. The work of
Lasecki et al. (2013) showed how multiple workers
can sit behind a conversational agent named Chorus,
where human input is used to propose and vote on
responses. Another use of a crowd for maintaining
a dialog is presented in Bessho et al. (2012), who let
the crowd handle difficult cases, when a system was
not able to automatically retrieve a good response
from the database of twitter data. In this paper, we
focus on a single part of the human-computer dialog,
i.e. question answering, which requires a system to
provide some useful information in a response to the
user.

5 Conclusions

We explored the potential usefulness of crowd-
sourcing for near real-time question answering, by
either directly collecting answers from the crowd,
or by using crowdsourced judgments to quickly
validate automated answers. Our initial results
show that crowd workers are capable of validating a
small set of answer candidates quickly, which could
be potentially incorporated into an automatic QA
system for answer validation and reranking (RQ1).
In addition, even one minute appears enough for a
crowd to generate a fair or good response to most
real questions drawn from a CQA site, which can
be useful in case a QA system didn’t have good
candidates in the first place (RQ2). Finally, we
compared crowdsourced answers to the original
Yahoo! Answers responses, and to the responses of
purely automated LiveQA’15 systems (RQ3). The
quality of crowdsourced answers was comparable
to the original Yahoo! Answers responses, and
even with time pressure, crowdsourcing was shown
promising to complement or augment automated
QA systems.

ACKNOWLEDGMENTS: This work was par-
tially supported by the Yahoo Labs Faculty Research
Engagement Program (FREP).

13

References
Eugene Agichtein, David Carmel, Donna Harman, Dan

Pelleg, and Yuval Pinter. 2015. Overview of the trec
2015 liveqa track. In Proceedings of TREC 2015.

Omar Alonso and Ricardo Baeza-Yates. 2011. Design
and implementation of relevance assessments using
crowdsourcing. In Advances in information retrieval,
pages 153–164. Springer.

Omar Alonso, Daniel E. Rose, and Benjamin Stewart.
2008. Crowdsourcing for relevance evaluation. SIGIR
Forum, 42(2):9–15, November.

Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li,
Qi Li, Jing Gao, and Murat Demirbas. 2014. Crowd-
sourcing for multiple-choice question answering. In
AAAI, pages 2946–2953.

Michael S Bernstein, Joel Brandt, Robert C Miller,
and David R Karger. 2011. Crowds in two sec-
onds: Enabling realtime crowd-powered interfaces. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology, pages 33–42.
ACM.

Michael S Bernstein, Jaime Teevan, Susan Dumais,
Daniel Liebling, and Eric Horvitz. 2012. Direct an-
swers for search queries in the long tail. In Proceed-
ings of the SIGCHI conference on human factors in
computing systems, pages 237–246. ACM.

Fumihiro Bessho, Tatsuya Harada, and Yasuo Kuniyoshi.
2012. Dialog system using real-time crowdsourcing
and twitter large-scale corpus. In Proceedings of the
13th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, SIGDIAL ’12, pages 227–
231, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Michael J Franklin, Donald Kossmann, Tim Kraska,
Sukriti Ramesh, and Reynold Xin. 2011. Crowddb:
answering queries with crowdsourcing. In Proceed-
ings of the 2011 ACM SIGMOD International Confer-
ence on Management of data, pages 61–72. ACM.

Catherine Grady and Matthew Lease. 2010. Crowd-
sourcing document relevance assessment with me-
chanical turk. In Proceedings of the NAACL HLT 2010
workshop on creating speech and language data with
Amazon’s mechanical turk, pages 172–179. Associa-
tion for Computational Linguistics.

Walter S. Lasecki, Rachel Wesley, Jeffrey Nichols,
Anand Kulkarni, James F. Allen, and Jeffrey P.
Bigham. 2013. Chorus: A crowd-powered conver-
sational assistant. In Proceedings of the 26th An-
nual ACM Symposium on User Interface Software and
Technology, UIST ’13, pages 151–162, New York, NY,
USA. ACM.

14

