
D S Sharma, R Sangal and E Sherly. Proc. of the 12th Intl. Conference on Natural Language Processing, pages 39–48,
Trivandrum, India. December 2015. c©2015 NLP Association of India (NLPAI)

Self-Organizing Maps for Classification of a Multi-Labeled Corpus

Lars Bungum and Björn Gambäck
Department of Computer and Information Science
Norwegian University of Science and Technology
Sem Sælands vei 7–9, 7094 Trondheim, Norway

{larsbun,gamback}@idi.ntnu.no

Abstract

A Self-Organizing Map was used to clas-
sify the Reuters Corpus, by assigning a la-
bel to each of the documents that cluster
to a specific node in the Self-Organizing
Map. The predicted label is based on
the most frequent label among the train-
ing documents attributed to that particu-
lar node. Experiments were carried out on
different grid sizes (node numbers) to de-
termine their influence on classification re-
sults. Informative visualizations of the re-
sulting Self-Organizing Maps are demon-
strated. We argue that the Self-Organizing
Map is well suited to classify a document
collection in which many documents si-
multaneously belong to several categories.

1 Introduction

Categorization of a text corpus in which each arti-
cle is attributed with a set of categories (labels), is
a classical supervised classification task. Most su-
pervised classification methods learn parameters
from a training set of labeled instances, and use
the learned model to score test instances. The
Self-Organizing Map (SOM) is in contrast an un-
supervised technique, clustering similar training
instances together, without knowledge of their cat-
egories. The resulting maps display visually iden-
tifiable, but non-delimited, clusters. In this way,
the SOM algorithm makes underlying similarities
in high-dimensional space visible in lower dimen-
sions. Through a two-step methodology, the la-
bels of a training corpus associate with areas of
the map; areas that in turn can be used to classify
previously unseen documents.

The Reuters Corpus (Lewis et al., 2004) con-
sists of text documents with a varying amount of
labels attributed to them. Sebastiani (2002) notes
a fundamental distinction between the single-label

and multi-label classification tasks. In the for-
mer, only one label is attributed to each docu-
ment, whereas any number can be attributed to the
documents in the latter. Most research has gone
into the single-label problem, as this will gener-
alize to multi-label classification, by transforming
the problem to a sequence of binary classification
problems. This however, rests on the assumption
that the categories are stochastically independent,
that is, that the label of a document does not de-
pend on the whether the document also has an-
other label.

Another key problem in document classification
relates to vectorization, how a group of documents
is converted into a vector-based feature representa-
tion. The way documents are represented, and of-
ten the cut-off point in deriving TFIDF or ngram
statistics, will result in different amounts of fea-
tures. Documents can in principle be vectorized to
any dimensionality, in its simplest form counts of
occurrences of a given set of words.

A number of experiments were conducted on
two different portions of the Reuters Corpus, the
Top 10 and Full set of categories, respectively.
While this follows a tradition of SOM-based clas-
sification, we offer more details on the implemen-
tation, the vectorization, and the parameters for
creating the map. Self-Organizing Maps of dif-
ferent sizes were used to evaluate the importance
of the number of nodes in SOM classification. The
cost of computing the maps increase with the size
of their topologies, posing the research question:
Can this be justified with classifier performance?

We demonstrate that the method elucidates sim-
ilarities between labels as well as between docu-
ments, and argue that the reduction of the multi-
label classification of the corpus into a cascade of
binary classification problems under the assump-
tion that the categories are stochastically indepen-
dent is not plausible.39

(a) First epoch. (b) Last epoch.

Figure 1: RGB color coding of a SOM.

Section 2 discusses related work and presents
some background on the SOM algorithm and us-
ing them as a classification device, while Sec-
tion 3 describes the Reuters Corpus and Section 4
goes through the applied methodology. Section 5
presents the experimental results, that are further
discussed in Section 6. Section 7 concludes and
looks forward.

2 Self-Organizing Maps

Self-Organizing Maps (Kohonen, 1982) is a Clus-
ter Analysis Algorithm with roots in Artificial
Neural Networks, also termed Kohonen Neural
Networks, as discussed by Lo et al. (1991). A
SOM functions on nodes organized according to
a given topology (usually 2-dimensional). The
nodes are made up by vectors of some higher di-
mensionality, directly comparable to vectors rep-
resenting training samples. The properties of the
nodes are gradually changed during a pre-defined
number of epochs, making the nodes more similar
to the training samples. Changing one data point
(node) will also affect its neighboring nodes, in a
fashion inspired by biological systems in which
neurons with similar functions organize in the
same areas.

This process is illustrated in Figure 1, where
25x25 nodes are represented as vectors with three
dimensions, each with values between 0 and 1.
The training samples consist of a set of fixed col-
ors, encoded as RGB (red, green, and blue) val-
ues. After the end of training, the grid has “self-
organized“ into areas of similar colors. This is
accomplished by comparing each training sample
to each node, according to a distance metric, and
drawing the closest node (“the winner”) and its
neighborhood towards the training sample. The
samples are processed serially, and this is repeated
for n epochs, as outlined in Figure 2.

Samples can be of any dimensionality; the
higher the dimensionality, the more computation-
ally costly will each comparison be. The result-
ing map will group (self-organize) similar high-

1. Initialize nodes in the 2-dimensional topology.
2. (a) Sample all vectorized documents from the

training material in succession.
(b) Find the closest match in the node layout.
(c) Update this matching node and its neigh-

bors to be closer to the sample.
3. Reduce learning rate and/or neighborhood size.
4. Return to Step 2 until end of all epochs.

Figure 2: SOM algorithm.

dimensional vectors together, that can be visu-
ally inspected in the original topology, a low-
dimensional space. Hence a feat of cartography in
the landscape of documents is achieved, not only
because documents are found in the same areas on
the map, but also because the distances between
nodes are visible with color shadings or contour
plots. In this way differences in high-dimensional
space become apparent in lower dimensions, cre-
ating a dimensionality reduction.

Hyötyniemi (1996) used a SOM to extract fea-
tures for document representation, based on the
clustering of character trigrams, arguing that this
would account better for linguistic features.

Eyassu and Gambäck (2005) and Asker et al.
(2009) used Self-Organizing Maps to classify
Amharic news text. Categorized by experts, each
document in the training corpus was associated
with a query. A merged query and document ma-
trix (i. e., the vector representation of the collec-
tion) was used for training the SOM. They report
using many epochs (up to 20,000) and achieved
classification accuracies in line with comparable
methods such as Latent Semantic Indexing (Deer-
wester et al., 1990).

In order to use the SOM for a supervised classi-
fication task, consisting of a training and test cor-
pus, it is necessary to establish a mechanism by
which to ascribe a label to each of the test sam-
ples, i. e., what class membership (label) to predict
for the sample in question. During classification, a
test sample will be compared to the 2-dimensional
grid to find its winning node, just like in training.

Going from a winning node to a prediction re-
quires attribution of labels to individual nodes.
One way to choose the label to be attributed
by a node is to assign the test sample all cate-
gories found in the node. Saarikoski (2009) and
Saarikoski et al. (2011) suggested another straight-
forward method by which the label prediction is
taken as the most frequent label, i. e., is selected40

Figure 3: Example of SOM clustering with ma-
jority voting. Yellow labels from training corpus,
magenta labels from test corpus.

by majority vote of the class labels of all train-
ing samples that had this node as winner. In
the last run of the SOM, the Best-Matching Unit
(BMU) of each training sample in the final epoch
is recorded.

For empty nodes, being no sample’s BMU, the
next closest n nodes (the BMUs being the clos-
est) are investigated for training samples until a
non-empty node is found. The prediction is made
according to the most frequent label of this node.

This process is illustrated with Figure 3, where
each square represents a node (so a 2x2 SOM).
Two of the four nodes have documents attaching
to them. The yellow labels are from the training
corpus, and the magenta from test samples. The
SOM classifies test documents correctly, if their
labels match that attributed to them by the node.

In the bottom-left node, both matching training
samples (2 in yellow) had the label acq (acquisi-
tions), which would be the prediction of this node.
The one test sample (1 in magenta) that had this
node as its BMU was also labeled acq, i. e., a cor-
rect prediction.

For the top-right node, the figure shows that the
four training samples were split between money-
fx (2), money-supply (1) and interest (1). By ma-
jority voting, the predicted label of the node be-
comes money-fx. However, the five test samples
were all labeled interest, and all of them would
thus be falsely classified (as money-fx).

3 Data

The Reuters Corpus (Lewis et al., 2004) has been
used extensively for text classification research.
For easier comparison of results, several ways
of processing the corpus have been established.
Those pertain to the corpus subsets, and a spe-
cific split of it into training and test sets called the
ModApté split (Lewis, 1997).

A further much used split means dividing the
ModApté into either the ten most frequent cat-
egories, the categories with at least one positive
training and one test example (90), or the cate-
gories with at least one training example (115).

The split with the 90 categories with at least
one positive training and test example is some-
what confusingly called AptéMod by Yang and
Liu (1999), while Debole and Sebastiani (2004)
refer to it as the R(90) subset of the ModApté
split. Elsewhere, the R(90) split with 10,789 docu-
ments is also called ModApté (Yang et al., 2009;
Chen et al., 2004; Saarikoski et al., 2011).

The Natural Language Toolkit (NLTK) in-
terface (Loper and Bird, 2002) to the Reuters
Corpus provides the AptéMod split as com-
prised by 7,769 training examples and 3,019
test instances. The category frequencies are
[9160, 1173, 255, 91, 52, 27, 9, 7, 5, 3, 2, 1, 0, 2, 1],
i. e., 9,160 documents with just one category,
1,173 with two, etc. A plot of the log-frequency
of categories is shown in Figure 4.

The NLTK interface provides a data structure
where the raw text and categories are indexed on
filenames. This was used in the present work, and
the documents were transformed into a matrix of
TF-IDF values, i. e., the product of the Term Fre-
quency (the occurrence of the term in the docu-
ment) and the Inverse Document Frequency (the
log of the number of documents containing this
term). A term can be any n-gram.

The corpus is comprised of text documents
with 0 to 15 different category labels. The
five most frequent labels of the 90 categories in
the ModApté split have the following counts:
[3923, 2292, 374, 326, 309], totalling 7,224 of the
9,160 documents. The skewed distribution means
that accuracy on the entire corpus is not al-
ways a good measure of classifier performance, as
the performance on less frequent categories may
drown in the larger categories. The distinction be-
tween micro- and macroaveraging mitigates this.

The microaverage averages over the categories41

Figure 4: Log-frequencies of categories in the
Reuters Corpus. Log of 0 set to 0.

to be classified within an experiment counting all
correct predictions in one pool and dividing by the
number of classified documents. This is expressed
in Equation 1 where c denotes the number of cor-
rectly classified documents and n the total number
of documents.

Microaverage =
c

n
(1)

This measure will be skewed towards larger
classes: Consider a classifier that classifies one
large category with 90 documents 100% correctly,
whereas 10 other classes with one document each
were all wrong. That would give a microaverage
of 90%, even though most categories were com-
pletely wrong.

The macroaverage is a measure that is weighted
with relative size, expressed formally in Equa-
tion 2 where cj and nj are the number of correctly
classified documents belonging to class j and the
total number of documents in that class, resp.

Macroaverage =

∑ cj
nj

|Classes| (2)

In the same way as for accuracy, micro- and
macroaverages can be calculated for precision, re-
call and F-score. However, when the classification
problem is framed as a one-of classification, i. e.,
when all documents in the test set belong to ex-
actly one class, the microaveraged F-score will be
the same as the accuracy, because the number of
false positives and false negatives will always be
the same. If a document is classified with a label
it does not have, it will be a false positive in that
class, but also a false negative in the class it cor-
rectly belongs to (Manning et al., 2008).

4 Implementation

The Self-Organizing Map algorithm was imple-
mented in MPI (mpi4py)1 and Python, and run
on a Portable Batch System (PBS)2 scheduler. A
quadratic layout of nodes was used for the exper-
iments. Samples were processed serially, but for
each sample, the vector comparisons and updating
of nodes were done in parallel. The availability of
large-scale High-Performance Computing (HPC),
facilitated feasibility of the “on-line” version of
the SOM algorithm. “On-line” as weights are up-
dated after processing of each training sample, as
formulated in Figure 2.

Methods for reducing computational cost in-
clude using a two-step approach (i. e., a SOM
on the output of another SOM) (Kohonen et al.,
1996), or formulating a “batch-SOM” algorithm.
These methods contrast the “on-line” version by
updating all node weights in one operation per
epoch. See Lawrence et al. (1999) and Patel et al.
(2015) for parallel batch-SOM implementations.
Fort et al. (2002) compared the approaches and
noted some problems with the batch formulation,
e. g., initialization sensitivity, while it had advan-
tages in terms of speed and efficiency.

In the on-line formulation, vector comparisons
and updates are run per training sample, increas-
ing linearly with the number of training samples.
In turn, the vector comparisons increase with the
number of nodes in the grid. Vector comparisons
are costly, and therefore lend themselves well to
parallelization. Hence, the parallel on-line imple-
mentation used in these experiments is sensitive
to a large amount of training samples, but well
equipped to handle large SOM topologies.

Each experiment in Section 5 was defined in a
configuration file, where parameters such as the
size of the grid, the number of iterations, the learn-
ing rate and the size of the initial neighborhood
radius were specified, as well as details about
the vectorization of training data. The neighbor-
hood surrounding each BMU was defined by a
diminishing-by-epoch radius, with a configurable
initial size. The radius was reduced by exponen-
tial decay, as was the learning rate, i. e., the degree
to which Best-Matching Units were updated to be
similar to training samples.

The vectorization of documents was done with
scikit-learn (Pedregosa et al., 2011), offering

1http://mpi4py.scipy.org/
2Both OpenPBS and PBS Professional were used.42

a large selection of convenient vectorizers that
swiftly transform test documents into the same
vector form as the training corpus. In these exper-
iments, the TFIDF transformer was used for vec-
torization. Similarly the library offers a number of
metrics for vector comparison, such as Euclidean,
Hamming or Chebichev distances. An Euclidean
distance metric was used for all the following ex-
periments. The implementation was fully modular
with regard to the choice of these methods.

5 Experiments

Two rounds of experiments were carried out. The
first experiments were conducted with the same
vectorization parameters on five different grid
sizes; 8x8, 16x16, 32x32, 64x64, and 128x128
(i.e., from 64 to 16,384 nodes) on the Top 10 cate-
gories of the Reuters Corpus, comparing execution
times for grid configurations with increasing num-
bers of parallel processes. The second round of ex-
periments was done on the entire AptéMod split
(90 categories), investigating the effect on classi-
fication performance of varying grid sizes by the
same amount. In both rounds of experiments, the
SOM was configured with an initial learning rate
of 0.10 and an initial neighborhood radius of a
quarter of the grid dimension.

In order to focus experiments on the one-of
classification problem, the training and test cor-
pora were limited to documents with only one
category when classifying the Top 10 categories.
When using majority voting for prediction, the
method would not benefit from the added infor-
mation that some documents have more classes, as
less frequent classes in each node could be voted
down. Using documents restricted to one label
could therefore bring about better separation in the
Self-Organizing Map.

5.1 Top 10 Categories

In these experiments, the documents were limited
to those belonging to the Top 10 categories. Doc-
uments were vectorized into 33,120 dimensions.
Each vector consists of the TFIDF values for the
ngrams ranging from 1 to 7, with a cut-off fre-
quency of 5 (i. e., ignoring dictionary terms with
a frequency below this threshold). The number of
documents labeled with these categories are listed
in Table 1.

The first experiments are summarized in Ta-
ble 2. While we did not exhaustively experiment

Category name Num. train Num test

earn 2840 1083
acq 1596 696
money-fx 222 87
crude 253 121
trade 250 76
interest 191 81
ship 108 36
sugar 97 25
coffee 90 22
grain 41 10

Table 1: Number of training/test samples in Top 10
categories of the AptéMod restricted to documents
with only one category.

Grid size 8x8 16x16 32x32 64x64 128x128

Microavg. 0.80 0.89 0.89 0.85 0.80
Macroavg. 0.52 0.79 0.82 0.78 0.75
Processes 8 64 256 1024 2048
Hours 0.5 1 2 4.5 11.5

Table 2: Classification scores for Reuters Corpus
(Top 10 categories) across grid sizes.

with the optimal number of parallel processes for
all experiments — i. e., finding the sweet spot be-
yond which new processes do not mean a speed-up
due to overhead costs — we did one experiment
on creating the same SOM (identical parameters)
with a different amount of nodes processes in use
on the High-Performance Computing (HPC) grid.
The experiment compared creating a SOM with a
16x16 node grid, computed with 64 processes over
4 nodes (the same as in Table 2), to running it all
on just one node, with parallel 16 processes. The
former (64 parallel processes) took 1 hour to com-
plete vs. 4 hours when running on only one node
(16 processes).

5.2 All Categories

The second group of experiments was conducted
on all (90) categories, summarized in Table 3.

Grid size 8x8 16x16 32x32 64x64 128x128

Microavg. 0.65 0.75 0.78 0.77 0.76
Macroavg. 0.07 0.13 0.25 0.25 0.30

Table 3: Classification scores for Reuters Corpus
(all categories).43

(a) 0% (b) 10% (c) 20% (d) 30%

(e) 40% (f) 50% (g) 60% (h) 70%

(i) 80% (j) 90% (k) 100%

Figure 5: Development of SOM Top 10 categories
vectorized with 33,120 dimensions, 32x32 grid
and 100 iterations.

In these experiments, documents were vectorized
into 19,092 dimensions. Each vector was com-
prised by TF-IDF values for ngrams ranging from
1 to 7, with a cut-off frequency of 10. While doc-
uments both in training and test sets could have
multiple labels, each label was treated individually
when predicting and scoring, as a series of single-
label classification problems.

5.3 Visualization of SOM Development

Figure 5 shows the development of a Self-
Organizing Map with a grid size of 32x32 from
the experiments on the Top 10 categories. Dur-
ing the first iteration steps, the radius of the ini-
tial neighborhood is clearly visible before the grid
self-organizes into a map. Each node is repre-
sented by a vector with the same dimensionality
as the vectorized documents; these node vectors
were reduced to four dimensions using Principal
Component Analysis (PCA) (Jolliffe, 1986).

The four values were then used to encode a
color in the Matplotlib library (Hunter, 2007), dis-
playing each node as a color grading. The library
accepts vectors of both three and four dimensions
to create colors, so in order to retain more of the
variance in the original node vectors, the vectors
were reduced to four dimensions. Similarity in
colors visualize similarity between vectors in the
same area. Document labels verify that these areas
represent texts belonging to the same categories.

Figure 6: Annotated SOM with grid size 8x8 of
the Top 10 categories, with highlighted excerpts.
Training samples yellow, test samples magenta.

(a) top-left (purple) (b) bottom-left (green)

(c) middle (blue)

Figure 7: Excerpts from Figure 6 showing how
document categories cluster.

5.4 Visualization of Resulting SOMs

Figure 6 shows a completed Self-Organizing Map
annotated with the categories of the training (yel-44

(a) 8x8 (b) 16x16 (c) 32x32

(d) 64x64 (e) 128x128

Figure 8: Various size SOMs, Top 10 categories.

low) and the test (magenta) samples.
The 8x8 map is used for illustration here since

it is easier to show the contents of grid cells in this
format. As the number of nodes grows larger, it is
difficult to fit the areas in one frame.

Three excerpts of the 8x8 SOM of Figure 6 are
detailed in Figure 7. Starting with Figure 7a, the
cell in the top left corner of the map has three
training corpus labels attaching to it, acq (41 doc-
uments), earn (3) and interest (1); and 14 docu-
ments from the test corpus, all with the category
acq. Majority voting among the training samples
assigns the category acq to the node and hence en-
sures that all of the test samples are labeled cor-
rectly.

In Figure 7b, all documents — both from the
training and test corpora — have the label earn, so
classification is straight-forward (and correct).

Finally, the four nodes in Figure 7c have at-
tracted documents with multiple labels. The fig-
ure shows four cells, each representing a node in
the SOM. The yellow training labels are sorted in
decreasing order from the left bottom up, and the
magenta test labels in decreasing order from the
left top corner of the cell.

The labels with the highest frequency both in
the training and test corpora match all four cells
in Figure 7c (interest, coffee, money-fx and crude).
Thus, these labels from the training corpus are the
predictions for each node, and the set of correctly
predicted test samples, respectively.

In addition to the most frequent labels, the lists
in Figure 7c share many other members, indicating
that the clustered documents have more properties
in common.

(a) 8x8 (b) 16x16 (c) 32x32

(d) 64x64 (e) 128x128

Figure 9: Various size SOMs, all categories.

The final maps for the Top 10 category and all
category runs are shown in Figures 8 and 9. In the
larger maps there are fewer categories attaching
to each node, both from training and test corpus.
As can be seen from the results in Tables 2 and 3,
macroaveraged F-scores increase as the grid sizes
increase. With fewer categories per node, smaller
categories have a better chance of being the major-
ity category of a node, enabling the SOM to pre-
dict that node.

Figure 8d shows a SOM with grid size 64x64.
On the left side of the picture, a light green area
is visible. The green area is populated by doc-
uments labeled crude, going into an area labeled
earn as the area turns gray in the vertical direction.
Likewise, in the middle of the figure, areas pop-
ulated by interest neighbor areas labeled money-
supply. The map images are too large to include,
and hence left out from the present paper.

Figure 10 complements the information of the
color shadings. The heatmap shows the amount
of documents attached to each node (having the
node as their BMU). This number is not visible
from the color gradings of the map Visualization,
and offers insight into the relative size of these ar-
eas. The Unified Distance Matrix (UDM) shows
the differences between the nodes on the map. The
UDM is computed by taking the average distance
between each node and its immediate neighbors
in 2D space. High distances between nodes are
shown as peaks in Figure 10b, and low areas rep-
resent clusters of similar vectors. Comparing Fig-
ures 8d and 10a, the flat area on the UDM reflects
the large area in the bottom right corner in the
same gray shading.45

(a) Heatmap

(b) Unified Distance Matrix

Figure 10: Heatmap and Unified Distance Matrix
of SOM with grid size 64x64. Top 10 categories.

6 Discussion and Related Work

Using the unsupervised Self-Organizing Map ap-
proach we observe relations between categories,
both through clusters of documents belonging to
similar categories being placed next to each other
on the map, and also in terms of some nodes in the
SOM attracting separate documents with themati-
cally adjacent labels as their Best-Matching Unit,
such as money-fx and interest. This could be a re-
flection of these documents being in a thematical
intersection between topics, or outright belonging
to both.

Wermter and Hung (2002) integrated the SOM
with WordNet-based (Miller, 1995) semantic net-
works for doing classification on the Reuters Cor-
pus. Documents were represented by significance
vectors, i. e., the degree to which the documents
belong to certain preassigned topics, that were in
turn calculated from the importance of words in
each category.

Saarikoski (2009) performed several experi-
ments on using Self-Organizing Maps for In-

formation Retrieval and document classification
(Saarikoski et al., 2011), comparing the algorithm
to other machine learning techniques. While they
explained how the SOM was applied to the prob-
lem, some factors that affect classification perfor-
mance were unaccounted for, such as the param-
eters for the SOM creation, notable grid size and
learning rate. Restricting the classification to the
Top 10 categories (by frequency) their best exper-
iments had micro- and macroaverages of 93.2%
and 83.5%, respectively.

Interestingly, Saarikoski et al. (2011) report that
a Naı̈ve Bayes classifier outscored all other meth-
ods on the data (95.2% and 90.4%), results that
also significantly beat the findings of Dumais et al.
(1998), who reported only 81.5% accuracy for the
Naı̈ve Bayes method. This discrepancy is likely
due to a difference in scoring, as Dumais et al.
(1998) reported break-even scores (motivated by
comparability with other research), as opposed to
Saarikoski et al. (2011) that gave true accuracy
scores without any adjustment for precision-recall
trade-off. The break-even point is where the pre-
cision is equal to recall, the point at which false
positive and negative mis-classifications are done
at the same rate.

Saarikoski et al. (2011) noticed how the costly
training of SOMs is followed by cheap testing of
new instances when doing classification, and sug-
gested using multiple maps for multi-label clas-
sification, or alternatively using the three near-
est labels for a new instance. This would, how-
ever, assume that all documents should have the
same amount of labels in multi-label classification,
which clearly is not the case in general. Still, it
is possible to equip each node with a notion of
label distribution, among its BMU training sam-
ples, possibly within a region (neighborhood) of
the BMU.

While we did not see an increase in the one-
of classification when the Self-Organizing Map
topologies went above 32x32 nodes, it is likely
that the multi-label problem benefits from a larger
amount of nodes, offering finer granularity.

7 Conclusion and Future Work

In this paper we have used a parallel implemen-
tation of an “on-line” Self-Organizing Map al-
gorithm on a well-researched classification task.
Expanding the analysis offered in comparable re-
search, we have explored how the grid size of the46

SOM affects classification performance. We ob-
serve that classification performance increases up
to the size of 32x32 nodes, and then deteriorates
for the vectorizations used in the experiments. The
paper offers extensive details on the parameters
used to create the SOMs.

Using the Self-Organizing Map analysis, we
observe underlying relations between documents,
visible in 2D space, although represented with
high-dimensional vectors. In the Self-Organizing
Maps, similarities between labels as well as simi-
larities between individual documents are visible.
We therefore argue that the simplification of the
multi-label classification task to a cascade of bi-
nary classification tasks is not plausible for the
Reuters Corpus, because of the presence of rela-
tions between labels.

Further research into the multi-label problem
and its relation to large-topology Self-Organizing
Maps is prudent, given the findings of the present
work. Devising a fair evaluation scheme for mea-
suring the accuracy of SOM classifiers that at-
tribute many labels to each document instance as
a multi-label problem, is still an open question.
Similarly, it is also an open question which method
to use to decide how many labels to attribute to a
new training instance. It is a natural next step to
run more experiments on attributing several labels
to documents in one operation and comparing that
to running a series of binary classifications, as in
the experiments presented in this paper.

Having implemented the Self-Organizing Map
algorithm in a highly modular fashion, we would
also like to experiment with both a) using differ-
ent vectorizers and b) applying different distances
metrics, in order to investigate their impact on
classification results. Wermter and Hung (2002)
reported good results on integrating other knowl-
edge sources in vectorization, calling for a system-
atic comparison to purely data-driven vector trans-
formers, and to hybrids between knowledge- and
data-driven vectorizers.

Acknowledgments

The research leading to these results has been
funded by Norwegian University of Science and
Technology (NTNU), and by the Norwegian Re-
search Council (NFR) and the Czech Ministry of
Education, Youth and Sports (MŠMT) through the
Norwegian Financial Mechanism 2009–2014 un-
der Contract no. MSMT-28477/2014.

References
Lars Asker, Atelach Alemu Argaw, Björn Gambäck,

Samuel Eyassu Asfeha, and Lemma Nigussie Habte.
2009. Classifying Amharic webnews. Information
Retrieval, 12(3):416–435.

Junli Chen, Xuezhong Zhou, and Zhaohui Wu. 2004.
A multi-label Chinese text categorization system
based on boosting algorithm. In Proceedings of the
Fourth International Conference on Computer and
Information Technology, pages 1153–1158, Wash-
ington, DC, USA. IEEE Computer Society.

Franca Debole and Fabrizio Sebastiani. 2004. An anal-
ysis of the relative hardness of Reuters-21578 sub-
sets. Journal of the American Society for Informa-
tion Science and Technology, 56:971–974.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Susan Dumais, John Platt, Mehran Sahami, and David
Heckerman. 1998. Inductive learning algorithms
and representations for text categorization. In Pro-
ceedings of the 7th International Conference on In-
formation and Knowledge Management, pages 148–
155. ACM Press.

Samuel Eyassu and Björn Gambäck. 2005. Classify-
ing Amharic news text using Self-Organizing Maps.
In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics, Ann Ar-
bor, Michigan, June. ACL. Workshop on Computa-
tional Approaches to Semitic Languages.

Jean-Claude Fort, Patrick Letrémy, and Marie Cottrell.
2002. Advantages and drawbacks of the Batch Ko-
honen algorithm. In Michel Verleysen, editor, Pro-
ceedings of the 10th European Symposium on Artifi-
cial Neural Networks, pages 223–230, Bruges, Bel-
gium.

John D. Hunter. 2007. Matplotlib: A 2D graphics en-
vironment. Computing in Science & Engineering,
9(3):90–95.

Heikki Hyötyniemi. 1996. Text document classifi-
cation with self-organizing maps. In J. Alander,
T. Honkela, and M. Jakobsson, editors, Proceed-
ings of 7th Finnish Artificial Intelligence Confer-
ence, pages 64–72, Vaasa, Finland.

Ian T. Jolliffe. 1986. Principal Component Analysis.
Springer Verlag, New York, NY, USA.

Teuvo Kohonen, Samuel Kaski, Krista Lagus, and
Timo Honkela. 1996. Very large two-level SOM
for the browsing of newsgroups. In C. von der
Malsburg, W. von Seelen, J. C. Vorbrüggen, and
B. Sendhoff, editors, Proceedings of ICANN96, In-
ternational Conference on Artificial Neural Net-
works, Lecture Notes in Computer Science, vol.
1112, pages 269–274. Springer, Berlin, July.47

Teuvo Kohonen. 1982. Self-organized formation of
topologically correct feature maps. Biological Cy-
bernetics, 43(1):59–69.

Richard D. Lawrence, George S. Almasi, and Holly E.
Rushmeier. 1999. A scalable parallel algorithm
for self-organizing maps with applications to sparse
data mining problems. Data Mining and Knowledge
Discovery, 3(2):171–195.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. RCV1: A new benchmark collection
for text categorization research. Journal of Machine
Learning Research, 5:361–397, December.

David D. Lewis. 1997. Reuters-21578 text categoriza-
tion test collection.
http://www.daviddlewis.com/
resources/testcollections/
reuters21578/.

Zhen-Ping Lo, Masahiro Fujita, and Behnam Bavarian.
1991. Analysis of neighborhood interaction in Ko-
honen neural networks. In Proceedings of the Fifth
International Parallel Processing Symposium, pages
246–249. IEEE.

Edward Loper and Steven Bird. 2002. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York,
NY, USA.

George A. Miller. 1995. WordNet: A lexical
database for English. Communications of the ACM,
38(11):39–41, November.

Bhavik Patel, Anurag Jajoo, Yash Tibrewal, and Amit
Joshi. 2015. An efficient parallel algorithm for self-
organizing maps using MPI-OpenMP based cluster.
International Journal of Computer Applications,
IJCA Proceedings on International Conference on
Advanced Computing and Communication Tech-
niques for High Performance Applications(2):5–9,
February.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12(1):2825–2830.

Jyri Saarikoski, Jorma Laurikkala, Kalervo Järvelin,
and Martti Juhola. 2011. Self-organising maps in
document classification: A comparison with six ma-
chine learning methods. In Andrej Dobnikar, Uroš
Lotric, and Branko Šter, editors, Adaptive and Natu-
ral Computing Algorithms: 10th International Con-
ference, ICANNGA 2011, Ljubljana, Slovenia, April
14-16, 2011, Proceedings, Part I, volume 6593 of
Lecture Notes in Computer Science, pages 260–269.
Springer.

Jyri Saarikoski. 2009. A study on the use of self-
organised maps in information retrieval. Journal of
Documentation, 65(2):304–322.

Fabrizio Sebastiani. 2002. Machine learning in au-
tomated text categorization. ACM Computing Sur-
veys, 34(1):1–47, March.

Stefan Wermter and Chihli Hung. 2002. Self-
organizing classification on the Reuters news cor-
pus. In Proceedings of the 19th International Con-
ference on Computational Linguistics - Volume 1,
COLING ’02, pages 1–7, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Yiming Yang and Xin Liu. 1999. A re-examination
of text categorization methods. In Proceedings of
the 22nd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’99, pages 42–49, New York, NY,
USA. ACM.

Shuang-Hong Yang, Hongyuan Zha, and Bao-Gang
Hu. 2009. Dirichlet-Bernoulli alignment: A genera-
tive model for multi-class multi-label multi-instance
corpora. In Y. Bengio, D. Schuurmans, J.D. Laf-
ferty, C.K.I. Williams, and A. Culotta, editors, Ad-
vances in Neural Information Processing Systems
22, pages 2143–2150. Curran Associates, Inc.

48

