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Introduction

We are pleased to bring you the Proceedings of the 6th Workshop on Speech and Language
Processing for Assistive Technologies (SLPAT), held in Dresden, Germany, on 11 September,
2015. We received 35 paper submissions, of which 22 were chosen for oral presentation and
one was a system demonstration; all 23 papers are included in this volume.

This workshop was intended to bring researchers from all areas of speech and language tech-
nology with a common interest in making everyday life more accessible for people with phys-
ical, cognitive, sensory, emotional or developmental disabilities. This workshop builds on five
previous such workshops (co-located with conferences such as ACL, NAACL, EMNLP and
Interspeech); it provides an opportunity for individuals from research communities, and the
individuals with whom they are working, to share research findings, and to discuss present and
future challenges and the potential for collaboration and progress.

While Augmentative and Alternative Communication (AAC) is a particularly apt application
area for speech and natural language processing technologies, we purposefully made the scope
of the workshop broad enough to include assistive technologies (AT) as a whole, even those
falling outside of AAC. Thus we have aimed at broad inclusivity, which is also manifest in the
diversity of our Program Committee. We are also very delighted to have Prof. Jonas Beskow
from the Royal Institute of Technology, Stockholm, Sweden, as invited speaker.

The success of this SLPAT 2015 edition was due to the authors who submitted such interesting
and diverse work and which generated so intense discussions. Finally, we must thank all the
people who made this event possible: The members of the Program Committee for completing
their reviews promptly, and for providing useful feedback for deciding on the program and
preparing the final versions of the papers. The Interspeech organisers who, in many ways,
made the organisation easier, the ISCA Administrative Secretariat for handling finance and the
Dresden University of Technology which hosted the event in their premises.

Jan Alexandersson, Ercan Altinsoy, Heidi Christensen,
Peter Ljunglöf, François Portet, and Frank Rudzicz

Co-organizers of SLPAT 2015
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Talking Heads, Signing Avatars and Social Robots
Exploring multimodality in assistive applications

Jonas Beskow

KTH, Stockholm, Sweden
beskow@kth.se

Abstract

Over the span of human existence our brains have evolved into sophis-
ticated multimodal social signal processing machines. We are experts
at detecting and decoding information from a variety of sources and
interpreting this information in a social context. The human face is
one of the most important social channels that plays a key role in the
human communication chain. Today, with computer animated characters
becoming ubiquitous in games and media, and social robots starting to
bring human-like social interaction capabilities into the physical world, it
is possible to build applications that leverage the unique human capability
for social communication new ways to assist our lives and support us in a
variety of domains.

This talk will cover a series of experiments attempting to quantise
the effect of several traits of computer generated characters/robots such as
visual speech movements, non-verbal signals, physical embodiment and
manual signing. It is shown that a number of human functions ranging
from low-level speech perception to learning can benefit from the presence
of such characters when compared to unimodal (e.g. audio-only) settings.
Two examples are given of applications where these effects are exploited
in order to provide support for people with special needs – a virtual
lipreading support application for hard of hearing and a signing avatar
game for children with communicative disorders.

1
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Bridging the gap between sign language machine translation
and sign language animation using sequence classification

Sarah Ebling1, Matt Huenerfauth2

1Institute of Computational Linguistics
University of Zurich
Zurich, Switzerland
ebling@cl.uzh.ch

2Rochester Institute of Technology (RIT)
Golisano College of Computing and Information Sciences

Rochester, NY, USA
matt.huenerfauth@rit.edu

Abstract
To date, the non-manual components of signed utterances have
rarely been considered in automatic sign language translation.
However, these components are capable of carrying important
linguistic information. This paper presents work that bridges
the gap between the output of a sign language translation system
and the input of a sign language animation system by incorpo-
rating non-manual information into the final output of the trans-
lation system. More precisely, the generation of non-manual
information is scheduled after the machine translation step and
treated as a sequence classification task. While sequence classi-
fication has been used to solve automatic spoken language pro-
cessing tasks, we believe this to be the first work to apply it
to the generation of non-manual information in sign languages.
All of our experimental approaches outperformed lower base-
line approaches, consisting of unigram or bigram models of
non-manual features.

1. Introduction
Sign languages are often the preferred means of communication
of deaf and hard-of-hearing persons, making it vital to provide
access to information in these languages. Technologies for au-
tomatically translating written text (in a spoken language1) into
a sign language would therefore increase the accessibility of in-
formation sources for many people.

Sign languages are natural languages and, as such, fully de-
veloped linguistic systems. While there are a variety of sign lan-
guages used internationally, they share several key properties:
Utterances in sign languages are produced with the hands/arms
(the manual activity) and the shoulders, head, and face (the non-
manual activity). Manual and non-manual components together
form the sublexical components.

1.1. Sign language production pipeline

While the input to a translation system such as the one outlined
above would be a written text, the output is less obvious: Ul-
timately, the goal would be to produce an animation of a vir-
tual human character performing sign language, i.e., a sign lan-
guage avatar. Most sign language machine translation systems

1The term spoken language refers to a language that is not signed,
whether it is represented in its spoken or written form.

produce some form of symbolic output. In the ideal case, this
output should be suitable to serve as the input for an animation-
synthesis system.

Unfortunately, to date, this sign language production
pipeline is often left incomplete, in that the output of many ma-
chine translation systems consists of strings of sign language
glosses,2 i.e., information about the manual activity of a signed
utterance, only.

This paper presents work that bridges the gap between the
output of a sign language translation system and the input of
a sign language animation system by incorporating non-manual
information into the final output of the translation system. More
precisely, the generation of non-manual information is sched-
uled after the machine translation step and treated as a sequence
classification task. To our knowledge, this is the first work to
apply sequence classification to the generation of non-manual
information in sign languages. We show that all of our experi-
mental approaches outperformed lower baseline approaches, in-
cluding unigram and bigram models of non-manual component
sequences.

1.2. Linguistic background and prior work

Experimental research with sign language users has shown that
the absence of non-manual information in synthesized signing
(sign language animation) leads to lower comprehension scores
and lower subjective ratings of the animations [1]. This is be-
cause non-manual components in sign languages are capable
of assuming functions at all linguistic levels [2]. As an exam-
ple, in Swiss German Sign Language (Deutschschweizerische
Gebärdensprache, DSGS), raised eyebrows are used to express
supposition, contrast, or emphasis [3]. A combination of a head
movement forward and raised eyebrows is used to mark topical-
ized constituents. Conditional if /when utterances have the head
tilt and move forward slightly and the eyebrows go up at the
start of the condition part. For rhetorical questions in DSGS,
the head tilts and moves forward slightly and the eyebrows are
furrowed on the question sign [4].

Non-manual components have been omitted, for example,
in a statistical machine translation system that translates be-
tween German and German Sign Language [5] and one that

2Glosses are semantic representations of signs that typically take on
the base form of a word in the surrounding spoken language.

2
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translates between English, German, Irish Sign Language, and
German Sign Language [6]. Massó and Badia [7] took into ac-
count mouth morphemes in a statistical machine translation sys-
tem translating from Catalan into Catalan Sign Language; such
mouth movements convey adverbial or aspectual modifications
to the meaning of manual signs in that language.

In contrast, in this paper, we deal with multiple types of
non-manual components, taking into account the multilinear na-
ture of sign languages. Our work is inspired by linguistic mod-
els that represent both the manual and non-manual components
of signed utterances [8, 9].

The remainder of the paper is structured as follows: Sec-
tion 2 introduces the project as part of which the machine trans-
lation system is being developed. In particular, the data that
served as a basis for the sequence classification experiments is
described. In Section 3, we specify our sequence classification
approaches, provide further information on the data used for the
experiments, explain the experiment configurations, and present
as well as discuss the results.

2. Non-manual components in a corpus of
DSGS train announcements

We are developing a system that automatically translates writ-
ten German train announcements of the Swiss Federal Railways
into DSGS. Our team includes Deaf3 and hearing researchers.
Example 1 below shows an announcement of the Swiss Federal
Railways.

(1) Ausfallmeldung zur S1 nach Luzern: Die S1 nach
Luzern, Abfahrt um 6 Uhr 10, fällt aus. (‘Notice of
cancellation regarding the S1 to Lucerne: The S1 to
Lucerne, scheduled to leave at 6:10am, has been
cancelled.’)

The resulting DSGS announcements are presented by means of
an avatar. A state-of-the art avatar system, JASigning [11], is
used for this. The JASigning character Anna is shown in Figure
1.

The train announcements of the Swiss Federal Railways
are parametrized in that they are based on templates with slots,
where slots are, e.g., the names of train stations, types of trains,
or reasons for delays. When automatically translating these an-
nouncements, one possibility is to take account precisely of
their parametrized nature. However, our goal is to build a
translation system that can later be extended to other domains
with more lexical and syntactic variation. Hence, a more trans-
ferrable translation approach is applied, namely statistical ma-
chine translation.

Statistical machine translation systems require parallel cor-
pora as their training, development, and test data. To build a
parallel corpus, the Deaf and hearing members of our team man-
ually translated 3000 written German train announcements into
DSGS. The DSGS side of the resulting parallel corpus consists
of information arranged on three tiers:

1. sign language glosses

2. head, with 13 possible values

3. eyebrows, with 3 possible values

3It is a widely recognized convention to use the upper-cased word
Deaf for describing members of the linguistic community of sign lan-
guage users and, in contrast, to use the lower-cased word deaf when
describing the audiological state of a hearing loss [10].

The non-manual components in the DSGS side of our par-
allel corpus serve various linguistic functions. For example,
in our domain of train announcements, we have observed that
furrowed eyebrows often occurred during signs with negative
polarity, such as the sign BESCHRÄNKEN (‘LIMIT’). Raised
eyebrows often occurred during signs that express a warning
or emphasis, e.g., the signs VORSICHT (‘CAUTION’) or SO-
FORT (‘IMMEDIATELY’). The syntactic functions mentioned
in Section 1.2, topicalization and rhetorical question, also occur
frequently in the corpus; a few instances of conditional expres-
sions are also present. Many of these syntactic non-manuals
relate to specific words in the sentence (e.g., rhetorical question
non-manual components co-occur with question words, such as
“WHAT”). Within this paper, we focus on such lexically-cued
non-manuals. (As discussed in Section 4, we are aware that
not all non-manual components are predictable based on the se-
quence of lexical items in the sentence alone, and we propose
to investigate such non-manuals in future work.)

Table 1 shows the DSGS translation of the first part of
the train announcement introduced in Example 1, Ausfallmel-
dung zur S1 nach Luzern (‘Notice of cancellation regarding the
S1 to Lucerne’). Note that the starting and ending times of
the non-manual components align with the boundaries of man-
ual activities (as represented through glosses). This has been
shown to be the case for non-manual components with linguis-
tic functions; non-manual components that serve purely affec-
tive purposes, e.g., expressing anger or disgust, are known to
start slightly earlier than the surrounding manual components
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

3. Generating non-manual information
through sequence classification

The goal of our work was to include non-manual information
in the process of translating written German train announce-
ments into DSGS. Traditionally, glosses have been the sole rep-
resentation of sign language in an automatic translation task
(cf. Section 1). One way of considering non-manual compo-
nents in this task is to simply append them to the glosses. This
representation is shown in Example 2 for the announcement in-
troduced in Example 1. The non-manual features are printed in
bold.

(2) Ausfallmeldung zur S1 nach Luzern:
MELDUNG__Head_forward__Eyebrows_raised
IX__Head_back__Eyebrows_raised
BAHN__Head_up__Eyebrows_raised
S1__Head_down__Eyebrows_raised
NACH__Head_up__Eyebrows_neutral
LUZERN__Head_up__Eyebrows_raised
AUSFALL__Head_down__Eyebrows_raised

However, such a representation aggravates the issue of data
sparseness, since the size of the vocabulary is not only equiva-
lent to the number of unique glosses but to the number of unique
combinations of glosses and non-manual features. This in-
creases the likelihood that tokens appear in the decoding phase
that have not been seen during training (out-of-vocabulary
items, OOV). Such a representation also does not accommodate
the multimodal nature of sign languages: Three tiers (glosses,
head, and eyebrow information) are collapsed into one.

We propose an approach that schedules the automatic gen-
eration of non-manual information after the machine translation
step and views it as a sequence classification task. This is justi-
fied by the fact that the non-manual components in our corpus

3



Glosses MELDUNG IX BAHN S1 NACH LUZERN AUSFALL
(‘NOTICE’) (‘IX’) (‘TRAIN’) (‘S1’) (‘TO’) (‘LUCERNE’) (‘CANCELLATION’)

Eyebrows raised neutral raised

Head forward back up down up down

Table 1: DSGS translation of Ausfallmeldung zur S1 nach Luzern (‘Notice of cancellation regarding the S1 to Lucerne’)

serve linguistic functions, which means their boundaries align
with those of manual components (cf. Section 2). Hence, the
process of generating non-manual components can be regarded
as a task of labeling glosses (as representations of the manual
components) with non-manual features.

Figure 1 visualizes the overall pipeline that transforms a
written German train announcement into a DSGS animation:
The machine translation system receives as input a German an-
nouncement like the one introduced in Example 1. With the
help of models learned from our parallel corpus, the system
translates the German announcement into DSGS glosses. The
glosses in turn serve as input for the sequence classification sys-
tem. The output of the machine translation and the sequence
classification system is then combined and converted into mo-
tion data for the avatar. The process of generating the motion
data is not illustrated further in the figure, as it is outside of the
scope of this paper.

3.1. Conditional Random Fields

Sequence classification has been used to solve various natu-
ral language processing problems, such as part-of-speech tag-
ging and chunking (shallow parsing). In contrast to standard
classifiers, sequence classifiers are capable of taking into ac-
count the sequential nature of data. Sequential Conditional Ran-
dom Fields (CRFs) [22] are a state-of-the-art approach for this.
Given one or more sequences of tokens (the evidence), CRFs
compute the probability of a sequence of labels (the outcome).
While multiple evidence layers are permitted, CRFs only allow
the prediction of one outcome layer.

The Wapiti toolkit [23] provides an efficient implementa-
tion of CRFs.4 Sequence classification with Wapiti follows
a train–test–evaluate cycle. Handcrafted feature templates are
created to specify which tokens of the evidence are considered
for the prediction of the outcome labels. In addition, the emis-
sion order is declared, indicating whether the evidence is condi-
tioned on label unigrams (emission order 1) or bigrams (emis-
sion order 2). During the training step, the feature templates are
instantiated with the training data. Wapiti offers a model dump
function, which allows the user to investigate the quality of the
resulting features.

3.2. Data

To perform the sequence classification experiments in Wapiti,
the parallel corpus of 3000 German/DSGS train announcements
described in Section 2 was randomly divided into ten folds of
300 sentences each to enable ten-fold cross validation. For each
validation round, eight folds were used for training, one was
used for development, and one for testing. Using the ground
truth as opposed to the machine translation output (cf. Section
2) as data was motivated by our interest in investigating the po-
tential of sequence classification in isolation, without possible
error propagation from the preceding machine translation step.

4http://wapiti.limsi.fr/manual.html

3.3. Experiment configurations

The goal of the experiments described here was to predict the
most probable sequence of non-manual features for a sequence
of glosses output by the machine translation system (cf. Figure
1). As stated in Section 3.1, CRFs allow the prediction of one
outcome layer at a time. Hence, the two label layers head and
eyebrows in our corpus (cf. Section 2) could either be collapsed
into a single label (Configuration G→H+E, Table 2), or a sep-
arate classifier could be trained for each feature (Configura-
tions G→H and G→E, Table 3). A downside of Configuration
G→H+E is that there is a potential for data sparseness, as the
number of possible outcome labels is equivalent to the number
of cross-combinations of head and eyebrow labels occurring in
the training data. However, even with this approach, the risk of
data sparseness is lower than that of appending the non-manual
features to the sign language glosses during the machine trans-
lation task, as described at the beginning of Section 3.

Evidence Label
Gloss Non-manual

MELDUNG (‘NOTICE’) forward_raised
IX (‘IX’) back_raised
BAHN (‘TRAIN’) up_raised
S1 (‘S1’) down_raised
NACH (‘TO’) up_neutral
LUZERN (‘LUCERNE’) up_raised
AUSFALL (‘CANCELLATION’) down_raised

Table 2: Configuration G→H+E

Evidence Label
Gloss Head

MELDUNG (‘NOTICE’) forward
IX (‘IX’) back
BAHN (‘TRAIN’) up
S1 (‘S1’) down
NACH (‘TO’) up
LUZERN (‘LUCERNE’) up
AUSFALL (‘CANCELLATION’) down

Evidence Label
Gloss Eyebrow

MELDUNG (‘NOTICE’) raised
IX (‘IX’) raised
BAHN (‘TRAIN’) raised
S1 (‘S1’) raised
NACH (‘TO’) neutral
LUZERN (‘LUCERNE’) raised
AUSFALL (‘CANCELLATION’) raised

Table 3: Configurations G→H (top) and G→E (bottom)

4



Figure 1: Sign language production pipeline: machine translation, sequence classification, and animation

With Configurations G→H and G→E, each label layer
(head and eyebrows, respectively) is treated in isolation, which
means that dependencies between the two are not captured.
However, conceptually, dependencies between these two types
of non-manual features exist in that they assume specific lin-
guistic functions together, e.g., topicalization, rhetorical ques-
tions, or conditional expressions in DSGS. These dependencies
can be accounted for by introducing a cascaded approach, i.e.,
by using the output of one classifier as additional input for the
other. More precisely, the output of the head information classi-
fier can be used as additional evidence for the eyebrow informa-
tion classifier and vice versa. This is shown as Configurations
G_E→H and G_H→E in Table 4. Note that such a representa-
tion accommodates the multi-tier nature of sign languages.

To better model the sequential dependencies in a given data
set, an IOB representation [24] could be used. In this format, B
denotes the first token of a label sequence, I a sequence-internal
token, and O is used for tokens that are not part of a sequence of
a label under consideration. This format is applied as Configu-
rations G→HIOB and G→EIOB (Table 5). Note that in the case
at hand, O does not occur, since the data contains multi-class as
opposed to binary annotations and neutral is one of the possible
class labels.

For our experiments, we applied all of the above seven con-
figurations, as summarized in Table 6.

Among the strengths of CRFs is their ability to handle a
large amount of features as well as to cope with redundancy
[23]. We provided 26 feature templates for each evidence layer,
guided by a template provided by Roth and Clematide [25]. Ta-
ble 7 lists the 12 context windows used. The table shows that
the overall context considered ranged from the three previous
tokens to the three following tokens relative to the current po-
sition. Each window was included with both emission order 1
(unigram) and 2 (bigram). In addition, raw unigram output dis-
tribution and bigram output distribution were included.

Evidence Label
Gloss Eyebrows Head

MELDUNG (‘NOTICE’) raised forward
IX (‘IX’) raised back
BAHN (‘TRAIN’) raised up
S1 (‘S1’) raised down
NACH (‘TO’) neutral up
LUZERN (‘LUCERNE’) raised up
AUSFALL (‘CANCELLATION’) raised down

Evidence Label
Gloss Head Eyebrows

MELDUNG (‘NOTICE’) forward raised
IX (‘IX’) back raised
BAHN (‘TRAIN’) up raised
S1 (‘S1’) down raised
NACH (‘TO’) up neutral
LUZERN (‘LUCERNE’) up raised
AUSFALL (‘CANCELLATION’) down raised

Table 4: Configurations G_E→H (top) and G_H→E (bottom)

3.4. Results

Table 8 shows the results of our experiments obtained using the
default settings of Wapiti. “Experimental approach” refers to
the configurations described in Section 3.3. The lower baseline
for each configuration consisted of using the unigram (“Lower
baseline, unigram”) and bigram (“Lower baseline, bigram”)
output distribution of the labels, respectively, i.e., of globally
assigning the most frequent label unigram and bigram of the
training data, respectively. For each experimental or baseline
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Evidence Label
Gloss Head

MELDUNG (‘NOTICE’) B_forward
IX (‘IX’) B_back
BAHN (‘TRAIN’) B_up
S1 (‘S1’) B_down
NACH (‘TO’) B_up
LUZERN (‘LUCERNE’) I_up
AUSFALL (‘CANCELLATION’) B_down

Evidence Label
Gloss Eyebrow

MELDUNG (‘NOTICE’) B_raised
IX (‘IX’) I_raised
BAHN (‘TRAIN’) I_raised
S1 (‘S1’) I_raised
NACH (‘TO’) B_neutral
LUZERN (‘LUCERNE’) B_raised
AUSFALL (‘CANCELLATION’) I_raised

Table 5: Configurations G→HIOB (top) and G→EIOB (bottom)

Configuration Evidence Label

G→H+E glosses head and eyebrows

G→H glosses head

G→E glosses eyebrows

G_E→H – glosses head– eyebrows

G_H→E – glosses eyebrows– head

G→HIOB glosses head IOB

G→EIOB glosses eyebrows IOB

Table 6: Overview of configurations

approach, Table 8 provides the following numerical informa-
tion, in analogy to previous work in classification for natural
language processing [26, 25, 27]:

• Number of labels

• Token error: This is the mean of the token errors of the
ten rounds of a 10-fold cross validation. The token er-
ror for an individual validation round is calculated as the
percentage of incorrectly predicted labels.

• Standard deviation of token error for the ten rounds

• Confidence interval of token error: This is the confidence
interval at a confidence level of 95% calculated over the
mean of the token errors using Student’s t-test.

• Sequence error: This is the mean of the sequence errors
of a 10-fold cross validation. The sequence error for an
individual validation round is calculated as the percent-
age of incorrectly predicted sequences, i.e., sequences
containing at least one token error.

• Standard deviation of sequence error

• Confidence interval of sequence error: This is the con-
fidence interval at a confidence level of 95% calculated

Relative position Description

0 current token
-1 to +1 previous, current, following token
-1 to 0 previous and current token
0 to +1 current and following token
-1 previous token
1 following token
-2 to 0 two previous and current token
-2 to +1 two previous, current, following token
-3 to 0 three previous and current token
-2 to +2 two previous, current, following token
-1 to +2 previous, current, two following tokens
-1 to +3 previous, current, three following tokens

Table 7: Context windows used for the feature templates

over the mean of the sequence errors using Student’s t-
test.

The results in Table 8 show that all experimental ap-
proaches outperformed their lower baselines (unigram and bi-
gram output distribution); in all cases, the magnitude of the dif-
ference was greater than the confidence interval of the values.
The error rates of the experimental approaches are notably low,
which is at least partly due to the nature of the data used for
the experiments: As described in Section 2, the train announce-
ments are highly parametrized in that they are based on a lim-
ited set of phrasal templates. As shown in the table, there is a
tendency for the bigram baseline to perform better than the uni-
gram baseline, a result that underlines the inherently sequential
nature of the data.

3.4.1. Cascaded vs. non-cascaded

Between Configuration G→H (non-cascaded) and G_E→H
(cascaded), both predicting head information, Configuration
G→H exhibits a lower sequence error rate. Between Configu-
ration G→E (non-cascaded) and G_H→E (cascaded), both pre-
dicting eyebrow information, Configuration G_H→E achieved
a lower sequence error rate.

To examine the theoretical potential of the cascaded ap-
proach, we determined the upper bound, i.e., the result of ap-
plying the model learned from the training data on the ground-
truth data. In other words, as data for the additional evi-
dence layer (eyebrow information for Configuration G_E→H
and head information for Configuration G_H→E), we used the
gold-standard annotations of these layers instead of the output
of Configurations G→H and G→E, respectively. The resulting
numbers are shown in the table as “Upper bound” for Configu-
rations G_E→H and G_H→E: Configuration G_E→H/Upper
bound achieved a lower sequence error rate than Configura-
tion G→H. Configuration G_H→E/Upper bound also achieved
a lower sequence error rate than Configuration G→E; here, the
magnitude of the difference is greater than the confidence inter-
vals of the values. These results show that a cascaded approach
is capable of outperforming a non-cascaded approach, and they
imply that in DSGS, head information provides more useful in-
formation for predicting eyebrow information than vice versa.
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Configuration Labels Token level Sequence level
Token Standard Confidence Sequence Standard Confidence
error (%) deviation interval error (%) deviation interval

Predicting H+E 31
Lower baseline, bigram 65.04 0.89 0.63 99.97 0.10 0.07
Lower baseline, unigram 68.16 0.51 0.36 100.00 0.00 n.a.
G→H+E 1.88 0.50 0.36 10.43 2.53 1.81

Predicting H 13
Lower baseline, bigram 63.65 1.05 0.75 99.97 0.10 0.07
Lower baseline, unigram 68.07 0.50 0.36 100.00 0.00 n.a.
G→H 1.62 0.45 0.32 8.96 2.43 1.7
G_E→H 1.62 0.50 0.36 9.19 2.40 1.72

— Upper bound 1.29 0.39 0.28 7.86 2.05 1.46

Predicting E 3
Lower baseline, bigram 20.57 1.07 0.77 94.62 1.80 1.29
Lower baseline, unigram 20.57 1.07 0.77 94.62 1.80 1.29
G→E 0.74 0.24 0.17 6.85 1.81 1.29
G_H→E 0.66 0.16 0.12 5.72 0.96 0.69

— Upper bound 0.45 0.11 0.08 4.21 0.88 0.63

Predicting HIOB 21
Lower baseline, bigram 74.75 3.98 2.85 99.97 0.10 0.07
Lower baseline, unigram 76.41 0.52 0.37 100.00 0.00 n.a.
G→HIOB 1.81 0.56 0.40 9.13 2.84 2.03

Predicting EIOB 6
Lower baseline, bigram 37.07 1.55 1.11 95.79 1.58 1.13
Lower baseline, unigram 43.12 1.48 1.06 98.83 0.48 0.34
G→EIOB 1.41 0.30 0.21 9.96 1.85 1.33

Table 8: Sequence classification experiments: Results

3.4.2. IOB vs. non-IOB

Between Configuration G→H (non-IOB format) and G→HIOB

(IOB format), both predicting head information, Configura-
tion G→H produced a lower sequence error rate. Between
Configuration G→E (non-IOB format) and G→EIOB (IOB
format), both predicting eyebrow information, Configuration
G→E yielded a lower sequence error rate. In this case, the mag-
nitude of the difference was greater than the confidence interval
of the values. These results show that applying an IOB format
was not beneficial for the task at hand, most likely due to data
sparseness: Introducing the IOB format doubled the number
of labels for Configuration G→EIOB compared to Configuration
G→E (6 vs. 3 labels), while the relative increase was lower
for Configuration G→HIOB compared to Configuration G→H
(21 vs. 13 labels), indicating that five head information features
appeared sequence-initially only, i.e., spanned over one gloss.

3.4.3. Analysis of features

We examined the 50 highest-weighted (instantiated) features in
the models of the experimental approaches of Configurations
G→H+E, G_E→H, and G_H→E for the first round of the 10-
fold cross validation: Among the highest-weighted features for
Configuration G→H+E were 31 bigram features and 19 uni-
gram features. The most frequently occurring feature context
window (cf. Table 7) consisted of the current token of the (gloss)
evidence layer (i.e., relative position 0). Thus, the identity of a
lexical item contributed to the model’s prediction of the non-
manual feature that co-occurs with it. The second- and third-
best performing feature context windows contained the previous
token (-1) and the following token (+1) of an evidence layer, re-

spectively, and this was followed by a window containing the
current and the following token (0 to +1). Thus, the neighbor-
ing lexical items contributed to the prediction of the non-manual
feature.

For Configuration G_E→H (predicting head information),
the 50 top-weighted features consisted of 26 bigram and 24 un-
igram features. 48 features used tokens from the gloss evidence
layer, while 2 used tokens from the added eyebrow information
layer. For Configuration G_H→E (predicting eyebrow infor-
mation), this number was considerably higher: Among the 50
best-scoring features were 27 that used tokens from the head
information layer. Again, this serves as evidence that head in-
formation is valuable when predicting eyebrow information in
DSGS.

4. Conclusion and outlook
We have presented work that bridges the gap between the output
of a sign language machine translation system and the input of
a sign language animation system by incorporating non-manual
information into the final output of the translation system. This
is in contrast to many prior statistical sign language machine
translation approaches that did not include non-manual com-
ponents in their output. The inclusion of such non-manual in-
formation enables the final animation-synthesis component of
a translation system to control the head and face of a signing
avatar.

Our approach has scheduled the generation of non-manual
information after the machine translation task and treated it as
a sequence classification task. This is justified by the fact that
the boundaries of linguistic non-manual components align with
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those of manual components, rendering the process of generat-
ing non-manual components a gloss-labeling task.

Sequence classification is a technique commonly used in
the automatic processing of spoken languages. The work we
have reported on in this paper is presumably the first to apply it
to the generation of non-manual information in sign languages.

We have shown that all of our experimental approaches out-
performed their lower baselines. The experimental approaches
consisted of: predicting head and eyebrow information together
in one label, predicting head and eyebrow information sepa-
rately, predicting head information by using eyebrow informa-
tion as additional evidence and vice versa (cascaded approach),
and applying an IOB format. We have demonstrated the poten-
tial of applying a cascaded approach, and we did not observe
any benefit from utilizing an IOB format in our task.

As a next step, we intend to apply our experimental ap-
proaches to a parallel English/American Sign Language (ASL)
corpus from a domain with greater semantic and syntactic va-
riety [28]. In this way, we hope to determine, for a different
sign language and for a more diverse corpus, if the key findings
of this paper are replicable, namely: (a) that the non-manual
components of a sign language sentence may be successfully
predicted using a sequence classification approach and (b) that
some orderings of cascading the sequential predictions are more
successful than others (e.g., for DSGS, we found that head in-
formation was useful to consider when predicting eyebrow in-
formation).

In contrast to the train announcement DSGS corpus used in
this paper, the ASL corpus is known to contain instances of non-
manual information that are not lexically-cued, i.e., they are not
recoverable from the glosses alone. For example, a yes/no ques-
tion in ASL can have the same surface form (gloss order) as a
declarative sentence.5 Thus, we anticipate investigating how
to best exploit information contained in the (English) source
sentence, e.g., to include question marks as absolute features.
Leveraging information from the source sentence will also al-
low us to capture instances in which a syntactic function is ex-
pressed non-manually only on the ASL side: e.g., in ASL, it is
possible to convey negation solely via headshake, without the
use of any manual sign to indicate the negation [29].
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Abstract
This paper reports on work in synthesizing the finger alpha-
bet of Swiss German Sign Language (Deutschschweizerische
Gebärdensprache, DSGS) as a first step towards a fingerspelling
learning tool for this language. Sign language synthesis is an
instance of automatic sign language processing, which in turn
forms part of natural language processing (NLP). The contribu-
tion of this paper is twofold: Firstly, the process of creating a set
of hand postures and transitions for the DSGS finger alphabet
is explained, and secondly, the results of a study assessing the
comprehensibility of the resulting animations are reported. The
comprehension rate of the signing avatar was highly satisfactory
at 90.06%.

1. Introduction
Sign languages are natural languages and, as such, fully devel-
oped linguistic systems. They are often the preferred means of
communication of Deaf1 signers.

Sign languages make use of a communication form known
as the finger alphabet (or, manual alphabet), in which the let-
ters of a spoken language2 word are fingerspelled, i.e., dedi-
cated signs are used for each letter of the word. The letters
of the alphabet of the most closely corresponding spoken lan-
guage are used, e.g., English for American, British, and Irish
Sign Language; German for German, Austrian, and Swiss Ger-
man Sign Language, etc. Figure 1 shows the manual alphabet of
Swiss German Sign Language (Deutschschweizerische Gebär-
densprache, DSGS). Some fingerspelling signs are iconic, i.e.,
their meaning becomes obvious from their form. Most manual
alphabets, like the one for DSGS, are one-handed, an exception
being the two-handed alphabet for British Sign Language.

Tools for learning the finger alphabet of a sign language
typically display one still image for each letter, thus not ac-
counting for all of the salient information inherent in finger-
spelling [3]: According to Wilcox [4], the transitions are more
important than the holds for perceiving a fingerspelling se-
quence. The transitions are usually not represented in sequences
of still images.

1It is a widely recognized convention to use the upper-cased word
Deaf for describing members of the linguistic community of sign lan-
guage users and the lower-cased word deaf when referring to the audi-
ological state of a hearing loss [1].

2Spoken language refers to a language that is not signed, whether it
be represented in spoken or written form.

More recently, 3D animation has been used in finger-
spelling learning tools. This approach “has the flexibility to
shuffle letters to create new words, as well as having the po-
tential for producing the natural transitions between letters” [3].
The difference between an animation and a still-only represen-
tation is shown in Figure 2 for the example of the American
Sign Language (ASL) fingerspelling sequence T-U-N-A [5].

This paper reports on the work in synthesizing the finger al-
phabet of DSGS as a first step towards a fingerspelling learning
tool for this language. Sign language synthesis is an instance
of automatic sign language processing, which in turn forms part
of natural language processing (NLP) [6]. The contribution of
this paper is twofold: Firstly, the process of creating a set of
hand postures and transitions for the DSGS finger alphabet is
explained, and secondly, the results of a study assessing the
comprehensibility of the resulting animations are reported. The
comprehension rate of the signing avatar was highly satisfactory
at 90.06%.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of previous work involving linguistic
analysis (Sections 2.1 to 2.3) and synthesis (Section 2.4) of fin-
gerspelling. Section 3 explains how we produced a set of hand
postures and transitions for DSGS fingerspelling synthesis. Sec-
tion 4 presents the results of the study assessing the comprehen-
sibility of synthesized DSGS fingerspelling sequences.

2. Fingerspelling
2.1. Domains of use

Fingerspelling is often used to express concepts for which no
lexical sign exists in a sign language. Apart from that, it may
serve other purposes: In ASL, fingerspelling is sometimes ap-
plied as a contrastive device to distinguish between “the every-
day, familiar, and intimate vocabulary of signs, and the distant,
foreign, and scientific vocabulary of words of English origin”
[7]. Fingerspelling is also used for quoting from written texts,
such as the Bible. In Italian Sign Language, fingerspelling is
used predominantly for words from languages other than Ital-
ian [7].

Padden and Gunsauls [7], looking at 2164 fingerspelled
words signed by 14 native ASL signers, found that nouns are by
far the most commonly fingerspelled parts of speech, followed
by adjectives and verbs. Within the noun category, occurrences
of fingerspelling were evenly distributed among proper nouns
and common nouns.
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Figure 1: Finger alphabet of DSGS [2]

Figure 2: Still images vs. animation: fingerspelling sequence T-U-N-A in American Sign Language [5]

2.2. Frequency of use and speed

Frequency of use and speed of fingerspelling vary across sign
languages. ASL is known to make heavy use of the finger al-
phabet: 10 to 15% of ASL signing consists of fingerspelling [7].
Native signers have been shown to fingerspell more often (18%
of the signs in a sequence of 150 signs) than non-native signers
(15% of the signs). Within the first group, native signers with a
more advanced formal education (college or postgraduate level)
have been demonstrated to use more fingerspelling (21% of the
signs in a sequence of 150 signs) than native signers at the high
school level (15% of the signs) [7].

In ASL, fingerspelled words continue to be used even af-
ter lexical signs have been introduced for the same concepts
[7]. Some fingerspelled words have also been lexicalized in this
language: For example, the sign FAX is performed by signing
-F- and -X- in the direction from the subject to the object. This
is different from the fingerspelled word F-A-X, which is not
reduced to two fingerspelled letters and does not exhibit direc-
tionality [7].

Compared to 10 to 15% in ASL, British Sign Language
(BSL) has been shown to contain only about 5% fingerspelling
[8]. In BSL, fingerspelled words are typically abandoned once
lexicalized signs have been introduced for a concept.

In DSGS, fingerspelling is even less common than in BSL.

As Boyes Braem and Rathmann [9] pointed out, “few DSGS
signers are as yet as fluent in producing or reading finger-
spelling”.3 Until recently, DSGS signers used mouthings to ex-
press technical terms or proper names for which no lexical sign
existed, which partly accounts for the heavy use of mouthing
in this language [11].4 Nowadays, fingerspelling is used more
often in these cases, particularly by younger DSGS signers. In
addition, it is applied with abbreviations.

Keane and Brentari [13] reported fingerspelling rates be-
tween 2.18 and 6.5 letters per second (with a mean of 5.36
letters per second) based on data from different studies. The
speed of ASL fingerspelling is known to be particularly high
[7], whereas fingerspelling in DSGS is much slower: Accord-
ingly, in a recent focus group study aimed at evaluating a DSGS
signing avatar, the seven participants, all of them native signers
of DSGS, found the default speed of fingerspelling of the avatar
system to be too high [14].

3This observation is repeated in Boyes Braem et al. [10].
4According to Boyes Braem [12], 80 to 90% of signs in DSGS are

accompanied by a mouthing.
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2.3. Comprehensibility

A few studies have looked at the comprehensibility of finger-
spelling sequences produced by human signers. Among them
is that of Hanson [15], who presented 17 Deaf adult signers (15
of which were native signers) with 30 fingerspelled words and
non-words each. The participants were given ten seconds to
write the letters of the item presented and decide whether it was
a word or a non-word.

Geer and Keane [16] assessed the respective importance
of holds and transitions for fingerspelling perception. 16 L2
learners of ASL saw 94 fingerspelled words. Each word was
presented exactly twice. Following this, the participants were
asked to type its letters on a computer. The findings of the study
complement those of Wilcox [4] introduced in Section 1: Ironi-
cally, the motion between the letters, which is what experts uti-
lize [4], confuses language learners. It is therefore imperative
that study tools help language learners learn to decode motion.

2.4. Synthesis

There are three essential elements required for realistic finger-
spelling synthesis. These are

• Natural thumb motion. Early efforts relied on related
work in the field of robotics, however, this proved inad-
equate as an approximation of the thumb used in many
grasping models does not accurately reflect the motions
of the human thumb [17].

• Highly realistically modelled hand with a skeletal defor-
mation system. Early systems used a segmented hand
comprised of rigid components, and lacked the webbing
between thumb and index finger, and the ability to de-
form the palm.

• Collision detection or collision avoidance. There is
no physicality to a 3D model, so there is no inherent
method to prevent one finger from passing through an-
other. Collision detection or avoidance systems can pre-
vent these types of intersections and add to the realism
of the model.

An early effort used VRML [18] to allow users to create the
hand postures representing individual letters of a manual alpha-
bet. Users could type text and see a segmented hand interpolate
between subsequent hand postures. All of the joint coordinates
were aligned with world coordinates and did not reflect the natu-
ral anatomy of the hand. There were no allowances for collision
detection or avoidance.

McDonald [19] created an improved hand model that not
only facilitated thumb behavior, but for all of the phalanges in
the hand. This was coupled with Davidson’s [20] initial work
on collision avoidance to produce a set of six words which were
tested by Deaf high school students. Although they had few
problems in identifying the words, test participants found the
appearance of the hand off-putting because it was segmented
and lacked webbing between the thumb and index finger.

Adamo-Villani and Beni [21] solved this problem by cre-
ating a highly realistic hand model with a skeletal deformation
system, allowing the webbing to stretch and wrinkle as does
a human hand. In 2006, Wolfe et al. [5] integrated the natu-
ral thumb movement and a highly realistic hand model with an
enhanced system of collision avoidance. The collision system
involved an exhaustive search of all possible letter transitions
and correcting any that generated collisions through manual an-
imation.

In 2008, Adamo-Villani [22] confirmed that manually-
created animations for fingerspelling are more “readable” than
ones generated through motion capture. The research described
in this section focused exclusively on ASL, but several groups
have explored animating manual alphabets for other signed lan-
guages. In 2003, Yeates [23] created a fingerspelling system for
Auslan (Australian Sign Language) that utilized a segmented
hand; similarly van Zijl [24] and Krastev [25] generated fin-
gerspelling using the International Sign Alphabet. In addition,
Kennaway [26] explored fingerspelling for BSL.

While only a small body of work has dealt with the compre-
hensibility of fingerspelling produced by human signers, even
fewer studies have investigated the comprehensibility of syn-
thesized fingerspelling. Among them is the study of Davidson
et al. [20], who presented fluent ASL users with animated fin-
gerspelling sequences at three different speeds to validate their
animation approach.

3. Creating a set of hand postures and
transitions for DSGS fingerspelling synthesis
Section 2.2 discussed the increasing use of fingerspelling in
DSGS. To our knowledge, only one fingerspelling learning tool
for DSGS exists.5 This tool displays one illustration for each
letter of a fingerspelling sequence as mentioned in Section 1.
Ours is the first approach to synthesizing the finger alphabet of
DSGS as a first step towards a learning tool for this language.

Synthesizing the DSGS manual alphabet consisted of pro-
ducing hand postures (handshapes with orientations) for each
letter of the alphabet and transitions for each pair of letters. Fig-
ure 1 showed the finger alphabet of DSGS. Note that it features
dedicated signs for -Ä-, -Ö-, and -Ü- as well as for -CH- and
-SCH-.

Because of the similarity between the ASL and DSGS man-
ual alphabets, our work built on a previous system that synthe-
sized the manual alphabet of ASL [5]. In addition to the five
new letters or letter combinations cited above, the DSGS man-
ual alphabet contains four handshapes, -F-, -G-, -P-, and -T-,
that are distinctly different from ASL. Further, the five letters
-C-, -M-, -N-, -O-, and -Q- have a similar handshape in DSGS,
but required smaller modifications, such as a different orienta-
tion or small adjustments in the fingers. Hence, the DSGS finger
alphabet features 14 out of 30 hand postures that needed modi-
fication from the ASL manual alphabet. All hand postures were
reviewed by native signers.

Like ASL, there was also the issue of collisions between the
fingers during handshape transitions. Here, we again leveraged
the similarity between ASL and DSGS manual alphabets. The
previous ASL fingerspelling system identified the collection of
letter pairs, such as the N→A transition in T-U-N-A in Figure 2,
which caused finger collisions under naïve interpolation. To re-
move the collisions, they created a set of transition handshapes
that are inserted in-between two letters to force certain fingers
to move before others to create the clearance needed to avoid
collision. Such a handshape can be seen in the eighth frame of
the second row in Figure 2. Details of this method can be found
in Wolfe et al. [5]. Because of the overlap between the DSGS
and ASL manual alphabets, along with the fact that most of the
new or modified hand postures had handshapes that were gen-
erally open, in the sense of Brentari’s hanshape notation [27], it

5http://www.gebaerden-sprache.ch/
fingeralphabet/lernen-sie-das-fingeralphabet/
index.html
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was possible to use the exact same set of transition handshapes
as the original ASL system.

4. Assessing the comprehensibility of
synthesized DSGS fingerspelling sequences

The aim of the study presented here was to assess the com-
prehensibility of animated DSGS fingerspelling sequences pro-
duced from the set of hand postures and transitions described in
Section 3.

4.1. Study instrument and design

We conducted the study online using a remote testing system,
LimeSurvey6. This approach has advantages over to face-to-face
testing because it affords a large recruitment area and allows
participants to complete the survey at any time. The survey
was accessible from most web browsers and compatible across
major operating systems.

Any person with DSGS fingerspelling skills was invited
to participate in the study. The call for participation was dis-
tributed via an online portal for the DSGS community7 as well
as through personal messages to persons known to fulfill the
recruitment criteria.

Participants accessed the study through a URL provided
to them. The first page of the website presented information
about the study in DSGS (video of a human signer) and German
(video captions that represented a back-translation of the DSGS
signing and text). Participants were informed of the purpose of
the study, that participation was voluntary, that answers were
anonymous, that items could be skipped, and that they could
fully withdraw from the study at any time. Following this, they
filled out a background questionnaire, which included questions
about their hearing status, first language, preferred language,
and age and manner of DSGS acquisition. No personally iden-
tifyable information was kept.

A detailed instruction page followed, on which the partici-
pants were informed that they were about to see 22 fingerspelled
words signed by either a human or a virtual human (sign lan-
guage avatar). Following this, the participants’ task was to type
the letters of the word in a text box. Figure 3 shows a screenshot
of the study interface for each of these cases. The videos of the
human signer had been resized and cropped so as to match the
animations.

The participants were told that the fingerspelled words they
were going to see were names of Swiss towns described in
Ebling [14]. In contrast to the studies discussed in Section 2.3,
an effort had been made to include only fingerspelled words
that denote concepts for which no well-known lexical sign ex-
ists in DSGS. This was deemed an important prerequisite for
a successful study. The items had been chosen based on the
following criteria:

• They were names of towns with train stations that were
among the least frequented based on a list obtained from
the Swiss Federal Railways;

• The town names were of German or Swiss German ori-
gin;

• The town names in the resulting set of items varied with
respect to their length (number of letters); and

6https://www.limesurvey.org/en/
7http://www.deafzone.ch/

Figure 3: Study interface: screenshots

• In the resulting set of items, each letter of the DSGS fin-
ger alphabet occurred at least once (with the exception of
-X-, which did not occur in any of the town names that
met all of the above criteria).

The 20 study items had an average length of 7 letters, with a
maximum of 12 (W-E-R-T-H-E-N-S-T-E-I-N) and a minimum
of 3 (T-Ä-SCH). The study items were assigned to participants
such that each item appeared as either a video of a human signer
or as an animation. Each participant saw 10 videos and 10 an-
imations and items were presented in random order. The study
items were preceded by two practice items that were the same
for all participants: The first was a video of a human signer
fingerspelling S-E-O-N, the second an animation of R-H-Ä-Z-
Ü-N-S.

The human signer was a female native DSGS signer (Deaf-
of-Deaf) who had been asked to sign at a natural speed but with-
out using mouthings. This resulted in an average fingerspelling
rate of 1.76 letters per second. The same rate was used for the
animations. Note that it is below the minimum rate of 2.18
reported by Keane and Brentari [13] (cf. Section 2.2), which
again points in the direction of a lower speed of fingerspelling
in DSGS.

The participants were informed that they could view a video
as many times as they wanted. Limiting the number of viewings
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was felt to exert undue pressure. This approach was different
from the study of Geer and Keane [16] (Section 2.3), who al-
lowed subjects to view a video exactly twice, and Hanson [15],
who presumably showed each video once. Not restricting the
number of viewings in the present study also meant that there
was no limit to the response time for an item. The response time
was recorded as metadata.

Once participants had completed the main part of the study,
they were asked to provide feedback on the following aspects:

• Appropriateness of the rate of fingerspelling;

• Comprehensibility of the individual letters and transi-
tions between letters; and

• General feedback on the fingerspelling sequences shown

On the final page, participants were thanked for their con-
tribution and given the possibility to leave their e-mail address
if they wanted to receive information on the results of the study.
If provided, the e-mail address was not saved together with the
rest of the data to ensure anonymity. All data was stored in a
password-protected database.

The entire study was designed so as to take a maximum
of 20 minutes to complete. This was assessed through a pilot
study with three participants, in which the average time spent to
complete the study was 17 minutes.

4.2. Results and discussion

The study remained online for one week. During this time, 65
participants completed it, of which 31 were hearing, 24 Deaf,
and 6 hard-of-hearing. 4 participants indicated that they did
not fall into the three categories proposed for hearing status,
referring to themselves as “using sign and spoken language”,
“deafened”, “CODA” (child of Deaf adult), and “residual hear-
ing/profoundly hard-of-hearing”. The average time taken to
complete the entire survey was 20 minutes and 12 seconds.

For the 20 main study items (excluding the two practice
items), 1284 responses were submitted. In relation to the 1300
possible responses (20 items × 65 participants), this meant that
a total of 16 responses had been skipped.8 They were treated as
incorrect responses.

For each of the 1284 responses given, we determined
whether it was correct, ignoring umlaut expansions (ä→ae,
etc.) and differences in case. Table 1 displays the compre-
hension rates: The mean percentage of correct responses was
93.91% for sequences fingerspelled by the human signer and
90.06% for sequences fingerspelled by the avatar. Also dis-
played are the binomial confidence intervals at a confidence
level of 95%. They indicate a 95% confidence that the compre-
hension rate of the signing avatar is above 87.75% and below
92.37%. This result is highly satisfactory.

Comprehension rates below 100% for human signing have
been reported in previous studies [28, 29]. We surmise that in
this case, they were due at least partly to the fact that mouthings
were absent from the signing performances. While this was
a methodological decision made to ensure that what was be-
ing measured was core fingerspelling comprehension, several
participants alluded to the lack of mouthings in the post-study
questionnaire.

A comprehension rate of 100% was obtained for three se-
quences fingerspelled by the human signer (Realp, Reutlingen,

8Recall that participants were given the option of not responding at
any point in the study.

and Sedrun) and also for three sequences produced by the sign-
ing avatar (Bever, Hurden, and Mosen).

To obtain information about individual letters that may have
been hard to comprehend with the signing avatar, we performed
a confusion analysis. The results show that three letters were
mistaken for other letters more often in sequences fingerspelled
by the signing avatar than in sequences fingerspelled by the hu-
man signer: -F- (confused with -T- and -B-), -P- (confused with
-G- and -H-), and -R- (confused with -U-). One letter, -H-, was
confused more often in sequences fingerspelled by the human
signer than in sequences fingerspelled by the signing avatar; it
was mistaken with -G-, -L-, and -U-.

A confusion analysis between pairs of letters was also per-
formed to obtain pointers to transitions that potentially needed
to be improved. Comprehension was lower for four transitions
with the signing avatar than with the human signer: F-I (mis-
taken for T-I and B-I), L-P (mistaken for L-G and L-H), L-R
(mistaken for L-U), and R-I (mistaken for U-I). This overlaps
with the qualitative feedback in the post-study questionnaire
that asked for letters and transitions that were particularly hard
to understand: Several participants mentioned the avatar’s tran-
sitions into -G-, -I-, -P-, and -Q- as well as the transitions be-
tween -D- and -Q- and -L- and -P-. In addition, 12 out of 65
participants deemed the hand orientation of -Q- inaccurate.

In the general comments section, a number of participants
remarked that the fingerspelling of the human signer was easier
to understand than that of the signing avatar; some participants
noted that this was due to the hand appearing too small in the an-
imations. On the other hand, multiple participants commented
on the quality of the signing avatar as being “surprisingly good”.
Repeated mention was made of the impression that short finger-
spelled sequences were easier to understand than longer ones,
regardless of whether they were signed by a human or an avatar.

One participant encouraged the introduction of speed con-
trols for the signing avatar. In the post-study questionnaire rat-
ing of the speed of fingerspelling, the majority of the partici-
pants (number of responses: 62) deemed the speed appropriate
(56.45%), followed by 35.48% who rated it as being too fast.
4.84% classified it as too slow, and 3.23% deemed it much too
fast. No participant rated the speed as being much too slow. The
numbers are summarized in Table 2.

5. Conclusion and outlook
We have presented the first work in synthesizing the finger al-
phabet of DSGS, an application of natural language processing.
We have reported on the process of creating a set of hand pos-
tures and transitions as well as on a study assessing the compre-
hensibility of the resulting animations. The results showed that
the comprehension rate of the signing avatar was highly satis-
factory at 90.06%. Three of the sequences fingerspelled by the
avatar yielded a comprehension rate of 100%.

The speed of fingerspelling chosen for the signing avatar
was rated as appropriate by the majority of the participants. At
the same time, a lower yet substantial number of participants
rated it as being too high, which suggests that introducing speed
controls would be beneficial.

The results of the study also offered pointers to aspects of
the signing avatar that would benefit from further improvement,
such as the hand postures of a number of letters as well as the
transitions between some letters.

While the primary aim of the study was to assess the com-
prehensibility of the newly-created DSGS fingerspelling anima-
tions, the data obtained provides a wealth of information that
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Comprehension Confidence interval Confidence interval
rate (%) lower bound (%) upper bound (%)

Human signer 93.91 92.05 95.76
Signing avatar 90.06 87.75 92.37

Table 1: Percentage of correct responses

Rating Responses (%)

much too slow 0.00
too slow 4.84
appropriate 56.45
too fast 35.48
much too fast 3.23

Table 2: Speed of fingerspelling: rating

can be used to inform other research questions. For exam-
ple, we intend to investigate the individual effects of the vari-
ables hearing status, age of DSGS acquisition, and speed-of-
fingerspelling rating on the comprehension scores.

The work presented in this paper represents the first step to-
wards a fingerspelling learning tool for DSGS. As a next step,
we will complete the development of the tool interface. Fol-
lowing this, we are going to conduct a study that assesses the
usability of the interface.
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Abstract
We are developing a real-time Japanese sign language recogni-
tion system that employs abstract hand motions based on three
elements familiar to sign language: hand motion, position, and
pose. This study considers the method of hand pose recognition
using depth images obtained from the Kinect v2 sensor. We ap-
ply the contour-based method proposed by Keogh to hand pose
recognition. This method recognizes a contour by means of
discriminators generated from contours. We conducted exper-
iments on recognizing 23 hand poses from 400 Japanese sign
language words.
Index Terms: hand pose, contour, sign language recognition,
real-time, Kinect

1. Introduction
In Japan, Japanese sign language is usually used among hear-
ing impaired people to communicate. In addition, these people
often communicate with others through a third person who un-
derstands both oral and sign language. The alternative is to use
a computer that acts as an interpreter. However, no practical
sign language recognition system exists, even one that recog-
nizes isolated words. The difficulties lie in the nature of vi-
sual language and its complex structure. Compared with speech
recognition, sign language recognition incorporates various vi-
sual components, such as hand motions, hand poses and facial
expressions. In addition, no established study exists on rep-
resenting the structure of Japanese sign language in a similar
manner to that of spoken language. Therefore, few attempts rec-
ognize sign language by units such as hand motions and hand
poses [1, 2].

Our study develops with real-time recognition of sign lan-
guage words. In Japanese sign language, a sentence consists
of several words and non-manual signals such as facial expres-
sions. To recognize words is a first step and essential to recog-
nize sentences. The number of Japanese sign language words is
said to be 3,000 or more. Recognition by discriminators that are
independent of every word has proven ineffective. To produce
a practical system, analysis and reconstruction of sign language
words are critical. We want to emphasize that database of sign
language words is required when we analyze such words. How-
ever, no established database currently exists for sign language
recognition. Therefore, we employ a database from a comput-
erized sign language word dictionary instead.

Our system is based on three elements of sign language:
hand motion, position, and pose. This study considers the
method of hand pose recognition for our system. Speeding up
hand pose recognition is difficult, because of the number and va-
riety of hand poses caused by rotations, altering the angle from
the sensor, and diversities in bone structures. This study consid-
ers a hand pose recognition using depth images obtained from
a single depth sensor. We apply the contour-based method pro-

posed by Keogh [3] to hand pose recognition. This method rec-
ognizes a contour by means of discriminators learned from con-
tours. We conducted experiments to recognize 23 hand poses
from 400 Japanese sign language words.

2. System overview
Figure 1 shows the flowchart of the entire system. We use
Kinect v2 sensor [4] to obtain data from sign motions produced
by an actual person. First, data obtained from the sensor is seg-
mented into sign language words. Second, the three aforemen-
tioned elements are recognized individually. Finally, the recog-
nition result is determined by the weighted sum of each score.
The recognition process of the hand pose and other two compo-
nents employs depth data of the hand region and coordinates of
joints, respectively. This study partially considers the method
of hand pose recognition and does not discuss other processes
on the flowchart.

To utilize the structure in sign language recognition re-
quires an expert knowledge of sign language. We apply a
database from the computerized sign language word dictionary
produced by Kimura [5] to sign language recognition. Our
hand pose recognition is based on the classification of hand
types employed in this dictionary. Table 1 shows a portion
of the database in the dictionary. This database includes ap-
proximately 2,600 Japanese sign language words. Each word
is represented by specific sign language types in Table 2 and
other elements are indicated in Figure 2. For example, the word
“red” which belongs to the type 1 in Table 2 is expressed by the
dominant hand and the other hand is not used.

3. Method of hand pose recognition
Some methods of hand pose estimation classify depth pixels
into parts to obtain joint coordinates [6, 7]. However, these
methods present difficulties when the palm does not face the

Kinect v2 sensor

segment
sign motion

recognize
motion

recognize
position

recognize
hand shape

unify 3 results

process by
coordinates of joints

process by
depth image

cut out
hand region

Figure 1:Flowchart of the entire system.
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Table 1:Portion of the database in the dictionary.

Word
SL

Type
Hand
type

Palm
direction Position Motion

love 3 B down NS circle
between 4 B side NS down
blue 1 B back lower face back
red 1 1 back lower face right
baby 4 B up NS up-down
autumn 4 B back whole face front-back
open 4 B front NS right
morning 1 S side upper face down
shallow 2 B side NS up
tomorrow 1 1 front whole face front
play 4 1 side upper face front-back
rain 4 5 back NS up-down
walk 1 U back NS front
relief 4 B back body down
say 1 1 side lower face front

...

Table 2:Sign Language (SL) types.
1 2 3 4 5

use both hands × ⃝ ⃝ ⃝ ⃝
hand type is same
through two hands ⃝ × ⃝ ×
non-dominant
hand moves × × ⃝ ⃝

camera and some fingers are invisible. We use the contour-
based method proposed by Keogh [3]. Contour-based methods
work efficiently when recognition objects have distinct shapes.
This method treats a contour that encircles an area as a recog-
nition object and uses discriminators calledwedgesgenerated
from contours. This method is described below.

3.1. Feature extraction

Shapes can be converted todistance vectorsto form one-
dimensional series. Figure 3 shows the procedure for extracting
a distance vector from a hand image. First, the center point of
the hand region is determined by distance transform. Distance
transform labels each pixel whose value is “1” with the distance
to the nearest pixel whose value is “0” in a binary image. The
center point is a pixel that has a maximal value after distance
transform. Next, each distance from the center point to every
pixel on the contour is calculated. The distance vector repre-
sents a series of these distances.

3.2. Calculation of distance

A distance D between two distance vectorsP =
{p0, p1, ..., pn} and Q = {q0, q1, ..., qn} is calculated
according to the followings.

D(P, Q) =

√√√√
n∑

i=1

(pi − qi)2 (1)

If the length of two distance vectors is different, dynamic time
warping (DTW) should be used to adjust for size variations.
However, we do not use DTW to avoid excessive computation
time. Instead, we unify their length by resizing them in advance.

We can compare contours by calculating their distances or
using discriminators generated from contours. These discrim-
inators are calledwedges. Wedges have maximal and min-
imal values at each point. If a contour is located inside a
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wedge, the distance is 0. The distanceD between a wedgeW
(U = {u0, u1, ..., un} is its top，L = {l0, l1, ..., ln} is its bot-
tom) and a contourP = {p0, p1, ..., pn} is calculated based on
the following equation. For example, the sum of broken lines in
Figure 4 is a distance betweenW andP .

D(W, P ) =

√√√√√
n∑

i=1





(pi − ui)
2 (pi > ui)

(pi − li)
2 (pi < li)

0 (otherwise)
(2)

3.3. Producing wedges

Wedges are produced according to the following procedures.

1. Extract features from hand images.

2. Calculate distances of all contours.

3. Unify two contours in ascending order of distances. The
maximal and minimal values of merged contours become
a wedge.

4. Repeat process 3. until the number of wedges decreases
to a definite number.

W
U

L

P

Figure 4:Distance between a wedge and contour.
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5 wedges 3 wedges 2 wedges 1 wedge

Figure 5:Producing wedges from five contours.

When Figure 5 shows an example of producing wedges. A wide
wedge produced by contours that are diverse does not function
as a discriminator. We prepare various wedges for recognizing
each hand type in order to consider the details of contours.

3.4. Speeding up calculation

When we consider a rotation invariant matching of two distance
vectors, the calculation must be repeated many times with shift-
ing one of the distance vectors. We can speed up this com-
putation by aborting when the current sum of squared differ-
ences exceeds a threshold. In addition, although existing re-
search does not attempt this, we try to speed up the calculation
by means of the followings.

• The length of the distance vectors is unified and short-
ened, and the accuracy does not diminish.

• When the number of wedges per hand type is greater
than one, recognition that uses one-by-one wedge is per-
formed prior to help targeting candidates.

4. Experiments
4.1. Datasets

We conducted experiments on recognizing 23 hand poses in 400
Japanese sign language words in the national sign language test
grade 5. To recognize these 400 words requires to distinguish
23 hand poses in Table 3 defined by hand types and palm di-
rections. Some words have the same hand poses but different
position and motion. Our system distinguish each word after
recognizing 3 components and unifying recognition results.

Because hand shapes transform with motions, each hand
type remains independent even if the palm direction is different.
However, some exceptions exist to distinguish sign language
words that have the same motion, position, and hand type, but
have a different palm direction. For example, Groups 3 and 4
in Table 3 should be distinguished even though the hand type is
the same.

To simplify the collection of data in our experiments, we
used depth images of stationary hands instead of those obtained
during natural sign motions. Table 4 shows the experimental
conditions. We conducted four experiments examining the ro-
bustness of the recognition method about the variety of hand
shapes and the computation time. The objectives of the experi-
ments are described as follows.

Experiment 1 Recognize 100 hand images by wedges pro-
duced from the same 100 images per hand type, palm
direction, and tester (close-dataset, close-tester).

Experiment 2 Recognize 50 hand images by wedges produced
from the other 50 hand images per hand type, palm direc-

Table 3:List of 23 hand pose groups.
ID Hand type Palm direction
0 1 front-back, right-left
1 1-b right-left
2 3 front-back
3 5 front-back
4 5 up-down
5 5-b front-back, right-left, up-down
6 7(S) front-back
7 A front-back, right-left
8 B front-back
9 B right-left
10 B up-down
11 B4-f right-left
12 C right-left
13 F front-back
14 I front-back
15 L front-back
16 L-f right-left
17 R right-left
18 S front-back, right-left, up-down
19 U front-back
20 V front-back
21 W front-back
22 Y front-back

Table 4:Experimental condition.
Hand type 20 types in Figure 2
Palm direction 3 patterns (front-back, right-left, up-down)
Hand pose group 23 groups*

*determined by hand types and palm directions
Tester’s profile A (female, hand size* 16 cm)

B (female, hand size* 18 cm)
C (male, hand size* 19 cm)
D (male, hand size* 21 cm)
*measured from the wrist to the tip of the middle finger

Depth image 100× 100 pixel
100 images of the hand region
per tester, hand type and palm direction

Length of distance vector 30 or 180
PC specs OS：Windows 8.1 64 bit

RAM: 4 GB
CPU：Intel Core i5-4570 (3.20 GHz, 4-core)

tion, and tester (open-dataset, close-tester). Experiments
were repeated with different data.

Experiment 3 Recognize 100 hand images of a person by
wedges produced from 300 hand images of the other
three persons per hand type, and palm direction (open-
dataset, open-tester). Experiments ware repeated with
different data.

Experiment 4 Examine the relationship between the compu-
tation time required to recognize a hand image and the
average recognition rate from Experiment 2. We at-
tempted to speed up the calculation by the methods in
Section 3.4. The threshold value when the calculation
was aborted was determined by the preliminary experi-
ment. The length of distance vectors was 30 in this ex-
periment. Each recognition was aided to target candi-
dates as many as five hand pose groups by the recogni-
tion that uses one-by-one wedge performed prior.

4.2. Results

4.2.1. Experiment 1, 2

Figure 6 shows the average recognition rates for Experiment 1
and 2. The accuracy can be improved by increasing the number
of wedges. This can be accomplished because of the variety of
hand shapes caused by posing of hand and by altering the angle
from the camera.
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Figure 6: Experiment 1, 2: Recognition rate and number of
wedges per hand type and palm direction (person is known).

Experiment 1 was conducted with close-dataset. This ex-
periment is just for sanity check and its condition is impossible
in real-life. The result was sufficient for our system. Erroneous
recognition in Experiment 1 was primarily caused by misiden-
tifying hand pose Groups 4 and 5. These two groups have a
common point that includes a hand pose whose palm direction
is down. When we obtain data from a single depth camera, cap-
turing the characteristics of hand shapes when the palm does not
face the camera is difficult. Group 6 had the lowest recognition
rate among the hand pose group (when the length of the distance
vector is 180, the number of wedges was 10 per hand type and
palm direction, and the group’s recognition rate was 80%). This
is because the group was misrecognized as Group 0. These two
groups have similar shapes. In addition, the recognition rates
of Group 2, 13, 15, 20, and 22 were high under all conditions
because other groups do not possess similar shapes.

Experiment 2 was conducted with open-dataset and close-
tester. The result showed a similar trend to that of Experiment
1 concerning the causes of erroneous recognition. Because no
hand shapes from the learning data are included in the evalua-
tion data, the recognition rate was lower than that of Experiment
1. However, no significant difference in recognition rate of Ex-
periment 1 and 2 appeared when the number of wedges is one
per hand type and palm direction. Therefore, if the wedges are
generated from samples of a certain number, applying unknown
data from the same person is possible. The recognition rate
from Experiment 2 is expected to approach that of Experiment
1 by increasing the amount of learning data.

Experiments were conducted after changing the length of
distance vectors. Although shortening the distance vectors re-
duces the calculations, the accuracy is expected to fall because
of the loss of detailed features. However, no significant differ-
ences between the experiments appeared when the length of the
distance vectors is 30 and 180. Therefore, if small sized hand
images are used or the contours are rough because of noises, a
robust recognition can be accomplished.

The maximal number of wedges was between 20 and 25
in Experiment 1 and between 8 and 13 in Experiment 2. The
number fluctuated with the complexity of the hand types.

4.2.2. Experiment 3

Experiment 3 was tester-independent setup. Figure 7 shows the
results of Experiment 3. The recognition rates shown are the
results when the length of distance vectors is 30. If we change
the length to 180, recognition rates do not change significantly.
We specified causes of erroneous recognition when the number
of wedges is 30 per hand type and palm direction. The results
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Figure 7: Experiment 3: Recognition rate and number of
wedges per hand type and palm direction (person is unknown).
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show the same tendency as in Experiments 1 and 2, that is, 13 %
of all data were misrecognized as Groups 4 and 5. The detailed
findings for each hand pose group reveal the following: 41 %
of Group 6 were misrecognized as Group 0, 53 % of Group
19 were misrecognized as Group 0, 45 % of Group 12 were
misrecognized as Group 5.

The low recognition rate is due to individual differences in
hand shapes caused by differences in bone structure and posing
of hand shown in Figure 8. Wedges produced from the hand
images of various people include other hand types. This caused
misrecognitions.

Per person details show that the recognition rate was lowest
when the system attempted to recognize hand poses of tester A,
whose hand size was the smallest. When the number of wedges
increases, the recognition rate of tester B, whose hand size is
between that of A and C is higher than that of other testers.

Although we normalized the scale of distance vectors ac-
cording to each hand size, hand pose recognition by contours
possesses other difficulties when the bone structures are con-
sidered. The accuracy diminishes when the system recognizes
hand images of a person whose bone structure is dissimilar to
any learning data. When we want to recognize hand poses of
an unknown person, wedges generated from people who have
similar bone structure should be used. Therefore, additional
hand images that reveal various characteristics in bone struc-
tures should be collected.

4.2.3. Experiment 4

Experiment 4 was for checking the computation time. Figure 9
shows the relationship between the computation time required
to recognize a hand image and the average recognition rate in
Experiment 2. The speed-up process did not affect the recogni-
tion rate.
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Figure 9: Experiment 4: Average computation time and the
recognition rate required to recognize a hand image.

When the person is known, 88 ms (corresponding to 11 fps)
was required to recognize a hand image with 70 % accuracy.
Recognizing all hand images obtained from the sensor with a
frame rate of 30 fps is impossible. However, the number of
frames required to specify a hand pose is limited because the
hand pose does not change at every frame. We can recognize in
real-time selected hand images by means of comparison method
employing a small calculation such asimage moment[8]. This
experiment has been implemented in a single-thread. The pro-
cessing speed can be improved by utilizing a high-speed tech-
nique such as multi-threading.

5. Conclusion

We are developing a real-time Japanese sign language recogni-
tion system based on three elements of sign language: motion,
position, and pose. This study examined hand pose recognition
by means of contour-based method proposed by Keogh using
depth images obtained from a single depth sensor.

We conducted experiments on recognizing 23 hand poses
from 400 Japanese sign language words. Under the condition
of close-tester, the recognition rate was approximately 90 %
for close-dataset, 70 % for open-dataset. In addition, we con-
ducted an experiment to recognize the hand poses of an un-
known person by means of discriminators learned from hand
poses of other people. The recognition rate dropped consider-
ably because diversities in bone structure of each person’s hand
generated loose discriminators that are unable to consider the
details of contours. We also evaluated the computation time.
Regarding close-tester and open-dataset, 88 ms (corresponding
to 11 fps) was required to recognize a hand image with 70 %
accuracy.

When we recognize the hand poses of an unknown person,
discriminators generated from people who have similar bone
structure should be used. Future research in this area requires
that hand images of various people be collected and applied for
the purpose of recognizing unknown persons.

6. Acknowledgement

This research was supported in part by Japan Society for the
Promotion of Science KAKENHI (No. 25350666), and Toukai
Foundation for Technology.

7. References
[1] Rung-Huei Liang and Ming Ouhyoung, “A Real-time Continu-

ous Gesture Recognition System for Sign Language,” inAutomatic
Face and Gesture Recognition, 1998. Proceedings. Third IEEE In-
ternational Conference on, Apr 1998, pp. 558–567.

[2] Arata Sato and Koichi Shinoda, “Large Vocabrary Sign Language
Recognition Based on Cheremes,” inIEICE Technical Report
PRMU2011-222, SP2011-137, 2012, pp. 155–160.

[3] Eamonn Keogh, Li Wei, Xiaopeng Xi, Sang-Hee Lee and Michail
Vlachos, “LB Keogh Supports Exact Indexing of Shapes under
Rotation Invariance with Arbitrary Representations and Distance
Measures,” in32nd International Conference on Very Large Data
Bases (VLDB2006), 2006, pp. 882–893.

[4] Kinect for Windows, http://kinectforwindows.org.

[5] Tsutomu Kimura, Daisuke Hara, Kazuyuki Kanda and Kazunari
Morimoto, “Expansion of the System of JSL-Japanese Electronic
Dictionary: An Evaluation for the Compound Research System,” in
Proceedings of the 2nd International Conference on Human Cen-
tered Design, ser. HCD’11, 2011, pp. 407–416.

[6] Hui Liang, Junsong Yuan and Daniel Thalmann, “Parsing the Hand
in Depth Images,”Multimedia, IEEE Transactions on, vol. 16,
no. 5, pp. 1241–1253, Aug 2014.

[7] Danhang Tang, Tsz-Ho Yu and Tae-Kyun Kim, “Real-Time Artic-
ulated Hand Pose Estimation Using Semi-supervised Transductive
Regression Forests,” inProceedings of the 2013 IEEE International
Conference on Computer Vision, ser. ICCV ’13, 2013, pp. 3224–
3231.

[8] Ming-Kuei Hu, “Visual Pattern Recognition by Moment Invari-
ants,” Information Theory, IRE Transactions on, vol. 8, no. 2, pp.
179–187, February 1962.

21



Synthesizing and Evaluating Animations of American Sign Language Verbs 
Modeled from Motion-Capture Data 

Matt Huenerfauth 1, Pengfei Lu 2, Hernisa Kacorri 2 

1 Rochester Institute of Technology, Golisano College of Computing and Information Sciences 
2 The Graduate Center, CUNY, Doctoral Program in Computer Science 

matt.huenerfauth@rit.edu, pengfeilv@gmail.com, hkacorri@gradcenter.cuny.edu 

 
Abstract 

Animations of American Sign Language (ASL) can make 
information accessible for many signers with lower levels of 
English literacy. Automatically synthesizing such animations 
is challenging because the movements of ASL signs often 
depend on the context in which they appear, e.g., many ASL 
verb movements depend on locations in the signing space the 
signer has associated with the verb’s subject and object.  This 
paper presents several techniques for automatically 
synthesizing novel instances of ASL verbs whose motion-path 
and hand-orientation must accurately reflect the subject and 
object locations in 3D space, including enhancements to to 
prior state-of-the-art models.  Using these models, animation 
generation software could produce an infinite variety of 
indicating verb instances.  Using a corpus of motion-capture 
recordings of multiple performances of eight ASL indicating 
verbs, we modeled the signer’s hand locations and orientations 
during each verb, dependent upon the location in the signing 
space where the subject and object were positioned.  In a user 
study, ASL signers watched animations that included verbs 
synthesized from these models, and we found that they had 
similar quality to those produced by a human animator. 
Index Terms: American Sign Language, accessibility for 
people who are deaf, animation, natural language generation  

1. Introduction 
This paper describes technologies for automating the creation 
of animations of American Sign Language (ASL), which is a 
natural language that consists of movements of the hands, 
body, head, and face.  ASL is the primary means of 
communication for over 500,000 people in the United States 
[18]. ASL is a natural language, and the grammar, word-order, 
and vocabulary of the language is distinct from English. For 
various language-exposure and educational reasons, many deaf 
adults have lower literacy levels. In fact, standardized testing 
suggests that the majority of deaf high school graduates in the 
U.S. (typically students age 18) have a fourth-grade reading 
level or below (typically students age 10) [22].  
Given these literacy trends, when English text is presented 
online, the text may sometimes be too difficult for many of 
these users. Conveying information content through videos or 
animations of ASL could make information more accessible.  
As discussed in [14], because a human signer must be re-
filmed, videos are ill-suited to contexts where the information: 
is often modified, might require later corrections, is generated 
automatically in response to a query, or is produced by 
automatic translation technologies. Animations of sign 
language that are produced automatically from an easy-to-
update script can overcome these limitations and make it 

easier to incorporate ASL content on websites or other media.  
A challenge is that ASL signs must be “customized” so that 
they are performed in a specific manner that matches how the 
signer has set up locations around their body to represent 
entities under discussion.  This paper focuses on a ubiquitous 
class of ASL verbs, called “indicating verbs,” and it describes 
research on technologies to automatically produce 
understandable animations of these verbs for use in ASL 
animations, with an ultimate goal of increasing information 
accessibility for users who are deaf. 

1.1. Spatial Reference Points, Indicating Verbs 

In ASL, entities under discussion (concepts, people, etc.) can 
be associated with locations in the 3D space around the 
signer’s body [10, 16, 17]. For example, the signer may point 
to a location in space immediately after an entity is mentioned 
for the first time; when signers want to refer to the entity 
again, they do not repeat its name.  Instead, they point to the 
location in space. Some linguists (e.g., [16, 17]) have proposed 
that ASL signers can be thought of as using a semi-circular arc 
(at chest height around their torso) as the range of possible 
locations where entities may be established.  The location of 
the spatial reference point for an entity could be represented as 
an angle on this arc. Individual signs may vary in how they are 
performed in a particular sentence, based on a variety of 
linguistic factors. For instance, temporal aspect, manner, or 
spatial depiction can be conveyed through modifications to the 
performance of an ASL verb [4, 5].  However, the focus of this 
paper is a class of ASL verbs referred to as “indicating verbs” 
by [10] (also known as “inflecting verbs” [19] or “agreeing 
verbs” [1].) The movement path and hand orientation of these 
verbs is affected by the spatial reference points for the verb’s 
subject and/or object [10, 19]. 
When a signer is asked to perform an indicating verb in 
isolation or when such a verb is listed in a dictionary, the 
prototypical verb performance that is seen is typically referred 
to as a “citation form” or “uninflected form,” which has not 
been modified to indicate locations in the signing space for its 
subject or object. When an indicating verb is performed in a 
sentence, the signer will modify the hand locations and 
orientations used to perform the verb, often tracing a unique 
motion-path through the signing space, which indicates the 
locations of the spatial reference points for the verb’s subject 
and/or object.  In fact, in ASL sentences that include an 
indicating verb, the subject or object is often not overtly 
expressed.  That is, the signer does not need to point to the 
spatial reference locations for the subject or object as long as 
the verb’s motion-path and orientation reveals the identity of 
its subject and object. If a signer does choose to explicitly 
mention the subject and object of the verb, then it is legal for 
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the signer to simply use the uninflected form of the verb, but 
the resulting sentences may appear less fluent. Signers who 
view ASL animations find those that include citation forms of 
indicating verbs more difficult to understand (as compared to 
versions of animations in which indicating verbs indicate the 
locations of the subject and object) [7].  
Generally, the motion path of indicating verbs moves away 
from the subject and toward the object, but the verb 
performance is actually a complex interaction of: (a) the verb’s 
citation-form motion-path and hand orientation, (b) the 
location of the subject’s spatial reference point, and (c) the 
location of the object’s spatial reference point. ASL verbs can 
be partitioned into multiple classes, based on whether their 
motion is modified based on: (1) subject only, (2) object only, 
(3) both, or (4) neither [10, 19]. Figure 1 shows the verb 
EMAIL, which is a verb of type (3). 

 (a)    

(b)    

Figure 1: Verb EMAIL with: (a) subject on the left 
and object on right or (b) with opposite arrangement. 

This paper describes our research on automating the creation 
of animations of ASL indicating verbs. Section 2 briefly 
summarizes some prior work on modeling ASL indicating 
verbs. Section 3 describes new techniques for automatically 
synthesizing animations of ASL verb signs.  Section 4 presents 
an experiment with 18 native ASL signers who evaluate 
animations resulting from our modeling techniques. Finally, 
section 5 presents conclusions and avenues for future work. 

2. Prior Work on ASL Verbs 
Researchers have investigated methods to speed the creation 
of sign language animations.  Scripting systems, e.g., [23], 
allow a human who is knowledgeable of ASL to assemble 
sentences by drawing upon pre-built words in a dictionary to 
create a timeline for a performance. A common limitation is 
that the user may not find the exact sign (or version of a sign) 
that is needed for a particular sentence, e.g., most systems 
include only the citation form of verb signs because it is not 
practical to include hundreds of versions of each verb for 
various possible arrangements of the verb’s subject and object 
in the signing space. As discussed in [6], other researchers 
have focused on building generation systems, which further 
automate the production of animation, e.g. research on 
machine translation of written text into sign language 
animation. In order for the machine translation output to 
include indicating verbs, some method is needed for 
automatically predicting how the motion-path and orientation 
of a verb would be affected by the locations of the verb’s 
subject and object in space. Sections 2.1 and 3 describe 
research on automatically synthesizing novel performances of 

ASL verb signs for any desired combination of subject and 
object arrangement in the signing space: Such software would 
be useful in both scripting and generation systems, thereby 
making it easier to add indicating verbs to animations. 
Marshall and Safar [15] designed an animation generator that 
could associate entities with up to six locations in the signing 
space and produce British Sign Language verbs whose 
subject/object were positioned at these locations. However, the 
verbs involved simple motion paths, and the system did not 
allow for the arrangement of subjects and objects at arbitrary 
locations in the signing space (a small number were enabled). 
Some researchers have studied videos of performances of ASL 
verbs to design algorithms for specifying how the arms should 
move for specific arrangements of subject and object [21]. 
While the results were promising, a human animation 
programmer was needed to design the necessary algorithms. 
By contrast, our research is based on the idea that the only 
input should be a set of examples of how an ASL verb is 
performed for various given arrangements of subject and 
object, with the software automatically learning a model of 
how a signer’s hands should move, given where the subject 
and object is located in space.   
Other researchers have collected motion-capture recordings of 
signing and used this data to synthesize novel verb signs: 
Duarte and Gibet [2] collected French Sign Language data via 
motion capture, and they reassembled elements of the 
recordings to synthesize novel animations.  They used several 
“channels” to represent their recorded signs, e.g., channels of 
eye, head, spine, and arms, and they mixed information from 
the channels of different recordings to produce new 
animations. For a small number of verb signs, these 
researchers played the recording of the verb in reverse (from 
the original recording) to produce a version of the verb with 
the subject and object in opposite locations.  For example, they 
recorded several indicating verbs with a few combinations of 
subject/object, e.g., “I invite-you” and “you-invite-I.”  
However, they did not try to build a model of how to 
synthesize novel inflections for verbs for any arrangement of 
subject or object in the signing space (the focus of this paper). 

2.1. Earlier Work on ASL Indicating Verb Modeling 

In earlier work, researchers have designed data-driven 
methods for synthesizing animations of ASL indicating verbs, 
for any desired arrangement of the subject and object on an arc 
around the signer. However, there were significant limitations 
in that prior work, which we address with some novel 
modeling approaches described and evaluated in this paper. 
As described in [11], verb performances were collected from 
human ASL signers to create a training data set for animation 
modeling research.  The data included the location (x, y, z) and 
orientation (roll, pitch, yaw) for the hands, torso, and head of 
the signer. The native ASL signer performed ASL verbs signs, 
for given arrangements of the subject and object in the signing 
space. Targets were positioned around the laboratory at precise 
angles, relative to where the signer was seated, corresponding 
to positions on an arc around the signer’s body. The signer 
was asked to perform ASL verbs, e.g., EMAIL, with one target 
as subject and another as object. In this way, 42 examples of 
verb forms were recorded for each verb, for various 
combinations of subject and object locations.  Because the 
verbs considered contained relatively straight motion paths for 
the hands, they were modeling using two keyframes (one at 
the beginning of each hand’s motion path and one at the end).  
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Thus, the location (x, y, z) and orientation (roll, pitch, yaw) for 
the hands were extracted at each keyframe.  (For signs with 
more complex paths, additional keyframes might be required.) 
This data was used to learn a model to predict the motion-path 
of a signer’s hands for that verb, for novel arrangements of the 
subject and object on the arc around the signer.  In prior work 
[8, 12, 13], two major types of modeling approaches were 
created for ASL indicating verbs: 
Point-Based Modeling: This model [8, 12] predicted a starting 
location and the ending location of the hands for the verb, as 
distinct points in the 3D signing space; the virtual human 
animation software interpolated between these location points. 
Based on the position on the arc around the signer where the 
subject and object of the verb were located, the coefficients of 
six polynomial models were “fit” from training data for each 
for each hand (xstart, ystart, zstart, xend, yend, zend), and, at run time, 
the models were used to estimate these values to synthesize a 
particular verb instance that was needed for an animation [8]. 
Vector-Based Modeling: The “point” model was not ideal: 
When different human signers perform a verb (e.g., EMAIL 
with subject at arc position on the left and object at arc 
position on the right), not all of the humans select exactly the 
same 3D point for their hands to start and stop. What is 
common across the performances is the direction that the 
hands move through space.  Thus, in [13], a new modeling 
approach was proposed, called “vector” based modeling. Each 
verb was modeled as a tuple of values: the difference between 
the x-, the y-, and the z-axis values for the starting and ending 
location of the hand.  Using this model, researchers followed a 
similar polynomial fitting technique summarized in [8], except 
that the model used fewer parameters.  The “vector” model 
used only three values per hand (deltax, deltay, deltaz), instead 
of six per hand in the prior “point” model, which represent 
start and end location of the hand as (xstart, ystart, zstart, xend, yend, 
zend). Of course, knowing the direction that the hands should 
move is insufficient: to create an animation, the starting and 
ending locations for the hands must be selected. At run time, a 
Gaussian mixture model of hand location likelihood (that had 
been trained for each ASL verb) was used to select the starting 
position for each hand (to identify a path that travels through a 
maximally-likely region of space) to synthesize a particular 
verb instance for an animation [13]. 

3. Novel Modeling Approaches 
Limitations of prior work ASL verb modeling included: 
• While hand orientation (roll, pitch, yaw) was modeled 

using artificially produced testing-data from a human 
animator in [8], researchers never attempted to model the 
orientation (roll, pitch, yaw) of the hands, based on a 
training set of motion-capture data from humans.  Since 
hand orientation must be selected when producing an 
ASL animation, this was a major limitation of prior work. 

• The “vector” model in prior work treated the left and 
right hands of the signer as completely independent 
motion vectors that needed to be selected.  Section 3.1 
will discuss how this led to low quality animation results 
for some verbs, and it will address this limitation. 

Researchers had never before conducted a user-based 
evaluation (with native ASL signers viewing animations and 
answering questions) to compare the point-based and vector-
based modeling approaches for synthesizing verbs. This paper 
presents the first user-based comparison of the quality and 

understandability of verbs synthesized by those two verb 
models, trained on motion-capture data from human signers.  
In addition to the conduct of the user-based study (section 4), 
another novel aspect of this paper is that we have enhanced 
and modified the Vector-Based Model, that was first described 
by [13], in several new ways, as described below. 

3.1. Relative Hand Location Modeling 

Some ASL verbs involve a movement in which the two hands 
come into close proximity or interact in a specific spatial 
orientation.  For example, when performing the verb EMAIL 
as seen in Figure 1, the right hand must pass through the “C” 
handshape of the left hand.  This close-proximity articulation 
of the two hands is essential for this verb’s understandability.  
As another example, the ASL verb COPY requires the signer’s 
two hands to come into close proximity at the beginning of the 
performance, as seen in Figure 2 and Figure 3.   

  
Figure 2: Inflected version of ASL verb COPY with 
the subject on right and the object on left. 

  
Figure 3: Inflected version of ASL verb COPY with 
subject on left and object on right. 

There is a limitation in the original vector-based model, 
defined in [13]: That model did not explicitly represent the 
relative location between the left and right hands. It 
represented the direction of each hand’s movement, with the 
starting location of each hand selected independently, based on 
the Gaussian model of hand location likelihood for that ASL 
verb. Applying such a technique to several examples of verbs 
such as EMAIL and COPY with specific hand proximity 
requirements, it was apparent that independently modeling the 
direction of both the left and right hands led to animations in 
which the relative positions of the two hands were not 
correctly preserved during the performance of the verb.  For 
instance, for a verb like EMAIL, the right hand did not always 
move precisely through the opening produced by the left hand. 
Therefore, we re-implemented and modified that original 
vector-based model, as follows: we model the left hand 
position relative to the right hand’s position at each keyframe 
of the verb.  At run time, we used our model to predict a hand 
movement direction vector for the right hand only.  When we 
needed to synthesize a specific verb instance, we first selected 
a right hand starting location based on the Gaussian 
model.  Then, we used our model of left hand relative-location 
to select a left hand location for each key-frame, relative to the 
right hand.  Our new vector-based model, for verbs with two 
keyframes, would model nine values (deltax, deltay, deltaz) for 
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the right hand and (relativex, relativey, relativez) for the left 
hand for each keyframe of the verb. In the prior “point” model, 
for a two-keyframe verb, there would be a total of twelve 
values modeled, the start and end location of both hands as 
(xright, yright, zright, xleft, yleft, zleft). Given this new vector-based 
model (with the left-hand locations represented as relative to 
the right hand locations), we trained our enhanced vector-
based models on the motion-capture data of ASL verbs that 
had been recorded by prior ASL animation researchers [14]. 

3.2. Modeling Hand Orientation 

In prior work, researchers had not modeled orientation of the 
hands for ASL verbs using motion-capture data collected from 
human signers [13]. In this section, we present a novel method 
for modeling hand orientation (and an evaluation in section 4).  
Because there are various popular methods of representing the 
orientation of 3D objects (e.g., Euler angles, axis-angle, or 3x3 
rotation matrices), we had to select an approach that was well-
suited to representing hand orientation for modeling ASL 
verbs. Almost all orientation representations are actually 
representations of the 3D rotation of an object from a starting 
orientation; they all assume that a 3D object enters the 
universe with some initial orientation.  They differ as follows: 
• Euler angles represent a sequence of three rotations about 

the local axes of an object in 3D space.  For instance, a 
first rotation about the object’s z-axis by an angle α, a 
second rotation about its x-axis (which might have been 
affected by the first rotation) by an angle β, and another 
rotation about the object’s z-axis, by an angle γ [3]. 

• The axis-angle representation is a rotation representation 
that consists of a unit vector <x, y, z> indicating an axis 
of rotation in a three-dimensional space and an angle 
theta indicating the magnitude of the rotation [3]. 

• A rotation matrix is another way to represent orientations 
of 3D objects; in this case, a 3x3 matrix can be used to 
represent a rotation.  To rotate a point in three-
dimensional space (represented as column vectors), you 
can multiply it by the 3x3 rotation matrix [3]. 

Since there are methods for converting between various 
orientation representations, we were free to select whichever 
representation for our modeling of hand orientation of ASL 
verbs. We wanted to select an approach with desirable 
mathematical properties. Specifically, we prefer methods of 
modeling orientation that avoid gimbal lock (described below) 
and were well suited to interpolation (meaning that when you 
numerically average the numbers that represent the 
orientation, the resulting 3D orientation of the object looks 
realistic). Techniques for computing representative 
orientations from measured 3D data have been described by 
several researchers, e.g., [5, 24], and the relative tradeoffs of 
many of these techniques have also been investigated, e.g., 
[25].  Some relevant considerations are summarized below: 
• If we had used Euler angles, we may have encountered 

problems due to gimbal lock, a phenomena in which the 
first Euler rotation causes the axes of the system to align 
in such a way that a degree of freedom is lost [3].   

• If we had used axis-angle representations, we may have 
encountered problems because axis-angle representations 
are not a unique representation of orientation (meaning 
that there are multiple possible ways to represent the 
same resulting final orientation of an object).  Thus, there 
is no guarantee that simple interpolation of the numbers 

of the orientation representation will result in a realistic-
looking 3D orientation for the final object (because the 
resulting orientation produced through interpolation may 
not be on the shortest path on the great arc between the 
two original orientations). 

• If we had used 3x3 rotation matrices to represent 
orientation for modeling, this would have made our 
modeling more complex because this representation uses 
a large number of parameters (specifically, nine) to 
represent orientation. 

For these reasons, we selected a less common method of 
representing orientations: Simultaneous Orthogonal Rotation 
Angles (SORA).  SORA represents a rotation as a vector of 
three values (φx, φy, φz) that represent three simultaneous 
rotations around the coordinate system axes.  (Euler angles 
represent sequential rotations.)  SORA has been used in the 
areas of real-time angular velocities estimation [20]. The 
simplicity of SORA makes it possible for our orientation 
modeled in a single step, and avoids several of the problems 
with other approaches, outlined above. There are also standard 
ways to convert between SORA and other orientation 
representations [11, 20]. While [25] identify some limitations 
of SORA (similar to discontinuities encountered with axis-
angle), we have found SORA to be an effective modeling 
approach for ASL verb orientation (as shown in Section 4.) 
We performed our modeling as follows: First, we converted 
the motion-capture data into SORA format. Then, we trained 
the orientation models for all eight verbs (TELL, SCOLD, 
GIVE, MEET, ASK, EMAIL, SEND, and COPY). Since the 
rotation component for each axis can be isolated when using 
SORA, we consider the axes independently when we fit 3rd 
order polynomials to predict each component of SORA. Figure 
4 outlines the procedure. At run-time, given some s and o 
values (i.e., subject and object location on the arc around the 
signer), we independently predict each of the values of φx, φy, 
and φz. After modeling each SORA value, we converted this 
back to axis-angle to synthesize a verb animation. 

 

Figure 4: Training verb orientation data using SORA. 

4. USER-BASED EVALUATION STUDY 
A user study was conducted to evaluate animations 
synthesized by our point-based model and by our vector-based 
model, trained on the recorded data of the eight ASL verbs. 
The overall methodology of this study, including the recruiting 
practices, format of comprehension questions, and other 
details follows the general approach used in prior ASL 
evaluation research, e.g., [8].  Of the 24 participants, 13 had 
used ASL since infancy, 6 participants had learned ASL 
before age 8, and 2 participants began using ASL at a school 
with primary instruction in ASL since age 10.  The remaining 
3 participants identified as deaf, attended schools and 
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university with instruction in ASL, and had spouses or 
partners with whom they used ASL on a daily basis. There 
were 17 men and 7 women of ages 24-58 (median age 33). 
The experiment consisted of two phases: In phase 1 of the 
study, we used a set of 12 ASL stories and comprehension 
questions that we designed and produced as stimuli.  The 
stories and questions were adapted from those used in [8] for 
use in this current study; the stories were edited so that they 
included the eight ASL verbs listed in Table 1.  The 
animations consisted of a single onscreen virtual human 
character, who tells a story about 3-4 characters, who are 
associated with different arc-positions in the signing space 
surrounding the virtual signer.  The 12 stories and their 
questions were designed so that the questions related to 
information conveyed by a specific verb in the story.  The 
comprehension questions were difficult to answer because of 
the stories’ complexity, because participants saw the story 
before seeing the questions, and because they could only view 
the story one time.  Each story was produced in four different 
versions, based on the form of the verb used in the animation:  
• PointModel: inflected verb using our point-based model 
• VectorModel: inflected verb using vector-based model 
• Animator: inflected verb produced by a human animator  
• Uninflected: uninflected citation-form of the verb  
It is important to note that all of the animations presented were 
grammatical, including the Uninflected stimuli. As described 
in section 1.1, verbs in ASL do not require spatial inflection 
during sentences, so long as the identity of the subject and 
object is otherwise indicated in the sentence.  The animations 
presented in this study included in this information in the form 
of noun phrases or pointing pronouns in each sentence, 
identifying the subject and object. So, there were no non-
grammatical sentences shown to participants in the study. 
Section 3.2 mentions how the orientation model of the vector-
based model is identical to the orientation model of the point-
based model, so, the hand orientations in these two types of 
animation are identical – only the locations of the hands differ. 
In this within-subjects study design:  
• No participant saw the same story twice.  
• The order of presentation of each story was randomized. 
• Each participant saw 3 animations of each version.  

 

(a)  (b)  

Figure 5: Example of ASL verb COPY produced by the 
vector model, as it appears in the study 

Figure 5 shows example images for the verb COPY, produced 
by the vector model, as it appeared in a story during the study.  
In this example, the animated signer described a story in which 
several students (set up at locations in the signing space) were 
working on homework, and one student copied another 
student’s homework. One of the comprehension questions for 
this story asked which of the students copied the homework. 

Animation examples from this study may be accessed here: 
http://latlab.ist.rit.edu/slpat2015/ 

Table 1: Verbs collected in the training data set and 
which appear in the stimuli in study in section 4. 

Verb Indicates 1- or 2- 
handed Description of Movement 

ASK 
Subject 

and 
Object 

1 
‘ask a question’: a bending 

index finger moves from Subj 
(‘asker’) to Obj (‘askee’) 

GIVE 
Subject 

and 
Object 

2 
‘give to someone’: hands 

move as a pair from the Subj 
(‘giver’) to Obj (‘recipient’) 

MEET 
Subject 

and 
Object 

2 

‘two people meet’: hands 
move from Subj and Obj 

toward each other, and meet 
somewhere in-between. 

SCOLD Object 
only 1 

‘scold/reprimand’: extended 
index finger wags at the Obj 

(‘person being scolded’) 

TELL Object 
only 1 

‘tell someone’: index finger 
moves from signer’s mouth to 

Obj (‘person being told’) 

COPY 
Subject 

and 
Object 

2 

‘copy from someone’: right 
flat hand against left flat hand 
near Obj (‘someone’) moves 

toward Subj (‘copier’). 

EMAIL 
Subject 

and 
Object 

2 

‘email to someone’: right hand 
(bent-flat) passed through the 

cavity of the left hand (C 
shape) from Subj to Obj. 

SEND 
Subject 

and 
Object 

2 

‘send to someone’: a “B” hand 
with fingertips’ quickly slide 
over the back of other hand, 
moving from Subj to Obj. 

After watching each story once, participants answered 4 
multiple-choice comprehension questions that focused on 
information conveyed by the indicating verbs. This study 
followed the methodological details of prior ASL animation 
research studies, as described in [8, 9, 11]. Figure 6 shows the 
comprehension question accuracy scores.  A Kruskal-Wallis 
test (alpha=0.05) was run to check for significant differences 
between comprehension scores for each version of the 
animations. Only one pair of values had a significant 
difference (marked with a star in the Figure).  

 
Figure 6: Comprehension question scores in phase 1. 

In phase 2, participants viewed four animations of the same 
sentence side-by-side; e.g., “John point_to_arc_position_0.9 
ASK Mary point_to_arc_position_-0.6.” (Arc position 0.9 is 
on the signer’s far right side, and arc position -0.6 is on the 
signer’s left side.) The only difference between the four 
versions that were displayed on the screen was whether the 
verb in the sentence was: (a) synthesized from our point-based 
model, (b) synthesized from our vector-based model, (c) 
created by a human animator, or (d) an uninflected version of 
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the verb.  Participants could re-play the animations multiple 
times, and a variety of arc-positions were used in the 
animations (the four versions shown at one time all used the 
same arc-positions). Participants answered 1-to-10 Likert-
scale questions about the quality of the verb in each of the 3 
versions of the sentence.  Figure 7 shows the results.  To check 
for significant differences between Likert-scale scores for each 
version, a Kruskal-Wallis test (alpha=0.05) was performed; 
significant pairwise differences are marked with a star. 

 
Figure 7: Subjective Likert-scale scores in phase 2. 

4.1. Discussion of Results 

For the comprehension question scores collected in phase 1 of 
the study, the vector-based model had significantly higher 
scores than the stories with the uninflected version of the 
verbs.  This is a positive result because it indicates that the 
vector-based modeling approach led to more understandable 
stories.  Prior work [9] has shown that comprehension-
question based evaluation of animations is necessary to 
accurately measure the understandability of ASL animations. 
For the subjective scores of animation quality collected during 
the side-by-side comparisons in phase 2 of the study, the 
animations containing verbs produced by the human animator 
received significantly higher scores than the uninflected 
animations.  This was an expected result: the Animator 
animations were hand-crafted by a native ASL signer with 
proper ASL verb inflection movements, whereas the 
Uninflected animations were considered our lower baseline.   
Similar to the Animator animations, our PointModel 
animations received higher subjective evaluation scores than 
the Uninflected animations.  Verbs produced using this 
modeling technique received higher scores from native ASL 
signers.  Uninflected verb animations are still used in many 
sign language animation systems; so, this indicates that our 
modeling technique is superior to that lower baseline.  
Because the Animator version of the verbs was considered our 
upper baseline for this study (since it reflects the careful 
creation of an inflected verb form during a time-consuming 
process), it was a positive result that the PointModel achieves 
this high score. 
It is also notable that the PointModel received statistically 
higher subjective scores than the VectorModel, and the 
VectorModel did not receive statistically higher scores than 
the Uninflected animations.  This result may indicate that there 
were problems with some animations produced using the 
VectorModel in this study.  Figure 8 shows per-verb results 
from phase 2. It is important to note that none of the 
differences in Figure 8 were statistically significant; however, 
looking at this figure, we speculate that the VectorModel may 
have performed poorly for TELL and SCOLD. Among the 
verbs in this study, these two verbs are special, in that they 
inflect for object position only. (Their movement path is not 
modified based on where the subject of the verb is positioned 
on an arc around the signer.)  Further, when human signers 

perform these verbs, their motion path is oriented away from 
the signer's chin (in the case of TELL) or heart (in the case of 
SCOLD).  Since the VectorModel does not explicitly model 
the starting location of a verb (the location is selected based on 
a search through the Gaussian mixture model representing 
hand location probability), the VectorModel may lead to verb 
animations in which the starting location is somewhat 
inaccurate.  For some ASL verbs, this may not have a 
significant impact on the perceived quality of the verb, if the 
overall direction of the verb movement is correct.  However, 
for TELL and SCOLD, it may be the case that the beginning 
location of these verbs is very important for the correct 
production of the sign.  For this reason, the vector model may 
not be appropriate for verbs of this type.  Investigating the 
suitability of the vector model for different classes of ASL 
verbs, that have particular constraints on their starting 
locations, is an open area of future research.   

 
Figure 8: Per-verb results from phase 2 of the study. 

5. Conclusions, Future Work 
This paper has described our modeling methods and 
construction of a parameterized lexicon of ASL verb signs, 
whose motion path depends on the location in the signing 
space associated with the verb’s subject and object. 
Specifically, we have described enhancements (representing 
hand orientation and relative location of the hands) to two 
prior state-of-the-art methods for generating ASL indicating 
verb animations (i.e., the point-based model and vector-based 
model of [8, 11, 13]).  We have used motion capture data of 
sign language performances from native signers as a training 
data set for learning our models. In a user-based evaluation 
with 24 participants, we evaluated whether these models were 
able to produce more understandable ASL verb animations. 
In future work, we intend to collect a larger set of recordings 
of ASL indicating verbs, including some with more complex 
movements of the hands, to evaluate whether the modeling 
techniques perform well for an even larger variety of signs.  
We may also explore how subject/object locations affect the 
signer's handshape during a verb signs: handshape was not 
affected by subject/object location in our current modeling 
approaches.  We will study how the speed or timing of verb 
movements varies with the location of subject/object in the 
signing space.  While our current work has focused on verb 
signs, we believe these modeling techniques may also be 
applicable to ASL pronouns and other signs whose movements 
are affected by the arrangement of spatial reference points in 
the signing space.  Further, while this paper focused on ASL, 
we expect that researchers studying other sign languages 
internationally may wish to replicate the data-collection and 
verb-modeling techniques to produce models for signs that are 
affected by spatial locations. 
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Abstract
Advancing the automatic synthesis of linguistically accurate
and natural-looking American Sign Language (ASL) anima-
tions from an easy-to-update script would increase information
accessibility for many people who are deaf by facilitating more
ASL content to websites and media. We are investigating the
production of ASL grammatical facial expressions and head
movements coordinated with the manual signs that are crucial
for the interpretation of signed sentences. It would be useful for
researchers to have an automatic scoring algorithm that could
be used to rate the similarity of two animation sequences of
ASL facial movements (or an animation sequence and a motion-
capture recording of a human signer). We present a novel,
sign-language specific similarity scoring algorithm, based on
Dynamic Time Warping (DTW), for facial expression perfor-
mances and the results of a user-study in which the predictions
of this algorithm were compared to the judgments of ASL sign-
ers. We found that our algorithm had significant correlations
with participants’ comprehension scores for the animations and
the degree to which they reported noticing specific facial ex-
pressions.
Index Terms: American Sign Language, accessibility for peo-
ple who are deaf, animation, natural language generation

1. Introduction
Access to understandable information on websites and other
media is necessary for full participation in society. Yet, the vast
majority of information content online is in the form of writ-
ten language text, and there are many users who have difficulty
reading this material. For many people who are deaf and hard-
of-hearing, there are educational factors that may lead to lower
levels of written language literacy. In the U.S., standardized
testing has revealed that a majority of deaf high school grad-
uates (students who are age 18 and older) have a fourth-grade
English reading level or below [27]. (U.S. students in the fourth
grade of school are typically age 10.) While they may have dif-
ficulty with written English, many of these users have sophis-
ticated fluency in another language: American Sign Language
(ASL).

More than 500,000 people in the U.S. use ASL as a primary
means of communication [20]. However, fluency in ASL does
not entail fluency in written English since the two are distinct
natural languages: with their own word order, linguistic struc-
ture, and vocabulary. Thus, information content can be easier
to understand for many deaf users if it is presented in ASL. A
spontaneous approach to presenting ASL online would be to up-
load videos of human signers on website and other media, but
this is not ideal: re-filming a human performing ASL for fre-

quently updated information is often prohibitively expensive,
and the real-time generation of content from a query is not pos-
sible. Software is needed that given an easy-to-update script as
input can automatically synthesize ASL signing performed by a
virtual human character. This software must internally coordi-
nate the movements of the virtual human character such that the
animated ASL message is linguistically accurate, understand-
able, and acceptable among users. The creation of such soft-
ware is the focus our research.

An ASL utterance consists of the movement of the hands,
arms, torso, head, eye-gaze, and facial expressions. In fact, fa-
cial expressions are essential to the understandability and mean-
ing of ASL sentences (see section 2). Our research focuses
on the automatic synthesis of facial expression movements for
an ASL-signing virtual human character such that the resulting
animations are judged to be clear and understandable by deaf
users. In addition to our ongoing research in this area, other
groups have studied issues related to the synthesis of facial ex-
pressions for sign language animation, whose methods and con-
tributions we compare and survey in [14]. For researchers like
ourselves, who are interested in designing software that gen-
erates linguistically-accurate ASL facial expressions performed
by virtual human characters, the most comprehensive way to
evaluate the quality of the software is to conduct user studies.
Typically, we generate animations using the facial expression
selection software, set up an experiment in which deaf partici-
pants view and evaluate the animations, and compare the scores
of animations produced using the software (to some baselines or
to prior versions of the software). Of course, conducting such
studies with users is time-consuming and resource-intensive;
so, these studies cannot be conducted on a frequent basis (e. g.,
weekly) during the development of ASL facial-expression syn-
thesis software. For this reason, it would be useful to have
some automatic method for quickly evaluating whether the fa-
cial expression produced by the software for some specific ASL
sentence is accurate. In this paper, we present an automatic
scoring algorithm that can compare two facial expression per-
formances to rate their similarity. In principle, this automatic
scoring tool could be used to quickly evaluate whether the out-
put of facial expression synthesis software is producing a result
that is similar to ASL utterances recorded from actual human
ASL signers. The proposed algorithm could be incorporated
into a data-driven facial expression synthesis architecture, an
approach which is also favored by other sign language anima-
tion researchers, e. g.: [26] that use computer vision to extract
facial features and produce facial expressions that occur during
specific signs, and [3] that map facial motion-capture data to
animation blend-shapes using machine-learning methods.

The face and head position of a virtual human character
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at any moment in time can be conceptualized as a vector of
numbers, specifying joint angles and facial-control parameters
at that moment in time. Thus, an animation is a stream of such
vectors. While there are a variety of techniques that can be used
to measure the similarity between two time-streams of vectors,
this paper will specifically explore an approach based on a Dy-
namic Time Warping (DTW) algorithm. Section 5 describes
DTW and discusses how some researchers have begun to use
this algorithm to rate the similarity of non-sign-language emo-
tional facial expressions for animated characters [19]; however,
no user-study had been performed to verify that such scores ac-
tually matched human judgments of similarity – nor has this
technique yet been applied to sign-language facial expressions.

This paper presents a novel, sign-language specific scoring
algorithm based on DTW, which takes into account the timing
of words in the sentence. This paper reflects our first efforts
at designing a DTW-based scoring tool, and the goal of this
paper is to determine if the technique holds promise – if so,
then we intend to investigate further variations of the scoring
algorithm, to optimize it for ASL. In order to determine if our
scoring tool is useful, we must determine whether the scores it
provides actually correlate with the judgments of human ASL
signers who evaluate ASL animations in an experiment. This
paper presents a user study we conducted in which human ASL
signers evaluated animations with facial expressions of different
levels of quality (as rated by the automatic scoring tool), and
we measure how well our automatic scoring correlates with the
human judgments.

The remainder of this paper is organized as follows: Section
2 describes the linguistics of various ASL facial expressions,
and section 3 describes how we time-warp a motion-capture
recording of a facial expression performance to suit the syn-
thesis of an ASL animation of a sentence with a different time
duration. Section 4 describes how the movements of the face of
a virtual human character can be parameterized and controlled,
and Section 5 defines our new DTW-based automatic scoring al-
gorithm. Section 6 presents our research questions and hypothe-
ses, which were evaluated in a user-study presented in section
7. Finally, section 8 discusses these results and identifies future
directions.

2. Syntactic facial expressions
Facial expressions are an essential part of the fluent production
of ASL. They can convey emotional information, subtle varia-
tions in the meaning of words, and other information, but this
paper focuses on a specific use of facial expressions: to con-
vey grammatical information during entire syntactic phrases in
an ASL sentence. ASL sentences with identical sequence of
signs performed by hands can be interpreted differently based
on the accompanying facial expressions. For instance, a declar-
ative sentence (ASL: “ANNA LIKE CHEESECAKE” / English:
“Anna likes cheesecake.”) can be turned into a Yes-No question
(English: “Does Anna like cheesecake?”), with the addition of
a Yes-No Question facial expression during the sentence. Sim-
ilarly, the addition of a Negation facial expression during the
verb phrase “LIKE CHEESECAKE” can change the meaning of
the sentence to “Anna doesn’t like cheesecake.” where the sign-
ing of the word NOT is optional. For an interrogative question
(typically including a “WH” word in English such as where,
why, and what), e. g. “ANNA LIKE WHAT”, a co-occurring
WH-Question facial expression is necessary during the ASL
sentence. Instances of these three ASL facial expressions are
illustrated in Figure 1.

Figure 1: Examples of ASL linguistic facial expressions: (a)
Yes-No Question, (b) WH-Question, (c) Negation.

While we use the term “facial expressions,” these phenom-
ena also include movements of the head, which we model in
this paper. ASL linguistics references contain more detail about
each, e. g., [22], but a subset of them is described briefly below:

• Yes-No Question: The signer raises his eyebrows while
tilting the head forward during a sentence.

• WH-Question: The signer furrows his eyebrows and tilts
his head forward during a sentence.

• Negation: The signer shakes his head left and right dur-
ing the phrase with some eyebrow furrowing.

An ASL linguistic facial expression varies in the way it is
performed during a given sentence based on the overall num-
ber of signs, the start and end times for a particular word in the
sentence (e. g., WHAT and NOT), preceding and succeeding fa-
cial expressions, signing speed, and other factors. Thus, sim-
ply playing on a virtual character a pre-recorded human perfor-
mance of a facial expression to a novel, not previously recorded,
sentence is insufficient. For this reason, we are investigating
how to model and synchronize to manual movements the per-
formance of a facial expression in various contexts.

3. Time-warping facial expressions
In our research on synthesizing ASL animations, we often need
to generate a novel animation by assembling a sequence of in-
dividual words from a prebuilt animation dictionary; each word
may have its own typical duration, which is used to determine
a timeline for the full ASL utterance. We seek to add a facial
expression performance to such animations, and in section 4,
we discuss how facial features extracted from the recording of
a human’s face could be used to drive the movements of the an-
imated character. Thus, the time-duration of the recording must
be “warped” to match the time duration needed in the animation
to be synthesized.

Simplistically, the recording could be linearly stretched or
squeezed to suit the target time duration, but animation re-
searchers have investigated a variety of techniques for time-
warping motion data to new contexts, e. g., [7, 31]. In many ap-
proaches, e. g., [7], key milestones during a recorded action are
identified in the timestream (e.g., each footfall during a walk-
ing action), and these milestone times are used as parameters to
determine how to warp the recording (so that the movements of
the human for each “footstep” of the walking action are warped
into appropriate footstep actions that meet timing requirements
for when the virtual human footsteps must occur in the anima-
tion).

When synthesizing sign language animations, we have ac-
cess to information about the underlying timeline of the utter-
ance, which we can use to select useful milestones for time-
warping:

• ASL facial expressions occur in relation to the timing
of the words during a sentence [22]. Yes-No Ques-
tion and WH-Question facial expressions typically ex-

30



tend across entire clauses, and Negation, across an entire
verb phrase.

• Signers perform anticipatory head movements so that the
main action begins with the clause or phrase [22].

• Many phrases with facial expressions begin with or end
with a word that has a special relationship to the facial
expression being performed (such that there may be ad-
ditional intensity of the facial expression during this ini-
tial/final word).

– Negated verb phrases may include the word NOT
at the beginning of the phrase, where greatest in-
tensity of the Negation facial expression will occur
[22].

– WH-Question clauses typically end with a WH-
word, and in some contexts, the facial expression
may occur only (or with greatest intensity) during
this word [18].

– Yes-No Question clauses often end with a right-
dislocated pronoun [22] or a “QM-wg” (wiggling
finger question mark) sign at the end [1].

For an ASL animation that contains a sequence of words, S,
when a facial expression occurs, we define four phases of time
based on the intervals between five milestones on the timeline:
M1: The end of the word immediately before S
M2: The beginning of the first word in S
M3: For Negation, M3 is the beginning of the second word in

S, otherwise, M3 is the beginning of the last word in S
M4: The end of the final word in S
M5: The beginning of the word that immediately follows S

If S begins or ends an utterance, then M1 and M5 are set to a
value 500msec away from S. The rationale for these definitions
is:

• Phases M1-M2 and M4-M5 represent the onset and off-
set of the facial expression, before and after S.

• For a Negation phrase, M2-M3 is the duration of the first
word, and M3-M4 is the remainder of the phrase. A
Negation phrase may begin with the word NOT, when
a particularly intense facial expression may occur. Thus,
it is useful to distinguish the time of the first word of the
phrase. (If S contains only one word, then these phases
are merged.)

• For a Yes-No Question or a WH-Question, M3-M4 is the
duration of the final word, and M2-M3 is the remainder
of the phrase. There is often additional facial expression
intensity during the final word of a question; thus, it is
useful to distinguish the time of the final word of the
question. (If S contains only one word, then these phases
are merged.)

Recall that our goal is to modify the timing of a human’s
facial movement recording to suit the timeline of a target ani-
mation we want to synthesize. For any human recording that we
plan to use as a source material for facial movements, we ask
an ASL signer to identify these five milestones. When we want
to modify the timing of a recording, we perform time-warping
for each of these four phases independently. Thus, data from
phase M2-M3 of the recorded human utterance is time-warped
to fit the duration of phase M2-M3 of the target animation that
we are synthesizing. In this way, we can increase the likelihood
that the appropriate portion of the human’s facial performance
coincides with the timing of the appropriate signs in the result-
ing animation.

The top of Figure 2 shows how a recording of the eyebrow
height of a human signer during a Yes-No question might ap-
pear during an ASL sentence: “SHE LIVE DC SHE” (English:

Figure 2: Phase-based time-warping of a recording of a hu-
man’s eyebrow movements from a Yes-No Question (above) for
an animation with a different timeline (below).

“Does she live in DC?”). The milestones are marked with verti-
cal lines, and the figure shows how data from each phase of the
recording can be linearly time-warped to produce a facial ex-
pression for an animation with different word durations. (The
graph in Figure 2 is an artist’s rendering meant to illustrate the
warping technique.)

4. MPEG-4 and ASL animation
In prior work, we constructed a lexicon of ASL signs and a col-
lection of ASL stimuli [9] for use in experiments to evaluate
facial expression animation synthesis methods. As part of that
project, we recorded videos of a native ASL signer performing
the stimuli, and we extracted the facial features and head pose
of the human signer in the videos using the Visage Face Tracker
(shown in Fig. 3). Visage is an automatic face tracking software
[24] that provides a stream of MPEG-4 Facial Action Parame-
ters (FAPs) that represent the facial expression of the human.

The MPEG-4 standard [11] defines a 3D model-based cod-
ing for face animation. The facial expression of a human (or
an animated character) can be represented by a set of 68 FAPs,
representing head motion, eyebrow, nose, mouth, and tongue
controls, all of which can be combined for representation of
natural facial expressions. For example, “raise l i eyebrow” is
one of the FAPs (codename FAP30) in the MPEG4 standard,
and it represents the vertical displacement of left inner eyebrow.
Larger values for this number would indicate that the eyebrow
is raised higher. To specify a changing facial expression over
time, a stream of numerical values for all of the FAPs of the
face is needed, for each frame of animation.

MPEG-4 FAPs have been used by a variety of non-sign-
language animation researchers studying, e. g., expressive em-
bodied agents [21], emotional facial expressions during speech
in synthetic talking heads [19], or dynamic emotional expres-
sions [30]. A useful property of MPEG-4 is that the FAP val-
ues are normalized to the proportion of the character’s face as
shown in Fig. 3; thus, a stream of FAP values could be used to
drive the animation of virtual humans with different face pro-
portions,and the resulting animation would appear to have sim-
ilar facial expressions, when played on a difference virtual hu-
man.

To support our research on ASL facial expressions (espe-
cially the development of automatic scoring tools), it was nec-
essary to implement a virtual human animation platform with
face-movement control parameters. We decided to use MPEG-
4 facial action parameters [11] , and we enhanced the EMBR
platform [5, 6, 16] with MPEG-4-based face controls. We also
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Figure 3: MPEG-4 facial features and scaling factors on the
human signer in Visage (left) and the avatar (right).

implemented an intermediate component that converts MPEG-
4 data to EMBRscript, the script language supported by the
EMBR platform. Our script generation component performs
the phase-based time-warping approach described in section 3
to align the facial expression with the animated character hand
movements. The FAPs that are used to drive our facial expres-
sion animations for this paper include the following (additional
FAPs may be implemented in future work):
Head orientation (FAP47-FAP49): orientation parameters

given in Euler angles defined as pitch, yaw, and roll.
In addition to head orientation, the Visage output also
includes the head’s location in 3D space; we adjust the
torso movements of our avatar based on these values.

Vertical displacements of eyebrows (FAP30-FAP35): 6 pa-
rameters directly applied the inner, middle, and outer
points of the left and right eyebrow to allow for differ-
ent combinations of raised and lowered eyebrows.

Horizontal displacements of eyebrows (FAP36-FAP37): 2
parameters directly applied in the inner points of the
eyebrows that allow for e.g. furrowed eyebrows.

5. The dynamic time warping algorithm
In this paper, we present a novel method for evaluating the qual-
ity of synthesized facial expressions for sign-language anima-
tions, which is based in the Dynamic Time Warping (DTW) al-
gorithm. DTW arose in the field of speech recognition [25, 28]
as a generalization of algorithms for comparing series of values
with each other. DTW sums the distance between the individual
aligned elements of two time series, which are locally stretched
or compressed, to maximize their resemblance. Unlike the Eu-
clidean distance, it can serve as a measure of similarity even for
time series of different length. An advantage of DTW over other
cross-correlation similarity measures is that it allows for non-
linear warping. There are a variety of DTW algorithms, used in
several fields, with different global or local constraints (e. g., lo-
cal slope, endpoints, and windowing), different feature spaces
for the time series values, and different local distance metrics
between the individual aligned elements (e. g., Euclidean, Man-
hattan).

DTW has been used as a similarity scoring technique for fa-
cial animation, e. g., for the retrieval of facial animation based
on a key-pose query [23] and spatio-temporal alignment be-
tween face movements recorded from different humans [31]. In
prior work, DTW has been also considered as a method for scor-

Algorithm 1 ASL facial expression animations scoring
1: function GETDISTANCE(g, c,M,N, c dur, anim dur)
2: G = [g[M1,M2], g[M2,M3], g[M3,M4], g[M4,M5]]
3: C = [c[T1,T2], c[T2,T3], c[T3,T4], c[T4,T5]]
4: distance = 0
5: for ph g, ph c in pair (G, C) do
6: norm d = DTW(ph g, ph c)
7: distance = distance + norm d
8: scale = anim dur / c dur
9: return distance * scale

ing the quality of time series data. Kraljevski et al. [17] found
correlation between DTW distance and the measured Perceptual
Evaluation of Speech Quality (PESQ) values for test and re-
ceived speech in a simulated transmission channel with packet
loss. (PESQ [12] is a perceptual objective measure typically
used for estimating the transmission channel impact in speech.
However, it has been also used for synthesized speech quality
assessment [2].)

Mana and Pianesi [19] used DTW distance as a quality
measure for the quantitative evaluation of synthesized non-sign-
language emotional facial expressions in a MPEG-4 compatible
avatar. They compared “synthetic” time series of facial mark-
ers per frame, with the corresponding “natural” time series per-
formed by a human. While the authors commented that the syn-
thetic animations preferred by DTW appeared (to them) simi-
lar to the original human performance, they did not verify that
DTW scores related to human judgments of facial expression
similarity by conducting a user study (which we have done, as
described in section 7).

5.1. Our DTW-based scoring algorithm

Our scoring algorithm assumes that we have:
• A timeline of the words for a “target” ASL animation

that we want to generate, where the facial expression has
a given duration in milliseconds (anim dur). If we are
synthesizing an ASL animation using a pre-built anima-
tion lexicon of individual ASL signs, then the duration
of these items will affect the overall timeline plan for the
target animation to be synthesized. Now, a facial expres-
sion must be synthesized.

• A “gold standard” (g) motion-capture recording of a hu-
man’s facial expressions for this ASL sentence (or a very
high quality animation of a facial expression which is
trusted to be of excellent quality) and the list of five mile-
stones on its timeline (M1, ..., M5). Notably, the time-
line of when the recorded human performed each word
of the sentence will be slightly different than the timeline
of the target animation. A video recorded performance
of ASL grammatical facial expression can be considered
as a multivariate time series, a series of detected MPEG-
4 FAPs values in each video frame.

• A “candidate” stream (c) of MPEG-4 facial expression
parameters that has been synthesized by some software
(or perhaps another motion-capture recording) that we
wish to evaluate, the list of five milestones on its timeline
(T1, ..., T5), and its duration in milliseconds (c dur).

Our scoring algorithm initially constructs a list of partial
streams for the four phases of the facial expressions g and c
based on the intervals between the given five milestones on their
timeline (Line 2, Line 3). Then it initializes the total distance
between the gold standard and the animated candidate with 0
(Line 4). For each pair of steams of the same phase (Line 5)
the algorithm calculates the normalized distance based on Dy-

32



Figure 4: Example of DTW alignment between the
“raise l i eyebrow” values detected in human recordings of two
ASL stories containing a Negation facial expression.

namic Time Warping (Line 6) and adds it to the total distance
(Line 7). Since the “candidate” stream and the final animation
have different durations, a scaling factor is applied to the dis-
tance, based on the stretching or compression of the “candidate”
stream (Line 8, Line 9).

To calculate the distance between the two partial streams
(Line 6) we used the implementation of multivariate DTW in
[4]. It computes a global alignment with minimum distance
normalized for path length using Euclidean as a local distance.
Computing global alignments means that the time series’ heads
and tails are constrained to match each other. We further
tuned the algorithm by using the asymmetric step pattern and
a SakoeChiba warping window of size 10.

Figure 4 illustrates an example of an alignment for the de-
tected values of MPEG-4 control “raise l i eyebrow” with the
Visage SDK [24] during a human’s performance of two ASL
stories containing a Negation facial expression (with codenames
N3 and N1 in the stimuli collection [9]). The alignment is pre-
formed with the default multivariate implementation of DTW
in the R package, dtw [4]. The duration of the facial expression
in N3 and N1 is 1414 and 924 frames, respectively and their
calculated normalized distance was found to be 8.76.

6. Hypotheses
Our goal for this paper is to evaluate our novel, sign-language
specific, DTW-based scoring algorithm for facial expressions.
One method would be to conduct a study in which human
judges estimate similarity scores between face movements in
pairs of ASL recordings (and then compare our algorithm to
their scores), but we did not find prior published studies in
which human judges were able to provide reliable numerical
ratings of facial expression similarity between pairs of ASL an-
imations. On the other hand, in several prior studies [8], human
participants have been able to answer comprehension questions
about ASL animations and indicate whether they noticed par-
ticular facial expressions. Thus, we evaluated our DTW algo-
rithm by: (1) selecting a human ASL recording that serves as
a gold-standard face performance, (2) using our similarity scor-
ing algorithm to compare this gold-standard to other candidate
recordings, and (3) asking human judges to evaluate the com-
prehensibility of these candidate ASL performances. If we find
that our algorithm?s prediction of the similarity between the
candidate and the gold-standard correlates with such human-

judgments, then we would posit that our algorithm is a useful
tool for researchers who are investigating the synthesis of sign-
language facial expressions. Thus, we propose the following
two hypotheses:
Hypothesis 1: Our scoring algorithm correlates with partici-

pants’ implicit understanding of the facial expression, as
measured through comprehension questions that probe
the participant’s understanding of the information con-
tent of the animation.

Hypothesis 2: Our scoring algorithm correlates with partic-
ipants’ explicit recognition of the facial expression,
as measured through a question that asks participants
whether they noticed a particular facial expression dur-
ing the animation.

7. User study
To evaluate our hypotheses, we conducted a user study, where
participants viewed animations of short stories in ASL and then
answered comprehension and scalar-response questions.

Stimuli. To produce animated stimuli, we selected 6
recordings of a human ASL signer performing ASL stories for
each of the 3 categories of ASL grammatical facial expressions
(Negation, WH-Question, or Yes-No Question). This is a to-
tal of 18 stimuli. We describe our collection of recordings in
[9], and the codenames of the selected stories used in this paper
were N1-N6, W1-W6, and Y2-Y7, respectively. To obtain the
facial expression data that would drive the animations we run
Visage Face Tracker [24] on the video recordings of a native
ASL signer performing each of the stories. Then we extracted
the head position, head orientation, and MPEG-4 FAPs values
for the portion of the story where the facial expression occurs.

Next, to generate our stimuli, we rendered an ASL anima-
tion of each story in two different versions:
min-distance: Face, head, and torso movements are driven by

the recorded performance of the story with the smallest
DTW distance from the 5 stories available in the same
category. That is, to synthesize an animation of story N1,
we used the face and head movements from the story in
the set N2-N6 that had the minimum distance from the
N1 recording, based on our new scoring algorithm (sec-
tion 5.1). Notably, stories N2-N6 had different words,
but were all Negation stories.

max-distance: Face, head, and torso movements are driven by
the recorded performance of the story with the largest
DTW distance from the 5 stories available in the same
category.

Figure 5 illustrates the two versions of a Yes-No Question
story (codename Y3). The video size, resolution, and frame-
rate for all stimuli were identical. The hand movements in
each version were identical and were created by native ASL
signers using our laboratory’s animation platform [5]. The fa-
cial movements were added during the portion of the story
where the facial expression of interest should occur; the rest
of the story had a static neutral face. The recorded head and
facial movements were warped based on the timing of the
words in the target animation, as described in section 3. Ex-
ample stimuli animations from our study are available here:
http://latlab.ist.rit.edu/2015slpat.

Experiment Setup. We conducted an evaluation study in
which native ASL signers viewed animations of a virtual hu-
man character telling a short story in ASL. Each story included
instances of one of the facial expressions of interest: Negation,
WH-Question, or Yes-No Question. After watching each story
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Figure 5: Screenshots from a min-distance and max-distance version of a Yes-No Question stimulus in the study.

animation (with facial expressions of one of two types: min-
distance or max-distance) one time, participants responded to a
“Notice” question (1-to-10 from “yes” to “no” in relation to how
much they noticed an emotional, negative, questions, and topic
facial expression during the story). Participants were asked
to watch the story once more and answer four comprehension
questions [9] on a 7-point scale from “definitely no” to “defi-
nitely yes.” Participants could choose “I’m not sure” instead of
answering. As discussed in [15], these stories and comprehen-
sion questions were engineered in such a way that the wrong
answers to the comprehension questions would indicate that the
participants had misunderstood the facial expression displayed
[15]. E.g. the comprehension-question responses would indi-
cate whether a participant had noticed a “yes/no question” facial
expression or instead had considered the story to be a declara-
tive statement.

At the beginning of the study, participants viewed a sample
animation, to familiarize them with the experiment. A native
ASL signer conducted all of the experiments in ASL. In prior
work [9], we developed methods to ensure that responses given
by participants are as ASL-accurate as possible.

Participants. In [10], we discussed the importance of par-
ticipants being native ASL signers and the study environment
being ASL-focused with little English influence; we developed
questions to screen for native ASL signers. For this study, ads
were posted on New York City Deaf community websites ask-
ing potential participants if they had grown up using ASL at
home or had attended an ASL- based school as a young child.
Of the 18 participants recruited for the study, 15 participants
learned ASL prior to age 9, The remaining 3 participants had
been using ASL for over 11 years, learned ASL as adolescents,
attended a university with classroom instruction in ASL, and
used ASL daily to communicate with a significant other or fam-
ily member. There were 10 men and 8 women of ages 22-42
(average age 29.8).

8. Results
Our hypotheses considered whether our new scoring algorithm
would correlate with participants’ implicit understanding of the
facial expression (Hypothesis 1) or explicit recognition of the
facial expression (Hypothesis 2).

To examine Hypothesis 1, we calculate the correlation be-
tween the distance score from the new algorithm and the score
from comprehension questions in the user study. We found a
significant correlation (Spearman’s rho −0.38, p − value <

0.001): Hypothesis 1 was supported.
To examine Hypothesis 2, we consider the correlation be-

tween the distance score from the new algorithm and the score
from the “Notice” question in the study. We found a signifi-
cant correlation (Spearman’s rho −0.33, p − value < 0.001):
Hypothesis 2 was supported.

9. Conclusions and future work
While we believe that studies with ASL signers are the most
conclusive way to evaluate the understandability and natural-
ness of animations of ASL, our positive results for hypotheses
1 and 2 suggest that sign-language animation researchers could
use our new scoring algorithm to evaluate the facial expressions
produced by their software. Having a rapid, repeatable method
of evaluating the output of facial expression synthesis software
is useful for monitoring the development of software, and this
evaluation can be performed more frequently than user-based
evaluations.

We believe that the time-warping algorithm (section 3) and
our scoring algorithm (section 5.1) are a first-attempt at devel-
oping an automatic scoring approach, and now that we have
observed some moderate though significant correlations in this
study, we plan on investigating further variations of these tech-
niques that might prove even more effective. For example, we
may investigate the use of Longest Common Subsequence [29]
instead of Dynamic Time Warping – or other probabilistic ap-
proaches to similarity – and compare them to our findings. We
noticed that some of the phases (e. g., M4-M5) of the facial ex-
pressions had higher correlations with the participants’ scores
compared to other phases. This might indicate the need for fur-
ther tuning of the coefficients for the partial distances calculated
on each of the 4 phases.

In future work, we are interested in designing learning-
based models for the synthesis of ASL facial expressions, in-
cluding: topic, rhetorical questions, and emotional affect [13].
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Abstract 
Speech technologies provide ways of helping people with 
hearing loss by improving their autonomy. This study focuses 
on an application in French language which is developed in 
the collaborative project RAPSODIE in order to improve 
communication between a hearing person and a deaf or hard-
of-hearing person. Our goal is to investigate different ways of 
displaying the speech recognition results which takes also into 
account the reliability of the recognized items. In this 
qualitative study, 10 persons have been interviewed to find the 
best way of displaying the speech transcription results. All the 
participants are deaf with different levels of hearing loss and 
various modes of communication.  
Index Terms: speech recognition, deaf or hard-of-hearing 
people, compensating for disadvantages, display of speech 
transcription, French language 

1. Introduction 
In the world, there are millions of people with hearing loss 
(http://www.who.int/pbd/deafness/news/Millionslivewithheari
ngloss.pdf; http://wfdeaf.org). In France over 11% of people 
suffer from hearing loss which causes several other limitations 
that are persistent [1]. The sensory problems involve both 
perceptual, speech, cognitive and social difficulties [2] [3]. 
The unemployment rate thus varies from 15 to 50% depending 
on the type of hearing loss. 

Deaf adults still have difficulties mastering French 
language, which is not considered, for some of them, as their 
native language. Sign language may also not be considered as 
their native language and has no written modality. The lack of 
oral interaction is repeated in many situations, even for those 
adults for whom hearing aids provide correction. In working 
situations with hearing persons, deaf adults often have to be 
supported by others [4]. The long term goals of the Rapsodie 
project (http://erocca.com/rapsodie) are to facilitate the 
integration of deaf or hard-of-hearing people within a 
professional context thus aiding their independence, providing 
them ways of comprehension and communication with 
automatic speech transcription help. 

Our research relates to an embedded system, used in a 
professional context which could help deaf or hard-of-hearing 
persons, employees, to interact with a speaking person, 
customer, without the help of an interpreter. The speech 
recognition of the customer’s utterance is displayed on the 
screen of the embedded terminal.  

The difficulty comes from the fact that speech 
transcription results contain recognition errors, especially if it 

is a real time process on a device with limited resources (CPU 
and memory) and in a noisy environment. As in many real-
work conditions, the speech signal is overlapped with parasitic 
noise, undesired extra speech, or music. These difficulties may 
impact the understanding processes. There has been many 
attempts to develop speech recognition appliances but to our 
knowledge, there is no suitable, validated and currently 
available screen display of the output of automatic speech 
recognizer for deaf or hard-of-hearing persons, in terms of 
size, colors and choice of the written symbols. It is the goal of 
this first qualitative study, taking account of the previously 
described technical constraints. We interviewed deaf adults at 
working age, with different levels of hearing loss and various 
modalities of communication. Our aim were both to study the 
feasibility of the project with deaf people of varying profiles, 
to investigate the more suitable display and to examine which 
factors the participants consider as being helpful for a better 
understanding of the speech transcription. 

In the following sections, the speech recognition system 
is described and then the different modalities chosen for 
displaying the recognition output. Afterwards, we focus on the 
experimental protocol results conducted with 10 deaf people, 
discussing how they can be accommodated in order to find the 
best display of the automatic speech transcription results. 

2. Speech transcription system 

2.1. Choice of linguistic units 
One of the aims of the RAPSODIE project is to realize a portable 
device embedding a speech recognition system that will help a 
deaf or hard-of-hearing person to communicate with other 
people. Due to the limits in memory size and computational 
power imposed by a portable device, the embedded speech 
decoder should achieve the best compromise between 
recognition performance, computational cost, acceptable 
execution time, and the way of displaying the recognition 
results for people with hearing loss. 

Given a recognition engine, the main constraints relate 
to the size of the language model and of the lexicon. In this 
context, we have investigated syllable-based lexicons and 
hybrid language models [5] [6]. Indeed, the combination of 
words and syllables allows the recognition of the most 
frequent words as words and the recognition of the out-of-
vocabulary words as sequences of syllables. These 
investigations led us to use a recognition engine system based 
on a hybrid trigram statistical language model with a lexicon 
composed of about 23,000 words and 3,000 syllables. The 
words and syllables were selected according to their frequency 
of occurrences in a training corpus of broadcast news, shows 
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and debates from various radio and TV channels. This hybrid 
model uses only 14 MB of memory space. When applied for 
the transcription of radio and TV shows (ETAPE [7] 
development data – 82,000 running words), more than 94% of 
the output tokens are words, the remaining part (about 6%) 
corresponds to syllables. An analysis of the results shows that 
about 70% of the words hypothesized by the decoder are 
correct (i.e., correctly recognized), and about 60% of the 
syllables are correct.  

Furthermore, the speech recognition engine is built from 
the PocketSphinx tool [8] and uses as acoustic models, 
context-dependent phone HMM models with 3 states and 64 
Gaussians per state. The acoustic analysis is the standard 
MFCC (Mel Frequency Cepstral Coefficients) providing 12 
static coefficients and the logarithm of the energy per frame 
with a 10 ms shift. First and second order temporal derivatives 
are added to the feature vector. 

Finally, the recognition engine provides a sequence of 
words and syllables corresponding to the customer’s utterance. 

2.2. Use of confidence measure 
Speech recognition is not perfect, especially when using an 
embedded device in a noisy environment. Two types of errors 
can occur. When the spoken word does not belong to the 
recognition lexicon (as a word or a sequence of syllables), the 
recognition engine recognizes it as another lexical unit or as a 
succession of smaller units acoustically similar to the 
unknown unit. Furthermore, it can happen that the spoken 
word is confused with another one when the conditions are 
different from those used for the training of the acoustic and 
language models (noisy environment, spontaneous speech, 
manner of speaking, etc.). Recognition errors will result in 
additional difficulties for deaf and hard-of-hearing people to 
understand the spoken sentence.  

Confidence measures aims at indicating the reliability of 
the speech recognition hypotheses. Several approaches for 
computing confidence measures have been studied in the past 
[9]. In [10] confidence measures were used to highlight words 
with low confidence scores in view of helping error correction 
in a multimodal environment. Along this line, it is always 
words with low confidence scores that are differentiated, either 
in a lighter shade for error correction in voicemail transcripts 
[11], or highlighted for computer assisted speech transcription 
[12], or displayed with an underlining dependent on the 
confidence measure [13]. As the confidence measures are not 
perfect such approaches do not always accelerate the detection 
and correction of the errors [13]. A few other studies were 
more concerned with understanding aspects. In [14] the words 
are displayed with a brightness that depends on their score 
(kind of confidence measure) in the context of speech 
playback using time-compression and speech recognition. In 
all the previous studies, the speech signal was available to the 
user. This is not the case of [15] which has investigated the 
understanding of sentences from their speech recognition 
output only, and investigated how much taking into account 
the confidence measures in the display can help. 

In the current study, we use the confidence measure 
computed by the speech recognition system to make the result 
of the recognition easier to understand by deaf users. The 
speech recognition engine provides a confidence measure for 

every recognized unit (word and syllable). This measure is 
based on posterior probability [9]. By comparing the 
confidence measure to a threshold adjusted on a development 
corpus, each lexical unit is labeled as “correctly recognized” 
(high confidence score) or “incorrectly recognized” (low-
confidence score). This characterization (right or wrong) of the 
words by the recognition system will be displayed on the 
terminal and different display modes will be proposed for 
assessment to several deaf persons. 

3. On-screen display modalities 

3.1. On-screen display modes of the speech reco-
gnition results (without using confidence measures)  
After the speech recognition process, the recognized words 
and syllables are displayed on the screen of the portable 
device. Regardless of the accuracy of the recognition result, it 
is important to investigate the best way to display this result 
for deaf and hard-of-hearing people. First, because the result is 
a mixture of words, and syllables that cannot be written into an 
orthographical form. Secondly, because for deaf people, 
orthographic transcription is not necessarily the best way to 
display the recognition result according to the type of hearing 
loss and the kind of speech and language training. We decided 
to study the three following display modes:  
• Orthographic: the recognized words are written into 

orthographical form, the syllables are written into 
pseudo-phonetic form; 

• International Phonetic Alphabet (IPA): all the 
recognized words and syllables are written into phonetic 
form using the International Phonetic Alphabet. Some 
deaf adults benefited from early hearing and speech 
intervention which gave them International Phonetic 
Alphabet knowledge when they learned to read and 
during speech and language remediation therapy; 

• Pseudo-phonetic: all the recognized words and syllables 
are written into a pseudo-phonetic alphabet. Indeed, the 
phones within the recognized words and syllables are 
translated into a simple sequence of graphemes using a 
kind of phonetic spelling. This mode seems appropriate 
for all the deaf persons who are familiar with French 
language pronunciation.  

An example of a recognition result displayed in these 3 modes 
is presented Table 1.  
 

Display mode Result of the automatic transcription (into 
words and syllables) 

 Orthographic je voudrais être li   vré   combien ça   kou   te 

IPA ʒə   vudʁɛ   ɛtʁ   li   vʁe    kɔ̃bjɛ ̃  sa   ku   tə 

Pseudo-
phonetic je   voudré   ètr   li   vré   konbyin   sa   kou   te 

Table 1: The different evaluated modes for displaying 
the result of the recognition of the uttered sentence: 

“je voudrais être livré, combien ça coûte ?” (I would 
like it to be home delivered, how much does it cost?). 
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3.2. On-screen display modalities using the 
confidence measure  
As explained in Section 2.2, the speech recognition system 
provides an estimation of the recognition correctness for every 
lexical unit, even if this estimation may be unreliable. 
Therefore, it is important to find the best way of presenting 
this information about the word/syllable correctness to the 
deaf user. 

In [15], it has been shown that hearing users infer the 
correct word from a word considered incorrect by the speech 
recognition system, more easily when it was written in 
phonetic form than when it was written in orthographic form. 
In particular, when several consecutive words were tagged as 
misrecognized by the system, the hearing user unsuccessfully 
focused on the word splitting given by the orthographic mode, 
causing misunderstandings, while the sound sequence of the 
words was almost free from errors. Instead, the oralization of 
the sound sequence helped the user to find the right words and 
thence the meaning of the sentence. Accordingly it seemed to 
us interesting to study whether these results remain valid for 
deaf users.  

On the one hand, we examined whether it is more 
favorable to highlight the “incorrectly recognized” or the 
“correctly recognized” lexical units. 

On the other hand, we distinguished two modes for 
displaying the “incorrectly recognized” words: the 
orthographic and pseudo-phonetic modes. Note that syllables 
are always displayed in pseudo-phonetic mode. 

Table 2 summarizes the four different display modalities 
on an example. In the second colon the lexical units tagged as 
“incorrect” are written in a different color (red) than the 
lexical units tagged as “correct” (black). In the third colon, all 
lexical units are written in blue and the units tagged as 
“incorrect” as written in bold.  

4. Methodology 
We conducted a qualitative study which goal was to identify 
the modalities which could help some deaf adults for a better 
understanding of the speech transcription and to look at how 
people can use these modalities.   

4.1. Participants 
The population was selected on the basis of criteria used to 
define hearing impairment: any disorder of hearing regardless 
of cause or severity (cf. World Health Organization [11]). As 
this is a qualitative study using situations created as close as 

possible to real professional contexts, we selected deaf adults 
who were working or who were involved in social and cultural 
associations, thus well integrated socially despite their 
communication difficulties. A preliminary selection was made 
to ensure a functional literacy level, as they would have to 
read the written transcription of speech recognition. 
• Our heterogeneous population, consisted of 10 deaf 

persons, 4 women and 6 men; from 25 years old to 63 
years old, the average age being 39 years,  

• 4 persons presenting profound hearing loss, 4 severe 
hearing loss, 2 severe-moderate loss. The time of 
acquisition of their hearing loss varied from the first few 
days, to months or years of life. Most of causes were 
listed as unknown. 

Figure 1: Distribution of the 10 participants according 
to their main mode of communication. 

• For some of them, their mother tongue was French or 
French Sign Language and for some others, neither 
French nor French Sign Language were considered as 
their native language. Nine persons regularly used 
hearing aids to obtain as much as possible of their 
acoustic information. Various modes of communication 
were used by the deaf persons: French oral and written 
Language; French oral Language and French cued-speech 
(LPC: manual cues to supplement speech input); French 
written Language; French Sign Language (FSL); 
fingerspelling (dactylology); “Signed French" (français 
signé) combining the use of the FSL signs ordered 
according to the French language linear syntax and 
fingerspelling. Figure 1 shows the distribution of the 10 

FSL 
 (2) 

Written                  Spoken  
French French                                      
(2+3+5)                            (5) 
 
 

 
 
 
 
 

    Signed  
    French 
       (3) 

 
 

words/syllables tagged as incorrect  
are displayed in another color (red) 

words/syllables tagged as correct  
are displayed in bold 

words tagged as incorrect are displayed 
into orthographic mode 

(syllables are always displayed in 
pseudo-phonetic mode) 

je voudrais être   li   vré   qu’on bien ça   
kou   te 

je voudrais être   li   vré   qu’on bien ça   
kou   te 

words tagged as incorrect are displayed 
into pseudo-phonetic mode 

(syllables are always displayed in 
pseudo-phonetic mode) 

je  voudrais être   l i    v r é     
k on   b y in    ça    k ou    t e 

je  voudrais être   l i    v r é     
k on   b y in    ça    k ou    t e 

Table 2: Four screen display modalities to differentiate the words/syllables considered as incorrectly recognized and 
those considered as correctly recognized by the speech recognition system. Here, the words "qu’”, “on” and “bien”, and 

the syllables /li/, /vré/, /kou/, and /te/ are considered as incorrect. 
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participants according to their main mode of 
communication. The larger outer oval includes the whole 
set of participants; in each of the three inner ovals are the 
deaf persons with their specific mode of communication, 
all of them using written French. 

4.2. Tasks and Procedure 
Our study was conducted in two phases. For every participant, 
each phase consisted of several 2-hour sessions including tests 
and interviews.  

Before these two phases, the level of literacy was tested 
prior to commencing trial. The deaf person had to read a 10-
line text describing communication situations which may be 
encountered in everyday life and in the particular situation: 
“do-it-yourself” shop. The deaf person has to understand the 
role he would play: an employee, while the hearing person (the 
interviewer) would play that of the customer, either at the 
cash-desk or in the store. In order to verify his comprehension, 
the participant had to reformulate the text, with his own 
communication tools. 

4.2.1. First phase: Tests and interviews 
The goal of the first test was to find the best way of displaying 
the speech transcription results among the orthographic, IPA 
and pseudo-phonetic display modes (cf. section 3.1). The 
confidence measures were not used at this stage. 

In this first phase, the participants were required to read 
and to understand the transcriptions of 10 uttered sentences, 
the transcriptions were provided by the speech recognition 
system always in the context of the previous described 
scenario (do-it-yourself shop).  

We elaborated every sentence according to lexical, 
syntactical and semantic criteria. The main lexical fields were 
the one of the do-it-yourself and that of the request for 
commercial information. Syntactically, every sentence was 
comprised of one or several clauses (constituent of the 
sentence made up of a subject and a verbal group). The 
sentences were coherent, reasonably long in order to be as well 
understood as possible. The average length of the sentences 
was 11.35 words (minimum: 5 words, maximum: 22 words). 
Every sentence contained a verb. Declarative, imperative, 
exclamatory sentences were included with a majority of 
interrogative sentences, as the test situation was as close as 
possible to a real situation when the client request information.  

The participants were seen individually in a quiet room. 
They could not be helped by the sound, they had to read the 
speech transcription of the sentence and try to interpret it and 
to rephrase it so that the interviewer could check their 
understanding.  

Their answers were not been timed. Rather, each person 
was interviewed in order to identify the helping points in 
his/her comprehension processes, sentence by sentence, 
knowing that speech transcription is not perfect and have no 
punctuation mark which could indicate the declarative, 
interrogative, exclamatory and imperative sentences.  

We made aware deaf persons of the presence of 
recognition errors in the transcription system for several 
reasons:  
• So that the deaf adults could not consider the present 

recognition system as a final perfect tool, as it is still in 
evolution, 

• The correct recognized words and the presence of errors 
were both the base of discussion with the deaf persons 
who indicated the points in the display which aided their 
comprehension. 

4.2.2. First phase: Results 
The IPA display mode was by far the most difficult to 
apprehend, therefore none of the participants have indicated it 
as helpful, this coding requiring special learning. Table 3 
shows their preferences. Not even the two deaf persons who 
still used it in speech remediation therapy found it helpful in 
such a context. For both familiar and unfamiliar users, reading 
a whole sentence in IPA required too much time and cognitive 
resources. Therefore, this display mode was abandoned for 
both words and syllables.  

The pseudo-phonetic display mode was preferred by one 
participant for both words and syllables. This person indicated 
an order of usage preference: firstly the pseudo-phonetic mode 
and then the orthographic display mode, suggesting that the 
terminal screen could display those two options so that the 
deaf person could choose the more helpful one.  
 

Display mode   Preference of participants 
 (N=10) 

Orthographic 9 

IPA 0 

Pseudo-phonetic 1 

Table 3: The display mode preferred by the 
participants. 

The orthographic display mode was preferred by almost 
all participants: nine out of ten. They have all further specified 
that this mode was aiding (first preference) except in the case 
of speech recognition errors. In fact, in case of orthographical 
error, for example for a word pronounced [samədi] 
corresponding to the word “samedi” (“Saturday”) but 
transcribed as “ça me dit” (“it’s tempting”), these deaf persons 
reported their difficulties to comprehend the whole sentence. 
The transcribed sentence is segmented differently, including 
several words instead of one, coming from other grammatical 
categories and lexical fields: word and time semantic field 
versus sentence and emotion semantic field. In such a case, for 
the five participants who were more familiar with French 
language phonology, it was easier to read words into pseudo-
phonetic mode, and to infer semantic signification from 
pronunciation.  

Moreover, all the participants considered that displaying 
the pauses detected by the speech recognizer was helpful.  

4.2.3. Second phase: Test and Interviews 
The goal of this second phase was to find the best way of 
displaying the additional information provided by the speech 
recognizer concerning the correctness of the recognized lexical 
unit using confidence measure. For that purpose, the four 
modalities described in the section 3.2 were evaluated. As it is 
shown in Table 2, in the case of highlighting the “incorrectly 
recognized” lexical units, we chose to display them in another 
color (red); in the case of highlighting the “correctly 
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recognized” lexical units, we chose to display them in the 
same color but in bold.  

Two experiments were conducted. Firstly, we used an 
“oracle” confidence measure: the lexical units tagged as 
“incorrectly recognized” were actually the units 
misrecognized by the speech decoder and, respectively, the 
lexical units tagged as “correctly recognized” were actually 
the units well recognized by the speech decoder. Secondly, we 
used the confidence measures computed by the speech 
recognizer to tag the recognized units.  

The same procedure as the one conducted in the first 
phase was used here.  

4.2.4. Second phase: Results 
Regardless the way in which the transcribed units were tagged 
(oracle or from real confidence measures), the preferences of 
the participants were the same. The modality highlighting the 
“correctly recognized” lexical units in bold blue was preferred 
by all participants. They reported that their major attention 
was thus focused on words characterized as right (even if, in 
some cases, they are actually wrong). That was helping them 
for direct access to understanding. Table 4 summarizes the 
choices of the deaf persons. 

Within this modality, the display into pseudo-phonetic of 
the words tagged as “incorrect” was preferred by a majority of 
participants, 8 persons, for the reasons previously detailed in 
section 4.2.2. They also explained that compared to the IPA, 
this system was using a simple coding scheme. They also 
reported that this display mode required the use of the context, 
and time to adapt. Indeed, this system leads to an indirect 
access to meaning, implying knowledge of phonology, 
breaking words into syllables in order to « sound out » with 
the aim of understanding. They also reported that any absence 
of a pseudo-phoneme made the task very difficult.  
 

Table 4: The display modalities preferred by the 
participants. 

The display into orthographic mode of the words tagged 
as “incorrectly recognized” was preferred by two persons who 
therefore indicated weak points of this display mode. The 
words characterized as “incorrect” by the recognition system 
could place them in serious difficulties; those words could be 
in contradiction with the signification of the remaining part of 
the sentence (cf. 4.2.2). Nevertheless, they didn’t feel familiar 
enough with French phonology to dare using the pseudo-
phonetic mode. 

5. Discussion and conclusion 
In the context of improving communication between a hearing 
person and a deaf person, when displaying on an embedded 

device the results of an automatic speech transcription system, 
highlighting in bold the words considered as “correctly 
recognized” rather than the words considered as “incorrectly 
recognized” is more helpful. All the participants stressed that 
knowing the context and searching for keywords are essential 
steps to build their capacity of understanding. Highlighting the 
words considered as “correctly recognized” enables them to 
construct inferences, and to gain confidence, provided that 
there is an adequate number of key elements clearly identified.  

The display into pseudo-phonetic of the words tagged as 
“incorrectly recognized” was preferred by a majority of 
participants (8), those persons were more familiar which 
French language including phonology. These results are 
similar to those showed from a previous study undertaken 
among a hearing population [15].  

However, they explained that a training phase would be 
necessary to get more familiar with pseudo-phonetic reading. 
It could improve their understanding and in the long term 
facilitate the communication with speaking persons.  

The other two persons who preferred the words tagged 
as “incorrect” displayed into orthographic mode were those 
who mainly use French Sign Language. Unfortunately, for 
them this display mode is not aiding enough in case of errors. 
Their comprehension processes cannot be supported by 
enough reliable words. They have to guess with many risks of 
misunderstanding and discouragement.  

At a general level, the interviews showed that it was 
difficult for all the participants to stay aware of the fact that 
the cues based on computed confidence measures are not fully 
reliable. This was expressly mentioned when the participants 
could read the sentence with sufficient understanding, 
considering it as appropriate to the particular context. It was 
difficult for them to assess whether the information was to be 
trusted. The same difficulties have been observed in [13], in an 
experiment in which hearing people dictated a text and then 
had to detect the errors made by the speech recognition.  

Our preliminary qualitative study was conducted in the 
worst conditions as the participants had only the written 
sentences with no oral pronunciation. They could not rely on 
their hearing aids nor lips reading to help them and the context 
information was limited. The tests were conducted in a quiet 
neutral room and not in a “do-it-yourself” shop. Thus, the 
participants could not be helped by the context of the shop 
(customer, special department, visual cues). As, in those 
experiments, no punctuation was indicated in the speech 
transcriptions, the deaf persons had difficulties to differentiate 
interrogative sentences from declarative ones.  

Nevertheless, all the participants showed their interest 
for such a system and thought that it could be more helpful 
with the help of context. Further experimentations will be 
conducted to investigate the efficiency of this system 
compared to or combined with other communication means 
used by deaf and hard-of-hearing persons.  
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Abstract
Speech production assessment in disordered speech relies

on tests such as intelligibility and/or comprehensibility tests.
These tests are subjective and time-consuming for both the pa-
tients and the practitioners. In this paper, we report on the use of
automatically-derived pronunciation scores to predict compre-
hensibility ratings, on a pilot development corpus comprised of
120 utterances recorded by 12 speakers with distinct patholo-
gies. We found high correlation values (0.81) between Good-
ness Of Pronunciation (GOP) scores and comprehensibility rat-
ings. We compare the use of a baseline implementation of the
GOP algorithm with a variant called forced-GOP, which showed
better results. A linear regression model allowed to predict
comprehensibility scores with a 20.9% relative error, compared
to the reference scores given by two expert judges. A correla-
tion value of 0.74 was obtained between both the manual and
the predicted scores. Most of the prediction errors concern the
speakers who have the most extreme ratings (the lowest or the
largest values), showing that the predicted score range was glob-
ally more limited than the one of the manual scores due to the
simplicity of the model.
Index Terms: pronunciation assessment, Goodness of Pronun-
ciation, disordered speech, comprehensibility

1. Introduction
The assessment of speech production abilities in motor speech
disorders relies almost exclusively on subjective tests such as
intelligibility tests. These tests have two main disadvantages.
They are very time-consuming and often imply subjective judg-
ments: speakers read lists of words or sentences while one or
several judge(s) evaluate their production. Within this frame-
work automatic methods for speakers evaluation appear as prac-
tical alternatives. Recent advances in Automatic Speech Recog-
nition (ASR) – especially in the field of Computer-Assisted
Language Learning (CALL) – have contributed to develop tech-
niques that may be of great interest for this purpose.

ASR techniques developed for the assessment of foreign
language learners’ pronunciation skills focused both on the seg-
mental and the suprasegmental levels, giving birth to two re-
search fields respectively calledindividual error detectionand
overall pronunciation assessment[1]. For individual error de-
tection (i.e., automatic detection of mispronounced phones),
two kinds of methods are used:

• methods based on the comparison of target phone models
and learners’ phone models (e.g.nonnativeness[2] or

scores derived from classification methods such as linear
discriminant analysis and alike [3]);

• methods independent of the learner’s native language,
such as raw recognition scores [4], or Goodness of Pro-
nunciation scores (GOP [5, 6]).

Since the latter methods do not rely on any assumption con-
cerning the errors possibly made by the speakers, their rele-
vance may not be limited to the field of CALL. For example,
GOP scores can be calculated to get an idea on how confident
the ASR system is about each phone identity. In a previous
research work [7], GOP scores were compared to perceptual
analysis results in order to detect mispronounced phonemes in
individuals with unilateral facial palsy (UFP). The algorithm
was found to be effective: it detected 49.6% of mispronunci-
ations (CR rate) and 84.6% of correct pronunciations. In [8] a
preliminary test was conducted in order to study the relation-
ship between mean GOP scores at sentence-level and subjective
comprehensibility. Results were encouraging as highly signifi-
cant correlations were observed, with absolute Pearson’s coef-
ficients ranging from .68 to .79.

However, several questions remain concerning this last
study. First, only the baseline implementation of the GOP al-
gorithm was used. Recent algorithm refinements for CALL
applications suggest that the accuracy of GOP results can be
greatly improved, as in Forced-aligned GOP measurements (F-
GOP [9]). Moreover, the ability of GOP scores to predict com-
prehensibility judgments or measures was not assessed since the
number of speakers was too limited. As a consequence the aim
of the present work is twofold: 1) comparing the efficiency of
GOP vs. F-GOP scores when dealing with disordered speech
and 2) extending the number of speakers so as to test the ability
of GOP measures to actually predict comprehensibility.

2. GOP algorithms
The purpose of the GOP algorithm is to automatically provide
pronunciation scores at segmental level, that is one score per
phone realization. The larger the score, the larger the differ-
ence between a phone realization and the corresponding phone
model. In other words, large scores indicate potential mispro-
nunciations. In this work, we used two different implementa-
tions: the original “baseline” one [5, 6], and a variant called
Forced-aligned GOP (F-GOP) [9].

The baseline algorithm can be decomposed into three steps:
1) forced phone alignment phase, 2) free phone recognition
phase and 3) score computation as the difference between the
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Table 1: Mean GOP values, reaction time and comprehensibility scores for 6 speakers. AP: Patients suffering from structural
(anatomic) disorders, NP: Patients suffering from neurological disorders

Speaker Mean GOP value Mean F-GOP value Mean Reaction Time Mean comprehensibility
to oral commands (s) score

AP1 1.60 (0.56) 0.81 (0.36) 4.11 (0.77) 5.65 (0.45)
NP1 2.32 (0.66) 1.11 (0.38) 4.63 (1.08) 5.30 (0.40)
NP2 2.54 (0.48) 1.42 (0.77) 5.54 (1.17) 4.70 (0.40)
AP2 2.86 (0.71) 1.99 (0.58) 5.50 (1.20) 4.05 (0.45)
AP3 3.67 (0.46) 2.50 (0.68) 7.51 (1.15) 4.25 (0.35)
AP4 4.15 (0.67) 4.01 (1.18) 9.64 (2.56) 1.65 (0.25)

log-likelihoods of the two preceding phases for each forced-
aligned phone. The forced alignment phase is intended to pro-
vide the ASR system with the orthographic transcription of the
input sentence along with a pronunciation lexicon. It consists of
forcing the system to align the speech signal with an expected
phone sequence. On the contrary, free phone recognition de-
termines the most likely phone sequence matching the audio
input without constraint (free phone loop recognition). GOP
scores typically range from zero (perfect match) to values up
to 10. Higher values often indicate that the aligning step failed
for some reason and scores are meaningless in this case. In or-
der to decide whether a phone was mispronounced (“rejected”)
or not (“accepted”), phone-dependent thresholds can be deter-
mined on a development set. In this work, our goal was not to
detect individual mispronunciations but rather to compute av-
erage GOP scores per utterance in order to correlate them with
comprehensibility scores given by human judges at utterance-
level.

The forced-aligned GOP version is exactly the same as the
baseline one with the only difference that the phone boundaries
found during forced alignment constrain the free phone recog-
nition phase. For each aligned phone, a single phone is rec-
ognized. In [9], better correlations between GOP and manual
scores were found with F-GOP than with baseline GOP in the
context of a CALL experiment. Indeed, F-GOP removes the is-
sues of comparing a single aligned phone with potentially sev-
eral phones recognized within the same time interval.

3. Main objective and methodology

This study aims at verifying the ability of GOP measures to pre-
dict disordered speech comprehensibility. To this end, 12 patho-
logical speakers were recorded. In a first experiment, these
recordings were split in two subsets, each consisting of the sen-
tences (imperative commands) recorded by 6 speakers: a devel-
opment corpus and a test corpus (section 4). Reference compre-
hensibility scores, presented in section 5, were obtained a) by
asking 24 listeners to react to the sentences using software cre-
ated for this purpose and b) by asking two trained speech pathol-
ogists to evaluate each sentence comprehensibility on a 7-points
rating scale. Automatic measures found in GOP experiments
(section 6) are compared so as to establish a predictive model
of speakers’ comprehensibility. This model is finally used to
predict speech pathologists’ comprehensibility judgments in 6
other patients (section 7). Since data from 6 speakers consti-
tute a very small dataset with 60 utterances only, we also report
prediction results in a cross-validation setup.
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Figure 1: Comprehensibility judgments as a function of mean
F-GOP scores. For a better clarity, F-GOP scores have been
scaled following the equation:y = 7 − FGOP .

4. Corpus description

Speech stimuli were recorded from three female and nine
male patients. Patients were aged from 33 to 70 years old
(mean = 55). Four patients suffered from speaking issues
due to neurological disorders (spasmodic dysphonia, parkin-
sonian dysarthria (2) and Huntington’s disease) and eight pa-
tients had troubles related to anatomic disorders: seven pa-
tients suffered from sequelae consecutive to oropharyngeal can-
cer surgery (among which two total laryngectomees) and one
patient had dysphonia. The 12 patients were divided into two
groups, both consisting in two patients suffering from neurolog-
ical speech disorders and four patients suffering from anatomic
speech disorders.

Each patient recorded 10 oral commands (sentences)
among a hundred different ones, asking to move entities (ani-
mals or objects), such as “Mettez l’oursà gauche du kangourou”
(Move the bear to the left of the kangaroo), or “Mettez le lion
sous la banane” (Move the lion below the banana). All the com-
mands had the same syntactic form.

43



0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Mean F−GOP score

M
ea

n 
co

m
pr

eh
en

si
bi

lit
y 

ju
dg

em
en

t

0 1 2 3 4 5 6
3

4

5

6

7

8

9

10

11

12

Mean F−GOP score

M
ea

n 
re

ac
tio

n 
tim

e 
(s

)

Figure 2:Left: Mean sentence comprehensibility as a function of F-GOP scores. Ratings range from 1 (very difficult to understand) to
7 (very easy to understand). The red line is regression fit of equationy = −.92 ∗ F-GOP+ 6.09, Right: Mean reaction times to oral
commands as a function of F-GOP. The red line represents the regression fit of equationy = 1.33 ∗ F-GOP+ 3.51,

5. Comprehensibility measures

5.1. Subjective judgments of speech comprehensibility

Two speech pathologists judged each sentence on a 7-points
comprehensibility scale, ranging from 1 –very hard to under-
standup to 7 –very easy to understand. Both speech patholo-
gists had more than 10 years of experience in listening and eval-
uating disordered speech. A Kendall tau-b rank correlation was
computed so as to check the inter-rater agreement; a highly sig-
nificant and strong correlation between the two rater scores was
found (t = .73; p < .001). Finally, mean subjective compre-
hensibility scores were calculated for each sentence by taking
into account the two speech pathologists’ grades.

5.2. Behavioral scores: reaction times to oral commands

Behavioral scores were collected for the 60 sentences form-
ing the development corpus. For this purpose 24 listeners re-
sponded to the oral commands on a software created for record-
ing their answers and reaction times [10]. For each command
six images were displayed on a screen and listeners were asked
to move the target image as demanded. As soon as the listener
selected an image in order to move it, reaction time (RT) was
collected. Keeping as an example the sentence asking to move
the bear to the left of the kangaroo, RT was the time elapsed be-
tween the beginning of sentence play and the time at which the
listener clicked on the image representing a bear. Only cases in
which the listeners selected the right target image were consid-
ered. Listeners had a mean age of 32.5 years old (SD= 13.4)
and benefited from various years of experience in listening to
disordered speech (mean= 7.8; SD = 11.4). However, these
two variables were found to have a comparable strength and
opposite influence on RT [11]; consequently RT have not been
weighted as a function of listeners’ age and years of experience
with disordered speech. Only mean RT for each sentence was
taken into account.

Table 2: Pearson correlation coefficients between automatic
scores and comprehensibility measures

Variables Correlation

GOP * Comprehensibility ratings -.684∗∗

F-GOP * Comprehensibility ratings -.808∗∗

GOP * Reaction times .786∗∗

F-GOP * Reaction times .844∗∗

∗∗ Correlation is significant at the .001 level (2-tailed)

6. Relationship between GOP scores and
speakers’ comprehensibility

This section is solely concerned with data issued from the de-
velopment corpus. Results concerning the prediction of com-
prehensibility scores from the test corpus will be presented in
section 7.

6.1. ASR system setup

This work was carried out with HTK [12]. The acoustic models
are three-state left-to-right HMMs with 32 Gaussian mixture
components trained on the ESTER corpus [13]. As they have
been found to be more suitable for CALL applications [14],
context-independent acoustic models (39 monophones) were
used.

6.2. Results

6.2.1. Mean scores

Table 1 presents mean and standard deviations of GOP and F-
GOP values as well as mean comprehensibility scores for each
speaker of the development corpus. Mean RT tend to increase
with mean GOP and F-GOP scores, whereas mean comprehen-
sibility appears to decrease as a function of GOP and F-GOP.
This suggests that the highest GOP and F-GOP scores are asso-
ciated with the least comprehensible speakers, and vice versa.
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Figure 3: Manual and predicted comprehensibility scores for
each sentence of the test group (6 speakers). Each speaker
recorded 10 sentences, so sentences from 0 to 9 on the X-axis
correspond to speaker A5, from 10 to 19 to speaker A6.

6.2.2. Correlation between GOP scores and comprehensibility
judgments

Pearson product-moment correlation calculations were com-
puted to study the relationship between GOP/F-GOP scores and
comprehensibility measures. Results show a weaker correlation
with GOP scores (r = −.684; p < .001) than with F-GOP
scores (r = −.808; p < .001). Both correlations are negative,
showing that comprehensibility judgments tend to increase as
GOP scores decrease. To illustrate this, comprehensibility and
mean F-GOP scores are represented in Figure 1. The correla-
tion plot for all the sentences’ F-GOP scores is shown on the
left-hand side part of Figure 2.

6.2.3. Correlation between GOP scores and reaction times

For both GOP and F-GOP scores, Pearson product-moment cor-
relation calculations indicate a strong and highly significant re-
lationship with reaction times to oral commands. A stronger
correlation is found with F-GOP scores (r = .844; p < .001)
than with GOP scores (r = .786; p < .001). The correlation
plot for F-GOP scores is shown on the right-hand side part of
figure 2. All correlation coefficients found for GOP scores and
F-GOP scores are presented in table 2.

7. Prediction of speakers’
comprehensibility

As F-GOP are strongly correlated to the patients’ comprehensi-
bility scores, a second part of the present work focused on the
ability of F-GOP scores to predict speakers’ comprehensibility.

7.1. Separate test set

To this end, a first experiment consisted in estimating compre-
hensibility ratings for 6 ”test” patients, different from the ones
for which we reported results so far, with the help of the linear
regression model previously described in Section 6.2.2. Pre-
dicted scores were compared to the mean comprehensibility rat-
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Figure 4: Mean manual and predicted scores for all the 12
speakers, obtained in the LOSO-CV setup.

ings given by the two speech pathologists. In figure 3, manual
and predicted comprehensibility scores are illustrated per sen-
tence. Even if manual and predicted comprehensibility scores
seem to follow the same tendencies (r = .59) predicted scores
appear to be globally lower than manual scores, with a 16.3 %
relative mean difference between both scores. This is mainly
due to the fact that the 60 utterances were not sufficient to esti-
mate a model.

7.2. LOSO-CV setup

In order to obtain sounder results, we repeated the experiment in
a Leave-One-Speaker-Out Cross-Validation (LOSO-CV) fash-
ion that allows to use more data to estimate the regression pa-
rameters. It corresponds to using data from 11 speakers (110 ut-
terances) for the estimation of the regression parameters (slope
and intercept), and to make predictions for the12th speaker that
was left out. This process is repeated for each of the 12 speak-
ers. A global Pearson correlation value ofr = .74 was ob-
tained, a much larger value than the preceding one. The rela-
tive mean difference is higher, though, with a value of 20.9 %.
This is probably due to the fact that we make predictions for
12 speakers, twice as many speakers as in the preceding setup.
Figure 4 shows a comparison of manual and predicted com-
prehensibility scores for all the 12 speakers. It shows that the
dynamic range of the regression model is too limited: small and
large scores are not predicted as accurately as medium scores.

8. Conclusions
The first noticeable result from this study is that a strong and
highly significant relationship was found between GOP-derived
scores and comprehensibility measures in the particular case
of disordered speech. More precisely, the strongest correla-
tions were found with F-GOP measures [9], which presented
better results than conventional GOP scores [5]. This observa-
tion tends to present F-GOP scores as more closely related to
speech production performance, as it was also observed in [9]
and [14] in the application domain from which these two algo-
rithms originate – namely Computer-Assisted Language Learn-
ing (CALL).

These encouraging results represented a strong motivation
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for studying the ability of F-GOP scores to predict disordered
speech comprehensibility, which was done in the second part of
this work. In a first score prediction experiment, data from 6
speakers (60 utterances) were used to estimate a simple linear
regression model, and 60 comprehensibility automatic scores
were predicted with this model on the remaining utterances
from the 6 left-out speakers. A relative mean error of 16.3%
was found, together with a low correlation value of0.59, when
comparing the automatic and the manual scores. These results
were not conclusive mainly because of the small size of the
subset used to estimate the regression parameters. The same
prediction experiment but in a cross-validation setup was more
satisfying since a0.79 correlation value was obtained. Never-
theless, the range of the automatic scores still was too small to
correctly predict scores from speakers with low and large com-
prehensibility ratings.

As a response to these observations, future work will be
devoted to the enlargement of the pathological speech data, by
collecting speech representative of a wide variety of speech dis-
orders. More complex regression models, such as Bayesian
models, will be interesting to test. Such models allow to in-
troducea priori information that may help in handling potential
differences in model fits that may be seen for different groups
of pathological speakers. Adding features characterizing supra-
segmental aspects such as speech rate and pitch range, for in-
stance, will also be worth testing.
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Abstract
Recent dysarthric speech recognition studies using mixed data
from a collection of neurological diseases suggested articula-
tory data can help to improve the speech recognition perfor-
mance. This project was specifically designed for the speaker-
independent recognition of dysarthric speech due to amy-
otrophic lateral sclerosis (ALS) using articulatory data. In this
paper, we investigated three across-speaker normalization ap-
proaches in acoustic, articulatory, and both spaces: Procrustes
matching (a physiological approach in articulatory space), vocal
tract length normalization (a data-driven approach in acoustic
space), and feature space maximum likelihood linear regression
(a model-based approach for both spaces), to address the issue
of high degree of variation of articulation across different speak-
ers. A preliminary ALS data set was collected and used to eval-
uate the approaches. Two recognizers, Gaussian mixture model
(GMM) - hidden Markov model (HMM) and deep neural net-
work (DNN) - HMM, were used. Experimental results showed
adding articulatory data significantly reduced the phoneme error
rates (PERs) using any or combined normalization approaches.
DNN-HMM outperformed GMM-HMM in all configurations.
The best performance (30.7% PER) was obtained by triphone
DNN-HMM + acoustic and articulatory data + all three normal-
ization approaches, a 15.3% absolute PER reduction from the
baseline using triphone GMM-HMM + acoustic data.
Index Terms: Dysarthric speech recognition, Procrustes
matching, vocal track length normalization, fMLLR, hidden
Markov models, deep neural network

1. Introduction
Although automatic speech recognition (ASR) technologies
have been commercially available for healthy talkers, these
technologies did not perform satisfactorily well when directly
used for talkers with dysarthria, a motor speech disorder due
to neurological or other injury [1]. Dysarthric speech is al-
ways with degraded speech intelligibility due to impaired voice
and articulation functions [1–3]. For example, Parkinson’s dis-
ease and amyotrophic lateral sclerosis (ALS) impact the pa-
tient’s motor functions and therefore impair their speech. Only
a few studies have been focused on dysarthric speech recog-
nition [4–6]. Recent studies using mixed data from a variety
of neurological diseases indicated articulatory data can improve
the speech recognition performance [7, 8]. However, dysarthric
speech recognition particularly for ALS has rarely been studied.

ALS, also known as Lou Gehrig’s disease, is the most com-
mon motor neuron disease that causes the death of both up-

per and lower motor neurons [9]. The cause of the disease
is unknown for most of the patients and only a small portion
(5-10%) of patients is inherited [10]. As the disease progresses,
the patient’s speech intelligibility declines [11, 12]. Eventually
all patients have degraded speech and need an assistive device
for communication [13]. Normal speech recognition technol-
ogy (typically trained on healthy talkers’ data) does not work
satisfactorily well for the patients. Therefore, ALS patients’
ability to use modern speech technology (e.g., smart home en-
vironment control driven by speech recognition) is limited. This
project, to our best knowledge, is the first one specifically de-
signed to improve speech recognition performance for ALS us-
ing articulatory data.

Based on the recent literature on speech recognition with
articulatory data (e.g., [7, 14–20]), we hypothesized the follow-
ings for dysarthric speech recognition for ALS: 1) adding artic-
ulatory data (collected from ALS patients) would improve the
speech recognition performance, 2) feature normalization in ar-
ticulatory, acoustic, and both spaces is critical and necessary for
speaker-independent dysarthric speech recognition with articu-
latory data, and 3) recent state-of-the-art approach, deep neu-
ral network (DNN)-hidden Markov model (HMM) would out-
perform the long-standing approach, Gaussian mixture model
(GMM)-HMM.

The high degree of variation in articulatory patterns across
speakers has been a barrier for speaker-independent speech
recognition with articulatory data. Multiple sources contributed
to the inter-talker variation including gender, dialect, individual
vocal tract anatomy, and different co-articulation patterns [21].
However, speaker-independent approaches are important for re-
ducing the amount of training data required from each user.
Only limited articulatory data samples are often available from
individuals with ALS (even with healthy talkers) due to the
logistic difficulty of articulatory data collection [22]. For ex-
ample, in data collection using electromagnetic articulograph
(EMA), small sensors have to be attached on the tongue using
dental glue [23]. The procedure requires the patient to hold
his/her tongue to a position for a while so that the glue can take
effect.

To reduce speaker-specific difference, researchers have
tried different approaches to normalize the articulatory move-
ments including data-driven approaches (e.g., principal compo-
nent analysis [7]) or physiological approaches including align-
ing the tongue position when producing vowels [24–26], con-
sonants [27, 28], and pseudo-words [29] to a reference (e.g.,
palate [24, 25], or a general tongue shape [27]).
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(a) Wave System (b) Sensor Locations. Labels are described in text.

Figure 1: Data collection setup.

Procrustes matching, a bidimensional shape analysis tech-
nique [30], has been used to minimize the translational, scal-
ing, and rotational effects of articulatory data across speakers
[28, 29, 31]. Recent studies indicated Procrustes matching was
effective for speaker-independent silent speech recognition (i.e.,
recognizing speech from articulatory data only) [18, 19]. Pro-
crustes matching, however, has rarely been used in dysarthric
speech recognition with articulatory data.

In addition, we adopted two other representative ap-
proaches for across-speaker data normalization. Vocal tract
length normalization (VTLN) which has been widely used in
acoustic speech recognition [32–36], a data-driven approach in
acoustic space, was used to extract normalized acoustic fea-
tures. The third approach, feature space maximum likelihood
linear regression (fMLLR), a model-based adaptation, was used
for both acoustic and articulatory data.

In this paper, we investigated the use of 1) articulatory
data as additional information source for speech, 2) Procrustes
matching, VTLN, and fMLLR as feature normalization ap-
proaches individually or combined, 3) two machine learning
classifiers, GMM-HMM and DNN-HMM. The effectiveness
of these speaker-independent dysarthric speech recognition ap-
proaches were evaluated with a preliminary data collected from
multiple early diagnosed ALS patients.

2. Data Collection

The dysarthric speech and articulatory data used in this exper-
iment were part of an ongoing project that targets to assess the
motor speech decline due to ALS [12, 37].

2.1. Participants and stimuli

Five patients with ALS (3 females and 2 males), American En-
glish talkers, participated in the data collection (Table 1). They
are all early diagnosed (within half to one year). Severity of
these participants with ALS was mild with average speech in-
telligibility of 94.54% (SD=3.40), with SPK2 not measured.
The average age of the patients was 59.80 (SD=7.73). Dur-
ing each session, each subject produced up to 2 or 4 repetitions
of 20 unique sentences at their normal speaking rate and loud-
ness. These sentences are used in daily conversations (e.g., How
are you?) or related to patients (e.g., This is an emergency, I
need to see a doctor.). Some of the sentences were selected
from [18, 38].

2.2. Tongue motion tracking device - Wave

The Wave system (NDI Inc., Waterloo, Canada) was used
to register the 3-dimensional (x, y, and z; lateral, vertical,
and anterior-posterior axes) movements of the tongue and lips
during speech production (Figure 1a). Our previous studies
[39–41] found four articulators, tongue tip, tongue body back,
upper lip, and lower lip, are optimal for this application. There-
fore, we used the optimal four sensors for data collection. One
sensor was attached on the subject’s head and the data were
used to calculate the movements of other articulators indepen-
dent of the head [42]. Wave records tongue movements by es-
tablishing a calibrated electromagnetic field that induces elec-
tric current into tiny sensor coils that are attached to the surface
of the articulators. A similar data collection procedure has been
used in [22, 23, 38]. The spatial precision of motion tracking
using Wave is approximately 0.5 mm [43]. The sampling rate
for recording was 100 Hz.

2.3. Procedure

Participants were seated with their head within a calibrated
magnetic field (right next to the textbook-sized magnetic field
generator). Five sensors were attached to the surface of each
articulator using dental glue (PeriAcryl 90, GluStitch) or tape,
including one on the head, two on the tongue and two on the
lips. A three-minute training session helped the participants to
adapt to the wired sensors before the formal data collection.

Figure 1b shows the positions of the five sensors attached to
a participant’s head, tongue, and lips. HC (Head Center) was on
the bridge of the glasses. The movements of HC were used to
calculate the head-independent movements of other articulators.
TT (Tongue Tip) and TB (Tongue Body Back) were attached at
the mid-line of the tongue [22]. TT was about approximately 10
mm from the tongue apex. TB was as far back as possible and
about 30 to 40 mm from TT [22]. Lip sensors were attached to
the vermilion borders of the upper (UL) and lower (LL) lips at
mid-line. Data collected from TT, TB, UL, and LL were used

Table 1: ALS participants and data size information.

Gender Age # Phrases # Frames

SPK1 Female 53 39 5776
SPK2 Female 71 39 5219
SPK3 Male 61 79 9463
SPK4 Female 52 80 13625
SPK5 Male 62 79 9520

Total 316 43603
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Figure 2: Example of a shape (motion path of four articulators; TT, TB, UL, and LL of SPK5) for producing “Call me back when you
can”. In this coordinate system, y is vertical and z is anterior-posterior.

for analysis.

2.4. Data processing

Data processing was applied on the raw sensor position data
prior to analysis. First, the head translations and rotations
were subtracted from the tongue and lip data to obtain head-
independent tongue and lip movement data. The orientation of
the derived 3D Cartesian coordinates system is displayed in Fig-
ure 1b, in which x is left-right, y is vertical, and z is front-back.
Second, a low pass filter (i.e., 20 Hz) was applied for removing
noise [22, 23].

In total, 316 sentence samples (for unique twenty phrases)
were obtained from the five participants and were used for anal-
ysis. It could be expected ALS patients have different lateral
movement patterns with healthy subjects (x in Figure 1b) [22],
however for this study only y and z coordinates of the tongue
and lip sensors were used for analysis.

3. Method
3.1. Procrustes matching: A physiological approach for ar-
ticulatory data

Procrustes matching (or Procrustes analysis [30]) is a robust sta-
tistical bidimensional shape analysis technique, where a shape
is represented by a set of ordered landmarks on the surface of
an object. Procrustes matching aligns two objects by removing
the locational, rotational, and scaling effects [22, 29, 31].

In this project, Procrustes matching was used to match
the physiological inter-talker difference (tongue and lip orien-
tation). The downsampled time-series multi-sensor and multi-
dimensional articulatory data form articulatory shapes. An ex-
ample is shown in Figure 2 [18]. This shape contains trajec-
tories of the continuous motion paths of four sensors attached
on tongue and lips, TT, TB, UL, and LL. A step-by-step pro-
cedure of Procrustes matching between two shapes includes
(1) aligning the centroids of the two shapes, (2) scaling the
shapes to a unit size, and (3) rotating one shape to match the
other [19, 22, 31].

Let S be a set of landmarks as shown below.

S = {(yi, zi)}, i = 1, . . . , n (1)

where (yi, zi) represents the i-th data point (spatial coordinates)
of a sensor, and n is the total number of data points, where y is
vertical and z is front-back. The transformation in Procrustes

matching is described using parameters {(cy, cz), (βy, βz), θ}:
[

ȳi
z̄i

]
=

[
cos θ − sin θ
sin θ cos θ

] [
βy

βz

] [
yi − cy
zi − cz

]
(2)

where (cy, cz) are the translation factors (centroids of the two
shapes); Scaling factor β is the square root of the sum of the
squares of all data points along the dimension; θ is the angle to
rotate [30].

Each participant’s articulatory shape was transformed into
an “normalized shape”, which had a centroid at the origin (0, 0)
and aligned to the vertical line formed by the average positions
(centroids) of the upper and lower lips. Scaling was not used
in this experiment, because preliminary tests indicated scaling
will cause slightly worse performance in speaker-independent
dysarthric speech recognition.

The normalization procedure was done in two steps. First,
all articulatory data (e.g., a shape in Figure 2) of each speaker
were translated to the centroid (average position of all data
points in the shape). This step removed the locational effects
between speakers. Second, all shapes of speakers were rotated
to make sure the sagittal plane was oriented such that the cen-
troid of lower and upper lip movements defined the vertical axis.
This step reduces the variation of rotational effects due to the
difference in facial anatomy between speakers. Thus in Eq. 2,
(cy, cz) are the centroid of shape S; Scaling factor (βy, βz) is
set to [ 1 1 ]′; θ is the angle of the S to the reference shape in
which upper and lower lips form a vertical line. Figure 2 shows
an example, original data (Figure 2a) and the shape after Pro-
crustes matching (Figure 2b).

3.2. Vocal tract length normalization: A data-driven ap-
proach for acoustic data

Vocal tract length normalization is a representative approach to
normalize speaker-dependent characteristics for speech recog-
nition systems [32–36]. This approach is to normalize vocal
tract length indirectly from acoustic data, because vocal tract
length is highly relevant with pitch and formants [34]. Warping
factor α is applied in linear frequency space by Bilinear rule,

F̂ = F + 2 tan−1

(
(1− α) sin(F )

1− (1− α) cos(F )

)
(3)

where F is normalized frequency (i.e., divided by sampling fre-
quency, Fs) and α is the warping factor and F = w/(2πFs).
Warped Mel-frequency is calculated by applying warping factor
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Figure 3: Example of (Mel) warped frequency scale (sampling rate: 16 kHz).

α in Mel-frequency space,

Mα(w) = 2595 log10

(
1 +

w

α0α

)
(4)

where α0 is 1400π [34] and w = 2πf (f : raw frequency).
Figure 3 shows an example of (Mel) warped frequency scale
between 0.85 and 1.25, the range obtained through empirical
studies [34, 44].

In this work, we used linear transformation-based VTLN
approach in cepstral space (MFCCs) [35, 36, 44], which was
proved equivalent to the above approach [32, 34, 45].

3.3. fMLLR: A model-based approach for both articula-
tory and acoustic data

fMLLR (also called CMLLR; constrained maximum likelihood
linear regression) is one of the representative approaches for
across-speaker feature space normalization.

For each speaker, a transformation matrix A and a bias vec-
tor b are estimated and used for feature vector transformation:

ô(t) = Ao(t) + b (5)

where o(t) is the input feature vector at frame t and is trans-
formed to ô(t). This transformed ô(t) is used for training
GMM-HMM or DNN-HMM and also for decoding. A more
detailed explanation of fMLLR can be found in [46].

3.4. Combination of normalization approaches

Besides the individual use of each normalization approach
above, we also investigated combinations of these approaches.
In this paper, speaker adaptive training (SAT) [46, 47] was con-
ducted using 1) Procrustes matching, VTLN, or fMLLR indi-
vidually, and 2) combinations with these approaches. We as-
sume the speaker labels for observation are known for training
stage. In testing stage, input feature vectors were also trans-
formed using normalization approach(es) as we used in training
before they were fed into GMM-HMM or DNN-HMM.

3.5. Recognizer and experimental setup

The long-standing GMM-HMM and recently available DNN-
HMM were used as the recognizers [16, 20, 44, 48–50]. In this
experiment, window size was 25 ms for acoustic features and
frame rate was 10 ms for both acoustic and articulatory fea-
tures. For each frame, static features plus derivative and accel-
eration form 39-dimensional mel-frequency cepstral coefficient

(MFCC) vectors for acoustic features and 24-dimensional vec-
tors for articulatory features, and these were fed into GMM-
HMM or DNN-HMM. HMM is left-to-right 3-state with a
monophone or a triphone context model. Maximum likelihood
estimation (MLE) training approach (with or without SAT) was
used for training GMM-HMM. The input layer of DNN has 216
(24 × 9 frames – 4 previous plus current plus 4 succeeding
frames) dimensions for articulatory features and 351 (39 × 9
frames) dimensions for acoustic features. The output layer has
113 dimensions (36 phonemes × 3 states + 1 silence × 5 states)
and approximately 200 dimensions (varies for each configura-
tion in triphone model) for monophone and triphone models, re-
spectively. We used 1 to 6 hidden layers and each layer had 512
nodes. The best performance obtained using 1 to 6 layers was

Table 2: Experimental setup.

Acoustic Feature
Feature vector MFCC (13-dim. vectors) + ∆

+ ∆∆ (39 dim.)
Sampling rate 16 kHz
Windows length 25 ms
Articulatory Feature
Feature vector articulatory movement vector (8 dim. )

+ ∆ + ∆∆ (24 dim.)
Low pass filtering 20 Hz cutoff 5th order Butterworth
Sampling rate 100 Hz
Concatenated Feature
Feature vector MFCC + articulatory movement vector

(21 dim.) + ∆ + ∆∆ (63 dim.)
Common
Frame rate 10 ms
Mean normalization Applied

GMM-HMM topology
Monophone 113 states (36 phones × 3 states, 5 states

for silence), total ≈ 1000 mixtures
Triphone ≈ 200 states, total ≈ 1750 mixtures

3-state left to right HMM
Training method Maximum likelihood estimation (MLE)

with and without SAT

DNN-HMM topology
Input layer dim. 216 (articulatory)

351 (acoustic)
567 (concatenated)

Output layer dim. 113 (monophone)
≈ 200 (triphone)

No. of nodes 512 nodes for each hidden layer
Depth 1 to 6-depth hidden layers
Training method RBM pre-training, back-propagation

Language model bi-gram phoneme language model
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Table 3: Angles (in degrees) and centroids (Cy and Cz) in Pro-
crustes matching for each patient.

SPK1 SPK2 SPK3 SPK4 SPK5

Angle 34.20◦ 32.70◦ 22.11◦ 22.85◦ 25.41◦

Cy -62.26 -63.31 -73.29 -71.89 -71.95
Cz -33.51 -40.89 -26.32 -30.61 -19.60

Note: The degree indicates a counterclockwise rotation. Ra-
dians converted from degrees were actually used in the ro-
tation.

Table 4: Warping factor (α) for each speaker in testing or train-
ing stages.

CV1 CV2 CV3 CV4 CV5

SPK1 0.94 0.95 0.96 0.94 0.99
SPK2 0.93 0.95 0.94 0.92 0.98
SPK3 1.01 1.01 0.99 0.99 1.04
SPK4 0.95 0.95 0.97 0.94 1.00
SPK5 1.05 1.05 1.07 1.05 1.06

Note: Diagonal values are for testing and off-diagonal val-
ues are for training in each cross-validation (CV). Speakers
1, 2, and 4 are female; speakers 3 and 5 are male.

reported. Table 2 shows the detailed experimental setup. The
training and decoding were performed using the Kaldi speech
recognition toolkit [44].

Phoneme error rate (PER) was used as the measure of
dysarthric speech recognition performance. PER is the summa-
tion of substitution, insertion, and deletion errors of phonemes
divided by the number of all phonemes.

Leave-one-subject-out cross validation was used in the ex-
periment. In each execution, all samples from one subject were
used for testing and the samples from the rest subjects were
used for training. The average performance of executions was
calculated as the overall performance.

4. Results & Discussion
Table 3 shows detailed parameters (angles and centroids) for
Procrustes matching, which varies for different speakers. Table
4 and Figure 4 show the warping factors for each speaker and
their histogram. The histogram of ALS patients follows general
trend of warping factor distribution for females (typically < 1.0)
and males (typically > 1.0).

Figures 5, 6, 7, and 8 give the PERs of speaker-independent
dysarthric (due to ALS) speech recognition results using dif-
ferent context models and recognizers, respectively: (1) mono-
phone GMM-HMM, (2) triphone GMM-HMM, (3) mono-
phone DNN-HMM, and (4) triphone DNN-HMM with indi-
vidual or combinations of VTLN, Procrustes matching, and
fMLLR. These results suggest that VTLN, Procrustes match-
ing, and fMLLR were all effective for speaker-independent
dysarthric speech recognition from acoustic data, articulatory
data, or combined. When comparing the three normalization
approaches individually (if applies), no approach was univer-
sally better than others in all experimental configurations. A
better performance was always obtained when the normaliza-
tion approaches were combined. Baseline results were obtained
without using any normalization approach.

Adding articulatory data to acoustic data always showed
performance improvement in all configurations (mono-
phone/triphone or GMM-HMM/DNN-HMM), which is con-
sistent with the literature [7]. The overall best performance
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Figure 4: Histogram of warping factors (step size = 0.02).

was obtained when the three normalization approaches, VTLN
(acoustic space), Procrustes matching (articulatory space), and
fMLLR (both acoustic and articulatory space), were used to-
gether with triphone DNN-HMM model (30.7%).

Surprisingly, speaker-independent silent speech recognition
(using articulatory data only) with DNN-HMM obtained even
better results than the recognition results from acoustic (MFCC)
features (see left half of Figures 7 and 8). This finding shows
the potential of articulatory data when the patient’s speech is
significantly impaired as the disease progresses. However, since
the data set is small, a further study with a larger data set is
required to verify this finding.

Moreover, DNN-HMM outperformed GMM-HMM in all
configurations (monophone/triphone, VTLN/Procrustes match-
ing/fMLLR). This finding is consistent with the acoustic [20,51]
and silent speech recognition literature [17, 19].

In the current approach, fMLLR was not separately applied
to acoustic and articulatory data (i.e., full transformation ma-
trix), because the two types of data are concatenated before ap-
plying fMLLR. Due to the different nature of acoustic (in fre-
quency domain) and articulatory data (in spatial domain), in the
future, we consider to make A in Eq. 5 a block-diagonal trans-
formation matrix. The block-diagonal matrix will separate the
processing for acoustic and articulatory data.

Limitations. Although the experimental results were en-
couraging, the data set used in the experiment contained only
a small number of unique phrases collected from a small num-
ber of ALS patients. Further studies with a larger vocabulary
from more ALS patients are necessary to explore the limits of
the current approaches.

5. Conclusions & Future Work
This paper investigated speaker-independent dysarthric speech
recognition using the data from patients with ALS and also with
three across-speaker normalization approaches: a physiological
approach, Procrustes matching, a data-driven approach, VTLN,
and a model-based approach, fMLLR. GMM-HMM and DNN-
HMM were used as the machine learning classifiers. Experi-
mental results showed the effectiveness of feature normalization
approaches. The best performance was obtained when the three
approaches were used together with triphone DNN-HMM.

Future work includes test of the normalization approaches
using a larger data set collected from more ALS subjects (e.g,
by combining our data set with the ALS data in TORGO [8]).
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Figure 5: Phoneme Error Rates (PERs; %) of speaker-independent recognition using monophone GMM-HMM with fMLLR, VTLN,
and/or Procrustes matching.
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Figure 6: Phoneme Error Rates (PERs; %) of speaker-independent recognition using triphone GMM-HMM with fMLLR, VTLN, and/or
Procrustes matching.
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Figure 7: Phoneme Error Rates (PERs; %) of speaker-independent recognition using monophone DNN-HMM with fMLLR, VTLN,
and/or Procrustes matching.

49.2
46.4

42.9 43.2
45.4

42.3
45.3

39.2
35.8

34.4
32.5 32.4

34.2
32.2 30.9 30.7

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

Baseline VTLN fMLLR VTLN +
fMLLR

Baseline Procrustes fMLLR Procrustes
+ fMLLR

Baseline VTLN Procrustes VTLN +
Procrustes

fMLLR fMLLR +
VTLN

fMLLR +
Procrustes

fMLLR +
VTLN +

Procrustes

MFCC EMA MFCC + EMA

Ph
on

em
e 

E
rr

or
 R

at
e 

(%
)

Figure 8: Phoneme Error Rates (PERs; %) of speaker-independent recognition using triphone DNN-HMM with fMLLR, VTLN, and/or
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Abstract
This paper presents an enhancement system for early stage
Spanish Esophageal Speech (ES) vowels. The system de-
composes the input ES into neoglottal waveform and vocal
tract filter components using Iterative Adaptive Inverse Filter-
ing (IAIF). The neoglottal waveform is further decomposed into
fundamental frequency F0, Harmonic to Noise Ratio (HNR),
and neoglottal source spectrum. The enhanced neoglottal
source signal is constructed using a natural glottal flow pulse
computed from real speech. The F0 and HNR are replaced
with natural speech F0 and HNR. The vocal tract formant fre-
quencies (spectral peaks) and bandwidths are smoothed, the
formants are shifted downward using second order frequency
warping polynomial and the bandwidth is increased to make
it close to the natural speech. The system is evaluated using
subjective listening tests on the Spanish ES vowels /a/, /e/, /i/,
/o/, /u/. The Mean Opinion Score (MOS) shows significant im-
provement in the overall quality (naturalness and intelligibility)
of the vowels.
Index Terms: speech enhancement, glottal flow, analysis syn-
thesis vocal tract, spectral sharpening, warping

1. Introduction
The removal of the larynx after a Total Laryngectomy (TL),
changes the speech production mechanism. The trachea which
connects the larynx and lungs for air source is now connected
to a stoma (hole on neck) for breathing. The vocal folds which
resided in larynx are no more available. After TL, there is no
voicing and air source for speech production. Therefore alter-
native voicing and air source are needed for speech restoration.
Three methods are available for this purpose, i) Esophageal
Speech (ES), ii) Tracheo-Esophageal Speech (TES), and iii)
Electrolarynx (EL). ES and TES both use a common voicing
source, the Phyarngo-Esophageal (PE) segment, but with a dif-
ferent air source, while EL uses external devices for voicing
source with no air source. The ES is preferred over other meth-
ods, because it does not require surgery (TES) or external de-
vices (EL). ES involves, however, a low pressure air source, and
an irregular PE segment vibration which results in low quality
and low intelligible speech. Compared to the production of nor-
mal speech according to the source-filter model [1], the voicing
source in ES is severely altered and does not have any funda-
mental frequency or harmonic components. The vocal tract fil-
ter is also shortened in ES. The ES can be enhanced by trans-
forming the source and filter components to those of normal
speech using signal processing algorithms.

In previous studies ES is typically decomposed into its
source and filter components using Linear Predication (LP)

based analysis-synthesis techniques. Based on this assump-
tion the authors in [2, 3] replaced the voicing source with the
Liljencrants- Fant (LF) voicing source, and reported significant
enhancements. Fundamental frequency smoothing and correc-
tion with the synthetic LF source model were used for quality
enhancement also in [4]. ES enhancement based on formant
synthesis has also shown significant improvement in intelligibil-
ity [5, 6]. In [7] the source and filter components were modified
by replacing the source with the LF model and increasing the
bandwidth of filter formants for better quality speech. Statistical
conversion from ES to normal speech has also improved intelli-
gibility, but requires more ES data [8]. Some other not so com-
mon approaches are based on Kalman filtering [9, 10, 11, 12],
and modulation filtering enhancement [13, 14].

Almost all methods available in the literature assume that
the fundamental frequency of ES can be estimated accurately.
The voicing source signal is then modified with the synthetic
LF model voicing source. The vocal tract formants are typically
considered to be the same as in normal speech signals. In real-
ity, however, the fundamental frequency of ES is highly irregu-
lar and the voicing source resembles whispered speech. More-
over, formants center frequencies are affected by the shortening
of vocal tract length due to surgery. In order to deal with these
deficiencies, this paper proposes an ES enhancement method
based on the GlottHMM single pulse synthesis [15, 16, 17].
The system decomposes ES into neoglottal waveform and vo-
cal tract filter components using Iterative Adaptive Inverse Fil-
tering (IAIF) [18]. Natural glottal pulse extracted from real
speech is used to construct the glottal waveform by borrowing
F0 curve and HNR from normal speech. The vocal tract fil-
ter is also modified by smoothing the spectral peaks and their
bandwidths. The spectral peaks of the vocal tract filter are also
moved to lower frequencies in order to compensate the rising
of formant in ES. The formant bandwidths are also increased
for better quality speech. The system is validated with Spanish
Esophageal Vowels subjectively using the Mean Opinion Score
(MOS). The paper in next section describes the system in detail.
The subsequent sections contain results, discussion and finally
conclusions.

2. System Description
The proposed system, shown in Figure 1, is divided into three
main components, i) analysis, ii) transformation, and iii) syn-
thesis. The analysis part decomposes the voiced speech frame
into its source and filter components. The transformation pro-
vides the modified source and filter components. Finally the
modified components are combined in the synthesis part to gen-
erate enhanced ES.
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Figure 1: Proposed enhancement system.

2.1. GlottHMM based analysis

The goal of the analysis part of the system is to decompose the
ES signal into a neoglottal source signal and a vocal tract spec-
trum. The input speech signal s[n] is first passed through high-
pass filter hhp[n] with a cutoff frequency of 70 Hz.

sh[n] = s[n] ∗ hhp[n] (1)

where sh[n] and ∗ are the highpass filtered speech signal and a
convolution operator, respectively. The highpass filtered signal
sh[n] is then windowed using a rectangular window of size 45-
ms, with 5-ms frame shift.

x[n] = sh[n]w[n] (2)

where w[n] is the rectangular window. Firstly the log energy G
of frame is extracted using,

G = log(

N−1∑

n=0

x2[n]) (3)

where N is the number of samples in the frame. Glottal Inverse
Filtering (GIF) is then used to separate the frame into a neoglot-
tal source signal and a vocal tract spectrum. The automatic in-
verse filtering, IAIF is used [18]. IAIF estimates vocal tract and
lip radiation using all-pole modeling and then iteratively can-
cel these components. In simplified form, the neoglottal source
signal:

U(z) =
X(z)

V (z)R(z)
(4)

where U(z), X(z), V (z) and R(z) are the z-transforms of
neoglottal source signal u[n], speech signal x[n], vocal tract
impulse response v[n], and lip radiation response r[n] re-
spectively. The estimated neoglottal source signal u[n] is
parametrized into fundamental frequency F0, Harmonic to
Noise Ratio (HNR) and neoglottal source spectrum U(z). The
autocorrelation of the neoglottal source signal u[n] is used for
F0 estimation. The HNR is estimated using the upper and lower
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Figure 2: HNR of ES and natural speech.

smoothed spectral envelopes ratio to determine the voicing de-
gree in the neoglottal voicing source signal u[n] for five fre-
quency bands [15]. In short the analysis part of the system
provides for each frame the following, i) Frame energy G, ii)
vocal tract spectrum V (z) (LP order 30), iii) F0, iv) HNR and
v) neoglottal source spectrum U(z) (LP order 10).

2.2. ES to normal speech transformation

The parameters obtained from the analysis are transformed into
natural speech parameters. The neoglottal signal and vocal tract
are modified independently.

2.2.1. Neoglottal source signal enhancement

The neoglottal source signal u[n] is the most effected speech
component in ES. Therefore the parameters of this signal are re-
placed with any arbitrary natural speech signal for a better glot-
tal source signal. The natural glottal pulse which is extracted
from normal speech is first interpolated using the cubic spline
interpolation by replacing the frame original F0 with natural
speech FN

0 . The interpolated glottal pulse voicing source is
then multiplied with the smooth gain G and the natural speech
HNR is then used to add noise in the frequency domain for nat-
uralness according to the following steps:

• Taking FFT of the neoglottal waveform,

• Adding random components (white Gaussian noise) to
real and imaginary part of FFT according to HNR,

• Taking IFFT of noise added neoglottal waveform

Usyn(z) = 10GG(z) +Q(z) (5)

where Usyn(z) is the synthetic glottal source, G(z) is the nat-
ural glottal pulses source, and Q(z) is HNR based noise com-
ponent. Figure 2 shows the mean value of HNR for all voiced
frames along with standard deviation. The figure indicates that
HNR of ES is greatly different from that of normal speech.
Therefore, it is justified to replace the HNR of ES with the HNR
of normal speech in the vowel enhancement system. In order to
adjust the spectrum of neoglottal waveform to the spectrum of
the target waveform, the former is filtered with following IIR
filter:

Hm(z) =
U(z)

Usyn(z)
(6)

where U(z) and Usyn(z) are the LP spectra of the original and
synthetic neoglottal waveform, respectively. The lip radiation is
applied to the spectrally matched neoglottal waveform û[n]:

û[n] = û[n]− αû[n− 1], 0.96 < α < 1 (7)
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Figure 3: Glottal excitations (computed from the vowel /a/) in
the time domain (a) and in the frequency domain (b).

where û[n](Û(z)) and α(0.98) are the modified neoglottal
waveform and lip radiation constant, respectively.

Figure 3(a) shows time-domain examples of glottal excita-
tions of natural speech and ES together with a waveform com-
puted with the proposed enhancement system. It can be seen
that the proposed system is capable of producing a glottal exci-
tation that is highly similar to that of natural speech. As shown
in Figure 3(b), the spectral slope of the excitation waveform
generated by the proposed method is also close to that of natural
speech, especially at low frequencies, but the generated spec-
trum also retains the spectral slope of ES at higher frequencies.

2.2.2. Vocal tract modification by nonlinear frequency warping

The vocal tract spectrum of ES has the following characteris-
tics, i) higher frequencies are emphasized more compared to
lower frequencies, ii) spectral resonances (formants) are moved
to higher frequencies, and iii) resonance bandwidths are re-
duced in comparison to normal speech vowels. To cope with
the higher frequency emphasis, a de-emphasis filter is applied
to the vocal tract spectrum. The resulting vocal tract transfer
function is then expressed as:

Henh(z) =
1 + αz−1

1 +
∑P

p=1 apz
−p
, 0.95 < α < 1 (8)

where P is the order of the all-pole vocal tract filter and α is the
de-emphsis constant.

Because formants of ES are moved upward in frequency,
a procedure is needed to adjust them to coincide more closely
with the formant values of normal speech. For such a procedure,
we used a second order Frequency Warping Function (FWF)
ζ(f) defined as:

ζ(f) = α1f
2 + α2f + c (9)
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where α1 = 6.079× 10−5, α2 = 0.5553, and c = 60.280.

f̂ = βζ(f), β = 1, f = 0→ fs
2

(10)

where f̂ and f , are warped and original frequencies, and β is a
constant. Figure 4 demonstrates FWF using first four formants
of vowels (/a/, /e/, /i/, /o/, /u/) extracted from normal speech
(x-axis) and ES (y-axis). The obtained frequency warping, ap-
plicable for a general formant mapping between normal speech
and ES, is shown in Figure 5. In order to expand the formant
bandwidths, exponential windowing is used for the vocal tract
filter coefficients as follows [19]:

Hs(z) =
1 +

∑P
p=1 γ

papz
−p

1 +
∑P

p=1 η
papz−p

, 0.90 < γ, η < 1 (11)

where γ and η are constants controlling the spectral bandwidth.
If γ > η bandwidth of formants increase, otherwise it de-

creases (i.e. formants are sharpened). For the purpose of the
present study, η(0.97) is always smaller than γ(0.99) in order
to increase formant bandwidths.

2.3. Synthesis of enhanced speech

The synthesis part involves convolving the modified neoglot-
tal waveform and the impulse response of the vocal tract filter
yielding the enhanced version of ES x̂[n];

x̂[n] = v̂[n] ∗ û[n] (12)

where û[n] and v̂[n] are the modified neoglottal waveform and
vocal tract impulse response, respectively.

3. System Evaluation
The system was evaluated with ES vowels of Spanish (/a/, /e/,
/i/, /o/, /u/) recorded in speech rehabilitation center. The data
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(a)

(b)

(c)

Figure 6: Spectrograms of the vowel /a/ for different processing
types: unprocessed (a), processed with the proposed system (b),
processed with the reference system (c) [7]

was collected from five early stage male ES talkers by asking
them to utter each vowel four times. Due to lack of female
patients in the rehabilitation center, only male speakers were
involved in the study. The speech sounds were sampled with
44.1 kHz from which the data was down-sampled to 16 kHz for
computational efficiency.

The system performance is visually demonstrated with
spectrograms in Figure 6. In this figure, and also later in Fig-
ures 7 and 8, the proposed system is compared with a reference
system based on using the LF source and formant modification
with a bandwidth extension system [7]. It can be seen from Fig-
ure 6 that the spectrogram computed from the enhanced vowels
by the proposed system shows a clearer formant and harmonics
structure in comparison to ES and the reference system.

3.1. Subjective listening evaluation

Two subjective listening tests were conducted. The first one was
a quality evaluation based on the Mean Opinion Score (MOS)
which is a widely used perceptual quality test of speech based
on a scale from 1 (worst) to 5 (best). In this test, the listeners
heard original ES vowels and the corresponding enhanced ones,
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Figure 7: Results of the MOS test for all the vowels.
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Figure 8: Results of the preference test.

processed by both the proposed and the reference method, in a
random order and they were asked to grade the quality of the
sounds on the MOS scale. The second listening test was a pref-
erence test where the listeners heard vowels corresponding to
the same three processing types and they were asked to select
which one they prefer to listen. A total of 10 listeners partici-
pated in the listening tests.

Figure 7 shows the results of the MOS test. The data indi-
cates that the proposed system has a mean MOS higher than 2.5
for all the vowels, which can be considered a good quality score
for ES samples. Figure 8 shows the data of the preference tests
by combining all the vowels. Also these data indicate that the
proposed method has succeeded in enhancing the quality of the
ES vowels.

4. Conclusion
An enhancement system for ES vowels was proposed based on
using a natural glottal pulse combined with second order poly-
nomial Frequency Warping Function. A preliminary evaluation
of the system was carried out on early stage Spanish ES vow-
els by comparing the system performance with a known refer-
ence method. Results obtained with a MOS evaluation show
clear improvements in speech quality both in comparison to the
original ES vowels and to sounds enhanced with the reference
method. The good performance was corroborated with a prefer-
ence test indicating that in the vast majority of the cases, listen-
ers preferred to listen to the sounds enhanced by the proposed
method. Future work is needed to study the system together
with advanced stage ES speakers.
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Abstract
Dysarthria is a speech disorder caused by difficulties in control-
ling muscles, such as the tongue and lips, that are needed to
produce speech. These differences in motor skills cause speech
to be slurred, mumbled, and spoken relatively slowly, and can
also increase the likelihood of dysfluency. This includes non-
speech sounds, and ‘stuttering’, defined here as a disruption in
the fluency of speech manifested by prolongations, stop-gaps,
and repetitions. This paper investigates different types of input
features used by deep neural networks (DNNs) to automatically
detect repetition stuttering and non-speech dysfluencies within
dysarthric speech. The experiments test the effects of dimen-
sionality within Mel-frequency cepstral coefficients (MFCCs)
and linear predictive cepstral coefficients (LPCCs), and explore
the detection capabilities in dyarthric versus non-dysarthric
speech. The results obtained using MFCC and LPCC fea-
tures produced similar recognition accuracies; repetition stut-
tering in dysarthric speech was identified correctly at approx-
imately 86% and 84% for non-dysarthric speech. Non-speech
sounds were recognized with approximately 75% accuracy in
dysarthric speakers.
Index Terms: Dysarthria, stuttering, non-speech dysfluency,
DNN, MFCC, LPCC

1. Introduction
Many studies have researched ways to improve the intelligibil-
ity of dysarthric speech, including methods that targeted partic-
ular aspects of speech to modify. Kain et al. [1] implemented
a system of transformations that focused strictly on mapping
vowels from individuals with dysarthria to vowels more charac-
teristic of non-dysarthric speech. Those experiments showed an
intelligibility increase of 6%. In 2013, Rudzicz [2] proposed a
method that added the correction of other pronunciation errors
and adjusted tempo. Among a cohort of listeners unfamiliar
with the speech of people with cerebral palsy, word recognition
rates increased by 19.6%. Crucially, the Levenshtein-based de-
tection of phoneme repetitions and non-speech dysfluencies in
that work depended on full phoneme segmentation, which may
itself be quite challenging for dysarthric speech.

Chee et al. [3] provided an overview of automatic stut-
tering detection, emphasizing its difficulty across a number of
classification methods. Czyzewski et al. [4], e.g., implemented
artificial neural networks (ANNs) and ‘rough sets’ to detect
three types of ‘stuttering’: stop-gaps, vowel prolongations, and
syllable repetitions, obtaining accuracies up to 73.25% with
ANNs and 91% with rough sets. Wiśniewski et al. [5, 6] per-
formed two studies that used hidden Markov models with Mel-
frequency cepstral coefficients (MFCCs) to detect stuttering.

The first focused on both prolongation of fricative phonemes
and blockades with repetition of stop phonemes that produced
an accuracy of 70% [5]; the second strictly focused on prolon-
gation of fricative phonemes and found an improvement in ac-
curacy to approximately 80% [6].

Rath investigated modifications to MFCC feature vectors
in speaker adaptation using deep neural networks (DNNs) [7],
obtaining 3% improvements over Gaussian mixture models
(GMMs) baselines. Across various types of speech features,
deep learning has shown considerable improvements across
several areas of speech recognition [8], compared with tradi-
tional techniques such as hidden Markov models. Here, we
compare MFCCs (which are the most commonly used feature
set in this domain [3]) and linear predictive cepstral coefficients
(LPCCs), which are another popular but less utilized feature
set. An exception was Chee et al. [9], who applied LPCCs
with k-nearest-neighbors and linear discriminant analysis clas-
sifiers to automatically detect prolongations and repetition stut-
ters, with recognition accuracy up to 89.77%. In the related field
of automatic speech recognition ()ASR), MFCCs have consis-
tently generated better results than LPCCs [10, 11]; to see if this
trend extends to the domain of dysfluency detection, we com-
pare these feature types with DNNs.

2. Methodology

Figure 1: Overview of automatic stuttering detection method.

2.1. Data

The TORGO database [12] was created by a collaboration
between the departments of Computer Science and Speech-
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Language Pathology at the University of Toronto, and the
Holland-Bloorview Kids Rehab hospital. The corpus consists
of recordings from seven participants, three females and four
males ranging in age from 16 to 50, diagnosed with cerebral
palsy or amyotrophic lateral sclerosis. Additionally, there are
recordings from seven control speakers matched for age and
gender. A combination of non-words, short words, restricted
sentences, and unrestricted sentences were recorded by all par-
ticipants with a 16 kHz sampling frequency using two micro-
phones. The database also includes articulatory measurements
using electromagnetic articulography, which is not used here.

2.2. Segmentation

Segmentation was performed manually by listening to the
recorded speech samples in the TORGO database and marking
the start and end times of each occurrence of stutters. Only a
single type of ‘stuttering’ dysfluency is considered here, specif-
ically repetition-type stutters (Table 1), since these are more dif-
ficult to detect than prolongations and stop-gaps [4].

Table 1: Repetition Types

Repetition Type Example
Part of a word wh-wh-what time is it?
Whole word what-what-what time is it?
Phrase what time what time is it?

For the analysis of non-speech dysfluencies we employed
the phonetic transcriptions provided with the TORGO database.
In such transcriptions, non-phonetic segments are marked with
the label noi (noise).

2.3. Feature extraction

After segmentation, speech data were parameterized into an in-
put form suitable for use by a DNN classifier (Figure 2), as
described below.

Figure 2: MFCC and LPCC feature extraction overview.

2.3.1. MFCC features

The MFCC input feature baseline consists of 13 cepstral coeffi-
cients in addition to the 0th cepstral coefficient, energy, δ, and
δδ coefficients. There is no pre-emphasis performed on these
features. Since speech samples are constantly changing, we use
frame blocking to analyze the signal in small time frames such
that it becomes near stationary. The speech signals are cut into

25 ms frames with a frame step of 10 ms. We use a Hamming
window to calculate the MFCC features, where the coefficients
are found given Equation 1 (N is equal to window size minus
one, in this case N = 399).

w(n) = 0.54− 46cos(2π
n

N
), 0 ≤ n ≤ N (1)

To detect the different frequencies in the signal, the power spec-
trum is calculated using the discrete Fourier transform (DFT).
The Mel filterbank then sums the energy in each filter, obtaining
29 uniformly-distributed triangular filters. The discrete cosine
transform (DCT) is then applied to the log-filterbank energies
to obtain the MFCCs. The purpose of the DCT is to decorrelate
the overlapping filterbanks.

2.4. LPCC features

The LPCC features include 13 coefficients followed by the en-
ergy coefficient. LPCCs are more vulnerable to noise than
MFCCs, so the speech signal is flattened before processing
to avoid additive noise error. This is accomplished by pre-
emphasis, a first order high-pass filter is applied to the speech
signal as in

H(z) = 1− az−1, a = e
−
100π

16000 = 0.9806. (2)

Frame blocking and the Hamming window are applied to the
LPCC feature space with the same parameters as for MFCCs
(i.e., frame blocking 25 ms, 50% frame overlap and frame step
10 ms). This is followed by LPC analysis that estimates the
coefficients by using the autocorrelation method to obtain fun-
damental frequency, pitch, and repeating patterns in the speech
signal, before cepstral analysis is performed.

2.5. Feature modulation

We explored increasing the dimension of the input features used
by the DNN due to the fact that DNNs are robust to larger input
dimensions. The frequently-used hidden Markov model with
Gaussian mixture output densities can become subject to error
in parameter estimation, even with a slight increase in the input
dimensions. The concept of a moving window is implemented
to create inputs with larger dimensions. The moving window
considers frames before and after the current frame. For exam-
ple, a window of size ±x takes the x consecutive frames pre-
ceding and following the current frame and combines them into
a single input vector (Figure 3 provides a visual representation
of a moving window of size ±1).

Figure 3: Moving window of size ±1.

The dimensions of the input features are provided in Table
2. The baseline number of MFCCs and LPCCs are 45 and 14,
respectively. The purpose of the moving window is to exploit
the DNN’s ability to use higher-dimensional input feature vec-
tors to achieve better classification results by integrating con-
textual information.
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Table 2: Input feature dimensions

Moving window size 0 ±1 ±3 ±5
MFCC input dimension 45 135 315 495
LPCC input dimension 14 42 98 154

2.6. Classification

We use the deep neural network implementation of Tanaka
and Okutomi [13] for stuttering classification. Four pre-trained
Bernoulli-Bernoulli restricted Boltzman machines (RBMs) plus
a decision layer are stacked to form a deep belief network
(DBN), to create a DBN-DNN classifier (Figure 4). The RBMs
are pre-trained in an unsupervised way using contrastive diver-
gence. Once the DBN is initialized with the pre-trained RBMs,
we fine-tune the DBN with a supervised learning method based
on reducing error in the classification of, alternatively, stuttering
or various types of non-speech dysfluencies.

Figure 4: DBN-DNN overview, after [13]

3. Experiment 1: stuttering detection
We use two different partitioning schemes to compare results
according to different categories of interest (Figure 5), namely
generic-vs-individual speaker models (i.e., speaker-independent
vs. speaker-dependent), and dysarthric-vs-non-dysarthric indi-
viduals. A total of 120 repetition stutters occurred across all
3115 recordings of dysarthric speech, and a total of 42 repetition
stutters occurred across all 5641 recordings of non-dysarthric
speech. The male and female dysarthric speakers with the most
stutter occurrences were used for individual analysis; specif-
ically, male dysarthric speaker M04 with 32 stutters, and fe-
male dysarthric speaker F03 with 22 stutters. Among the non-
dysarthric speakers, there is no significant difference between
males and females, so the non-dysarthric speaker with the most
stutter occurrences was used in further analysis, namely male
control MC04 with 16 stutters.

All training and testing data sets were divided in the same
way – 70% of stutter occurrences were randomly assigned to
training and paired with a random utterance without any stut-
ter. By balancing training class sizes, we avoid the problem
of overfitting to devolved majority classification. Testing data
consisted of the remaining 30% of repetition stutters.

An empirical question is whether stutter detection is

Figure 5: Training & testing data set divisions used in experi-
mentation.

more or less difficult in dysarthric speech, compared to non-
dysarthric speech. Table 3 shows the average error rates of de-
tecting repetition stuttering using 5-fold cross validation with
MFCC and LPCC features. Clearly, across all models, accu-
racy increases monotonically as additional context is added. We
also note that we obtain state-of-the-art accuracy for dysarthric
speaker F03 using 10 frames of surrounding context, which is
comparable to Czyzewski et al.’s work with rough sets [4]. An
n-way analysis of variance reveals strong effects of window size
(F3 = 836.91, p < 0.001) and population (F1 = 11.80, p <
0.01), but not of the feature set (F1 = 0.12, p = 0.74). Across
all experiments, LPCCs give slightly lower error than MFCCs,
on average (20.17% vs. 20.32%, respectively). Except for the
(relatively inaccurate) case where no context frames are used,
generic control models always give higher error than generic
dysarthric models, by absolute differences of 2% to 2.35%.
It is important to note that we only consider main effects of
these grouping variables – given the different dimensionality of
MFCC and LPCC, one cannot make direct interaction compar-
isons across these groups and context sizes simultaneously.

Speaker-dependent models always outperformed associ-
ated speaker-independent models. The difference in error
rates between generic and individualized models is larger for
dysarthric speech than non-dysarthric speech. At best, the
speaker-dependent dysarthric models achieved a 5.06% lower
rate than the speaker-independent dysarthric models, while
speaker-dependent non-dysarthric models obtained at best a dif-
ference of 2.85%.

Interestingly, it is easier to detect stuttering in dysarthric
speech than in non-dysarthric speech. In fact, error rates were
consistently lower for the dysarthric speech (≈14%) than for
the non-dysarthric speech (≈16%). This suggests that the im-
plemented method is robust to this particular speech disorder.

4. Experiment 2: non-speech dysfluencies
We repeated the methodology of Experiment 1, but considered
instead ‘lower-level’ dysfluencies and non-speech vocal noise
that can affect speech recognition and synthesis systems.

Here, annotation is based on the phonetic transcriptions
provided in the TORGO corpus. Segments labeled as noi
(noise) were examined and manually tagged with either none,
or any combination of the following three dysfluency types:

aspiration Noise related to breathing, i.e., inspiration or expi-
ration.

mouth/lips Noise produced by the lips and/or mouth/tongue.

vocal Non-speech voicing (e.g., laughter, hesitation...).
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Table 3: Average error rate (%, 5-fold cross-validation) of stut-
ter detection using MFCC and LPCC features across speaker
groups. Speakers F03, M04, and MC04 are also examined in-
dividually due to their relatively high rates of stuttering.

Window size
Speaker(s) 0 ±1 ±3 ±5

M
FC

C

F03 38.36 9.93 9.74 9.55
M04 38.61 12.80 12.70 12.60

all dysarthric 40.84 14.95 14.82 14.61
MC04 38.24 14.49 14.27 14.05

all controls 40.00 17.30 17.09 16.88
all speakers 40.74 15.21 15.07 14.93

L
PC

C

F03 38.31 9.87 9.50 9.13
M04 38.56 12.81 12.61 12.41

all dysarthric 40.80 14.95 14.68 14.42
MC04 38.18 14.44 14.00 13.57

all controls 39.94 17.26 16.84 16.42
all speakers 40.70 15.20 14.92 14.64

The procedure of classification and evaluation is the same
as in Experiment 1, except only individuals with dysarthria are
considered, since the amount of occurrences of such dysfluen-
cies in control speakers were not significant. Among all 1403
recordings of the head-worn microphones for dysarthric speak-
ers with phonetic transcriptions, we found 706 instances of as-
piration noise, 496 of mouth/lips, and 111 of vocal noise.

Table 4: Average error rate (%, 5-fold cross-validation) across
other dysfluencies using MFCC and LPCC features across
speaker groups.

Window size
Type 0 ±1 ±3 ±5

M
FC

C aspiration 39.98 19.19 19.60 19.11
mouth/lips 43.28 24.95 24.81 24.68

vocal 46.15 25.75 26.83 25.81

L
PC

C aspiration 40.08 19.35 19.40 19.14
mouth/lips 43.31 25.01 25.03 24.83

vocal 46.18 25.81 25.92 25.42

Table 4 shows the average error rates of detecting the differ-
ent non-speech dysfluencies using 5-fold cross validation with
MFCC and LPCC features. The accuracy increases with the use
of one or more frames of context, but adding more than one
frame does not improve the results. These types of low-level
dysfluencies are significantly localized in time or highly char-
acterized by their spectral shape. Therefore, adding more con-
textual information does not appear to improve classification.

Dysfluencies of type aspiration are consistently more ac-
curately classified than mouth/lips, which in turn are easier to
classify than vocal. The aspiration dysfluencies contain a very
characteristic timbre which is easier to discriminate from other
speech sounds than the other classes. On the other hand, vocal
dysfluencies are the closest to actual speech phones, leading to
a more difficult differentiation. We note that aspiration dysflu-
encies are usually longer and since, in our current setting, an
entire region is tagged with the noise type without performing
segmentation, frames containing aspiration may be systemati-
cally more accurately labelled than those with other more local-
ized noises such as mouth/lips or vocal.

5. Discussion and future work
We investigated the ability of a DBN-DNN to classify repeti-
tion stuttering and non-speech dysfluencies in dysarthric and
non-dysarthric speech using MFCCs and LPCCs as input. Re-
sults indicate that repetition stuttering is detected with very sim-
ilar (though significantly different) error rates across dysarthric
and non-dysarthric speech. Increasing the dimension of the in-
put, across either feature to the DBN-DNN consistently lowers
the error rate, and there is no statistically significant difference
between using MFCC or LPCC input features. Moreover, we
find that among non-speech dysfluencies, aspiration is more ac-
curately identified than mouth/lip dysfluency, which in turn is
more accurately identified than other vocal activity. In both
cases, a greater investigation into the effect of context is needed.

Overall, the results achieved here are comparable to similar
work discussed in Section 1. However, given the somewhat lim-
ited number of stuttering and non-speech disturbances within
TORGO, the results can be considered preliminary; more work
with additional data sets would be needed to make more con-
clusive claims.

Since dysarthric speakers are more likely to stutter than
non-dysarthric speakers, this must be considered when com-
paring across groups, especially when comparing aggregate
speaker-independent models. Future work includes additional
types of stuttering detection, including prolongations and stop-
gaps in spontaneous speech. We are also interested in ex-
tending and combining additional feature types, including au-
toencoders, and alternatives to the DBN structure itself. How-
ever, this paper has clearly shown that state-of-the-art stuttering
detection, which had previously focused on non-pathological
speech, can be applied to dysarthric speech. This automates a
crucial component in systems that automatically improve the in-
telligibility of speech signals. Specifically, correcting dysfluen-
cies has previously been shown to be a highly (if not the most)
effective transformation that can be applied to speech signals
[2]. Whereas that work depended on gold-standard phonemic
transcriptions, our current work on stutters is relatively accu-
rate given only the acoustics.
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Abstract

Dysarthria is a neurological speech disorder, which exhibits
multi-fold disturbances in the speech production system of an
individual and can have a detrimental effect on the speech out-
put. In addition to the data sparseness problems, dysarthric
speech is characterised by inconsistencies in the acoustic space
making it extremely challenging to model. This paper investi-
gates a variety of baseline speaker independent (SI) systems and
its suitability for adaptation. The study also explores the use-
fulness of speaker adaptive training (SAT) for implicitly anni-
hilating inter-speaker variations in a dysarthric corpus. The pa-
per implements a hybrid MLLR-MAP based approach to adapt
the SI and SAT systems. ALL the results reported uses UA-
SPEECH dysarthric data. Our best adapted systems gave a sig-
nificant absolute gain of 11.05% (20.42% relative) over the last
published best result in the literature. A statistical analysis per-
formed across various systems and its specific implementation
in modelling different dysarthric severity sub-groups, showed
that, SAT-adapted systems were more applicable to handle dis-
fluencies of more severe speech and SI systems prepared from
typical speech were more apt for modelling speech with low
level of severity.
Index Terms: speech recognition, dysarthric speech, speaker
adaptation, speaker adaptive training

1. Introduction
Dysarthria is the collective name for a group of motor speech
disorders, which result from single or multiple lesions in the
brain. It usually results in the loss of motor speech control due
to muscular atrophy and incoordination [1, 2]. Across various
aetiologies, dysarthric speech is usually characterised by impre-
cise consonant production, reduced stress, slow speech rate, hy-
pernasality, harsh and strained voice, muscular rigidity, spas-
ticity, monopitch and limited range of speech movements [1, 2].
Dysarthria can either be congenital, occurring with conditions
such as in cerebral palsy, or acquired, where it develops due
conditions such as a stroke or Parkinson’s disease.

The effect on speech production of dysarthria is not lim-
ited to the musculoskeletal structures, but it can also affect parts
of subglottal, laryngeal and supraglottal systems [3]. It usually
leads to reduced intelligibility of speech, which can be inversely
related to the severity of the underlying condition. On a broad
operational scale, severity can be indexed as mild, moderate, se-
vere or any approximation within, such as mild-moderate. For
people with severe dysarthria, their speech can be largely unin-
telligible to unfamiliar listeners.

It is estimated that around 1% of UK population is diag-
nosed with a neurological disorder each year, although, not all
the conditions lead to dysarthria. In UK alone; stroke (416
per 100,000), cerebral palsy (200-300 per 100,000) and Parkin-
son’s disease (200 per 100,000) are amongst the most prevelant
causes of motor speech disorders [4, 5].

1.1. Speech interface and dysarthria

Speech has provided an attractive interface for people with
dysarthria by enhancing human-human & human-computer in-
teraction. It can enable people with dysarthria to participate in
social settings where they can interact with non-familiar com-
munication partners. Moreover, speech as an interface can pro-
vide users with a more real-time communication experience to
convey messages, in comparison to traditional hardwired switch
based interfaces. Earlier studies have shown that systems that
deploy automatic speech recognition (ASR) as an interface in
a dysarthric setup can have a lower accuracy than hardwired
switch-based systems, but, the final message transfer is around
2.5 times faster than the later, even with mis-recognitions fol-
lowed by corrections [6, 7].

According to a report by [8], more than 70% of dysarthric
population with Parkinson’s disease or motor neuron disease
and around 20% with cerebral palsy or stroke could benefit from
some implementation of an augmentative or alternative commu-
nication (AAC) device. The benefits of such a setup has proved
effective for dysarthric people using speech as an interface for
natural communication [9] or enabling them to control physical
devices through speech commands [7].

1.2. Automatic speech recognition for dysarthric speech

Dysarthric speech recognition has been investigated for more
than two decades [10, 11]. The efficacy of commercial sys-
tems has been limited for speakers with mild or mild-moderate
dysarthria [12, 13]. In general, decreasing recognition accuracy
is linearly related to increasing severity. As a consequence, it
has been concluded that the systems are not suited to the higher
variability inherent in dysarthric speech.

From a research perspective; acoustic modelling, speaker
adaptation and signal enhancement techniques have been ex-
plored by researchers to deal with variabilities and disfluencies
in dysarthric speech.

The system can be (i) speaker dependent (SD) , which is
modelled to recognise only a particular speaker, (ii) speaker in-
dependent (SI), which is a generic model map to recognise a
range of seen and unseen speakers and (iii) speaker adapted
(SA), which attempts to minimise the mismatch between a
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generic baseline SI model and the intended target speaker. Both
generative and discriminative techniques have been exploited
to model the acoustics of dysarthric speech. Discriminative ap-
proaches like support vector machines has shown some level of
success in small vocabulary tasks [14, 15], but by large continu-
ous density HMMs (CDHMM) and its variants remain the most
exploited and successful techniques used till date. To get robust
model estimates for SD/SI systems, large amounts of training
data is usually required. This is not practically viable, since
dysarthric speech is afflicted with sparse and inconsistent data
problems due to physical constraints, fatigue and muscular at-
rophy related to a specific individual. Moreover, any dysarthric
system will only be effective in real time if the data is collected
under conditions where the user will be engaged more often.
To overcome this problem to some extent, researchers are using
SA systems, which might give SD like performance using lesser
amount of data and will be more apt for modelling any unseen
user, if a good baseline SI model is available.

Earlier studies using CDHMMs suggested that speaker
adapted (SA) systems were suited for mild to moderate
dysarthric speakers and speaker dependent (SD) systems better
modelled variablities in the severe group of speakers [13, 16].
However, till date there is no common consensus on an estab-
lished scheme, which indicates the suitability of a technique for
a specific type, aetiology or severity of dysarthria. For example,
a study by [17], reported a contrary conclusion and suggested
that severity is not a good indicator for an optimal selection of
modelling approach. Their SA based system outperformed the
SD system for most of the speakers used in the study. The dis-
agreement over an optimal approach could also be due to (i) less
number of speakers examined in a study, sometimes one, and,
(ii) a small vocabulary size, which can create a bias for a certain
technique due to the small homogeneous dataset.

1.3. Purpose and aim for the paper

There is a growing need to investigate SA based speech sys-
tems, which can be trained with less data and be more accurate
for a reasonably large vocabulary. Preparation of SA system
usually require using a baseline speaker independent (SI) sys-
tem and then adapting it using standard techniques. The adap-
tation methods are usually model based, such as MAP [18] or
applies a family of linear transforms, such as MLLR [19]. For
dysarthric speech, the basline SI systems are usually prepared
from a corpus of typical speech, dysarthric speech or a combi-
nation of both.

Although, little work has been done to investigate for an op-
timal adaptation approach, but some novel attempts have paved
the path for further research and investigation. One of the ear-
lier studies comparing SA and SD systems, was reported by
[17]. The study was conducted for 7 speakers from the UA-
SPEECH database [20] and the results showed that SA system
outperformed the SD system for most of the speakers. A more
comprehensive study was conducted by [21] on the same dataset
that included all the speakers in the UA-SPEECH corpus. They
tested a SD system alongside a MAP based SA system. An ar-
ray of SI baseline models were used for adaptation purposes.
Firstly the study showed an average relative increase of 34.5%
over the earlier reported results by [17]. Secondly, the results
showed that SI system using all the dysarthric speech data forms
the best baseline system for MAP adaptation. To the best of our
knowledge, the results reported by [21] seems to be the best till
date on a relatively large vocabulary size of 255 words for a
particular dysarthria type covering a range of severities.

This paper builds up upon these earlier studies and (i) inves-
tigates the best SI baseline system for adaptation of dysarthric
speech, (ii) explores hybrid adaptation approach using MLLR-
MAP and (iii) investigate the efficacy of speaker adaptive train-
ing (SAT) [22] to implicitly annihilate the inter-speaker vari-
abilities during the training process.

In the paper, section 2 will detail about the data prepara-
tion and methodology used for the experiments, section 3 will
present and analyse the recognition results, section 4 will put
some collective discussion for the results and section 5 will have
the concluding remarks and considerations for the future work.

2. Experimental Setup
2.1. Data preparation

All the experiments presented in this paper used two standard
corpora for typical speech, viz., WSJ0 SI-84 [23] that con-
sists of read speech from 84 North American english speakers
with texts drawn from a machine-readable corpus of Wall Street
Journal news, and, WSJCAM0 [24] , which is a British english
version of WSJ database that consists of data from 92 training
speakers. For WSJCAM0, data was also included for speakers
from the development and two evaluation test sets.

In addition, UA-SPEECH [20] corpus was used, which con-
sists of data from 15 dysarthric speakers with cerebral palsy and
13 control speakers. There are 765 isolated words (455 distinct)
per speaker collected in three separate blocks, where each block
consists of 10 digits, 26 international radio alphabets, 19 com-
puter commands, 100 common words and 100 distinct uncom-
mon words, which were not repeated across blocks. In addition,
the corpus also provides a rough estimate of perceptual speech
intelligibility ratings for each dysarthric speaker by five naive
listeners. The ratings given will be used in all the experiments
for ordering the speakers in various severity groups. All the

Corpus Speakers Training Files
WSJ SI-84 84 14377

WSJCAM0 † 136 18537
UA-CTL 13 41819
UA-DYS 15 44277

Table 1: A summary of each training corpus in the system. UA-
CTL and UA-DYS codes are used for UA-SPEECH control and
dysarthric speakers. (†) Four evaluation speakers with no sec-
ondary microphone data were excluded from WSJCAM0.

block one (B1) and block three (B3) data from UA-SPEECH
was used for training & adaptation purposes and block two (B2)
was solely used for all the reported test results in the paper.
Because dysarthric speakers can take a longer duration to utter
words, the UA-SPEECH training data had to be logically re-
segmented to get rid of extra silences around word boundaries.
Only 200 ms of silence was appended to either side of the word
for training. However, test data block B2 was left untouched to
maintain the natural speaking conditions. Data from all the mi-
crophones was used for each corpus for training and adaptation
purpose and a summary is given in Table 1.

For acoustic modelling, data from all the corpora was pro-
cessed as 12 dimensional MFCC features with c0 and cepstral
mean normalisation. First and second order time derivatives
were also appended giving a 39 dimensional feature vector per
frame. Speech was analysed in 25 ms window with a 10 ms
target shift rate.
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2.2. Acoustic Modelling

The continuous density HMM in all the experiments are word-
internal tied-state triphone models with clustering performed
using phonetic decision trees. It follows a strict left-to-right
topology with 16 Gaussian components used per state. Silence
states were modelled using 32 Gaussian components.

2.3. Methodology

One of the aim of the paper is to test the efficacy of a good base-
line SI system that is more apt for adaptation purposes. This is
an extension of the SI systems that was described in [21]. Ta-
ble 2 summarises the SI systems that were constructed for adap-
tation purposes.

System Code Training Dataset Used
SI-00 WSJ SI-84 + WSJCAM0
SI-01 UA-DYS excluding target test speaker
SI-02 UA-DYS
SI-03 UA-CTL
SAT UA-DYS

Table 2: Summary of baseline systems and the corpus used for
its preparation.

The SI systems intrinsically model the speaker character-
istics and acoustic realisations in speech, which are considered
constant throught the database. During typical speaker adapta-
tion, the optimal model set Φ̃, given a set of S speakers in the
system is generally represented as:

Φ̃ = arg max
φ

L(O;φ) = arg max
φ

S∏

s=1

L(O(s);φ)

where L(O(s);φ) is the likelihood of the observation sequences
from speaker s, given the current set of model estimates φ.

In addition to various SI systems, SAT modelling was also
considered in the current study, which splits information into
various homogeneous blocks, e.g. data pertaining to a particu-
lar speaker for incorporating speaker induced variations. SAT
training uses two sets of parameters, a canonical model φc, usu-
ally hypothesised to represent phonetically relevant speech vari-
abilities, and the set of transforms T (s) to represent the speaker
variabilties. This is given as:

(Φ̃c, T̃ ) = arg max
(φc,T )

S∏

s=1

L(O(s); T (s)(φc))

In the above equation speaker induced variations are mod-
elled by T and the canonical model is updated, given each trans-
form. The entire SAT paradigm works iteratively in an inter-
leaved fashion and can be depicted as shown in figure 1.

SAT based on MLLR transforms should be able generate
robust canonical model estimates, however, it comes with com-
putational and memory overheads [25], making it impractical
for implementation. Such issues are usually avoided by ap-
plying constrained MLLR (CMLLR) [26, 27], which uses the
same transform for both means and variances. The transforms
are computed for each homogeneous block of data. SAT with
CMLLR results in a kind of feature normalisation during model
training and have the same computational load as any other stan-
dard HMM update. Unlike SI models which can be directly

Gender & Speaker Independent
Initial Model Hypothesis

Estimate: τ(s) | Φc

Each speaker transform given the 
current set of canonical model

Update: Φ
c 
| τ(s)

Canonical Model given 
speaker transforms 

Canonical Model Set

Figure 1: An overview of the SAT framework

used for recognition, SAT canonical model sets are not suited
for direct decoding. Both systems are usually adapted to some
target test condition.

In this paper, we present the results of the SI and SAT mod-
els using MLLR, MAP and MLLR-MAP based adaptation tech-
niques. SAT canonical models are intentionally trained using
only UA-DYS speakers to implicitly reduce the inter-speaker
variabilities associated with dysarthric speech in general across
varying degree of severities. The MLLR implemented uses a
two-pass static adaptation procedure. The first pass performs a
global transformation and the second pass uses the global trans-
forms to produce more accurate transforms using a regression
class tree with 32 terminal leaf nodes.

3. Results
All the test results presented in the paper are obtained on test set
B2 of the UA-SPEECH corpus. Since the database comprises
of single word utterances, the decoding grammar was strictly re-
stricted to recognise only one of the possible test words, mostly
preceded and succeeded by silences. There are 255 distinct
competing words in the test block with a total of 22281 files
from all speakers and microphones.

Figure 2: Average word accuracy for the baseline SI systems
along with the SD result.
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3.1. Baseline Systems

The first set of experiments involved obtaining recognition
scores of all the baseline SI systems. These were then compared
with the SD performance. Figure 2 shows the average baseline
accuracy of all the SI systems. SI-00 has the lowest baseline re-
sult, which can be explained by the fact it was training only on
typical speech. The high accuracy was obtained using the SI-02
system, which was trained on the largest amount of dysarthric
speech data.

3.2. Baseline Adapted Systems

All of the baseline systems were adapted for each test speaker.
Standard techniques were used and the results are shown in Fig-
ure 3. MAP clearly outperforms the MLLR based adaptation for
all the systems except SI-00. This may be an example of non-
informative priors. The SI-00 models are trained from WSJ0 +
WSJCAM0 datasets, which contains only typical speech, and
therefore presents no useful information about the model pa-
rameter distributions of the adaptation and test datasets.

Figure 3: Adaptation scores for the baseline SI systems.

Following on from this observation we implemented a com-
bined approach that involves generating MLLR transforms for
the target speaker followed by MAP adaptation. By doing this,
MLLR adapted parameters can act as informative priors for the
MAP process. For all the SI systems, the MLLR-MAP com-
bination outperformed all other adaptation approaches. For this
reason the remainder of the paper will primarily focus on results
obtained using a MLLR-MAP approach.

Intuitively, it may be thought that SI-01 or SI-02 should
form an optimal set of baseline models for adaptation, since
they exhibit less difference between the training, adapted and
test conditions. Overall, the best MLLR-MAP scores for
dysarthria and typical speech based SI systems was found to
be for SI-02 and SI-03.

3.3. SAT-adapted vs Other Systems

One of the aims of the paper is to study the effect of SAT
based modelling to reduce inter-speaker variations during train-
ing time. This section reports SAT-adapted results and com-
pares it to the state-of-the-art SD system and other SI-adapted
systems reported earlier. Figure 4 gives a comparison of the
MLLR-MAP based SI and SAT systems. Clearly, SAT-adapted
model sets outperform all the other tested systems

It should be noted that SD system performs poorer than
all the other adapted systems. Indeed, it can be seen in Ta-
ble 3 that SD system does not perform better than any of the

Figure 4: Comparison of SD and MLLR-MAP based SI & SAT
systems.

SA systems (except one speaker) under various intelligibility
sub-groups. This gives us an average understanding that adap-
tation can be an effective approach to model dysarthric speech
of varying severities. A similar finding about the efficacy of SA
systems was also reported in a study by [17]. Our findings are
contrary to some of the earlier published results [16, 13], which
were more inclined to favour SD systems with increasing sever-
ity. In another study by [21], SI systems prepared from only
dysarthric datasets produced better adapted models for most of
the speakers.

In contrast our findings suggest that SI systems like SI-
03, prepared from typical speech can also adapt as well as a
dysarthric speech-based SI system. In order to justify our pre-
sumption, the effectiveness of all the MLLR-MAP based SAT
and SI systems along with SD system was statistically analysed
using Cochran’s Q test. All the systems were tested for dif-
ferences across all the test speakers. The null hypothesis was
rejected at α = 0.01, degrees of freedom = 5, which meant that
all the systems were not equally effective for modelling dysar-
tric speech in general. Later a pairwise Cochran’s Q test was
conducted between the system with the best absolute average
score (SAT) and all others. The test showed that SAT was sig-
nificantly different to all other systems at p < 0.01, except for
the SI-03 system.

3.4. Severity Based System Results

So far we have reported all our findings averaged across all the
test speakers regardless of the severity. However, to have a more
customised approach for preparing systems for specific speak-
ers it is important to individually study the effect of SD and SA
based systems under various severity groups. The MLLR-MAP
results reported earlier were investigated further for each of the
different severity groups. Figure 5 gives an overall picture of
how the baseline SI systems performed for various intelligibility
sub-groups and Figure 6 shows the effect of adaptating the re-
spective baseline systems along with SAT estimates. The speak-
ers at the lowest intelligibility group showed inclination towards
SAT based system or systems prepared with some dysarthric
data, while, speakers in the highest intelligibility group benefit-
ted from the presence of only typical speech data. Table 3 gives
a detailed test report for all the UA-DYS speakers.

In order to understand differences between the systems, a
Cochran’s Q test was again applied to study the system differ-
ences under various speaker severity groups. The summary of
the results of this test are shown in Table 4. It shows that SAT

68



Figure 5: Word accuracy for the baseline SI systems under
various intelligibility groups (Very Low, Low, Mild, High).

Figure 6: MLLR-MAP scores for the SAT & SI systems under
various intelligibility groups (Very Low, Low, Mild, High).

Intelligibility Speaker SD MLLR-MAP
SI-00 SI-01 SI-02 SI-03 SAT

Very Low

M04 (2%) 6.54 8.98 9.5 8.54 8.11 9.68
F03 (6%) 32 27.61 37.49 36.01 36.81 38.36
M12 (7%) 32.24 17.76 35.08 32.31 30.71 32.9
M01 (17%) 16.76 27.03 28.32 28.22 27.46 29.22

Sub Acc. 23.52 20.61 28.82 27.36 26.95 28.71

Low
M07 (28%) 62.33 69.7 69.26 68.89 61.91 66.06
F02 (29%) 61.08 37.62 50.12 54.02 50.93 56.93
M16 (43%) 64.29 68.08 62.76 66.47 65.23 66.55

Sub Acc. 62.48 57.89 60.56 62.92 59.03 62.98

Mild
M05 (58%) 70.48 64.27 69.93 70.6 67.47 71.83
M11 (62%) 58.18 56.57 63.8 66.06 68.1 65.62
F04 (62%) 62.66 76.06 70.57 68.48 74.52 70.57

Sub Acc. 64.44 66.12 68.34 68.51 70.13 69.54

High

M09 (86%) 80.96 83.11 84.43 85.62 87.82 86
M14 (90%) 77.76 80.4 80.09 79.2 85.71 80.84
M10 (93%) 84.28 91.77 86.28 87.21 91.33 88.08
M08 (95%) 85.86 87.96 87.21 86.47 87.4 87.34
F05 (95%) 86.46 92.14 92.01 92.33 90.58 92.08

Sub Acc. 83.07 87.08 86.01 86.17 88.57 86.87

Overall Acc. 61.44 61.63 64.12 64.36 64.67 65.15

Table 3: Average word accuracy rates for SD and all SI baseline systems adapted using MLLR-MAP. The table also shows sub accuracy
scores under various intelligibility groups. The best scores are highlighted in grey for each row.

system is statistically equivalent to some other systems in the
very-low, low and mild sub-group of speakers.

Intelligibility Best performing sys-
tems (p < 0.05)

Very Low SAT, SI-01
Low SAT, SD, SI-02
Mild SAT, SI-03
High SI-03

Table 4: Cochran’s Q analysis for all the systems under various
intelligibility sub-groups.

For the high intelligibility sub-group, system trained from
typical speech data with similar recording and vocabulary setup
as the test dysarthric conditions was significantly different to all
the other competing systems.

4. Discussions
The results reported in Section 3 show that it is difficult to train
a system to model the variabilities in dysarthric speech and
to generalise to speakers of different severities. For example,
when studying the performance of various baseline systems in
section 3.1, it was interesting to note that SI-03 had similar per-
formance to SI-01 system, despite being trained from typical
speech data. We think that SI-03 models will be making use of
information from homogeneous vocabulary and recording con-
ditions as the test dysarthric conditions.

The findings also show that SD system were not the most
effective to model dysarthric speech. This can be partially at-
tributed to the relatively small amount of data per speaker in
UA-SPEECH, especially when compared to previous studies in
the literature [16, 13]. The test block B2 also comes with many
unseen acoustic realisations in the form of 100 unique ”uncom-
mon words” and an SD system is usually only tuned to max-
imise the model fit for the seen data blocks during training. In
contrast, a SA system might overcome this problem to some
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extent by using acoustic information present from other users
in the baseline SI systems. This might be a contributing factor
for all the adapted systems to be significantly better than SD
system.

Another point of interest, reported in section 3.3, indicated
that to model dysarthric speech in general, SAT and SI-03 sys-
tems were not significantly different. Hence the selection of
a good baseline system to adapt from cannot depend on any
particular dataset. It needs a more thorough investigation to
understand the acoustics of dysarthric speech at an intra and in-
ter speaker level. For instance, these results suggest that the
variabilities in dysarthric speech can be better accommodated
from modelling both typical and dysarthric domains. One such
attempt was reported by [28], where background interpolation
MAP was implemented to obtain an intermediate prior acous-
tic model to narrow the gap between two disparate SI systems
(typical & dysarthric), albeit, the reported results were no better
than those reported by [21]. Our best overall results, as reported
in sections 3.3 & 3.4, are based on MLLR-MAP adapted SAT
systems. It gives an absolute gain of 22.91% (54.36% relative)
over results of [28] and an absolute gain of 11.05% (20.42%
relative) over results of [21].

The choice of a particular system for a given target speaker
is not completely clear, even when analysis is carried out at
specific intelligibility levels. Table 4 indicates several possi-
ble choices in the lower intelligibility group of speakers. Since
dysarthric speech will be more variable in the lower intelligibil-
ity group, the presence of SI-01 and SI-02 does not come in as
a surprise as they will be inherently capable of modelling some
of the common disfluencies. Although, the presence of SD sys-
tem in the low intelligibility sub-group might suggest some cor-
pus bias towards a particular speaker. It would appear that the
choice of a baseline model for a particular target speaker may
be determined by the amount of training data available.

Despite the fact that several alternatives appear to be equiv-
alent for different groups of speakers, it is noticeable that SAT-
based systems are among the best performing for the very low
to mild groups of speakers. This may be due to the implicit ca-
pability of SAT to remove the speaker induced variations during
training time. This speaker normalising might be having a nul-
lifying effect on some complex variabilities present across all
the speakers.

Among systems trained with typical speech, SI-03 is sig-
nificantly a better base model for adaptation than SI-00. This is
despite being trained with a smaller dataset. This may suggest
that large quantities of typical speech data might not be neces-
sary for the base models adapted to recognise dysarthric speech.

Lastly, as shown in Table 4, it is not surprising to observe
that SI-03 was the best performing system for speakers with a
high intelligibility. Perceptually, high intelligibility dysarthric
speech is more akin to typical speech. Table 3 clearly shows the
inclination of typical speech baseline systems (SI-00, SI-03) to
model high intelligibility sub-group of speakers. In addition to
acoustic similarities, as mentioned earlier, SI-03 system also has
an additional benefit of homogeneous vocabulary and recording
conditions.

5. Conclusions and future work
The current paper investigated the effectiveness of SAT-
adapted, SD and SI-adapted systems to model dysarthric
speech. We found that the hybrid MLLR-MAP based technique
outperformed other adaptation procedures. All the MLLR-
MAP based SAT and SI systems produced an absolute gain over

similar results reported in earlier studies [21, 28] for this corpus.
SAT-adapted systems had the highest overall average word ac-
curacy for all dysarthric speakers. Although, systems trained
from typical speech data with homogeneous recording condi-
tions and vocabularies as the test dysarthric conditions were not
significantly different to SAT-adapted systems.

It is difficult to assert at this time about the best strategy
of SI or SAT based systems for robust adaptation and recog-
nition of a target dysarthric speaker. SAT-adapted systems can
implicitly model inter-speaker variabilities and proved to be sig-
nificantly better at recognising speech from speakers with lower
intelligibility. in contrast, typical speech systems were more in-
clined to model high intelligibility sub-group of speakers. The
results also showed that that adaptation might be a better than
corresponding SD systems to model dysarthric speech.

Despite the results reported here, there is still no consen-
sus on the best approach to model dysarthric speech with vary-
ing severity, aetiology or type. Future work should investigate
the SAT-based modelling approach, especially approaches for
customising baseline systems prior to adaptation to a specific
speaker.
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Abstract
Pronunciation variation is a major problem in disordered speech
recognition. This paper focus on handling the pronunciation
variations in dysarthric speech by forming speaker-specific lex-
icons. A novel approach is proposed for identifying mispronun-
ciations made by each dysarthric speaker, using state-specific
vector (SSV) of phone-cluster adaptive training (Phone-CAT)
acoustic model. SSV is low-dimensional vector estimated for
each tied-state where each element in a vector denotes the
weight of a particular monophone. The SSV indicates the pro-
nounced phone using its dominant weight. This property of
SSV is exploited in adapting the pronunciation of a particular
dysarthric speaker using speaker-specific lexicons. Experimen-
tal validation on Nemours database showed an average relative
improvement of 9% across all the speakers compared to the sys-
tem built with canonical lexicon.
Index Terms: Dysarthric speech recognition, phone-CAT, lex-
ical modeling, pronunciations, phone confusion matrix

1. Introduction
Clinical applications of speech technology play an important
role in aiding communication for people with motor speech dis-
orders. One such motor speech disorder is dysarthria, acquired
secondary to stroke, traumatic brain injury, cerebral palsy etc.
This affects more than one subsystem of speech production,
leading to unintelligible speech. Some of the common char-
acteristics of dysarthria include slurred speech, swallowing dif-
ficulty, slow speaking rate with increased effort to speak and
muscle fatigue while speaking [1, 2]. All these effects affect
the speech intelligibility but also the social interaction abil-
ity of people with speech disorders. Clinical applications of
speech technology provide way to improve their communica-
tion in terms of the alternative and augmentative communica-
tion (AAC) devices. Automatic speech recognition (ASR) sys-
tems play a major role as an AAC device for aiding communi-
cation in terms of command/control in their daily lives. Only
handful of databases are available for dysarthric speech, due to
the fatigue and discomfort faced by the dysarthric speaker in
providing data for longer time. With such constraints, acous-
tic models are usually built-in speaker adaptation framework
[3, 4, 5].

The impairment in phonatory subsystem of a person af-
fected with dysarthria leads to pronunciation errors. The slow
rate of speech leads to a single syllable word being mis-
recognized as two syllable words. Frequent occurrences of
non-speech sounds like hesitations false starts occur as part
of dysarthric speech. These hesitations also lead to mis-

recognition of words as explained in [6, 4]. Imprecise consonant
production is another characteristic of dysarthric speech. Since
consonant production involves complex articulations compared
to vowels, the errors are more frequent [7]. Muscle fatigue and
lack of breath support increase the pronunciation errors of a
dysarthric speaker [8].

All these effects increase the rate of insertions, substitu-
tions, deletions and distortions in the dysarthric ASR systems.
Thus the issue of pronunciation errors makes the design of
dysarthric ASR system more challenging. The focus of this pa-
per lies in handling these pronunciation errors especially substi-
tutions by improving the lexical models. The lexicon contains
the multiple pronunciations for each word expanded in terms of
phones. The alternate pronunciations of a word is either formed
manually [9] or obtained from the list of phone confusion pairs
[10, 11]. This paper introduces a recently developed phone-
cluster adaptive training (Phone-CAT) [12] acoustic modeling
technique. Phone-CAT method build robust acoustic models
using lesser number of parameters and limited amount of data.
Thus the method can be used for limited data available domains
especially in the case of dysarthric speech recognition. The
main contributions of this paper are as follows:

• A novel approach to form speaker-specific phone con-
fusion matrix using the low-dimensional SSV of Phone-
CAT

• Using the speaker-specific phone confusion matrix to
identify the confusion pairs (substitution phones) to form
alternate pronunciations in the speaker-specific lexicon

Our proposed approach helps in forming phone confusion ma-
trix directly from the Phone-CAT acoustic model, compared to
the existing methods [10, 11] which align the decoded transcrip-
tion with canonical transcription to form the phone confusion
matrix. Thus we circumvent the usage of expensive decoding
process. This preliminary study using Nemours database shows
a relative performance improvement of 9% using our proposed
approach compared to baseline model built using canonical lex-
icon.

2. Related work
Multiple pronunciations of a word in the lexicon improves the
recognition performance. The lexical models are improved
either implicitly or explicitly handling the pronunciation er-
rors [13]. In order to improve the lexical models, the phones
mispronounced by each dysarthric speaker need to be identi-
fied. Earlier work handled multiple pronunciations using ex-
pert knowledge by adapting pronunciations manually [9]. Per-
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sonalized speaker articulation patterns were obtained from the
speaker-adapted models along with the confusion matrix. These
speaker-adapted models were obtained using universal disor-
dered matrix and the posterior probability from the ASR system
in an unsupervised fashion [13].

Another approach for identifying the mispronounced
phones is by aligning the decoded text with the true transcrip-
tion. A phone confusion matrix is formed using the decoded
transcription and canonical transcription. This phone confusion
matrix is used to identify the mispronunciations [10]. The sub-
stitution, insertion and deletion errors, were modeled as discrete
hidden Markov model (HMM) called metamodels [11]. An-
other variant of this system is to train the extended metamod-
els from an integrated confusion matrix using genetic algorithm
[14].

The concept of weighted finite state transducer (WFST) im-
proves the performance of speech recognition systems. Com-
posing confusion matrix along with the lexicon and language
models in the WFST framework provides complementary infor-
mation to the system. This concept was used in speech recog-
nition [15] and keyword searching [16]. In dysarthric speech
recognition framework, different methods were used to form
confusion matrices to be used with WFST. One such method
is to use KL distance measure between two context-dependent
triphones to form confusion matrix [17, 18]. Deep neural net-
works (DNN) can also be used to improve pronunciation mod-
els. The posterior probabilities from pre-trained DNN were
used to identify mispronunciations. They were further ana-
lyzed to generate pronunciations to form speaker-specific lex-
icons [19]. All the above methods, uses confusion matrix ob-
tained by aligning the decoded transcriptions with the canonical
transcriptions to improve the lexicons.
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Figure 1: Phone-CAT architecture

In this paper, a novel approach is proposed to form the
confusion matrix using the low-dimensional vector from the
Phone-CAT acoustic model. Each tied-state in Phone-CAT
model is modeled using SSV. The dominant weight of the SSV
represents the pronounced phone. The mispronounced phone
of each dysarthric speaker obtained using SSV is compared
with the canonical phone to form the phone confusion matrix.
This matrix is used to improve the lexical models by provid-
ing alternate pronunciations of words. Since each speaker has
a separate pronunciation pattern, speaker-specific lexicons are

formed. Acoustic models rebuilt using these lexicon, improve
the performance of the system.

3. Phone-Cluster Adaptive Training
Acoustic Models

The acoustic models are usually built using hidden Markov
model–Gaussian mixture model (HMM–GMM) framework.
The acoustic variations of speech due to age, gender, environ-
mental changes and pronunciation variations are being mod-
eled using GMM. The sequence information involving co-
articulation is modeled as HMM. The triphone model repre-
sents a phone along with its left and right contexts capturing
the co-articulation effects. For example, consider the triphone
/ax/− /b/+ /k/ representing the model for the center phone
/b/, capturing the effect of its left context /ax/ and right con-
text /k/. Several triphones with similar acoustic characteristics
and same center phone /b/ are clustered to form a single tied-
state. The GMM parameters are then estimated independently
to model each tied-state. This estimation requires huge num-
ber of parameters and sufficient amount of data. This issue is
handled using the recently proposed phone-CAT acoustic model
by robustly modeling the available data with lesser number of
parameters.

Phone-CAT is a HMM-GMM system in which the GMM
parameters are represented in a compact form. In other words,
the GMM for each tied-state is formed by the linear combina-
tion of all the monophone GMMs in that language. For ex-
ample, the tied-state /ax/ − /b/ + /k/ containing triphones
/ax/−/b/+/k/,/ch/−/b/+/k/,/ae/−/b/+/k/ is formed
from the linear combination of all the monophone GMMs like
/sil/, /ax/, .../k/, ..., /zh/. The weights of each monophone
GMMs are represented by v(1)j , v

(2)
j . . . v

(P )
j , where P is the

number of monophones. The vector containing the mono-
phone weights is called SSV and is represented as vj =[
vj

(1) vj
(2) . . vj

(P )
]T

with P dimensions. The
monophone GMMs are in turn formed by adapting the universal
background model (UBM) using maximum likelihood linear re-
gression [20] transformation. The UBM is a GMM built using
the available speech data from all the speakers. This UBM is
adapted using the transformation matrices W1,W2, ....,WP

for each of the P monophones, forming P monophone GMMs.
The Phone-CAT architecture is shown in figure 1. The GMM
parameters of the tied-state model are: means µji, covariances
Σi and Gaussian priors wji.

The mean parameter for each monophone models µ(p)
i with

Gaussian mixture i is combined to form the mean parameter of
the tied-state j using the following equations:

µ
(p)
i = WP ξi = WP [µi 1]T

µji =
P∑

p=1

µ
(p)
i v

(p)
j

Here ξi is the extended mean vector [µi 1]T with µi as
the canonical mean of the Gaussian component i of the UBM.
Since the mean µji and the Gaussian prior wji are represented
in terms of the vector SSV vj as in [12], the parameters are rep-
resented in low dimensions. Also the covariances Σi are esti-
mated in a shared fashion across the tied-states. This reduction
in the number of parameters helps in reducing the amount of
data needed for estimation. More details of the model training
and estimation of each parameters are explained in [12].
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4. Importance of state-specific vectors
The SSV is a low-dimensional vector of dimension P represent-
ing each tied-state j uniquely. It captures the context informa-
tion since it represent the weights with which each monophone
GMM linearly combine to form a single tied-state. We know
that different triphones with the same acoustical characteristics
are tied together in order to form tied-state. The SSV plot of the
second state of the triphone /ch/ − /ix/ + /ng/ is shown in
figure 2.

It is clearly shown that, the dominant weight corresponds to
the center phone /ix/. Apart from the center phone, the left and
right context phones also get some considerable weight. The
negative value represents the direction of the vector, but we are
interested only in the absolute value of the elements of the SSV.

Figure 2: SSV plot of the second state of the triphone /ch/− /ix/+

/ng/

Figure 3: This two-dimensional scatter plot is obtained using the
t-SNE toolkit by plotting the SSV of all the tied-states in Nemours
database

A statistics of the dominant weight property of SSV was
performed for unimpaired (control) speech data from Nemours
speech database. The aim of the task was to check the statistics
of the SSV picking the center phone of the tied-state correctly.
It was found that out of 204 tied-states, the dominant component
of SSV correctly picks the center phone 76% of the times and
the top three weight values in the SSV picks up center phone
88% of the time. A similar analysis was also performed for the
standard Switchboard database (≈300 hours of data), with 2400
tied-states. It was found that 70% of the time, the center phone
was correctly picked up by the dominant component of SSV.

Also ≈92% of the time, the left/center/right phones are picked
up as the dominant component of SSV [21]. This shows that the
SSV uniquely represents the enunciated phone (center phone
of the tied-state) through its dominant weight most likely. The
scatter plot of the P dimensional SSV reduced to two dimen-
sion is shown in the figure 3. The SSV related to each cluster
represents a particular monophone (each in different color, a to-
tal of 39 phones were present in the Nemours database). These
clusters are located at articulatory position of the vowel triangle
in a well discriminated manner. This shows that SSV has the
capacity to capture the phonetic information along with context
information. Thus the analysis of SSV in this section leads us
to the following conclusions:

• The dominant weight in SSV most likely represents the
enunciated phone (center phone) of the tied-state

• Provides discriminable phonetic class information, since
each vector is modeled for a particular tied-state

• SSV is hypothesized to capture the pronunciations of
each dysarthric speaker when speaker-specific Phone-
CAT models are built

This leads us to proceed to the proposed method of building
Phone-CAT model specific to each speaker, thereby capturing
the pronunciations of each dysarthric speaker.

Table 1: Extract dysarthric enunciated phone from SSV
Tied-states
(Canl)

Phones
sil aa . . . ey . . . zh Dysp

∗ − /sil/ + ∗ 1.75 0.21 . . . 0.38 . . . 0.12 /sil/

∗ − /aa/ + ∗ 0.03 0.09 . . . 0.01 . . . 0.08 /aa/

...

...
...

...
...

...
...

...

∗ − /jh/ + ∗ 0.19 0.11 . . . 0.36 . . . 0.13 /ey/

ch−/ix/+ng 0.48 0.50 . . . 0.01 . . . 0.22 /aa/

n − /ix/ + k 0.10 0.90 . . . 0.25 . . . 0.76 /aa/

...

...
...

...
...

...
...

...

∗ − /zh/ + ∗ 2.01 0.02 . . . 0.10 . . . 3.06 /zh/

Canl - canonical pronunciation; Dysp - dysarthric pronunciations
The numbers inside circle shows the absolute maximum value in each
SSV corresponding to dysarthric pronounced phone

5. Proposed Method for Improving Lexical
Models

5.1. Phone-CAT model for each dysarthric speaker

The major step of our proposed method is to build speaker-
specific Phone-CAT model. Initially, using the unimpaired
speaker’s data in the dysarthric database, a Phone-CAT model
is built. The speaker-specific Phone-CAT model is obtained
from the unimpaired speaker model by re-estimating the SSV
and providing dysarthric speaker’s data in maximum likelihood
framework. The SSVs are initialized as (1/number of mono-
phones), to allow the system to learn the weights of the mono-
phone GMM using the available dysarthric speaker’s data. At
the end of this training process, Phone-CAT speaker-specific
models are built. The architecture of speaker-specific Phone-
CAT model is shown in figure 1. Finally, we obtain a set of
tied-states specific to each dysarthric speaker from the speaker-
specific Phone-CAT model.
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Figure 4: Spectrogram of the word “Badge” spoken by unimpaired
speaker (on top) and dysarthric (BV) speaker (bottom). The spectro-
grams are plotted for a part of the waveform containing “The Badge is
lifting the Beige”.
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Figure 5: SSV for the second state of the triphone /ae/−/jh/+/sil/

for the unimpaired speaker (top) and dysarthric speaker BV (bottom).

5.2. Identification of mispronunciations made by the
dysarthric speaker using SSV

Having built the speaker-specific Phone-CAT models, the next
step is to extract the unique SSV associated with the set of
tied-states. The P -dimensional SSV is extracted from each
dysarthric speaker’s Phone-CAT model. Using the dominant
weight property of SSV discussed in section 4, the absolute
maximum weight value of the SSV is obtained for each tied-
state from each dysarthric speaker’s Phone-CAT model. Since
the pronounced phone is captured by the dominant weight of the
SSV, the phone corresponding to the absolute maximum weight
is hypothesized as the pronunciations made by the dysarthric

speaker as shown in table 1. There may be cases where the
canonical pronunciation (center phone of the tied-state) does
not represent the observed pronunciation (phone associated
with the absolute maximum weight of the SSV). In that case,
it means that the phone model built for the speaker represents
the observed pronounced phone rather than the canonical pro-
nounced phone.

5.2.1. Analysis of the mispronunciations picked up by the SSV

Figure 5 shows the SSV plot for the second state of the triphone
/ae/ − /jh/ + /sil/ of unimpaired and dysarthric speaker
(BV). As discussed in Section 4, the dominant weight indicates
the pronounced phone /jh/ for the triphone of the unimpaired
speaker. But for dysarthric speaker, instead of /jh/, the phone
/ey/ gets the dominant weight. This indicates that the phone
/jh/ is mispronounced as /ey/. In order to analyze our hy-
pothesis of the dysarthric speaker pronunciations captured by
the dominant weight of the SSV, perceptual test was conducted.
The audio samples of the BV speaker in the context for the
word “Badge − b ae jh” (canonical pronunciation) was heard
as “Badge− b ae ey” (dysarthric speaker’s observed pronunci-
ation). The audio sample was verified by 10 naive listeners and
their mean opinion score was taken.

To further support this hypothesis, the spectrogram of
the word “Badge” pronounced by unimpaired and dysarthric
speaker is shown in figure 4. The fricative /jh/ is clearly
visible in the spectrogram of unimpaired speaker, while for
dysarthric speaker the diphthong /ey/ occurs instead of ac-
tual phone /jh/. Hence the second state of the triphone model
/ae/−/jh/+/sil/ is more acoustically closer and represents
the second state of the triphone model /ae/−/ey/+/sil/, cap-
tured directly by the SSV using its dominant weight. Thus we
confirm our hypothesis that the phone captured by the SSV us-
ing its dominant weight corresponds to the pronunciations made
by the dysarthric speaker.

5.3. Formation of phone confusion matrix using SSV

Using the SSV corresponding to a tied-state for a particu-
lar dysarthric speaker’s model, a phone confusion matrix is
formed. The set of canonical pronunciations (center phone of
the tied-state) and the set of observed dysarthric speaker’s pro-
nunciations (absolute maximum weight of the SSV for each
tied-state) are used to form the phone confusion matrix. From
each dysarthric speaker’s Phone-CAT model, speaker-specific
phone confusion matrix is formed. Each row of the matrix
corresponds to canonical pronunciations and each column rep-
resents the observed dysarthric speaker’s pronunciations. The
sum of all elements of the matrix corresponds to the total num-
ber of tied-states.

The diagonal elements represent the number of correct pro-
nunciations made by the speaker, where the center phone of the
tied-state is correctly picked up by the SSV as its dominant
weight. The off-diagonal elements represents the mispronun-
ciations made by that speaker, where the center phone does not
correspond to the dominant weight of the SSV. Value in each el-
ement of the matrix say aij, represents the frequency of occur-
rence of the canonical phone i being mispronounced as phone
j. This phone confusion matrix also correlates with the intelli-
gibility scores of the different severity levels of the speakers.
Since the diagonal elements represent the correct pronuncia-
tions, the number of elements across the diagonal varies with re-
spect to the severity level of dysarthria. As the degree of impair-
ment increases, the diagonal pattern disintegrates. Thus phone
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confusion matrix helps in the objective assessment of dysarthric
speech [22]. Apart from assessment, phone confusion matrix is
used for improving the lexical models which is the main focus
of this paper.

Figure 6: Schematic diagram of the proposed method to build an
adapted lexicon from the phone confusion pairs using context depen-
dent mapping. Here the canonical phone /f/ is confused with /ey/ when
/f/ occurs in between the context /er/ and /ix/. Hence the word “surfing
— s er f ix ng” gets the alternate pronunciation as “surfing — s er ey ix
ng” while the words fat, fin and fine are neglected.

Algorithm 1 Procedure to form phone confusion matrix and mod-
ified lexicon from SSV

1. For each dysarthric speaker

(a) Build the Phone-CAT acoustic model and extract the P-
dimensional SSV from the set of tied-states

(b) Absolute maximum weight of each SSV is picked up as the
dysarthric speaker’s pronounced phones as shown in table 1

(c) Using the set of canonical pronunciations (center phones of the
tied-states) and the observed dysarthric pronunciations (abso-
lute maximum values of the SSV), a phone confusion matrix is
formed

(d) The list of substitution phones are obtained from the phone con-
fusion matrix using a threshold

(e) Obtained confusion pairs are mapped only for those canonical
phones when their context matches with the corresponding tied-
state

(f) The modified lexicon along with the alternate pronunciations is
then used to rebuild the acoustic models

5.4. Improved lexical models using SSV

The phone confusion matrix captures the mispronunciations
made by each dysarthric speaker. The list of substitution phones
are obtained from the set of mispronunciations in the matrix us-
ing a threshold rule. The substitution phones are further used
to form alternate pronunciations forming speaker-specific lexi-
cons. For example, if the phone /f/ is mispronounced as /ey/
in the confusion matrix with high recurrence, then it is taken as
substitution phone. For the word “five” the alternate pronun-
ciation in the lexicon is given as:

[Five]− > /f ay v/ (canonical pronunciation)
[Five]− > /ey ay v/ (alternate pronunciation)

It was shown that adding context-dependent pronunciation vari-
ation models helps in improving the performance of the sys-
tem [18]. The triphones corresponding to the phone confu-
sion pairs, are used to substitute the phones in the lexicon,
for the words with the corresponding triphone context informa-
tion as in figure 6. In the figure, /f/ is substituted with /ey/
only for the word “surfing” which contains the triphone context
/er/− /f/+ /ix/. For other words with phone /f/, no alter-
nate pronunciations were given. This helps in reducing the size
of the lexicon.

The number of confusion pair to be substituted from the
confusion matrix is chosen based on the threshold rule. This
helps in reducing the number of confusion pairs avoiding the
selection of alternative confusion pair for each canonical phone.
This modified lexicon is composed with grammar in WFST
framework. In this approach, we mainly focus on modeling the
substitution errors using the alternate pronunciations. Further,
the modified lexicon is used to rebuild the acoustic model in the
HMM-GMM framework.

6. Experimental setup
The experiments were performed in Kaldi [23] open-source
speech recognition toolkit. Nemours database [24] was used for
our experiments. It contains continuous speech utterances with
16 KHz sampling rate. It has 11 speakers, out of which only
10 speakers were used for our experiments [24]. Each speaker
recorded 74 nonsensical sentences of the form “The N1 is Ving
the N2” where the N1 and N2 are monosyllabic noun and V is
the disyllabic verb. The lexicon is expanded in terms of phones
with vocabulary size of 113 words and 39 phones in ARPAbet
(advanced research project agency) symbol set is used for ex-
perimentation. One unimpaired speaker’s data covering all the
sentences spoken by each dysarthric speaker was recorded as
control subject. The standard Frenchay dysarthric assessment
(FDA) scores were also provided for each dysarthric speaker.
The train data contains 490 utterances and test data contains
250 utterances, selected using 3-fold cross validation procedure.
Trigram language model was used and the performance of the
continuous density hidden Markov model (CDHMM) is mea-
sured using word error rate (WER). Baseline CDHMM is built
with 200 tied-states and 10 Gaussian mixture components. The
baseline system uses the canonical lexicon for both training and
testing.

Rate Mdl FB MH BB LL JF RL RK BK BV SC

Ins
Base 0 0 1 0 2 6 0 8 0 7
Expt

1
0 0 1 0 2 6 0 7 0 7

Expt
2

0 0 0 0 0 5 0 6 0 3

Del
Base 0 0 0 0 0 0 4 18 0 0
Expt

1
0 0 0 0 0 0 2 17 0 0

Expt
2

0 0 0 0 0 0 0 17 0 0

Table 2: Rate of insertions (Ins) and deletions (Del) for different models (mdl):
Baseline (Base), Expt 1 and Expt 2

7. Results and Discussion
7.1. Results with modified lexicons : Proposed method

Two different experiments were performed to compare with
the baseline CDHMM (Base) system. First is to train acous-
tic model using canonical lexicon and decoding the text using
the modified lexicon (Expt 1). The second experiment is to use
the modified lexicon for both training and testing process (Expt
2). Speaker-wise results for both the experiments are shown
in the table 4. Comparing with baseline, all the speakers obtain
improved performance for the system rebuilt using the modified
lexicons (Expt 2). On an average, the relative improvement is
13.1%. Comparing with baseline system, an relative improve-
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ment of 5.4% is obtained across all the speakers for the system
only tested using modified lexicon (Expt 1). Severe category
speakers shows considerable improvement compared to mod-
erate and mild category speakers. Substitutions form a major
portion of the error compared to insertions and deletions in our
model. Hence we focused on reducing the number of substitu-
tion errors in this paper. Figure 7 shows the reduction in the rate
of substitutions for the proposed model compared to baseline
system. The rate of insertions and deletions were also reduced
which is shown in table 2.
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Figure 7: Substitution rate for different models

Table 3: Comparison of proposed method with existing method
Lexicon Usage Method/

Model
type

MH
(Mild)

RK
(Moder-

ate)

SC
(Severe)

Training
canonical +
Testing
canonical

Baseline
18.7 31.3 29.3

Training
canonical +
Testing modified

(Expt 1)

Existing
method

17.3 29.3 27.3

Proposed
method

16.7 29.3 27.3

Training
modified +
Testing modified

(Expt 2)

Existing
method

16.0 30.0 26.0

Proposed
method

15.3 29.3 23.3

% R.I 4.2 2.2 10.3
Here % R.I denotes relative improvement with respect to existing
method

7.2. Comparison with Existing Method

Some of the existing methods in literature involve forming
phone confusion matrix aligning the recognized phoneme se-
quence with reference transcriptions [10]. Then using rule-
based method, speaker dependent multiple pronunciation lexi-
cons are formed. In [11], the recognized transcription is aligned
with the reference transcription to form the phone confusion
matrix. The confusion pairs are then used to provide multiple
pronunciations in the lexicon. In order to compare our proposed
method with the existing method, the confusion pairs from the
phone confusion matrix formed by aligning the recognized tran-
scription with the reference transcription on baseline model are
used to form the lexicon.

Table 4: Results of lexical modeling for Nemours database in terms of
% word error rate (% WER)

Severity Speakers Baseline
CDHMM

Testing
using new

lexicon
(Expt 1)

Train +
Test using

new
lexicon
(Expt 2)

Mild

FB 12.0 11.3 10.0
MH 18.6 17.3 15.3
BB 16.6 16.0 15.3
LL 28.6 26.6 24.6

Moderate
JF 24.0 22.0 22.0
RL 29.3 28.0 24.0
RK 31.3 29.3 29.3

Severe
BK 54.0 52.0 50.0
BV 29.3 27.3 23.3
SC 40.6 39.3 33.3

Average 28.7 26.9 24.7

Similar to section 7.1, two different experiments (Expt 1
and Expt 2) were performed on baseline model using the modi-
fied lexicon formed using this phone confusion matrix for three
different severity category. As shown in table 3, proposed
method using phone confusion matrix formed from SSV shows
an relative improvement of 10.3% compared to existing method
using phone confusion matrix formed using decoded transcrip-
tion. In the existing method, a single frame is involved in esti-
mating the likelihood with respect to the corresponding acoustic
model. While in case of our proposed approach, a set of frames
corresponding to a tied-state label is involved in the estimation
of SSV. Thus the estimated SSV are more reliable in identifying
the confusion pairs which helps in improving the recognition
performance over existing method.

8. Conclusions
This paper focuses on improving the performance of dysarthric
speech recognition systems by handling pronunciation errors.
A novel approach of forming phone confusion matrix for each
dysarthric speaker using SSV from Phone-CAT model is dis-
cussed. Phone-CAT model handles the data efficiently by using
less number of parameter for estimation. The SSV captures the
context and phonetic information. It represent the enunciated
phone using the dominant weight. This property is used to iden-
tify the mispronunciations made by each dysarthric speaker, by
building speaker-specific Phone-CAT model. Using the phone
confusion matrix, alternate pronunciations are formed in per-
sonalized speaker lexicons. These modified lexicons improves
the performance of the dysarthric ASR system. This prelim-
inary study shows that the proposed phone confusion matrix
using SSV captures the speaker-specific pronunciation patterns
and avoid the usage of decoded transcription. This approach has
to be explored in detail to analyze, model the error pattern and
handle the insertion and deletion errors which forms our future
work.
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Abstract
Articulatory data have gained increasing interest in speech
recognition with or without acoustic data. Electromagnetic ar-
ticulograph (EMA) is one of the affordable, currently used tech-
niques for tracking the movement of flesh points on articula-
tors (e.g., tongue) during speech. Determining an optimal set
of sensors is important for optimizing the clinical applications
of EMA data, due to the inconvenience of attaching sensors on
tongue and other intraoral articulators, particularly for patients
with neurological diseases. A recent study found an optimal set
(tongue tip and body back, upper and lower lips) on tongue and
lips for isolated phoneme, word, or short phrase classification
from articulatory movement data. This four-sensor set, how-
ever, has not been verified in continuous silent speech recogni-
tion. In this paper, we investigated the use of data from sen-
sor combinations in continuous speech recognition to verify
the finding using a publicly available data set MOCHA-TIMIT.
The long-standing speech recognition approach Gaussian mix-
ture model (GMM)-hidden Markov model (HMM) and a re-
cently available approach deep neural network (DNN)-HMM
were used as the recognizers. Experimental results confirmed
that the four-sensor set is optimal out of the full set of sensors
on tongue, lips, and jaw. Adding upper incisor and/or velum
data further improved the recognition performance slightly.
Index Terms: silent speech recognition, deep neural network,
hidden Markov model, electromagnetic articulograph, articula-
tion, dysarthria

1. Introduction
With the availability of affordable devices for tongue move-
ment data collection, articulatory data have obtained interest
not only in speech science [1, 2, 3, 4] but also in speech tech-
nology (i.e., automatic speech recognition) [5, 6]. First, articu-
latory data have been successfully used to improve the speech
recognition accuracy [5]. Articulatory data are particularly use-
ful when speech signals are noisy or low quality [7] for rec-
ognizing dysarthric speech [8, 9]. Second, when acoustic data
is not available, a silent speech interface (SSI) based on ar-
ticulatory data has potential clinical applications [10, 11]. An
SSI recognizes speech from articulatory data only (without us-
ing audio data) [12, 13] and then drives a text-to-speech syn-
thesizer for sound playback [14, 15]. For example, SSIs can
be used to assist the oral communication for patients with se-
vere voice disorders or without the ability to produce speech

sounds (e.g., due to laryngectomy, a surgical removal of larynx
due to treatment of laryngeal cancer) [16]. There are currently
limited options to assist speech communication for those in-
dividuals (e.g., esophageal speech, tracheo-esophageal speech
or tracheo-esophageal puncture (TEP) speech, and electrolar-
ynx). These approaches, however, produce an abnormal sound-
ing voice [17, 18], which impacts the quality of life of laryngec-
tomees. Current text-to-speech technologies have been able to
produce speech with natural sounding voice for SSIs [19]. One
of the current challenges of SSI development is silent speech
recognition algorithms (without using audio data) [10, 20] or
mapping articulatory information to speech [21, 22, 23].

Electromagnetic motion tracking is one of the affordable,
currently used technologies for tracking tongue movement dur-
ing speech [19, 24, 25]. There are currently two commercially
available devices, EMA AG series (by Carstens) and Wave sys-
tem (by NDI, Inc.) [26]. Tongue tracking using electromag-
netic devices is accomplished through attaching small sensors
on the surface of tongue and other articulators. In prior work,
the number of tongue sensors and their locations have been jus-
tified based on long-standing assumptions about tongue move-
ment patterns in classic phonetics [27], or the specific purpose
of the study. Other techniques that have been used to record
non-audio articulatory information include ultrasound [28, 29],
and surface electromyography (EMG) [30, 31].

Determining an optimal set of tongue sensors for speech
production is significant for both science and technology. Sci-
entifically, determining an optimal set of sensors can improve
the understanding of the coordination of articulators for speech
production [32]. Technologically, it can be helpful for clinical
applications including (1) silent speech interfaces, (2) speech
recognition with articulatory information [5, 33], and (3) speech
training using real-time visual feedback of tongue movements
[34, 35]. In literature, three or four EMA sensors on the tongue
have been commonly used (e.g., [1, 3, 4, 5, 36, 37]). The use of
more sensors than necessary comes at a cost for both researchers
and subjects; the procedure for attaching sensors to the tongue
is time intensive and can cause discomfort and therefore may
limit the scope of EMA for practical use, particularly for per-
sons with neurological diseases (e.g., Parkinson’s disease [38]
and amyotrophic lateral sclerosis [39]).

Here, optimal set means a sensor set that contains the least
number of sensors that performs no worse than other sets with
more sensors. There may be more than one optimal set with the
same number of sensors.
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Until recently, a study found two tongue sensors (Tongue
Tip and Tongue Body Back) and two lip sensors (Upper Lip
and Lower Lip) are optimal for isolated phoneme (vowels and
consonants), word, and short phrase classification [32, 40]. The
classification results based on data using the optimal set were
not significantly different from these based on data from the
full set with four tongue sensors (Tongue Tip, Tongue Blade,
Tongue Body Front, and Tongue Body Back) plus the two lip
sensors [32]. However, this set has not been verified in contin-
uous silent speech recognition or speech recognition from both
acoustic and articulatory data. If the two-tongue-sensor set can
be confirmed for continuous speech recognition, it would be
beneficial for future collection of a larger articulatory data set.
Other studies compared the whole tongue and lips (e.g., [41]
using ultrasound and optical data), but not on flesh points.

In this paper, we investigated the optimal set of tongue sen-
sors for speaker-dependent continuous silent speech recogni-
tion (using articulatory data only) and speech recognition (us-
ing combined acoustic and articulatory data). The goals were
(1) to confirm if more than two tongue sensors are unnecessary
for continuous silent speech recognition and speech recogni-
tion using both acoustic and articulatory data when only tongue
and lips are used, and (2) to provide a reference for choosing
the number of sensors and their locations on the tongue, lips,
jaw and other articulators for future studies. However, due to
the space limitation, this paper did not verify if the hypothe-
sized optimal four-sensor set is unique. The articulatory and
acoustic data in the MOCHA-TIMIT data set [42] were used
in this experiment. The MOCHA-TIMIT data set is appropri-
ate for this study because it contains data collected from sen-
sors attached on multiple articulators, including three sensors
on the tongue, two on the lips, two on the incisors, and one on
the velum. In addition, both MOCHA-TIMIT and the data set
in [32] have tongue tip and body back (or dorsum). Thus the
first goal of this paper became to verify if the tongue blade sen-
sor is unnecessary in addition to the hypothesized optimal set
[32, 40]. The traditional speech recognition approach Gaussian
mixture model (GMM)-hidden Markov model (HMM) [5] and a
recently available and promising approach deep neural network
(DNN)-HMM [43, 44] were used.

2. Method
2.1. Data set

MOCHA (Multi-CHannel Articulatory)-TIMIT data set con-
sists of simultaneous recordings of speech, articulatory move-
ment, and other forms of data collected from 2 British English
speakers (1 male - MSAK0 and 1 female - FSEW0) [42]. There
are 920 sentences (extracted from TIMIT database) in total. In-
dividual phonemes and silences within each sentence have been
labeled.

The articulatory and acoustic data in MOCHA-TIMIT
were collected using an Electromagnetic Articulograph (EMA,
Carstens Medizinelektronik GmbH, Germany) by attaching
sensors to upper lip (UL), lower lip (LL), upper incisor (UI),
lower incisor (LI), tongue tip (TT), tongue blade (TB), tongue
dorsum (TD), and velum (V) with 500 Hz sampling rate. Each
sensor had x (front-back) and y (vertical) trajectories. There-
fore, the acoustic data and the 16-dimensional x and y motion
data obtained from UI, LI, V, UL, LL, TT, TB, and TD were
used.

TT was 5-10 mm to the tongue apex; TB was 2-3 cm from
TT; TD was 2-3 cm from TB [42]. This roughly matched with

the tongue tip sensor in [32, 40], which was also 5-10 mm to
tongue apex, and the tongue body back in [32, 40], which was
about 40 mm from tongue tip. Thus, as mentioned earlier, the
goal (1) in this paper became to verify if the middle tongue sen-
sor (TB) was unnecessary.

2.2. Recognizers

A long-standing approach GMM-HMM and a promising ap-
proach DNN-HMM were used as the recognizers in this exper-
iment.

2.2.1. Gaussian Mixture Model-Hidden Markov Model

GMM-HMM has been used in speech recognition for decades
[45]. The core idea of GMM is compact representation of distri-
bution using means and variances. GMM is a generative model
and trained to represent as closely as possible the distribution
(e.g., using means and variances) of training data. In many
applications, the number of mixtures for GMMs is adjusted to
avoid overfitting.

2.2.2. Deep Neural Network-Hidden Markov Model

DNN-HMM recently attracted the interests of speech recogni-
tion researchers because it showed a significant performance
improvement compared with GMM-HMM when replacing
GMM to DNN in (acoustic) speech recognition [44, 46]. We
adopted the DNN training approach based on restricted Boltz-
mann machines (RBMs) [47].

The DNN (stacked RBMs) were subsequently fine-tuned
using the backpropagation algorithm. A detailed explanation
and discussion of the DNN can be found in [47, 48].

2.3. Experimental setup

Data from individual sensors or combinations of sensors were
used in speech recognition experiments (from articulatory data
only or from combined acoustic and articulatory data). The
recognition performances obtained from individual sensors or
their combinations were compared to determine (1) if Tongue
Blade was unnecessary in addition to the other two tongue sen-
sors and lips (Tongue Tip, Tongue Dorsum, Upper Lip, and
Lower Lip), and (2) if the performance improved when more
sensor’s data (e.g., upper incisor and velum) were added.

In each experiment, a 5-fold cross validation strategy with
a jackknife procedure was performed to set training and test
sets in the experiment [42, 49]. In each of the five execu-
tions, a group of 92 sentences were selected for test with the
remaining 368 sentences for training. Due to the high de-
gree of variation in the articulation across speakers and there
were only two speakers in MOCHA-TIMIT, speaker-dependent
recognition was conducted. The average training data length
for each cross validation became 21.3 mins (368 sentences) for
the female speaker and 20.6 mins (368 sentences) for the male
speaker. The average test data length along 5 cross validations
was 5.3 mins (92 sentences) for the female speaker and 5.2 mins
(92 sentences) for the male speaker, respectively.

Articulatory features were extracted from the corpus using
EMAtools [50]. The original articulatory features and their
first and second derivatives were concatenated to build vari-
ous dimensional feature vectors for each set of sensors. The
“breath” segments were merged with “silence” for both train-
ing and testing [49]. The input features in DNN were a con-
catenation of articulatory feature vectors (number of sensors ×
2-dimension articulatory movement data + ∆ + ∆∆) with 9
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Table 1: Experimental setup.

Articulatory Feature
Low pass filtering 40 Hz cutoff, 5th order Butterworth
Sampling rate 100 Hz (downsampled from 500 Hz)
Feature vector articulatory movement vector + ∆

+ ∆∆ (e.g., 6 dim. for 1 sensor,
48 dim. for 8 sensors)

Acoustic Feature
Sampling rate 16 kHz
Feature vector MFCC vector (13 dim.) + ∆

+ ∆∆ (39 dim.)
Frame size 25 ms
Common
Frame rate 10 ms
Mean normalization Applied

GMM-HMM topology
Monophone context-independent

137 states (44 phones × 3 states,
5 states for silence), ≈ 14 mixtures
3-state left to right HMM

Training method Maximum likelihood estimation

DNN-HMM topology
Monophone context-independent

input layer dimension varies based
on the set of sensors (e.g.,
54 for 1 sensor, 432 for 8 sensors)
137 output layer dimension
(including 5 outputs for silence)
1,024 nodes for each hidden layer
1 to 6-depth hidden layers

Training method RBM pre-training, back-propagation

Language model bi-gram phoneme language model

frames (4 preceding, current, and 4 succeeding frames). As it
concatenates multiple feature vectors in the time domain, DNN
has time-dependent context information which HMM takes us-
ing multiple states [43, 51]. Mel-frequency cepstral coefficients
(MFCCs) were extracted from the acoustic data and used as the
acoustic features in the recognition experiments.

The GMM-HMM system was trained using maximum
likelihood estimation (MLE) without using segment informa-
tion provided in MOCHA-TIMIT corpus (flat initialization).
The DNN-HMM system was pre-trained using contrastive-
divergence algorithm on RBMs and fine-tuned using back-
propagation algorithm. A bi-gram phoneme language model
was trained using all 44 phonemes provided in label files of the
corpus.

Table 1 lists the details of the experimental setup and major
parameters in GMM-HMM and DNN-HMM. The training and
decoding were performed using the Kaldi speech recognition
toolkit [52].

A phoneme error rate (PER) was used as a performance
measure, which is the ratio of the sum of the number of errors
over the total number of phonemes. The PER is represented by

PER = (S + D + I)/N (1)

where S represents the number of substitution errors, D is the
number of deletion errors, I stands for the number of insertion
errors, and N is the total number of phonemes in the test set.
For DNN, we conducted experiments using 1 to 6 hidden layers
and the best performance was reported. Finally, the PERs from

each test group in the 5-fold cross validation were averaged as
the overall PER.

3. Results and Discussion
Experimental results are shown in Figures 1 to 4 and discussed
below. Figures 1 and 2 show the silent speech recognition per-
formance on individual or combinations of sensors for both
speakers using GMM-HMM or DNN-HMM, respectively. Fig-
ures 3 and 4 give the speech recognition from MFCCs plus indi-
vidual or combinations of sensors’ data using GMM-HMM and
DNN-HMM, respectively.

3.1. General observations

First, the recognition performances obtained from individual
sensor’s data had consistently lower performance (higher PERs)
than from the combinations of sensors (Figures 1 to 4). Al-
though it seems intuitive, to our knowledge, this is the first
time the individual EMA sensor’s performance were examined
in continuous silent speech recognition or speech recognition
from combined acoustic and articulatory data.

Second, when the performances obtained using data from
individual sensors were compared, upper incisor (UI) and
velum (V) had the worst performance; the three individual
tongue sensors had a similar performance and were the best
among all sensors; lip sensors were between the tongue sen-
sors (TT, TB, TD) and UI and velum (V). This finding is highly
consistent with the descriptive knowledge in classic phonetics
that tongue is the primary articulator [27].

3.2. {TT, TD, UL, LL} and other combinations

Silent speech recognition performance substantially degraded
if any of the sensor in previously found optimal four-sensor set
(i.e., TT, TD, UL, and LL, marked bold in Figures 1 and 2) was
not used [32]. The optimal set of sensors using GMM-HMM
and articulatory data yielded a PER of 42.0% and 40.9% for the
female and male speakers, respectively. DNN-HMM with this
optimal set yielded a PER of 38.2% and 36.5% for the female
and male speakers, respectively.

As TB, UI, LI (jaw), or all of the three sensors’ data were
added on top of the four-sensor set, there was no improve-
ment using GMM-HMM, but a slight improvement using DNN-
HMM. When using all sensors’ (including V) data together,
a substantial improvement was obtained using either GMM-
HMM or DNN-HMM.

These results suggest the four-sensor set ({TT, TD, UL,
LL}) was an optimal set for silent speech recognition out of
the full set of sensors on the tongue, lips, and jaw. However,
adding extra data source (e.g., UI and V) could still improve the
performance.

Speech recognition from combined acoustic and articula-
tory data (Figures 3 and 4) also substantially degraded if any of
the sensor in {TT, TD, UL, and LL} was missing, for recog-
nizers. However, GMM-HMM and DNN-HMM results showed
different patterns when adding more sensors data to {TT, TD,
UL, LL}. GMM-HMM showed no improvement to the optimal
set (23.0% for female and 22.6% for male) when adding more
sensor’s data (22.7% for female and 22.8% for male); while
DNN-HMM (19.7% for female and 19.5% for male) showed
significant error reduction compared to the optimal set (20.4%
for female and 20.3% for male). This observation suggests
DNN has more potential than GMM to incorporate more data
sources to further improve the recognition performance.
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Figure 1: Phoneme Error Rates (PER; %) obtained using GMM-HMM and articulatory features.
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Figure 2: Phoneme Error Rates (PER; %) obtained using DNN-HMM and articulatory features.
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Figure 3: Phoneme Error Rates (PER; %) obtained using GMM-HMM and combined articulatory and acoustic features.
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Figure 4: Phoneme Error Rates (PER; %) obtained using DNN-HMM and combined articulatory and acoustic features.

The most important conclusion from the results above may
be, for future studies in which data are collected only from
tongue, lips, or jaw (i.e. not from velum), {TT, TD, UL, LL}
is an optimal set for silent speech recognition or speech recog-
nition from combined acoustic and articulatory data. However,
adding upper incisor and/or velum data can still further improve

the performance slightly.

3.3. {TT, TD, UL, LL} vs {TT, TB, TD, UL, LL}
Table 2 lists the results obtained from {TT, TD, UL, LL} and
{TT, TB, TD, UL, LL} to provide a close-up performance
comparison of the two sets, which further confirms adding TB
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Table 2: Phoneme Error Rates (PER; %) obtained from sensor combination {TT, TD, UL, LL} and {TT, TB, TD, UL, LL}.
Combination of Sensors Performance

Speaker Model Feature TT,TD,UL,LL TT,TB,TD,UL,LL Difference

Female
GMM-HMM EMA 42.04 40.60 +1.44

MFCC + EMA 23.04 23.34 -0.30

DNN-HMM EMA 38.24 35.20 +3.04
MFCC + EMA 20.40 20.42 -0.02

Male
GMM-HMM EMA 40.88 41.48 -0.60

MFCC + EMA 22.56 23.02 -0.46

DNN-HMM EMA 36.46 34.74 +1.72
MFCC + EMA 20.32 20.24 +0.08

Average +0.61

(Tongue Blade) did not significantly improve the speech recog-
nition performance in addition to {TT, TD, UL, LL}. The
right-most column of Table 2 lists the performance difference
between {TT, TD, UL, LL} and {TT, TB, TD, UL, LL} (posi-
tive means a better performance with TB; negative means worse
performance). The average performance difference of the two
sensor sets in all eight configurations (female vs male speaker,
GMM vs DNN, with or without MFCC) was +0.61, which
means adding TB reduced only 0.61% of PER.

3.4. {TT, TD, UL, LL}may not be the only four-sensor op-
timal set

The four-sensor set ({TT, TD, UL, LL}) may be just one of
the possible optimal four-sensor sets, because of the high cou-
pling of adjacent parts [3]. Figures 1 to 4 also show the three
tongue sensors, TT (Tongue Tip), TD (Tongue Dorsum) and
TB (Tongue Blade) have no significant differences in perfor-
mance when used individually, which may suggest they are in-
terchangeable. In other words, any two tongue sensors may
achieve no significant difference in recognition performance
with {TT, TD}. A further analysis using data from all tongue
sensor pairs is needed to test this hypothesis.

Nevertheless, we still suggest {TT, TD} as the optimal
tongue sensor pair, since TT and TD are anatomically farther
apart from each other than other tongue sensor pairs, thus TT
and TD may be more independent and have less redundant in-
formation. In addition, from the user’s (subject) perspective, the
sensor location on the tongue may not matter, as long as they are
in the comfortable zone (from tongue tip to tongue body back).

3.5. Velum sensor

Adding velum (V) data in addition to other sensors always im-
proved the speech recognition performance, although velum in
isolation achieved the worse performance. Velum is the primary
articulator for controlling nasal sounds in English (e.g., /m/ and
/n/). Velum provides unique information that other articulators
do not. However, we still do not think attaching sensors on
the velum is suitable for practical use of EMA, considering the
trade-off of the discomfort of attaching velum sensor on sub-
jects and the slight improvement of recognition performance.

3.6. DNN-HMM outperformed GMM-HMM

DNN-HMM outperformed GMM-HMM in all experimental
configurations (Figures 1 to 4). Although the focus of this paper
was not comparing GMM-HMM and DNN-HMM, the results

indicate the DNN-HMM outperformed GMM-HMM in both
silent speech recognition and speech recognition from com-
bined acoustic and articulatory data. This finding is consis-
tent with the recent literature in silent speech recognition [53],
acoustic speech recognition [44, 48], and speech recognition
from combined acoustic and articulatory data [46, 54]. We ex-
pect DNN-HMM has potential to further improve the recog-
nition performance from articulatory data or from combined
acoustic and articulatory data with a better structure or when
combined with other approaches (e.g., speaker adaptation [55]).

4. Conclusions and Future Work
In this paper, we have confirmed a previously found optimal set
of sensors on the tongue and lips (Tongue Tip, Tongue Dorsum,
Upper Lip and Lower Lip) [32] through experiments with con-
tinuous silent speech recognition and speech recognition from
combined acoustic and articulatory data, when only tongue,
lips, upper incisor, and lower incisor data are available (i.e., no
velum data). Although velum data can further (slightly) im-
prove the recognition performance on top of the four-sensor set,
it is not recommended for practical use because it causes dis-
comfort for subjects. In addition, the four-sensor set may not be
unique, since the individual tongue sensors have no significant
accuracy difference. Finally, DNN-HMM outperformed GMM-
HMM in both silent speech recognition and speech recognition
from combined acoustic and articulatory data.

These findings provide a reference for future relevant stud-
ies on choosing the number of sensors and their locations on
the tongue. However, as mentioned earlier, determining an ap-
propriate set of sensors may depend on the specific purpose of
the study. For example, a sensor on the side of the tongue may
be used in studies that focus on lateral tongue curvature during
speech production [56, 57].

Future work includes (1) verifying if TT, TB, and TD are
interchangeable, or determining if {TT, TD, UL, LL} is the
unique four-sensor optimal set, and (2) sensor combinations
in speaker-independent silent speech recognition experiments
[58, 59, 54].
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Abstract 

Imprecise articulatory breakdown is one of the characteristics 

of dysarthric speech.  This work attempts to develop a frame-

work to automatically identify problematic articulatory pat-

terns of dysarthric speakers in terms of distinctive features 

(DFs), which are effective for describing speech production. 

The identification of problematic articulatory patterns aims to 

assist speech therapists in developing intervention strategies.   

A multilayer perceptron (MLP) system is trained with non-

dysarthric speech data for DF recognition. Agreement rates be-

tween the recognized DF values and the canonical values 

based on phonetic transcriptions are computed. For non-

dysarthric speech, our system achieves an average agreement 

rate of 85.7%. The agreement rate of dysarthric speech de-

clines, ranging between 1% to 3% in mild cases, 4% to 7% in 

moderate cases, and 7% to 12% in severe cases, when com-

pared with non-dysarthric speech. We observe that the DF dis-

agreement patterns are consistent with the analysis of a speech 

therapist.   

Index Terms: speech recognition, distinctive feature, multi-

layer perceptron, dysarthric speech 

1. Introduction 

Dysarthria is a speech disorder caused by disturbances in the 

muscular control of the speech production mechanism [1].  

Stroke, Parkinson’s disease, cerebral palsy, amyotrophic lateral 

sclerosis and others nervous system-related diseases may 

cause dysarthria.  Dysarthria affects millions of adults around 

the world, especially their effective speech communication in 

daily life.  Speech-related problems include respiration, phona-

tion, articulation and resonance.  Symptoms that emerge in 

speech signals include hoarseness in voice quality, imprecise 

segmental articulation, excessive nasalization, as well as dis-

ordered prosody.  All are detrimental to speech intelligibility.   

Treatment of dysarthria involves perceptual assessment to 

characterize the problematic articulatory patterns, devise inter-

vention strategies and monitor progress.  Speech therapists 

generally listen carefully to dysarthric speech, possibly multi-

ple times, in order to monitor progress, and such a process is 

costly.  The situation calls for data-driven, computational tech-

niques that analyze the problematic articulatory patterns of 

dysarthric speakers, in an attempt to assist human efforts in 

analysis to inform the development of intervention strategies.   

Articulatory features describe the place and manner of ar-

ticulation in speech production.  They have been well-studied 

in the context of speech technology development, articulatory 

feature recognition with multiplayer perceptrons (MLPs) in 

telephone speech [2], and articulatory feature recognizer for 

dysarthric speech using neural networks and support vector 

machines [3] [4].  In particular, distinctive features (DFs) are a 

type of articulatory feature that also describe the general char-

acteristics and acoustic consequences of the constrictions with-

in the vocal tract [5].  DF have been shown to be well-

identifiable from speech signals [5] [6], which motivates us to 

study the use of DFs in the analysis of dysarthric speech. 

We aim to identify problematic articulatory patterns of 

dysarthric speech in terms of DFs.  We apply an MLP-based 

DF recognition system on both dysarthric and non-dysarthric 

speech data from the TORGO corpus [7].  We compare the DF 

recognition results between dysarthric and non-dysarthric 

speech, with the DF reference derived from canonical pronun-

ciations.  For dysarthric subjects, we observe that the agree-

ment rates of the DFs corresponding to poor articulation are 

significantly lower than those of the non-dysarthric subjects.  

We also note the relationships between the problematic articu-

latory patterns and the lower agreement rates of the corre-

sponding DFs.   

In the next section, we discuss the dysarthric corpus used 

for this study.  In Section 3, we describe the development of a 

DF recognition system and the procedures to utilize the recog-

nition results.  In Section 4, we compare the results between 

manual analysis of the data based on Frenchay Dysarthric As-

sessment (FDA) [8] and the automatic DF recognition.  We 

conclude our work in Section 5. 

2. Dysarthric Speech 

The TORGO (LDC2012S02) [7] corpus is a dysarthric speech 

corpus.  The corpus includes 8 dysarthric subjects (3 females 

and 5 males) and 7 non-dysarthric subjects (4 male and 3 fe-

males).  7 dysarthric subjects are cerebral palsy and 1 is amyo-

trophic lateral sclerosis.  There are 5 types of tasks in TORGO: 

recording articulatory movement tasks such as repeating “Ah-

P-Eee”, picture description, actions such as relaxing the mouth 

in its normal position, single word utterances such as saying 
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“yes” and sentential utterances such as “the quick brown fox 

jumps over the lazy dog”.  We focus on the single word tasks 

and sentence tasks.  The dataset consists of 4,605 non-

dysarthric speech utterances and 2,518 dysarthric speech utter-

ances (Table 1).  For the non-dysarthric speech, we further di-

vide the data into a training set of 3,012 utterances and a test-

ing set of 1,593 utterances.  Both training and testing include 

male and female non-dysarthric subjects and no speakers over-

lap between training and testing.   

3. Distinctive Feature Recognition 

3.1. Phonetic-level Alignment of Speech Data 

We perform automatic forced alignment on the TORGO 

speech data (both non-dysarthric and dysarthric) with the HTK 

toolkit [9]. We obtain phonetic-level alignments according to 

canonical pronunciations.  We adopt the TIMIT phone set with 

modifications on the stops and diphthongs as in [2].  A stop 

like /p/ is split into a closure /pcl/ and release /p/.  A diphthong 

is split into two phones.  For example, /oy/ in “boy” is repre-

sented as the rounded portion /oy1/ followed by the unrounded 

portion /oy2/. We train an acoustic model based on the modi-

fied phone set with the TORGO non-dysarthric speech training 

dataset with the HTK scripts published in [10]. 

Phone deletion is observed in the dysarthric speech of the 

TORGO corpus as described in [11].  For example, M01 de-

letes /h/ in the word “house”.  We apply constrained grammars 

to handle phone deletions as shown in Figure 1.  The con-

strained grammars are based on the phonetic-level canonical 

transcriptions, but an optional deletion path is provided for 

each phone.   The current analysis is based on the “real” 

alignments which do not contain the deleted phones, although 

the statistics of phone deletion may be useful in future re-

searches.  An example of dysarthric speech alignment result is 

shown in Figure 2. 

3.2. Distinctive Features 

Phonemes in languages can be represented in terms of a vector 

of distinctive features (DF) that capture their characteristics 

[6].  DFs include articulator-bound features like high, back, 

which relate to the tongue.  DFs also include articulator-free 

features, such as tense, which correspond to the level of articu-

latory movement.   We allow three possible values for each 

DF: positive (“+”), negative (“-”) and “don’t care” (“*”).  

“Positive” means that the articulatory movement that produces 

the phoneme fit the definition of the DF.  For example, nasal is 

positive for /m/, which indicates that when /m/ is produced, 

the soft palate is lowered.  “Negative” means that the articula-

tory movement and acoustic consequences described by the 

DF must not be observed when the phoneme is produced.  For 

example, /b/ must be un-aspirated (“-”).  Otherwise, it will be-

come /p/ (“+” aspirated).  “Don’t care” means that the DF is 

not distinctive to the phone (e.g., high in /p/), or irrelevant 

(e.g. tense for /p/).  We have chosen to apply 21 DFs in this 

work and their brief definitions are listed in Table 2. 

DFs describe specific articulatory movements in speech 

production and their acoustic consequences.  When DFs are 

applied for analysis of dysarthric speech, they should be able 

to help identify the problematic articulatory patterns that can 

inform the development of intervention strategies. 

3.3. DF Recognition with Multilayer Perception 

To train a DF recognition system, we start from the non-

dysarthric speech data from the TIMIT training set.  The 

Dysarthric Subjects Control Speakers 

Speaker ID 
Number of ut-

terances 
Speaker ID 

Number of ut-

terances 

F01 118 FC01 152 

F03 545 FC02 965 

F04 244 FC03 962 
M01 371 MC01 726 

M02 227 MC02 373 

M03 406 MC03 799 
M04 275 MC04 628 

M05 332   

Table 1: The number of utterances per speaker in the dataset. 

 

Transcription: /f iy/ (“fee”) 
Constrained grammar: [sil] [f] [sil] [iy] [sil] 

Figure 1: An example of a constrained grammar to handle 

phone deletion.  The optional phones are braced by squared 

brackets []. 

Prompt: “The little schoolhouse stood empty” 
Aligned results: 

“The” 
“little” 
“schoolhouse” 
“stood” 
“empty” 

/dh ax/ 
/l ih tcl t/ 
/_ kcl k uw l _ aw1 aw2 s/ 

/_ tcl t uh dcl d/ 
/eh m pcl p tcl t _/ 

Figure 2: An aligned result for the M01’s utterance.  “_” 

represents missing phones.  In [14], the authors reported 

M01 often omitted the initial /s/ and /h/and such cases are 

captured in the alignment in this work. 

Group 
Distinctive  

Features 
Meaning 

Tongue 

High, Low, Front, 
Back [6] 

Place of tongue in vowel 

Lateral, Anterior [6] 
The tongue part and shape 

used to produce sound 

Dental [16] , Alveolar 
[16], Retroflex [19], 

Velar [16] 

The tip/blade of tongue will 
be placed different places to 

form a constriction.   

Lips Rounded , Labial [6] The shape of lips 

Soft Palate Nasal [6] The soft palate is lowered  

Glottis Aspirated [17] 
The glottis stays open during 

the release 

Vocal cords Voiced [18] 
There is periodic vibration of 

the vocal cords  

Articulator-

free 

Tense [20] 

Tense vowels are more in-

tense, of longer duration and 

articulated with a greater de-

viation of the vocal cavity 

from its rest position then the 

lax vowels  

Delayed Release [20] Slow release of stop closure 

Consonantal [6] 
The absence or modification 

of constrictions in oral cavity 

Continuant [6] Forming of complete closure 

Strident [6] 

Any obstacle being placed in 

the airway downstream from 

the constriction 

Sonorant  [6] 
Pressure does not build up 

behind the constriction 

Table 2: The 21 DFs and their brief descriptions. 
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     R  

 

L  
+ - * 

 R  

 

L  
+ - 

+     +   

-     -   

*   X  *  X 

(a) Three-class setting  (b) Two-class setting 

Figure 3: An example of substitution -- /sh/ � /t/.  “*” means 

“don’t care”.  The shaded regions represent the outputs that 

we are interested.  “L” and “R” mean labelled and recognized 

values respectively.  “X” shows how the tense value being 

recognized in two settings.  Since the tense value in /sh/ is “*”, 

we don’t care it being recognized as “*” (a) or “-” (b) 

TIMIT (LDC93S1) [12] corpus is a non-dysarthric speech cor-

pus from a wide variety of speakers.  The corpus provides us 

6,300 non-dysarthric utterances for initial model training.  It 

contains phonetic-level transcriptions with manually adjusted 

time alignment. 

We train a frame-based MLP classifier for each of the 21 

DFs [13].  Each MLP classifier consists of three hidden layers 

with 50 x 12 x 50 units in the hidden layers and sigmoid acti-

vation based on the previous work [14].  For the input layer, 

each input feature vector consists of features from 9 consecu-

tive frames centered on the frame of interest to include the 

left-right context [2].  For each frame, the feature is 39-

dimenensional Mel-frequency cepstral coefficients (MFCC) 

(12 coefficients + log-energy + Δ + ΔΔ).  The feature is nor-

malized as zero mean and unit variance. 

 At the output layer, there are two possible configurations, 

either (a) with three-class “+”, “-” or “don’t care”, or (b) with 

two-class “+” or “-”.  The different configurations have differ-

ent confusion matrices (Figure 3).  We choose the two-class 

configuration (b) as in Figure 3.  The DF recognition problem 

is generally a binary decision problem as to whether the rec-

ognized value matches with the reference value.  For a case 

labeled “don’t care”, it is irrelevant whether the classifier’s 

output is “+” or “-“, because the DF value does not affect the 

phone’s identity.  During the training of each DF, we skip the 

frames which are silent or labeled as “don’t care”, but we still 

include them into the feature vectors.  The label with maxi-

mum posterior probability will be assigned to the frame [12]. 

We further adapt the TIMIT MLP classifiers with non-

dysarthric speech data of the TORGO corpus.  The initial 

weights of the adapted classifiers are the same as the weights 

in the TIMIT MLP classifiers.  The weights are updated with 

the same training process. 

During DF recognition, we apply all 21 DF classifiers on 

both dysarthric and non-dysarthric speech data to obtain the 

corresponding DF values (“+” or “-”) at each frame.  For the 

TIMIT corpus, we compare the recognized DF results with re-

al transcriptions included in the corpus.  For the TORGO cor-

pus, we compare the results with the canonical DF transcrip-

tions by assuming that the subjects intend to read the prompts 

correctly.  This is appropriate for a real application where real 

transcriptions are not available immediately.    We thus inter-

pret the recognized results as the agreement rate between the 

recognition system and the canonical DF transcriptions.  In 

computing the agreement rate of each DF, we only consider 

the frame situated at the middle of the start time and end time 

of a phone.   

Figure 4 shows the performance of each DF on the TIMIT 

testing set with the TIMIT MLP recognition system.  An aver-

age agreement rate of 91.9% suggests that the DF recognizer is 

well-trained with non-dysarthric speech, as compared with 

92% average frame on phonological binary features achieved 

by [15].  Figure 4 also shows the performance of the adapted 

DF recognition system on the TORGO dysarthric and non-

dysarthric speech data.  On non-dysarthric speech of the 

TORGO corpus, the average agreement rate drops to about 

85.7%.  The slightly lower DF agreement rate of TORGO non-

dysarthric speech is probably due to occasional pronunciation 

variation from canonical pronunciations.   

The severity of each dysarthric subject is reported in [11].  

The average reduction in agreement rates of each dysarthric 

subject is calculated by equation (1) 
 

�� =
�

�
∑ �	
 − ��,
�
�

��   (1) 

 

where Di  is the average agreement rate reduction of dysarthric 

subject i, N is the total number of DFs, Tj is the average 

 

Figure 4: The agreement rate of each DF between recognized results and canonical DFs. 
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TIMIT

TORGO (Non-Dysarthric)

TORGO (Dysarthric)

Dysarthric Subjects 

Subjects 

ID 
Severity 

Average Agreement Rate 

Difference of Individual DF 

F01 Severe 7.9% 

M01 Severe 11.2% 

M02 Severe 9.1% 

M04 Severe 8.7% 

M05 Moderate-to-severe 7.4% 
F03 Moderate 4.1% 

F04 Mild 1.2% 

M03 Mild 2.8% 

Table 3:  A comparison of severity and the average DF 

agreement rate degradation of individual subjects. 
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agreement rate of DFj from all non-dysarthric subjects in 

TORGO shown in Figure 4, Ai,j is the agreement rate of DFj of 

dysarthric subject i. 

The average reduction in DF agreement rates, Di, is shown 

in Table 3.  More severely dysarthric subjects have larger 

agreement rate reduction. 

4. Discussion on Dysarthric Speech 

4.1. Manual Analysis 

A speech therapist has evaluated the severity of the dysarthric 

subjects in the TORGO corpus with Frenchay Dysarthric As-

sessment (FDA) [8].  FDA is one of the standard dysarthric 

speech assessments and includes 28 tests for different articula-

tions.  Each test is rated from “no abnormality” to “severe”.  

For speech production, there are tests of respiration, lips, jaw, 

palate, laryngeal production and tongue.  There are also speech 

intelligibility tests at word, sentence and conversational levels.  

The FDA results provide us the reference to the severity of the 

dysarthric subjects on different articulatory dimensions.  

We validate the recognized DF error patterns to the FDA 

results and the manual analysis from [11].  In [11], the authors 

studied 25% of the speech data of each dysarthric subject and 

identified the pronunciation error patterns of the individual 

subjects. 

4.2. Severely Dysarthric Subjects 

Figure 5 shows the drop in DF agreement rates for two severe-

ly dysarthric subjects (F01 and M04), one moderately dysarth-

ric subject (F03), one mildly dysarthric subject (M03) and two 

non-dysarthric subjects (FC02 and MC04) for comparison to 

illustrate the relationship among the error patterns and agree-

ment rates.  FC02’s pronunciation is slightly better than that of 

MC04. 

For the tongue-related DFs, F01 exhibits substantial drops 

in agreement rates on anterior, alveolar and velar.  M04 also 

exhibits drops in agreement rates on high, front, back, anterior 

and alveolar relative to mildly dysarthric subjects.  For F01 

and M04, the speech therapist rated the correctness of articula-

tion points and laboriousness of tongue motion as moderate-

to-severe.  This result is consistent with the reduction of 

tongue-related DFs agreement rates. 

F01 and M04 also exhibit drops in agreement rates on 

rounded and labial respectively.  Both of them are diagnosed 

with consistently poor lip movements by the speech therapist.  

Both of them have relatively poor DF agreement rates on na-

sal compared to mild subjects.  The speech therapist also re-

marked that F01 has nasal emission problems.  Although the 

DF results show M04 also has difficulty with nasal, the speech 

therapist reported that M04 only had slight problems with soft 

palate movement.  Further analysis is necessary. 

The DF results on voiced suggest that F01 and M04 may 

have problems in laryngeal production.  In [11], the authors 

observed that the two subjects voice voiceless target conso-

nants (prevocalic voicing problems).  This observation agrees 

with the speech therapist’s findings that their voice production 

is inappropriate and ineffective in most situations.   

For articulator-free DFs, the dysarthric subjects generally 

exhibit lower agreement rates on consonantal, continuant and 

strident.  The trend is consistent with other consonant-related 

DFs.  Continuant relates to the production of /f/ (“+”, no com-

 

Figure 5: The difference between the average DF agreement rate from the control subjects and the corresponding DF agreement 

rate of each dysarthric subject.  The agreement rates of most of the DF drop substainally for severely dysarthric subjects.  The 

agreement rates in moderately and mildly dysarthric subjects only dropped in a few DFs.   

(c) FC02(b) F03
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plete closure) and /p/ (“-”, complete closure).  The drop in 

continuant agreement rates of F01, M04 and F03 are higher 

than M03.  The analysis in [11] also found that some fricatives 

(e.g.  /f/) are replaced with stops (e.g.  /p/) by F01 and F03 but 

not by M04.  Strident affects fricatives such /f/ and /s/.  In 

[11], the authors observed that F01 and M04 replace fricatives 

such as /f/, /s/ with non-fricatives such as /p/, /t/.  We also ob-

serve the large agreement rate reductions on strident for F01 

and M04.   

There are substantial agreement rate reductions of sonor-

ant for F01 and M04 (19.0% and 15.7% respectively).  The re-

sults show that the subjects may have difficulty in building up 

pressure behind the constriction, which may be related to the 

lips problems described before. 

Not all DFs exhibit these drops in agreement.  The agree-

ment rates on dental are similar among different dysarthric 

subjects.  Some DFs may not be as useful in indicating the se-

verity of the subjects.  This is an area for future investigation.   

4.3. Mildly and Moderately Dysarthric Subjects 

The mildly dysarthric and moderately dysarthric subjects 

(M03 and F03) only exhibit slight agreement rate reductions 

for most DFs.  In terms of DF results, the average agreement 

rates of F03 are lower than M03.  The observation agrees with 

[11] that F03 is moderately dysarthric and M03 is mildly dys-

arthric.  For F03, the agreement rates of tongue related DFs are 

worse than other articulator-bound DFs.  The speech therapist 

also found that F03 had mild tongue-related problems.   

5. Conclusions and Future Work 

We compared the recognized DFs on dysarthric speech to prior 

results of manual analysis on the same dysarthric speech cor-

pus.  The general trends of reduced agreement are consistent 

with the analysis of the speech therapist and the observations 

of [11].  This indicates a potential way to automate analysis of 

dysarthric speech to assistant speech therapists for the devel-

opment of intervention strategies.  In the future, we plan to ex-

tend this framework to other languages such as Chinese.  We 

will continue to improve the DF recognition system. 
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Abstract 
This paper discusses the development of an Arabic Symbol 
Dictionary for Augmentative and Alternative Communication 
(AAC) users, their families, carers, therapists and teachers as 
well as those who may benefit from the use of symbols to 
enhance literacy skills. With a requirement for a bi-lingual 
dictionary, a vocabulary list analyzer has been developed to 
evaluate similarities and differences in word frequencies from 
a range of word lists in order to collect suitable AAC lexical 
entries. An online bespoke symbol management has been 
created to hold the lexical entries alongside specifically 
designed symbols which are then accepted via a voting system 
using a series of criteria.  Results to date have highlighted how 
successful these systems can be when encouraging 
participation along with the need for further research into the 
development of personalised context sensitive core 
vocabularies.   

Index Terms: symbols, Augmentative and Alternative 
Communication, AAC, core vocabularies  

1. Introduction 
In the last few years it has become clear that many therapists 
and teachers working with individuals who have speech and 
language difficulties in the Arabic speaking Gulf area, are 
depending on westernized symbols and English core 
vocabularies. Issues around limited Arabic language 
knowledge and dependency on translations or working in 
English can cause difficulties for those who need 
Augmentative and Alternative forms of Communication 
(AAC) due to disabilities. Huer [1] reports that “observations 
of communication across cultures reveal that non-symbolic as 
well as symbolic forms of communication are culturally 
dependent” and her later work “suggests that consumers, 
families, and clinicians from some cultural backgrounds may 
not perceive symbols in the same way as they are perceived 
within the dominant European-American culture” [2].   

With this in mind the Arabic Symbol Dictionary research 
team were determined to take a participatory approach to their 

project, involving AAC users and those supporting them as 
well as other researchers working in the field of Arabic 
linguistics and graphic design. 

2. Background 
Much has been written by speech and language therapists 
about the necessity for core vocabularies that have been 
adapted to suit symbol users who need to enhance their 
language skills [3], [4], [5] and [6]. Research has shown that 
with a few hundred of the most frequently used words 80% of 
one’s communication needs can be accommodated [7]. More 
recently concept coding [8] with the idea of mapping different 
symbol vocabularies along with a focus on psychosocial and 
environmental factors [9] to improve outcomes have been 
added to the mix.  However, there is very little research that 
has been undertaken to provide therapists with suitable 
vocabularies for Arabic AAC users [10]. In English these 
vocabularies tend to be lists of frequently used words from 
spoken and written language across all age groups and some 
from AAC users. Despite considerable searching there are 
very few of these vocabularies available in Arabic with most 
coming from language learning or frequently used word lists 
with no specified ages or Arabic AAC users. 

In some areas there is also a lack of understanding regarding 
the complexities of Arabic spoken and written language that 
disproportionately affect those who may have communication 
and reading difficulties [11], [12] and [13].  Usziel-Karl et al 
[13] cite several researchers in the course of their study 
concerning Arabic and Hebrew linguistic frameworks and 
discuss the “critical importance of morphology as the main 
organizing principle both of the lexicon and of numerous 
grammatical inflections”. The authors go on to point out the 
diglossia [two variations of a language in different social 
situations] nature of Arabic which means there is a 
‘phonological distance [in grapheme-to-phoneme mapping] 
that has a negative impact on the acquisition of basic literacy 
skills in young Arabic children…” Words or word phrases 
(referents) may also be presented above or below a 
corresponding symbol, with changing forms depending on 
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grammatical status, gender and/or number plus many letters 
will change their shape depending on their position within a 
word.    

The authors of this research and others have also found there 
are key cultural and family values/orientations that should be 
considered in order to increase the effectiveness of symbol-
referent vocabulary interventions [14] with individuals who 
use AAC within Arab communities.  To this end not only has 
research concentrated on word frequency lists and collating an 
AAC user core vocabulary, but also instigating a voting 
system for symbol acceptance, so that words or 
multiword/word phrases are represented by symbols that are 
suitable culturally, linguistically and for the settings in which 
they will be used.  

3. Methodology for Building a Core 
Vocabulary 

The building of an Arabic AAC core vocabulary is ongoing, 
but began with the collection of word lists used by AAC users, 
their families, carers, speech and language therapists and 
teachers in Doha (Qatar) (List a).  Sixty three of these 
individuals joined an AAC forum and these participants have 
continued to work with the team as symbols for the 
vocabularies have been developed.    

The initial aim was to collect around 100 localised Arabic 
most frequently used words and multiwords to compare with 
those already in use that were in English or translated into 
Arabic based on English core vocabularies.  Participating 
therapists felt a further 400 words/multiwords would be the 
maximum the majority of their users would have in their 
communication books or devices.  Most English speaking 
three year olds use over a thousand words [15] so it was 
essential that the fringe vocabulary should be enlarged with 
words specific to the environment and personal needs 
including Qatari colloquial words and place names as well as 
to be relevant to all ages.  

Surveys of core vocabularies in Arabic have revealed that 
few are freely available [16] and even less make good 
companions when thinking of basic language and literacy 
learning for AAC users.  In order to expand the list of 500 
words a comparison was carried out against five other Arabic 
word frequency lists.  Those for general conversation included 
the Kelly Project [17], 101languages.net 1000 most common 
spoken Arabic words and Aljazeera comments often using 
colloquial language [18]. The Supreme Education Council 
(SEC) literacy lists Grade 1,2,3 and  Lebanese reading lists 
[19] have been used for literacy skill building in Modern 
Standard Arabic (MSA).   

3.1. Building a vocabulary list analyser 
An automatic system was developed that took as an input two 
main pieces of information: 

List a: The list to be analyzed as a basis for the new core 
vocabulary list: This list could optionally have frequency of 
each entry included. If no frequency is available then a default 
value should be added to all the entries before running the 
program. Frequency in this case equated to how often a word 
was used.  This frequency does not have to correspond to an 
actual frequency of occurrence in a text somewhere. 

Lists b: Lists combining existing vocabularies from a 
number of sources with the same structure as List a. Multiple 
vocabularies are used in Lists b in an attempt to weight the 

occurrence of individual words.  These vocabularies are 
ideally from different sources and should be large enough so 
that the frequencies of the entries listed are reliable. 

 
The system produced three lists shown in Figure 1: 
List 1: Initial list containing the words in List a (the in-put 

list to be analyzed) that did not occur in any of Lists b. This 
output only contained the words with no frequency scores. 

List 2: The coverage list: containing the words that occurred 
in List a and at least once in a source vocabulary in Lists b. 
This output also contained scores for each word by source 
vocabulary list (each word was given several scores, one for 
each list in Lists b). Each score equals the frequency with 
which each word appeared in the list from Lists b, normalized 
by dividing the frequencies of each word by the sum of all 
frequencies in that list. The score was set to 0 if the word did 
not occur in that list. 

 

 
Figure 1.  Input lists (list a and lists b) 

List 3: Remaining word list: This list contained all the words 
that were in Lists b but were not contained in List a. This 
output also contained the scores for each word and is the 
example of the system in use (Figure 2). This is the list on 
which the comparison in the section 3.2 is based. 

 

 
Figure 2. Example Output from lists viewed in Excel 

Figure 2. shows frequencies are normalized to allow source 
vocabularies to be compared (column one), this process can be 
problematic if the list is too small as the numbers may become 
too high and significantly affect results. Even if there is 
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sufficient data, it is still imperative that an expert goes through 
the different output list to inspect the results, correct errors and 
choose the set of words to be added or removed from the input 
list. The scores given only act as a guide to assist the expert in 
the process. 

    In practical terms words with high scores in List 3 could 
be deemed suitable for inclusion in the Arabic Symbol 
Dictionary and added to List a.  The system has been run 
repeatedly as lists have been added so that results become 
more robust.    

3.2. Results of the Core Vocabulary building 
When comparing the list provided by participants as examples 
of AAC users’ vocabularies (List a), there were very small 
overlaps with those words most frequently found where the 
top words were based on very high frequency scores for those 
most commonly used (Lists b).   

   To provide an instant comparison between Output 1 and 3 
the top 20 words translated from Arabic are listed below.  

Output from 1 (List a) ordered by those most often used in 
AAC lists.  

“I/me (am), go, ball, car, banana, on/to, thing/something, 
to, chair, clock/watch, want, in, sit, was, eat, bike, 
flower/rose, play, cup, door” 
 

Output from 3 (Lists b) ordered by frequency 
“the, God, about, oh, to, which (masculine), and not, 
people, no, which (feminine), in, even, or, on, against, 
only, however, Arabs, must, order” 
 

Further analysis of the Lists b that were about spoken and 
colloquial language shows that nouns only made up 5% of the 
total list from the Kelly project, 25 to 30 %  of the Aljazeera 
and Oweini-Hazoury lists, but 50% of the AAC lists.  A 
concrete noun, even if it is considered part of a fringe 
vocabulary, is a much easier concept to illustrate with a 
symbol and may be seen as one of the early building blocks to 
language acquisition.  Verbs, however are more complex and 
have low frequency rates; between 5 to 20 %. The Aljazeera 
list has the lowest and the AAC lists have the highest. The 
other parts of speech, equally pertinent in communication, 
such as adjectives, adverbs, prepositions, pronouns and 
conjunctions were found to be variably frequent from one list 
to another. The Aljazeera list has a quarter of its frequencies 
made up of prepositions, whereas Kelly’s list, SEC and the 
AAC user list have only 5%. Conjunctions also show low 
frequencies through the lists in question; between 1% and 
15%. It is worth mentioning that pronouns are totally 
nonexistent in Kelly’s project list, either under their detached 
form or attached form. It should also be noted that therapists 
may choose nouns rather than pronouns for the purpose of 
symbol transparency. The other lists had less than 20% of 
pronouns all types combined. Arabic pronouns, and also some 
prepositions combine with nouns or with other parts of speech 
as single words, this morphological aspect could be the reason 
why their frequencies are rather undermined. Adverbs are also 
rarely listed, The Owein-Hazoury list has none; the highest 
adverb frequency is found in the 1000 most common Arabic 
words list (4%). In Arabic most adverbs of time and space are 
prepositional groups; typically a structure made of a 
preposition followed by a noun. This structural definition of 
adverbs explains the low number or even the lack of adverbs 

in some of the core vocabulary lists. The users would frame 
appropriate phrases to express adverbs by using existing 
prepositions combined with nouns. 

Further confirmation for these differences in the frequency 
of various parts of speech was sought for the literacy skill 
vocabularies. The conversational based lists were replaced 
with reading lists forming Lists b.  Arabic lists such as those 
used SEC and Arabic sight words [19]. It was found that in 
their top 100 frequently used words 30 and 38 were nouns 
respectively. 

3.3. Discussion about the core vocabulary data 
collection 
As can be seen from the top 20 words in List a and Lists b, 
both show nouns that would not be found in the top twenty 
frequently used words in an English core vocabulary and in 
reality would be considered fringe words. However, the lists 
do illustrate that in Arabic there are elements of the grammar 
that are equally as important such as conjunctions and 
prepositions.   

There are considerable issues with the fact that root words in 
Arabic clearly appear within other words and this can affect 
the results as well as the fact that the lists collected from AAC 
users are based on popular use, rather than large scale 
frequency levels within a huge corpus.  There will always be 
the need to improve outcomes by collecting more lists from 
AAC users in the future to improve the balance between words 
used for symbol communication and those based on frequency 
of use, although the latter informs vocabulary development 

By using this system the combined AAC word lists from the 
Doha schools and clinics making up ‘List a’ once translated 
into English, could be compared to the Prenke Romich 100 
Frequently Used Core Words [20], [21] (as Lists b). It was 
noted that the Doha Arabic AAC user list (List a) contained 38 
nouns in the top 100 words compared to none appearing in the 
English core vocabulary. It has been said that in English the 
use of nouns goes from 7% in the top 100 words to 20% in the 
top 300 [22] whereas in MSA the corresponding frequency 
levels are 26% and 45% according to one of the largest 
frequency lists [23]. 

These results highlight the need for further exploration into 
this aspect of vocabulary building. In particular there is a need 
to collect more wide ranging conversations to evaluate the 
differences in the type of words and multiwords required to 
successfully build Arabic AAC personalised and context 
sensitive vocabularies.  There is also the need to be aware of 
the differences in lists used for enhancing reading skills where 
MSA is used rather than the colloquial dialects of the area.  A 
further distinction may be needed between adult and children’s 
vocabularies where religious and social language requirements 
may impact on AAC use.  The Speech and Language 
therapists attending meetings with the team also noted the 
importance of vocabularies sensitive to user’s characters, 
interests and social setting commenting on dress and gender 
issues as well as being aware of the issues of using lists from 
AAC users of school age due to the lack of available adult 
AAC users in the region at the time of writing.  

4. Methodology for Symbol Management 
Just as it was found that there was a paucity of core AAC 
vocabulary lists in Arabic, the same could be said about the 
symbols provided for AAC devices.  Some centres in Doha 
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were providing specifically designed symbols for the Arabic 
culture, environment, social and personalised linguistic needs 
but there were no adapted symbol sets that were freely 
available for sharing. Nor had any symbols been evaluated for 
transparency or cultural sensitivity by local AAC users, their 
supporting professionals and families.    

A bespoke Symbol Management system was developed that 
allowed the team to store symbols.  The system also offered 
participants the chance to take an active role in the decisions 
made around the development and evaluation of appropriate 
symbols as they could see and vote on uploaded symbols 
representing the core vocabularies previously collected. 

The online database was based on a Model-View-Controller 
(MVC) framework using MongodB with JavaScript (NodeJS 
and an Express JS plugin).  The code is open source and 
available on bitbucket.  View templates which generated the 
html pages were built suing the Jade templating engine.  The 
only other plugins used were for authentication and list 
filtering.  The latter will provide the basis for browse and 
search features in the final Arabic Symbol Dictionary website.  

4.1. Building symbol acceptance system 
As part of the online management system a simple voting set 
up was created using the filters developed for batches of 
symbols.  During voting sessions participants have been 
presented with a series of around 60-65 images of newly 
designed symbols, the referent in MSA, Qatari (where 
applicable) and English.  The voting criteria are presented with 
large selection areas on a scale of 1 to 5 where 5 is completely 
acceptable (see Figure 3) so that different visual displays can 
be used.  The four criteria are listed with a free text box for 
comments:  

• Feelings about the symbol as a whole  
• Represents the word or phrase  
• Color contrast     
• Cultural sensitivity 

 

 
Figure 3 Voting system with criteria for acceptance on 
a scale of 1-5 where 5 is completely acceptable 

4.2. Results from voting sessions 
The initial batch of symbols had 63 voters logging into the 
Symbol Manager resulting in 2341 votes for 65 symbols.  
Overwhelmingly the decisions were very favourable with all 
mean ratings significantly greater than a rating of 3.5.  The 
average was 4.0. (See Table 1) All voting data was 

anonymized and comments collated to inform the graphic 
designer.   

Two AAC users were also able to vote on the symbols via an 
adapted system using their own Sensory Software Grid 2 
systems with the symbols added plus a 1-5 or 1-3 ‘thumbs up’ 
to ‘thumbs down’ scoring depending on their ability.  This 
produced equally good results and comments were captured 
via recordings.  More AAC users are being encouraged to join 
the forum and as further batches of symbols are developed it is 
hoped that voting sessions will continue to occur both during 
face to face meetings and remotely.  

 

Table 1. One Sample T test for Difference of Mean 
Ratings from 3.5 

Criteria Number 
of voters 

Mean 
rating 

2 tail P 
Value for 
difference 
from 3.5 

1 63 3.94 <0.0001 
2 63 3.90 <0.0001 
3 63 4.07 <0.0001 
4 63 4.10 <0.0001 

4.3. Discussion about the Symbol Management 
system 
The initial development of the Symbol Management system 
was purely for the team to upload lexical entries and symbols 
with a set of filter systems based on parts of speech, gender, 
number and symbol descriptions.   However, as the 
participation by AAC users, their families, therapists and 
teachers grew it became essential to offer a voting system that 
quickly produced results because specialists wanted to use the 
symbols as they were developed. As all the speech therapists 
and teachers involved had worked for several years with AAC 
users, but were mainly from countries other than Qatar, it was 
felt that there should be a method to check acceptability within 
the community before releasing them for download, not just 
depending on the team’s opinions.  The team had already set 
up a Google+ method for initially evaluating iconicity and 
transparency [22].  

Those therapists working in the Doha area were very willing 
to express their opinions about symbol suitability and the links 
with the corresponding word lists collected.  It was noted that 
there was a general understanding that the lexical entries in 
Modern Standard Arabic and those entries in Qatari colloquial 
Arabic may share the same symbol for similar meaning words 
or multiword phrases but there may need to be additional 
symbols and / or changes in symbol labels to represent 
different parts of speech, gender and number and to take into 
account the bilingual nature of the dictionary to aid those who 
were not fluent Arabic speakers.  

5. Conclusion 
The core vocabulary and symbol management systems have 
provided the research team with quick and easy ways to 
analyse data as well as provide a platform for user 
participation.  Having a selection of MSA and Qatari core and 
fringe vocabularies has been essential for ongoing symbol 
development, but there is still a need to continually update the 
collection of local vocabularies to ensure that colloquial as 
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well as written language is captured.  The present frequency 
levels of the words collected in Doha (List a) are low in 
comparison to global lists (Lists b).  They are also subjective, 
based on the AAC forum input rather than a wide base of 
Arabic AAC users and carers. However, with support it has 
been shown that where suitable core vocabularies are 
implemented alongside appropriate symbols AAC users, who 
have the capacity, can enhance their communication and 
improve their readiness for reading [24] and already in this 
project AAC users have greeted the newly developed symbols 
with much appreciation, but there remains the need to ‘focus 
on long-term outcomes’ [9]. 

There remains the debate as to the differences in parts of 
speech seen in English core vocabulary lists compared to some 
Arabic lists with high levels of noun use.  It is important to 
appreciate the limitations of the collection procedures as well 
as the problems of automated comparisons between lists that 
require normalization and have different methods for showing 
root words, different parts of speech and verb declensions.  

There is much research still to be carried out to ensure that 
an appropriate vocabulary list suitable for Arabic AAC users 
and the development of literacy skills can be collated in a 
diglossia situation.  But as an increasing number of words lists 
are provided by participants set against the further analysis of 
the frequency lists already gathered it is felt that this can be 
achieved.  
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Abstract
Clinical applications of speech technology face two challenges.
The first is data sparsity. There is little data available to un-
derpin techniques which are based on machine learning and,
because it is difficult to collect disordered speech corpora, the
only way to address this problem is by pooling what is produced
from systems which are already in use. The second is person-
alisation. This field demands individual solutions, technology
which adapts to its user rather than demanding that the user
adapt to it. Here we introduce a project, CloudCAST, which
addresses these two problems by making remote, adaptive tech-
nology available to professionals who work with speech: thera-
pists, educators and clinicians.
Index Terms: assistive technology, clinical applications of
speech technology

1. Introduction to CloudCAST
In this working paper, we introduce CloudCAST, a Leverhulme
Trust International Network funded from January 2015 for 3
years. The network partners are The University of Sheffield
(United Kingdom), AIAS Onlus Bologna (Italy), The Univer-
sity of the West Indies (Jamaica), and the University of Toronto
(Canada).

In recent years, there has been significant progress in Clin-
ical Applications of Speech Technology (CAST) in diagnosis
of speech disorders [1], tools to correct pronunciation and im-
prove reading skills [2], recognition of disordered speech [3]
and voice reconstruction by synthesis [4]. The aim of Cloud-
CAST is to make progress in this domain and to provide a
freely-available platform for worldwide collaboration.

We aim to place CAST tools in the hands of professionals
who deal with clients with speech and language difficulties, in-
cluding therapists, pathologists, teachers, and assistive technol-
ogy experts. We intend to do this by means of a free-of-charge
(if possible), remotely-located, internet-based resource ‘in the
cloud’ which will provide a set of software tools including per-
sonalised speech recognition, diagnosis and interactive spoken
language learning. Following a user-centred design methodol-
ogy, we will provide interfaces which will make these tools easy
to use for professionals and their clients, who are not necessar-
ily speech technology experts.

There are various models for user-centred design [5],
among which the ISO standard 9241-210 [6] is prominent. This
standard for human-centred design processes includes six guid-
ing principles (P): P1. understand the user, the task and environ-

mental requirements; P2. encourage early and active involve-
ment of users; P3. be driven and refined by user-centered eval-
uation; P4. include iteration of design solutions; P5. address
the whole user experience; P6. encourage multi-disciplinary
design.

The CloudCAST resources will also facilitate speech data
collection necessary to inform the machine learning techniques
which underpin this technology: we will be able to automat-
ically collect data from systems which are already in use, as
well as provide a database scheme for collecting and hosting
databases related to this domain. Our 3-year aim is to create
a self-sustaining CloudCAST community to manage future de-
velopment beyond our current funding period.

While CloudCAST will build on previous work by its part-
ners and others, we believe that it offers several ‘unique selling
points’, including:

• The resource will be available worldwide, and free of charge.
• We will provide interfaces, resources and tools targeted at

several kinds of users, including:

– Developers, who want to embed CloudCAST technology
into their own applications, for instance voice control of
domestic robots,

– Speech professionals, who want to use CloudCAST tech-
nology to work with their clients, for instance, to devise
personalised therapy exercise programmes,

– End users, for whom applications are developed, e.g., chil-
dren learning to read,

– Speech technologists, who are improving or adding to the
CloudCAST technology itself.

• The technology will be based on open source toolkits such
as Kaldi for automatic speech recognition and OpenHab for
smart homes [7, 8].

• Subject to ethical constraints, we will collect speech data and
metadata from every CloudCAST interaction. All this mate-
rial will therefore be available for re-training the technology,
and for analysis. In this way,

– we will be able to personalise the technology for each End
User,

– by pooling the data, we will address the problem that for
abnormal speech the large datasets needed for speech tech-
nology development are not available,

– we will be able to underpin and evaluate improvements in
analysis and classification of speech disorders.
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2. Challenges for CloudCAST
CloudCAST’s success requires meeting a number of technical,
scientific and more general challenges:

• The technology will run remotely, but in many applications it
must deliver results rapidly, within a few seconds.

• The technology should improve its performance as it is used,
by adaptation to the data it is collecting.

• It will not be possible to control the conditions under which
the tools are used to the extent that one might like. For exam-
ple, diverse recording devices and recording conditions may
make normalization challenging.

• There must be shared functionality of tools over applications.
For instance, pronunciation tutors and reading tutors have
much in common.

• There must be interfaces, and guides to these interfaces,
which are suitable for each user-group listed above.

• There must be a scheme which protects the security and pri-
vacy of CloudCAST users and their data.

• There is understandable resistance to technology from some
speech professionals, based on bad experiences.

• For this reason, and others, the technology must adapt to its
user, rather than the other way round.

• There must be a strategy for developing a self-sustaining
CloudCAST community.

Our intention is to commence with three exemplar applica-
tions: small vocabulary command-and-control with disordered
speech, a literacy tutor and a computer aid for therapists. These
are described after the next section, in which we introduce the
common speech technology resource that will support them.

3. Speech technology resource
Several toolkits exist which provide core speech recognition fa-
cilities on which applications can be built, notably Speechmat-
ics [9], Google’s Web Speech API [10] and SoundHound [11].
Speechmatics provides a queue-based speech transcription ser-
vice supporting multiple languages and audio formats, performs
automatic punctuation, capitalisation and diarization (speaker
separation) and supplies individual word timings and confi-
dences. It’s authors claim to achieve near real-time turnaround
with very high accuracy. Google, through its proposed Web
Speech API, provides both speech recognition and synthesis.
The speech recognition service outputs the results in the form
of multiple hypotheses of word-level transcriptions with asso-
ciated confidence scores. SoundHound provides a speech-to-
meaning service that performs simultaneous speech recognition
and natural language understanding. This process outputs its
results in the form of structured commands instead of plain text
transcription.

For CloudCAST, these solutions fall short in terms of the
types and details of the results they return, the flexibility of the
recognition process, provisions for customisation of the speech
models, and modes of interaction. The maximum level of de-
tail provided in all these solutions is an N -best list of word-
level transcriptions with associated confidences. In the case of
Speechmatics, word-level time alignments are also available.
However higher-level details such as phone time alignments
are not accessible. Furthermore, other types of results such
as decoding lattices and word confusion networks (WCN) [12]
are not provided. The grammars (or language models) used in

these systems are fixed to general-domain dictation applications
(in Google’s Web Speech API, the introduction of a grammar
specification function was discussed in 2012, but to the best
of our knowledge it has not been concretized or implemented
in Chrome). While Googles service does provide an interactive
mode in which partial results of the decoding process are imme-
diately available, this is not the case with the service provided
by Speechmatics. None of the services provide any means of
creating custom models using specific training material. This
precludes targeting disordered speech or other niche cases.

The requirements of CloudCAST include providing an in-
teractive speech recognition service where the client must be
able to modify the grammar, the model, and other relevant pa-
rameters. The client should have instant feedback about the
recognition process, such as partial decoding as well as ac-
cess to fully detailed results such as phone-level alignments
and posterior probabilities. Crucially, interactions of clients
with CloudCAST should provide data resources to improve the
recognition process and the training of future models.

The main architecture of CloudCAST (Figure 1) can be
split into the exemplars, the frontend, and the backend. The ex-
emplars are services using CloudCAST, for instance, webapps
that perform literacy tutoring or command-and-control (see next
section). The frontend is the visible CloudCAST website, from
which users can manage their recordings, developers can obtain
API keys, professionals can create models, and so on. Finally,
the backend is the server which consumes audio from the ex-
emplars and provides speech recognition results. The backend
is also in charge of applying the parameter changes that the ex-
emplars may request to the recognition process.

Both the frontend and the backend have access to a common
storage space and database where they store models, recordings,
and authentication details. The frontend and backend are both
backed by worker processes, whose roles are to perform com-
putationally intensive tasks, such as the training of the models
and actual speech recognition, which may be run in separate
devices. This split ensures the scalability of the system.

Frontend

DB

Frontend 
Workers

Exemplar

 Literacy Tutor

Storage
Exemplar

Command & 
Control

Backend 
WorkersBackend

Figure 1: Architecture of the CloudCAST resource.

CloudCAST is developed with open source software. We
have decided to create the frontend using Flask, a free software
microframework for web development.

To implement the speech recognition service (the back-
end) we have decided to build on kaldi-gstreamer-server de-
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veloped by Tanel Alume [13]. Kaldi-gstreamer-server is a
distributed online speech-to-text system that features real-time
speech recognition and a full-duplex user experience where the
partially transcribed utterance is provided to the client. The
system includes a simple client-server communication proto-
col and scalability to many concurrent sessions. The system
is open source and based on free software and therefore serves
as a starting point for building CloudCAST, allowing us to de-
ploy recognisers developed at Sheffield within the CloudCAST
framework [14]. It uses Kaldi [7] for speech recognition pro-
cessing. Kaldi is a well-known free software library widely
used in the research community partly due to its modular and
flexible architecture.

To facilitate the creation of services using CloudCAST, we
are also developing a speech recognition client in JavaScript
based on the existing library dictate.js. The proposed client
extends dictate.js with multiple types of interactions with the
server, such as swapping grammars, models and other parame-
ters, as well as interpreting the different results provided by the
server.

4. Exemplars
4.1. Literacy tutor

Among the first set of exemplars to be developed will be an
automated literacy tutor. In some respects the literacy tutor rep-
resents the most complex type of application that can be devel-
oped using the tools CloudCAST will make available. In addi-
tion to being a good showcase for the tools, the literacy tutor
can be useful in bolstering current efforts to combat illiteracy
as it will be a freely available, cloud-based resource that can be
modified to meet the needs of individual users.

It has been shown that the use of speech-enabled literacy
tutors can lead to significant improvement in their users ability
to read [15, 16, 17]. Among the best known systems is Project
LISTEN [18]. Project LISTEN, developed at Carnegie Mellon
University, works as a tutor by listening to, as well as reading
to the user. This system was one of the first to employ feed-
back that was able to effectively respond to readers when they
encountered challenges or made mistakes. When the system
was deployed in schools it was found that students using the
reading tutor outperformed their peers who learned from regu-
lar classroom-based activities and compared favourably to stu-
dents given one-to-one tutoring by human experts. Outside of
the United States, the effectiveness of Project LISTEN to pro-
vide tutorial support for language learners has been tested (on
very limited scales) in a number of countries, including Canada,
Ghana and India [19, 20, 21]. Users were shown to make sig-
nificant progress in literacy skills when they used the tutor.

Project LISTEN is available for research purposes, but it
is not a commercial product; it is not openly accessible, nor
is it cloud-based. One commercial, web-based reading tutor is
the Reading Trainer component of the Ridinet online network.
Ridinet is meant to provide practice and training in literacy and
numeracy for Italian children diagnosed with autism spectrum
disorder [22]. Reading Trainer was included in the system for
the purpose of increasing reading fluency. The initial phase of
the Reading Trainer is a speed test, where users are prompted to
read a previously unseen text and the time it takes them to read it
is used as their initial reading speed. The tool is customisable;
it allows the user to select, among other parameters, reading
speed, reading accuracy, reading unit and story length. The level
of feedback can also be set to either prompt the user or praise

their performance and effort.
The basic functionality of the CloudCAST literacy tutor ex-

emplar will be similar to the two tutors described above, but will
differ in at least three important respects Firstly, it will be freely
available to anyone with an internet connection. Secondly, the
tool will be further customisable: the user will be able to change
language and upload new stories. Finally, the tutor will have an
integrated reading age assessment tool to determine the reading
level of the user and to act as a pre-test for potential learning
challenges. The results of assessment and user performance for
each session will be securely stored online for easy tracking of
their progress.

4.2. Environmental control

The command and control exemplar will provide a service that
will allow, for instance, manipulation of multiple devices in a
smart home either directly with speech commands or through
voice communication with assistive robots.

Current home automation systems and the increasingly
popular Internet of Things (IoT) can provide great support to
people with disabilities by improving their autonomy and safety
in daily living activities.

There are several ways in which CloudCAST will improve
on existing speech recognition solutions. Although user inter-
faces based on voice interaction are particularly suited for this
type of application, current systems devised for assistive tech-
nology or for the mainstream market are unsuitable, in terms of
performance, for many potential users. Common limitations are
the inability to be completely hands-free and poor recognition
performance.

Command and control systems are particularly useful for
subjects with mobility issues. In many cases these people also
experience speech disorders for which available speech recog-
nition systems are not optimized. The possibility of using per-
sonalised speech models could greatly enhance the recognition
accuracy and therefore the reliability of the system. Further-
more the speech material produced by such users will be of
great value to improve future speech models for other users with
similar issues.

The ability to define a customised grammar will render the
system significantly more robust to speech disfluencies, envi-
ronment noise and recognition ambiguity. Keeping grammars
simple, with few word options (low perplexity) at each stage of
the control sequence will make the system less prone to recog-
nition errors.

Since many actual home automation fieldbuses can be
easily connected to the internet and IoT devices are natively
equipped with this property, cloud services developed within
the CloudCAST project can be easily implemented, and will be
flexible and customizable. The potential of the exemplars can
be extended through the use of specific open source servers ded-
icated to the integration of home automation technologies and
IoT solutions, such as Openhab [8].

4.3. Speech therapy

The ability to communicate is one of the most basic human
needs. Many lose the ability to communicate, due to a range of
health conditions which result in a speech impairment. Speech
therapy helps improve communication ability and produces
benefits in terms of quality of life and participation in society.
Articulation therapy aims to improve the speech of people with
speech impairment. It is however time-consuming, and patients
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rarely receive sufficient therapy to maximise their communica-
tion potential [23, 24].

In articulation therapy speech therapists work with patients
on the production of specific speech sounds and provide feed-
back on the quality of these speech sounds. This process helps
the patient improve their production of these sounds thereby im-
proving the overall intelligibility of speech. Our previous re-
search shows that computer programs using speech recognition
can improve outcomes of speech therapy for adults with speech
difficulties [25, 26]

For our CloudCAST exemplar we intend to build on our
past work to develop a web-based application. This demonstra-
tor will enable therapists and clients to work together to specify
speech exercises. These exercises could then be independently
completed by the client between therapy sessions.

A big advantage of using technology over traditional prac-
tice will be that therapists can monitor and review the progress
that their client has made. During the completion of the ex-
ercises, the speech produced by the client will be scored and
then stored for review. This means that any difficulties that they
encounter during the exercises can be identified and discussed
with the therapist.

We have previously developed techniques for using auto-
matic speech recognition to provide feedback to patients prac-
tising their speech [25, 27]. These approaches are based on
using specially developed speech recognition software able to
provide objective feedback, which acts as a substitute for the
judgement of an expert listener, such as the speech and language
therapist. This feedback can be given to patients when they are
practising either with a therapist or on their own between ther-
apy sessions [26]. We will use especially adapted recognisers
available via the CloudCAST platform to generate this objec-
tive feedback. We will then make these approaches available in
a range of motivational exercises.

5. Data collection and repository
CloudCAST will also serve as a data repository for the dis-
tribution of existing databases and for the acquisition of new
databases, along with provided tools for that collection. Below
we discuss the first database that will become freely available
in CloudCAST, TORGO, and the database scheme we will use
to represent future data collection

5.1. TORGO

TORGO consists of aligned acoustic and EMA measurements
from individuals with and without cerebral palsy (CP), each of
whom recorded 3 hours of data [28]. CP is one of the most
prevalent causes of speech disorder, and is caused by disrup-
tions in the neuro-motor interface [29] that do not affect com-
prehension of language, but distort motor commands to the
speech articulators, resulting in relative unintelligibility [30].
The motor functions of each participant in TORGO were as-
sessed according to the standardized Frenchay Dysarthria As-
sessment [31] by a speech-language pathologist affiliated with
the Holland-Bloorview Kids Rehab hospital and the University
of Toronto. Individual prompts were derived from non-words
(e.g., /iy-p-ah/ [32]), short words (e.g., contrasting pairs from
[33]), and restricted sentences (e.g., the sentence intelligibility
section in the Yorkston-Beukelman Assessment [34], and sen-
tences from MOCHA-TIMIT.

The EMA data in TORGO were collected using the three-
dimensional Carstens Medizinelektronik AG500 system [35,

36]. Sensors were attached to three points on the surface of the
tongue, namely tongue tip (TT – 1 cm behind the anatomical
tongue tip), the tongue middle (TM – 3 cm behind the tongue
tip coil), and tongue back (TB, approximately 2 cm behind the
tongue middle coil). A sensor for tracking jaw movements (JA)
was attached to a custom mould over the lower incisors [37].
Four additional coils were placed on the upper and lower lips
(UL and LL) and the left and right corners of the mouth (LM
and RM). Reference coils were placed on the subject’s fore-
head, nose bridge, and behind each ear above the mastoid bone.

5.2. Future database scheme

New users of CloudCAST can immediately use our database
framework for representing the data. To a large extent, this
framework is designed to be generic to all speech recording
tasks, and not all components need to be utilized. The database
schema is broken down into three core sections: the subject, the
task, and the session. A high-level overview of the data repre-
sentation is shown in Figure 2.

The subject section generally involves aspects related to the
speaker, including demographics, levels of permission to use the
data, and factors affecting the subject’s language quality, such
as country of origin, country of residence, spoken languages,
history of smoking, and education level. The task section spec-
ifies the language task (e.g., picture description, conversation,
reading of text, repetition of audio) along with a bank of avail-
able task instances (e.g., pictures to be used in the picture de-
scription task). The system supports a variety of question and
answer types, including text, speech, multiple-choice, and fill-
in-the-blank, with the ability for easy extension to new types.
Each task instance is optionally rated with a level of difficulty,
measured across arbitrary dimensions (e.g., phonological com-
plexity, syntactic complexity). Information related to automatic
scoring of tasks is stored along with each task instance, where
appropriate (e.g., the correct answer to a multiple-choice ques-
tion). Each subject can be associated with a number of record-
ing sessions, and each session can be associated with a num-
ber of task instances. The session section stores the subject re-
sponses to specific task instances every time they interact with
the system. This includes their language data, as well as meta-
data such as total amount of time spent on each task, and date
of completion.

This database is designed to be extensible to future needs,
and will be especially useful to streamline data organization to
projects that otherwise have a more clinical focus. It enables (i)
longitudinal subject assessments, due to the ability to accom-
modate multiple language task instances in order to avoid ’the
learning effect’ over time, (ii) dynamic variation of task instance
difficulty and type based on subject performance, and (iii) auto-
mated scoring of subject performance where appropriate.

5.3. Ethics

As part of the CloudCAST initiative we will be seeking to col-
lect speech data from individual participants. To do so we must
ensure that we fully respect their personal data. As part of
this process professionals who initiate a service through Cloud-
CAST will need to first confirm that they are abiding by the
local ethics and governance rules.

For individual participants making use of CloudCAST ser-
vices we will follow a process approved by the University of
Sheffield Research Ethics Committee. It is proposed that as
part of this process we will first fully explain to each individual
user when they register with CloudCAST the background to the
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Figure 2: Simplified database schema, arranged into three core sections: Subject, Session, and Task.

project and how we intend to use their speech data. Participants
will be able to opt-in to different levels of engagement with the
CloudCAST initiative. At the most basic level, a participant will
be able to make use of the CloudCAST services without their
data being used for further research, or shared with other re-
searchers. The second level of participation can be selected by
the participant when they wish to allow the CloudCAST team
to retain their data for further research. The final level of par-
ticipation can be selected by participants when they wish their
data to be retained and potentially distributed to other speech
researchers.

As part of the on-going relationship with the participants,
they will periodically be asked to re-confirm their consent for
their data to be used in the way they chose.

6. Conclusions
CloudCAST aims to create a self-sustaining community of
academic and speech professionals which will continue to
grow after its 3 year funding period. It is our belief that
only by collaborating in this way can we make the bene-
fits of speech technology available to those who need it most
and at the same time create the knowledge bases for further
technical improvement. To attain critical mass we need to
widen the participants beyond the initial partners. If you are
interested, please contact us by registering on our website:
http://cloudcast.rcweb.dcs.shef.ac.uk/
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Abstract
The diagnosis and monitoring of Alzheimer’s Disease (AD),
which is the most common form of dementia, has been the
motivation for the development of several screening tests such
as Mini-Mental State Examination (MMSE), AD Assessment
Scale (ADAS-Cog), and others. This work aims to develop an
automatic web-based tool that may help patients and therapists
to perform screening tests. The tool was implemented by adapt-
ing an existing platform for aphasia treatment, known as Virtual
Therapist for Aphasia Treatment (VITHEA). The tool includes
the type of speech-related exercises one can find in the most
common screening tests, totalling over 180 stimuli, as well as
the Animal Naming test. Its great flexibility allows for the cre-
ation of different exercises of the same type (repetition, calcula-
tion, naming, orientation, evocation, ...). The tool was evaluated
with both healthy subjects and others diagnosed with cognitive
impairment, using a representative subset of exercises, with sat-
isfactory results.

1. Introduction
Alzheimer’s Disease (AD) is a neurodegenerative disease which
represents 60 to 70% of the dementia cases in Portugal [1, 2, 3].
However, its first signs can go unnoticed [1, 2, 4, 5]. Typically,
AD is known to cause alterations of memory and of spacial and
temporal orientation [3, 4, 6]. Furthermore, AD increases dra-
matically with age and it has no cure. Nevertheless, an early
diagnosis may slow down its progression by enabling a more ef-
fective treatment [5]. For this purpose, several neuropsycholog-
ical tests exist in the literature, each targeting different cognitive
domains and capabilities. The Mini-Mental State Examination
(MMSE) [7] and the AD Assessment Scale - Cognitive sub-
scale (ADAS-Cog) [7] are two of the most popular tests used in
Portugal for screening cognitive performance and tracking al-
terations of cognition over time. They involve the assessment
of different capabilities, such as orientation to time and place,
attention and calculus, language (naming, repetition, and com-
prehension), or immediate and delayed recall. Another type of
test also commonly applied by therapists in the diagnosis of AD
is the Verbal Fluency test [7]. In this test, the patient should
produce as many words as he can beginning with a particular
letter (phonemic fluency test) or belonging to a particular cate-
gory, e.g. fruits (semantic fluency test), during 60s. This test is
used both in assessing the verbal initiative ability and executive
function such as the inhibition ability, the difficulty in switch-
ing among tasks, and the perseverance attitude [7]. Typically,
the most commonly used versions for the Portuguese popula-
tion consider the letter “P” for the phonemic version and the
“Animal” category for the semantic category. Other tests not so
frequently adopted for this population are the Wechsler Adult

Intelligent Scale - III (WAIS-III) [7], which provides a measure
of general intellectual function in older adolescent and adults,
and the Stroop test [7], which is a measure of cognitive con-
trol, evaluating how easily a person can maintain a goal in mind
while suppressing habitual responses.

Most of these tests include a verbal component provided in
response to a visual or spoken stimulus solicited by a therapist.
Thus, due to their nature, and the need to continuously moni-
tor the cognitive decline over time, these tests lend themselves
naturally to be automated through speech and languages tech-
nologies (SLT). A tool including the digitized version of these
tests with the possibility of an immediate evaluation through
automatic speech recognition could be of valuable support in
health care centres. The therapist will have access to an or-
ganized archive of tests which could be administered in the
traditional way, or remotely, when the physical dislocation of
the subject is hampered by logistic constraints or physical dis-
abilities. Recordings and evaluations will be stored and made
available for later consultation. On the other hand, research has
shown that cognitive skills, which can fade without stimulation
as we age, can be improved by playing games that stimulate
brain activity [8]. An automated tool for the monitoring of AD
could be easily extended to support exercises and brain games
for the daily training of cognitive capabilities such as short-time
memory, attention, calculus, reasoning ability and many others.

Up to our knowledge, there are few works in the literature
that exploit SLT to automate certain types of neuropsycholog-
ical tests. Some of the most relevant are the kiosk system de-
signed to use at home as a prevention instrument for early detec-
tion of AD described in [5], the end-to-end system for automat-
ically scoring the Logic Memory test of the WAIS-III presented
in [9], and the system that implements a modified version of
the MMSE based on the IBM ViaVoice recognition engine of
[10]. These works show the recent increasing interest on this
area, but also the long road ahead to support the large variety
of existing neuropsychological tests (e.g., some of them are not
fully automated).

This work makes a step towards filling this gap by intro-
ducing a set of neuropsychological tests for AD intended for the
Portuguese population, which were integrated into an automatic
web-based system [11]. The system presented in this work ex-
tends an on-line platform named VITHEA [12] used for aphasia
treatment that incorporates SLT to provide word naming exer-
cises. For this to be possible, the system resorts to a keyword
spotting technique which consists of detecting a certain set of
words by using a competing background model with the key-
words model [13]. This platform is used daily by patients and
speech therapists and has received several awards from both the
speech and the health-care communities. The success of this
platform and its flexibility, that allows to create different ex-

103
SLPAT 2015, 6th Workshop on Speech and Language Processing for Assistive Technologies, pages 103–109,

Dresden, Germany, 11 September, 2015. c©2015 The Association for Computational Linguistics



ercises, have motivated its use as a foundation for this work.
Our first step was the automation of the exercises in MMSE
and ADAS-COG that involve speech. The second step was the
implementation of the semantic fluency test, starting with the
Animal category, also known as Animal Naming test. As ex-
plained in the next sections, the automation of such tests have
raised several technological challenges, both for the automatic
speech recognition and text-to-speech synthesis technologies.

In the following, Section 2 briefly presents the VITHEA
platform that was used as a foundation for this work, while
Section 3 describes the extended system resulting from the im-
plementation of the selected neuropsychological tests into the
VITHEA platform. Section 4 reports how each type of test was
concretely implemented. Then, in Section 5 the focus is on the
experiments, both detailing the automatic speech recognition
module, the speech corpus used for evaluation and the exper-
imental results. Finally, Section 6 presents the conclusions and
future work.

2. The VITHEA platform
VITHEA (Virtual Therapist for Aphasia Treatment) is a web-
based platform developed with the collaboration of the Spo-
ken Language Processing Lab of INESC-ID (L2F) and the Lan-
guage Research Laboratory of the Lisbon Faculty of Medicine
(LEL). The system aims at acting as a ”virtual therapist”, al-
lowing the remote rehabilitation from a particular language dis-
order, aphasia. For this to be possible, the platform comprises
two specific modules, dedicated respectively to the patients, for
carrying out the therapy sessions, and to the clinicians, for the
administration of the functionalities related to them (e.g., man-
age patient data, manage exercises, and monitor user perfor-
mance). In this way, speech therapy exercises created by speech
therapists through the clinician module, can be later accessed
by aphasia patients through the patient module with a web-
browser. During the training sessions, the role of the speech
therapist is taken by a ”virtual therapist” that presents the exer-
cises and is able to validate the patients answers.

The overall flow of the system can be described as fol-
lows: when a therapy session starts, the virtual therapist shows
to the patient, one at a time, a series of exercises. These may
include either the presentation of images, the reproduction of
short videos or audios, and textual information. The patient
is then required to respond verbally by naming the contents of
the object or action that is represented. The utterance produced
is recorded, encoded and sent via network to the server side.
Here, a web application server receives the audio file which is
processed by the ASR system, generating a textual representa-
tion of the patient’s answer. This result is then compared with
a set of predetermined textual answers (for the given question)
in order to verify the correctness of the patient’s input. Finally,
feedback is sent back to the patient with the correctness of the
answer provided. Figure 1 illustrates the use of the VITHEA
platform.

3. Extending VITHEA for
neuropsychological screening

Extending VITHEA for including neuropsychological tests in-
volved important alterations in the original platform, both on
the patient and the clinician modules. However, the flexibility
of VITHEA allows for the easy addition of new categories of
exercises. These can then be combined in multiple ways by the
clinician to form new tests, and to create different exercises of

Figure 1: A caption of the VITHEA platform during the presen-
tation of an exercise.

the same type. According to the original system, in order to an-
swer the question presented by the virtual therapist, the patient
needs to manually interact with the system to start and stop the
recording of his answer, and to advance among different stimuli.

The usability of this interface has been adapted to meet the
needs of an ageing population, with cognitive impairments. In
particular, we considered important to implement the following
updates:

• To simplify the interaction with the tool and make the
evaluation process more fluid, we minimized the use of
the mouse. The interface now automates part of the
recording process and the progression between stimuli.
An action from the patient is only required to stop the
recording process.

• Since cognitive impairments and ageing often results in
a limited auditory capability, the speech rate of the ther-
apist has been tuned until finding the best compromise
between a more understandable but still natural voice.

Also, the feedback from the neurologists involved in this
work provided us important guidelines regarding the presenta-
tion of the tests. Following their advices, we introduced the
alterations listed below:

• To make the interaction with the system more natural
the virtual therapist now provides a random feedback to
the patient when the evaluation switches among different
classes of stimuli.

• Optional instructions have been added for the more com-
plex questions.

• For some stimuli, the virtual therapist now provides a
semantic hint if the patient has not provided an answer
after a given amount of time.

The platform now allows also to store some additional per-
sonal information of the profile of the patient that are needed
for the assessment of some sub-tests (i.e. place of birth, age,
etc.), and the result of the assessment in terms of test score ob-
tained. During the application of a neuropsychological test, the
scores are individually calculated for each question. After the
answer has been processed by the automatic speech recogni-
tion (ASR) system, the platform computes both the maximum
score allowed for the current question, and the actual score ob-
tained by the patient. These results are stored in the database.
At the end of the test, both the maximum scores and the ob-
tained scores for each question are summed separately to obtain
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a global score in the form score/maxScore (e.g., a score of
18/22). This result can then be consulted by the patient. In or-
der to follow the patient’s progress, each time an evaluation test
is performed, the platform sends an e-mail with a summary of
the patient’s performance to the therapist assigned to him/her.

Overall, these alterations contributed to building a simpli-
fied interface, suited for aged people, especially if cognitively
impaired.

4. Automated tests
Since the selected neuropsychological tests comprise common
or similar questions, we may approach its concrete implemen-
tation organized by type of question and the underlying tech-
nology with which they were implemented, rather than per
test. Each type of question has set different challenges, each of
which has been addressed individually with ad-hoc solutions.
Overall, a total of 185 stimuli belonging to different types of
tests have been selected for their implementation in the plat-
form.

4.1. Naming objects and fingers

This type of stimuli belongs both to the MMSE and the ADAS-
cog tests and evaluates a person’s naming ability. Similarly to
the exercises used in aphasia treatment, it consists of naming
a series of objects that are shown in pictures, one at a time.
These stimuli were implemented following a keyword spotting
approach. A maximum score of 1 is given for each correct an-
swer. The major innovation relative to the VITHEA exercises
was the introduction of an optional semantic cue for some of
the questions. This was implemented by adding a timer in the
component responsible for the answer’s recording and by mak-
ing the virtual therapist to speak the cue after 20 seconds if no
answer is detected. For this to be possible, both the clinician
module and the internal structure of the database had to be ex-
tended for managing and storing the additional information. In
fact, since the recording process is started from the beginning,
the semantic cue is also recorded together with the patient’s an-
swer. Consequently, the logic of the patient module had also to
be updated in order to remove the semantic cue spoken by the
virtual therapist.

4.2. Repetition

The repetition question is part of the MMSE test and consists
of repeating the following sentence: ”O rato roeu a rolha“ (the
mouse gnawed the stopper). This question could be easily im-
plemented with a keyword/key-phrase spotting approach, just
like the ones for aphasia treatment. The maximum score is 1,
which corresponds to a sentence correctly repeated.

4.3. Attention and calculation

This type of question belongs to the MMSE test, the idea is
to successively subtract 3 beginning on 30 until 5 answers are
given. In our first approach, we created a set of 5 different stim-
uli, each one asking separately for a specific calculation. These
questions were also implemented with a keyword spotting ap-
proach. A score of 1 is given for each stimulus that corresponds
to a correct answer, for a maximum score of 5.

4.4. Orientation to time, place and person

These type of stimuli are part both of the MMSE and the ADAS-
cog, though some questions differ. They comprise stimuli in-

tended to evaluate a person’s orientation ability, asking the pa-
tient to report the current year, day, month, his name, the coun-
try and the town he lives in, among others. These are dynamic
questions in the sense that there is not a universal answer to
each question as it changes depending on the time, place and
person. The solution was to provide several pre-compiled lan-
guage models that were carefully structured so that, at any time,
the platform knows which is the right model to chose. For
the questions of orientation to person, the necessary informa-
tion is acquired at the time of the creation of the user profile
and then it is used to automatically generate the corresponding
language models. The majority of these questions were imple-
mented based on a standard keyword spotting approach. How-
ever, for the day and hour, it was necessary to create dedicated
rule-based grammars. A correct answer is always scored with 1
point, while an incorrect answer scores 0.

4.5. Word recognition

The word recognition stimuli belong to the ADAS-Cog test and
consist of presenting the patient a list with 12 words to learn,
one at a time. Words are written in block letters on white cards.
The learning process is made by asking the patient to read each
word aloud and try to remember it. Then, a new list with 24
words is shown in the same way. This new list contains the 12
original words of the learning list, plus 12 new distracting words
that are carefully chosen in terms of phonetic similarity and se-
mantic meaning. For each word, the patient is then asked to in-
dicate whether it was on the learning list or not. This whole pro-
cess is repeated in 3 trials. Just like the day and hour questions,
rule-based hand crafted recognition grammars for positive, neg-
ative or neutral answers were built. For the word recognition
task itself, each presented word is individually scored. Specif-
ically, a correct answer corresponds to a maximum score of 1,
which yields a total score of 72 for the word recognition sub-test
(i.e., 24 for each trial).

4.6. Evocation

Generally speaking, an evocation question consists of recalling
a series of words, whether they have been previously learned
or if they are subject to compliance with certain requirements.
In either cases, the spoken answers produced for this kind of
stimuli are commonly followed by filled pauses, i.e. hesita-
tion sounds. For this reason, we adopted a keyword spotting
approach that incorporates an ad-hoc model to deal with filled
pauses. In terms of score, the calculation is processed by con-
sidering the number of keywords that are correctly produced,
without repetitions.

For MMSE, the evocation question consists of the immedi-
ate and delayed recall of 3 words. This was implemented with
an auditory stimuli for the immediate recall task and with a tex-
tual stimuli for the delayed recall task. The presentation of the
evocation question that belongs to the ADAS-cog is very simi-
lar to the word recognition question. Basically, it consists of the
immediate recall of a list with 10 words that were previously
learned, the whole process is repeated in 3 trials.

4.7. Verbal Fluency

The animal naming question, which belongs to the Verbal Flu-
ency test, is the most challenging among the evocation tests.
This is explained by the fact that, contrarily to the other cases,
which are based on a limited domain vocabulary tasks, this
question comprises a more extended domain composed of the
name of all known species of animals. Theoretically, the lan-
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guage model should cover all the known species of animals,
however, in practice this is infeasible. Moreover, the size of the
language model directly impacts the output of the ASR system.
In fact, while a shorter list will cause the missing keywords to
never be recognized, a longer list will increase instead the per-
plexity of the task.

The automatic creation of an ad-hoc language model for
this type of question is detailed in [14], and is briefly reported
here. The starting point consisted of an existing list of animal
names [15] that included 6044 animal names, grouped, classi-
fied, and labelled with its semantic category, without inflected
forms. Since some names are more likely and common than
others, the initial list was used to build a probabilistic language
model that exploited this information. The likelihood of each
term was computed considering the total number of results that
is returned by querying a web search engine. The retrieval strat-
egy had to be refined several times in order to find the optimal
approach, in fact initial queries have led to incorrect counts due
to homonyms of some terms. The final approach consisted in
using the animal name and the semantic category associated.
Finally, the likelihood associated with each term also allows to
sort the list numerically and thus to reduce its size by filtering
out less popular terms. After several experiments, the language
model that achieved the best results contained the 802 most pop-
ular animal names.

5. Experimental set-up
5.1. ASR/KWS system

The monitoring tool integrates the in-house ASR engine named
AUDIMUS [16, 17], a hybrid recognizer that follows the con-
nectionist approach [18]. The baseline system combines three
MLP-based acoustic models trained with Perceptual Linear Pre-
diction features (PLP, 13 static + first derivative), log-RelAtive
SpecTrAl features (RASTA, 13 static + first derivative) and
Modulation SpectroGram features (MSG, 28 static). These
model networks were trained with 57 hours of downsampled
Broadcast News data and 58 hours of mixed fixed-telephone
and mobile-telephone data in European Portuguese [19]. The
number of context input frames is 13 for the PLP and RASTA
networks and 15 for the MSG network. Neural networks are
composed by two hidden layers of 1500 units each one. Mono-
phone units are modelled, which results in MLP networks of 39
soft-max outputs (38 phonemes + 1 silence) [12].

In order to support a keyword spotting approach, the base-
line ASR system was modified to incorporate a competing back-
ground speech model that is estimated without the need for
acoustic model re-training. In fact, while keyword models are
described by their sequence of phonetic units provided by an
automatic grapheme-to-phoneme module, the problem of back-
ground speech modelling must be specifically addressed. Here,
the posterior probability of a background speech unit is esti-
mated as the mean probability of the top-6 most likely outputs
of the phonetic network at each time frame. In this way, there is
no need for acoustic network re-training.

5.2. Portuguese cognitive impaired speech corpus

To evaluate the feasibility of the monitoring tool, we collected
an ad-hoc speech corpus. This includes recordings of 5 peo-
ple diagnosed with cognitive impairments and 5 healthy control
subjects. All the participants are Portuguese native speakers.

Recordings took place in different environments with dif-
ferent acoustic conditions. In fact, healthy subjects were

recorded in a quiet, domestic environment, while patients were
recorded at CHPL, the Psychiatric Hospital of Lisbon. No par-
ticular constraints were imposed over background noise con-
ditions. Each session consisted approximately of a 20 to 30-
minutes recording. The data was originally captured with the
platform at 16 kHz, and later down-sampled to 8 kHz to match
the acoustic models sampling frequency. The collection of the
patients data, besides being emotionally demanding, it is a valu-
able resource which implied logistic difficulties.

Table 1: Speech corpus data, including gender, age, education
and diagnosis. B.E.: Basic Education, S.E.: Secondary Edu-
cation, MCI: Mild Cognitive Impairment, AD: Alzheimer Dis-
ease, PTD: Post-traumatic Dementia

User Gender Age Education Diagnosis
1 M 86 B.E. - 1st Cycle MCI
2 F 71 B.E. - 1st Cycle AD
3 M 60 B.E. - 1st Cycle PTD
4 F 79 Illiterate AD
5 M 80 S. E. MCI
6 F 67 B.E. - 1st Cycle Healthy
7 F 72 B.E. - 1st Cycle Healthy
8 M 76 B.E. - 1st Cycle Healthy
9 F 74 B.E. - 1st Cycle Healthy
10 M 76 B.E. - 1st Cycle Healthy

5.3. Evaluation results

Due to the extensiveness of the ADAS-cog test, it was infea-
sible to evaluate all the implemented neuropsychological tests.
In fact, we estimated that the total duration of the evaluation
would have been more than two hours, which was considered
unacceptable. Thus, only a representative subset of all the tests
has been selected, comprising a total of 41 stimuli. We have
considered different individual evaluation metrics, depending
on the type of automated tests and a global evaluation focused
on the targeted final application.

5.3.1. Evaluation of KWS-based tests

The Word Verification Rate (WVR) was used to assess the per-
formance of the automatic evaluation module in the tests based
on keyword spotting (KWS). This metric provides a measure of
the reliability of the platform as a verification tool. In order to
compute it, both manual and automatic transcriptions are pro-
cessed to indicate, for each utterance, if the expected keyword
has been said or not. Then, the WVR is computed for each
speaker as the number of coincidences between the manual and
automatic result (either true acceptances or true rejections) di-
vided by the total number of exercises. Thus, a result closer to
1 is desirable. Table 2 presents the WVR computed for each
speaker on all the tasks based on keyword spotting. Results
are provided separately for those tests that rely on simple KWS
(word-lists) and those based on rule-based grammars with com-
peting background model (i.e.: hours, date, yes/no, etc.). In
general, we can consider these results quite promising. In fact,
they are comparable to those reported in [13], in an evalua-
tion with aphasia patients. In this case, the average verifica-
tion rates are considerably better with healthy users, which was
expected due to the more challenging characteristics of the pa-
tients’ data. Nevertheless, the performance achieved with cog-
nitive impaired users is still quite promising. On the other hand,
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no significant differences can be observed regarding the KWS
strategy (word-list vs. rule-based grammar).

Table 2: WVR by speaker for keyword spotting exercises.

Patients

User KWS (word-list) KWS (rule-based)
1 0.78 0.79
2 0.78 0.93
3 0.74 0.71
4 0.91 0.50
5 0.65 0.79
Avg. WVR 0.77 0.74

Healthy

User KWS (word-list) KWS (rule-based)
6 0.91 0.86
7 0.91 0.93
8 0.91 0.93
9 0.87 0.86
10 0.83 0.86
Avg. WVR 0.89 0.89

5.3.2. Evaluation of evocation tests

The evocation exercises differ from the keyword spotting ex-
ercises in the sense that the answers are not evaluated as right
or wrong, but instead the number of terms correctly recalled is
counted. For this reason, we started by evaluating the Word
Error Rate (WER) between the reference (manual) and the hy-
pothesis (automatic) users’ answer. Evocation exercises are di-
vided into two categories: they may contain a limited number
of words to recall or, contrarily, they may consider an open
domain of possible answers complying to a specific semantic
domain (e.g., Animal Naming test). Thus, the evaluation was
processed separately for the two categories. The average WER
computed for patients and control group in the class of evoca-
tion exercises with a closed domain was 20.00% and 8.16%,
respectively. However, the average WER computed for patients
and control group on the Animal Naming test was much higher,
65.12% and 46.48%, respectively. After a closer analysis, we
noticed that the substitutions were the main source of error. This
may be explained by the poor language model used in this type
of question, since this is based on an extensive list of unigrams.
Basically, the size of the list impacts greatly the performance of
the ASR system by increasing its perplexity. Moreover, the list
comprises uncommon animal names and some of them are quite
short, which implies that even a small sound may be detected as
an animal. It is interesting to notice, however, that although the
results in terms of WER are clearly unsatisfactory, and demand
further research, the number of animals recognized is not so
different from the reference number of animals actually said.

5.3.3. Global evaluation

An evaluation analysis of the automatic tests closer to the final
targeted application is necessary to better assess their possible
applicability as part of an automatic screening platform. For a
sub-set of the tests, a straightforward evaluation method con-
sists of comparing the total manual and the automatic scores
achieved by the user according to the scoring values described
in section 4 for each type of test. In particular, the Mean

Absolute Error (MAE) and the Mean Relative Absolute Error
(MRAE) is used to measure the differences between the over-
all scores computed manually and automatically. The scores
were calculated according to the traditional assessment that is
performed when applying a neuropsychological test. Table 3
reports the MAE and MRAE for the previously reported sub-
sets of stimuli and the maximum possible score for each test
set, which corresponds to the maximum error achievable, in ad-
dition to the results for two specific screening tests: the MMSE
and the Animal Naming test. For these two tests, the scores
achieved by each speaker are also shown in Figures 2 and 3.

Table 3: MAE and MRAE (in brackets) by type of question and
by neuropsychological test.

Question type / Test Max. Score Patients Healthy
KWS (word-list) 23 3.00 (26%) 2.60 (12%)
KWS (rule-based) 14 2.80 (37%) 1.60 (15%)
Evocation (w/o animals) 11 0.80 (23%) 0.80 (11%)
MMSE 22 2.20 (21%) 2.80 (14%)
Animal Naming ∞ 2.60 (24%) 1.80 (17%)

In general, the achieved results were better for healthy peo-
ple than for patients. This is an expected result due to the im-
paired condition of the patients, which are reflected on the qual-
ity and coherence of their speech. The most common symp-
toms, even in less impaired subjects, are a reduced intensity,
a reduced pitch, and a hoarse voice. Besides, quite often dur-
ing the evaluation, patients started talking of general topics of
their interest not related with the question under evaluation. It
was also the case that sometimes the subject uttered his an-
swer when the virtual therapist was still explaining the stim-
ulus, thus resulting in overlapped speech. Finally, differently
from healthy subjects, patients sometimes changed their mind
while they were answering a question. This may increase the
perplexity of the ASR result, especially when dealing with rule-
based keyword spotting questions, due to the added complexity
of the language models.

The MAE error reported for question type and test ranges
from 0.80 to 3.00 for the patients, and from 0.80 to 2.80 for the
control group. In relative terms, the mean relative error with
respect to the manual scores (MRAE) ranges from 21% to 37%
for the patients group, and from 12% to 17% for the control
group. Notice that, since the scores achieved by healthy users
are generally higher and since there are few differences between
the two groups in terms of MAE, the MRAE for patients is con-
siderably higher. Alternatively, it is worth comparing the MAE
with the maximum possible score. This value depends on the
number of stimuli selected for each test. For the Animal Nam-
ing test, the maximum score could not be computed since the
number of elements a subject is able to name in the given time
is unknown. In general, it can be observed that the difference
between the automatic and the manual evaluation is relatively
small compared to the maximum score. For instance, we can
observe that the MAE for the questions based on keyword spot-
ting is 3.00 out of 23 for the patients, which corresponds to 13%,
and 2.60 out of 23 for control subjects, which corresponds to
11.3%. Overall, we consider these results a quite good perfor-
mance, suggesting that the platform may be useful and reliable
as a monitoring tool.

5.4. Discussion about the platform

The conducted evaluation and data collection also allowed us to
collect important feedback about the platform itself. In fact, we
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Figure 2: On the left side, MMSE scores of the human and
automatic evaluation for the patient speakers. On the right side,
MMSE scores of the human and automatic evaluations for the
healthy speakers.
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Figure 3: On the left side, Animal Naming scores of the hu-
man and automatic evaluation for the patient speakers. On the
right side, Animal Naming scores of the human and automatic
evaluations for the healthy speakers.

noticed that an advanced impaired condition may render more
difficult the use of the system, specially when combined with
deafness and with computer illiteracy, two factors that are asso-
ciated with ageing. Patients with a more pronounced cognitive
impairment or with auditory impairments, may have difficulties
in understanding the question being asked. The computer illit-
eracy, however, may no longer be a problem in the not so distant
future. Nevertheless, we expect that this tool will have adhesion
for its usefulness and relevance. In fact, during test application,
both the patients and healthy people demonstrated their appre-
ciation for the platform, indicating that this is an interesting and
appealing system. Moreover, they showed their interest in re-
peating the tests and using the platform regularly. Particularly,
some of the patients were captivated by the animated virtual
character, they liked its cartoon nature and the fact that it inter-
acted with them verbally. This factor, together with the flexibil-
ity of the platform, let us think that in a near future the platform
could be successfully turned in an environment useful both for
training and monitoring cognitive skills. In fact, the kind of ex-
ercises that were adapted in the current version of the platform
could be easily extended to the kind of games that are useful for
stimulating brain activity, such as attention, memory etc. Fur-
ther, the platform also allows to store recordings and evaluation
results of each patient and make them available in an organized
way, which can be useful for later consultation and comparison
both by patients and by clinicians.

Finally, this platform raises interesting questions of ethi-
cal nature, i.e. whether such an automated tool should directly
provide patients with a diagnosis similar to the one given by a
clinician, or whether medical diagnosis should rather be pro-

duced exclusively by human doctors. One key related question
is that diagnosis of mental disorders should always keep into
account also normative data related with the language and edu-
cation level of the patient. While we envision the possibility to
incorporate the evaluations of such factors in future versions of
the platform, these are not currently encompassed by our sys-
tem. Finally, another important ethical question is whether pa-
tients should always be presented with the results of the auto-
mated tests. One may indeed argue that, in particular in pres-
ence of negative outcomes, the sensitivity of patients may be
hurt and that, in such situations, it may be advisable to avoid
exposing directly the tests’ results to the patient and contact,
instead, his/her relatives.

6. Conclusions and Future Work
In this work we developed an automatic web-based tool with
SLT integration which could be used for monitoring cognitive
impairments. The platform automates a set of neuropsycholog-
ical tests that are commonly applied by therapists to assess the
cognitive condition of a person. As far as we know, it is the
only platform of this type implemented for the Portuguese pop-
ulation. The system has been assessed both with healthy sub-
jects and patients. The mean absolute error between the manual
and the automatic evaluation was relatively small, showing the
feasibility of such type of system. We believe that this platform
could be helpful for therapists and patients in the diagnosis of
the disease. Its flexibility also allows the very easy creation of
new exercises of the same type, with different stimuli. Besides,
it could be easily extended to include different types of exercises
that can be used for the daily training of cognitive abilities. For
these reasons, we think that this tool could be an added value
for society, helping in the prevention and in the early diagnosis
of AD and mild cognitive impairments.

As future work we wish to remove completely the mouse
interaction with the platform during the test application, auto-
matically detecting when to stop the recording through silence
detection technique. As the test currently already advances on
its own when the recording is stopped, implementing this mod-
ification would enable to perform a complete test without any
interaction, in a more agile way. Also, we plan to address
the verbal fluency task, for which the preliminary results of
the baseline system show much room for improvement. Fi-
nally, as mentioned in Section 5.4, medical diagnosis of demen-
tia should keep into account also normative data related with
the language and education level of the patient. In this sense,
one open research question is how to automate the evaluation of
these factors and incorporate them in the final diagnosis emit-
ted by the system. Further, it would be desirable to extend the
platform to incorporate intelligent filters aimed at identifying
critical/negative outcomes, whose disclosure to the patient may
risk hurting his/her sensitivity.
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Dr. José Salgado, clinical director of the Psychiatric Hospital of
Lisbon Julio de Matos, for having made this work possible and
for having provided us constant and full support. We also want
to thank Dr. Inês Cunha and Dr. Vitorina Passão for their kind
availability and precious feedback. This work was supported
by national funds through – Fundação para a Ciência e a Tec-
nologia (FCT), under Grants SFRH/BD/97187/2013 and with
reference UID/CEC/50021/2013.

108



8. References
[1] B. Nunes, “A demência em números,” in A Doença de

Alzheimer e Outras Demências em Portugal, A. Castro-Caldas
and A. Mendonça, Eds. LIDEL, 2005.

[2] P. Moreira and C. Oliveira, “Fisiopatologia da doença de
alzheimer e de outras demências,” in A Doença de Alzheimer
e Outras Demências em Portugal, A. Castro-Caldas and
A. Mendonça, Eds. LIDEL, 2005.

[3] I. Santana, “A doença de alzheimer e outras demências - diagn-
stico diferencial,” in A Doença de Alzheimer e Outras Demências
em Portugal, A. Castro-Caldas and A. Mendonça, Eds. LIDEL,
2005.

[4] J. Barreto, “Os sinais da doença e a sua evolução,” in A Doença
de Alzheimer e Outras Demências em Portugal, A. Castro-Caldas
and A. Mendonça, Eds. LIDEL, 2005.

[5] R. Coulston, E. Klabbers, J. Villiers, and J. Hosom, “Application
of speech technology in a home based assessment kiosk for early
detection of alzheimer’s disease,” in Proc. Interspeech, 2007.

[6] M. Guerreiro, “Avaliação neuropsicolgica das doenças degenerati-
vas,” in A Doença de Alzheimer e Outras Demências em Portugal,
A. Castro-Caldas and A. Mendonça, Eds. LIDEL, 2005.

[7] E. Strauss, E. Sherman, and O. Spreen, A Compendium of Neu-
ropsychological Tests: Administration, Norms, and Commentary,
3rd ed. Oxford University Press, 2006.

[8] J. A. Anguera, J. Boccanfuso, J. L. Rintoul, O. Al-Hashimi,
F. Faraji, J. Janowich, E. Kong, Y. Larraburo, C. Rolle, E. John-
ston, and A. Gazzaley, “Video game training enhances cognitive
control in older adults,” Nature, vol. 501, pp. 97–101, 2013.

[9] M. Lehr, I. Shafran, and B. Roark, “Fully automated neuropsy-
chological assessment for detecting mild cognitive impairment,”
in In Interspeech, 2012.

[10] S. S. Wang, P. D, J. Starren, and P. D, “A java speech implemen-
tation of the mini mental status exam.”

[11] C. Amorim, “Automatic tool for screening of cognitive impair-
ments,” Master’s thesis, Instituto Superior Tcnico, June 2014.

[12] A. Abad, A. Pompili, A. Costa, I. Trancoso, J. Fonseca, G. Leal,
L. Farrajota, and I. P. Martins, “Automatic word naming recogni-
tion for an on-line aphasia treatment system,” Computer Speech
& Language, vol. 27, no. 6, pp. 1235 – 1248, 2013, special Issue
on Speech and Language Processing for Assistive Technology.

[13] A. Abad, A. Pompili, A. Costa, and I. Trancoso, “Automatic word
naming recognition for treatment and assessment of aphasia,” in
Proc. Interspeech, 2012.

[14] H. Moniz, A. Pompili, F. Batista, I. Trancoso, A. Abad, and
C. Amorim, “Automatic recognition of prosodic patterns in se-
mantic verbal fluency tests - an animal naming task for edutain-
ment applications,” in 18TH INTERNATIONAL CONGRESS OF
PHONETIC SCIENCES, 2015.

[15] N. J. Mamede, J. Baptista, C. Diniz, and V. Cabarrao, “String:
An hybrid statistical and rule-based natural lan- guage processing
chain for portuguese,” in International Conference on Computa-
tional Processing of Portuguese Propor, 2012.

[16] H. Meinedo, D. Caseiro, J. Neto, and I. Trancoso, “AU-
DIMUS.Media: a Broadcast News speech recognition system for
the European Portuguese language,” in Proc. International Con-
ference on Computational Processing of Portuguese Language
(PROPOR), 2003.

[17] H. Meinedo, A. Abad, T. Pellegrini, I. Trancoso, and J. Neto,
“The L2F Broadcast News Speech Recognition System,” in Proc.
Fala2010, 2010.

[18] N. Morgan and H. Bourlad, “An introduction to hybrid
HMM/connectionist continuous speech recognition,” IEEE Signal
Processing Magazine, vol. 12, no. 3, pp. 25–42, 1995.

[19] A. Abad and J. Neto, “Automatic classification and transcription
of telephone speech in radio broadcast data,” in Proc.International
Conference on Computational Processing of Portuguese Lan-
guage (PROPOR), 2008.

109



Extending a Dutch Text-to-Pictograph Converter to English and Spanish

Leen Sevens, Vincent Vandeghinste, Ineke Schuurman, Frank Van Eynde

Centre for Computational Linguistics
KU Leuven, Belgium

firstname@ccl.kuleuven.be

Abstract
We describe how a Dutch Text-to-Pictograph translation sys-
tem, designed to augment written text for people with Intellec-
tual or Developmental Disabilities (IDD), was adapted in or-
der to be usable for English and Spanish. The original system
has a language-independent design. As far as the textual part
is concerned, it is adaptable to all natural languages for which
interlingual WordNet [1] links, lemmatizers and part-of-speech
taggers are available. As far as the pictographic part is con-
cerned, it can be modified for various pictographic languages.
The evaluations show that our results are in line with the perfor-
mance of the original Dutch system. Text-to-Pictograph trans-
lation has a wide application potential in the domain of Aug-
mentative and Alternative Communication (AAC). The system
will be released as an open source product.
Index Terms: Augmentative and Alternative Communication,
Pictographic Languages, Text-to-Pictograph Translation

1. Introduction
In our daily lives, we are constantly confronted with pic-
tographs. Think of traffic signs, signs in buildings that direct
visitors to the elevators, the meeting rooms, the toilets, and the
emergency exits, or signs for telling people that dogs need to be
kept on a leash (see Figure 1).

Figure 1: Pictographs in our daily lives.

Similar pictographs are used as a form of Augmentative
and Alternative Communication (AAC). AAC assists people
with severe communication disabilities to be more socially ac-
tive in interpersonal interaction, learning, education, commu-
nity activities, employment, volunteering, and care manage-
ment. Schools, institutions, and sheltered workshops use spe-
cific pictographs that are related to everyday activities and ob-
jects to allow accessible written communication between chil-
dren or adults with Intellectual or Developmental Disabilities
(IDD) and their caregivers, in an offline setting.

It is undeniable that current technological advances influ-
ence our lives in various aspects. Not being able to access or
use information technology is a major form of exclusion. In or-
der to reduce social isolation, there is an acute need for digital
picture-based communication interfaces that enable contact for
people with IDD. Adding pictographs to text can provide help in
reading and understanding the text. It is estimated that between

two and five million people in the European Union could ben-
efit from symbols or symbol-related text as a means of written
communication [2].

The Dutch Text-to-Pictograph translation system that is de-
scribed in Vandeghinste et al. [3] is used in the WAI-NOT1 com-
munication platform. WAI-NOT is a Flemish, non-profit orga-
nization that gives people with severe communication disabili-
ties the opportunity to familiarize themselves with computers,
the internet, and social media. The website makes use of an
email client that automatically augments written text with a se-
ries of Beta2 or Sclera3 pictographs. WAI-NOT’s first transla-
tion system would rely on a simple one-on-one match between
the input words and the pictograph file names, usually leading
to erroneous translations and leaving many words untranslated.
Vandeghinste et al. [3] improved this engine by introducing lin-
guistic analysis. Their Text-to-Pictograph translation system
was made as language-independent as possible.

Within the framework of Able to Include,4 which aims to
improve the living conditions of people with IDD, we built En-
glish and Spanish versions of this system. English and Spanish
being a Germanic and a Romance language, respectively, we
show that the engine manages to generalize well over different
European language families.

After a discussion of related work (section 2), we introduce
the Beta and Sclera pictograph sets (section 3), followed by an
explanation of how existing links between WordNets can be
used to automatically connect pictographs to words in source
languages other than Dutch (section 4). In the remainder of this
paper, we describe the system’s general architecture (section 5).
The evaluations (section 6) show that our results are in line with
the performance of the Dutch system. Section 7 shows that the
Text-to-Pictograph system has a wide application potential in
the domain of AAC. Finally, we describe our conclusions and
future work (section 8).

2. Related work
Pictographic communication has grown from local initiatives,
some of which have scaled up to larger communities. Across
Europe, many pictograph sets are in place, such as Blissym-
bolics,5 PCS,6 Pictogram,7, ARASAAC,8 Widgit,9 Beta, and
Sclera.

1http://www.wai-not.be/
2https://www.betasymbols.com/
3http://www.sclera.be/
4http://abletoinclude.eu
5http://blissymbolics.org/
6http://www.mayer-johnson.com/category/symbols-and-photos
7http://www.pictogram.se/
8http://www.catedu.es/arasaac/
9https://widgit.com/
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Many of the problems that written languages encounter can
be overcome by the use of pictographic languages. For instance,
they can be understood across language barriers10 [4] and there
is less ambiguity involved. Pictographic communication sys-
tems for remote, online communication include Messenger Vi-
sual, an instant messaging service [5], Communicator [6], Pic-
tograph Chat Communicator III [7], and VIL, a Visual Inter Lin-
gua [4]. Mihalcea and Leong [8] argue that the understanding
of graphical sentences is similar to that of target language texts
obtained by means of machine translation. Leemans [4] shows
that an appropriately designed iconic language, built according
to a set of fixed principles, leads to no difference in the recogni-
tion rate of icons for people of western and non-western culture,
yielding an average rate of about 79%. None of these above-
mentioned authors, however, consider users with IDD when de-
signing the system.

Other pictograph-based communication systems are specif-
ically designed for people with IDD. Patel et al. [9] introduce
Image-Oriented Communication Aid, an interface using the
Widgit symbol set, allowing users to build picture-supported
messages on a touch screen computer. Motocos [10] are image
exchange devices that are designed for children with autism, in-
cluding audio cues for easier understanding of the image cards.
The mobile application PhotoTalk [11] aids people with aphasia
by providing a digital photograph management system in sup-
port of verbal communication. Nevertheless, all these systems
require face-to-face communication in an offline setting.

The use of online information technology systems as a way
to enhance the quality of life of people with IDD is a recent de-
velopment. For accessible, remote communication, Keskinen et
al. [2] introduce SymbolChat, a platform for picture-based in-
stant messaging, where the interaction is based on touch screen
input and speech output. The Text-to-Pictograph conversion
system described in Vandeghinste et al. [3] applies shallow lin-
guistic analysis to Dutch input text and automatically generates
sequences of Beta and Sclera pictographs, allowing people with
IDD to read messages independently. Only few other publi-
cations related to the task of translating texts for pictograph-
supported communication can be found in the literature, such
as Goldberg et al. [12] and Mihalcea and Leong [8], but these
systems do not translate the whole sentence or are not focused
on IDD.

3. Pictographic languages
Mihalcea and Leong [8] note that complex and abstract con-
cepts (such as democracy) are not always easy to depict. Some
characteristics of natural languages may not be present in the
pictographic languages.11 Usually, no distinction between sin-
gular and plural is made. Tense, aspect, and inflection infor-
mation is removed, and so are the auxiliaries and the articles.12

Pictographic languages are simplified languages, that are often
specifically designed for people with IDD.

Although experiments with the Pictogram set [13] have re-
vealed that many pictographs are difficult and wrongly inter-
preted, a correct interpretation is easily accepted and remem-
bered without any problem. By giving people with speech and
language disorders the opportunity to familiarize themselves

10Although cultural differences remain.
11We use the term pictographic language in order to refer to the com-

bination of individual pictographs, that belong to a specific pictograph
set, into a larger meaningful structure.

12There are some exceptions. Beta, for instance, contains the Dutch
articles.

with the pictographs, they learn to interpret the symbols more
easily. However, a deliberate effort is needed.

The Text-to-Pictograph translation system currently gives
access to two pictograph sets, Sclera and Beta (see Figure 2).

Sclera pictographs13 are mainly black-and-white pic-
tographs, although colour is sometimes used to indicate per-
mission (green) or prohibition (red). Over 13,000 pictographs
are available and more are added upon user request. Sclera pic-
tographs often represent complex concepts, such as a verb and
its object (such as to feed the dog) or compound words (such as
carrot soup). There are hardly any pictographs for adverbs or
prepositions.

The Beta set14 consists of more than 3,000 coloured pic-
tographs. Easy recognition being one of the main objectives,
Beta is characterized by its overall consistency and the use of
different types of arrows and dashes (pointing to an object, in-
dicating changes in space or time or depicting actions). Beta
hardly contains any complex pictographs. Most of the pic-
tographs represent simplex concepts.

Figure 2: Example of a sentence being translated into Sclera and
Beta pictographs. Tense information is removed. The Sclera
translation contains a complex pictograph, namely carrot soup.

4. Linking pictographs to other WordNets
WordNets, lexical-semantic databases, are an essential compo-
nent of the Text-to-Pictograph translation system. For the orig-
inal Dutch system, Cornetto [14, 15] was used. Its English
and Spanish counterparts are Princeton WordNet 3.0 [1]15 and
the Spanish Multilingual Central Repository (MCR) 3.0 [16].16

WordNets contain synsets (groupings of synonyms that have an
abstract, usually numeric identifier, see Figure 3) and are de-
signed in such way that each synset is connected to one or more
lemmas.

Vandeghinste and Schuurman [17] manually linked 5710
Sclera pictographs and 2760 Beta pictographs to Dutch synsets
in Cornetto.17 An essential step in building Text-to-Pictograph
translation systems for other languages is making sure that the
pictographs are connected to (sets of) words in those languages.

13Freely available under Creative Commons License 2.0.
14The coloured pictographs can be obtained at reasonable prices,

while their black-and-white equivalents are available for free.
15http://wordnet.princeton.edu/
16http://adimen.si.ehu.es/web/MCR/
17As a Cornetto license can no longer be obtained, the au-

thors will transfer these links to the Open Source Dutch WordNet
(http://wordpress.let.vupr.nl/odwn/).
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Figure 3: An example of a lemma, rock, having different mean-
ings and belonging to different synsets. Two synsets are shown
here.

Manually linking thousands of pictographs all over again would
be a very time-consuming procedure. Instead, by transferring
the connections automatically (see Figure 4), this process can
be sped up drastically.

Sevens et al. [18] note that connections between WordNets
are an important resource in knowledge-based multilingual lan-
guage processing. The already mentioned Cornetto database for
Dutch, used to build the Dutch Text-to-Pictograph translation
system, contains connections to the English Princeton WordNet.
We describe how we automatically connected Beta and Sclera
pictographs to synsets in Princeton WordNet 3.0 in section 4.1.

Many WordNets nowadays contain high-quality links be-
tween the source language’s synsets and Princeton WordNet
3.0, which is often viewed as the central WordNet. Prince-
ton WordNet 3.0 now also plays this central role in our Text-
to-Pictograph translation system. Having obtained the links
between Beta and Sclera pictographs and Princeton WordNet
3.0, it becomes possible to automatically assign pictographs
to synsets in any WordNet that has decent connections with
Princeton WordNet,18 allowing us to quickly build Text-to-
Pictograph translation systems for many other languages. For
example, with the English pictograph connections in place, a
mapping between the pictographs and Spanish synsets in MCR
3.0 became possible. This process is described in section 4.2.

Figure 4: Making Princeton WordNet 3.0 the central WordNet
of the Text-to-Pictograph translation system and transferring the
links to the MCR 3.0 for Spanish.

4.1. Connecting pictographs to Princeton WordNet 3.0

Cornetto’s equivalence relations establish connections between
Dutch and English synsets in Princeton WordNet. These re-
lations have originally been established semi-automatically by

18A full list can be found on http://globalwordnet.org/wordnets-in-
the-world/

Vossen et al. [19], filling the database with more than 80000
links between Dutch and English synsets.

Sevens et al. [18] showed that a considerable amount of
the original links were highly erroneous, making them not yet
very reliable for multilingual processing. By using these equiv-
alence relations, we would risk assigning pictographs to unre-
lated synsets in Princeton WordNet 3.0. In the case of a Dutch
synset being wrongly connected to an English synset, writing
a message in English would allow the system to generate pic-
tographs that depict another concept. Therefore, we used the
filtered,19 more reliable connections that were established by
Sevens et al. [18].

As a result, it became possible to automatically assign a
large amount of Sclera and Beta pictographs to English synsets
in Princeton WordNet 3.0. However, 154 (5.58%) Beta pic-
tographs and 288 (5.04%) Sclera pictographs still had to be
connected manually, either because the original equivalence re-
lation was rejected by the filtering algorithm, or because the
Dutch compound word corresponded to multiple words in En-
glish and forced us to treat the pictograph as a complex picto-
graph20 in English (such as the Dutch word vanillesuiker, mean-
ing vanilla sugar in English). In some rare cases, no equivalent
English concept existed in the WordNet for an existing Dutch
concept (for instance, the fictional character Zwarte Piet or typi-
cal kinds of food such as choco, which can roughly be translated
as chocolate spread).

4.2. Connecting pictographs to the Spanish MCR 3.0

The MCR 3.0 integrates in the same EuroWordNet framework
WordNets from five different languages, namely English, Cata-
lan, Spanish, Basque, and Galician. Words in one language are
connected to words in any of the other languages through Inter-
Lingual-Indexes. Sevens et al. [18] showed that the links be-
tween English and Spanish synsets were correctly established,
making it possible for us to create highly reliable connections
between Beta and Sclera pictographs and Spanish synsets. This
exact same process can be done for any language’s WordNet
that establishes reliable links to Princeton WordNet 3.0.

5. The Text-to-Pictograph translation
system for English and Spanish

In this section, we describe how a textual message is converted
into a sequence of Sclera or Beta pictographs [3] (see Figure 5),
with an application to English and Spanish. The source text first
undergoes shallow linguistic analysis (section 5.1). For further
processing, two routes can be taken. The semantic route is only
applied to content words (nouns, verbs, adjectives, adverbs) that
are present in the WordNets. It consists of linking the source
text to synsets in the databases (section 5.2) and retrieving the
pictographs that are connected to these synsets (section 5.3).
The direct route (section 5.4), which runs in parallel with the
semantic route, contains specific rules for appropriately dealing
with pronouns, and it uses a dictionary for parts-of-speech that
are not present in the WordNets. The system contains a hand-
ful of parameters (section 5.5), which were tuned beforehand
(section 5.6). Finally, as explained in section 5.7, an optimal
sequence of pictographs is selected.

19Filtering was done by using large bilingual dictionaries.
20A pictograph that is connected to multiple synsets instead of just

one synset. For example, the pictograph depicting vanilla sugar is con-
nected to both the synset that contains the lemma vanilla and the synset
that contains the lemma sugar.
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Figure 5: Architecture of the translation engine.

5.1. Shallow linguistic analysis

The source text undergoes shallow linguistic processing, con-
sisting of several sub-processes (see Figure 6). This process is
analogous to the linguistic processing step in the original Dutch
tool.

Figure 6: An example of shallow linguistic processing.

First, tokenization is applied to split the punctuation signs
from the words, with the exception of the hyphen/dash and the
apostrophe, as they often belong to the word.

As the targeted users have different levels of illiterateness,
basic spelling correction (one deletion, one insertion, one sub-
stitution)21 aids in finding the correct variant of words that do
not appear in the lexicon22 and the list of first names.23

Next, part-of-speech tagging is applied. For English, we
used HunPos [20], an open source tagger, using the English
training data (with Penn Treebank tags24) made available on its
website.25 For Spanish, part-of-speech tagging (with TreeTag-
ger tags26) and lemmatization are done in one step with Tree-

21We are currently designing a spelling corrector that is specifically
tailored towards Dutch text written by people with IDD. Our approach
does not rely on the use of parallel corpora (erroneous text - corrected
text). Therefore, it can also prove to be useful for spelling correction in
other languages.

22http://www.anc.org/SecondRelease/frequency2.html (for English)
and http://corpus.leeds.ac.uk/frqc/internet-es-forms.num (for Spanish)

23http://www.quietaffiliate.com/free-first-name-and-last-name-
databases-csv-and-sql (for English and Spanish)

24http://www.cis.upenn.edu/ treebank
25https://code.google.com/p/hunpos/downloads/list
26http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/data/spanish-

Tagger [21].27 TreeTagger is available for a large variety of
European languages.

The Text-to-Pictograph translation system works on the
sentence level. Although most messages sent by the users only
contain one sentence, sentence detection is applied. Segmenta-
tion is based on full stops, which will eventually correspond to
line breaks in the resulting pictographic representation.

The next step is lemmatization, which requires a language-
specific treatment. For English, we built a lemmatizer based
on a list of English token/part-of-speech combinations and their
lemma.28 As mentioned before, for Spanish, part-of-speech tag-
ging and lemmatization are done with TreeTagger.

One additional adaptation concerns the treatment of the
Spanish pro-drop phenomenon (which occurs in all Romance
languages, with the exception of French), meaning that personal
pronouns in subject position are usually omitted (unless empha-
sis is given). Translating such a message into pictographs would
leave us with no subject, as the pictographic representations of
words are based on the lemma form and do not retain any gram-
matical information. However, person information can be in-
ferred from the verb in the source sentence. We wrote a set
of rules that explicitly adds the personal pronouns in the mes-
sage before converting it into a series of pictographs.29 When
a matching personal pronoun is already found within a window
of three words (since adverbs or pronouns can appear between
the subject and the verb), these rules are not applied (see Figure
7).

Figure 7: An example of a pro-drop rule. The tags correspond to
finite lexical verb, finite estar (to be), finite haber (to have), and
finite ser (to be). The token has to end on -mos, which indicates
a first person plural form. Nosotros and nosotras correspond to
the English pronoun we.

5.2. Semantic analysis

The first step in the semantic analysis consists of the detection
of words with a negative polarity, such as not/no and no/ningún.
When such a word is found, the system looks for its head (a verb
or a noun) and adds the value negative to its polarity feature.

For each word in the source text, the system returns all pos-
sible WordNet synsets (see section 4). The synsets are filtered,

tagset.txt
27http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
28http://www.anc.org/
29When the verb is a third person singular or plural, these rules are

not applied, as its subject could be a noun phrase. This problem can
be solved by applying deeper grammatical analysis. Gender informa-
tion (he, she, it), however, cannot be inferred from the verb alone and
requires deeper semantic knowledge.
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keeping only those where the part-of-speech tag of the synset
matches the part-of-speech tag of the word.

Certain links between lemmas and synsets can be disabled
in order to remove unwanted, often sexual meanings of common
words, which are not appropriate for some groups of users (such
as one meaning of the word member).

5.3. Retrieving the pictographs

The WordNet synsets described in section 5.2 are used to con-
nect pictographs to natural language text. This way, the lexical
coverage of the system is greatly improved, as pictographs are
connected to sets of words that have the same meaning, instead
of just individual words. Additionally, if a synset is not covered
by a pictograph, the links between synsets can be used to look
for alternative pictographs with a similar meaning. For instance,
the hyperonymy relation can be used if no pictograph is found
for a concept that is too specific (such as rabbit for cottontail,
see Figure 8). The antonymy relation, indicating that synsets are
the opposite of each other, selects a pictograph of the antonym,
along with a negation pictograph (such as not sick for recov-
ered). The XPos relation concerns similar words with a differ-
ent part-of-speech tag (such as the adjective female for woman).
However, using pictographs through synset propagation (mak-
ing use of the WordNet relations) is controlled by parameters or
penalties for not using the proper concept (see section 5.5).

Figure 8: When a specific word, such as cottontail, does not
have a pictograph connected to its synset, WordNet relations
will be used to find a similar concept and display its pictograph
instead. The synset for rabbit and coney (a synonym of rabbit)
is found.

5.4. The direct route

The English and Spanish WordNets contain nouns, verbs, ad-
jectives, and adverbs. To deal with pronouns and words that
have a part-of-speech tag that is not covered by the WordNets,
the direct route is introduced.

To make sure that personal and possessive pronouns are
covered, they are given an explicit treatment. Person, gender,
and number information can be obtained during the part-of-
speech tagging process, resulting in correct pictograph trans-
lations.

The dictionary provides a direct link between the to-
ken/lemma/tag and the names of the pictographs. The tag field
and either the lemma or token field can be left underspecified.
For instance, in Sclera, there is a direct link between the lemma
hey and the pictograph hallo-zeggen-2.png (to say hello), while
the verb miss needs an additional verb tag to avoid confusion
with the noun. The dictionary is used to cover any words that
are missing from the database, because their part-of-speech tag

is not included in the WordNet database (such as various types
of greetings), or because the concept is too recent (such as
tablet), among other things.

5.5. The parameters

For every word in the sentence, the system checks whether one
or more pictographs can be found for it and whether the use of
these pictographs is subject to a penalty. Penalties correspond
to parameters that were tuned beforehand.

The first set of parameters (hyperonym penalty, antonym
penalty, and XPos penalty) concern the maximum distance
(threshold parameter) allowed between the original text and the
pictographic message in terms of synset relations (see section
5.3).

The second set of parameters is related to the numeric fea-
tures of the pictographs (no number and wrong number), as
some pictographs make a distinction between singular or plu-
ral concepts (such as oog.png, depicting one eye, and ogen.png,
depicting two eyes).

The last set of parameters determines the behaviour as to
the route to take. An out-of-vocabulary parameter penalizes for
leaving a content word untranslated, while the direct route pa-
rameter is a negative penalty (i.e. a bonus) for choosing the
direct route over the semantic route.

Furthermore, the use of complex pictographs, which reunite
multiple concepts within one pictograph (see section 3), will be
preferred by the system over the separation of those concepts.
The shorter the pictographic translation is, the higher it will be
scored by the system (see section 5.7).

5.6. Tuning the parameters

The parameters that are mentioned in section 5.5 are tuned for
every natural language/pictographic language pair. Ideally, tun-
ing would be based on emails or text messages written by peo-
ple with IDD. These messages are usually short, tend to refer
to everyday life and very often contain spelling mistakes, like
tweets.30 As we did not have a large corpus of messages written
by the targeted users at our disposition, we selected 75 English
tweets and 75 Spanish tweets based on the following criteria:
the messages should contain at least 8 words, they have to re-
fer to personal experiences (no citations or lyrics), and they are
allowed to contain spelling mistakes or lack punctuation marks.
The tweets were retrieved by searching for messages containing
the hash tags #school/#escuela, #love/#amor, #family/#familia,
#happy/#feliz, and #sad/#triste.

For both languages, we manually translated, to the best of
our ability, all tweets into Beta and Sclera pictographs. We built
a local hill climber that varies the parameters (see section 5.5)
when running the Text2Picto script on each of the four test sets
(from English and Spanish to Beta and Sclera). The BLEU met-
ric [22] was used as an indicator of relative improvement. In
order to maximize the BLEU score, we ran five trials of a local
hill climbing algorithm for each natural language/pictographic
language pair. We did this until BLEU converged onto a fixed
score after several thousands of iterations. Each trial was run
with random initialization values, while varying the parameters
between certain boundaries and with a granularity (size of the
parameter steps) of one in order to cover different areas of the
search space. From these trials, we took the best scoring param-
eter values for all four language/pictographic language pairs.

30https://twitter.com/
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With proper names Without proper names
Condition Precision Recall F-Score Recall F-Score
Sclera
Baseline 71.37% 61.25% 65.92% 62.25% 66.50%
Add frequent concepts 93.30% 71.95% 81.25% 73.04% 81.94%
Rel. improv. 30.73% 17.47% 23.26% 17.33% 23.22%
Beta
Baseline 75.08% 70.63% 72.78% 71.71% 73.36%
Add frequent concepts 82.56% 85.07% 83.80% 86.14% 84.31%
Rel.improv. 9.96% 20.45% 15.14% 20.12% 14.93%

Table 1: Manual evaluation of the English system

5.7. Selecting the optimal path

An A* algorithm31 calculates the optimal pictographic sequence
for the source text. Its input is the pictographically annotated
source message, together with the pictographs’ penalties, de-
pending on the number and kind of synset relations the system
had to go through to connect them to the words.

The algorithm starts with a queue containing an empty path
that still has all the input words left to process. In every step, the
currently best scoring pictograph path is extended. We check
whether there are any pictographs, with their corresponding
penalties, connected to the next word that has to be processed.32

New paths are thus created by adding the retrieved pictograph to
the list of the already matched pictographs. All possible paths
are added to the queue. The queue is sorted by lowest estimated
cost and the best scoring path is extended. This process is re-
peated until the first queue element no longer has any words left
to process.

When encountering words that have their antonym feature
set to negative (see section 5.2), we insert the negation picto-
graph.

6. Evaluation
At the time of our evaluation, we did not yet have a corpus of
messages written by people at IDD at our disposition. An evalu-
ation set was built using the selection procedure as described in
section 5.6. A total of 50 English tweets and 50 Spanish tweets
were retrieved.

After having obtained the system’s output translations for
every message from the evaluation set, we performed a man-
ual verification with one judge, who removed untranslated non-
content words (such as just, although, and it in English). This
allowed calculating the recall. For each of the translated words,
she judged whether the pictograph generated was the correct
pictograph, in order to calculate precision. As proper names oc-
cur rather frequently in online environments, we have calculated
recall and F-score with and without proper names, in the latter
case removing all proper names from the output. Precision re-
mains the same in both conditions. In the case where proper
names are included, they are not converted into pictographs, af-
fecting recall negatively. In applications, similar to an option
that is currently available in the WAI-NOT environment, proper
names occurring in the contact lists of the users can be con-
verted into the photographs that are attached to user profiles,
resulting in more personalized messages.

Using the automatic pictograph connections that Sevens et
al. [18] created by using the links between Cornetto synsets
and Princeton WordNet synsets and the links between Prince-

31A pathfinding algorithm that uses a heuristic to search the most
likely paths first.

32If a complex pictograph is retrieved, the system checks whether the
other synsets that belong to that complex pictograph are connected to
any of the remaining words to process. If this is the case, the word that
is linked to that synset is removed from the list of words to process.

With proper names Without proper names
Condition Precision Recall F-Score Recall F-Score
Sclera
Baseline 73.84% 57.63% 64.74% 58.30% 65.16%
Add frequent concepts 93.31% 82.17% 87.38% 83.14% 87.93%
Rel. improv. 26.37% 42.58% 34.97% 42.61% 34.95%
Beta
Baseline 83.48% 60.83% 70.38% 61.26% 70.66%
Add frequent concepts 94.64% 86.01% 90.12% 86.83% 90.57%
Rel.improv. 13.37% 41.39% 28.05% 41.74% 28.18%

Table 2: Manual evaluation of the Spanish system

ton WordNet synsets and Spanish MCR synsets, a baseline sys-
tem could be built. This system, which is not subject to any
post-editing actions in the WordNet databases, leaves us with F-
Scores of 66.50% and 73.36% for Sclera and Beta, respectively,
for English text without proper names. For Spanish, F-Scores
of 65.16% and 70.66% are obtained. A decent baseline sys-
tem was thus created by making use of the previously available
WordNet relations.

To improve the English and Spanish systems, we added
or edited the 500 most frequently used words according to the
Dutch WAI-NOT corpus,33 in order to cover the specific vocab-
ulary that the target group uses to address their peers or care-
givers. For each one of these words, we translated them into En-
glish and Spanish and checked whether the right pictograph was
connected to its synset. If this was not the case, we disabled the
erroneous pictographs or created new pictograph connections.
Sometimes, the pictograph dictionary (direct route) was used
to add missing words to the database, such as different types
of greetings. As a result, the English system currently yields
F-Scores of 81.94% and 84.31% for Sclera and Beta, respec-
tively, while the Spanish system reaches F-Scores of 87.93%
and 90.57%, both for text in which proper names are omitted.

These results are comparable to the manual evaluations for
Dutch [3]. The authors obtain F-Scores of 87.16% and 87.27%
for Sclera and Beta translations of Dutch IDD text, respectively.

7. Application potential
The Text-to-Pictograph translation system will be released as an
open source product, allowing developers to build pictograph-
supported AAC applications and web browser extensions.

The pictographs are not meant to replace written text. They
can be used as a stepping stone towards a better comprehension
of written content.

Since textual content on the web, in particular long or dif-
ficult words, is sometimes very challenging for the target group
to deal with, a Text-to-Pictograph translation system in the form
of a web browser extension could be a welcome addition for
many users. Web browser extensions are programs that extend
the functionality of a web browser. For instance, by hovering
over a difficult word, the program could show the pictographic
representation of that word. This idea has already been imple-
mented by the creators of Widgit, although their Point system34

does not make use of semantic networks to simplify extension
to additional languages.35

The system offers the possibility for family members, care-
givers, and teachers to build pictographic messages more eas-
ily. Browsing large databases to find the appropriate icons is
a long and tedious job, that can be facilitated by automatically
translating a textual message into a series of pictographs. This

33A corpus containing more than 40000 e-mails sent by users with
IDD and their caregivers. Most e-mails are about their everyday life.

34https://widgit.com/products/online.htm
35We thank the anonymous reviewers for this observation.
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way, pictograph-supported instructions, schedules and menus
will become easier to construct. Text-to-Pictograph transla-
tion will also allow the family members and caregivers to send
pictographic e-mails to the target group, making it simpler to
communicate in an online setting, where the use of written text
would normally cause big difficulties.

Within the Able to Include framework, a mobile app is cur-
rently being developed to address a variety of scenarios in which
pictographs offer support. The tool will also integrate text-
to-speech and text simplification technologies. The user can
choose a technology (or a combination of technologies, such as
text simplification followed by translation into pictographs) that
he or she feels most comfortable with.

While our system is initially focused on users with IDD
(since the tool was developed on the request of WAI-NOT, a
website for people with disabilities), its general architecture can
be reused in various other contexts, such as education, language
learning for non-native speakers, and translation into sign lan-
guages.

8. Conclusions and future work
We have shown how the Dutch Text-to-Pictograph translation
system can be extended towards other languages. To imple-
ment new languages, only a few components are required: de-
cent connections between the source language’s WordNet and
the Princeton WordNet 3.0 (as we have shown for Spanish), a
language-specific part-of-speech tagger and lemmatizer, a new
set of parameters to optimize the system’s performance and pos-
sibly some additional rules to deal with language-specific prop-
erties.

Future work will consist of improving the English and
Spanish systems. Proper word sense disambiguation will have
to be applied, as the system currently only takes the most fre-
quent sense for a given word. We will look into possibilities
for better spelling correction, specifically tailored towards text
written by people with cognitive disabilities, and simplifica-
tion of the pictographic output. Finally, the inverse relation,
pictograph-to-text translation, will also be taken care of, allow-
ing users to create textual messages by selecting a series of pic-
tographs [23].

In collaboration with Faculty of Psychology and Educa-
tional Sciences of KU Leuven and our Able to Include partners,
the pictograph translation system will be tested by the target
group. The results will give us better insights concerning the
usability of the engine.

Analysis of text written by English and Spanish users with
IDD will reveal which concepts are missing from the databases
and we will continue to improve the coverage of the system.
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Abstract
This paper presents a speech synthesis method for people with
articulation disorders resulting from athetoid cerebral palsy. For
people with articulation disorders, there are duration, pitch and
spectral problems that cause their speech to be less intelligi-
ble and make communication difficult. In order to deal with
these problems, this paper describes a Hidden Markov Model
(HMM)-based text-to-speech synthesis approach that preserves
the voice individuality of those with articulation disorders and
aids them in their communication. For the unstable pitch prob-
lem, we use the F0 patterns of a physically unimpaired person,
with the average F0 being converted to the target F0 in advance.
Because the spectrum of people with articulation disorders is
often unstable and unclear, we modify generated spectral pa-
rameters from the HMM synthesis system by using a physically
unimpaired person’s spectral model while preserving the indi-
viduality of the person with an articulation disorder. Through
experimental evaluations, we have confirmed that the proposed
method successfully synthesizes intelligible speech while main-
taining the target speaker’s individuality.

Index Terms: Articulation disorders, Speech synthesis system,
Hidden Markov Model, Assistive Technologies

1. Introduction
In this study, we focus on a person with an articulation disorder
resulting from the athetoid type of cerebral palsy. About two
babies in 1,000 are born with cerebral palsy [1]. Cerebral palsy
results from damage to the central nervous system, and the dam-
age causes movement disorders. It is classified into the follow-
ing types: 1) spastic, 2) athetoid, 3) ataxic, 4) atonic, 5) rigid,
and a mixture of these types [2]. Athetoid symptoms develop in
about 10-15% of cerebral palsy sufferers [1]. In the case of per-
sons with articulation disorders resulting from the athetoid type
of cerebral palsy, his/her movements are sometimes more un-
stable than usual. That means their utterances (especially their
consonants) are often unstable or unclear due to their athetoid
symptoms, and there is a great need for voice systems that can
assist them in their communication.

An HMM-based speech synthesis system [3] is a text-to-
speech (TTS) system that can generate signals from input text
data. A TTS system may be useful for those with articulation
disorders because they have difficulty moving their lips. In an
HMM-based speech synthesis system, the spectrum, F0 and du-
ration are modeled simultaneously in a unified framework. Mel-
cepstral coefficients are used as spectral features, which are
modeled by continuous density HMMs. F0 patterns are mod-
eled by a hidden Markov model based on multi-space probabil-

Figure 1: HMM-based sound synthesis system

ity distribution (MSD-HMM [4]), and state duration densities
are modeled by single Gaussian distributions [5].

In the field of assistive technology, Veaux et al. [6] used
HMM-based speech synthesis to reconstruct the voice of indi-
viduals with degenerative speech disorders resulting from Amy-
otrophic Lateral Sclerosis (ALS). They have proposed a recon-
struction method for degenerative speech disorders using an
HMM sound synthesis system. In this method, the subject’s
utterances are used to adapt an average voice model pre-trained
on many speakers. Creer et al. [7] also adapt the average voice
model of multiple speakers to the severe dysarthria data. And
Khan et al. [8] uses such adaption method to the laryngectomy
patient’s data. Yamagishi et al. [9] proposed a project called
“Voice Banking and Reconstruction”. In that project, various
types of voices were collected, and they proposed TTS for ALS
using that database. Also, Rudzicz [10] proposed a speech ad-
justment method for people with articulation disorders based on
observations from the database.

In this paper, we propose an HMM-based speech synthe-
sis method for articulation disorders because there are several
problems in the recorded voice of persons with articulation dis-
orders, and this causes the output synthesized signals to be un-
intelligible. To deal with these problems, it is necessary to de-
velop a speech synthesis system in which the output signals be-
come more intelligible and include the subject’s individuality.

To generate an intelligible voice while preserving the
speaker’s individuality, we train the speech synthesis system us-
ing training data from both a person with an articulation disor-
der and a physically unimpaired person. Because the utterance
rate of persons with articulation disorders differs from that of a
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Figure 2: Diagram of HMM-based sound synthesis method for
articulation disorders

physically unimpaired person, we utilize the duration model of
a physically unimpaired person only in our method. In addition
to the utterance rate problem, the F0 patterns of persons with
articulation disorders are often unstable compared to those of
physically unimpaired persons. In our method, the F0 model is
trained from a physically unimpaired person’s F0 patterns, and
the average F0 is used as the F0 pattern for the person with an
articulation disorder.

As for the spectral problem associated with persons with ar-
ticulation disorders, the consonant parts of their speech are of-
ten unstable or unclear, which causes their voice to be unintelli-
gible. To resolve this consonant problem, we conduct different
operations on the consonant and vowel parts. For the conso-
nants parts, we basically generate the output spectrum from the
spectral model of a physically unimpaired person. For the vowel
parts, we generate the output spectrum from the spectral model
of a person with an articulation disorder in order to preserve the
person’s individuality.

2. HMM-based sound synthesis
2.1. Basic approach

Fig. 1 shows the overview of the basic approach to text-to-
speech synthesis (TTS) based on HMMs. This figure shows
the training and synthesis parts of the HMM-based TTS system.
In the training part, parameters (spectral, F0, and aperiodicity)
are extracted as feature vectors. These features are modeled
by context-dependent HMMs. Also, by installing the duration
model, it is able to model each parameter, as well as the duration
in the unified framework.

In the synthesis part, a context-dependent label sequence is
obtained from an input text by text analysis. A sentence HMM
is constructed by concatenating context-dependent HMMs ac-
cording to the context-dependent label sequence. Then, HMM
state sequences q = [q1, · · · , qT ] are decided from the duration
model as follows:

q̂ = arg max
q

P (q|λ) (1)

(a) a physically unimpaired person

(b) a person with an articulation disorder

Figure 3: Examples of spectrogram uttered for // g e N j i ts u o

where T , qt, and λ represent the number of frames, index of the
HMM-state of the t-th input frame, and the parameter sets of
HMM, respectively. The explicit constraint between static and
dynamic features, and signal parameter sets are generated with
maximizing HMM likelihood [11].

c = arg max
c

P (Wc|q̂, λ) (2)

In Eq. (2), c = [c1
T, · · · , cT

t , · · · , cT
T ]

T
represents signal pa-

rameter sequences, ct = [c(1), · · · , c(D)]T represents a signal
parameter vector of the t-th frame, and W represents the ma-
trix constructed from weights which are used for calculating
dynamic features [12].

Finally, by using an MLSA (Mel-Log Spectrum Approx-
imation) filter [13], speech is synthesized from the generated
parameters.

2.2. HMM-based sound synthesis for articulation disorders

If each feature parameter is trained using the acoustic fea-
tures obtained from a person with an articulation disorder, the
synthesized sound becomes unintelligible. Therefore, we cre-
ated a more intelligible synthesized sound while preserving the
speaker’s individuality by mixing the voices of a person with an
articulation disorder and a physically unimpaired person.
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Fig. 2 shows the overview of our method. In this method,
we train the speech synthesis system using training data from
both a person with an articulation disorder and a physically
unimpaired person. First, we extract three acoustic parame-
ters (F0 contour, spectral envelope, and aperiodicity index (AP))
from these two person’s speaking voices by using STRAIGHT
analysis [14]. After extracting the features, the F0 patterns of a
physically unimpaired person are modified as explained in Sec-
tion 2.3.

Because the duration of persons with articulation disorders
is slower than that of physically unimpaired people, the dura-
tion model is generated using only the context-dependent label
sequences of a physically unimpaired person. With the input
text and the duration model, context-dependent label sequences
are generated. Then, spectral, F0 and AP parameters are gen-
erated based on the label sequences and trained HMMs, where
F0 parameters are generated from the modified F0 model and
AP parameter sequences are generated from the AP model of a
person with an articulation disorder.

Each spectral parameter is generated from each person’s
spectral model. After parameter generation, the spectral param-
eters of a person with an articulation disorder are modified as
explained in Section 2.4. Finally, the output signal is synthe-
sized from the features (spectral envelope, F0 contour, and ape-
riodicity index) by using the synthesis part of the STRAIGHT.
In the following section, we explain the details of the operations
related to spectral and F0 parameters.

2.3. F0 modification

In this method, the F0 patterns of a physically unimpaired per-
son are used for training the F0 model in HMM synthesis be-
cause the F0 patterns of a person with an articulation disor-
der are often unstable. To make the F0 feature’s characteris-
tics close to those of a person with an articulation disorder, the
F0 features of a physically unimpaired person are modified to
those of a person with an articulation disorder. The F0 model is
trained from the converted F0 sequences, which means that the
F0 model includes the individuality of a person with articulation
disorder.

The F0 features of a physically unimpaired person are mod-
ified by using the following linear transformation:

x̂t =
σy

σx
(xt − µx) + µy (3)

where xt represents the log-scaled F0 of the physically unim-
paired person at the frame t, µx and σx represent the mean and
standard deviation of xt, respectively. µy and σy represents the
mean and standard deviation of the log-scaled F0 of a person
with an articulation disorder, respectively.

2.4. Spectral modification

Fig. 3 shows the original spectrograms for the word “genjit-
suo” (“real” in English) of a physically unimpaired person and
a person with an articulation disorder. As shown in Fig. 3, the
high-frequency spectral power of a person with an articulation
disorder is weaker compared to that of a physically unimpaired
person. This fact implies that the synthesized spectrum of the
consonant components for a person with an articulation disor-
der becomes weak, which makes the person’s speech difficult to
understand.

For the spectral vowel components, the spectral parameters
of a person with an articulation disorder are needed in order to
preserve the target individuality. As shown in Fig. 2, after being

Figure 4: Plot of the function fm and fg (green: fm blue: fg

)

given the input text, we generate spectral parameter sequences
from each person’s spectral model. Then, we create the com-
bined spectral parameter sequences, which include the param-
eters of a physically unimpaired person at the high-frequency
part and the parameters of a person with an articulation dis-
order at the low-frequency part. This combination of spectral
parameters is given by

Ŝ(ij) = f (j)
m S(ij)

m + f (j)
g S(ij)

g (4)

where Sm, Sg , Ŝ, i and j represent the spectrum of a physi-
cally unimpaired person, the spectrum of a person with an ar-
ticulation disorder, the modified spectrum, the index of spectral
frames, and the frequency index, respectively. The weight func-
tions are given by

f (j)
m =

1

1 + e(−j+S)
(5)

f (j)
g =

1

1 + e(j−S)
(6)

where fm represents the weight function for a physically unim-
paired person’s spectrum, fg represents that of a person with an
articulation disorder, and S represents the control parameter, re-
spectively.

Fig. 4 shows an example of the functions fm and fg . The
function, fm, emphasizes the high-frequency components and
weakens the low-frequency components of spectral parameters.
The function, fg , emphasizes the low frequency components
and weakens the high-frequency components of spectral param-
eters.

By using Eq. (4), at the high-frequency part, the spectrum
is complemented by that of a physically unimpaired person in
order to make the consonants clear. At the low-frequency part,
we need to preserve the spectrum of a person with an articula-
tion disorder in order to preserve the individuality. The spec-
tral modification is calculated at each frame using Eq. (4), and
the frequency thresholds are determined for the vowel part and
consonant part. In our study, the total number of spectral di-
mensions (indexes) is 513, S is set to 150 for the vowel part,
and S is set to 80 for the consonant part.

3. Experiments
3.1. Experimental conditions

We prepared the training data for two men. One is a physically
unimpaired person, and the other is a person with an articula-
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Table 1: Voices compared in the evaluation tests

Duration F0 AP Spectral
Type Model Model Model Model
ADM AD AD AD AD
Ref1 PU AD AD AD
Prop PU convPU AD MIX
Ref2 PU convPU AD AD
PUM PU PU PU PU

Note
ADM: Articulation disorder person’s model
Prop: Proposed method
PUM: Physically unimpaired person’s model
AD: Articulation Disordered
PU: Physically Unimpaired
convPU: Creating the model from a physically unimpaired person’s parameter sequences

which are converted to those of the person with an articulation disorder using Eq. (3)
MIX: mixing ADM and PUM spectra using Eq. (4)

tion disorder. We used 513 sentences from the ATR Japanese
database for a physically unimpaired person, and recorded 429
sentences in the same database uttered by a person with an
articulation disorder. The speech signals were sampled at 48
kHz and the frame shift was 5 ms. Acoustic and prosodic fea-
tures were extracted by using STRAIGHT. As spectral parame-
ters, mel-cepstrum coefficients, their dynamic, acceleration co-
efficients were used. As excitation parameters, log-F0 and 5
band-filtered aperiodicity measures [15] were used and their
dynamic and acceleration coefficients were also used. Context-
dependent phoneme HMMs with five states were used in the
speech synthesis system [3].

In order to confirm the effectiveness of our method, we
evaluated both the aspect of listening intelligibility and the as-
pect of speaker similarity by listening to voices synthesized un-
der the five conditions shown in Table 1. Ten sentences included
in the ATR Japanese database were synthesized under those five
conditions. A total of 8 Japanese speakers took part in the lis-
tening test using headphones. For speaker similarity, we per-
formed a MOS (Mean Opinion Score) test [16]. In the MOS
test, the opinion score was set to a 5-point scale (5: Identical, 4:
Very Similar, 3: Quite Similar, 2: Dissimilar, 1: Very Dissim-
ilar). For the listening intelligibility, a paired comparison test
was carried out, where each subject listened to pairs of speech
converted by the two methods, and then selected which sample
was more intelligible.

3.2. Results and discussion

Table 2: Average duration per mora in 50 sentences

Average time [ms/mora]
ADM 219.768
PUM 179.69

We calculated the average synthesized signal’s duration per
mora in 50 sentences. As shown in Table 2, the average dura-
tion of ADM (Articulation disorder person’s model) is 219.768
[ms/mora] and that of PUM (Physically unimpaired person’s
model) is 179.69 [ms/mora]. As compared to the duration of

(a) ADM spectrogram

(b) PUM spectrogram

(c) Modified spectrogram

Figure 5: Examples of synthesized spectrograms

PUM, that of ADM is quite slower, which causes the unintelli-
gibility of the synthesized sound.

In the proposed method, we generated the modified spec-
tral parameters by mixing both ADM and PUM spectral param-
eters. Fig. 5a shows the generated spectrum from the ADM
spectral model and Fig. 5b shows the generated spectrum from
the PUM spectral model. Both spectral parameters are gener-
ated from the same text and the same PUM duration model so
that they have the same number of frames and dimensions. As
shown in Fig. 5a, the high-frequency component is weaker com-
pared to Fig. 5b, which means that the consonant parts of ADM
spectral parameters are weak. This causes the output synthe-
sized signals to be less intelligible. Fig. 5c shows the modified
spectrum created from both ADM and PUM spectral parame-
ters by using Eq. (4). As shown in Fig. 5c, the consonant parts
are complemented by the high-frequency parameters of PUM
while preserving ADM’s low-frequency components.
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Figure 6: Speaker similarity to the articulation disorder person’s
speech

Fig. 6 shows the results of the MOS test on speaker simi-
larity, where the error bar shows a 95% confidence score. As
shown in Fig. 6, the ADM score was the highest score of all.
This is because the signal from ADM is synthesized only from
the feature parameters of a person with an articulation disor-
der. The Prop score is slightly less than those of Ref1 and Ref2
because of the modification of the spectral parameters.

Fig. 7 shows the preference score for the listening intelligi-
bility, where the error bar shows a 95% confidence score. As
shown in Fig. 7, our method obtained a higher score than Ref1
and ADM. These results show that the proposed method is ef-
fective. By replacing the physically unimpaired person’s dura-
tion model and converting his F0 patterns to those of the per-
son with an articulation disorder improves intelligibility. Our
method also obtained a higher score than Ref2. This result
shows that modifying the output spectral parameters is quite ef-
fective in improving intelligibility. Therefore, considering from
Figs. 6 and 7, it is confirmed that our proposed method imple-
ments the synthesized signals which is intelligible and includes
individuality of a person with an articulation disorder.

4. Conclusion
We have proposed a text-to-speech synthesis method based
on HMMs for a person with an articulation disorder. In our
method, to generate synthesized sounds that are more intelli-
gible, the duration model of a physically unimpaired person
is used, and the F0 model is trained using the F0 features of
a physically unimpaired person, where the average F0 is con-
verted to the articulation disorder person’s F0 using a linear
transformation. In order to complement the consonant parts
of the spectrum of a person with an articulation disorder, we
replaced the high-frequency parts with those of a physically
unimpaired person. The experimental results showed that our
method is highly effective in improving the listening intelligi-
bility of speech spoken by a person with an articulation disorder.
In future research, we will complement the consonant parts of
the spectral parameters at the training part.

Figure 7: Preference scores for listening intelligibility
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Abstract
This paper presents a system to recognize distress speech in the
home of seniors to provide reassurance and assistance. The
system is aiming at being integrated into a larger system for
Ambient Assisted Living (AAL) using only one microphone
with a fix position in a non-intimate room. The paper presents
the details of the automatic speech recognition system which
must work under distant speech condition and with expressive
speech. Moreover, privacy is ensured by running the decoding
on-site and not on a remote server. Furthermore the system was
biased to recognize only set of sentences defined after a user
study. The system has been evaluated in a smart space reproduc-
ing a typical living room where 17 participants played scenarios
including falls during which they uttered distress calls. The re-
sults showed a promising error rate of 29% while emphasizing
the challenges of the task.
Index Terms: Smart home, Vocal distress call, Applications of
speech technology for Ambient Assisted Living

1. Introduction
Life expectancy has increased in all countries of the European
Union in the last decade. Therefore the part of the people who
are at least 75 years old has strongly increased and solutions are
needed to satisfy the wishes of elderly people to live as long
as possible in their own homes. Ageing can cause functional
limitations that –if not compensated by technical assistance or
environmental management– lead to activity restriction [1][2].
Smart homes are a promising way to help elderly people to live
independently at their own home, they are housings equipped
with sensors and actuators [3][4][1][5]. Another aspect is the
increasing risk of distress, among which falling is one of the
main fear and lethal risk, but also blocking hip or fainting. The
most common solution is the use of kinematic sensors worn by
the person [6] but this imposes some constraints in the everyday
life and worn sensors are not always a good solution because
some persons can forget or refuse to wear it. Nowadays, one
of the best suited interfaces is the voice-user interface (VUI),
whose technology has reached maturity and is avoiding the use
of worn sensors thanks to microphones set up in the home and
allowing hands-free and distant interaction [7]. It was demon-
strated that VUI is useful for system integrating speech com-
mands [8].

The use of speech technologies in home environment re-
quires to address particular challenges due to this specific envi-

ronment [9]. There is a rising number of smart home projects
considering speech processing in their design. They are related
to wheelchair command [10], vocal command for people with
dysarthria [11][8], companion robot [12], vocal control of ap-
pliances and devices [13]. Due to the experimental constraints,
few systems were validated with real users in realistic situation
condition like in the SWEET-HOME project [14] during which
a dedicated voice based home automation system was able to
drive a smart home thanks to vocal commands with typical peo-
ple [15] and with elderly and visually impaired people [16].

In this paper we present an approach to provide assistance
in a smart home for seniors in case of distress situation in which
they can’t move but can talk. The challenge is due to expressive
speech which is different from standard speech: is it possible
to use state of the art ASR techniques to recognize expressive
speech? In our approach, we address the problem by using the
microphone of a home automation and social system placed in
the living room with ASR decoding and voice call matching. In
this way, the user must be able to command the environment
without having to wear a specific device for fall detection or for
physical interaction (e.g., a remote control too far from the user
when needed). Though microphones in a home is a real breach
of privacy, by contrast to current smart-phones, we address the
problem using an in-home ASR engine rather than a cloud based
one (private conversations do not go outside the home). More-
over, the limited vocabulary ensures that only speech relevant to
the command of the home is correctly decoded. Finally, another
strength of the approach is to have been evaluated in realistic
conditions. The paper is organised as follow. Section 2 presents
the method for speech acquisition and recognition in the home.
Section 3, presents the experimentation and the results which
are discussed in Section 5.

2. Method
The distress call recognition is to be performed in the context of
a smart home which is equipped with e-lio1, a dedicated system
for connecting elderly people with their relatives as shown in
Figure 1. e-lio is equipped with one microphone for video con-
ferencing. The typical setting and the distress situations were
determined after a sociological study conducted by the GRePS
laboratory [17] in which a representative set of seniors were in-
cluded.

From this sociological study, it appears that this equipment

1http://www.technosens.fr/
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Figure 1: Microphone position in the smart home

is set on a table in the living room in font of the sofa. In this
way, an alert could be given if the person falls due to the carpet
or if it can’t stand up from the sofa. This paper presents only the
audio part of the study, for more details about the global audio
and video system, the reader is referred to [18].

2.1. Speech analysis system

The audio processing was performed by the software
CIRDOX[19] whose architecture is shown in Figure 2. The mi-
crophone stream is continuously acquired and sound events are
detected on the fly by using a wavelet decomposition and an
adaptive thresholding strategy [20]. Sound events are then clas-
sified as noise or speech and, in the latter case, sent to an ASR
system. The result of the ASR is then sent to the last stage
which is in charge of recognizing distress calls.

In this paper, we focus on the ASR system and present dif-
ferent strategies to improve the recognition rate of the calls. The
remaining of this section presents the methods employed at the
acoustic and decoding level.

2.2. Acoustic modeling

The Kaldi speech recognition tool-kit [21] was chosen as ASR
system. Kaldi is an open-source state-of-the-art ASR system
with a high number of tools and a strong support from the com-
munity. In the experiments, the acoustic models were context-
dependent classical three-state left-right HMMs. Acoustic fea-
tures were based on Mel-frequency cepstral coefficients, 13
MFCC-features coefficients were first extracted and then ex-
panded with delta and double delta features and energy (40
features). Acoustic models were composed of 11,000 context-
dependent states and 150,000 Gaussians. The state tying is
performed using a decision tree based on a tree-clustering of
the phones. In addition, off-line fMLLR linear transformation
acoustic adaptation was performed.

The acoustic models were trained on 500 hours of tran-
scribed French speech composed of the ESTER 1&2 (broad-
cast news and conversational speech recorded on the radio) and
REPERE (TV news and talk-shows) challenges as well as from
7 hours of transcribed French speech of the SH corpus (SWEET-
HOME) [22] which consists of records of 60 speakers interact-
ing in the smart home and from 28 minutes of the Voix-détresse
corpus [23] which is made of records of speakers eliciting a dis-
tress emotion.

2.2.1. Subspace GMM Acoustic Modelling
The GMM and Subspace GMM (SGMM) both model emission
probability of each HMM state with a Gaussian mixture model,
but in the SGMM approach, the Gaussian means and the mix-
ture component weights are generated from the phonetic and
speaker subspaces along with a set of weight projections.

The SGMM model [24] is described in the following equa-
tions:





p(x|j) =
Mj∑
m=1

cjm
I∑

i=1

wjmiN (x;µjmi,Σi),

µjmi = Mivjm,

wjmi =
expwT

i vjm∑I
i′=1

expwT
i′vjm

.

where x denotes the feature vector, j ∈ {1..J} is the HMM
state, i is the Gaussian index, m is the substate and cjm is the
substate weight. Each state j is associated to a vector vjm ∈
RS (S is the phonetic subspace dimension) which derives the
means, µjmi and mixture weights, wjmi and it has a shared
number of Gaussians, I . The phonetic subspace Mi, weight
projections wT

i and covariance matrices Σi i.e; the globally
shared parameters Φi = {Mi,w

T
i ,Σi} are common across

all states. These parameters can be shared and estimated over
multiple record conditions.

A generic mixture of I gaussians, denoted as Universal
Background Model (UBM), models all the speech training data
for the initialization of the SGMM.

Our experiments aims at obtaining SGMM shared parame-
ters using both SWEET-HOME data (7h), Voix-détresse (28mn)
and clean data (ESTER+REPERE 500h). Regarding the GMM
part, the three training data set are just merged in a single one.
[24] showed that the model is also effective with large amounts
of training data. Therefore, three UBMs were trained respec-
tively on SWEET-HOME data, Voix-détresse and clean data.
These tree UBMs contained 1K gaussians and were merged
into a single one mixed down to 1K gaussian (closest Gaus-
sians pairs were merged [25]). The aim is to bias specifically
the acoustic model with the smart home and expressive speech
conditions.

2.3. Recognition of distress calls

The recognition of distress calls consists in computing the pho-
netic distance of an hypothesis to a list of predefined distress
calls. Each ASR hypothesisHi is phonetized, every voice com-
mands Tj is aligned to Hi using Levenshtein distance. The
deletion, insertion and substitution costs were computed empir-
ically while the cumulative distance γ(i, j) between Hj and Ti

is given by Equation 1.

γ(i, j) = d(Ti, Hj)+

min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (1)

The decision to select or not a detected sentence is then
taken according a detection threshold on the aligned symbol
score (phonems) of each identified call. This approach takes
into account some recognition errors like word endings or light
variations. Moreover, in a lot of cases, a miss-decoded word is
phonetically close to the good one (due to the close pronuncia-
tion). From this the CER (Call Error Rate i.e., distress call error
rate) is defined as:

CER =
Number of missed calls

Number of calls
(2)

This measure was chosen because of the content of the corpus
Cirdo-set used in this study. Indeed, this corpus is made of sen-
tences and interjections. All sentences are calls for help, with-
out any other kind of sentences like home automation orders or
colloquial sentences, and therefore it is not possible to deter-
mine a false alarm rate in this framework.
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Figure 2: Architecture of the analysis system CIRDOX

Figure 3: A young participant playing a fall scenario

3. Experimentation and results
3.1. Live Experiment

An experiment was run in the experimental platform of the LIG
laboratory in a room whose setting corresponds to Figure 1 and
equipped with a sofa, a carpet, 2 chairs, a table and e-lio. A
Sennheiser SKM 300 G2 ME2 omnidirectional microphone was
set on the cupboard. In these conditions, the microphone was at
a distance of above 2 meters from the speaker (Distant speech
conditions). The audio analysis system consisted in the CIR-
DOX software presented in Section 2 which was continuously
recording and analysing the audio streams to detect the calls.

3.1.1. Scenarios and experimental protocol

The scenarios were elaborated after field studies made by the
GRePS laboratory [17]. These studies allowed to specify the
fall context, the movements during the fall as well as the per-
son’s reaction once on the floor. Phrases uttered during and
after the fall were also identified “Blast! What’s happening to
me? Oh shit, shit!”. The protocol was as follows [18]. Each par-
ticipant was introduced to the context of the research and was
invited to sign a consent form. The participants played four sce-
narios of fall, one blocked hip scenario and two other scenarios
called “true-false” added to challenge the automatic detection of
falls by the video analysis system. If the participant’s age was
under 60, he wore a simulator which hampered his mobility and
reduced his vision and hearing to simulate aged physical condi-
tions. Figure 3 shows a young participant wearing the simulator
at the end of a fall scenario. The average experiment duration of
an experiment was 2h 30min per person. This experiment was
very tiring for the participants and it was necessary to include
rehearsals before starting the recordings so that the participant
felt comfortable and was able to fall securely.

3.1.2. Voice commands and distress calls

The sentences of the AD80 corpus [19] served as basis to de-
velop the language model used by our system. This corpus was

recorded by 43 elderly people and 52 non-aged pepole in our
laboratory and in a nursing home to study the automatic recog-
nition of speech uttered by aged speakers. This corpus is made
of 81 casual sentences, 31 vocal commands for home automa-
tion and 58 distress sentences. An excerpt of these sentences
in French is given Table 2, the distress sentences identified in
the field study reported in section 3.1.1 were included in the
corresponding part of AD80.

The utterance of some of these distress sentences were in-
tegrated into the scenarios with the exception of the two “true-
false” scenarios.

3.1.3. Acquired data: Cirdo-set

In this paper we focus on the detection of the distress calls,
therefore we don’t consider the audio event detected and ana-
lyzed on the fly but only the full records of each scenario. These
data sets were transcribed manually using transcriber [26] and
the speech segments were then extracted for analysis.

The targeted participants were elderly people that were still
able to play the fall scenarios securely. However, the recruit-
ment of such kind of population was very difficult and a part of
the participants was composed of people under 60 years old but
they were invited to wear a special suit [18] which hampered
their mobility and reduced their vision but without any effect
on speech production. Overall, 17 participants were recruited (9
men and 8 women). Among them, 13 participants were under
60 and worn the simulator. The aged participants were between
61 and 83 years old.

When they played the scenarios, some participants pro-
duced sighs, grunts, coughs, cries, groans, pantings or throat
clearings. These sounds were not considered during the anno-
tation process. In the same way, speeches mixed with sound
produced by the fall were ignored. At the end, each speaker ut-
tered between 10 and 65 short sentences or interjections (“ah”,
“oh”, “aïe”, etc.) as shown Table 1.

Sentences were often close of those identified during the
field studies (“je peux pas me relever - I can’t get up”, “e-lio
appelle du secours - e-lio call for help”, etc.), some were differ-
ent (“oh bein on est bien là tiens - oh I am in a sticky situation”).
In practice, participants cut some sentences (i.e., inserted a de-
lay between “e-lio” and “appelle ma fille - call my daughter”),
uttered some spontaneous sentences, interjections or non-verbal
sounds (i.e., groan).

3.2. Off line experiments

The methods presented in Section 2 were run on the Cirdo-set
corpus presented in Section 3.1.3.

The SGMM model presented in Section 2.2 was used as
acoutic model. The generic language model (LM) was esti-
mated from French newswire collected in the Gigaword cor-
pus. It was 1- gram with 13,304 words. Moreover, to reduce
the linguistic variability, a 3-gram domain language model, the
specialized language model was learnt from the sentences used
during the corpus collection described in Section 3.1.1, with 99
1-gram, 225 2-gram and 273 3-gram models. Finally, the lan-

126



Distress Sentence Home Automation Command Casual Sentence
Aïe aïe aïe ? Appelle quelqu’un e-lio ? Bonjour madame
Oh là ? e-lio, appelle quelqu’un ? Ça va très bien
Merde ? e-lio tu peux appeler une ambulance Où sont mes lunettes
Je suis tombé ? e-lio tu peux téléphoner au SAMU Le café est brûlant
Je peux pas me relever ? e-lio, appelle du secours J’ai ouvert la porte
Qu’est-ce qu’il m’arrive ? e-lio appelle les secours Je me suis endormi tout de suite
Aïe ! J’ai mal ? e-lio appelle ma fille Il fait soleil
Oh là ! Je saigne ! Je me suis blessé ? e-lio appelle les secours Ce livre est intéressant
Aidez-moi e-lio appelle le SAMU ! Je dois prendre mon médicament
Au secours e-lio appelle les pompiers ! J’allume la lumière

Table 2: Examples of sentences of the AD80 corpus (? denotes a sentence identified during the sociological study)

Nb. of interjections
Spk. Age Sex or short sentences

All Distress
S01 30 M 22 14
S02 - - -
S03 24 F 16 15
S04 83 F 65 53
S05 29 M 24 21
S06 64 F 23 19
S07 61 M 23 21
S08 44 M 25 15
S09 16 M 32 21
S10 16 M 19 15
S11 52 M 12 12
S12 28 M 15 12
S13 66 M 24 21
S14 52 F 23 21
S15 23 M 20 19
S16 40 F 29 27
S17 40 F 24 21
S18 25 F 17 14
Total 40.76 413 341

Table 1: Composition of the audio corpus Cirdo-set

guage model was a 3-gram-type which resulted from the com-
bination of the generic LM (with a 10% weight) and the special-
ized LM (with 90% weight). This combination has been shown
as leading to the best WER for domain specific application [27].
The interest of such combination is to bias the recognition to-
wards the domain LM but when the speaker deviates from the
domain, the general LM makes it possible to avoid the recogni-
tion of sentences leading to “false-positive” detection.

Results on manually annotated data are given Table 3. The
most important performance measures are the Word Error Rate
(WER) of the overall decoded speech and those of the specific
distress calls as well as the Call Error Rate (CER: c.f. equa-
tion 2). Considering distress calls only, the average WER is
34.0% whereas it a 39.3% when all interjections and sentences
are taken into account.

Unfortunately and as mentionned above, the used corpus
doesn’t allow the détermine a False Alarm Rate. Previous stud-
ies based on the AD80 corpus showed recall, precision and F-
measure equal to 88.4%, 86.9% and 87.2% [19]. Nevertheless,
this corpus was recorded in very different conditions, text read-
ing in a studio, in contrary of those of Cirdo-set.

WER (%) WER (%)
Spk. All Dis- CER Spk. All Dis- CER

tress (%) tress (%)
S01 45.0 39.1 27.8 S11 21.3 17.0 16.7
S03 41.4 44.4 40.0 S12 30.8 25.0 25.0
S04 51.9 49.6 34.0 S13 45.9 43.6 23.8
S05 19.1 15.4 14.3 S14 67.0 54.8 50.0
S06 39.2 34.3 26.3 S15 21.5 19.5 5.3
S07 21.2 20.3 28.6 S16 14.9 11.76 7.4
S08 61.8 50.8 20.0 S17 21.4 22.4 19.0
S09 49.4 41.2 33.3 S18 57.7 44.9 71.4
S10 24.5 22.4 14.3 All 39.3 34.0 26.8

Table 3: Word and Call Error Rate for each participant

On average, CER is equal to 26.8% with an important dis-
parity between the speakers.

4. Discussion
These results are quite different from those obtained with the
AD80 corpus (with aged speakers and speaker adaptation):
WER was 14.5% [19]. There are important differences between
the recording conditions used for AD80 and for the Cirdo-set
corpus used in our study that can explain this performance gap:

• AD80 is made of readings by speakers sitting in com-
fortable position in front of a PC and the microphone ;

• AD80 was recorded in nearest conditions in comparison
with distant setting for Cirdo-set ;

• Cirdo-set was recorded by participants who fell on the
floor or that are blocked on the sofa. They were encour-
aged to speak in the same way that they would speak if
they would be really put in these situations. Obviously,
we obtained expressive speech, but there is no evidence
that the pronunciation would be the same as in real con-
ditions of a fall or a blocked hip.

Regarding the CER, its global value 26.8% shows that
74.2% of the calls were correctly recognized ; furthermore, at
the exception of one speaker (CER=71.4%), CER is always be-
low 50% consequently more than 50% of the calls were recog-
nized. For 6 speakers, CER was below 20%. This suggests that
a distress call could be detected if the speaker is able to repeat
his call two or three times. However, if the system did not iden-
tify the first distress call because the person’s voice is altered
by the stress, it is likely that this person will fill more and more
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stress and as a consequence future calls would be more difficult
to identify. In a same way, our corpus was recorded in realis-
tic conditions but not in real conditions and frail elderly people
may not be adequately simulated by healthy human adults. A
relatively small number of missed distress calls could render
the system unacceptable for use amongst the potential user and
therefore some efforts in this regard would need to be pursued.

5. Conclusion and perspectives
This study is focused on the framework of automatic speech
recognition applications in smart homes, that is in distant
speech conditions and especially in realistic conditions very dif-
ferent from those of corpus recording when the speaker is read-
ing a text.

Indeed in this paper, we presented the Cirdo-set corpus
made of distress calls recorded in distant speech conditions and
in realistic conditions in case of fall or blocked hip. The WER
obtained at the output of the dedicated ASR was 36.3% for the
distress calls. Thanks to a filtering of the ASR hypothesis at
phonetic level, more than 70% of the calls were detected.

These results obtained in realistic conditions gives a fairly
accurate idea of the performances that can be achieved with
state of the art ASR systems for end user and specific appli-
cations. They were obtained in the particular case of the recog-
nition of distress calls but they can be extended to other appli-
cations in which expressive speech may be considered because
it is inherently present.

As stated above, obtained results are not sufficient to allow
the system use in real conditions and two research ideas can
be considered. Firstly, speech recognition performances may
be improved thanks to acoustic models adapted to expressive
speech. This may be achieved to the record of corpora in real
conditions but this is a very difficult task. Secondly, it may
be possible to recognize the repetition, at regular intervals, of
speech events that are phonetically similar. This last method
does not request the good recognition of the speech. Our future
studies will address this problem.
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Abstract 
When individuals lose the ability to produce their own speech, 
due to degenerative diseases such as motor neurone disease 
(MND) or Parkinson’s, they lose not only a functional means of 
communication but also a display of their individual and group 
identity. In order to build personalized synthetic voices, attempts 
have been made to capture the voice before it is lost, using a 
process known as voice banking. But, for some patients, the 
speech deterioration frequently coincides or quickly follows 
diagnosis. Using HMM-based speech synthesis, it is now 
possible to build personalized synthetic voices with minimal data 
recordings and even disordered speech. The power of this 
approach is that it is possible to use the patient’s recordings to 
adapt existing voice models pre-trained on many speakers. When 
the speech has begun to deteriorate, the adapted voice model can 
be further modified in order to compensate for the disordered 
characteristics found in the patient’s speech, we call this process 
"voice repair". In this paper we compare two methods of voice 
repair. The first method follows a trial and error approach and 
requires the expertise of a speech therapist. The second method 
is entirely automatic and based on some a priori statistical 
knowledge. A subjective evaluation shows that the automatic 
method achieves similar results than the manually controlled 
method.  
Index Terms: HTS, Speech Synthesis, Voice Banking, Voice 
Reconstruction, Voice Output Communication Aids, MND. 

1. Introduction 
Degenerative speech disorders have a variety of causes that 
include Multiple Sclerosis, Parkinson’s, and Motor Neurone 
Disease (MND) also known in the USA as Amyotrophic Lateral 
Sclerosis (ALS). MND primarily affects the motor neurones in 
the brain and spinal cord. This causes a worsening muscle 
weakness that leads to a loss of mobility and difficulties with 
swallowing, breathing and speech production. Initial symptoms 
may be limited to a reduction in speaking rate, an increase of the 
voice’s hoarseness, or an imprecise articulation. However, at 
some point in the disease progression, 80 to 95% of patients are 
unable to meet their daily communication needs using their 
speech [1]. As speech becomes difficult to understand, these 
individuals may use a voice output communication aid (VOCA). 
These devices consist of a text entry interface such as a 
keyboard, a touch screen or an eye-tracker, and a text-to-speech 
synthesizer that generates the corresponding speech. However, 
when individuals lose the ability to produce their own speech, 
they lose not only a functional means of communication but also 
a display of their individual and social identity through their 
vocal characteristics.  
 

Current VOCAs are not ideal as they are often restricted to a 
limited set of impersonal voices that are not matched to the age 
or accent of each individual. Feedback from patients, careers and 
patient societies has indicated that there is a great unmet need for 
personalized VOCAs as the provision of personalized voice is 
associated with greater dignity and improved self-identity for the 
individual and their family [2]. In order to build personalized 
VOCAs, several attempts have been made to capture the voice 
before it is lost, using a process known as voice banking. One 
example of this approach is ModelTalker [3], a free voice 
building service that can be used from any home computer in 
order to build a synthetic voice based on diphone concatenation, 
a technology developed in the 1980s. The user of this service has 
to record around 1800 utterances in order to fully cover the set of 
diphones and the naturalness of the synthetic speech is rather 
low. Cereproc [4] has provided a voice building service for 
individuals, at a relatively high cost, which uses unit selection 
synthesis, and is able to generate synthetic speech of increased 
naturalness. However, these speech synthesis techniques require 
a large amount of recorded speech in order to build a good 
quality voice. Moreover the recorded speech data must be as 
intelligible as possible, since the data recorded is used directly as 
the voice output. This requirement makes such techniques more 
problematic for those patients whose voices have started to 
deteriorate. Therefore, there is a strong motivation to improve 
the voice banking and voice building techniques, so that patients 
can use their own synthetic voices, even if their speech is already 
disordered at the time of recordings. A first approach is to try to 
separate out the disorders from the recorded speech. In this way, 
Rudzicz [5] has proposed a combination of several speech 
processing techniques. However, some disorders cannot be 
simply filtered out by signal processing techniques and a model-
based approach seems more appropriate. Kain [6] has proposed a 
voice conversion framework for the restoration of disordered 
speech. In its approach, the low-frequency spectrum of the 
voiced speech segment is modified according to a mapping 
defined by a Gaussian mixture model (GMM) learned in advance 
from a parallel dataset of disordered and target speech. The 
modified voiced segments are then concatenated with the 
original unvoiced speech segments to reconstruct the speech. 
This approach can be seen as a first attempt of model-based 
voice reconstruction although it relies only on a partial modeling 
of the voice components. A voice building process using the 
hidden Markov model (HMM)-based speech synthesis technique 
has been investigated to create personalized VOCAs [7-10]. This 
approach has been shown to produce high quality output and 
offers two major advantages over existing methods for voice 
banking and voice building. First, it is possible to use existing 
speaker-independent voice models pre-trained over a number of 
speakers and to adapt them towards a target speaker. This 
process known as speaker adaptation [11] requires only a very 
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small amount of speech data. The second advantage of this 
approach is that we can control and modify various components 
of the adapted voice model in order to compensate for the 
disorders found in the patient’s speech. We call this process 
“voice repair”. In this paper, we compare different strategies of 
voice repair using the HMM-based synthesis framework. The 
first method follows a trial and error approach and requires the 
expertise of a speech therapist. The second method is entirely 
automatic and based on some a priori statistical knowledge. 

2. HMM-Based Speech Synthesis 
Our voice building process is based on the state-of-the-art 
HMM-based speech synthesizer, known as HTS [12]. As 
opposed to diphone or unit-selection synthesis, the HMM-based 
speech synthesizer does not use the recorded speech data directly 
as the voice output. Instead it is based on a vocoder model of the 
speech and the acoustic parameters required to drive this vocoder 
are represented by a set of statistical models. The vocoder used 
in HTS is STRAIGHT and the statistical models are context-
dependent hidden semi-Markov models (HSMMs), which are 
HMMs with explicit state duration distributions. The state output 
distributions of the HSMMs represent three separate streams of 
acoustic parameters that correspond respectively to the 
fundamental frequency (logF0), the band aperiodicities and the 
mel-cepstrum, including their dynamics. For each stream, 
additional information is added to further describe the temporal 
trajectories of the acoustic parameters, such as their global 
variances over the learning data. Finally, separate decision trees 
are used to cluster the state durations probabilities and the state 
output probabilities using symbolic context information at the 
phoneme, syllable, word, and utterance level. In order to 
synthesize a sentence, a linguistic analyser is used to convert the 
sequence of words into a sequence of symbolic contexts and the 
trained HSMMs are invoked for each context. A parameter-
generation algorithm is then used to estimate the most likely 
trajectory of each acoustic parameter given the sequence of 
models. Finally the speech is generated by the STRAIGHT 
vocoder driven by the estimated acoustic parameters. 

3. Speaker Adaptation 
One advantage of the HMM-based speech synthesis for voice 
building is that the statistical models can be estimated from a 
very limited amount of speech data thanks to speaker adaptation. 
This method [9] starts with a speaker-independent model, or 
“average voice model”, learned over multiple speakers and uses 
model adaptation techniques drawn from speech recognition 
such as maximum likelihood linear regression (MLLR), to adapt 
the speaker independent model to a new speaker. It has been 
shown that using 100 sentences or approximately 6-7 minutes of 
speech data is sufficient to generate a speaker-adapted voice that 
sounds similar to the target speech [7]. In the following of this 
paper we refer the speaker-adapted voices as “voice clones”. 
This provides a much more practical way to build a personalized 
voices for patients. For instance, it is now possible to construct a 
synthetic voice for a patient prior to a laryngectomy operation, 
by quickly recording samples of their speech [8]. A similar 
approach can also be used for patients with neurodegenerative 
diseases such as MND. However, we do not want to reproduce 
the symptoms of a vocal problem if the speech has already been 
disordered at the time of the recording. This is the aim of the 
voice repair methods introduced in the section 5 of this paper. 

4. Database of Voice Donors 
Ideally, the average voice model used for the speaker adaptation 
should be close to the vocal identity of the patient. On the other 
hand, a minimum number of speakers are necessary to train 
robust average voice models. Therefore, we have created a 
database of more than 900 healthy voice donors with various 
accents (Scottish, Irish, Other UK). Each speaker recorded about 
one hour of speech (400 sentences). This database of healthy 
voices is first used to create the average voice models used for 
speaker adaptation. Ideally, the average voice model should be 
close to the vocal identity of the patient and it has been shown 
that gender and regional accent are the most influent factors in 
speaker similarity perception [13]. Therefore, the speakers are 
clustered according to their gender and their regional accent in 
order to train specific average voice models. A minimum of 10 
speakers is required in order to get robust average voice models. 
Furthermore, the database is also used to select a reference donor 
for the voice repair procedures described in section 5. The voice 
repair is most successful when the reference donor is as close as 
possible to the patient in terms of vocal identity. 

5. Voice Repair 
 Some individuals with neurodegenerative disease may already 
have speech symptoms at the time of the recording. In that case, 
the speaker adaptation process will also replicate these 
symptoms in the speaker-adapted voice. Therefore we need to 
remove speech disorders from the synthetic voice, so that it 
sounds more natural and more intelligible. Repairing synthetic 
voices is conceptually similar to the restoration of disordered 
speech mentioned in Section 1, but we can now exploit the 
acoustic models learned during the training and the adaptation 
processes in order to control and modify various speech features. 
This is the second major advantage of using HMM-based speech 
synthesis. In particular, HTS has statistically independent models 
for duration, log-F0, band aperiodicity and mel-cepstrum. This 
allows the substitution of some models in the patient's speaker-
adapted voice by that of a well-matched healthy voice or an 
average of multiple healthy voices. For example, patients with 
MND often have a disordered speaking rate, contributing to a 
loss of the speech intelligibility. The substitution of the state 
duration models enables the timing disruptions to be regulated at 
the phoneme, word, and utterance levels. Furthermore, MND 
speakers often have breathy or hoarse speech, in which excessive 
breath through the glottis produces unwanted turbulent noise. In 
such cases, we can substitute the band aperiodicity models to 
produce a less breathy or hoarse output. In the following part of 
this section, we present two different methods of model 
substitution. The first one is manually controlled whereas the 
second one is automatic. 
5.1. Manual voice repair 
In the manual approach, a speech therapist first selects a 
reference voice among all the available voices with same accent, 
gender and age range than the patient. Then the models of this 
reference voice are used to correct some of the patient’s voice 
models. This correction is based on mean and variance 
interpolation between models. A graphical interface allows the 
speech therapist to control the amount of interpolation between 
the patient’s voice models and the reference voice models as 
illustrated in Figure 1. 
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Figure 1: Graphical interface for model interpolation. 

 
The following models and information can be interpolated: 

• Duration  
• Dynamics coefficients of the log-F0  
• Dynamics coefficients of the mel-cepstrum  
• Low-order coefficients of the mel-cepstrum  
• High-order coefficients of the mel-cepstrum  

The voiced/unvoiced weights and aperiodicity models are simply 
substituted since their impact on voice identity is rather limited 
and their replacement of will fix the breathiness disorders. The 
interpolation of the high order static coefficients and the 
dynamics coefficients of the mel-cepstrum will help to reduce 
the articulation disorders without altering the timbre. The 
interpolation of the dynamics coefficients of the log-F0 will help 
to regulate the prosodic disorders such as monotonic F0. Finally 
the global variances of all the parameters are also simply 
substituted. We will refer to this method as the manual repair. 

5.2. Automatic voice repair 
The manual voice repair requires a lot of expertise from the 
speech therapist, as it is a trial and error approach. Therefore, we 
aim to replace it by a fully automated voice repair procedure. We 
measure the Kullback-Leibler distance (KLD) between the 
models of the patient voice and the models of the reference voice 
as illustrated in Figure 2. Then the likelihood of each of the 
measured distance is evaluated given the statistical distribution 
of KLD distances between healthy voice models of similar 
accent, gender and age band. The likelihood values are used to 
control the interpolation between the patient and reference voice 
models. For instance, if the likelihood of the KLD distance for a 
given model of the patient voice is very low, the corresponding 
model of the reference voice is used to replace it in the patient 
voice. The reference voice model is also selected automatically 
as the one that maximizes the likelihood of the patient recording 
data.  

6. Experiment 
The manual and automatic voice repair methods presented in 
Section 5 were evaluated for the case of a MND patient. This 
patient was a 45 years old Scottish male that we recorded twice. 
A first recording of one hour (500 sentences) has been made just 
after diagnosis when he was at the very onset of the disease.  

 
 

Figure 2: Graphical interface for model interpolation. 
 
At that time, his voice did not show any disorders and could still 
be considered as “healthy”. A second recording of 15 minutes 
(50 sentences) has been made 10 months later. He has then 
acquired some speech disorders typically associated with MND, 
such as excessive hoarseness and breathiness, disruption of 
speech fluency, reduced articulation and monotonic prosody. 
These two recordings were used separately as adaptation data in 
order to create two speaker-adapted voices from the same male-
Scottish average voice model. The synthetic voice created from 
the first recording of the patient (“healthy” speech) was used as 
the reference voice for the subjective evaluations. This choice of 
a synthetic voice as reference instead of the natural recordings 
was done to avoid any bias due to the loss of quality inherent to 
the synthesis. Two different reconstructed voices were created 
from the second recording of the patient (“impaired” speech) 
using the manual and the automatic voice repair methods 
respectively. In order to evaluate the voice repair methods, two 
subjective tests were conducted. The first one assesses the 
intelligibility of the reconstructed voices whereas the second one 
measures their similarity with synthetic voice created from 
“healthy” speech of the patient. We also included the synthetic 
voices of the donors selected for the manual and the automatic 
voice repair in the similarity test. All the synthetic voices used in 
the experiment are summarized in Table 1. 
 
Voice Description 
MD Voice of donor used in manual voice repair  
AD Voice of donor used in automatic voice repair 
HC Voice clone of the “healthy” speech (1st recording)  
IC Voice clone of the “impaired” speech  (2nd recording) 
IR_v1 Reconstructed voice using manual voice repair 
IR_v2 Reconstructed voice using automatic voice repair 

 Table 1: Voices compared in the evaluation tests. 

 

6.1. Listening Intelligibility Test  
The same 50 semantically unpredictable sentences were 
synthesized for each of the voices created from the patient’s 
recordings (see Table 1). The resulting 200 synthesized samples 
were divided into 4 groups such that each voice is represented by 
10 samples in a group. A total of 40 native English participants 
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were asked to transcribe the synthesized samples, with 10 
participants for each group. Within each group, the samples were 
presented in random order for each participant. The participants 
performed the test with headphones. The transcriptions were 
evaluated by measuring the word error rate (WER). 

 
Figure 3: Word Error Rate (mean and standard deviation) 

 

6.2. Speaker Similarity Test  
The same test sentence “People look, but no one ever finds it.” 
was synthesized for each of the voices in Table 1. Participants 
were asked to listen alternatively to the reference voice (HC) and 
to the same sentence synthesized with one of the other voices. 
The presentation order of the voice samples was randomized. 
The participants have been asked to rate the similarity in terms of 
speaker identity between the tested voice and the reference (HC) 
on a 5-point scale (1: Very dissimilar, 2: Dissimilar, 3: Quite 
Similar, 4: Very similar; and 5: Identical). A total of 40 native 
English speakers performed the test using headphones.  

 
Figure 4: Similarity to the reference voice HC on a MOS-scale 

 (mean and standard deviation) 

7. Results and Discussion 
The resulting average WERs for the intelligibility test are shown 
in Figure 2. We are not interested here in the absolute values of 
the WER but in their relative values compared to the healthy 
voice HC. As expected, the synthetic voice IC created from the 
“impaired” speech has a high WER. Both manual and automatic 
voice repair succeeds in removing some articulation disorders 
from the synthetic speech as we can see a significant decrease of 
WER. The manual voice repair yields to slightly lower WER 
than the automatic voice repair although the difference is not 
significant. The results of the similarity test are shown in Figure 
3. The first important result is that the reconstructed voices are 
still considered more similar to the patient’s voice than the 

closest voice donors (MD and AD) used for the voice repair. 
This means that both voice repair methods manage to preserve 
the voice identity to a certain extent. The manual voice repair is 
performing slightly better than the automatic method but the 
difference is not significant (p-value ~ 1.e-2).  

8. Conclusions 
HMM-based speech synthesis has two clear advantages for the 
creation of personalized voices for people with disordered 
speech: speaker adaptation and improved control. Speaker 
adaptation allows the creation of a voice clone with a limited 
amount of data. Then the structure of the acoustic models can be 
modified to repair the synthetic speech. We have presented here 
two different strategies for voice reconstruction. The first one is 
manual and requires the expertise of a speech therapist whereas 
the second one is fully automated. The evaluation of these 
methods demonstrates that: a) it is possible to improve the 
intelligibility of a disordered synthetic speech while retaining its 
vocal identity; b) the automatic voice repair performs almost as 
well as the manual voice repair. The reconstruction strategies 
presented here have been designed for MND patients, but their 
principle could be easily generalized to any other degenerative or 
acquired speech disorder. 

9. References 
[1] Doyle, M. and Phillips, B. (2001), “Trends in augmentative and 

alternative communication use by individuals with amyotrophic 
lateral sclerosis,” Augmentative and Alternative Communication 17 
(3): pp.167–178.  

[2] Murphy, J. (2004), “I prefer this close’: Perceptions of AAC by 
people with motor neurone disease and their communication 
partners. Augmentative and Alternative Communication, 20, 259-
271. 

[3] Yarrington, D., Pennington, C., Gray, J., & Bunnell, H. T. (2005), 
“A system for creating personalized synthetic voices,” Proc. of 
ASSETS.  

[4] http://www.cereproc.com/ 
[5] Rudzicz, F. (2011) “Production knowledge in the recognition of 

dysarthric speech”, PhD thesis, University of Toronto. 
[6] Kain, A.B., Hosom, J.P. Niu X., van Santen J.P.H., Fried-Oken, 

M., and Staehely, J., (2007) “Improving the intelligibility of 
dysarthric speech,” Speech Communication, 49(9), pp743–759. 

[7] Creer, S., Green, P., Cunningham, S., & Yamagishi, J. (2010) 
“Building personalized synthesized voices for individuals with 
dysarthia using the HTS toolkit,” IGI Global Press, Jan. 2010. 

[8] Khan, Z. A., Green P., Creer, S., & Cunningham, S. (2011) 
“Reconstructing the Voice of an Individual Following 
Laryngectomy,” Augmentative and Alternative Communication.  

[9] Veaux, C., Yamagishi, J., King, S. (2011) “Voice Banking and 
Voice Reconstruction for MND patients,” Proceedings of ASSETS. 

[10] Veaux, C., Yamagishi, J., King, S. (2012) “Using HMM-based 
Speech Synthesis to Reconstruct the Voice of Individuals with 
Degenerative Speech Disorders,” Interspeech, Portland, USA. 

[11] Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K. & Isogai, J. 
2009. Analysis of speaker adaptation algorithms for HMM-based 
speech synthesis and a constrained SMAPLR adaptation algorithm. 
IEEE Trans. on ASL, 17, 66-83. 

[12] Zen, H., Tokuda, K., & Black, A. (2009) “Statistical parametric 
speech synthesis, Speech Communication,” 51, pp.1039-1064. 

[13] Dall, R., Veaux, C., Yamagishi, J. & King, S. (2012) “Analysis of 
speaker clustering strategies for HMM-based speech synthesis,” 
Proc. Interspeech, Portland, USA. 

 

0 10 20 30 40 50 60 70 80 90

IR_v2

IR_v1

IC

HC

1 1.5 2 2.5 3 3.5 4 4.5 5

MD

AD

IR_v1

IR_v2

133



Using linguistic features longitudinally to predict clinical scores for
Alzheimer’s disease and related dementias

Maria Yancheva1, Kathleen Fraser1, Frank Rudzicz1,2

1Department of Computer Science, University of Toronto, Toronto, Canada
2Toronto Rehabilitation Institute-UHN, Toronto, Canada

yancheva@cs.toronto.edu, kfraser@cs.toronto.edu, frank@cs.toronto.edu

Abstract
We use a set of 477 lexicosyntactic, acoustic, and semantic fea-
tures extracted from 393 speech samples in DementiaBank to
predict clinical MMSE scores, an indicator of the severity of
cognitive decline associated with dementia. We use a bivari-
ate dynamic Bayes net to represent the longitudinal progression
of observed linguistic features and MMSE scores over time,
and obtain a mean absolute error (MAE) of 3.83 in predicting
MMSE, comparable to within-subject interrater standard devia-
tion of 3.9 to 4.8 [1]. When focusing on individuals with more
longitudinal samples, we improve MAE to 2.91, which suggests
at the importance of longitudinal data collection.
Index Terms- Alzheimer’s disease, dementia, Mini-Mental
State Examination (MMSE), dynamic Bayes network, feature
selection

1. Introduction
Research into the early assessment, pathogenesis, and progres-
sion of dementia is becoming increasingly important, as the pro-
portion of people it affects grows every year. Alzheimer’s dis-
ease (AD), the most common type of dementia, affects more
than half of the population above 80 years of age and its impact
on society is expected to grow as the “baby boomer” generation
ages [2, 3, 4].

There is no single laboratory test that can identify demen-
tia with absolute certainty. Typically, probable dementia is di-
agnosed using the Mini Mental State Examination (MMSE),
which provides a score on a scale of 0 (greatest cognitive de-
cline) to 30 (no cognitive decline), based on a series of ques-
tions in five areas: orientation, registration, attention, memory,
and language [5]. While MMSE provides a unified scale for
measuring the severity of the disease, it can be time-consuming
and relatively costly, often requiring a trained neuropsycholo-
gist or physician to administer the test in a clinical setting.

Changes in cognitive ability due to neurodegeneration as-
sociated with AD lead to a progressive decline in memory and
language quality. Patients experience deterioration in sensory,
working, declarative, and non-declarative memory, which leads
to a decrease in the grammatical complexity and lexical con-
tent of their speech [6]. Such changes differ from the pattern of
decline expected in older adults [6], which suggests that tempo-
ral changes in linguistic features can aid in disambiguation of
healthy older adults from those with dementia.

Some previous work used machine learning classifiers with
linguistic features for two-class separation of patients with AD
from controls (see section 1.1), but there appears to be no pre-
vious research that has used them to infer a clinical score for
dementia — an indicator of the degree of cognitive decline. The

present work uses a set of automatically-extracted lexicosyntac-
tic, acoustic, and semantic (LSAS) features for estimating con-
tinuous MMSE scores on a scale of 0 to 30, using a dynamic
Bayes network for representing relationships between observed
linguistic measures and underlying clinical scores.

Since dynamic changes in linguistic ability in patients with
AD differ from those in typical healthy older adults [6], we
hypothesize that considering speech samples over time would
aid in estimating underlying cognitive status. Previous stud-
ies analyzing dynamic progression of language features in pa-
tients with AD did not employ machine learning techniques,
and are characterized by a small number of subjects (between 3
and 6) and a limited set of features that do not include acous-
tics. The present work improves on these analyses by extracting
LSAS features from a relatively large collection of longitudinal
speech, in order to estimate MMSE scores.

1.1. Related Work

Previous work has explored the use of lexicosyntactic features
for identifying individuals with AD from controls. Orimaye et
al. [7] used DementiaBank1, one of the largest existing datasets
of pathological speech [8], to perform binary classification of
242 patients with dementia and 242 controls; a support vector
machine classifier achieved their best F-measure of 0.74 [7].
Another experiment by Jarrold et al. collected spontaneous
speech data from 9 controls, 9 patients with AD, and 30 pa-
tients with frontotemporal lobar degeneration (FTLD) [9]. A
multi-layer perceptron model obtained classification accuracy
of 88% on a two-class task (AD:controls, and FTLD:controls),
and 80% on a three-class task (AD:FTLD:controls).

While these studies have obtained promising results in clas-
sifying patients with dementia based on linguistic features, there
is limited work modelling the progression of such features over
time. Le et al. [10] examined the longitudinal changes in a
small set of hand-selected lexicosyntactic measures, such as vo-
cabulary size, repetition, word class deficit, and syntactic com-
plexity, in 57 novels of three British authors written over a pe-
riod of several decades. They found statistically significant lex-
ical deterioration in Agatha Christie’s work evidenced by vo-
cabulary impoverishment and a pronounced increase in word
repetitions [10], but the measures for syntactic complexity did
not yield conclusive results. A similar analysis performed by
Sundermann examined the progression of a small set of lexi-
cosyntactic features, such as length, frequency, and vocabulary
measures in 6 patients with AD or mild cognitive impairment
(MCI), with a minimum of 3 longitudinal samples in Dementia-
Bank [11]. Analysis of the features over time did not reveal con-

1http://talkbank.org/DementiaBank/
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clusive patterns; Sundermann suggested that the limited sample
size and feature set selection may be the cause. Neither study
involved acoustics or machine learning techniques.

2. Methodology
2.1. Data

We use data from DementiaBank, a large dataset of speech
produced by people with dementia (including probable AD,
possible AD, vascular dementia, and MCI) and healthy older
adults, recorded longitudinally at the University of Pittsburgh’s
Alzheimer’s Disease Research Center [8]. Annual visits with
each subject consist of a recording of speech data, its tex-
tual transcription, and an MMSE score. Subjects have a vari-
able number of longitudinal samples (min = 1, max = 5,
M = 1.54, SD = 0.79). Each speech sample consists of a
verbal description of the Boston Cookie Theft picture, which
typical lasts about a minute. We partition subjects between con-
trols (CT) and those with probable AD, possible AD or MCI (or,
collectively,“AD” 2). Considering only subjects with associated
MMSE scores, the working set consists of 393 speech samples
from 255 subjects (165 AD, 90 CT).

2.2. Features

Three major types of features are extracted from the speech
samples and their transcriptions: (1) lexicosyntactic measures,
extracted from syntactic parse trees constructed with the Brown
parser and POS-tagged transcriptions of the narratives [12, 13,
14, 15, 16]; (2) acoustic measures, including the standard Mel-
frequency cepstral coefficients (MFCCs), formant features, and
measures of disruptions in vocal fold vibration regularity [17];
and (3) semantic measures, pertaining to the ability to describe
concepts and objects in the Cookie Theft picture. The full list
of features, along with their major type and subtype, is shown
in Table 1.

2.3. Feature Analysis

Two feature selection methods are used to identify the most in-
formative features for disambiguating AD from CT. Since the
MMSE score is a measure of the progression of cognitive im-
pairment and is used to distinguish AD from CT generally,
we hypothesize that highly discriminating features of the two
groups would also be good predictors of MMSE. This is quan-
tified by Spearman’s rank-order correlation between the most
informative features and the MMSE score, ρMMSE , shown in
Table 2.

The first feature ranking method is a two-sample t-test
(α = 0.001, two-tailed) which quantifies the significance of
the difference in each feature value between the two classes;
the features are ordered by increasing p-value. Table 2 shows
the type and p-value of the top 10 features, along with their cor-
relation with MMSE. Control subjects use longer utterances,
more gerund + prepositional phrase constructions (VP→ VBG
PP, e.g., standing on the chair), more content words such as
noun phrases (NP) and verbs, and are more likely to talk about
what they see through the window (info_window), which is in
the background of the scene (e.g., it seems to be summer out).
On the other hand, subjects with AD use more words not found
in the dictionary (NID), and more function words such as pro-
nouns (PRP). Honoré’s statistic measures lexical richness, ex-

2Ongoing work distinguishes between AD and MCI.

tending type-token ratio, which is decreased in AD. These find-
ings are consistent with expectations.

Table 2: The top 10 features selected by a two-sample t-test
(α = 0.001, two-tailed) as the most informative discriminators
of AD versus CT. ρMMSE is Spearman’s rank-order correlation
coefficient between the given feature and the MMSE score. The
features in bold are among the top 10 selected by mRMR.

Feature Feature type p ρMMSE

avelength lexicosyntactic 1.24E-13 0.3837
VP→ VBG PP lexicosyntactic 1.90E-13 0.3757
NID lexicosyntactic 3.23E-11 -0.3712
NP→ DT NN lexicosyntactic 1.12E-10 0.3438
NP→ PRP lexicosyntactic 2.14E-10 -0.3186
prp_ratio lexicosyntactic 1.16E-09 -0.3089
honoré lexicosyntactic 2.53E-09 0.3400
verbs lexicosyntactic 4.81E-09 0.2604
frequency lexicosyntactic 9.37E-09 -0.3725
info_window semantic 1.27E-08 0.3420

Since the majority of the extracted acoustic features consist
of MFCCs and measures related to aperiodicity of vocal fold
vibration, the lack of significance of the acoustic features as
discriminators between the two classes may be attributed to the
fact that AD is not strongly associated with motor impairment
of the articulators involved in speech production.

The second feature selection method is minimum-
redundancy-maximum-relevance (mRMR), which minimizes
the average mutual information between features and maxi-
mizes the mutual information between each feature and the
class [18]; the features were ranked from most relevant to least.
The results of this technique generally corroborate the selection
made by the t-test, with no acoustic features among the top 10
selected. Here, mRMR selects a greater proportion of semantic
features (e.g., mentions of the window and sink, and the number
of occurrences of curtain and stool), placing more weight on the
content of what the speaker is saying as a way of discriminating
the two classes.

All of the features displayed in Table 2 have moderate
statistically significant correlation with MMSE (p < 0.001).
Since we are interested in the task of predicting clinical MMSE
scores, the experiments described in Sec. 3 use correlation it-
self as a third feature selection method. The features are ranked
by their correlation with MMSE, and the ones with the highest
correlations are selected.

3. Experiments
3.1. Predicting MMSE score using LSAS features

To model the longitudinal progression of MMSE scores and
LSAS features, we constructed a dynamic Bayes network
(DBN) with continuous nodes, i.e., a Kalman filter with 2 vari-
ables, shown in Figure 1. Each time slice (Qt, Yt) represents
one annual visit for a subject. Each conditioning node Qt rep-
resents the underlying continuous MMSE score for that visit
(R1×1), while each node Yt represents the vector of observed
continuous LSAS features (R477×1). A Kolmogorov-Smirnov
test for normality was performed on the MMSE scores of all AD
subjects, with the null hypothesis that they come from a normal
distribution. The test did not reject this null hypothesis at the
5% confidence level, demonstrating that the data come from a
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Table 1: Summary of all extracted features (477 in total). The number of features in each type and subtype is shown in parentheses.

Type Feature Subtype Description and examples

L
ex

ic
os

yn
ta

ct
ic

(1
82

)

Production rule (121) Number of times a production rule is used, divided by the total number of productions.
Phrase type (9) Phrase type proportion, rate and mean length.
Syntactic complexity (4) Depth of the syntactic parse tree.
Subordination/coordination (3) Proportion of subordinate and coordinate phrases to the total number of phrases, and ratio

of subordinate to coordinate phrases.
Word type (25) Word type proportion; type-to-token ratio, Honoré’s statistic.
Word quality (10) Imageability; age of acquisition (AoA); familiarity; transitivity.
Length measures (5) Average length of utterance, T-unit and clause, and total words per transcript.
Perseveration (5) Cosine distance between pairs of utterances within a transcript.

A
co

us
tic

(2
10

)

MFCCs (170) The first 42 MFCC parameters, along with their means, kurtosis and skewness, and the
kurtosis and skewness of the mean of means.

Pauses and fillers (8) Total and mean duration of pauses; long and short pause counts; pause to word ratio; fillers
(um, uh).

Pitch and Formants (8) Mean and variance of F0, F1, F2, F3.
Aperiodicity (13) Jitter, shimmer, recurrence rate, recurrence period density entropy, determinism, length of

diagonal structures, laminarity.
Other speech measures (11) Total duration of speech, zero-crossing rate, autocorrelation, linear prediction coefficients,

transitivity.

Se
m

.(
85

) Mention of a concept (21) Presence of mentions of indicator lemmas, related to key concepts in the Cookie Theft
picture.

Word frequency (64) Number of times a given lemmatized word, relating to the Cookie Theft picture, was men-
tioned

normal distribution with M=18.52, SD=5.16. There are three
conditional probability densities: the MMSE prior probability
P (Q1), the MMSE transition probability P (Qt|Qt−1), and the
LSAS feature observation probability P (Yt|Qt).

Q1 Q2 Q3

Y1 Y2 Y3

· · ·

· · ·

Figure 1: Temporal Bayes network (TBN) with continuous hid-
den (Qt) and observed (Yt) nodes. Hidden nodes represent
MMSE score, and observed vectors represent LSAS features
extracted from speech.

The feature set described in Sec. 2.2 is preprocessed to (i)
remove features with zero variance across all samples, and (ii)
normalize feature values to zero-mean and unit-variance, as is
standard practice. Since the number of features (477) is large
compared to the number of samples (393), the three feature se-
lection methods described in Sec. 2.3 (i.e., a paired two-tailed
t-test, mRMR, and correlation with MMSE score) are used to
avoid overfitting, by varying the number of features selected by
each method in order to determine the optimal feature set size.

The parameters of the three probability distributions in our
model are trained using maximum likelihood estimation (MLE)
since all training data are fully observed. During testing, the
observed features for each test case are provided and junction

tree inference on the trained model computes the marginal dis-
tribution of the now hidden (MMSE) nodes. Performance is
measured as the mean absolute error (MAE) between actual and
predicted MMSE scores. Since not all subjects have the same
number of longitudinal samples, MAE is evaluated at the first
and last hidden node, and averaged. Experiments are performed
with leave-one-out cross-validation, where data from each sub-
ject, in turn, are used for testing and all other data for training,
over all 255 subjects.

The results, with varying feature set sizes and feature se-
lection methods, are shown in Table 3. The lowest MAE of
3.83 (σ = 0.49) is achieved when correlation is used to select
the top 40 features. A two-factor repeated measures ANOVA
performed on the mean MAE shows that both main effects are
statistically significant, i.e., feature set size (F7,24 = 8.67,
p < 0.001) and the feature selection method (F2,24 = 4.07,
p < 0.05). The interaction effect is not significant (F14,24 =
0.16, ns), as expected given that the factors are independent.

To illustrate the longitudinal changes in cognitive and lin-
guistic ability, Fig. 2 shows the pattern of decline of MMSE
and the top 5 most correlated features for the subset of subjects
with AD. This demonstrates the MMSE score declining non-
monotonically over four annual visits (the maximum number
of visits for AD subjects in DementiaBank), along with similar
patterns across the indicated LSAS features.

3.2. Effect of longitudinal data on predicted MMSE score

To test the hypothesis that using longitudinal speech data aids in
identifying underlying cognitive status (i.e., improving MMSE
estimation), the Kalman filter experiment described in 3.1 is re-
peated for subsets of the dataset consisting of different amounts
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Table 3: MAE in predicting MMSE scores using three feature
selection methods and different feature set sizes. The lowest
error for each feature selection method is highlighted in bold.

Nfeatures t-test mRMR ρMMSE

1 5.9788 5.3034 5.6396
5 5.6575 4.4440 5.0758
10 5.5148 4.3403 4.2098
20 5.2264 4.0426 4.1518
30 4.9066 4.1420 3.8628
40 4.8073 4.0648 3.8333
50 4.8520 3.8551 3.9180
all 7.3106 7.3106 7.3106
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Figure 2: Pattern of decline of mean MMSE score and top 5
LSAS features most correlated with it, plotted versus annual
visit number, for the subset of subjects with AD in Dementia-
Bank. Standard deviation for MMSE is shown shaded in blue.

of longitudinal samples, T : (i) entire dataset (393 samples, 255
subjects, 1 ≤ T ≤ 5), (ii) subset of subjects with 1 visit (154
samples, 154 subjects, T = 1), (iii) subset of subjects with at
least two visits (239 samples, 101 subjects, T ≥ 2), and (iv)
subset of subjects with at least three visits (91 samples, 27 sub-
jects, T ≥ 3). The number of subjects with at least four visits
is too low to conduct statistical experiments. The number of
features used in the model is fixed to the optimal feature set
size found in 3.1, and the feature selection method is varied
(t-test, mRMR, correlation). Leave-one-out cross-validation is
performed on each of the four datasets. The results are pre-
sented in Table 4. The lowest MAE for each feature selection
method occurs on the dataset consisting of the highest number
of longitudinal visits (T ≥ 3). A two-factor repeated measures
ANOVA performed on the mean MAE shows that the main ef-
fect of the data subset is statistically significant (F3,9 = 5.43,
p < 0.05) while neither the second main effect (F2,9 = 0.94,
ns) nor the interaction effect (F6,9 = 0.54, ns) is significant.

4. Discussion
Automatically extracted linguistic features can be used to ef-
fectively estimate underlying cognitive status, in terms of the
most predominant clinical measure of dementia. The best re-
sult obtained with leave-one-out cross-validation on the entire
dataset of 393 samples is an MAE of 3.83 (σ = 0.49), using

Table 4: MAE in predicting MMSE score using three feature
selection methods and different subsets of subjects with varied
number of longitudinal datapoints. The lowest error for each
feature selection method is highlighted in bold.

Dataset t-test mRMR ρMMSE

all 4.807311 4.064823 3.8332502
1 visit 5.030811 4.978016 4.4916474
≥ 2 visits 4.334934 3.534478 3.430414
≥ 3 visits 2.905163 3.063524 3.3577102

correlation to select the top 40 features. This corresponds to a
mean absolute relative error (MARE) of 21.0% (obtained as the
absolute difference between predicted and actual MMSE score,
divided by the actual MMSE score, and averaged over all runs).
Molloy and Standish [19] reported that different rating styles
among clinicians administering the MMSE and variance in test-
retest scoring can lead to a within-subject interrater standard
deviation of 3.9 to 4.8 and within-subject intrarater standard de-
viation of 4.8, with higher variation in low-scoring subgroups of
subjects [1, 19]. The MAE obtained through statistical speech
analysis in our present work is comparable to such variabil-
ity. Further, the results obtained with the Kalman filter model
significantly outperform an initial baseline multilinear regres-
sor ran with leave-one-out cross-validation on the same dataset
(t = 2.31, p < 0.05). This is being explored further.

The fact that correlation outperforms the other two feature
selection methods is expected, as it computes the relationship
between the features and the MMSE score directly whereas the
others use the presumed diagnosis to dichotomize the data into
classes. The majority of features selected on each iteration of
cross-validation are typically lexicosyntactic and semantic, with
acoustic features typically not being among the most relevant.
While this may suggest that anatomical irregularities in speech
production are less meaningful, we note that the lexicosyntac-
tic features depend, to a large extent, on the free expression
of language through speech. Specifically, the working memory
impairment associated with AD affects preferred syntactic con-
structions in speech, leading to shorter utterances, fewer com-
plex noun and verb phrases, a higher number of pronouns, and
lexical impoverishment indicated by Honoré’s statistic.

We also show that focussing on subsets of subjects with a
higher number of longitudinal samples improves the accuracy
of inference in the Kalman filter model, lowering MAE to 2.91
(σ = 0.31) or equivalently lowering MARE to 12.5%, using a t-
test for selecting the top 40 features. Since DementiaBank con-
tains a variable number of samples for each subject, the number
of subjects and the proportion of subjects with AD in each sub-
group explored in Sec. 3.2 is not balanced. We therefore sug-
gest that future data collection of pathological speech should
involve more longitudinal samples across participants.

While MMSE is one of the most widely used clinical tests
for cognitive ability, it is somewhat coarse, lacking sensitivity to
subtle changes in cognition in the early stages of dementia, as
well as having a high false-negative rate in addition to inter-
annotator disagreement and test-retest variability [20, 1, 19].
While automated prediction of the MMSE score may aid the
screening process for AD by reducing the cost and time in-
volved, and improving reliability, future work will explore more
precise measures of cognitive decline. The Montreal Cognitive
Assessent (MoCA) and the Repeatable Battery for the Assess-
ment of Neuropsychological Status (RBANS) [21] are screen-
ing tests which have been shown to have higher sensitivity than
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MMSE to subtle changes in cognitive decline in populations
with MCI and mild dementia [22]; future studies are needed to
assess the validity of automatic scoring of such tests as a more
fine-grained measure of the progression of cognitive decline.
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Abstract
Several efforts have been done towards the development of plat-
forms that allow the translation of specific sign languages to the
correspondent spoken language (and vice-versa). In this (demo)
paper, we describe a freely available system that translates, in
real time, European Portuguese (text) into Portuguese Sign Lan-
guage (LGP), by using an avatar. We focus in how some lin-
guistic elements are dealt in LGP, and in the Natural Language
Processing (NLP) step implemented in our system. The sys-
tem’s interface will be used to demonstrate it. Although only
a small set of linguistic phenomena are implemented, it can be
seen how the system copes with it.
Index Terms: sign languages, translation, natural language
processing, portuguese, avatar

1. Introduction
Sign languages are now considered full natural human lan-
guages. Contrary to auditory-vocal languages, sign languages
are visual-gestural languages that merge manual communica-
tion and body language [1]. The meaning is expressed with
a combination of different hand shapes, orientation and move-
ment of the hands (manual features). Non-manual features,
such as body movements (upper torso) and facial expressions
are also used, as well as fingerspelling – the process of spelling
out words by using signs that correspond to the letters of the
word in the local vocal language.

Sign Languages have their own vocabulary and grammat-
ical rules, which do not match the correspondent spoken lan-
guage as the writing system does [1]. For instance, American
Sign Language and British Sign Language are different and not
mutually understandable, although learnt by people living in
English speaking countries. Thus, it is very difficult to take
advantage of existing resources when moving to a new sign lan-
guage.

For some languages, several studies emerged in the last
years, with their focus ranging from linguistic and humanistic
to automatic translation. However, only very recently, LGP (of-
ficially recognised in 19971) has been a target of these studies.
Currently, there are several dictionaries [2, 3] both in image and
video format, but only one grammar [4] in a very incomplete
state. There is no official number for deaf persons in Portugal,
but the 2011 census [5] mentions 27,659 deaf persons, mak-
ing, however, no distinction in the level of deafness, and on the
respective level of Portuguese and LGP literacy. Aiming to con-
tribute to this community, we developed a system, which, given
as input a sentence in (European) Portuguese, performs the cor-
respondent signs in LGP, by using an avatar. At the basis of

1http://www.fpasurdos.pt/legislacao/
decretos-e-leis/

this system, there is a flexible architecture that takes advantage
of NLP tools, as these can give an important contribution to the
translation process. For instance, if a proper noun is identified,
if no sign is associated with it, fingerspelling is the solution.
Moreover, as we will see, in some cases, a word can be signed
by signs associated with its root and suffixes. Thus, a stemmer
or a Part-of-Speech (POS)-tagger can play a fundamental role
in these situations. A detailed description of the system can
be found in [6] and [7]. The system can be downloaded from
http://web.ist.utl.pt/~ist163556/pt2lgp.

This paper is organised as follows: in Section 2 we present
related work, in Section 3 we describe some basic linguistic
phenomena in LGP, in Section 4 we describe our prototype,
and, in Section 5, we explain what can be tested in our demo.
Finally, in Section 6 we conclude and point to future work.

2. Related Work
Many efforts were done towards the development of translators
from different sign languages to their spoken counterparts and
vice-versa. A number of projects in the area are focusing in the
entire system pipeline (from spoken to sign languages and vice-
versa), as the work of [8], for Portuguese, and [9] for Mandarin;
others only target part of it (for instance [10], which deals with
Italian Sign Language). Current trends in Automatic Machine
Translation cannot be followed as there are no parallel corpora
(except in some specific contexts) to train the translators. Thus,
most of the existing systems are based on handcrafted glosses,
relating signs with words, which is also our approach.

Recently LGP has been the focus of several computational
studies. The work described in [11] focus on avatars, and on
how to produce avatars signs, based on human signs; the work
in [12] targets the teaching of LGP; the Virtual Sign Translator
[8] contributes with a translator between European Portuguese
and LGP, and it was also applied to be used in a game that
teaches LGP [13]. However, to the best of our knowledge, none
of these works explored how current NLP tasks can be applied
to help the translation process.

3. Linguistic Concepts
In this section we make a brief overview of some linguistic phe-
nomena in LGP. At the basis of our study are the static images
of hand configurations presented in an LGP dictionary [2], LGP
videos from different sources, such as the Spread the Sign initia-
tive2, and, the (only) LGP grammar [4], from 1994. LGP inter-
preters were also consulted, as we could not found information
regarding some linguistic phenomena in the previous mentioned
materials.

2http://www.spreadthesign.com
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3.1. Nouns

Concepts in LGP usually do not have an associated gender, and,
thus, do not need inflection. For animated beings, and when rel-
evant, gender can be specified with a prefix, expressing ‘male’
or ‘female’ (as for ‘coelha’ (‘female rabbit’), which becomes
‘female’ + ‘rabbit’). In case of omission, the male gender is
assumed. However, there are classes of nouns that are female
by default as is the case of ‘enfermeira’ (‘nurse’), and need to
be obligatorily prefixed with ‘male’. Another (more common)
exception is to have two separate words to denote the male and
female case, as in ‘leão’ (‘lion’) and ‘leoa’ (‘lioness’).

Considering plural cases for LGP, this can be done in
several different ways. The first is incorporation, allowing
to explicitly specify a small quantity after the noun. Exam-
ples are ‘pessoas+4’ (‘persons+4’), or ‘pessoas+muitas’ (‘per-
sons+many’). The second is repetition, meaning to perform a
sign multiple times as seen for ‘árvores’ (trees). The last is
reduplication, meaning to make the sign with both hands as in
‘pessoas’ (persons). However, there are many non identified
processes for LGP and the cases of the usage of each type of
plural are not clear.

With regard to proper nouns, fingerspelling is often used. If
the person does not have a known gestural name, fingerspelling
the letters of her/his name is the solution.

3.2. Adjectives

The sign for the adjective follows the sign for the noun. Figure
1 illustrates the signs for ‘coelho pequeno’ (‘little rabbit’).

Figure 1: Signs for ‘coelho pequeno’

Notice that, if the signs for ‘coelho’ and ‘pequeno’ are
available (and although this cannot be seen as a rule) words as
‘coelhinho’ (also ‘little rabbit’), can also be translated, as long
as we are able to properly identify suffixes.

3.3. Numbers

Numbers can be used as a quantitative qualifier, isolated number
(cardinal), ordinal number, and composed number (e.g. 147).
Signs associated with each number also vary their forms if we
are expressing a quantity, a repetition or a duration, and if we
are using them as an adjective or complement to a noun or verb.
Reducing the test case to ordinal numbers, the main difficulty is
to express numbers in the order of the tens and up. For instance,
‘147’ is signed as ‘1’, followed by ‘4’ and ‘7’ with a slight offset
in space as the number grows. Numbers from ‘11’ to ‘19’ can
be signed with a blinking movement of the units’ number. Some
numbers, in addition to this system, have a totally different sign
(as e.g. ‘11’, which has its own sign).

3.4. Verbs

When the use of the verb is plain, with no past or future par-
ticiples, the infinitive form is used in LGP. Most verbs are in-
flected according to the associated subjects and are affected by
the action, the time and the way the action is realised. For in-
stance, for the regular use of the verb ‘to eat’, the hand goes
twice to the mouth, closing from a relaxed form, with palm up.
However, this verb in LGP is highly contextualised with what is
being eaten. Thus, the verb should be signed recurring to differ-
ent hand configurations and expressiveness, describing how the
thing is being eaten (not all the deaf associations agree on this).

The Portuguese grammar [4] refers a temporal line in the
gesturing space with which verbs should concord with in past,
present and future tenses. The verb inflection is made along this
imaginary line with eye, eyebrow and upper body movement. A
common practice is to add a time adverb to the sentence, such
as passado ‘past’, futuro ‘future’ or amanhã ‘tomorrow’. The
adverbial expression is also performed along the timeline with
a possible emphasis on the distance in time. For example, the
word agora ‘now’ is always signed in front of the signer and
close to the torso, but it can be signed more and more close to
express immediateness or the reverse to express laxness. This
is a feature often found in other sign languages.

In what concerns verb agreement, to the best of our knowl-
edge, there is no gender or number agreement in LGP. This in-
formation must be express by direct referencing to the subject,
for example, by mentioning a personal pronoun before the verb.
For instance, in the sentence eu pergunto-te ‘I ask you’, the verb
is directed from ’I’ to ’you, while in the sentence tu perguntas-
me ‘You ask me’, the verb changes directionality. Additionally,
the pronoun ’you’ is signed in the direction of the second per-
son’s face in the case of the verb ‘ask’, but in the direction of
the chest with the verb ‘to give’.

Modality is realised throughout the imaginary temporal
line, indicating duration and repetition through movement. An
example is the verb andar ‘to walk’, which is signed with differ-
ent movement modulation for andar ‘walk’, ir andando ‘walk-
ing’, andar apressadamente ‘walk hurriedly’, andar pesada-
mente ‘stumping’ and so on.

3.5. Syntax

Syntax in sign languages is made by spatial agreement of
signs. To the best of our knowledge, there are no studies at
the sentence level for the LGP, but studies for American Sign
Language (ASL) [14], indicate the existence of several com-
plex phenomena, such as loci and surrogates for the agree-
ment of verbs with virtual entities. However, it is known
that in a syntactic point of view, LGP is Object–Subject–Verb
(OSV), while spoken Portuguese is predominantly Subject–
Verb–Object (SVO).

4. The prototype
The Natural Language ToolKit (NLTK)3 was used in all the
NLP tasks. Blender4 was our choice regarding the 3D pack-
age for animation. Both are widely used, community driven,
free and open source. Moreover, NLTK offers taggers, parsers,
and other tools in several languages, including Portuguese. In
the following we describe each one of the main tasks of our sys-
tem. Figure 2 presents the general architecture of our prototype.

3http://www.nltk.org
4http://www.blender.org
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Figure 2: Proposed architecture

4.1. Natural Language Processing

Several well established tasks in the NLP field where integrated
in our system, namely:

• Error correcting and normalization: A step that en-
forces lowercase and the use of latin characters. Com-
mon spelling mistakes can be corrected in this step.

• Tokenizer: The input string is split into sentences and
then into words. The tokenizer, provided by NLTK, uses
Portuguese language training. Example of a tokenized
input: [’o’, ’joão’, ’come’, ’a’, ’sopa’].

• Stemmer: As a form of morphologic parsing, we apply
a stemmer that identifies suffixes and prefixes to use as
an adjective or classifier to the gloss. This allows, for
example, ‘coelhinha’ (‘little female rabbit’), to be under-
stood, by its suffixes (‘inho’ +‘a’) , to be a small (‘inho)
and a female (‘a’) derivation of the root ‘coelh(o)’.

• POS-Tagger: We make use of NLTK’s n-gram taggers,
starting with a bigram tagger, with a backoff technique
for an unigram tagger and the default classification of
‘noun’ (the most common class for Portuguese). We
used the treebank ‘floresta sintá(c)tica’ corpus [15] for
training the taggers. Using the same example, the result
would be: [(’o’, ’art’), (’joão’, ’prop’), (’come’, ’v-fin’),
(’a’, ’prp’), (’sopa’, ’n’)].

• Named Entity Extraction: We apply Named Entity
Recognition (NER) for identifying names of persons, by
matching against a list of common Portuguese names.

• Lexical Transfer: The expanded and annotated list of
words are converted to their corresponding glosses us-
ing a dictionary lookup. This results in items such as
[’GLOSS’, [’SOPA’]] and [’FINGERSPELL’, [’J’, ’O’,
’A’, ’O’]].

• Structure Transfer: The prototype supports reorder-
ing of adjectives and quantities to the end of the affect-
ing noun, for example the input dois coelhos (‘two rab-
bits’) would result in [[’GLOSS’, [’COELHO’]], [’NU-
MERAL’, [’2’]] (‘coelho + 2’). The prototype also sup-
ports basic reordering of sequences of ‘noun - verb -
noun’, in an attempt to convert the SVO ordering used in
Portuguese to the more common structure of OSV used
in LGP.

4.2. Lookup

The animation lookup, given a gloss, is done via a JSON file
mimicking a database. The database consists of a set of glosses

and a set of actions. The action ids are mapped to blender ac-
tions, that are in turn referenced by the glosses. One gloss may
link to more than one action, that are assumed to be played se-
quentially.

4.3. Animation

We implemented base hand configurations. These differ from
sign language to sign language. For LGP there are 57 base
configurations, composed of 26 hand configurations for letters,
10 for numbers, 13 for named configurations and 8 extra ones
matching greek letters (examples in Figure 3).

Figure 3: Some hand configurations in LGP.

Doing a set of base hand configurations to start, proved to
be a good choice as it allowed to test the hand rig and basic
methodology. All the 57 basic hand configuration were manu-
ally posed and keyed from references gathered from [2, 4, 3],
and also from the Spread the Sign project videos5. The ten (0 to
9) implemented hand configurations are shown in Figure 4.

Figure 4: Hand configurations for numbers (0-9)

The animation is synthesised by directly accessing and
modifying the action and f-curve data. We always start and end
a sentence with the rest pose. For concatenating the actions, we
blend from one to the other in a given amount of frames by using
Blender’s Non-Linear Action tools that allow action layering.
Channels that are not used in the next gesture, are blended with
the rest pose instead. We adjust the number of frames for blend-
ing according to the hints received. For fingerspelling mode, we
expand the duration of the hand configuration (which is origi-
nally just one frame). Further details about this process can be
found in [6] and [7].

5. The demo
Users can interact with our system via an interface, which
consists of an input text box, a button to translate, and a 3D
view with the signing avatar. The 3D view can be rotated and
zoomed, allowing to see the avatar from different perspectives.

The breakdown down in Figure 5 shows the interface.
5http://www.spreadthesign.com
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Figure 5: User Interface for the prototype

Additionally, we provide an interface for exporting video
of the signing that supports choosing the resolution, aspect ratio
and file format. This panel is indicated in the image in orange.
Displayed in green, is a panel indicating the authors and de-
scribing the project. All panels but the one used for the main
interaction start folded. It should be clear that it is still possible
to use extra functionalities of Blender, thus making advanced
usage of the system.

In what concerns current possibilities of the system, com-
mon spelling mistakes in the words used for the test cases can
be corrected. Moreover, several words deriving from the stem
‘coelho’ were implemented, such as ‘coelha’ (female rabbit)
and ‘coelhinho’ (little rabbit). Besides isolated words, some
full sentences, such as ‘O João come a sopa’, can be tested. The
verb sign had to be extended, as for eating soup, it is done as
if handling a spoon (for instance, for eating apples, the verb is
signed as if holding the fruit).

To conclude, we should say that two deaf associations were
reached for a preliminary evaluation. Feedback on clarity and
readability was very positive.

6. Conclusions and Future Work
In this paper we described the system we would like to demon-
strate, focusing on its NLP component. It was designed to be
free and open-source. All the basic hand signs for LGP were
implemented, as well as the whole basic infrastructure (already
accommodating different language phenomena).

This work led to a collaborative project between academia
and industry that aims at creating a prototype that translates Eu-
ropean Portuguese (text and speech) into LGP, in real time. As
future work, besides moving to the translation between LGP
and European Portuguese, we will extend the database and the
dictionaries. Also, we will work in an interface that will allows
us to easily add data to the system. Current NLP tasks and tech-
niques will also be further explored. A more formal evaluation
also needs to be done.
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