
Count-based State Merging for Probabilistic Regular Tree Grammars

Toni Dietze
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden, Germany

toni.dietze@tu-dresden.de

Mark-Jan Nederhof
School of Computer Science

University of St Andrews
KY16 9SX, UK

Abstract

We present an approach to obtain language
models from a tree corpus using proba-
bilistic regular tree grammars (prtg). Start-
ing with a prtg only generating trees from
the corpus, the prtg is generalized step by
step by merging nonterminals. We focus
on bottom-up deterministic prtg to sim-
plify the calculations.

1 Introduction

Constituent parsing plays an important role in nat-
ural language processing (nlp). One can easily
read off a pcfg from a tree corpus and use it for
parsing. This might work quite well (Charniak,
1996), but it can be even more fruitful to intro-
duce a state behaviour that is not visible in the cor-
pus (Klein and Manning, 2003). The Expectation-
Maximization Algorithm (Dempster et al., 1977)
can be used to train probabilities if the state be-
haviour is fixed (Matsuzaki et al., 2005). This can
be improved by adapting the state behaviour auto-
matically by cleverly splitting and merging states
(Petrov et al., 2006).

More generally, finding a grammar by exam-
ining terminal objects is one of the problems in-
vestigated in the field of grammatical inference.
There are many results for the string case, e.g., on
how to learn deterministic stochastic finite (string)
automata from text (Carrasco and Oncina, 1994;
Carrasco and Oncina, 1999). For the tree case,
there are, e.g., results for identifying function dis-
tinguishable regular tree languages from text (Fer-
nau, 2002). There is also a generalization of
n-grams to trees including smoothing techniques
(Rico-Juan et al., 2000; Rico-Juan et al., 2002).

The mentioned results for deterministic stochas-
tic finite (string) automata were generalized to an
algorithm that learns stochastic deterministic tree
automata from trees (Carrasco et al., 2001). Given

a tree corpus, this approach yields a single gram-
mar. The authors experimentally showed that if
the corpus is too small, the grammar tends to be
too general. In contrast, the split-merge approach
of Petrov et al. (2006) produces a sequence of dif-
ferent grammars. One can use cross validation to
select a grammar from that sequence that suitably
abstracts away from the training corpus. Because
of the intricate combination of splitting and merg-
ing however, the behavior is very difficult to anal-
yse theoretically. Our approach is similar to the
split-merge procedure in that a sequence of gram-
mars is obtained. However, it differs by operat-
ing without splitting and relying on merging alone,
thereby obtaining a simpler framework.

Our goal is to create a sequence of probabilistic
regular tree grammars (prtg) from a corpus such
that every prtg abstracts away from the corpus
more than its predecessors in the sequence (cf. Al-
gorithm 1). We start with a prtg that admits no
more and no less than the trees in the corpus. The
rules of the prtg are then changed step by step to
make the grammar more general.

We generalize a prtg by merging nonterminals,
which means we replace several nonterminals by a
single new one. The weights of the resulting prtg
are assigned by maximum likelihood estimation
on the corpus.

To make the approach easier, we only consider
bottom-up deterministic prtg. On the one hand,
this simplifies our calculations, e.g., the maximum
likelihood estimate; on the other hand, this simpli-
fies the application of the prtg as language model,
since the search for the most probable tree for
a given yield does not have to consider several
derivations for a single tree.

2 Preliminaries

Let X be a set. The identity relation on X is de-
fined as {(x, x) | x ∈ X}. An equivalence rela-
tion on X is a reflexive, symmetric, and transitive

mailto:toni.dietze@tu-dresden.de

relation (≡) ⊆ X × X . We write x ≡ y instead
of (x, y) ∈ (≡) for x, y ∈ X . Note that the iden-
tity relation is an equivalence relation. Let x ∈ X .
The equivalence class of x (induced by (≡)), de-
noted by [x]≡ (or just [x] if (≡) is clear from the
context), is defined as {y ∈ X | x ≡ y}. The quo-
tient set of X by (≡), denoted by X/≡, is defined
as {[x] | x ∈ X}. Note that X/≡ is a partition
of X and that for every partition P of X there is
an equivalence relation (≡′) such that P = X/≡′.
The set of equivalence relations over X forms a
complete lattice ordered by set inclusion.

We denote the set of the natural numbers includ-
ing 0 by N. An alphabet (of symbols) is a finite,
non-empty set. A ranked alphabet is an alphabet
Σ where we associate a rank rk(σ) ∈ N with ev-
ery σ ∈ Σ. Let Σ be a ranked alphabet. The set
of trees over Σ, denoted by TΣ , is the smallest set
T such that σ(t1, . . . , trk(σ)) ∈ T for every σ ∈ Σ
and t1, . . . , trk(σ) ∈ T . Additionally, we define
T∅ = ∅. Let t = σ(t1, . . . , tk) ∈ TΣ . The set
of positions of t, denoted by pos(t), is defined as
{ε} ∪ {iw | i ∈ {1, . . . , k}, w ∈ pos(ti)}. Let
w ∈ pos(t). The symbol of t at w, denoted by
t(w), is defined as σ if w = ε, and by ti(w′) if
w = iw′. The subtree of t at w, denoted by t|w, is
defined as t if w = ε, and by ti|w′ if w = iw′.

Let X be a set and f : X → R≥0 a mapping.
The support of f , denoted by supp(f), is defined
as {x ∈ X | f(x) 6= 0}. The size of f , denoted
by |f |, is defined as

∑
x∈supp(f) f(x). We call f

a corpus (over X) if supp(f) is finite and non-
empty. We call f a probability distribution (over
X) if |f | = 1. We denote the set of all probabil-
ity distributions over X by Pd(X). Note that f
may be both a corpus and a probability distribu-
tion. Sometimes we refer to the values of a corpus
by the word counts.

Definition 1. A regular tree grammar (rtg) is a
tuple (N,Σ, I,R) where
• N is an alphabet (of nonterminals),
• Σ is a ranked alphabet (of terminals) such that
N ∩Σ = ∅,
• I ⊆ N is a non-empty set (of initial nontermi-

nals), and
• R is a finite set of rules of the form
A0 −→ σ(A1, . . . , Ark(σ)) where σ ∈ Σ and
A0, . . . , Ark(σ) ∈ N .

Our definition above corresponds to a normal form
of rtg with regard to a more general definition,
which was given by, for example, Gécseg and

Steinby (1984, Chapter II, Section 3).
Let G = (N,Σ, I,R) be an rtg. For a rule r ∈

R of the form A0 −→ σ(A1, . . . , Ark(σ)) we define
lhs(r) = A0 and rhs(r) = σ(A1, . . . , Ark(σ)).
We associate with r the rank rk(r) = rk(σ),
hence we may view R as a ranked alphabet if R
is non-empty. We call G bottom-up deterministic
if rhs(r1) = rhs(r2) implies r1 = r2 for every
r1, r2 ∈ R.

Let t ∈ TΣ . A derivation tree ofG for t is a tree
d ∈ TR such that pos(d) = pos(t), lhs(d(ε)) ∈ I ,
and for every w ∈ pos(t) we have rhs(d(w)) =
t(w)(lhs(d(w1)), . . . , lhs(d(w rk(t(w))))). The
set of all derivation trees of G for t is denoted by
DG(t). The language of trees generated by G, de-
noted by JGK, is defined as {t ∈ TΣ | DG(t) 6= ∅}.
Note that if G is bottom-up deterministic, DG(t)
has at most one element. We denote this element,
if it exists, by dtG.

Definition 2. A probabilistic regular tree gram-
mar (prtg) is a tuple (G, ι, ρ) where
• G = (N,Σ, I,R) is an rtg,
• ι : I → [0, 1] is a mapping (initial weights),

and
• ρ : R→ [0, 1] is a mapping (rule weights).

Let P = (G, ι, ρ) be a prtg. Terminology for
rtg is carried over to prtg, e.g., P is bottom-up de-
terministic iff G is bottom-up deterministic. We
call P proper if ι is a probability distribution and∑

r∈R : lhs(r)=A ρ(r) = 1 for every A ∈ N .
Let t ∈ TΣ and d ∈ DP (t). The weight of d

(induced by P), denoted by JP K(d), is defined as
ι(lhs(d(ε))) ·

∏
w∈pos(t) ρ(d(w)). The weight of t

(induced by P), denoted by JP K(t), is defined as∑
d∈DP (t)JP K(d). If JP K is a probability distribu-

tion over TΣ , then P is called consistent.
Let c be a corpus over TΣ . The canonical rtg

of c and the canonical prtg of c are defined as
G = (N,Σ, I,R) and P = (G, ι, ρ), respectively,
where
• N = {t|w | t ∈ supp(c), w ∈ pos(t)},
• I = supp(c),
• R = {t|ε −→ t(ε)(t|1, . . . , t|rk(t(ε))) | t ∈ N},
• ι(t) = c(t)

|c| for every t ∈ I , and
• ρ(r) = 1 for every r ∈ R.

Note that every canonical prtg is bottom-up deter-
ministic, proper, and consistent, and that JP K(t) =
ι(t) for every t ∈ supp(JP K); hence, JP K repre-
sents the relative frequencies of the trees in c.

Let c : X → R≥0 be a corpus and p ∈ Pd(X).

The likelihood of c given p is defined as

L(c | p) =
∏

t∈supp(c)

p(t)c(t).

LetM⊆ Pd(X). The maximum likelihood es-
timate fromM for c, denoted by mleM(c), is de-
fined as

mleM(c) = argmax
p∈M

L(c | p).

IfM = Pd(TΣ), then mleM(c) maps a tree to
its relative frequency in c (Prescher, 2004, Theo-
rem 1). Hence, the canonical prtg represents the
corpus perfectly.

Let G = (N,Σ, I,R) be an rtg, M = {JP K |
P = (G, ι, ρ) is a consistent prtg}, and c a corpus
over TΣ . Then we also write mleG(c) instead of
mleM(c).

Let G = (N,Σ, I,R) be a bottom-up deter-
ministic rtg and c a corpus over TΣ such that
supp(c) ⊆ JGK. Note that there is exactly one
derivation tree dtG ofG for every tree t ∈ supp(c).
Based on G, we derive three corpora from c:

cRG : R→ R≥0 : r 7→∑
t∈supp(c)

c(t) · |{w ∈ pos(t) | r = dtG(w)}|,

cNG : N → R≥0 : A 7→∑
t∈supp(c)

c(t) · |{w ∈ pos(t) | A = lhs(dtG(w))}|,

cIG : N → R≥0 : A 7→
∑

t∈supp(c) :
A=lhs(dtG(ε))

c(t).

Now mleG(c) = J(G, ι, ρ)K where for every A ∈
I and r ∈ R (Prescher, 2004, Theorem 10):

ι(A) =
cIG(A)

|c|
and ρ(r) =

cRG(r)

cNG(lhs(r))
.

Note that cNG(A) =
∑

r∈R : A=lhs(r) c
R
G(r).

3 Count-Based State Merging

Algorithm 1 summarizes the idea of our approach.
We detail the used notions in what follows.

Let G = (N,Σ, I,R) be an rtg and (≡) an
equivalence relation on N . The G-merger w.r.t.
(≡) is the overloaded expression π≡ for
• nonterminals: π≡(A) = [A] for every A ∈ N ,
• rules: ∀σ ∈ Σ : ∀A0, . . . , Ark(σ) ∈ N :

π≡(A0 −→ σ(A1, . . . , Ark(σ)))

Algorithm 1 Count-Based State Merging
Input: corpus c over TΣ
Output: sequence of bottom-up deterministic

prtg P0, . . . , Pn, some n ∈ N, such that
supp(JP0K) ⊆ . . . ⊆ supp(JPnK)

1: P0 = (G0, ι0, ρ0)← canonical prtg of c
2: i← 0
3: while there exists a non-trivial Gi-merger do
4: π ← BESTMERGER(Gi, c)
5: i← i+ 1
6: Gi ← π(Gi−1)
7: let Pi be prtg such that mleGi(c) = JPiK

= [A0] −→ σ([A1], . . . , [Ark(σ)]),
• sets of nonterminals or rules by applying π≡

elementwise, and
• rtg: π≡(G) = (N/≡, Σ, π≡(I), π≡(R)).

Note that JGK ⊆ Jπ≡(G)K, because by replacing
each rule r in a derivation tree of G by π≡(r) we
get a derivation tree of π≡(G). We call π≡ non-
trivial, if (≡) is not the identity relation. We say
π≡ merges A1 and A2, iff A1 ≡ A2. We carry
over the lattice structure of the set of equivalence
relations overN to the set ofG-mergers in order to
identify minimal and least G-mergers with certain
properties.

To deal with prtg, we fix a corpus c over TΣ
such that supp(c) ⊆ JGK. We repeatedly use the
maximum likelihood estimate to assign weights to
an rtg. That is, the weights are not manipulated
during merging itself, but they are used to choose
a G-merger: Let Π be a set of G-mergers. The
best G-merger from Π w.r.t. c is defined as

argmax
π∈Π

L(c | Jmleπ(G)(c)K). (1)

So far, the presented notions are defined for gen-
eral rtg. Now letG = (N,Σ, I,R) be a bottom-up
deterministic rtg. Assuming 00 = 1, we then have
the following, which is proven in Appendix A:

L(c | JmleG(c)K) =∏
A∈N c

I
G(A)

cIG(A)

|c||c|
·
∏
r∈R c

R
G(r)

cRG(r)∏
A∈N c

N
G(A)

cNG(A)
. (2)

This can be used to make Expression 1 more man-
ageable: Let G = (N,Σ, I,R) be a bottom-up
deterministic rtg and let Π be the set of all non-
trivial G-mergers π such that π(G) is bottom-up
deterministic. Then Equation 2 gives a more di-
rect way of computing the likelihood in Expres-

sion 1 without explicitly calculating mleπ(G)(c).
This is the reason for calling our approach “count-
based”, and this is the idea of BESTMERGER in
Algorithm 1.

Improving efficiency Let π ∈ Π and G′ =
(N ′, Σ, I ′, R′) = π(G). We need cRG′ , cNG′ , and
cIG′ to calculate L(c | JmleG′(c)K). Bottom-up
determinism allows us to derive dtG′ for every
t ∈ supp(c) by replacing every rule r in dtG by
π(r). Hence,

∀x′ ∈ X ′ : cXG′(x′) =
∑

x∈X : x′=π(x)

cXG(x), (3)

where X is any of R, N , or I (with or without
prime, italic or roman). So we can reuse the cor-
pora related to G to calculate L(c | JmleG′(c)K).

We may rewrite Expression 1 by dividing the
likelihood by L(c | JmleG(c)K). Then, for many
instantiations of π many factors in the fraction
cancel out. In detail: Let (≡) be the equivalence
relation underlying π, and

N = {A ∈ N | |[A]| > 1}, N ′ = π(N),

R = {r ∈ R | |[r]| > 1}, and R′ = π(R),

where (≡) is extended to rules such that r1 ≡ r2
iff π(r1) = π(r2) for every r1, r2 ∈ R. Then, with
Equation 2 and G′ = π(G):

L(c | JmleG′(c)K)
L(c | JmleG(c)K)

=

∏
A∈N ′ cIG′(A)

cI
G′ (A)∏

A∈N c
I
G(A)

cIG(A)

·
∏
r∈R′ cRG′(r)

cR
G′ (r)∏

r∈R c
R
G(r)

cRG(r)
·
∏
A∈N c

N
G(A)

cNG(A)∏
A∈N ′ cNG′(A)

cN
G′ (A)

.

(4)

Yet, finding the maximum is still expensive.

Heuristics Assume N = {A1, A2}, R = ∅ and
N ∩I = ∅. Then, using Equation 3, the right-hand
side of Equation 4 is equal to f(cNG(A1), c

N
G(A2))

where

f(x, y) =
xx · yy

(x+ y)x+y
. (5)

For positive x and y, f(x, y) is monotonically de-
creasing (cf. Appendix B). Hence, with our as-
sumption, it is best to merge nonterminals with the
least counts w.r.t. cNG.

This may be used to guide the search for the
best merger. Recall that we want to generalize
the canonical (p)rtg step by step. We want to take
the smallest steps possible w.r.t. loss of likelihood

Algorithm 2
Input: rtg G = (N,Σ, I,R) and equivalence re-

lation (≡0) on N
Output: the least G-merger π≡ such that π≡(G)

is bottom-up deterministic and (≡0) ⊆ (≡)
1: (≡)← (≡0)
2: while π≡(G) not bottom-up deterministic do
3: find rules r1 and r2 in G such that

rhs(π≡(r1)) = rhs(π≡(r2)), but
lhs(π≡(r1)) 6= lhs(π≡(r2))

4: let A1 = lhs(r1) and A2 = lhs(r2)
5: let (≡′) equivalence relation s.t. N/≡′

= N/≡\{[A1], [A2]}∪{[A1]∪ [A2]}
6: replace (≡) by (≡′)

(cf. Expression 1), so we consider only minimal
non-trivial mergers, i.e., mergers that merge ex-
actly two nonterminals. Note that the application
of larger mergers may be decomposed into a se-
quential application of several minimal non-trivial
mergers. We can easily sort the minimal non-
trivial mergers by the value of f for the counts
of the merged nonterminals. Note that the merger
which merges the nonterminals with the lowest
counts comes first. We choose a beam width n > 0
and select the n first mergers for further investiga-
tion assuming that the best merger is among them.

Unfortunately, a minimal non-trivial merger π≡
does not necessarily result in a bottom-up deter-
ministic rtg, but there is a least (i.e. unique mini-
mal) merger π≡′ such that (≡) ⊆ (≡′) which does
(cf. Lemma 2 in Appendix C). We use Algorithm 2
to calculate this merger for each of the n chosen
mergers and determine the best merger from the
results w.r.t. Equation 4.

To restrict the number of considered mergers
even more, it may be useful to only merge non-
terminals which produce the same terminal. Note
that Algorithm 2 preserves this property.

4 Practical results and outlook

So far, our implementation is not competitive. We
are only able to train with small corpora. For
example, training with 5 900 trees (consisting of
120 000 distinct subtrees) and a beam width of
1 000 takes about 8 days. For some inputs Algo-
rithm 2 is very expensive. It remains to be seen
whether we can avoid such inputs or reduce the
effort by reusing results from previous iterations
in Algorithm 1.

There is generally a very large number of non-
terminals with count 1 in the canonical rtg. Our
current heuristics yields the same value for every
merger which considers two of such nonterminals.
Especially in the first iterations of Algorithm 1 the
number of mergers with the same (lowest) heuris-
tic value far exceeds the beam width. This means
it is arbitrary which mergers lie within the beam.
We hope to improve the heuristics by comparing
the trees which are produced by the merged non-
terminals.

Using the generated grammars for parsing, we
are currently only able to process sentences con-
sisting of words seen in the training data. Even for
this limited subset of sentences we are not able to
improve precision or recall of brackets (Sekine and
Collins, 1997) in comparison to the probabilistic
context-free grammar straightforwardly obtained
from the corpus. We hope this will improve with a
better heuristics.

We have restricted our attention to bottom-up
deterministic regular tree grammars. Thanks to
this, the conceptual framework could remain rel-
atively simple. What is unclear at this time is
whether the bottom-up determinism per se re-
stricts the potential accuracy of the models, in re-
lation to the split-merge framework, which allows
nondeterministic regular tree grammars.

References
Rafael C. Carrasco and Jose Oncina. 1994. Learn-

ing stochastic regular grammars by means of a state
merging method. In Rafael C. Carrasco and Jose
Oncina, editors, Grammatical Inference and Appli-
cations, volume 862 of Lecture Notes in Computer
Science, page 139–152. Springer Berlin Heidelberg.

Rafael C. Carrasco and Jose Oncina. 1999. Learn-
ing deterministic regular grammars from stochastic
samples in polynomial time. RAIRO – Theoretical
Informatics and Applications, 33(1):1–19.

Rafael C. Carrasco, Jose Oncina, and Jorge Calera-
Rubio. 2001. Stochastic inference of regular tree
languages. Machine Learning, 44(1-2):185–197.

Eugene Charniak. 1996. Tree-bank grammars. In
Proc. of AAAI/IAAI 1996, volume 2, pages 1031–
1036.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety. Series B (Methodological), 39(1):1–38.

Henning Fernau. 2002. Learning tree languages from
text. In Jyrki Kivinen and Robert H. Sloan, editors,

Computational Learning Theory, volume 2375 of
Lecture Notes in Computer Science, page 153–168.
Springer Berlin Heidelberg.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest, Hungary.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proc. of ACL 2003,
volume 1, pages 423–430.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proc. of ACL 2005, pages 75–82.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proc. of COLING/ACL
2006, pages 433–440.

Detlef Prescher. 2004. A tutorial on the expectation-
maximization algorithm including maximum-
likelihood estimation and EM training of probabilis-
tic context-free grammars. CoRR, abs/cs/0412015.

Juan Ramón Rico-Juan, Jorge Calera-Rubio, and
Rafael C. Carrasco. 2000. Probabilistic k-testable
tree languages. In Arlindo L. Oliveira, editor, Gram-
matical Inference: Algorithms and Applications,
volume 1891 of Lecture Notes in Computer Science,
page 221–228. Springer Berlin Heidelberg.

Juan Ramón Rico-Juan, Jorge Calera-Rubio, and
Rafael C. Carrasco. 2002. Stochastic k-testable
tree languages and applications. In Pieter Adriaans,
Henning Fernau, and Menno van Zaanen, editors,
Grammatical Inference: Algorithms and Applica-
tions, volume 2484 of Lecture Notes in Computer
Science, page 199–212. Springer Berlin Heidelberg.

Satoshi Sekine and Michael John Collins. 1997.
Evalb. http://nlp.cs.nyu.edu/evalb/.
Accessed 2015-03-19.

http://doi.org/10.1007/3-540-58473-0_144
http://doi.org/10.1007/3-540-58473-0_144
http://doi.org/10.1007/3-540-58473-0_144
http://doi.org/10.1051/ita:1999102
http://doi.org/10.1051/ita:1999102
http://doi.org/10.1051/ita:1999102
http://doi.org/10.1023/A:1010836331703
http://doi.org/10.1023/A:1010836331703
http://www.aaai.org/Library/AAAI/1996/aaai96-153.php
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://doi.org/10.1007/3-540-45435-7_11
http://doi.org/10.1007/3-540-45435-7_11
http://doi.org/10.3115/1075096.1075150
http://doi.org/10.3115/1075096.1075150
http://doi.org/10.3115/1219840.1219850
http://doi.org/10.3115/1220175.1220230
http://doi.org/10.3115/1220175.1220230
http://arxiv.org/abs/cs/0412015
http://arxiv.org/abs/cs/0412015
http://arxiv.org/abs/cs/0412015
http://arxiv.org/abs/cs/0412015
http://doi.org/10.1007/978-3-540-45257-7_18
http://doi.org/10.1007/978-3-540-45257-7_18
http://doi.org/10.1007/3-540-45790-9_16
http://doi.org/10.1007/3-540-45790-9_16
http://nlp.cs.nyu.edu/evalb/
http://nlp.cs.nyu.edu/evalb/

A The likelihood of the maximum likelihood estimate in the bottom-up deterministic
case (Equation 2)

LetG = (N,Σ, I,R) be a bottom-up deterministic rtg and c a corpus over TΣ such that supp(c) ⊆ JGK.
Let P = (G, ι, ρ) such that JP K = mleG(c). We can transform L(c | JP K) as follows, assuming 00 = 1:

L(c | JP K)

=
∏

t∈supp(c)

JP K(t)c(t) (def. of L)

=
∏

t∈supp(c)

(∑
d∈DP (t)

JP K(d)
)c(t)

(def. of JP K)

=
∏

t∈supp(c)

JP K(dtG)
c(t) (assumptions for G and c)

=
∏

t∈supp(c)

(
ι(lhs(dtG(ε))) ·

∏
w∈pos(t)

ρ(dtG(w))
)c(t)

(def. of JP K)

=
∏

t∈supp(c)

ι(lhs(dtG(ε)))
c(t) ·

∏
w∈pos(t)

ρ(dtG(w))
c(t) (distributivity)

=
(∏
t∈supp(c)

ι(lhs(dtG(ε)))
c(t)
)
·
∏

t∈supp(c)

∏
w∈pos(t)

ρ(dtG(w))
c(t) (commutativity)

=
(∏
A∈N

∏
t∈supp(c) :
A=lhs(dtG(ε))

ι(A)c(t)
)
·
∏
r∈R

∏
t∈supp(c)

∏
w∈pos(t) :
r=dtG(w)

ρ(r)c(t) (commutativity)

=
(∏
A∈N

ι(A)c
I
G(A)

)
·
∏
r∈R

ρ(r)

∑
t∈supp(c)

∑
w∈pos(t) :

r=dtG(w)

c(t)

(bc · bd = bc+d, 00 = 1, def. of cIG)

=
(∏
A∈N

ι(A)c
I
G(A)

)
·
∏
r∈R

ρ(r)
∑

t∈supp(c) c(t)·|{w∈pos(t)|r=dtG(w)}| (distributivity)

=
(∏
A∈N

ι(A)c
I
G(A)

)
·
∏
r∈R

ρ(r)c
R
G(r) (def. of cRG)

=

∏
A∈N c

I
G(A)

cIG(A)∏
A∈N |c|

cIG(A)
·

∏
r∈R c

R
G(r)

cRG(r)∏
r∈R c

N
G(lhs(r))

cRG(r)
(def. of ι and ρ, comm., distr.)

=

∏
A∈N c

I
G(A)

cIG(A)

|c||c|
·
∏
r∈R c

R
G(r)

cRG(r)∏
A∈N c

N
G(A)

cNG(A)
(bc · bd = bc+d, def. of cIG and cNG, comm.)

This proves Equation 2.

B The function in Equation 5 is monotonically decreasing

We may transform Equation 5 as follows:

f(x, y) =
xx · yy

(x+ y)x+y
=
(x

x+ y

)x
·
(y

x+ y

)y
.

For positive arguments, the partial derivatives of f are

∂f(x, y)

∂x
= ln

(x

x+ y

)
·
(x

x+ y

)x
·
(y

x+ y

)y
, and

∂f(x, y)

∂y
= ln

(y

x+ y

)
·
(x

x+ y

)x
·
(y

x+ y

)y
.

For x, y > 0 the fractions are smaller than one. This means the logarithms are negative, hence the whole
terms. So f is monotonically decreasing.

C Properties of mergers regarding bottom-up determinism

Lemma 1. Let G = (N,Σ, I,R) be an rtg, and let (≡1) and (≡2) be equivalence relations over N
such that π≡1(G) and π≡2(G) are bottom-up deterministic. Let (≡) = (≡1) ∩ (≡2). Then also π≡(G)
is bottom-up deterministic.

Proof. Assume π≡(G) is not bottom-up deterministic. Then there are two rulesA0 −→ σ(A1, . . . , Ark(σ))
and B0 −→ σ(B1, . . . , Brk(σ)) in R such that Ai ≡ Bi for every 1 ≤ i ≤ rk(σ), but A0 6≡ B0. Hence,
Ai ≡1 Bi and Ai ≡2 Bi for every 1 ≤ i ≤ rk(σ), and therefore A0 ≡1 B0 and A0 ≡2 B0. This implies
A0 ≡ B0, which is a contradiction, so π≡(G) is bottom-up deterministic. q.e.d.

Lemma 2. Let G = (N,Σ, I,R) be an rtg, and let (≡) be an equivalence relation over N . Then there
is a least (i.e. unique minimal) (≡̂) such that (≡) ⊆ (≡̂) and π≡̂(G) is bottom-up deterministic.

Proof. Existence: Consider (≡′) such that ∀A1, A2 ∈ N : A1 ≡′ A2. Then (≡′) satisfies the conditions.
Uniqueness: Assume there is a minimal (≡′) 6= (≡̂) satisfying the conditions. Then, by Lemma 1,

(≡′) ∩ (≡̂) would also satisfy the conditions, which contradicts that (≡′) and (≡̂) are minimal. Hence,
(≡̂) is unique. q.e.d.

	Introduction
	Preliminaries
	Count-Based State Merging
	Practical results and outlook
	The likelihood of the maximum likelihood estimate in the bottom-up deterministic case (Equation 2)
	The function in Equation 5 is monotonically decreasing
	Properties of mergers regarding bottom-up determinism

