
Preserving Trees in Minimal Automata

Jan Daciuk
Gdańsk University of Technology
jandac@eti.pg.gda.pl

Abstract

We present a method to store additional in-
formation in a minimal automaton so that
it is possible to compute a corresponding
tree node number for a state. The number
can then be used to retrieve additional in-
formation. The method works for minimal
(and any other) deterministic acyclic finite
state automata (DFAs). We also show how
to compute the inverse mapping.

1 Introduction

Deterministic finite state automata and transduc-
ers are widely used in natural language processing
and computational linguistics. The most frequent
uses include dictionaries (Daciuk et al., 2010),
acoustic and language models (the latter indirectly,
using perfect hashing to number words), as well
as hidden Markov models used for tagging and
chunking. Acyclic minimal automata recognize
the same languages as automata in form of trees,
but they take considerably less space. Therefore,
minimization is an obligatory step in most applica-
tions. In LZ-style compression of automata (Ris-
tov and Korencic, 2015), it is a trie (a letter-tree)
that is compressed without going through mini-
mization. However, the compression finds iden-
tical sequences of transitions, so it also finds iso-
morphic trees, which is what minimization does.

In speech recognition, trees are often used (Ort-
manns et al., 1997) instead of minimal automata,
because lookahead probabilities are computed for
individual nodes of the trees. At a given moment
in time represented by a node (a state) in a tree-
like automaton, one wants to know the probability
of the most probable word that is recognized by
going through that state. Minimal perfect hashing
(Roche, 1995) can deliver a range of numbers for
all words going through that state. It is then pos-
sible to use them to access probabilities of each

word, and find the maximal one. This can be time-
consuming, especially close to the root of the tree.

What is needed for lookahead probabilities is a
storage for the probability of the most probable
word recognized by going through that state, i.e.
one probability for each state. This is trivial to
implement in a tree — one simply stores the prob-
ability in the state. In a minimal DFA, a state can
represent many sets of words as it may be equiv-
alent to several nodes in a tree. Therefore in a
state of a minimal DFA, one must refer somehow
to the corresponding node in the tree, or at least to
a place associated with that node. The solution is
to provide a dynamically computed mapping from
prefixes of words to node numbers in the tree.

2 Definitions

A deterministic finite state automaton (DFA) is a
5-tuple M = (Q,Σ, δ, q0, F), where Q is a finite
set of states, Σ is a finite set of symbols called an
alphabet, δ : Q× Σ→ Q is a transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. The size of an automaton |M | is the
number |Q| of its states. We use incomplete au-
tomata, so our transition function is partial. When
δ(q, σ) 6∈ Q, we write δ(q, σ) = ⊥.

The transition function δ can be extended in the
usual way so that δ∗ : Q× Σ∗ → Q:

δ∗(q, ε) = q
δ∗(q, uσ) = δ(δ∗(q, u), σ)

(1)

The language L(M) of an automaton M is de-
fined as all words that are recognized along paths
from the initial state to any of the final states:

L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F} (2)

Among all automata recognizing the same lan-
guage there is one (up to isomorphism) that has the
smallest number of states. It is called the minimal
automaton Mmin.

jandac@eti.pg.gda.pl

The automata described throughout the paper
are acyclic. This means there is no pair q ∈ Q
and w ∈ Σ+ such that δ∗(q, w) = q. The lan-
guage of an acyclic DFA is always a finite set of
finite-length words.

Among all acyclic DFAs that recognize the
same language, there is one in form of a tree.
All states of such automaton, except for the ini-
tial state, have exactly one incoming transition, i.e.
they are the target of exactly one transition. The
initial state has no incoming transitions. We will
use the name nodes for states of a tree, and we will
use the name edges for its transitions.

3 Counting Tree Nodes

26

27

7

8
3

4 1

2

0

1

2

1

6

3

5

2

4

1

14

7
10

3 8

1

9

1

13

3

12

2

11

1

18

4

17

3 15

1

16

1

257

21

3 19

1

20

1

24

3

23

2

22

1

c

a

r
t

t

l
a y

p

a

t

y

l
a y

r

a
t

y

s

a

t

y

t
a y

Figure 1: A DFA as a tree recognizing words: car,
cart, cat, clay, pat, pay, play, rat, ray, sat, say, and
stay.

A dynamically computed mapping from pre-
fixes of words to node numbers in the tree can be
achieved by counting states (nodes) in the tree. Let
c(q) be the number of states reachable from state
q including state q. For a given state q, c(q) can be
computed as:

c(q) = 1 +
∑

σ:δ(q,σ)6=⊥
c(δ(q, σ)) (3)

If the automaton has a tree shape, and q is the root
of a subtree, then c(q) is the number of nodes in
that subtree. In a minimal acyclic DFA, the state
q can represent several subtrees. However, those
trees are isomorphic, and they have exactly the
same number of nodes. By induction, equation (3)
correctly counts the number of nodes in the corre-
sponding subtree for a minimal acyclic DFA. Ac-
tually, it counts that number for any acyclic DFA.

A state in a minimal DFA does not have a node
number, as it can correspond to several nodes in
the tree. Let uv = w ∈ L(M). The prefix u
denotes a single node in the tree; it also denotes
a state q = δ∗(q0, u) corresponding to that node
(and perhaps to some other nodes). Nodes are
numbered in postorder. Counting nodes from 0,
the node number µ(u) for a prefix u can be cal-
culated as the number of nodes with smaller node
numbers. Those are (c(δ∗(q0, u))−1) nodes reach-
able from δ∗(q0, u) (excluding δ∗(q0, u)), and all
η(u) nodes visited while recognizing all words
w′ ≺ w = uv that are not visited while recog-
nizing the prefix u:

µ(u) = c(δ∗(q0, u))− 1 + η(u) (4)

where:

η(u) =

{
0 if u = ε
η(x) + κ(δ∗(q0, x), a) if u = xa, a ∈ Σ

(5)
and for a state q and a label σ ∈ Σ : δ(q, σ) 6= ⊥,
let κ(q, σ) be:

κ(q, σ) =
∑

σ′≺σ:δ(q,σ′)6=⊥
c(δ(q, σ′)) (6)

The inverse mapping is also easy to calculate.
Let σq,n be a label of a transition going out from
state q such that κ(q, σ) < n ≤ κ(q, σ) +
c(δ(q, σ)). Let λ(q, n) be the prefix correspond-
ing to node number n in a subtree with a root q.

λ(q, n) =

ε if n = c(q)− 1
σq,nλ(δ(q, σq,n), z) if 0 < n < c(q)
∅ if n > c(q)

(7)
where:

z = n− κ(q, σq,n) (8)

To find a prefix u corresponding to node number
n, one computes λ(q0, n).

Let us see an example. Figure 1 shows a tree
recognizing words car, cart, cat, clay, pat, pay,

play, rat, ray, sat, say, and stay. The number be-
side node q represents c(q). Let us calculate the
node number for a prefix pl. As δ∗(q0, pl) = 13,
and c(13) = 3, µ(pl) = 3 − 1 + η(pl). We have
η(pl) = η(p) + κ(14, l), and κ(14, l) = 3. As
η(p) = η(ε) + κ(26, p), κ(26, p) = 8, and η(ε) =
0, we have µ(pl) = 3 − 1 + ((0 + 8) + 3) = 13.
In the other direction, λ(26, 13) = pλ(14, 13 −
κ(26, p)−1) = pλ(14, 13−8−1) = pλ(14, 4) =
plλ(13, 4− 3− 1) = plλ(13, 0) = plε = pl.

0

27

1

8

24

32

4

3

5

2

6

7

7

3

8

4

9

7

10

1
c

a

r

t
t

l a

y

p a
t

y

l

r
a

s a t

Figure 2: A minimal DFA recognizing the same
words as the tree in Figure 1.

Figure 2 shows a DFA corresponding to the tree.
Let us repeat the calculations. As δ∗(q0, pl) = 4,
and c(4) = 3, µ(pl) = 3 − 1 + η(pl). We have
η(pl) = η(p)+κ(6, l), and κ(6, l) = 3. As η(p) =
η(ε)+κ(0, p), κ(0, p) = 8, and η(ε) = 0, we have
µ(pl) = 3− 1 + ((0 + 8) + 3) = 13. In the other
direction, λ(0, 13) = pλ(6, 13 − κ(0, p) − 1) =
pλ(6, 13−8−1) = pλ(6, 4) = plλ(4, 4−3−1) =
plλ(4, 0) = plε = pl. The only thing that changes
with regard to the tree are state numbers.

4 Edges Can Be Counted Too

Sometimes, it may be more beneficial to use edges
of the tree instead of nodes. It is possible to pro-
vide equations very similar to those already given
for states. However, they are not necessary. Let
us look at Figure 1 again. An edge number is the
number of the node that the edge leads to. There-
fore, we can index the edges using exactly the
same formulas as those given for nodes.

5 Implementation

To implement the mappings one needs to store the
value of c(q) in states q, or the value of κ(q, σ) on
the transition going out from states q and labeled
with σ. The second solution is faster, but it re-
quires more memory, as there are more transitions
than states.

The first solution delivers smaller memory foot-
print than the second one as there are more tran-
sitions than states in a minimal DFA (unless the
DFA is a tree). However, in many automata repre-
sentations, states are implicit; there addresses are
the addresses of their first outgoing transition. The
additional number can be stored in front of the
first transition, but that would impede storing one
state inside another (a common compression tech-
nique). Superimposed coding (Liang, 1983) based
on a sparse matrix representation technique (Tar-
jan and Yao, 1979; Dencker et al., 1984; Fredman
et al., 1984) enforces fixed-length transitions be-
longing to overlapping states, which excludes stor-
ing something else before the first transition of a
state. It is possible to provide an additional vec-
tor to store the desired values, but there is a prob-
lem with addressing them, as state numbers are not
used for addressing a states in the DFA (transition
numbers are used instead).

The mapping from prefixes (identifying nodes
in a tree) to numbers is implemented as func-
tion Pref2N given below. In order to get
the prefix number for prefix w, one calls
Pref2N(M,w, q0).

Function Pref2N(M,w = ax, q)
1 if w = ε then
2 return c(q)− 1
3 else
4 s← 0
5 for σ ∈ Σ : σ < a do
6 s← s+ c(δ(q, σ))

7 if δ(q, a) = ⊥ then
8 raise an exception
9 else

10 return s+ Pref2N(M,x, δ(q, a))

Line 2 computes c(δ∗(q0, u))−1. The for loop
in lines 5 and 6 computes κ(δ(q0, x), a). Function
Pref2N is called |w| times for each symbol a in
the prefix. The for loop runs at most |Σ| times in
each invocation of function Pref2N. This gives

us overall time complexity ofO(|w||Σ|) times, i.e.
linear with regard of the prefix. With the values
of κ(q, a) stored on transitions δ(q, a), we replace
line 4 with s← κ(q, a) and remove lines 5 and 6,
making the function a bit faster.

The inverse mapping is implemented as func-
tion N2Pref. To get a prefix number n, one
should call N2Pref(M,n, q0).

Function N2Pref(M,n, q)
1 if n = c(q)− 1 then
2 return ε
3 else
4 s← 0
5 for σ ∈ Σ do
6 if δ(q, σ) 6= ⊥ then
7 if s+ c(δ(q, s)) ≥ n then
8 return σ·N2Pref(n-s)
9 else

10 s← s+ c(δ(q, s))

11 raise an exception

Function N2Pref is called as many times as
there are symbols in the computed prefix. The
for loop runs at most |Σ| times. As other oper-
ations take constant time, the time complexity of
the function is O(|Σ||wmax|), where wmax is the
longest word in the language of the DFA. Note that
in the superimposed coding (sparse matrix) repre-
sentation, the for loop must run for every sym-
bol of the alphabet. In a list representation, the
loop runs only on (symbols on) the outgoing tran-
sitions, which can be significantly faster. Having
pre-computed values of κ on transitions saves us
computing the sum in line 10; the κ value is used
directly in line 7.

6 Conclusions

We have shown methods to store indexes of nodes
or edges of a tree in a minimal (or pseudo-
minimal) automaton. Trees are sometimes used
in place of minimal DFAs because information as-
sociated with their nodes or edges is needed. The
presented methods render such trees obsolete. The
minimal DFA can provide indexes in vectors that
would store tree-related data. As a minimal DFA
is usually much smaller than a tree, the methods
can save a lot of memory. We have also developed
similar but more complicated methods for index-

ing subtrees in a minimal, deterministic, bottom-
up tree automaton.

7 Acknowledgments

We wish to thank Marcin Kuropatwiński from
speech recognition company Voice Lab for dis-
cussions that led to development of the algorithms
presented in this paper.

References
[Daciuk et al.2010] Jan Daciuk, Jakub Piskorski, and

Strahil Ristov. 2010. Natural language dictionaries
implemented as finite automata. In Carlos Martín-
Vide, editor, Scientific Applications of Language
Methods, pages 133–204. Imperial College Press.

[Dencker et al.1984] Peter Dencker, Karl Dürre, and Jo-
hannes Heuft. 1984. Optimization of parser tables
for portable compilers. ACM Transactions on Pro-
gramming Languages and Systems, 6(4):546–572,
October.

[Fredman et al.1984] Michael L. Fredman, János Kom-
lós, and Endre Szemerédi. 1984. Storing a sparse
table with 0(1) worst case access time. Journal of
the ACM, 31(3):538–544, July.

[Liang1983] Franklin Mark Liang. 1983. Word Hy-
phen-a-tion by Com-put-er. Ph.D. thesis, Stanford
University.

[Ortmanns et al.1997] S. Ortmanns, H. Ney, N. Coenen,
and A. Eiden. 1997. Look-ahead techniques for fast
beam search. In proceedings of IEEE International
Conference on Acoutic, Speech and Signal Process-
ing, volume 3, pages 1783–1786, Munich, Germany,
April.

[Ristov and Korencic2015] Strahil Ristov and Damir
Korencic. 2015. Fast construction of space-
optimized recursive automaton. Software: Practice
and Experience, (45).

[Roche1995] Emmanuel Roche. 1995. Finite-state
tools for language processing. In ACL’95. Associ-
ation for Computational Linguistics. Tutorial.

[Tarjan and Yao1979] Robert Endre Tarjan and Andrew
Chi-Chih Yao. 1979. Storing a sparse table. Com-
munications of the ACM ACM, 22(11):606–611,
November.

	Introduction
	Definitions
	Counting Tree Nodes
	Edges Can Be Counted Too
	Implementation
	Conclusions
	Acknowledgments

