
Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), pages 81–85,
Brighton, September 2015. c©2015 Association for Computational Linguistics

Response Generation in Dialogue using a Tailored PCFG Parser

Caixia Yuan Xiaojie Wang Qianhui He
School of Computer Science

Beijing University of Posts and Telecommunications
{yuancx, xjwang}@bupt.edu.cn
alisonchinabupt@gmail.com

Abstract

This paper presents a parsing paradigm for
natural language generation task, which
learns a tailored probabilistic context-free
grammar for encoding meaning represen-
tation (MR) and its corresponding natural
language (NL) expression, then decodes
and yields natural language sentences at
the leaves of the optimal parsing tree for
a target meaning representation. The ma-
jor advantage of our method is that it does
not require any prior knowledge of the M-
R syntax for training. We deployed our
method in response generation for a Chi-
nese spoken dialogue system, obtaining
results comparable to a strong baseline
both in terms of BLEU scores and human
evaluation.

1 Introduction

Grammar based natural language generation (NL-
G) have received considerable attention over the
past decade. Prior work has mainly focused on
hand-crafted generation grammar (Reiter et al.,
2005; Belz, 2008), which is extensive, but also ex-
pensive. Recent work automatically learns a prob-
abilistic regular grammar describing Markov de-
pendency among fields and word strings (Konstas
and Lapata, 2012a, Konstas and Lapata, 2013),
or extracts a tree adjoining grammar provided an
alignment lexicon is available which projects the
input semantic variables up the syntactic tree of
their natural language expression (Gyawali and
Gardent, 2014). Although it is a consensus that at
a rather abstract level natural language generation
can benefit a lot from its counterpart natural lan-
guage understanding (NLU), the problem of lever-
aging NLU resources for NLG still leaves much
room for investigation.

In this paper, we propose a purely data-driven
natural language generation model which exploits

a probabilistic context-free grammar (PCFG) pars-
er to assist natural language generation. The ba-
sic idea underlying our method is that the generat-
ed sentence is licensed by a context-free-grammar,
and thus can be deduced from a parsing tree which
encodes hidden structural associations between
meaning representation and its sentence expres-
sion. A tailored PCFG, i.e., a PCFG easily tailored
to application-specific concepts, is learned from
pairs of structured meaning representation and its
natural language sentence and then used to guide
generation processes for other previously unseen
meaning representations. Table 1 exemplifies a
record from the application under consideration.

Our model is closest to (Konstas and Lapata,
2012a) and (Konstas and Lapata, 2013) who re-
formulate the Markov structure between a mean-
ing representation and a string of text depicted
in (Liang, et al., 2009) into a set of CFG rewrite
rules, and then deduce the best derivation tree for
a database record. Although this Markov structure
can capture a few elements of rudimentary syntax,
it is essentially not linguistic grammars. Thus the
sentences produced by this model are usually un-
grammatically informed (for instance, its 1-BEST
model produces grammatically illegal sentences
like “Milwaukee Phoenix on Saturday on Satur-
day on Saturday on Saturday”). (Konstas and La-
pata, 2013) claims that long range dependency is
an efficient complementary to CFG grammar, and
incorporates syntactic dependency between words
into the reranking procedure to enhance the perfor-
mance. Although conceptually similar, our mod-
el directly learns more grammatical rewrite rules
from hybrid syntactic trees whose nonterminal n-
odes are comprised of phrasal nodes inheriting
from a common syntactic parser, and conceptual
nodes designed for encoding target meaning rep-
resentation. Therefore, the learning aspect of two
models is fundamentally different. We have a sin-
gle CFG grammar that applies throughout, where-
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Table 1: Examples of meaning representation input as a structured database and its corresponding natural
language expression. Each meaning representation has several fields, each field has a value.

Meaning action1 object1 value11 value12 action2 object2 value21 value22
representation confirm person 100 120 request date null null

Text
�¬<ê3100<�200<�m§�¯s3=Um¬º(The number of partici-
pants is between 100 and 200. When is the meeting scheduled?)

as they train different CFG grammar and depen-
dency grammar respectively.

The major advantage of our approach is that
it learns a tailored PCFGs directly from MR and
NL pairs, without the need to manually define
CFG derivations, which is one of the most im-
portant prerequisites in (Belz and Kow, 2009) and
(Konstas and Lapata, 2013), and thus porting our
method to another applications is relatively easy.
We demonstrate the versatility and effectiveness of
our method on response generation for a Chinese
spoken dialogue system (SDS)1.

2 Problem Formulation

2.1 The grammar
Following most previous works in this area (Liang,
et al., 2009; Konstas and Lapata, 2013), we use
the term record r to refer to a (m, w) pair. Each
meaning representation m is described as several
fields f , each field has a value f.v. As exemplified
in Table 1, each m in the referred SDS system has
eight fields (e.g., action, object1, value11), each
field has a specific value. The value can be a string
(e.g., confirm, person), or a numeric quantity (e.g.,
100, 120), or null. The text is simply a sequence
of words w = (w1, ..., w|w|).

Our goal is to learn a PCFG for interpreting
a MR using NL expression. In order to gener-
ate more coherent sentence, the established gram-
mar should capture recursive structure of phrases.
Meanwhile, in order to generate sentence express-
ing target meanings, the grammar should also cap-
ture concept embeddings corresponding to desired
meaning fields. Under this framework, a tailored
PCFG grammar we used for generation can be de-
scribed as a 6-tuple:

G = 〈Np, Nc, T, S, L, λ〉 (1)

where Np is a finite set of non-terminal symbols
produced by a common parser, Nc is a finite set of

1A demo can be found at
http://www.aidc.org.cn:8008/WebContent/

concept symbols related to specific record fields,
T is a finite set of NL terminal symbols (words),
S ∈ Np is a distinguished start symbol, L is a
lexicon which consists of a finite set of production
rules, and λ is a set of parameters that defines a
probability distribution over derivations under G.

2.2 Grammar Induction

In this section, we present a learning procedure
for the grammar described above. The input to
the learning algorithm is a set of training sen-
tences paired with their correct meaning represen-
tations (as illustrated in Table 1). The output from
the learning algorithm is a PCFG describing both
phrase and concept embeddings. The learning al-
gorithm assumes that a common phrase structure
parser is available, but it does not require any pri-
or knowledge of the MR syntax.

As a concrete example, consider the record in
Table 1. We first analyze its sentence expres-
sion using the Stanford parser (Chen and Man-
ning, 2014) whose nonterminals are syntactic cat-
egories (e.g., NP, VP, JJ, NN). Figure 1(a) out-
lines the partial parser tree of sentence in Table
1. The meaning of the sentence is then integrated
by adding conceptual symbols of its subparts into
the parser tree. Figure 1(b) shows a hybrid parse
tree of Figure 1(a). Here the nonterminal symbol-
s in bold, PERSON, VAL1 and VAL2, represent
domain-specific concepts corresponding to fields
person, value1 and value2.

To get the hybrid parse tree, we first align phras-
es in the NL with the actual MR fields mentioned
using the model of (Liang, et al., 2009) which is
learned in an unsupervised manner using EM to
produce which words in the text were spanned by
the fields. The aligned pairs are recorded in a tem-
porary table. Then for each phrase in the table,
we find the minimal subtree spanning it, and mod-
ify its ancestor node attached directly below the
subtree’s root node to the conceptual symbol of its
aligned field. All ancestor nodes keep unchanged
for phrases not in the alignment table. The cen-
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(a) (b)

Figure 1: Example of (a) a syntactic tree and (b) its
corresponding hybrid tree from which the tailored
PCFG defined in Formula (1) is constructed. The
subtree circled by dotted line contains conceptual
node and its terminal derivations.

tral characteristic of a tree structured representa-
tion is that component concept appears as a node
in a tree, with its word realizations as terminal n-
odes derived by it. For example, the concept PER-
SON has a terminal node “<ê”, and VALUE1
“100<”, these could then form part of the rep-
resentation for the sentence “�¬<ê3100 <
�200 <�m"(The number of participants is
between 100 and 200.)” The use of a recursive hy-
brid syntactic and conceptual structure is one char-
acteristic that distinguishes the proposed grammar
from earlier work in which meaning is represented
by logical forms or regular grammars (Lu and Ng,
2011; and Konstas and Lapata, 2013).

Given hybrid trees, Np, Nc, T , S and the set
of derivations that are possible are fixed, we only
need to learn a probabilistic model parameterized
by λ. Since the “correct” correspondence between
NL words and MR fields is fully accessible, i.e.,
there is a single deterministic derivation associat-
ed with each training instance, model parameter
λ can be directly estimated from the training cor-
pus by counting. Because the derived trees output
by parser can be noisy, we need to process them to
obtain cleaner PCFG rules. We compare the 3-best
trees produced by the Stanford Parser, and prune
off the inconsistent components voted by majori-
ties when extracting and counting rules.

2.3 Decoding
Our goal in decoding is to find the most probable
sentence ŝ for a given meaning expression m:

ŝ = g( argmax
D s.t. m(D)=m

P (D|G) · ln(|D|+ 1)) (2)

where g is a function that takes as input a deriva-
tion tree D and returns ŝ, m(D) refers to the

meaning representation of a derivation D, and
P (D|G) is product of weights of the PCFG rules
used in a derivation D, the factor ln(|D| + 1),
offers a way to compensate the output sentence
length |D|. We use a decoding paradigm intro-
duced in (Konstas and Lapata, 2013) which is
essentially a bottom-up chart-parsing algorithm
without forcing the input to exhibit linear struc-
ture. It first fills the diagonal cell of the chart with
terminal words with the top scoring words emitted
by the unary rules of the type A → α, where A is
a non-terminal symbol, and α is a terminal word.

In order to search among exponentially many
possible tree structures for a given MR, a k-best
decoder is achieved by adding to the chart a list of
the top k words and production rules, then an ex-
ternal language model is used to rerank the derived
partial trees in a timely manner with cube pruning
(Huang and Chiang, 2005).

3 Empirical Evaluation

We conducted experiments on a Chinese spoken
dialogue system (SDS) for booking meeting room.
Our NLG module receives structured input from
dialogue management (DM) module and gener-
ates natural language response to user. The struc-
tured input includes dialogue actions (e.g., greet,
request, confirm), objects (e.g., date, budget, loca-
tion) and object values which can be a null. The
SDS corpus consists of 1,406 formal meaning rep-
resentations, along with their Chinese NL expres-
sions written by 3 Chinese native speakers. The
average sentence length for the example data is
15.7 Chinese words. We randomly select 1,000
record pairs as training data, and the remaining
406 is used as testing data.

To evaluate the quality of the generated sen-
tences, the BLEU score (Papineni et al., 2002)
is computed by comparing system-generated sen-
tences with human-written sentences. In addition,
we evaluated the generated text via a human judg-
ment as designed in (Angeli et al., 2010). The sub-
jects were presented with a MR and were asked
to rate its corresponding NL expression along t-
wo dimensions: grammatical fluency and seman-
tic correctness. A five point rating scale is de-
signed where a higher number indicates better per-
formance. The averaged score of three human e-
valuators was computed.

In order to compare our work with previous re-
lated work, Table 2 summarizes results achieved

83



Table 2: BLEU scores, and human ratings for syn-
tactic fluency (SF) and semantic correctness (SC)
of different systems.

system BLEU SF SC

1-BEST-Konstas 9.32 2.29 1.94
k-BEST-Konstas 21.85 3.91 3.12
1-BEST-Our 30.88 4.36 3.95
k-BEST-Our 31.96 4.34 4.33
HUMAN – 4.76 4.89

using the proposed tailored PCFGs with that us-
ing the grammar described in (Konstas and La-
pata, 2013). 1-BEST signifies results obtained
from the basic decoder described in Section 2.3,
and k-BEST is results of the k-best decoder r-
eranked with a bigram language model. Here we
set k = 20 without more fine-tuning work.

To make intensive comparisons, the length of
the generated sentence is not restricted as a fixed
number, while varying from 1 to a length of the
longest sentence in the training data. The sen-
tences with different length are overall sorted to
obtain the 1-BEST and the k-BEST.

From Table 2, we find that differences in BLEU
scores between 1-BEST-Konstas and 1-BEST-Our
are statistically significant (9.32 vs. 30.88). S-
ince the only difference between these two result-
s is the grammar used, we have reason to justify
that the tailored grammar learnt from the hybrid
phrase-concept trees is superior for modeling NL
and MR correspondence to that used in (Konstas
and Lapata, 2013). It is interesting to notice that
k-BEST-Konstas observes substantial increase in
performance compared to 1-BEST-Konstas, while
k-BEST-Our only achieves a slight increase com-
pared to 1-BEST-Our. Statistical language model
offers potentially significant advantages for the se-
quential Markov grammar as reported in (Konstas
and Lapata, 2013), but it contributes little to the
tailored PCFGs. This also verifies the robustness
of the proposed method.

Table 2 also summarizes the human ratings
for each system and the gold-standard human-
authored sentences. From Table 2 we can observe
that our method consistently produce good Chi-
nese sentences in terms of both grammatical co-
herence and semantic soundness, which is consis-
tent with the results of automatic evaluation. An-
other major advantage of our method over method

Figure 2: An example of generations produced by
each of the four models.

of (Konstas and Lapata, 2013) is that it does not
require any prior knowledge of the MR syntax for
training. Therefore, transplanting our method to
other NLG application is relatively easy.

Figure 2 shows the generations of the four mod-
els on an example. 1-BEST-Konstas is only able to
form Markov but not grammatical associations. k-
BEST-Konstas improves it by accounting for more
possible associations, but errors are still made due
to the lack of syntactic structure. 1-BEST-Our
and k-BEST-Our remedies this. However, unex-
pected sentences are still produced in the cases of
long rang correlation. For example, k-BEST-Our
produced a sentence “ ¬ÆFÏ�o�ÿÞ1
Qº(When is the meeting date held?)” which is a
grammatically well-formed sentence but has poor
fluency and meaning. As perceived in the work of
syntactic parsing, PCFG is very difficult to capture
long range dependency of word strings.

4 Conclusions

We have presented a PCFG-based natural lan-
guage generation method. In particular, the
method learns tailored PCFG rules from hy-
brid phrase-concept trees automatically augment-
ed from the output of a common syntactic parser.
A compelling advantage of the proposed method
is that it does not rely on prior knowledge of the
MR syntax for training. We have shown the com-
petitive results in a Chinese spoken dialogue sys-
tem. Future extensions include deploying more ef-
ficient decoding algorithms, and richer structural
features to rerank the derivations.
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