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Introduction

The WNUT 2015 workshop focuses on a core set of natural language processing tasks on top of
noisy user-generated text, such as that found on social media, web forums and online reviews. Recent
years have seen a significant increase of interest in these areas. The internet has democratized content
creation leading to an explosion of informal user-generated text, publicly available in electronic format,
motivating the need for NLP on noisy text to enable new data analytics applications. The workshop
is an opportunity to bring together researchers interested in noisy text with different backgrounds and
encourage crossover.

The workshop this year features two shared tasks, (a) Text Normalization and (b) Twitter Named Entity
Recognition, to facilitate comparison of different approaches and help advance the state of the art.
Because this is a fast-moving area, there is a lack of standardized datasets, and papers published in
the same year may not compare against each other. By organizing these shared tasks we hope to help
develop standardized evaluations and promote research on NLP in noisy text.

The program this year includes 8 papers in the main track, 8 system description papers in the Twitter
Named Entity Recognition track, and 9 system description papers in the Text Normalization track. All
the papers are presented as short talks and as well as posters. There are also 4 invited speakers, Tim
Baldwin, Brendan O’Connor, Anders Søgaard and Joel Tetreault, with each of their talks covering a
different aspect of NLP for user-generated text.

We would like to thank the Program Committee members who reviewed the papers this year. We would
also like to thank the workshop participants. Last, a word of thanks also goes to our two sponsors:
Microsoft Research and IBM Research.

Wei Xu, Bo Han and Alan Ritter
Co-Organizers
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Abstract

Noisy user-generated text poses problems
for natural language processing. In this
paper, we show that this statement also
holds true for the Irish language. Irish
is regarded as a low-resourced language,
with limited annotated corpora available
to NLP researchers and linguists to fully
analyse the linguistic patterns in language
use in social media. We contribute to re-
cent advances in this area of research by
reporting on the development of part-of-
speech annotation scheme and annotated
corpus for Irish language tweets. We also
report on state-of-the-art tagging results of
training and testing three existing POS-
taggers on our new dataset.

1 Introduction

The language style variation used on social media
platforms, such as Twitter for example, is often
referred to as noisy user-generated text. Tweets
can contain typographical errors and ungrammat-
ical structures that pose challenges for process-
ing tools that have been designed for and tai-
lored to high quality, well-edited text such as that
found in newswire, literature and official docu-
ments. Previous studies, Foster et al. (2011) and
Petrov and McDonald (2012) for example, have
explored the effect that the style of language used
in user-generated content has on the performance
of standard NLP tools. Other studies by Gimpel
et al. (2011), Owoputi et al. (2013), Avontuur et
al. (2012), Rehbein (2013) and Derczynski et al.
(2013) (POS-tagging), Ritter et al. (2011) (named
entity recognition), Kong et al. (2014) and Seddah
et al. (2012) (parsing) have shown that NLP tools
and resources need to be adapted to cater for the
linguistic differences present in such text.

When considering data-driven NLP tasks, a lack
of resources can also produce additional chal-

lenges. We therefore examine the impact of noisy
user-generated text on the existing resources for
Irish, a low-resourced language. We also explore
options for leveraging from existing resources to
produce a new domain-adapted POS-tagger for
processing Irish Twitter data. We achieve this by:

• defining a new POS tagset for Irish tweets

• providing a mapping from the PAROLE Irish
POS-tagset to this new one

• manually annotating a corpus of 1537 Irish
tweets

• training three statistical taggers on our data
and reporting results

This paper is divided as follows: Section 2
gives a summary of Twitter and issues specific
to the Irish Twitter data. Section 3 discusses the
new part-of-speech tagged corpus of Irish tweets.
Section 4 discusses our inter-annotator agreement
study and the observations we note from annota-
tor disagreements. Section 5 reports our tagging
accuracy results on three state-of-the-art statistical
taggers.

2 Irish Tweets

Irish, the official and national language of Ireland,
is a minority language. While it is a second lan-
guage for most speakers, everyday use outside of
academic environments has seen a recent resur-
gence in social media platforms such as Facebook
and Twitter. Twitter is a micro-blogging platform
which allows users (tweeters) to create a social
network through sharing or commenting on items
of social interest such as ideas, opinions, events
and news. Tweeters can post short messages called
tweets, of up to 140 characters in length, that can
typically be seen by the general public, includ-
ing the user’s followers. Tweets can be classified
by topic by using hashtags (e.g. #categoryname)
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and linked to other tweeters through the use of at-
mentions (e.g. @username).

The first tweets in Irish appeared not long after
the launch of Twitter in 2006, and there have been
more than a million tweets in Irish since then, by
over 8000 tweeters worldwide1.

The social nature of tweets can result in the use
of informal text, unstructured or ungrammatical
phrases, and a variety of typographical errors. The
140 character limit can also lead to truncated un-
grammatical sentences, innovative spellings, and
word play, such as those discussed by Eisenstein
(2013) for English. From our analysis, this phe-
nomenon appears to extend also to Irish tweets.

In Figure 1, we provide an example of an Irish
tweet that contains some of these NLP challenges:

Freezing i dTra Li,Ciarrai chun cinn le cuilin.
Freezing i dTrá Lı́, tá Ciarraı́ chun cinn le cúilı́n.
‘Freezing in Tralee, Kerry (is) ahead by a point.’

Figure 1: Example of noisy Irish tweet

Diacritics Irish, in its standard orthography,
marks long vowels with diacritics (á,é,ı́,ó,ú). Our
analysis of Irish tweets revealed that these diacrit-
ics are often replaced with non-accented vowels
(cúilı́n => cuilin). There are a number of word
pairs that are differentiated only by the presence
or absence of these diacritics (for example, cead
‘permission’ : céad ‘hundred’). There are many
possible reasons for omitting diacritics, including
shortening the time required to tweet (this tweet
is from a spectator at a Gaelic Football match),
a lack of knowledge on how to find diacritics on
a device’s keyboard, carelessness, or uncertainty
about the correct spelling.

Code-switching Alternating between English
and Irish is common in our dataset. This is un-
surprising as virtually all Irish speakers are fluent
English speakers, and many use English as their
first language in their daily lives. In the exam-
ple given, there is no obvious reason why “Freez-
ing” was used in place of various suitable Irish
words (e.g. Préachta), other than perhaps seek-
ing a more dramatic effect. Sometimes, how-
ever, English is understandably used when there
is no suitable Irish term in wide use, for example
‘hoodie’ or ‘rodeo-clown’. Aside from occurring

1http://indigenoustweets.com/ga/

at an intra-sentential level, code-switching at an
inter-sentential level is also common in Irish: an t-
am seo an t7ain seo chugainn bei 2 ag partyáil le
muintir Ráth Daingin! Hope youre not too scared
#upthevillage. In total, of the 1537 tweets in our
gold-standard corpus, 326 (21.2%) contain at least
one English word with the tag G2.

Verb drop We can see in this example that the
verb tá ‘is’ has been dropped. This is a common
phenomenon in user-generated content for many
languages. The verb is usually understood and can
be interpreted through the context of the tweet.

Spacing Spacing after punctuation is often over-
looked (i) in an attempt to shorten messages or
(ii) through carelessness. In certain instances,
this can cause problems when tokenizing tweets;
Li,Ciarrai => Li, Ciarrai.

Phonetic spelling Linguistic innovations often
result from tweeters trying to fit their message into
the 140 character limit. Our dataset contains some
interesting examples of this phenomenon occur-
ring in Irish. For example t7ain is a shortened ver-
sion of tseachtain ‘week’. Here the word seacht
‘seven’ is shortened to its numeral form and the
initial mutation t remains attached. Other exam-
ples are gowil (go bhfuil), beidir (b’fhéidir), v
(bhı́).

Abbreviations Irish user-generated text has its
own set of frequently used phrase abbreviations –
referred to sometimes as text-speak. Forms such
as mgl:maith go leor, ‘fair enough’ and grma:go
raibh maith agat ‘thank you’ have been widely
adopted by the Irish language community.

The linguistic variation of Irish that is used in
social media is relatively unexplored, at least not
in any scientific manner. We expect therefore that
the part-of-speech tagged corpus and taggers that
we have developed for Irish language tweets will
contribute to further research in this area.

3 Building a corpus of annotated Irish
tweets

Unlike rule-based systems, statistical data-driven
POS-taggers require annotated data on which they
can be trained. Therefore, we build a gold-
standard corpus of 1537 Irish tweets annotated

2The tag G is used for foreign words, abbreviations, items
and unknowns, as shown in Table 1.
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with a newly defined Twitter POS tagset. The fol-
lowing describes this development process.

3.1 New Irish Twitter POS tagset
The rule-based Irish POS-tagger (Uı́ Dhonn-
chadha and van Genabith, 2006) for standard Irish
text is based on the PAROLE Morphosyntactic
Tagset (ITÉ, 2002). We used this as the basis
for our Irish Twitter POS tagset. We were also
inspired by the English-tweet POS tagset defined
by Gimpel et al. (2011), and have aimed to stay
closely aligned to it in order to facilitate any fu-
ture work on cross-lingual studies.

We started by selecting a random sample of 500
Irish tweets to carry out an initial analysis. From
our analysis of these tweets we concluded that our
new Twitter-specific POS tagset would not require
the granularity of the original standard Irish POS
set. For example we do not need to differentiate
between a locative adverb and a temporal adverb,
or between a vocative particle and an infinitive par-
ticle. While our tagset is also closely aligned with
the English-tweet POS tagset, we introduce the
following tags that the English set does not use:

• VN: Verbal Noun Progressive aspectual
phrases in Irish are denoted by the preposi-
tion ag followed by a verbal noun (e.g. ag
rith ‘running’). We choose to differentiate
between N and VN to avoid losing this ver-
bal information in what would otherwise be a
regular prepositional phrase.

• #MWE: Multiword hashtag These are hash-
tags containing strings of words used to cate-
gorise a text (e.g. #godhelpus). We retain in-
formation on the multi-word nature of these
hashtags in order to facilitate future syntactic
analysis efforts.

We also adapt the T particle to suit Irish linguis-
tic features.

• T: Particle We extend the T tag to not only
cover verb particles, but all other Irish parti-
cles: relative particles, surname particles, in-
finitive particles, numeric particles, compar-
ative particles, the vocative particle, and ad-
verbial particles.

We do not use the following tags from the En-
glish set: S, Z, L, M, X, Y, as the linguis-
tic cases they apply to do not occur in either stan-
dard or non-standard Irish. The final set of 21
POS-tags is presented in Table 1.

Most of the tags in the tagset are intuitive
to an Irish language speaker. However, some
tags require specific explanation in the guide-
lines. Hashtags and at-mentions can be a syntac-
tic part of a sentence or phrase within a tweet.
When this is the case, we apply the relevant
syntactic POS tag. For example, Beidh mé ar
chlár @SplancNewstalk∧ anocht ag labhairt leis
@AnRonanEile∧ faoi #neknominationN ‘I will be
on @SplancNewstalk tonight speaking to @An-
RonanEile about #neknomination’. Otherwise if
they are not part of the syntactic structure of the
tweet (typically appended or prepended to the
main tweet text), they are tagged as @ and # (or
#MWE). In our gold standard corpus, 554 out of
693 hashtags (79.9%), and 1604 out of 1946 at-
mentions (82.4%) are of this non-syntactic type.

With some Twitter clients, if a tweet exceeds
the 140 character limit, the tweet is truncated
and an ellipsis is used to indicate that some text
is missing. We leave this appended to the fi-
nal (usually partial) token, which was often a
URL. We marked these cases as G. For example
http://t.co/2nvQsxaIa7. . . .

Some strings of proper nouns contain other POS
elements, such as determiners and common nouns.
Despite being a proper noun phrase syntactically,
we tag each token as per its POS. For exam-
ple, Cú∧ naD mBaskerville∧ ‘The Hound of the
Baskervilles’.

3.2 Tweet pre-processing pipeline

About 950,000 Irish language tweets were posted
between Twitter’s launch in 2006 and September
2014 by approximately 8000 users identified and
tracked by the Indigenous Tweets web site. Non-
Irish tweets from these users were filtered out us-
ing a simple character-trigram language identifier.
We selected a random sample of 1550 tweets from
these 950,000 tweets and processed them as fol-
lows:

(1) We tokenised the set with Owoputi et al.
(2013)’s version of twokenise3, which works
well on web content features such as emoticons
and URLs.

(2) Using a list of multiword units from Uı́
Dhonnchadha (2009)’s rule-based Xerox FST to-
keniser4, we rejoined multiword tokens that had

3Available to download from http://www.ark.cs.
cmu.edu/TweetNLP/#pos

4Available to download from https://github.
com/stesh/apertium-gle/tree/master/dev/
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Tag Description (PAROLE TAGS)
N common noun

(Noun, Pron Ref, Subst)
∧ proper noun

(Prop Noun)
O pronoun (Pron Pers, Pron Idf,

Pron Q, Pron Dem)
VN verbal noun (Verbal Noun)
V verb (Cop, Verb*)
A adjective (Adj, Verbal Adj,

Prop Adj)
R adverb (Adv*)
D determiner (Art, Det)
P preposition, prep. pronoun

(Prep*, Pron Prep)
T particle (Part*)
, punctuation (Punct)
& conjunction (Conj Coord,

Conj Subord)
$ numeral, quantifier (Num)
! interjection (Itj)
G foreign words, abbreviations, item

(Foreign, Abr, Item, Unknown)
˜ discourse marker
# hashtag
#MWE multi-word hashtag
@ at-mention
E emoticon
U URL/email address/XML (Web)

Table 1: Mapping of Irish Twitter tagset to PA-
ROLE tagset. (* indicates all forms of the fine-
grained set for that tag.)

been split by the language-independent tokenizer
(e.g. the compound preposition go dtı́).

(3) Using regular expressions, we then split to-
kens with the contractions b’ (ba), d’ (do), m’ (mo)
prefixes. For example b’fhéidir ‘maybe’; d’ith
‘ate’; m’aigne ‘my mind’.

(4) We took a bootstrapping approach by pre-
tagging and lemmatising the data with the rule-
based Irish POS-tagger first, and then mapped the
tags to our new Twitter-specific tagset.

(5) In cases where the rule-based tagger failed to
produce a unique tag, we used a simple bigram tag
model (trained on the gold-standard POS-tagged
corpus from Uı́ Dhonnchadha (2009) – see Sec-
tion 5.1) to choose the most likely tag from among

irishfst

those output by the rule-based tagger.
(6) Finally, we manually corrected both the tags

and lemmas to create a gold-standard corpus.

3.3 Annotation
The annotation task was shared between two an-
notators. Correction of the first 500 tweets formed
a basis for assessing both the intuitiveness of our
tagset and the usability of our annotation guide.
Several discussions and revisions were involved at
this stage before finalising the tagset. The next
1000 tweets were annotated in accordance with
the guidelines, while using the first 500 as a ref-
erence. At this stage, we removed a small number
of tweets that contained 100% English text (errors
in the language identifier). All other tweets con-
taining non-Irish text represented valid instances
of code-switching.

The annotators were also asked to verify and
correct the lemma form if an incorrect form was
suggested by the morphological analyser. All
other tokeniser issues, often involving Irish con-
tractions, were also addressed at this stage. For
example Tá’n − > Tá an.

4 Inter-Annotator Agreement

Inter-Annotator agreement (IAA) studies are car-
ried out during annotation tasks to assess consis-
tency, levels of bias, and reliability of the anno-
tated data. For our study, we chose 50 random
Irish tweets, which both annotators tagged from
scratch. This differed from the rest of the anno-
tation process, which was semi-automated. How-
ever, elimination of possible bias towards the pre-
annotation output allowed for a more disciplined
assessment of agreement level between the anno-
tators. We achieved an agreement rate of 90% and
a κ score (Cohen, 1960) of 0.89.

Smaller tagsets make an annotation task eas-
ier due to the constraint on choices available to
the annotator, and is certainly one reason for our
high IAA score. This result also suggests that the
tagging guidelines were clear and easy to under-
stand. A closer comparison analysis of the IAA
data explains some disagreements. The inconsis-
tency of conflicts suggests that the disagreements
arose from human error. Some examples are given
below.

Noun vs Proper Noun The word Gaeilge ‘Irish’
was tagged on occasion as N (common noun)
instead of ∧ (proper noun). This also applied
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to some proper noun strings such as Áras an
Uachtaráin (the official name of the President of
Ireland’s residence).

Syntactic at-mentions A small number of at-
mentions that were syntactically part of a tweet
(e.g. mar chuid de @SnaGaeilge ‘as a part of
@SnaGaeilge’) were incorrectly tagged as regular
at-mentions (@).

Retweet colons One annotator marked ‘:’ as
punctuation at random stages rather than using the
discourse tag ˜.

5 Experiments

5.1 Data

We took the finalised set of Irish POS-tagged
tweets and divided them into a test set (148
tweets), development set (147 tweets) and train-
ing set (1242 tweets). Variations of this data are
used in our experiments where we normalise cer-
tain tokens (described further in Section 5.2.)

We also automatically converted Uı́ Dhonn-
chadha (2009)’s 3198 sentence (74,705 token)
gold-standard POS-tagged corpus using our map-
ping scheme. This text is from the New Corpus for
Ireland – Irish5, which is a collection of text from
books, newswire, government documents and
websites. The text is well-structured, well-edited,
and grammatical, and of course lacks Twitter-
specific features like hashtags, at-mentions, and
emoticons, thus differing greatly from our Twitter
data. The average sentence length in this corpus
is 27 tokens, diverging significantly from the
average tweet length of 17.2 tokens. Despite this,
and despite the fact the converted tags were not
reviewed for accuracy, we were still interested
in exploring the extent to which this additional
training data could improve the accuracy of our
best-performing model. We refer to this set as
NCII 3198.

5.2 Taggers

We trained and evaluated three state-of-the-art
POS-taggers with our data. All three taggers are
open-source tools.

Morfette As Irish is an inflected language, in-
clusion of the lemma as a training feature is desir-

5New Corpus for Ireland - Irish. See http://corpas.
focloir.ie

able in an effort to overcome data sparsity. There-
fore we trained Morfette (Chrupala et al., 2008),
a lemmatization tool that also predicts POS tags
and uses the lemma as a training feature. We re-
port on experiments both with and without an op-
tional dictionary (Dict) information. We used the
dictionary from Scannell (2003), which contains
350, 418 surface forms. Our baseline Morfette
data (BaseMorf) contains the token, lemma and
POS-tag. The lemmas of URLs and non-syntactic
hashtags have been normalised as < URL > and
< # >, respectively.

We then evaluated the tagger with (non-
syntactic) < # >, < @ > and < URL >
normalisation of both token form and lemma
(NormMorf). Both experiments are re-
run with the inclusion of our dictionary
(BaseMorf+Dict,NormMorf+Dict).

ARK We also trained the CMU Twitter POS-
tagger (Owoputi et al., 2013), which in addition
to providing pre-trained models, allows for re-
training with new languages. The current release
does not allow for the inclusion of the lemma as
a feature in training, however. Instead, for com-
parison purposes, we report on two separate ex-
periments, one using the surface tokens as fea-
tures, and the other using only the lemmas as fea-
tures (ArkForm, ArkLemma). We also tested
versions of our data with normalised at-mentions,
hashtags and URLs, as above.

Stanford tagger We re-trained the Stanford
tagger (Toutanova et al., 2003) with our Irish data.
We experimented by training models using both
the surface form only (BestStanForm) and
the lemma only (BestStanLemma). The best
performing model was based on the feature set
left3words, suffix(4), prefix(3),
wordshapes(-3,3), biwords(-1,1),
using the owlqn2 search option.6

Baseline Finally, to establish a baseline
(Baseline), and more specifically to evaluate
the importance of domain-adaptation in this
context, we evaluated a slightly-enhanced version
of the rule-based Irish tagger on the Twitter
dataset. When the rule-based tagger produced
more than one possible tag for a given token,
we applied a bigram tag model to choose the
most likely tag, as we did in creating the first

6All other default settings were used.
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draft of the gold-standard corpus. In addition, we
automatically assigned the tag U to all URLs, # to
all hashtags, and @ to all at-mentions.

5.3 Results

Training Data Dev Test
Baseline

Rule-Based Tagger 85.07 83.51
Morfette

BaseMorf 86.77 88.67
NormMorf 87.94 88.74
BaseMorf+Dict 87.50 89.27
NormMorf+Dict 88.47 90.22

ARK
BaseArkForm 88.39 89.92
ArkForm#@ 89.36 90.94
ArkForm#URL@ 89.32 91.02
BaseArkLemma#URL 90.74 91.62
ArkLemma#URL@ 91.46 91.89

Stanford
BestStanForm 82.36 84.08
BestStanLemma 87.34 88.36

Bootstrapping Best Model
ArkLemma#URL@+NCII 92.60 93.02

Table 2: Results of evaluation of POS-taggers on
new Irish Twitter corpus

The results for all taggers and variations of data-
setup are presented in Table 2.

Firstly, our best performing single model
(ArkLemma#URL@) on the test set achieves a
score of 91.89%, which is 8 points above our
rule-based baseline score of 83.51%. This con-
firms that tailoring training data for statistically-
driven tools is a key element in processing noisy
user-generated content, even in the case of minor-
ity languages. It is worth noting that the best-
performing model learns from the lemma infor-
mation instead of the surface form. This clearly
demonstrates the effect that the inflectional nature
of Irish has on data sparsity. The Twitter-specific
tokens such as URLs, hashtags and at-mentions
have been normalised which demonstrates the im-
pact the relative uniqueness of these tokens has on
the learner.

All of our results are comparable with state-of-
the-art results produced by Gimpel et al. (2011)
and Owoputi et al. (2013). This is interesting,
given that in contrast to their work, we have

not optimised our system with unsupervised word
clusters due to the lack of sufficient Irish tweet
data. Nor have we included a tag dictionary, distri-
bution similarity or phonetic normalisation – also
due to a lack of resources.

We carried out a closer textual comparison
of Owoputi et al. (2013)’s English tweet dataset
(daily547) and our new Irish tweet dataset.
After running each dataset through a language-
specific spell-checker, we could see that the list
of highly ranked OOV (out of vocabulary) tokens
in English are forms of text-speak, such as lol
‘laugh out loud’, lmao ‘laugh my ass off’ and ur
‘your’, for example. Whereas the most common
OOVs in Irish are English words such as ‘to’, ‘on’,
‘for’, ‘me’, and words misspelled without diacrit-
ics. This observation shows the differences be-
tween textual challenges of processing these two
languages. It may also suggest that Irish Twitter
text may follow a more standard orthography than
English Twitter text, and will make for an interest-
ing future cross-lingual study of Twitter data.

Finally, we explored the possibility of lever-
aging from existing POS-tagged data by adding
NCII 3198 to our best performing model
ArkLemma#URL@. We also duplicated the tweet
training set to bring the weighting for both do-
mains into balance. This brings our training set
size to 5682 (117,273 tokens). However, we find
that a significant increase in the training set size
only results in just over a 1 point increase in POS-
tagging accuracy. At a glance, we can see some
obvious errors the combined model makes. For
example, there is confusion when tagging the word
an. This word functions as both a determiner and
an interrogative verb particle. The lack of direct
questions in the NCII corpus results in a bias to-
wards the D (determiner) tag. In addition, many
internal capitalised words (e.g. the beginning of a
second part of a tweet) are mislabelled as proper
nouns. This is a result of the differing structure of
the two data sets – each tweet may contain one or
more phrases or sentences, while the NCII is split
into single sentences.

6 Future Work

Limited resources and time prevented exploration
of some options for improving our POS-tagging
results. One of these options is to modify the CMU
(English) Twitter POS-tagger to allow for inclu-
sion of lemma information as a feature. Another
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option, when there is more unlabelled data avail-
able (i.e. more Irish tweets online), would be to
include Irish word cluster features in the training
model. This approach has also been taken by Re-
hbein (2013) for POS tagging German tweets.

The resources we provide through this study
are a valuable contribution to the Irish NLP com-
munity. Firstly, we expect that this new data re-
source (the POS-tagged Twitter corpus) will pro-
vide a solid basis for linguistic and sociolinguistic
study of Irish on a social media platform. This
new domain of Irish language use can be analysed
in an empirical and scientific manner through cor-
pus analysis by means of our data. The authors are
currently working towards this follow-up study.

From a tool-development perspective, we ex-
pect this corpus and the derived POS-tagging
models could be used in a domain-adaptation ap-
proach to parsing Irish tweets, similar to the work
of Kong et al. (2014). This would involve adapting
Lynn et al. (2012)’s Irish statistical dependency
parser for use with social media text. Our corpus
could provide the basis of a treebank for this work.

Following our discovery of the extent that code-
switching is present our Irish Twitter data, we feel
future studies on this phenomenon would be of in-
terest to various research disciplines (e.g Solorio
et al. (2014)). In order to do that, we suggest up-
dating the corpus with a separate tag for English
tokens (that is, a tag other than G, which is also
used for abbreviations, items and unknowns) be-
fore carrying out further experiments in this area.

7 Conclusion

We present the first dataset of gold-standard POS-
tagged Irish language tweets and we have pro-
duced training models for a selection of POS-
taggers.7 We have also shown how we have lever-
aged from existing work to build these resources
for a low-resourced language, to achieve state-of-
the-art results. We also confirm that the NLP chal-
lenges arising from noisy user-generated text can
also apply to a minority language.
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Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1001–1012, Doha, Qatar, October.
Association for Computational Linguistics.

Teresa Lynn, Jennifer Foster, Mark Dras, and Elaine Uı́
Dhonnchadha. 2012. Active learning and the Irish
treebank. In Proceedings of the Australasian Lan-
guage Technology Workshop (ALTA), pages 23–32.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380–390, Atlanta, Georgia, June. Association
for Computational Linguistics.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 Shared Task on Parsing the Web. In First
Workshop on Syntactic Analysis of Non-Canonical
Language (SANCL).

Ines Rehbein. 2013. Fine-grained pos tagging of ger-
man tweets. In Iryna Gurevych, Chris Biemann,
and Torsten Zesch, editors, GSCL, volume 8105 of
Lecture Notes in Computer Science, pages 162–175.
Springer.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 1524–1534, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Kevin P. Scannell. 2003. Automatic thesaurus genera-
tion for minority languages: an Irish example. Actes
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Abstract

Dialect features typically do not make
it into formal writing, but flourish
in social media. This enables large-
scale variational studies. We fo-
cus on three phonological features of
African American Vernacular English
and their manifestation as spelling
variations on Twitter. We discuss to
what extent our data can be used to
falsify eight sociolinguistic hypothe-
ses. To go beyond the spelling
level, we require automatic analysis
such as POS tagging, but social me-
dia language still challenges language
technologies. We show how both
newswire- and Twitter-adapted state-
of-the-art POS taggers perform signif-
icantly worse on AAVE tweets, sug-
gesting that large-scale dialect studies
of language variation beyond the sur-
face level are not feasible with out-of-
the-box NLP tools.

1 Introduction
Dialectal and sociolinguistic studies are tradi-
tionally based on interviews of small sets of
speakers of each variety. The Atlas of North
American English (Labov et al., 2005) has
been the reference point for American dialec-
tology since its completion, but is based on
only 762 speakers. Dallas is represented by

four subjects, the New York City dialect by
six, etc. Data is costly to collect, and, as a
consequence, scarce.

Written language was traditionally used for
formal purposes, and therefore differed in
style from colloquial, spoken language. How-
ever, with the rise of social media platforms
and the vast production of user generated con-
tent, differences between written and spoken
language diminish. A number of recent papers
have explored social media with respect to
sociolinguistic and dialectological questions
(Rao et al., 2010; Eisenstein, 2013; Volkova
et al., 2013; Doyle, 2014; Hovy et al., 2015;
Volkova et al., 2015; Johannsen et al., 2015;
Hovy and Søgaard, 2015; Eisenstein, to ap-
pear). Emails, chats and social media posts
serve purposes similar to those of spoken lan-
guage, and consequently, features of spoken
language, such as interjections, ellipses, and
phonological variation, have found their way
into this type of written language. Our work
differs from most previous approaches by in-
vestigating several phonological spelling cor-
relates of a specific language variety.

The 284 million active users on Twitter post
more than half a billion tweets every day, and
some fraction of these tweets are geo-located.
Eisenstein (2013) and Doyle (2014) studied
the effect of phonological variation across the
US on spelling in Twitter posts, and both
found some evidence that dialectal phonolog-
ical variation has a direct impact on spelling
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on Twitter. Both authors note various method-
ological problems using Twitter as a source of
evidence for dialectal and sociolinguistic stud-
ies, including what we refer to as USER POP-
ULATION BIAS and TOPIC BIAS below.

In this paper, we collect Twitter data to
test eight (8) research hypotheses originating
in sociolinguistic studies of African-American
Vernacular English (AAVE). The hypotheses
relate to three phonological features of AAVE,
namely derhotacization, interdental fricative
mutation, and backing in /str/. Some of our
findings shed an interesting light on existing
hypotheses, but our main focus in this paper
is to identify the methodological challenges in
using social media for testing sociolinguistic
hypotheses.

Almost all previous large-scale variational
studies using social media have focused on
spelling variation and lexical markers of di-
alect. Ours is no exception. However, di-
alectal variation also manifests itself at the
morpho-syntactic level. To investigate this
variation, we also annotate some data with
part-of-speech (POS) tags, using two NLP
systems. This approach reveals a severe
methodological challenge: sentences contain-
ing AAVE features are associated with signif-
icant drops in tagger performance.

This result challenges large-scale varia-
tional studies on social media that require au-
tomated analyses. The observed drops in per-
formance are prohibitive for studying syntac-
tic and semantic variation, and we believe the
NLP community should make an effort to pro-
vide better and more robust dialect-adapted
models to researchers and industry interested
in processing social media. The findings also
raise the question of whether NLP technology
systematically disadvantages groups of non-
standard language users.

1.1 Contributions
• We identify eight (8) research hypotheses

from the sociolinguistic literature. We
test them in a study of the distribution of
three phonological features typically as-
sociated with AAVE in Twitter data. We
test the features’ correlations with vari-
ous demographic variables. Our results
falsify the hypothesis that AAVE is male-
dominated (but see §3.1).

• We identify five (5) methodological
problems common to variational studies
in social media and discuss to what ex-
tent they compromise the validity of re-
sults.

• Further, we show that state-of-the-art
newswire and Twitter POS taggers per-
form much worse on tweets containing
AAVE features. This suggests an addi-
tional limitation to large-scale sociolin-
guistic research using social media data,
namely that it is hard to analyze varia-
tion beyond the lexical level with current
tools.

1.2 Sociolinguistic hypotheses
AAVE is, in contrast to other North American
dialects, not geographically restricted. Al-
though variation in AAVE does exist, AAVE
in urban settings has been established as a
uniform system with suprasegmental norms
(Ash and Myhill, 1986; Labov et al., 2005;
Labov, 2006; Wolfram, 2004). This paper
considers the following eight (8) hypotheses
from the sociolinguistic literature about
AAVE as a ethnolect:

H1: AAVE is an urban ethnolect (Rickford, 1999;
Wolfram, 2004).

H2: AAVE features are more present in the Gulf states
than in the rest of the United States (Rastogi et al.,
2011).
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H3: The likelihood of speaking AAVE correlates
negatively with income and educational level,
and AAVE is more frequently appropriated by
men (Rickford, 1999; Rickford, 2010).

H4: Derhotacization is more frequent in African
Americans than in European Americans (Labov
et al., 2005; Rickford, 1999).

H5: Derhotacization is negatively correlated with in-
come and educational level (Rickford, 1999).

H6: Interdental fricative mutation is more frequent in
AAVE than in European American speech (Pol-
lock et al., 1998; Thomas, 2007).

H7: Interdental fricative mutation is predominantly
found in the Gulf states (Rastogi et al., 2011).

H8: Backing in /str/ (to /skr/) is unique to AAVE
(Rickford, 1999; Thomas, 2007; Labov, 2006).

Hypotheses 1–8 are investigated by corre-
lating the distribution of phonological variants
in geo-located tweets with demographic infor-
mation.

Our method is similar to those proposed
by Eisenstein (2013) and Doyle (2014), lend-
ing statistical power to sociolinguistic analy-
ses, and circumventing traditional issues with
data collection such as the Observer’s Para-
dox (Labov, 1972b; Meyerhof, 2006). Our
work differs from previous work by studying
phonological rules associated with specific di-
alects, as well as considering a wide range of
actual sociolinguistic research hypotheses, but
our main focus is the methodological prob-
lems doing this kind of work, as well as as-
sessing the limitations of such work.

1.3 Methodological problems
One obvious challenge relating social media
data to sociolinguistic studies is that there
is generally not a one-to-one relationship
between phonological variation and spelling
variation. People, in other words, do not spell
the way they pronounce. Eisenstein (2013)
discusses this challenge ((1) WRITING BIAS),
but shows that effects of the phonological en-
vironment carry over to social media, which
he interprets as evidence that there is at least

some causal link between pronunciation and
spelling variation.

A related problem is that non-speakers of
AAVE may cite known features of AAVE with
specific purposes in mind. They may use it in
citations, for example:

(1) My 5 year old sister texted me on my mums phone
saying “why did you take a picher in da bafroom”
lool okay b (Twitter, Feb 21 2015)

or in meta-linguistic discussions:
(2) Whenever I hear a black person inquire about the

location of the ”bafroom”... (Twitter, Jan 20 2015)

We refer to these phenomena as (2) META-
USE BIAS. This bias is important with rare
phenomena. With ”bafroom”, it seems that
about 1 in 20 occurrences on Twitter are meta-
uses. Meta-uses may also serve social func-
tions. AAVE features are used as cultural
markers by Latinos in North Carolina (Carter,
2013), for example.

Some of the research hypotheses consid-
ered (H3 and H5) relate to demographic vari-
ables such as income and educational levels.
While we do not have socio-economic infor-
mation about the individual Twitter user, we
can use the geo-located tweets to study the
correlation between socio-economic variables
and linguistic features at the level of cities or
ZIP codes.1

Eisenstein et al. (2011) note that this level
of abstraction introduces some noise. Since
Twitter users do not form representative sam-
ples of the population, the mean income for a
city or ZIP code is not necessarily the mean
income for the Twitter users in that area. We
refer to this problem as the (3) USER POPU-
LATION BIAS.

Another serious methodological problem
known as (4) GALTON’S PROBLEM (Naroll,
1961; Roberts and Winters, 2013), is the ob-
servation that cross-cultural associations are

1Unlike many others, we rely on physical locations
rather than user-entered profile locations. See Graham
et al. (2014) for discussion.
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often explained by geographical diffusion. In
other words, it is the problem of discrimi-
nating historical from functional associations
in cross-cultural surveys. Briefly put, when
we sample tweets and income-levels from US
cities, there is little independence between
the city data points. Linguistic features dif-
fuse geographically and do not change at ran-
dom, and we can therefore expect to see more
spurious correlations than usual. Like with
the famous example of chocolate and Nobel
Prize winners, our positive findings may be
explained by hidden background variables. A
positive correlation between income-level and
a phonological pattern may also have cultural,
religious or geographical explanations.

Reasons to be less worried about GAL-
TON’S PROBLEM in our case, include that a)
we only consider standard hypotheses from
the sociolinguistics literature and not a huge
set of previously unexplored, automatically
generated hypotheses, b) we sample data
points at random from all across the US, giv-
ing us a very sparse distribution compared
to country-level data, but more notably, c)
location is an important, explicit variable in
our study. GALTON’S PROBLEM is typically
identified by clustering tests based on loca-
tion (Naroll, 1961). Obviously, the phono-
logical features considered here cluster geo-
graphically, as evidenced by our geographic
correlations in Table 2, but since our studies
explicitly test the influence of location, it is
not the case for most of the hypotheses con-
sidered here that geographic diffusion is the
underlying explanation for something else.

In §3, we discuss whether these four
methodological problems compromise the va-
lidity of our findings. One other methodolog-
ical problems that may be relevant for other
studies of dialect in social media, is almost
completely irrelevant for our study: It is often
important to control for topic in dialectal and

sociolinguistic studies (Bamman et al., 2014),
e.g., when studying the lexical preferences of
speakers of urban ethnolects. We call this
problem (5) TOPIC BIAS. Using word pairs
with equivalent meanings for our studies, we
implicitly control for topic (but see §3.1).

Feature Positive Negative Total count

/r/→ /Ø/ or /@/

brotha brother 9528
foreva forever 3673
hea here 4352
lova lover 1273
motha mother 4668
ova over 3441
sista sister 5325
wateva whatever 2974
wea where 5153
total 40,387

/str/→ /skr/

skreet street 1226
skrong strong 1629
skrip strip 1101
total 3956

/D/→ /d/ or /v/

brova brother 3715
dat that 2610
deez these 4477
dem them 3645
dey they 2434
dis this 2135
mova mother 2462
total 21,478

/T/→ /t/ or /f/

mouf mouth 3861
nuffin nothing 2861
souf south 1102
teef teeth 1857
trough through 2804
trow throw 1090
total 13,575

All tweets 79,396

Table 1: Word pairs and counts

2 Data and Method
We focus on derhotacization, backing in /str/,
and interdental fricative mutation. Specifi-
cally, we collect data to study the following
four phonological variations (the latter two are
both instances of interdental fricative muta-
tion): a) derhotacization: /r/ → /Ø/ or /@/,
b) /str/→ /skr/, c) /D/→ /d/ or /v/ and, d) /T/
→ /t/ or /f/.

In non-rhotic dialects, /r/ is either not pro-
nounced or is approximated as a vocalization
in the surface form, when /r/ is in a pre-vocalic
position. This can result in an elongation of
the preceding vowel or in an off-glide schwa
/@/, e.g., guard→ /gA:d/, car→ /ka:/, fear→
/fi@/ (Thomas, 2007).

Backing in /skr/ denotes the substitution
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of /str/ for /skr/ in word-initial positions re-
sulting in pronunciations such as /skrit/ for
street, /skrAN/ for strong and /skrIp/ for strip.
Backing in /str/ has been reported to be a
unique feature in AAVE, as it is unheard
in other North American dialects (Rickford,
1999; Labov, 1972a; Thomas, 2007).

The two interdental fricative mutations re-
late to substitutions of /D/ and /T/ by /d/, /v/
and /t/, /f/ in words such as that and mother
or nothing and with. It has been reported
that mutations of /D/ and /T/ are more com-
mon among African Americans than among
European Americans and that the frequency
of the mutations is inversely correlated with
socio-economic levels and formality of speak-
ing (Rickford, 1999).

We follow Eisenstein (2013) and Doyle
(2014) in assuming that spelling variation may
be a result of phonological differences and
select 25 word pairs for our study (Tabel
1). For each word pair, we collect positive
(e.g., ”skreet”) and negative occurrences (e.g.,
”street”), resulting in a total number of 79,396
tweets. The word pairs were chosen based on
the unambiguity, frequency and representabil-
ity of the phonological variations. Uniquely,
backing in /str/ is represented by three word
pairs of high similarity, which is due to phono-
logical restrictions on the variation of /str/ to
/skr/ and to the fact that backing in /str/ is a
very rare phenomena.

The Twitter data used in the experiments
was gathered from May to August 2014 us-
ing TwitterSearch.2 We only collected tweets
with geo-locations in the contiguous United
States, from users reporting to tweet in En-
glish, and which were also predicted to be
in English using langid.py.3 The demo-
graphic information was obtained from the
2012 American Community Survey from the

2https://pypi.python.org/pypi/TwitterSearch/
3https://pypi.python.org/pypi/langid

United States Census Bureau, as was informa-
tion about population sizes in US cities. We
linked each tweet in our data to demographic
information using the geo-coordinates of the
tweet and its nearest city in the following way.

Figure 1: The ratio of AAVE examples over
US states

For the 110 US cities of ≥ 200,000 inhabi-
tants, we gathered information about: a) per-
centage high school graduates, b) percent-
age below poverty level, c) population size,
d) median household income, e) percentage of
males, f) percentage between 15 and 24 years
old, g) percentage of African Americans and
h) unemployment rate.

The overall geographical distribution of our
data is shown in Figure 1. The map shows that
we see more tweets with AAVE features in
the Gulf states, in particular Louisiana, Mis-
sissippi and Georgia. This lends preliminary
support to H2.

3 Results with phonological features
Occurrences of the phonological variations
related to AAVE were correlated with the
geographic and demographic variables using
Spearman’s ρ (Table 2–3), at the level of in-
dividual tweets. From the correlation coeffi-
cients we see that the distributions of the three
chosen AAVE rules are best explained by lon-
gitude, the distinction between the Gulf states
and the rest of the US, and by the distribution
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Feature word pairs male black 15-24 citysize highschool income poverty unemployment

/r/→ /Ø/ or /@/

brotha/brother *** ** – – ** – – –
foreva/forever ** *** – – – – ** –
hea/here – *** ** *** *** *** *** *
lova/lover – – – – *** * ** –
motha/mother – ** – * – ** – –
ova/over *** *** – – – *** *** –
sista/sister * *** – – ** – – –
wateva/whatever *** *** – – – *** *** –
wea/where ** *** *** *** *** *** *** *
total *** *** *** *** *** *** *** –

/str/→ /skr/

skreet/street – – – ** * ** * **
skrong/strong ** *** – * ** ** ** *
skrip/strip * – * *** *** – *** ***
total *** *** – *** *** *** – -

/D/→ /d/ or /v/

brova/brother *** *** *** *** *** – *** ***
dat/that – *** – – – ** ** –
deez/these – – – ** *** – ** ***
dem/them * *** ** ** *** – – –
dey/they *** *** ** * ** ** *** –
dis/this – *** ** – – – * *
mova/mother *** *** *** – *** *** – ***
total *** *** *** – *** – *** ***

/T/→ /t/ or /f/

mouf/mouth ** – – – – – – –
nuffin/nothing *** *** *** *** *** *** – ***
souf/south *** – ** – ** – *** ***
teef/teeth – – – – ** – – –
trough/through – – – – ** – * *
trow/throw * – – *** ** * ** **
total *** *** *** *** – ** – *

– = p ≥ 0.05, * = 0.05 > p ≥ 0.01, ** = p ≤ 0.01, , *** = p ≤ 0.0005

Shading corresponds to negative correlations

Table 3: Demographic correlations

of African Americans (with explained vari-
ances in the range of 0.03-0.05).

Our data suggests that H2, namely that
AAVE is more prevalent in the Gulf states,
is probably true. Hypothesis H1, that AAVE
is an urban ethnolect, lends some support in
our data, but the correlation with urbanicity
is weaker (and negatively correlated or non-
significant in half of the cases).

Our data only lends limited support to the
first half of hypothesis H3. While derhota-
cization and /str/ correlate (negatively) signif-
icantly with income levels, we see no signifi-
cant correlations within /D/ and a positive cor-
relation within /T/. However, our data does not
suggest that H3 is false, either. Our data does
lend support to the more specific hypothesis
H5, namely that derhoticization is sensitive to
income level, while the strong correlation with
the distribution of African Americans lends
support to H4.

More interestingly, our data suggests that
women use AAVE features more often than

men, i.e., there is a negative correlation be-
tween male gender and AAVE features, con-
trary to the second half of H3, namely that
AAVE is more frequently appropriated by
men. Note, however, that our gender ratios
are aggregated for city areas, and with the de-
mographic bias of Twitter, these correlations
should be taken with a grain of salt. Consider-
ing the small gender ratio differences, we also
compute correlations between our linguistic
features and gender using the Rovereto Twit-
ter N-gram Corpus (RTC) (Herdagdelen and
Baroni, 2011).4 The RTC corpus contains in-
formation about the gender of the tweeter as-
sociated with n-grams. While there is too lit-
tle data in the corpus to correlate gender and
backing in /str/, derhotacization and both in-
terdental fricative mutations (/D/ → /d/ or /v/
and /T/→ /t/ or /f/) correlate significantly with
women. Out of our words, 10 correlate sig-

4http://clic.cimec.unitn.it/amac/
twitter_ngram/
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Feature word pairs latitude longitude urban Gulf

/r/

brotha/brother *** *** *** ***
foreva/forever *** ** – ***
hea/here *** *** * ***
lova/lover *** *** ** ***
motha/mother – – *** –
ova/over *** – – ***
sista/sister – *** ** ***
wateva/whatever *** *** ** ***
wea/where *** *** – ***
total *** *** *** ***

/str/

skreet/street *** – *** ***
skrong/strong *** * *** ***
skrip/strip *** – *** ***
total *** ** – ***

/D/

brova/brother *** *** *** ***
dat/that *** * – ***
deez/these * *** – –
dem/them *** *** – ***
dey/they *** *** – ***
dis/this *** – – ***
mova/mother * *** *** ***
total *** *** *** ***

/T/

mouf/mouth *** – – ***
nuffin/nothing *** *** *** ***
souf/south *** *** *** ***
teef/teeth ** – ** ***
trough/through – *** – –
trow/throw *** ** – ***
total * *** *** ***

– = p ≥ 0.05, * = 0.05 > p ≥ 0.01, ** = p ≤ 0.01, ***

= p ≤ 0.0001

Shading corresponds to negative correlations

Table 2: Geographic correlations

nificantly with female speakers; seven with
male. The correlations are found in Table 4.
For each feature, certain words correlate sig-
nificantly with female speakers, while oth-
ers correlate significantly with male speakers.
Consequently, neither our Twitter data not the
Twitter data in the RTC suggest that AAVE is
more often appropriated by men. We discuss
whether our data provides a basis for falsify-
ing the second half of H3 in §3.1.

The high correlation between mutations of
/D/ and longitude supports the presence of
these mutations of /D/ in non-standard north-
ern varieties (Rickford, 1999). The mutation
of /T/ is also correlated with longitude, and
with latitude, suggesting an Eastern Ameri-
can feature rather than a distinct Southern fea-
ture (Rickford, 1999). The variation in muta-
tions could possibly be explained by both ge-
ography as well as the distribution og African
Americans.

There is evidence in our data that backing

in /str/ (to /skr/) is appropriated more often by
AAVE speakers than by speakers of other di-
alects (H8). There is also a negative correla-
tion between latitude and backing in /str/ as
well as a strong positive correlation with the
Gulf states, suggesting that backing in /str/ is a
feature primarily seen in this region. The data
thereby suggests that the feature is appropri-
ated significantly more by African Americans
than by speakers of the Southern dialect.

In sum, while our data lends support to sev-
eral of the common hypotheses from the so-
ciolinguistics literature, we found one unex-
pected tendency, going against the second half
of H3, namely that AAVE features were found
more often with females. We now discuss this
finding in light of the methodological prob-
lems discussed in §1.2.

Feature word pairs male

/r/→ /Ø/ or /@/

brotha-brother **
foreva-forever **

hea-here *
lova-lover –

motha-mother **
ova-over **

sista-sister –
wateva-whatever –

wea-where **

D→ /d/ or /v/

brova-brother *
dat-that **

deez-these **
dem-them **

dey-they **
dis-this **

mova-mother –

T→ /f/ or /t/

mouf-mouth **
nuffin-nothing **

souf-south **
teef-teeth –

trough-through **
trow-throw **

– = p ≥ 0.05, * = 0.05 > p ≥ 0.01, ** = p ≤ 0.01

Shading corresponds to negative correlations

Table 4: Gender correlations in RTC

3.1 Is AAVE not male-dominated?
We now discuss whether our data falsifies
the second half of H3, one methodological
problem at a time (see §1.3). If WRITTEN

BIAS were to bias our conclusions, one gen-
der should be more likely to exhibit more
phonologically motivated spelling variation.
This may actually be true, since it is well-
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established that women tend to be more lin-
guistically creative and have larger vocabular-
ies (Labov, 1990; Brizendine, 2006). Whether
women are also more meta-linguistic (META-
USE BIAS), has to the best of our knowl-
edge not been studied. Since genders are al-
most equally geographically distributed, and
since Twitter is generally considered gender-
balanced, neither USER POPULATION BIAS

nor GALTON’S PROBLEM is likely to bias our
conclusions. TOPIC BIAS, on the other hand,
may. While our semantically equivalent pairs
control for topic, the pragmatics sometimes
differ. Just like code-switching is a strategy
for bilinguals, using the spelling motha in-
stead of mother could mean something, say
irony, which one gender is more prone for. In
sum, while we do believe that our data should
lead sociolinguists to question whether AAVE
is male-dominated, our findings may be bi-
ased by WRITTEN BIAS.

4 POS tagging

We need automated syntactic analysis to study
morpho-syntactic dialectal variation. We
ran a state-of-the-art POS tagger trained on
newswire5 (STANFORD), as well as two state-
of-the-art POS taggers adapted to Twitter,
namely GATE6 and ARK7, on our data. We
had one professional annotator manually an-
notate 100 positive (AAVE) and 100 nega-
tive (non-AAVE) sentences using the coarse-
grained tags proposed by Petrov et al. (2011).
We map the tagger outputs to those tags and
report tagging accuracies. See Table 5 for re-
sults, with ∆(+,−) being the absolute dif-
ference in performance from non-AAVE to
AAVE.

5http://nlp.stanford.edu/software/
tagger.shtml

6https://gate.ac.uk/wiki/
twitter-postagger.html

7http://www.ark.cs.cmu.edu/
TweetNLP/

STANFORD GATE ARK

AAVE 61.4 79.1 77.5
non-AAVE 74.5 83.3 77.9

∆(+,-) 13.1 4.2 0.4

Table 5: POS tagging accuracies (%)

While GATE is certainly better than STAN-
FORD on our data, performance is generally
poor and prohibitive of many downstream ap-
plications and variational studies. We also
note that both the best and worst tagger per-
form significantly worse on AAVE tweets
than on non-AAVE tweets. What are the
sources of error in the AAVE data? One ex-
ample is the word brotha, which is tagged as
a both an adverb, a verb, and as X (foreign
words, mark-up, etc.). Contractions like finna
(”fixing to” meaning ”going to”) and gimme
(”give me”) are often tagged as particles, but
annotated as verbs or, as in the case of witchu
(”with you”), as a preposition. Another inter-
esting mistake is tagging adverbial like as a
verb.

5 Conclusion
Large-scale variational studies of social me-
dia can be used to question received wisdom
about dialects, lending support to some soci-
olinguistic research hypotheses and question-
ing others. However, we caution that our re-
sults were biased by several factors, includ-
ing the representativity of the social media
user bases. We also show how state-of-the-
art POS taggers are more likely to fail on
dialects in social media. The performance
drops may be considered prohibitive of study-
ing morph-syntactic patterns across dialects
and as a challenge to us as a community.
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Abstract 

The use of social network services and 
microblogs, such as Twitter, has created 
valuable text resources, which contain 
extremely noisy text. Twitter messages 
contain so much noise that it is difficult 
to use them in natural language pro-
cessing tasks. This paper presents a new 
approach using the maximum entropy 
model for normalizing Tweets. The pro-
posed approach addresses words that are 
unseen in the training phase. Although 
the maximum entropy needs a training 
dataset to adjust its parameters, the pro-
posed approach can normalize unseen da-
ta in the training set. The principle of 
maximum entropy emphasizes incorpo-
rating the available features into a uni-
form model. First, we generate a set of 
normalized candidates for each out-of-
vocabulary word based on lexical, pho-
nemic, and morphophonemic similarities. 
Then, three different probability scores 
are calculated for each candidate using 
positional indexing, a dependency-based 
frequency feature and a language model. 
After the optimal values of the model pa-
rameters are obtained in a training phase, 
the model can calculate the final proba-
bility value for candidates. The approach 
achieved an 83.12 BLEU score in testing 
using 2,000 Tweets. Our experimental re-
sults show that the maximum entropy ap-
proach significantly outperforms previ-

ous well-known normalization approach-
es. 

1 Introduction 

The advent of Web 2.0 and electronic communi-
cations has enabled the extensive creation and 
dissemination of user-generated content (UGC). 
The UGC collections provide invaluable data 
sources in order to mine and extract beneficial 
information and knowledge, while, at the same 
time, resulting in less standardized language 
(Clark & Araki, 2011; Daugherty, Eastin, & 
Bright, 2008). 

However, such content diverges from standard 
writing conventions. As shown by experts 
(Bieswanger, 2007; Thurlow & Brown, 2003), 
this divergence is due to the usage of a variety of 
coding strategies, including digit phonemes (you 
too → you2), phonetic transcriptions (you → u), 
vowel drops (dinner → dnnr), misspellings (con-
venience → convineince), and missing or incor-
rect punctuation marks  (If I were you, I'd proba-
bly go. → If I were you Id probably go). These 
alterations are due to three main parameters: 1) 
The small allowance of characters, 2) the con-
straints of the small keypads, and 3) using UGC 
in informal communications between friends and 
relatives. 

Whatever their causes, these alterations con-
siderably affect any standard natural language 
processing (NLP) system, due to the presence of 
many out of vocabulary (OOV) words, also 
known as non-standard words (NSWs) and un-
known words. Therefore, a text normalization 
process must be performed before any conven-
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tional NLP process is implemented (Sproat et al., 
2001). As defined by Liu, Weng, Wang, and Liu 
(2011), “Text message normalization aims to 
replace the non-standard tokens that carry signif-
icant meanings with the context-appropriate 
standard words.” 

This paper proposes a novel normalization ap-
proach for Twitter messages. Twitter is the most 
popular microblogging service in the world for 
news-casting, sharing thoughts, and staying in 
touch with friends. Since its initial founding in 
2006, it has gathered hundreds of millions of reg-
istered users. Tweets refer to messages sent on 
Twitter, which is restricted to 140 characters, 20 
characters less than the 160 allowed by SMS. 
Because of this limitation, users have to tran-
scribe Tweets with as much brevity as possible. 

The normalization bears a resemblance to 
spelling correction. The ultimate goal of which is 
the detection and correction of OOV words. The 
spelling correction methods only focus on mis-
spelled words while normalization systems con-
sider all forms of OOV words, such as represent-
ing sounds phonetically (e.g. by the way → btw) 
and shortened forms (e.g. university →  uni). 
Thus, normalization approaches should address a 
higher volume of OOV words compared to 
spelling correction approaches that lead to more 
complexity. 

To address this complexity, we use maximum 
entropy (Berger, Pietra, & Pietra, 1996; Och & 
Ney, 2002) for utilizing and incorporating more 
probability functions. Our approach is based on 
the hypothesis that integrating more probability 
functions will boost the performance of the 
method; however, the available information and 
number of probability functions for (OOV word, 
standard word) pairs are always limited. Maxi-
mum entropy (Maxent) provides a criterion for 
integrating probability distributions based on 
partial knowledge. The Maxent produces the 
lowest biased estimation on the given infor-
mation, that is, it is maximally neutral regarding 
missing information. When defining some un-
known events with a statistical model, we should 
always select the one that has maximum entropy. 
Although the Maxent has already been used in 
the normalization sphere (e.g. Pennell and Liu 
(2010) utilized Maxent to classify deletion-based 
abbreviations), this paper explains how to em-
ploy Maxent for selecting the best-normalized 
candidate. 

We have developed a method that does not re-
quire annotated training data and it normalizes 
unseen data. Most of the normalization ap-

proaches substantially depend on the manually 
annotated data, while the labeled data is costly 
and time consuming to prepare. We generate 
normalized candidates for each detected OOV 
based on lexical, phonemic, and morphophone-
mic variations. In addition, since our target da-
taset encompasses Twitter messages from Singa-
poreans and code-switching between Malay and 
English is frequent in the dataset, a Malay-
English dictionary is utilized to generate candi-
dates for Malay words. Finally, maximum entro-
py presents a backbone to combine several con-
ditional probabilities of normalized candidates. 

The remainder of this paper is organized as 
follows: Section 2 gives a survey of different 
approaches of normalizing noisy text. Section 3 
describes the preprocessing stage. Section 4 il-
lustrates the candidate generation stage. The pro-
posed candidate selection method is demonstrat-
ed in Section 5. Finally, Section 6 concludes this 
paper with a summary and future works. 

2 Related work 

The normalization approaches can be categorized 
into four groups. The first group is called statisti-
cal machine translation (SMT) paradigm that 
addresses the normalization problem as a statisti-
cal machine translation task. This paradigm was 
first introduced by Aw, Zhang, Xiao and Su 
(2006) to normalize SMS text that translates a 
source language (UGC) to a target language 
(standard language). This paradigm has since 
been re-examined, expanded and improved by 
other researchers (Lopez Ludeña, San Segundo, 
Montero, Barra Chicote, & Lorenzo, 2012). For 
example, Kaufmann and Kalita (2010) used the 
SMT-like approach to normalize English Tweets. 

To normalize SMS language, a supervised 
noisy channel model was introduced by 
Choudhury, Saraf, Jain, Sarkar, and Basu (2007) 
that used a hidden Markov model (HMM). This 
approach mimics the spell checking task that 
tries to handle the normalization problem via 
noisy channel models that study the UGC text as 
a noisy version of standard language. This para-
digm has been scrutinized and enhanced by other 
researchers (Liu et al., 2011; Xue, Yin, & 
Davison, 2011a). For example, Cook and 
Stevenson (2009) modified this approach to de-
sign an unsupervised method using probabilistic 
models for only three common abbreviation 
types: stylistic variation, prefix clipping, and 
subsequence abbreviation. In addition, Beaufort, 
Roekhaut, Cougnon, and Fairon (2010) merged 
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the SMT-like and the spell checking approaches 
to normalize French SMSs. 

The third group is the dictionary based nor-
malization approach, which is an easy-to-use and 
fast solution. This approach requires a dictionary 
whose entries are OOV and standard form pairs. 
It has been proven that using a colloquial dic-
tionary can outperform some state-of-the-art and 
complex approaches (Clark & Araki, 2011; 
Saloot, Idris, & Mahmud, 2014). However, its 
performance highly relies on the size of the dic-
tionary. Therefore, Han, Cook, and Baldwin 
(2012) introduced a method to automatically 
compile a large dictionary. To address the short-
comings of the dictionary approach, Oliva, 
Serrano, Del Castillo, and Igesias (2013) intro-
duced a special Spanish phonetic dictionary, in 
which each entry is formed by a coded consonant 
string, vowels strings, and their positions in the 
word, for normalizing Spanish SMS texts. 

The fourth group resembles automatic speech 
recognition (ASR) systems. This paradigm con-
sists of three steps: 1) converting the text to 
strings of phonemes via letter-to-phone rules, 2) 
converting the strings of phonemes to words via 
pronunciation dictionaries, and 3) choosing the 
most probable words. The ASR-like approach 
has been merged with other approaches to boost 
its performance. Kobus, Yvon, and Damnati 
(2008) combined ASR-like and SMT-like ap-
proaches to normalize French SMSs. Lin, 
Bilmes, Vergyri, and Kirchhoff (2007) used this 
approach to detect OOV words in switchboard 
data. 

Han and Baldwin (2011) illustrated a lexical 
method for normalizing Twitter messages. After 
detecting OOVs, ill-formed words, and generat-
ing a set of candidates, the best candidate is se-
lected using a variety of metrics: lexical edit dis-
tance, phonemic edit distance, longest common 
subsequence (LCS), affix substring, language 
model, and dependency-based frequency fea-
tures. The method achieved a 93.4 BLEU score 
in normalizing 549 English Tweets. This inspired 
us to design a normalization method that has 
three major stages: preprocessing, candidate gen-
eration, and candidate selection. 

3 Preprocessing 

First, we perform some initial text refining on the 
tweets. For example, consecutive whitespace 
characters are trimmed to single whitespace, and 
extra whitespaces are removed from the begin-
ning and end of Tweets. The initial stage of most 

NLP tasks is the tokenization. Existing tokeniza-
tion methods can perform accurately when the 
text is thoroughly clean, such as news feeds and 
book datasets. For example, the PTB-Tokenizer 
is a fast, deterministic, and efficient tokenization 
method. On the other hand, UGC text demands 
special methods due to irregularities in its 
whitespaces and punctuation. As suggested by 
Lopez Ludeña et al. (2012), we employ a 
straightforward word separating method, which 
performs tokenization based on whitespace char-
acters. 

One of the most important primary steps in 
unsupervised normalization systems is to detect 
OOV words. Hanspell and GNU Aspell are two 
well-known spell checker systems, however, 
Aspell performance is more accurate on the 
noisy text (Clark & Araki, 2011). The Aspell 
dictionary is utilized to distinguish between 
OOV and standard English words. In addition, 
we used seven regular expression rules, which 
were introduced by Saloot, Idris, and Aw (2014). 
This helps to detect proper nouns, email and 
URL addresses, Twitter special symbols, and 
digits. The potential errors in the OOV word de-
tection step would not affect the performance of 
the normalization system since the detected OOV 
word will be included in the candidate set. 

4 Candidate generation 

For each given OOV word, a set of normalized 
candidates is generated via four different mod-
ules. The first module executes a lexical candi-
date generation, which is extensively utilized in 
spell checker systems. It calculates candidates 
within a distance of 𝑇 edit operations of the de-
tected OOV words. Han and Baldwin (2011) 
stated that when 𝑇 is less than or equal to two, 
the level of recall is high enough. The edit dis-
tance is the number of applied edits in changing 
one word to another. An edit could be a deletion, 
transposition, alteration, or insertion. Studies in 
spelling correction found that one lexical edit 
distance covers 80% to 95% of errors, and two 
lexical edit distances cover 98% of them. There-
fore, here we use lexical variations with less than 
or equal to two edit distances. 

For a word of length 𝑛 characters, 54𝑛 + 25 
combinations will be generated with one lexical 
edit distance using four reshaping strategies: 1) 
Deletion strategy eliminates characters in all pos-
sible positions (e.g. aer →  er, ar, ae), which 
generates 𝑛 combinations. 2) Transposition strat-
egy switches two adjacent characters (e.g. aer → 
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ear, are), which generates 𝑛 − 1  combinations. 
3) Alteration strategy substitutes each character 
with all English alphabets (e.g. aer → ber, cer, 
der, eer, fer, ger, her, etc.), which generates 26𝑛 
combinations. 4) Insertion strategy presumes that 
a letter is dropped, thus adding all the alphabets 
between characters (e.g. aer → aaer, baer, caer, 
daer, eaer, faer, gaer, haer, etc.), which gener-
ates 26(𝑛 + 1)  combinations. Finally, from the 
achieved combinations, standard words will be 
selected using the Aspell dictionary. However, 
many OOV words in Twitter are quite far from 
their target in term of edit distance especially in 
terms of deletions and substitutions. Therefore, 
we generated more candidates via three other 
methods. 

Similar to the speech recognition systems, the 
second module generates candidates based on 
phoneme sounds. First, grapheme to phoneme 
conversion is performed using the Phonetisaurus 
tool (Novak, Yang, Minematsu, & Hirose, 2011). 
Phonetisaurus is an open-source phonetizer that 
is designed in the form of a weighted finite state 
transducer (WFST). After selecting the 10 best 
phoneme sequences, it looks up the phonemes in 
a pronouncing dictionary – Carnegie Mellon 
University (CMU) dictionary. The CMU is a ma-
chine-readable pronunciation dictionary that con-
tains over 134,000 words including OOV words 
such as proper nouns and acronyms. Due to the 
existence of a large number of OOV words in the 
CMU dictionary, we filter out the OOVs using 
the Aspell dictionary. 

The third module, as proposed by Saloot, 
Idris, and Aw (2014), is a combination of the two 
previous modules. First, it lexically generates 
candidates within one edit distance of the given 
OOV word, and then sends the candidates to the 
phoneme module. Since our testing dataset con-
sists of English Tweets posted by Singaporeans, 
code-switching between Malay and English is 
frequent in the text. Therefore, our last module 
translates OOV words to English (if any). We 
searched for the tokens in the Smith Malay-
English Dictionary (Smith & Padi, 2006), and 
inserted the meanings in the candidate set. 

Table 1 displays the average number of gener-
ated candidates for each module. The lowest rate 
is associated with the Malay dictionary module. 
Two lexical edit operations generate the highest 
number of candidates, which indicates the high-
est recall and lowest precision. The rank of com-
bination and phoneme modules are second and 
third, respectively. 

 

No. module Average number of 
candidates 

1. Two lexical edit 
distance 

70 

2. Combination 50 
3. Phoneme 20 
4. Malay dictionary 3 
Table 1: The average number of generated can-
didates for five letter words. 

5 Candidate selection 

The main contribution of this work is to present a 
novel candidate selection method. The candidate 
selection stage consists of two steps: 1) assigning 
a variety of probability scores to candidates, and 
2) integrating probability scores to select the best 
candidate. Our candidate selection method re-
quires a training dataset. The training and testing 
datasets are collected from an extensive English 
Twitter corpus posted by Singaporeans (Saloot, 
Idris, Aw, & Thorleuchter, 2014). Three linguis-
tic experts manually normalized 7,000 Tweets, 
while using inter-normalization agreement as an 
indicator. The experts were instructed to produce 
a text that is as close to standard English as pos-
sible, but leaves the Twitter special symbols (e.g. 
#topic and @username) as is. The dataset was 
split into two parts: 5,000 messages for the train-
ing phase, and 2,000 messages for the testing 
phase. 

5.1 Calculation of probability scores 

In order to select the most suitable candidates, 
we calculate their conditional probability scores 
using, positional indexing, a dependency-based 
frequency feature, and a language model (LM). 

Inspired by work on a normalization diction-
ary (Han et al., 2012), the first method to calcu-
late the probability score of the candidates is the 
positional indexing, which is widely used in in-
formation retrieval systems. The positional in-
dexing deals with positional locations of term 
occurrences inside documents. To compile a po-
sitional index dataset, a method illustrated in 
Manning and Raghavan (2009) is applied on a 
cleansed portion of our Twitter corpus. Table 2 
refers to an example of our achieved positional 
index dataset. Each Twitter message is consid-
ered as a single document, and, hence, a unique 
document ID is assigned to each document. The 
frequency value indicates the total number of 
appearances of a word in a document. The posi-
tion values express the locations of the word in 
the document. 
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Vocab Document ID. Frequency Position 
have 1 2 4,9 

4 3 5, 11, 18 
are 5 1 2 

12 2 2, 9 
14 2 2, 11 

Table 2: An example of the positional indexes 
obtained. 

 
A probability score is assigned to the normalized 
candidate according to a comparison between the 
position of the candidate and positional indexes 
in the dataset. We look for the candidate in the 
dataset where there is an occurrence of the can-
didate with its position index. After aggregating 
the number of occurrences, we normalize it be-
tween 0.0 and 1.0. 

The next probability calculation method is the 
dependency-based frequency, which is an aug-
mentation of the previous method. Inspired by a 
work on the lexical normalization of Tweets 
(Han & Baldwin, 2011), the noisy portion of our 
training dataset is parsed to obtain a dependency 
bank using our adapted version of the Stanford 
dependency parser (Marneffe, MacCartney, & 
Manning, 2006). Since our aim is not to perform 
actual dependency parsing, the dependency types 
are not extracted. A cleansed corpus is not uti-
lized because the percentage of IV words is high 
enough in the corpus, and in the probability-
measuring phase, OOV words are already detect-
ed. For example, from a sentence such as “I will 
go to London by next week,” (next, go +3) is ob-
tained, indicating that next appears two words 
after go. The aggregations of all the dependency 
scores, which are called confidence scores, are 
stored in the dependency bank. A five-gram de-
pendency bank is prepared without using a root 
node (head-word), that is, the process is iterated 
for all words in the sentence. 

A probability score between 0.0 and 1.0 is as-
signed to each candidate. A relative position 
score in the form of (candidate word, context 
word, position) is calculated for each candidate 
within a context window of two words on either 
side. The obtained relative position of a candi-
date is compared with the existing confidence 
score in the dependency bank. 

The third method of probability measurement 
calculates the probabilities based on a language 
model. The cleansed part of our training dataset, 
which consists of more than 55,000 words, is fed 
into SRILM (Stolcke, 2002) to compile a bidirec-
tional trigram LM by employing the Kneser-Ney 

smoothing algorithm. To calculate the probabil-
ity of each candidate, we used a beam search de-
coder through the Moses decoder (Koehn et al., 
2007). 

5.2 Selecting the most probable candidate 

Previous works on spelling correction and nor-
malization used the source channel model, which 
is also known as the noisy channel model and 
Naïve Bayes (Beaufort et al., 2010; Kernighan, 
Church, & Gale, 1990; Mays, Damerau, & 
Mercer, 1991; Toutanova & Moore, 2002; Xue, 
Yin, & Davison, 2011b). In the noisy channel 
approach, we observe the conversion of standard 
words to noisy words in a training phase in order 
to build a model. In the prediction phase, the de-
coder can select the most probable candidate 
based on the obtained model. The candidate se-
lection is accomplished based on only two pa-
rameters: the LM and error model, which is 
computed as follows: 
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Where 𝑇  is a target word, 𝑂  is an observed 
word, ( )OTfm ,  is a feature function, 𝑀  is a 
number of total feature functions, and λ is a La-
grange multiplier of each function. In our case, 
𝑀 equals three, in which 𝑓1 is the positional in-
dexing, 𝑓2  is the dependency-based frequency 
feature, and 𝑓3  is the LM probability. The 
Maxent requires λ being determined in the train-
ing phase before the actual usage. 

6 Experimental results and discussion 

We evaluate our approach in terms of BLEU 
score (Papineni, Roukos, Ward, & Zhu, 2002), 
since BLEU has become a well-known and ade-
quate evaluation metric in normalization studies 
(Contractor, Faruquie, & Subramaniam, 2010; 
Schlippe, Zhu, Gebhardt, & Schultz, 2010). The 
achieved baseline for the testing dataset is 42.01 
BLEU score, that is, the volume of similarity 
between the testing text and the reference text 
(manually normalized text) in term of BLEU 
score. 

In the training phase, we performed maximum 
likelihood training (Papineni, Roukos, & Ward, 
1998; Streit & Luginbuhl, 1994) for λ1, λ2 and λ3 
between 0.0 and 1.0. Figure 1 shows the toler-
ance of the performance while transition of λ1 
and λ2 (when λ3 is fixed to 1.0). Figure 1 depicts 
that the value of performance achieves the high-
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est when the λ1 and λ2 are close to 0.63 and 0.9, 
respectively. It is found that the best performance 
is achieved by 0.6, 0.9, and 1.0 values for λ1, λ2, 
and λ3, respectively. This means that LM has the 

highest impact on the candidate selection, and 
that dependency-based frequency has a higher 
impact on candidate selection than positional. 

 

 
Figure 1: The training of Maxent for lambda settings. 

 
We divided our dataset into six equal sets in or-
der to perform 6-fold cross validation. As shown 
in Table 3, the average of the obtained BLEU 
scores in six evaluation rounds was 83.12. The 
evaluation proves that our approach boosts the 
BLEU score by 41.11 (i.e. from 42.01 to 83.12). 
Since previous normalization studies used differ-
ent data sources in their experiments, a direct 
comparison between our accuracy values is not 
meaningful. Therefore, we re-examined one of 
the state-of-the-art approaches using our dataset. 

 
6-fold cross validation BLEU score 
Round 1 80.99 
Round 2 81.57 
Round 3 84.82 
Round 4 83.91 
Round 5 83.90 
Round 6 83.55 
Average 83.12 
Table 3: Normalization results for 6-fold cross 
validation test. 

 
The statistical machine translation (SMT) is a 
cutting-edge approach that handles the normali-
zation problem as a statistical machine transla-
tion task; it was first introduced by Aw, Zhang, 
Xiao, and Su (2006). The SMT-like approach 
translates a source language (UGC) to a target 
language (standard language). The experiment 
was performed using Moses (Koehn et al., 2007) 
for statistical translation, Giza++ (Och & Ney, 
2003) for word alignment, and SRILM (Stolcke, 
2002) for LM compiling. The SMT system is 
trained using our Twitter aligned dataset. The 
optimum results were achieved using a trigram 
LM and Backoff smoothing (Jelinek, 1990): 
78.81 BLEU score. 

Table 4 indicates some statistics about our 
testing dataset. The OOV words are those detect-
ed by our OOV detection module. The BLEU 
score of raw text is an important measure to ana-
lyze the difficulty of the task. It is important to 
note that the dataset used in our experiment con-
tains an above average number of OOV words 
compared to the datasets in other related papers. 
The dataset used by Kobus et al. (2008) consists 
of 32% OOV words, which is slightly lower than 
34% of our dataset. In addition, Aw et al. (2006) 
used a dataset with a baseline BLEU score of 
57.84, which indicates that the raw text is much 
more similar to the manual translated text (refer-
ence text) than the ones used in our experiment. 

 
Avg. length of words (character) 5 
Avg. number of words 11 
Total No. of tokens 19,759 
OOV words 34.02% 
BLEU score of raw text 42.01 

Table 4: Statistics of testing dataset. 
 

As shown in Table 4, the average length of 
words is five characters, which makes the nor-
malization task more difficult. For example, the 
candidate set for the OOV word “yoor” contains 
59 words, as shown in Table 5. The large number 
of candidates causes difficulty for candidate se-
lection because more options lead to more possi-
bilities and more computational cost. Further-
more, the generated candidates are lexically, syn-
tactically, and semantically very akin to each 
other. For example, for the OOV word “yoor”, 
“our” might be mistakenly selected instead of 
“your”. There are a smaller number of potential 
candidates for lengthy OOV words. As shown in 
Table 5, the number of candidates for the OOV 
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word “acessibility” is only 14, which is less than 
average, thereby making candidate selection eas-
ier. Moreover, there is a distinct difference be-
tween the meanings of candidates, which is an 
easy situation for our context-based probability 
functions to select the correct one. Although our 
approach obtained promising results on this da-
taset, it works better on long words. 

 
OOV word  Candidate set No. of 

candidates 
acessibility accessibility, accessi-

bly, basicity, bicy-
clists, bicyclist, itali-
cizes, abilities, bicy-
clist, sibilates, stabi-
lize, silicates, celiba-
cy, bicycles, and bi-
cycle. 

14 

yoor your, you, door, our, 
or, yoga, yak, yuck, 
yule, moon, tour, 
poor, …  

59 

Table 5: Example of candidate sets for OOV 
words. 

 
Our approach and SMT-like system attained 
BLEU scores of 83.12 and 78.81, respectively. 
This result proves that if we integrate three prob-
ability scores via Maxent, promising normaliza-
tion accuracy can be obtained. This result con-
firms that a normalization system constructed 
based on the Maxent principle can surpass state-
of-the-art systems. However, several drawbacks 
of our method were disclosed by inspecting the 
output of the system. The most noticeable one is 
that the approach fails when tackling very noisy 
text, that is, ample usage of OOV words in a text. 
We altered our dataset to have higher levels of 
noise using an approach introduced by Gadde, 
Goutam, Shah, Bayyarapu, and Subramaniam 
(2011), which artificially generates OOV words. 
If the percentage of OOV words crosses 45%, 
the accuracy of the method drastically drops to a 
BLEU score of less than 65. Another shortcom-
ing of our approach is that it is not able to ad-
dress combined words and abbreviations (e.g. 
alot → a lot, btw → by the way) because candi-
date generation module forms only single words 
for each OOV. 

7 Conclusion 

In this paper, we have presented a normalization 
approach based on the maximum entropy model. 

This approach provides a unified layout for in-
corporating different sources of features to nor-
malize Twitter messages. Our proposed approach 
consists of three stages: preprocessing, candidate 
generation, and candidate selection. The ap-
proach is robust to normalize unseen words since 
its candidate generation stage does not practice 
machine-learning methods. In the preprocessing 
stage, after trimming erroneous whitespaces and 
tokenization, OOV words are detected via the 
GNU Aspell dictionary. Normalized candidates 
are generated for each OOV word in the second 
stage regarding to lexical, phonemic, and mor-
phophonemic similarities. Since code-switching 
between Malay and English is very common in 
our dataset, the potential English translation of 
OOV words is also added to the candidate set. 

In the third stage, three conditional probability 
scores are assigned to each candidate: 1) posi-
tional indexing considers the probability of posi-
tional locations of term occurrences inside doc-
uments, 2) dependency-based frequency 
measures the probability of prevalence of the 
dependency relation of words to each other, and 
3) the language model indicates the probability 
of distribution of the sequence of words. Finally, 
the best candidate is selected. Maximum entropy 
integrates the obtained probability scores to es-
timate the ultimate probability of each candidate. 

The approach is examined using 7,000 parallel 
Twitter messages, which is split into 5,000 mes-
sages for training and 2,000 for testing. The re-
sult is promising whereby we achieve a BLEU 
score of 83.12 against the baseline BLEU, which 
scores 42.01. We have compared our approach 
with a SMT-like approach using the same da-
taset. The accuracy of the SMT-like was lower 
than our approach (i.e. 78.81 BLEU score for the 
SMT-like). For future work, we will examine the 
Maxent normalization approach with more prob-
ability functions, such as distributional clustering 
and semantic features. 
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Abstract

It is widely accepted that translating user-
generated (UG) text is a difficult task
for modern statistical machine translation
(SMT) systems. The translation quality
metrics typically used in the SMT litera-
ture reflect the overall quality of the sys-
tem output but provide little insight into
what exactly makes UG text translation
difficult. This paper analyzes in detail
the behavior of a state-of-the-art SMT sys-
tem on five different types of informal
text. The results help to demystify the
poor SMT performance experienced by re-
searchers who use SMT as an intermedi-
ate step of their UG-NLP pipeline, and to
identify translation modeling aspects that
the SMT community should more urgently
address to improve translation of UG data.

1 Introduction

User-generated (UG) text such as found on social
media and web forums poses different challenges
to statistical machine translation (SMT) than for-
mal text. This is reflected by poor translation qual-
ity for informal genres (see for example Figure 1),
which is typically measured with automatic qual-
ity metrics such as BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), or TER
(Snover et al., 2006). These scores alone, however,
only reflect the overall translation quality, and do
not provide any insight in what exactly makes
translating UG text hard. While such knowledge
is crucial for improving SMT of UG text, surpris-
ingly little work on error analysis for SMT of user-
generated text has been reported.

Moreover, the notion of user-generated content

你 路上 慢 点
take your time
you are on the road to slow points

In (Chinese):
Reference:
MT output:

 
she said so the kids do not feel upset
she said because of the sons

In (Arabic):
Reference:
MT output:

شلعزتم لايعلا ناشع تلاق

Figure 1: SMS examples with poor SMT output.

only partially specifies the exact nature of docu-
ments. What all documents that can be classified
as being UG have in common is the fact that they
have been written by a lay-person, as opposed to
a journalist or professional author, and that they
have not undergone any editorial control. UG
text also tends to express the writer’s opinion to
a larger degree than news articles which generally
strive for balance and nuance. Within UG text, we
can distinguish several subclasses, including (i)
message and dialog-oriented content such as short
message service (SMS) texts, Internet chat mes-
sages, and transcripts of conversational speech, (ii)
commentaries to news articles, often expressing an
opinion about the corresponding articles and relat-
ing the content to the reader’s situation, and (iii)
weblogs, which can bear some resemblance to ed-
itorial pieces published by news organizations.

While UG text processing tasks are becoming
more and more common, the research in SMT is
still mostly driven by formal translation tasks1,
and existing error analysis approaches are only
partially useful for UG. In this work, we conduct a
series of analyses on five different UG benchmark
sets for two language pairs, Arabic-English and
Chinese-English, with the goals of (i) explaining
the typically poor SMT performance observed for
UG texts, and (ii) identifying translation modeling

1One of the very few exceptions is NIST OpenMT 2015,
which focusses entirely on translating informal genres.
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aspects that should be addressed to improve trans-
lation of UG data. We not only contrast our obser-
vations with two news data sets, but we also show
that SMT quality can vary significantly across dif-
ferent types of UG content, and that different UG
types exhibit dissimilar error distributions. Specif-
ically, we summarize our main findings as follows:

• The SMS and chat benchmarks are the most
distant from formal text at all the analyzed
levels. Errors in other types of UG are often
more similar to news errors than to those in
SMS and chat messages.

• SMT model coverage dramatically deterio-
rates for phrases of length 3 or longer in most
of the UG benchmarks.

• Errors due to out-of-vocabulary (OOV)
words in the source text substantially in-
crease in number for UG data sets, but are
considerably less common than errors due to
source-target OOVs, i.e., phrase pairs that are
not covered by the SMT models.

2 Related Work

Identifying and analyzing different types of SMT
errors is an essential step towards the development
of translation approaches that can achieve more ro-
bust performance, and has been the focus of earlier
work. Popović and Ney (2011), for example, com-
bine word error rates with morpho-syntactic infor-
mation to classify errors into five categories; in-
flectional errors, reordering errors, lexical errors,
word deletions, and word insertions. Irvine et al.
(2013) use word alignment links to quantify in-
correct lexical choices, and determine how such
errors change when shifting domains. Other work

Dev set Test set

Genre Lines Tokens Lines Tokens Refs

SMS 2.7K 23.3K 7.6K 44.9K 1
Chat 3.5K 22.5K 7.1K 44.5K 1
CTS 2.4K 23.1K 3.6K 40.6K 1
Comments 1.1K 25.8K 1.7K 45.5K 1
Weblogs 0.8K 14.6K 1.3K 39.9K 4

News 1 1.0K 26.9K 1.6K 46.3K 1
News 2 1.0K 34.4K 1.4K 46.6K 4

Table 1: Statistics of the Arabic-English UG (top)
and contrastive news (bottom) evaluation sets. To-
kens are counted on the Arabic side.

on SMT error analysis studies the effect of domain
adaptation on SMT, for example by examining in
which stage of the SMT pipeline the available in-
domain data can best be used (Duh et al., 2010),
or whether it is more promising to improve either
phrase extraction or scoring (Bisazza et al., 2011;
Haddow and Koehn, 2012).

The vast majority of SMT research, includ-
ing the above described work on error analysis,
is evaluated on data containing formal language.
Work on SMT of informal text mostly targets re-
duction of OOV words in the source text, for ex-
ample by correcting spelling errors (Bertoldi et al.,
2010), normalizing noisy text to more formal text
(Banerjee et al., 2012; Ling et al., 2013a), or en-
hancing the training data with bilingual segments
extracted from Twitter (Jehl et al., 2012; Ling et
al., 2013b). Other work improves SMT of UG
text by combining statistical and rule-based MT
(Carrera et al., 2009), or models trained on for-
mal and informal data (Banerjee et al., 2011). Fi-
nally, Roturier and Bensadoun (2011) conduct a
comparative study to determine the ability of sev-
eral SMT systems to translate UG text, but they do
not examine what errors the systems make. To our
knowledge, our work is the first that looks inside
an SMT system to systematically inspect its be-
havior across a diverse spectrum of UG text types.

3 Experimental setup

We perform our error analysis on two language
pairs, Arabic-English and Chinese-English.

3.1 Evaluation sets
For both language pairs we use evaluation sets
for five types of user-generated text: SMS mes-
sages, chat messages, manual transcripts of phone
conversations (called Conversational Telephone

Dev set Test set

Genre Lines Tokens Lines Tokens Refs

SMS 1.8K 15.3K 4.2K 36.3K 1
Chat 4.0K 25.6K 6.0K 45.7K 1
CTS 2.2K 25.1K 2.9K 44.8K 1
Comments 1.0K 26.5K 1.5K 41.0K 1
Weblogs 0.5K 8.8K 0.7K 14.4K 4

News 1 0.8K 24.5K 1.5K 41.9K 1
News 2 1.2K 29.4K 0.7K 17.7K 4

Table 2: Statistics of the Chinese-English UG
(top) and contrastive news (bottom) evaluation
sets. Tokens are counted on the Chinese side.

29



News 1 News 2 Weblogs Comments CTS Chat SMS
0

5

10

15

20

25

30

35

B
LE

U
 (

1
 r

e
fe

re
n
ce

)

Translation performance of Arabic-English benchmarks

Online
In-house

News 1 News 2 Weblogs Comments CTS Chat SMS
0

5

10

15

20

25

30

35

B
LE

U
 (

1
 r

e
fe

re
n
ce

)

Translation performance of Chinese-English benchmarks

Online
In-house

Figure 2: Translation performance of baseline experiments for various Arabic-English (left) and Chinese-
English (right) data sets, measured in case-insensitive BLEU for one reference translation.

Speech (CTS)), weblogs, and readers’ comments
to news articles. The first four data sets orig-
inate from BOLT and NIST OpenMT, and are
distributed by the Linguistic Data Consortium
(LDC), while the last data set is crawled from the
web. All UG experiments are contrasted with two
news data sets; the news portions of NIST evalua-
tion sets, and web-crawled news articles.

For Arabic-English, the web-crawled news arti-
cles and comments originate from the Gen&Topic
data set (van der Wees et al., 2015), in which both
genres cover the same distributions over various
topics. Consequently, any observed differences
between the news and UG portions of this data set
can be entirely attributed to genre differences and
not to potential topical variation.

We have created similar-sized benchmark sets
as much as possible, however sometimes limited
by availability. Tables 1 and 2 show the data
specifications of the Arabic-English and Chinese-
English evaluation sets, respectively.2

3.2 SMT systems
All experiments presented in this paper are per-
formed with our in-house state-of-the-art system
based on phrase-based SMT and similar to Moses
(Koehn et al., 2007). Our Arabic-English system
is built from 1.75M lines (52.9M source tokens)
of parallel text, and our Chinese-English system
from 3.13M lines (55.4M source tokens) of paral-
lel text. We tokenize all Arabic data using MADA
(Habash and Rambow, 2005), ATB scheme, and
we segment the Chinese data following Tseng et
al. (2005). Both systems use an adapted 5-gram
English language model that linearly interpolates
different English Gigaword subcorpora with the

2Note that two evaluation sets contain four reference
translations instead of one. To allow for fair comparison, we
average the scores of the four references in all our analyses.

English side of our bitexts, containing both news
and UG data.

While parallel data is scarce in general, the sit-
uation is much worse for UG data, where there
are hardly any sizable parallel corpora for any
language pair. As a consequence, the training
data of both systems comprises 70-75% news data,
mostly LDC-distributed, and 25-30% data in var-
ious other genres (weblogs, comments, editori-
als, speech transcripts, and small amounts of chat
data), mostly harvested from the web. Per lan-
guage pair, all experiments use the same SMT
models, but we tune parameters separately for
each benchmark set using pairwise ranking opti-
mization (PRO) (Hopkins and May, 2011).

To put the results of our system into perspective,
we also run a first series of experiments on a well-
known and established online SMT system.

4 Error analysis and results

We perform four series of experiments, each with
the goal of answering different questions about
SMT for UG text:

1. How large is the gap in translation quality be-
tween news and different types of UG data?
(§4.1). To answer this question, we measure
the BLEU score of two state-of-the-art SMT
system outputs on all our data sets.

2. What kind of translation choices does the
SMT system make for UG data? To answer
this question, we measure phrase lengths
used during the translation (or decoding) pro-
cess (§4.2).

3. What translation choices could have been
made by the SMT system? To answer this
question, we compute mono- and bilingual
coverage of the SMT models (§4.3).
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Figure 3: Average source-side and target-side phrase lengths used during decoding.

4. Why did the SMT system make the transla-
tion choices that it made? What errors are ob-
served for each benchmark, and how often?
To answer these questions, we reimplement
the word-alignment driven error analysis ap-
proach by Irvine et al. (2013) and perform a
qualitative analysis on the results (§4.4).

4.1 Overall translation quality
A first important indication of SMT quality across
different genres can be given by translation quality
measures that are based on the similarity between
the SMT output and a reference human translation.
To estimate the gap in translation quality between
news and UG text, but also among various types
of UG text, we measure the BLEU scores (1 refer-
ence) of our in-house SMT system and that of the
online system on all our evaluation sets.

The results in Figure 2 (left) show that trans-
lation quality differs greatly between the Arabic-
English data sets. In particular, the News 1 data
set (from NIST) yields considerably higher BLEU
scores than all other evaluation sets, including the
News 2 (web-crawled) set, which represents the
same genre but is visibly more difficult to trans-
late. On the other end of the spectrum, we see
that translation quality of the SMS and chat data
sets is very poor. Note that our in-house system is
optimized per genre, whereas the online system is
optimized for general language and speed.

For Chinese-English (Figure 2, right) the differ-
ences in BLEU are less pronounced, both across
the different data sets and between the two SMT
systems. Still, translation quality is worse for the
UG data sets than for news, indicating that also
for this language pair translating UG text is more
challenging than translating news.

As all subsequent analyses require system-
internal information, we carry out the experiments
with our in-house system only.

4.2 Translation phrase length analysis

Most state-of-the-art SMT systems, including our
in-house system, are phrase-based, with transla-
tions being generated phrase by phrase rather than
word by word (Koehn et al., 2003). An abundant
use of small phrases during decoding indicates that
the system is not taking advantage of the model’s
ability to memorize large contextual and possi-
bly non-compositional translation blocks. It is
therefore interesting to measure the average phrase
length (i.e., number of tokens) used by the system,
for the source as well as the target language (Fig-
ure 3). For Arabic-English we see that source-side
phrases are noticeably longer for both news bench-
marks than for the UG data sets. The average
target-side phrase length, on the other hand, shows
less correlation with the genres of the data sets.
Similar trends are observed for Chinese-English,
however differences are less extreme.

In general, SMT systems incur higher model
costs when utilizing many small phrases rather
than few large phrases. If, in spite of that, a sys-
tem selects many short phrases, which is the case
for most of our UG benchmarks, this can be due
to (i) unreliable translation probabilities or (ii) to
the mere lack of correct translation options in the
models. We investigate both issues in the follow-
ing analyses.

4.3 Model coverage analysis

Next, we examine the translation model coverage
for each data set, which tells us what phrases the
system could have used for decoding. For each of
our test sets, we create automatic word alignments
using GIZA++ (Och and Ney, 2003), and extract
from these the set of all reference phrase pairs us-
ing Moses’ phrase extraction algorithm (Koehn et
al., 2007). By comparing this set of phrase pairs
to the available phrases in the SMT models, which
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Source phrase recall Target phrase recall Phrase pair recall

Genre BLEU LM PP 1 2 3 4 1 2 3 4 1 2 3 4

News 1 33.8 65 99.7 88.9 56.3 26.1 99.7 91.1 61.5 29.6 84.9 54.4 23.6 8.1
News 2 21.5 86 99.6 88.1 53.7 21.8 99.5 88.1 53.4 23.6 77.4 46.9 18.8 5.9

Weblogs 22.3 152 99.2 80.5 40.6 13.5 99.5 86.3 48.9 17.8 78.4 41.5 12.9 2.9
Comments 17.2 117 97.7 80.2 43.0 15.3 99.7 89.8 55.3 21.9 59.1 33.2 11.1 2.8
CTS 16.0 103 97.4 66.3 25.1 6.4 99.8 90.8 54.3 21.5 66.7 25.7 6.1 1.0
Chat 10.0 179 94.1 56.0 19.4 4.7 98.6 86.1 47.3 16.7 60.8 21.3 4.5 0.8
SMS 8.8 196 93.7 57.8 17.5 3.3 99.1 86.3 47.0 14.6 62.0 21.1 3.7 0.4

Table 3: Target language model perplexity and translation model coverage of Arabic-English bench-
marks. Phrase pair recall values are broken down by source phrase length. Intensities of the cell colors
indicate relative recall values with respect to the best scoring benchmark (measured in BLEU).

Source phrase recall Target phrase recall Phrase pair recall

Genre BLEU LM PP 1 2 3 4 1 2 3 4 1 2 3 4

News 1 17.2 121 99.0 80.2 40.8 16.2 99.5 84.9 48.0 19.5 69.1 34.8 10.8 3.3
News 2 15.4 118 98.8 84.2 44.3 16.0 99.4 83.8 44.2 14.7 63.1 32.4 10.7 3.3

Weblogs 11.8 153 98.6 76.6 33.8 11.1 99.3 81.6 40.8 12.4 59.0 27.0 7.3 1.7
Comments 11.1 195 98.7 78.3 35.2 8.7 97.9 77.9 35.1 10.2 53.5 21.6 5.0 1.0
CTS 12.5 135 98.7 80.7 40.1 10.5 99.8 86.3 47.4 16.4 70.0 33.5 9.3 1.7
Chat 9.9 221 98.0 71.9 27.5 6.1 99.4 82.6 43.2 13.0 62.3 24.8 5.4 0.6
SMS 10.7 234 97.3 68.5 24.9 4.8 99.0 80.4 40.5 12.5 62.6 24.6 5.1 0.5

Table 4: Target language model perplexity and translation model coverage of Chinese-English bench-
marks. See Table 3 for explanation on colors and categories.

have been extracted using the same procedure, we
can compute the following statistics:

1. Source phrase recall, defined as the fraction
of reference phrase pairs whose source side
is found in the SMT models.

2. Target phrase recall, defined as the fraction
of reference phrase pairs whose target side is
found in the SMT models.

3. Phrase pair recall, defined as the fraction of
reference phrase pairs whose source and tar-
get side are jointly found in the SMT models.

Low recall values indicate that the models lack
phrases or phrase pairs that match the test data,
which can be addressed by adding additional rele-
vant training data or by generating new phrases. In
addition, we measure language model perplexity
as an indication of how predictable each bench-
mark is for the language model. Note that high
perplexity corresponds to lower coverage.

The model coverage results for Arabic-English
and Chinese-English are shown in Tables 3 and 4,
respectively. All recall scores are broken down by

phrase length, up to phrases of four tokens.3 We
use cell color intensity to represent relative recall
values with respect to the best scoring benchmark
according to BLEU, i.e., News 1. The results show
that source phrase recall is substantially lower for
the UG benchmarks than for news, particularly for
longer phrases. Regarding target phrase recall,
differences between various data sets and genres
are much smaller. This suggests that many of the
reference phrases could potentially be generated
by the system, even for the UG data. However,
to be able to output the available target phrases,
the system needs a match with the input source
phrases, which is exactly what is being measured
with phrase pair recall. Here, we see that for the
majority of single-word source phrases, the ex-
pected target phrase is accessible by the system.
For longer phrases, though, there is again a drastic
decline in recall, with almost no phrases of length
4 or longer having the expected target covered by
the models. Similar to source phrase recall, this
decline is notably bigger for UG than for news.

3The source-target phrase pair recall (last four columns) is
split by source phrase length rather than target phrase length
since source phrases are the actual input to the SMT system.
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Looking at the differences between the various
types of UG data, we see that the SMS and chat
benchmarks are most severely affected by over-
all poor model coverage. As for weblogs, the
target phrase recall is similar to SMS and chat,
whereas both source phrase and phrase pair recall
are much higher. For CTS and web comments,
there are notable differences between model cov-
erage for the two language pairs, despite similar
BLEU scores. While comments have better cover-
age in the Arabic-English models, CTS has higher
recall values for Chinese-English.

Finally, we see that language model perplexity
is on average lower for Arabic-English than for
the Chinese-English benchmarks. This is some-
what surprising given that perplexity is measured
on the English side, but it can partially explain the
low BLEU scores on, for example, the Chinese-
English News 1 benchmark. All news benchmarks
have relatively low perplexities, which is expected
since the language model covers more news than
UG data. Of the UG benchmarks, CTS has a
remarkably low perplexity value, suggesting that
for this genre the language model can potentially
compensate for low translation model coverage.

4.4 WADE: Word Alignment Driven
Evaluation

Next, to gain a more fine-grained insight in why
our SMT system makes its translation choices, we
reimplement an evaluation approach proposed by
Irvine et al. (2013), which analyzes SMT error
types at the word alignment level. The analysis
exploits automatic word alignments between (i) a
given source sentence and its reference translation,
and (ii) the same source sentence and its automatic
translation. Each aligned source-reference word
pair is examined for whether the alignment link is
matched by the decoder. Formally, fi is a foreign

ي  يتبيبح

0.2

ل  دمحلا0.4

ل  دمحلا

ل  دمحلا

praise be to

praise for

thank

my dear

my love

0.3

source phrase target phrase probability

Source phrase 
not in phrase table:

SEEN error

Target phrase 
not in phrase table:

SENSE error

Source and target 
phrases both in table,
but other translation 

preferred:
SCORE error

ي  يتبيبح

Figure 4: Graphical overview of SEEN, SENSE and
SCORE errors in a toy phrase table.

word, ej is a reference word aligned to fi, ai,j is
the alignment link between fi and ej , and Hi is
the set of output words that are aligned to fi by
the decoder. If ej ∈ Hi, the alignment link ai,j is
marked as correct. Otherwise, ai,j is categorized
with one of the following error types:

1. A SEEN error indicates an unseen source
word, i.e., out-of-vocabulary (OOV) item.
This error is assigned to ai,j if fi does not
appear in the phrase table used for transla-
tion. This type of error inversely correlates
with length-1 source phrase recall (§4.3).

2. A SENSE error indicates an unseen target
word. This error is assigned to ai,j if fi

does appear in the phrase table but never with
translation candidate ej .

3. A SCORE error indicates suboptimal scoring
of translation options. This error is assigned
to ai,j if fi exists in the phrase table with
translation candidate ej , but another transla-
tion candidate is preferred by the decoder.

Figure 4 shows a graphical representation of these
error types and their ‘location’ in the phrase table.
In addition to the listed error types, Irvine et al.
define SEARCH errors as errors due to pruning in
beam search, and refer to the complete set of errors
as the S4 taxonomy. For this analysis, however,
SEARCH errors are indistinguishable from SCORE

errors, and are therefore never assigned.
A final category that can be considered are free-

bies: OOVs that are copied over verbatim to the
output sentence and accidentally match the ref-
erence translation (e.g., urls, proper nouns, etc.).
For the language pairs that we study, they are very
rare; at most 0.35% for Arabic-English (in CTS)
and 0.63% for Chinese-English (in SMS). Manual
inspection reveals that nearly all freebies are En-
glish words in the foreign source text. Since they
are so rare, we omit freebies from our results.

As WADE errors are assigned at the fine-
grained level of individual words, this analysis al-
lows for (i) sentence-level visualization of errors,
and (ii) collecting aggregate statistics of each error
type for an entire evaluation set. By assembling
the latter for various benchmarks, we can quantify
global differences between genres or data sets. At
the same time, by examining (i) we can gain in-
sight in the nature of the different ‘errors’, which
might be real mistakes, or, for instance, different
lexical choices.
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Figure 5: Aggregate error statistics for Arabic-English (left) and Chinese-English (right) benchmark sets.

Quantitative results. The aggregate error statis-
tics for each data set are shown in Figure 5. To put
our results into perspective, we recall the findings
of Irvine et al. (2013). They find that for formal
domains using a French-English system, 50–60%
of the alignment links are correct, and SCORE er-
rors are more common than SENSE errors, which
in turn are more common than SEEN errors. While
we observe a similar distribution for our Arabic-
English news benchmarks, these numbers do not
generalize to the Arabic-English UG benchmarks
nor to any of the Chinese-English data sets.

First, the portion of SEEN errors increases dra-
matically for the Arabic-English UG translation
tasks. For Chinese-English this trend is less pro-
nounced yet also clearly observable. Next, SENSE

errors also increase substantially for most of the
UG data, making up the majority of the errors for
Chinese-English SMS and chat. This indicates
that a promising strategy for adapting SMT sys-
tems to translating UG data involves generating
new target-side translation candidates that match
the source phrases in the input sentences. Finally,
we evaluate the fraction of SCORE errors. While
this is the most commonly observed error type in
most of the data sets, there seems to be very lit-
tle correspondance with the genre or BLEU scores
of the benchmarks. This is an interesting finding
since most work in system adaptation for SMT fo-
cuses on better scoring of existing translation can-
didates (Matsoukas et al., 2009; Foster et al., 2010;
Axelrod et al., 2011; Chen et al., 2013, among oth-
ers). However, for UG translation tasks this does
not appear as the most profitable approach.

Qualitative results. The generated sentence-
level error annotations allow us to examine the var-
ious error types in detail. The first phenomenon
that we repeatedly observe in the UG data are
SEEN errors due to misspellings or, in the case of

Arabic, dialectal forms. Two such examples are
shown in Figures 6A and 6B: In the first, the SMT
system does not recognize the dialectal form of
verb negation ‘mtzEl$’, which is a morphologi-
cally complex word containing both a prefix and a
suffix. In the second, the input word ‘AlmwbAyl’
(‘mobile’) is wrongly spelled ‘AlmwyAyl’. It is
interesting to note that ‘b’ and ‘y’ are very similar
in the Arabic script. This type of errors is partic-
ularly frequent in chat and SMS, which can partly
explain the different distribution of errors across
the Arabic-English data sets (Figure 5).

Also frequently observed in the UG data are
SMT lexical choices that are more formal than the
reference translations. This is not surprising given
the large amount of formal data in the SMT mod-
els, but it does illustrate the need for adaptation
to UG data. Often, the optimal lexical choice is
simply absent from the SMT models, resulting in
SENSE errors. This can be observed in Figure 6A,
where ‘sons’ is output instead ‘kids’, and in Fig-
ure 6C, where ‘i understand’ is output instead of
the colloquial ‘i got it’. In other situations, the
annotated SCORE errors indicate that the correct
choice was available to the SMT system without
being selected for translation. For example in Fig-
ure 6D, the output ‘my parents’ is preferred to the
more colloquial ‘mom and dad’ in the reference.

Another phenomenon, particularly common for
Chinese-English UG translations, is that idioms
are translated in small chunks, thereby losing their
meaning as a phrase. In Figure 6D, the char-
acters ‘说’, ‘⼀’, and ‘声’ mean ‘to say’, ‘one’,
and ‘sound’, respectively. The phrase ‘说⼀声’ as
a whole means ‘talk a bit about something’ but
is not covered by the SMT models. Similarly,
‘你路上慢点’ in Figure 6E literally means ‘you on
the road slow a bit’, which, if covered by the mod-
els, could have been translated into ‘be careful on
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Input : qAlt  E$An AlEyAl m tzEl$ 

Ref: she said so the kids do not feel upset

Output : she said because of the sons

A) Arabic-English SMS example

Input : Ah fhm t  Ah 

Ref: yeah , i got it , yeah

Output : , i understand ,

C) Arabic-English CTS example

Input :

Ref: i 'm online . take your t ime

Output : on the internet , and you are on the road to slow points

上网 路上 点慢了              ,               你

E) Chinese-English SMS example

Input : Ely Alm wyAyl 

Ref: for the m obile phone

Output : on the

Correct

Seen error

Sense error

Score error

B) Arabic-English chat example

Input :

Output : you talk to my parents said a voices

Ref: can you tell mom and dad ?

爸妈 说 ⼀ 声你                    跟

D) Chinese-English SMS example

Figure 6: Sentence-level error annotations from
various UG benchmarks illustrating common is-
sues in SMT of UG data. We use Buckwalter
transliteration to represent the Arabic source text.

your way’ or ‘take your time’. These examples il-
lustrate that the low phrase pair recall for longer
phrases severely complicates SMT of UG data.

A final recurring issue in SMS and chat mes-
sages is the omission of first person pronouns, see
for example Figure 6E. The Chinese source phrase
‘上网了’ literally means ‘get online’ (+ auxiliary
word marking past tense). A native speaker un-
derstands that this concerns the sender, which is
reflected by a first person pronoun in the reference.
The SMT system, on the other hand, cannot infer
the subject of this phrase and instead generates a
translation without pronouns.

Other, less common, types of errors occurring in
the UG data are due to inconsistent segmentation
or tokenization of input text, which mostly affects
rare words, emoticons, and repeating punctation.
Finally, SEEN errors for named entities are overall
rare but occur in both news and UG benchmarks.

5 Conclusions and future directions

Translating user-generated (UG) text is a diffi-
cult task for SMT. To explain the poor transla-
tion quality observed for UG data, we have per-
formed a detailed error analysis on two language
pairs (Arabic-English and Chinese-English) and
five different types of UG data (SMS, chat, CTS,
weblogs, and comments). Our quantitative re-
sults show among others that (i) UG data is trans-
lated with shorter source phrases than news, (ii)
UG translation model coverage deteriorates sub-
stantially for longer phrases, and (iii) phrase-pair

OOVs pose a bigger challenge to UG translation
tasks than source OOVs. In our qualitative anal-
ysis we found that common issues in UG data in-
clude (i) OOVs due to misspellings or Arabic di-
alectal forms, (ii) lexical choices that do not reflect
colloquial formulations, (iii) phrasal idioms being
translated word by word, and (iv) omitted first per-
son pronouns in SMS and chat.

Finally, different types of UG exhibit dissimi-
lar error distributions, demanding diverse strate-
gies to improve SMT quality. For example, SMS
and chat data might benefit from text normaliza-
tion (Bertoldi et al., 2010; Yvon, 2010; Ling et
al., 2013a) or otherwise resolving source OOVs,
which also has been the main focus of previ-
ous work on SMT for UG. On the other hand,
while research in domain adaptation for SMT of-
ten aims at better scoring of existing translation
candidates, we have shown that for many UG tasks
the most promising direction involves increasing
phrase pair recall of the SMT models (i.e., re-
ducing phrase pair OOVs), for example by para-
phrasing (Callison-Burch et al., 2006) or transla-
tion synthesis (Irvine and Callison-Burch, 2014).
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Abstract 

User-generated contents (UGC) represent an 

important source of information for governments, 

companies, political candidates and consumers. 

However, most of the Natural Language 

Processing tools and techniques are developed 

from and for texts of standard language, and UGC 

is a type of text especially full of creativity and 

idiosyncrasies, which represents noise for NLP 

purposes. This paper presents UGCNormal, a 

lexicon-based tool for UGC normalization. It 

encompasses a tokenizer, a sentence segmentation 

tool, a phonetic-based speller and some lexicons, 

which were originated from a deep analysis of a 

corpus of product reviews in Brazilian 

Portuguese. The normalizer was evaluated in two 

different data sets and carried out from 31% to 

89% of the appropriate corrections, depending on 

the type of text noise. The use of UGCNormal was 

also validated in a task of POS tagging, which 

improved from 91.35% to 93.15% in accuracy and 

in a task of opinion classification, which improved 

the average of F1-score measures (F1-score 

positive and F1-score negative) from 0.736 to 

0.758.  

 

1. Introduction 

The increasing volume of text posted by users on 

the web is regarded as an extremely useful 

opportunity to reveal public opinion on many 

issues. For a variety of reasons, governments, 

companies, political candidates, and consumers 

want to explore such web content. This type of 

text is referred to in the literature as UGC (user-

generated content) or EWoM (electronic word-of-

mouth). However, due to the large amount of data 

available, it is impossible for humans to analyze 

all available UGC for most issues. As a result, 

processing and analyzing UGC became a task of 

NLP (Natural Language Processing). The 

problem is that, until now, almost all NLP tools 

and techniques were developed from, and for, 

standard language text, but UGC displays a range 

of creative and idiosyncratic differences, which 

represent noise for NLP purposes. In order to 

reuse the NLP tools to process UGC, the 

normalization or standardization of this genre of 

text became an essential preprocessing step, 

aiming to make UGC as close as possible to 

standard language. 

The level of noise in UGC varies depending on 

the social media in which it is posted. Short 

messages (SMS and microblogs, such as Twitter) 

tend to be much noisier than texts posted in blogs 

and sites of reviews, as users need to be creative 

to deal with character limitations (140 characters 

for Twitter and 160 for SMS). The challenge for 

NLP is to determine the aspects in which UGC 

deviates from standard language and develop 

strategies to deal with the normalization of these 

aspects.  

Many of UGC’s deviations from standard 

language are motivated by wordplay (U=you, 

4=for), by the need to save space (short messages 

have a limited length), by the influence of 

pronunciation, or even by a low level of literacy. 

Regardless of the causes of UGC deviations from 

standard language, if they are recurrent, they need 

to be addressed by normalization processes. 

Some characteristics of UGC are language-

independent, as the long vowels used to express 

emphasis (Gooooooooooooood) and the 

unconventional use of lower and upper cases 

(proper names in lowercase and common words in 

uppercase). Other characteristics are language-

dependent, such as the apostrophe suppression in 

English (wont=won’t) and the omission of 
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diacritics and cedilla under “c” in Portuguese 

(eleicao=eleição). 

UGC differs from the standard language mainly 

in the lexical level. For this reason, the 

normalization problem is approached by 

strategies of word correction (the lexical items of 

the UGC are treated as “errors”) and strategies for 

machine translation (the UGC is treated as source 

language and the standard language as target 

language).  

We address herein the normalization process as 

a set of procedures that deal with different types 

of deviation. The input consists of consumer 

reviews on electronic products. The main purpose 

is to convert such texts, as closely as possible, into 

the form expected by NLP tools trained on 

corpora of standard language. 

This work was preceded by the detection and 

analysis of out-of-vocabulary1 (OOV) words in a 

corpus of product reviews (Hartmann et al. 2014). 

In another preliminary investigation, we have 

found other different types of deviations and their 

impact on a tagging task (Duran et al., 2014). Such 

diagnosis has resulted in the procedures that 

integrate the normalization system proposed here.  

The remainder of this paper is organized as 

follows. Section 2 presents related works. Section 

3 describes the characteristics of the product 

review corpus and the problems they pose to 

normalization. Section 4 reports the methodology 

used to construct the normalization tool. Section 5 

describes and discusses the evaluation and 

validation results. Finally, in Section 6, we make 

some final remarks and outline future work.  

2. Related works 

Text normalization is a term used to convey the 

idea of converting the format of a text to meet the 

requirements of a given purpose. There are many 

text normalization processes reported in the NLP 

literature and they vary in: i) the genre of the input 

text; ii) the desired output format; iii) the purpose 

of the normalization, and iv) the method used to 

perform the task. It is important to take into 

account such characteristics to clearly define what 

“text normalization” means in each context. 

The input text may or may not be well-written. 

The task of normalizing text from a newspaper (as 

                                                           
1 “Out-of-vocabulary (OOV) words are unknown words that 

appear in the testing speech but not in the recognition 

vocabulary. They are usually important content words such 

as names and locations, which contain information crucial to 

the success of many speech recognition tasks. However, most 

speech recognition systems are closed-vocabulary 

in Schlippe et al., 2012) is quite different from 

normalizing texts produced by non-professional 

internet users, i.e. UGC. In addition, the 

normalization of UGC may depend on the social 

media used. For example, there are substantial 

differences between short message texts (SMS 

and microblogs), on-line chats and users’ reviews. 

Short messages and chats deviate much more 

from the standard language than users’ reviews 

and are commonly regarded as “noisy texts”. The 

normalization processes of short messages, such 

as SMS and Twitter messages (Contractor et. al. 

2010; Liu et al. 2011; Han et al., 2013; Bali, 2013; 

Chrupała, 2014) and longer UGC texts, such as 

reviews and blogs, have much in common, but the 

differences are sufficiently significant to justify 

addressing them separately. 

Different normalization purposes may require 

the use of substantially different normalization 

procedures For example, converting text-to-

speech requires the expansion of acronyms and 

abbreviations, as well as the conversion of 

numeric or mathematical expressions into words 

(Boros et al., 2012, Schlippe et al. 2012); 

conversely, normalization for purpose of storing 

data may perform the reduction of word forms 

into their stems. Even a “noisy text” of UGC may 

be normalized for different purposes. For 

example, while Mosquera et al. (2012) use 

normalization to improve the accessibility of web 

content, Aw et al. (2006) and Contractor et al. 

(2010) see the normalization as a prerequisite for 

other automatic processing tasks. 

Approaches to text normalization may be 

roughly divided into two groups: those that 

“translate” non-standard language into standard 

language using contextual information (based on 

language models), and those that replace OOV 

words (lexical-based) by suitable forms in the 

standard language. For the latter, lexical 

information is essential; for the former, parallel 

corpora of non-standard and standard language 

are required. Lexical-based approaches are 

commonly used to normalize general texts, 

whereas machine-translation approaches are 

usually an option to tackle SMS normalization.  

Aw et al. (2006) first proposed to regard SMS 

normalization as a machine translation problem. 

Many other studies have followed this approach 

recognizers that only recognize words in a fixed finite 

vocabulary.” IN: Long Qin. 2013. Learning Out-of-

Vocabulary Words in Automatic Speech Recognition. Phd 

Thesis. Carnegie Mellon University. 2013. 
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(Contractor et al., 2010; Schlippe et al., 2012; 

Bali, 2013, to cite just a few). They differ in the 

machine translation technique adopted or in the 

method used to obtain the parallel corpus for 

training and evaluation. Aw et al. (2006) 

constructed a parallel corpus with 5,000 SMS, 

Contractor et al. (2010) generated artificial 

“clean” sentences in a statistical machine 

translation approach, and Schlippe et al. (2012) 

constructed a web interface to receive suggestions 

of clean versions of noisy sentences. 

Many studies have adopted a lexical approach 

to normalization. For example, Liu et al., 2011, 

aiming to tackle SMS normalization, proposed the 

generation of nonstandard tokens by performing 

letter transformation on the dictionary words. Han 

et al. (2013) observed that most ill-formed tokens 

in Twitter are morphophonemically similar to the 

respective correct forms. Based on this evidence, 

they proposed an automatic approach to 

constructing a set of word variants by using edit 

distance and phonemic transcription; finally, they 

ranked the candidates using a trigram language 

model. Mosquera et al. (2012) developed a 

multilingual lexical-based approach (English and 

Spanish) to normalize general text from a news 

corpus. The approaches of Ringlstetter et al. 

(2006), Clark and Araki (2011), and Bildhauer 

and Schäfer (2013) are similar to ours, as they 

regard normalization as a number of subproblems 

to be solved in sequence. In lexical-based 

approaches to normalization of web content, 

lexicons play an important role and require 

constant updating to keep pace with UGC 

innovations. 

3. Characteristics of User-Generated 

Content in product reviews 

The characteristics we describe in this Section 

have been observed in the corpus of product 

reviews Buscapé, built by Hartmann et al. (2014). 

The corpus is the result of crawling an e-

commerce search engine of same name, where 

users can post comments about several products. 

This corpus consists of 85,910 reviews, 4,097,905 

tokens and 90,513 types. After removing stop 

words, numbers and punctuation, it has 63,917 

types, from which 34,774 are OOV words. To find 

OOV words, we used Unitex-PB, a Brazilian 

Portuguese lexicon (Muniz et. al. 2005). Words 

that miss a diacritic (3,652 or 10.2%) were 

automatically corrected. From the remaining 

                                                           
2 http://aspell.net/ 

31,123 OOV words, we analyzed 5,775, which 

correspond to words with more than two 

occurrences in the corpus. Such OOV words were 

classified in a double-blind annotation task, which 

obtained 0.752 of inter-annotator agreement 

(Kappa statistics, Carletta, 1996). The analysis 

showed that such OOV words encompass 

misspellings, named entities written in lowercase, 

foreign loan words and recurrent non-standard 

words in UGC (Internet slang), for which an 

equivalent exists in the standard language. The 

normalization of OOV words, therefore, depends 

on distinguishing these categories, as they require 

different procedures: misspellings require 

spelling correction, named entities require 

conversion to uppercase, foreign loan words need 

to be incorporated to the lexicon, and non-

standard words require substitution for words 

from the standard language. 

An in-depth analysis of the 1,323 cases 

classified as misspellings by both annotators 

(100% of inter-annotator agreement) revealed that 

791 were typos, 451 were phonetically-motivated 

errors, 64 were misused diacritics and 14 were 

problems related to the recent Portuguese 

orthographical rules, mostly associated with the 

use of hyphen in compounds. As open-source 

Portuguese spellers do not tackle phonetically-

motivated misspellings, we undertook the 

development of a phonetic-based speller (Avanço 

et al., 2014), which achieved 65.46% of first hit 

accuracy, against 46.94% of the open-source 

speller Aspell2.  

Further analysis of the corpus led us to verify 

that many words that require normalization were 

not included among the OOV words, a 

phenomenon known as “real-word errors”. In 

Portuguese there are around 25,000 pairs of words 

that are distinguished only by diacritics and, due 

to the systematic absence of diacritics in UGC, 

such pairs of words remain indistinguishable 

without contextual information, as the 

homographs (eg: “varias” (=to vary in the second 

person singular in the present tense) and “várias” 

(=several)). There are also some non-

conventional words from Internet slang (eg. “vai 

testa”=“vai testar”=will test)) and named entities 

(eg. the companies Oi, Claro and Sadia), which 

match existing words (“testa”=forehead; “oi”=hi; 

“claro”=light, clear; “sadia”=healthy). Therefore, 

if such words are identical to other words that 

belong to the lexicon, they are not identified as 

OOV words. For this reason, the identification of 
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tokens that require normalization is more complex 

in UGC than in the standard language. 

The unconventional use of case is another 

characteristic of UGC observed in product 

reviews. Frequently, capital letters are not used 

after punctuation as well as for proper nouns. 

Conversely, common words are written in capital 

letters to emphasize an opinion (eg. “MUITO 

BOM” = VERY GOOD). There are also whole 

reviews written in uppercase or in lowercase or 

even a mix as: “Fiz Contato com o Vendedor, no 

qual ele De forma Discarada informa ser um 

produto ORIGINAL!” (literally: Make Contact 

with a Seller and he informs In a Shameless 

manner to be an ORIGINAL product!”). These 

phenomena cause problems for the recognition of 

named entities and for the segmentation of 

sentences since both tasks use capital letters as a 

clue. Lexical-based strategies can help to identify 

named entities written in lowercase. However, as 

proper names and acronyms are in open classes, it 

is infeasible to construct a comprehensive lexicon 

for them. Fortunately, the product reviews have 

metadata that contain most of the named entities 

found in the respective texts, which help to 

construct a domain-dependent lexicon of named 

entities. The opposite problem also exists, that is, 

to decide whether a word written in uppercase is a 

named entity or not.  

Missing punctuation is another common 

characteristic of product reviews, which 

jeopardize sentence and clause segmentations. 

Some reviews reproduce a kind of uninterrupted 

stream of consciousness, making it difficult to 

punctuate the text, even for a human. In addition, 

most product reviews consist of three sections: 

Pros, Cons, and General Opinion. General 

Opinion usually is a plain text, but Pros and Cons 

may present single words (Pros: inexpensive), 

noun phrases (Pros: battery life), bulleted lists of 

words and noun phrases, or complete sentences. 

For this reason, it is challenging to punctuate the 

Pros and Cons sections, and the solutions 

sometimes require arbitrary decisions.  

In the corpus of product reviews, unlike in short 

messages, word abbreviations, agglutination of 

several tokens into a single one, and suppression 

of grammatical words rarely occur . 

4. A lexicon-based approach to UGC 

normalization 

The nature of the deviations described in 

Section 3 have motivated us to develop a 

normalization tool tailored for product reviews. 

The goal is to normalize the deviations due to: 1) 

the case use, in what concerns the use of 

lowercase instead of uppercase; 2) the correction 

of misspellings, except for those cases that depend 

on contextual clues to disambiguate two existing 

words in Portuguese; 3) the substitution of 

Internet slang by standard language words, and 4) 

the insertion of missing periods (other 

punctuation marks will be addressed in future 

work). 

One of the challenges of building a 

normalization tool refers to how to combine 

different normalization procedures in such a way 

that the effect of a procedure does not jeopardize 

the subsequent ones. For example, there are non-

standard words from Internet slang as well as 

named entities written in lowercase among the 

OOV words. They need to be identified and 

protected from spelling correction.  

The proposed pipeline architecture of the UGC 

Normalizer Tool (UCGNormal) is presented in 

Fig. 1. 

 

Figure 1: Architecture of UGCNormal 
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The input is a UGC text written in Brazilian 

Portuguese. The first step consists in applying the 

sentence segmentation tool proposed in Condori 

and Pardo (2015), which is a machine learning-

based system trained in a journalistic corpus. It 

allows us to insert periods where they are missing 

and, consequently, to properly convert the initial 

words to uppercase. When evaluated in the 

Buscapé corpus, it achieved 0.953 for precision; 

0.895 for recall; and 0.921 for F-Measure. 

Subsequently, the sentences are tokenized, 

specifically accounting for the nature of UGC 

texts. Usually, tokenizers consider only blank 

spaces, punctuation, and few special symbols. 

However, when processing UGC, it is necessary 

to consider the occurrence of more complex 

tokens, like emoticons ( ‘ :) ’, ‘ :-) ’, ‘ :( ‘, etc.), 

units of measurement (‘1GB’, ‘100Kb’, ‘2mb’, 

etc.), and URL’s. In order to properly identify and 

split tokens like those, we have developed a 

tokenizer using GNU-Flex lexical analyzer tool. 

The lexicon-based Spell-Checker developed by 

Avanço et al. (2014) does the major part of the 

normalization process. It was specially developed 

to tackle phonetically-motivated misspellings, i.e. 

words written as they are pronounced. Another 

important characteristic of this speller is the 

automatic correction, as it does not presuppose 

user interaction. Therefore, instead of suggesting 

some candidates for correction, it automatically 

replaces the misspelled word with the best-ranked 

candidate. In such a scenario, the accuracy of the 

first hit is essential. 

In short, the algorithm consists of (a) 

identifying misspelt words, using the UNITEX-

PB3 lexicon; b) generating candidates for the 

substitute word by using the edit distance 

(Levenshtein, 1966); (c) ranking the candidates by 

considering corpus-based frequency information; 

(d) looking for phonetic similarities by using 

several specific rules for Portuguese and using a 

variation of the Soundex4 algorithm. 

For UGCNormal, we made major 

improvements to the original algorithm of the 

speller, as well as adapting it to fit in the pipeline. 

As many misspellings are related to the omission 

of diacritics and cedilla under “c”, we have 

incorporated some heuristics to correct this kind 

of error before the generation of candidates.  

As the correction of real-word errors is a hard 

context-dependent problem, this phonetic-based 

speller cannot handle them well. In order to 

                                                           
3 http://www.nilc.icmc.usp.br/nilc/projects/unitex-

pb/web/dicionarios.html 

overcome this limitation, we applied a simple 

strategy that enables the correction of some real-

word errors without contextual information. For 

this, we have compiled, from the lexicon Unitex-

PB, a list of 25,722 pairs of words that differ from 

each other by a single diacritic. From this list, we 

analyzed the pairs that differ in morphological 

tags (2,877), and selected 561 pairs of a highly 

frequent word and a highly infrequent word (eg. 

“óbvio” (=obvious) and “obvio” (an inflection of 

“obviar”=to obviate). The infrequent word was 

then excluded from the lexicon in order to enable 

the speller to eventually correct the more frequent 

one.  

The remaining pairs are not addressed by the 

tool since the frequency of the words is similar. 

The most serious problem is related to pairs of 

frequent words, like “e” (=and) and “é” (=is); “da” 

(=of the) and “dá” (third person of the verb 

“dar”=to give). 

Another modification was made in the speller 

to prevent the correction of acronyms and Internet 

slang. Foreign loan words and proper nouns have 

been incorporated to the lexicon, which is used to 

identify misspelled words and to generate 

candidates for misspelling correction. This 

decision was motivated by the high frequency of 

misspelled technology jargon in the domain of 

product reviews (eg. “desing” instead of “design” 

and “Blutoth” instead of “Bluetooth”).  

The lexical resources, created especially for 

this, comprise: Internet slang (420 items), foreign 

loan words (248 items), proper nouns (20,730 

items), and acronyms (156 items). These sets of 

items were partially compiled by Hartmann et al., 

(2014) and further complemented during the 

analysis of the corpus. 

The module Acronym_Map sets all letters to 

uppercase whenever it detects an acronym (the 

detection of acronyms is based on the lexicon). 

The module Slang_Map substitutes some frequent  

slang words by their equivalent in standard 

language and normalizes long vowels by using 

regular expressions. There are two types of 

Internet slangs: 1) those that can be identified in a 

lexical-based approach (eg. “vc”=“você”; “tb”= 

“também”), and 2) those that have a homonym in 

the standard language, as “fala” in “vo fala” 

(=“vou falar”=I will speak) and “fala” (=he/she 

speaks; speech). Here we deal only with the 

correction of the first kind, as the second kind 

requires context knowledge to be identified and 

4 http://www.archives.gov/research/census/soundex.html 
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corrected. All these modules use their own 

lexicons as well as a set of regular expressions for 

recognizing the items. 

The last module, ProperName_Map, uses a 

lexicon of named entities, which consists of 8,465 

proper nouns from the NILC Lexicon (Nunes et 

al., 1996). We have also added a further 12,265 

proper nouns, consisting of product names 

including brands and models. These were 

extracted from the metadata available in the 

Buscapé corpus, and the addition of these resulted 

in 20,730 lexical items. When a proper noun is 

recognized, this module capitalizes it. However, 

detection of proper nouns written in lowercase is 

far from a simple task, because many proper 

nouns are also common words in the language 

lexicon, as mentioned in Section 3. Although 

there are some named entity recognizer (NER) 

systems for Portuguese, they do not perform well 

for UGC, since they heavily rely on the 

occurrence of a capital letter starting the proper 

nouns, and the problem is in discovering proper 

nouns that are not capitalized. That is why we 

have adopted a domain and lexical-based 

approach.  

5. UGCNormal Evaluation 

We evaluated the normalization tool intrinsically, 

in two corpus, and extrinsically, in a POS tag task 

and in an Opinion Classifier. 

5.1. Intrinsic Evaluation 

In the intrinsic evaluation we used two samples, 

one from the Buscapé corpus, and one from 

another corpus of the same genre, extracted from 

the e-commerce website Mercado Livre, which 

constitutes unseen data. In both cases, a sample of 

60 product reviews was manually annotated with 

respect to punctuation errors, case use, and 

misspellings.  

Our two samples (random selection from both 

corpora) are described in Table 1. 

 

Table 1: Samples’ statistics 

 

Buscapé 

Sample 

Mercado 

Livre 

Sample 

reviews 60 60 

tokens 3,179 3,897 

tokens without stop-words 2,061 2,732 

tokens without stop-words 

and punctuation marks 1,563 1,967 

types 887 1,096 

Table 2 shows the recall figures of UGCNormal 

in both samples. The second and third columns 

contain X/Y=Z, where X shows the number of 

items to be normalized, Y shows the number of 

correctly normalized items, and Z shows the 

corresponding accuracy rate. As expected, the 

results in the Buscapé corpus (used for diagnosis) 

are better than in Mercado Livre, because some 

lexical resources were constructed from analysis 

of OOV words in Buscapé. In spite of both 

samples having the same number of reviews, the 

Mercado Livre sample contains proportionally 

more items to be normalized than the Buscapé 

sample, that is, the reviews from Mercado Livre 

deviate more from standard language than those 

from Buscapé.  

For the misspellings whose corrections are 

context-free, UGCNormal achieved a recall of 

89% in Buscapé corpus and 80% in Mercado 

Livre corpus. This difference may be due to the 

small size of both samples and the number of 

misspellings (in Mercado Livre there are almost 

twice as many misspellings as in Buscapé). 

 
Table 2: Distribution of errors and corrections for 

each UGC sample, and the recall values for each 

error type. 

 

Error type Buscapé  Mercado 

Livre 

Average 

common 

misspellings 
50/56 = 0.89 87/108 = 0.80 0.84 

real-word 

misspellings 
15/39 = 0.38 24/76 = 0.31 0.34 

internet 

slang 
4/6 = 0.67 15/25 = 0.60 0.61 

case use 

(proper 

names and 

acronyms) 

11/12 = 0.92 13/19 = 0.68 0.77 

case use 

(start of 

sentence) 

14/14 = 1.00 7/12 = 0.58 0.81 

glued words 0/2 = 0 2/6 = 0.33 0.25 

punctuation 44/47 = 0.94 58/79 = 0.73 0.81 

 
We evaluated the task noise removal in a single 

pass, identifying and correcting errors 

simultaneously. Therefore, cases where errors 

were identified but not corrected were taken to be 

failures just like unidentified errors.  
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However, it is worth mentioning that the 

normalizer failed to correct 6 true errors identified 

in the Buscapé sample and 14 true errors 

identified in the Mercado Livre sample. The other 

non-corrected errors were not even identified. 

The normalization tool corrected 66% (138 of 

209) of the manually annotated errors in the 

Buscapé sample, and 63% (206 of 325) in the 

Mercado Livre sample. 

Misspellings whose correction depends on 

contextual information were not expected to be 

corrected, as the speller is based only on lexical 

information. However, thanks to the strategy of 

excluding highly infrequent words that are 

homographs of frequent words without diacritics, 

some such errors were corrected (38% of the 

annotated errors of such category in Buscapé and 

31% in Mercado Livre).  

The case use in the start of sentences and the 

punctuation are treated by the sentence 

segmentation tool. These procedures are 

simultaneous: if a punctuation mark is not 

inserted, the initial word after a period is 

consequently not converted into uppercase. In the 

Mercado Livre corpus, the use of uppercase and 

lowercase is far more unconventional than in the 

Buscapé corpus and this explains the deterioration 

of results in case use and punctuation. For 

example, in Mercado Livre, unlike in Buscapé, we 

found reviews completely written in uppercase.  

The conversion of proper nouns and acronyms 

to uppercase, as well as the conversion of Internet 

slangs to the standard language, are two issues 

that depend on the respective lexicons. As such, 

lexicons resulting from the analysis of the 

Buscapé corpus are not sufficient to identify all 

the proper nouns, acronyms and Internet slangs 

from the Mercado Livre corpus.  

Finally, the glued words are normalized by the 

tokenizer only in cases where numbers are 

followed by units of measurement. Glued words 

are rare in both evaluated corpora, but we need to 

tackle them in the future if we want to address 

other categories of UGC, such as chats and short 

messages. 

UGCNormal made 149 corrections in the 

Buscapé sample, of which 138 were true positives 

and 11 were false positives (well-formed words 

that were incorrectly modified), representing a 

precision of 93%. In the Mercado Livre sample, 

UGCNormal made 220 corrections, of which 206 

were true positives and 14 were false positives, 

also representing a precision of 93%. 

From the 82 OOV words in the Buscapé 

sample, UGCNormal corrected 65 (79%), and the 

remaining 17 words are constituted of 6 (7.3%) 

true errors and 11 (13.4%) real words.  

In the Mercado Livre sample, UGCNormal 

identified 145 OOV words and appropriately 

corrected 117 (80.6%). From the remaining 28 

OOV words, 14 (9.6%) are true errors and 14 

(9.6%) are real words. 

The false positives (real words identified as 

errors) are mainly foreign loan words, proper 

nouns, acronyms and Internet slang absent from 

the UGCNormal’s lexicons.  

5.2. Extrinsic Evaluation 

To validate the normalization tool, we evaluated 

its impact as a preprocessing step in two NLP 

tasks: POS tagging and opinion classification. 

For the first task, we used the tagger MXPOST 

(Ratnaparkhi, 1996), trained in the MAC-Morpho 

corpus (1.2 million tokens, Aluisio et al., 2003). 

The better reported results of MXPOST are 

around 97%, for journalistic texts, the same genre 

used to train the tagger. 

For this experiment, we first randomly selected 

a sample of ten reviews from the Buscapé corpus. 

Then we tagged the sample with MXPOST and 

performed a linguistic revision of the POS tags, in 

order to create a gold-standard POS-tagged 

version of the sample. Subsequently, we POS-

tagged three different versions of the same 

sample: 1) the original one; 2) a version manually 

normalized, and 3) a version automatically 

normalized by UGCNormal. The results of the 

three versions evaluated against the gold-standard 

version are presented in the Table 3. 

 
Table 3: The number of correct tags produced by 

the tagger, for each sample version. 

 Without 

Normaliz. 

After 

Human 

Normaliz. 

After 

Automatic 

Normaliz. 

Correct 

tags 
1120 1145 1142 

Accuracy 

- 

MXPOST 

91.35% 93.39% 93.15% 

 
The accuracy values are the ratio between the 

number of correct tags and the total number of 

tags (1226). The result achieved by the 

automatically normalized version (UGCNormal) 

is almost the same as that achieved by the human 

normalized version. 
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We have also made a test of statistical 

significance to evaluate the probability that such 

improvement in the tagger precision could have 

been obtained by chance. Given the sample size 

and some relevant considerations while 

evaluating NLP tasks (Sogaard et al., 2014), we 

opted for the non-parametric test Wilcoxon 

Signed-Rank. We observed a significance of 0.05, 

the p-value being equal to 0.02249. 

The other extrinsic evaluation is based on a 

lexicon-based opinion classifier (Avanço and 

Nunes, 2014), which assigns polarity to texts 

(positive, negative or neutral). We applied the 

classifier on a sample of 13,685 reviews (6,812 

positives and 6,873 negatives) extracted from the 

Buscapé corpus, before and after normalization by 

UGCNormal. The average of F1-score measures 

(F1-score positive and F1-score negative) was 

0.736 for non-normalized texts, and 0.758 for 

normalized texts.  

The performance of a lexicon-based opinion 

classifier is highly dependent of the recognition of 

sentiment words in the text. As errors like 

“exelente” (excelente=excellent) and “otimo” 

(ótimo=great) are very frequent, such 

improvement in the precision, after normalization, 

was expected. 

5.3 Some limitations of the normalization tool 

The UGCNormal corrects a few real-word 

misspellings thanks to the strategy of extracting 

from UNITEX-PB those infrequent words that are 

homographs (except by the diacritics) of frequent 

words. However, many real-word misspellings 

remain unsolved, as those corrections would 

require contextual information. This problem is 

more serious when the homographs are very 

frequent words, such as “esta” (=this) and “está” 

(=is). Besides homographs, we also have to deal 

with  the homophone words (those with identical 

pronunciation), which also frequently cause real-

word misspellings, such as “segmento” 

(=segment) and “seguimento” (=follow up). 

The normalization of acronyms, Internet slang, 

and proper names is dependent on their respective 

lexicons, which are not only domain-dependent, 

but also corpus-dependent, as we observed in the 

evaluation. The lexicons have been constructed 

with data from the Buscapé corpus and this 

justifies the best performance of the normalizer in 

such corpus. 

The normalization of punctuation presupposes 

a plain text. For this reason, some product reviews 

that consist of simple items or noun phrases are 

difficult to normalize. If each item starts with 

uppercase, the sentence segmentation tool inserts 

a period after each item. Conversely, if an item 

starts in lower case and there is another item in the 

sequence, the sentence segmentation tool does not 

insert periods.  

Another problem that remains unsolved is 

related to common words written in uppercase. 

We only convert uppercase to lowercase when the 

whole review is in uppercase. Otherwise, we 

maintain the uppercase, because it may indicate an 

acronym or a proper noun. 

6. Final remarks and future work 

The UGCNormal performance ranges from an 

average of 25% (for glued words) to 84% (for 

common misspellings). The validation of the tool 

shows that the results of both POS tagging and 

opinion classification tasks improved around by 

two percentage points after normalization.  

Although there is no all-purpose normalization 

process, it is possible to reuse some modules of a 

normalization pipeline, assembling them 

differently in order to suit another purpose. The 

proposed normalization tool will certainly be 

useful for the development of UGC normalization 

tools that encompass short messages 

normalization. In order to be suitable for short 

messages normalization, this tool needs to address 

some problems related to word agglutination and 

informal abbreviations of nouns with stem 

preservation.  

This normalizer evolved from a phonetic-based 

speller aimed at tackling common errors in UGC 

(words written as they are pronounced). Our 

approach is largerly dependent on lexical 

resources, incurring a high maintenance cost. In 

addition, this normalizer does not perform well 

with real-word errors. We believe that machine 

learning approaches will enable us to overcome 

these shortcomings. We have, indeed, made some 

preliminary experiments with language models, 

but the high occurrence of false positives (well-

written words wrongly corrected) remains as a 

challenge.  
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Abstract

This paper describes a pilot NER system for
Twitter, comprising the USFD system en-
try to the W-NUT 2015 NER shared task.
The goal is to correctly label entities in a
tweet dataset, using an inventory of ten types.
We employ structured learning, drawing on
gazetteers taken from Linked Data, and on un-
supervised clustering features, and attempting
to compensate for stylistic and topic drift – a
key challenge in social media text. Our result
is competitive; we provide an analysis of the
components of our methodology, and an ex-
amination of the target dataset in the context
of this task.

1 Introduction

Social media is a very challenging genre for Natural
Language Processing (NLP) (Derczynski et al., 2013a),
providing high-volume linguistically idiosyncratic text
rich in latent signals, the correct interpretation of which
requires diverse contextual and author-based informa-
tion. Consequently, this noisy content renders NLP
systems trained on more consistent, longer documents,
such as newswire, mostly impotent (Derczynski et al.,
2015b). Suffering from a sustained dearth of annotated
Twitter datasets, it may be useful to understand what
makes this genre tick, and how our existing techniques
and resources can be generalised better to fit such a
challenging text source.

This paper has focused on introducing our Named
Entity Recognition (NER) entry to the WNUT eval-
uation challenge (Baldwin et al., 2015), which builds
on our earlier experiments with Twitter and news NER
(Derczynski and Bontcheva, 2014; Bontcheva et al.,
2013; Cunningham et al., 2002). In particular, we push
data sources and representations, using what is know
about Twitter so far to construct a model that informs
our choices. Specifically, we attempt to compensate for
entity drift; to harness unsupervised word clustering in
a principled fashion; to bring in large-scale gazetteers;
to attenuate the impact of terms frequent in this text
type; and to pick and choose targeted gazetteers for
specific entity types.

2 Datasets

The training and development sets provided with the
challenge were drawn from the Ritter et al. (2011) cor-
pus. This was a set of 2394 tweets from late 2010,
annotated with ten entity types, including the “other”
type. A later release in the challenge gave a set of
420 tweets from 2015, annotated in the same way
(dev 2015). As no other tweet corpora use this 10-class
entity model, we stuck with this data for the supervised
parts of our approach.

For language modelling, we used a set of 250
million tweets drawn from the Twitter garden hose,
which is a fair 10% sample of all tweets (Kergl et al.,
2014). These were reduced to just English tweets using
langid.py (Lui and Baldwin, 2012), and then tokenized
using the twokenizer tool (Connor et al., 2010), which
gives the same tokenization as used in the input and
evaluation corpora.

In addition, we used three sources of gazetteers. The
first two were manually created, and covered named
temporal expressions (Brucato et al., 2013) and first
person names (Cunningham et al., 2002). The last
comprised more recent data, drawn automatically from
Freebase as part of a distant supervision approach to
entity detection and relation annotation (Augenstein et
al., 2014).

3 Method

The WNUT Twitter NER task required us to address
many data sparsity challenges. Firstly, the datasets in-
volved are simply very small, making it hard to gen-
eralise in supervised learning, and meaning that effect
sizes cannot be reliably measured. Secondly, Twitter
language is arguably one of the noisiest and idiosyn-
cratic text genres, which manifests as a large number of
word types, and very large vocabularies due to lexical
variation (Eisenstein, 2013). Thirdly, the language and
especially entities found in tweets change over time,
which is commonly referred to as drift. The majority
of the WNUT training data is from 2010, and only a
small amount from 2015, leading to a sparsity in ex-
amples of modern language. Therefore, in our machine
learning approach, many of the features we introduce
are there to combat sparsity.
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3.1 Unsupervised Clustering

We use an unsupervised clustering of terms to generate
word type features. The goal of this is to gain a pro-
gressive reduction in the profusion of word types in-
trinsic to the text type. 250 million tweets from 2010-
2012 were used to generate 2,000 word classes using
Brown clustering (Brown et al., 1992). Typically 1,000
or fewer are used; the larger number of classes was cho-
sen because it helpfully increased the expressivity of
the representation (Derczynski et al., 2015a), while re-
taining a useful sparsity reduction. These hierarchical
classes were represented using bit depths of 3-10 in-
clusive, and then 12, 14, 16, 18 and 20, one feature per
depth. The typical levels are 4, 6, 10 and 20, though
selection of bit depths to use often yields brittle feature
sets (Koo et al., 2008), and so we leave it to the clas-
sifier to decide which ones are useful. These choices
are examined in our post-exercise investigations into
the model, Section 5.1, and the clusters provided with
this paper. Finally, we also include the Brown class
paths for the previous token.

To aid in filtering out common tokens and reducing
the impact they may have as e.g. spurious gazetteer
matches, we incorporate a term frequency from our
language model. This is applied to terms that are in
the top 50,000 found in our garden hose sample, and
represented as a feature having a value scaled in pro-
portion to the term’s relative frequency, multiplied by
100 to reduce underflows and ensure it has an effective
impact.

3.2 Morpho-Syntactic Features

To model context, we used reasonably conventional
features: the token itself, the uni- and bigrams in a
[−2, 2] offset window from the current token, and both
wordshape (e.g. London becomes Xxxxxx) and reduced
wordshape (London to Xx) features.

We also included a part-of-speech tag for each token.
These were automatically generated by a custom tweet
PoS tagger using an extension of the PTB tagset (Der-
czynski et al., 2013b).

To capture orthographic information, we take suffix
and prefix features of length [1..3].

Capitalisation is notoriously unreliable in tweets,
and also often overfitted to by newswire systems
trained on more canonical forms of text. To wean these
systems away from capitals while trying to minimise
false negatives, we used case-insensitive gazetteers to
generate gazetteer features.

3.3 Gazetteers

While we collected and experimented with a variety of
gazetteers, the most helpful ones were:

• Freebase gazetteers mined for distant supervi-
sion (Augenstein et al., 2014);

• ANNIE first name lists (Cunningham et al., 2002);

NE type Freebase type
company /business/business operation,

/organization/organization
facility /architecture/building, /architecture/structure,

/travel/tourist attraction
geo-loc /location/location
movie /film/film
musicartist music/artist
other /education/university, /time/holiday,

/time/recurring event
person /people/person
product /business/consumer product, /business/brand,

/computer/software, /computer/operating system,
/computer/programming language,
/digicams/digital camera,
/cvg/computer videogame, /cvg/cvg platform,
/food/food, /food/beverage, /food/tea, /food/beer,
/food/brewery brand of beer, /food/candy bar,
/food/cheese, /food/dish, /wine/wine
/distilled spirits/distilled spirit

sportsteam /sports/sports team
tvshow /tv/tv program

Table 1: NE types and corresponding Freebase types
used for creating gazetteers

• First name trigger terms (Derczynski and
Bontcheva, 2014);

• Lists of named temporal expressions (Brucato et
al., 2013), used due to the prevalence of festival
and event names in the other category.

Freebase (Bollacker et al., 2008) is a large knowl-
edge base consisting of around 3 billion facts1. As
such, it has been used extensively as background
knowledge for NLP tasks such as entity and relation
extraction (Augenstein et al., 2014). Gazetteers for
the 10 entity types were retrieved from Freebase semi-
automatically. Some of the types correspond to Free-
base types directly, e.g. person corresponds to /peo-
ple/person, but for other types such as product there are
no directly corresponding types. To build gazetteers,
we therefore retrieved all Freebase types for all entities
in the training corpus and selected the most prominent
Freebase types per entity type in the gold standard. The
list of Freebase types corresponding to each entity type
in the gold standard is listed in Table 1.

For each Freebase type, separate gazetteers were cre-
ated for entity names and alternative names (aliases),
since the latter tend to be of lower quality.

There were several other gazetteer sources that we
tried but which did not work very well: IMDb dumps,2

Ritter’s LabeledLDA lists (Ritter et al., 2011) (du-
plicated in the baseline system), and ANNIE’s other

1The Freebase project is being discontinued as of
May 2015, however, the data is being integrated with
Wikidata (Vrandečić and Krötzsch, 2014). https:
//plus.google.com/109936836907132434202/
posts/3aYFVNf92A1

2See http://www.imdb.com/interfaces
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Entity type P R F1
company 28.07 41.03 33.33
facility 25.00 23.68 24.32
geo-loc 53.91 53.45 53.68
movie 20.00 6.67 10.00
musicartist 14.29 2.44 4.17
other 45.78 28.79 35.35
person 54.63 65.50 59.57
product 27.78 13.51 18.18
sportsteam 42.86 25.71 32.14
tvshow 0.00 0.00 0.00
Overall 45.72 39.64 42.46
No types 63.81 56.28 59.81

Table 2: Results of the USFD W-NUT 2015 system.

gazetteers (largely consisting of organisations, loca-
tions, and date entities) en masse. Each of these in-
troduced a drop in performance or an unstable perfor-
mance, possibly due to the increased ambiguity. This is
a known problem with discriminative learning – only a
certain amount of gazetteers may be used as features in
this way before performance of a discriminative learner
drops (Smith and Osborne, 2006).

3.4 Learning Models and Representation
As BIO NE chunking is readily framed as a se-
quence labeling problem, we experimented with struc-
tured learning. Out of CRF using L-BFGS updates,
CRF with passive-aggressive updates to combat Twit-
ter noise (Derczynski and Bontcheva, 2014), and struc-
tured perceptron (also useful on Twitter noise (Jo-
hannsen et al., 2014)), CRF L-BFGS provided the best
performance on our dataset for the ten-types task.

3.5 Training Data
In our final system, we included the dev 2015 data,
to combat drift present in the corpus. We anticipated
that the test set would be from 2015. The original
dataset was harvested in 2010, long enough ago to
be demonstrably disadvantaged when compared with
modern data (Fromreide et al., 2014), and so it was
critical to include something more. The compensate for
the size imbalance – the dev 2015 data is 0.175 the size
of the 2010 data – we weighted down the older dataset
to by 0.7, as suggested by (Cherry and Guo, 2015), im-
plemented by uniformly scaling individual feature val-
ues on older instances. This successfully reduced the
negative impact of the inevitable drift.

4 Performance
Our results are given in Table 2. As can be seen, the
best results were achieved for the person and geo-loc
entity types. It is also worth noting that performance
on the notypes task is significantly better across all met-
rics, which indicates that the system is capable of iden-
tifying entities correctly, but encounters issues with
their type classification.

We found that the biggest contributions to our sys-
tem’s performance were the Freebase gazetteer fea-

tures, and using Brown clusters with high values of m
(the number of classes) and large amounts of recent in-
put data. This led our computational efforts in the last
week to be based around running the biggest Brown
clustering task that we could in time.

We also noted during testing that, while passive-
aggressive CRF updates helped with single-type en-
tity recognition in tweets (Derczynski and Bontcheva,
2014), it was detrimental to an all-types system. It
was also not helpful for the no-types task, where L-
BFGS updates again gave better performance. This is
rational: the all-types and multiple-types tasks are ef-
fectively similar when contrasted with the single-types
task, in that they require the recognition of many dif-
ferent kinds of named entity.

Finally, we found that other gazetteer types were not
helpful to performance; taking for example all of the
ANNIE gazetteers, gazetteers from IMDb dumps, en-
tity names extracted from other Twitter NER corpora,
or entities generated through LLDA (Ritter et al., 2011)
all decreased performance. We suspect this is due to
their swamping already-small input dataset with too
great a profusion of information, c.f. Smith and Os-
borne (2006).

In addition, we tried generating semi-supervised data
using vote-constrained bootstrapping, but this was not
helpful either – presumably due to the initially low per-
formance of machine-learning based tools on Twitter
NER making it hard to develop semi-supervised boot-
strapped training data, no matter how stringent the fil-
tering of autogenerated examples.

For the final run, we were faced with a decision
about fitting. We could either choose a configuration
that minimised training loss on all the available train-
ing data (train + dev + dev 2015), but risked overfit-
ting to it. Alternatively, we could choose a configura-
tion that fit less well, in order to avoid overfitting. In
the end, we decided to adopt the above principled ap-
proach, assuming that final data would be from 2015,
and therefore down-weighting training data from prior
years. We also evaluated the system while including
the dev 2015 data in the training set, to see how well
we would match it.

5 Analysis
5.1 Features
In terms of features, we looked at the strongest-
weighted observations in the notypes model, to see
what the general indicators are of named entities in
tweets. The largest of these are shown in Table 3.
Of note is that features indicating URLs, hashtags and
usernames indicate against an entity; lowercase words
including punctuation, or comprising only punctuation,
are not entities; being proceeded by at indicates being
in an entity (+ve B weight and -ve O weight); being
preceded by of, and or with suggests an entity; short
words and hashtag-shaped words are not entities; be-
ing followed by tonight suggests being inside an entity;
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Features Label Weight
pref=@ O 3.368445
pref=htt O 2.049354
pref=# O 1.979034
shapeshort-x.x O 1.688033
shapeshort-. O 1.552530
w[-1]=at B 1.519609
p14x11110011111011 O 1.326481
w[-1]=at O -1.285570
w[-1]=of O -1.244912
length-2 O 1.196777
length-3 O 1.177138
shapeshort-x. O 1.172663
in gaz=Freebase
videogameplatform O -1.152093
w[-1]=and O -1.143885
length-1 B -1.132128
shapeshort-Xx O -1.128341
w[-1]=with O -1.093224
w[1]=tonight O -1.077982
shapeshort-0 B -1.051406

Table 3: Largest weighted features in notypes model

Features Label Weight Terms
prev p3x011 B-geo-loc -0.571505
p14x11110011111001 B-other -0.585369
prev p6x111100 B-company -0.604976
p12x111100111110 B-geo-loc -0.620909
prev p4x0100 B-person -0.655420
prev p18x0000111110 B-facility 0.699101
prev p20x0000111110 B-facility 0.699101
prev p3x010 B-sportsteam 0.709865
p10x0110011010 B-tvshow 0.714127
p3x011 B-person -0.717037
p14x11110011111001 B-product 0.747492
prev p8x11110110 B-other 0.774895
p14x11110011111100 B-geo-loc 0.804635
prev p3x010 B-person -0.894333
p12x111100111111 B-geo-loc 0.895203
p14x11110011110110 B-person 0.950866
p14x11110011111000 B-company 1.044984

Table 4: Largest-weighted Brown cluster features in
10-types task

numbers rarely start entities; and being matched by an
entry in the video games gazetteer suggests being an
entity.

One cluster prefix was indicative of being outside an
entity. This cluster prefix contained four subclusters,
each dominated by lot of frequently-occurring dates
(e.g. September with 12368 mentions in the source
data) and less-frequent date spellings like Wedneaday
or rarer occasions Pentecost, but also a lot of less-
frequent noise entries, some of which were potentially
named entities (e.g. #ITV3, Buggati, Katja). The noise
present suggests that, while the clustering is working
well, there are not enough clusters; for 250M tweets,
we should use m > 2000 (Derczynski et al., 2015a).

We also looked at the Brown clusters most indicative
of entity starts in the typed task, to get an idea of how
these clusters helped. Results are shown in Table 4.
Without going into too much detail – the cluster paths

are distributed with this work, and on the web,3 for fur-
ther examination – some top-level observations can be
made. Firstly, the preceding word is often influential;
note the large number of prev features. Secondly, the
clusters prefixed 111100- contained words often used
as the first term in many kinds of entity, suggesting
distributional similarities in the first words of named
entities. As Brown clustering is based on bigram dis-
tributionality, this finding aligns with the existence of
highly-weighted common preceding tokens seen in the
model weights for the notypes task. Thirdly, Brown
clusters are more useful for some entity types than oth-
ers; there are more features for person, company and
geo-loc types than others.

Note the large-weighted shallow-depth features for
entities. One is for the terms found before a sport-
steam entity (but not a person, note the -ve weight):
prev p3x010. This cluster subtree contains many ad-
jectives, possessive pronouns and determiners (the, ur,
dis, each, mah, his etc.). The terms helpful when not
preceding geo-locs were close to this subtree, differing
only in its least-significant bit: prev p3x011. This other
large-weighted shallow-depth feature was also useful
for avoiding first terms of person entities. Its cluster
subtree contains common nouns and qualifiers (one,
people, good, shit, day, great, little), though it is not
immediately clear how these terms were helpful; per-
haps the prominence of this subtree feature is due to its
frequency alone, and better regularisation is needed to
handle it.

5.2 Gold standard
When developing the system, we encountered sev-
eral problems and inconsistencies in the gold standard.
These issues are partly a general problem of develop-
ing gold standards, i.e. the more complicated the task
is, the more humans tend to disagree on correct an-
swers (Tissot et al., 2015). For Twitter NERC with
10 types, some of the tokens are very difficult to la-
bel because the context window is very small (140
characters), which then also leads to acronyms being
used very frequently to save space, and because world
knowledge about sports, music etc. is required.

In particular, the following groups of problems in the
gold standard training corpus were identified:

Broad categories: While some of the NE types are
well-defined (e.g. person, geo-loc), other types are very
broad and therefore pose a big challenge. This is al-
ready evident by the number of gazetteers created per
type (see Table 1), i.e. those broad categories consist
of many different subtypes. Since the training set is
very small, only a handfull of examples are observed
for each subtype (e.g. video game), which makes train-
ing a classifier for those types very challenging. One
of the most challenging types was products, as many
different things can be products.

3See http://derczynski.com/sheffield/resources/gha.250M-
c2000.tar
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Overlapping types: Some NEs belong to more than
one type, which makes the classification task even more
difficult. For example, it is difficult to distinguish
between companies and their products with the same
name. There are also inconcistent examples of this in
the gold standard, e.g. “I: O just: O bought: O Dior: B-
product mascara: O”. In this example, “Dior” should
be annotated as a company, but “Dior mascara” as a
product from that company.

The type other: Since annotation guidelines are not
available for the gold standard, we rely entirely on ex-
amples in the training set to identify what subtypes be-
long to the type “other”. While most examples seem
to be public holidays and events, the type also seems
to be used for overlapping or otherwise unclear tokens.
Examples for this are “Radio 1” (a broadcasting organ-
isation), “UMASS” (a university), “Edmonton Journal”
(a broadcasting organisation), “Dems” (democrats, a
group of people or a policical party). The type “other”
is also one for which annotation guidelines differ heav-
ily – meaning performance does not increase if we try
to aggregate the gold standard corpus with over avail-
able Twitter NER gold standards.

Inconsistent annotation for hashtags: Important
words in tweets are often preceded by a hashtag to
emphasise them, e.g. “#JenniferAniston quote of the
day”. Despite the fact that many of the 327 tokens
starting with hashtags were named entities, only 5 of
them are annotated with NE types (#Vh1: B-other,
#Astros: B-sportsteam, #Denver: B-geo-loc, #Padres:
B-sportsteam, #BB11: B-tvshow). The false negatives
belong to different NE types and are mostly easy to
spot (e.g. #BROOKLYN, #lindsaylohan). A related
problem is the annotation of direct mentions of Twitter
accounts with @ in sentences, e.g in “All: O caught:
O up: O with: O @SHO weeds: O !: O”. In that sen-
tence, “@SHO weeds” refers to the Showtime TV se-
ries “Weeds” and should be annotated as tvshow. How-
ever, all tokens starting with @ are annotated as O, so
even though this is not neccessarily correct, it is con-
sistent within the gold standard.

6 Conclusion
This paper has described the USFD system entered
in W-NUT 2015. It achieves performance through
unsupervised feature generation, through Freebase
gazetteers, and through weighting input data according
to its origin date in order to account for drift. This lead
to state-of-the-art Twitter NER performance.
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Abstract

Our submission to the W-NUT Named En-
tity Recognition in Twitter task closely
follows the approach detailed by Cherry
and Guo (2015), who use a discrimi-
native, semi-Markov tagger, augmented
with multiple word representations. We
enhance this approach with updated
gazetteers, and with infused phrase em-
beddings that have been adapted to better
predict the gazetteer membership of each
phrase. Our system achieves a typed F1 of
44.7, resulting in a third-place finish, de-
spite training only on the official training
set. A post-competition analysis indicates
that also training on the provided devel-
opment data improves our performance to
54.2 F1.

1 Introduction

Named entity recognition (NER) is the task of
finding rigid designators as they appear in free text
and assigning them to coarse types such as per-
son or geo-location (Nadeau and Sekine, 2007).
NER is the first step in many information ex-
traction tasks, but in social media, this task is
extremely challenging. The text to be analyzed
is unedited and noisy, and covers a much more
diverse set of topics than one might expect in
newswire. As such, we are quite interested in
the W-NUT Named Entity Recognition in Twitter
task (Baldwin et al., 2015) as a platform to bench-
mark and drive forward work on NER in social
media.

Our submission to this competition closely
follows Cherry and Guo (2015), who advocate
the use of a semi-Markov tagger trained on-
line with standard discriminative tagging features,
gazetteer matches, Brown clusters, and word em-
beddings. We augment this approach with up-
dated gazetteers, phrase embeddings, and infused

embeddings that have been adapted to better pre-
dict gazetteer membership. Our novel infusion
technique allows us to adapt existing vectors to
NER regardless of their source, by training a type-
level auto-encoder whose hidden layer must pre-
dict the corresponding phrase’s gazetteer member-
ships while also recovering the original vector.

Our submitted system achieved a typed F1 of
44.7, placing third in the competition, while train-
ing only on the provided training data. The
competition organizers provided two development
sets, one (dev) that is close to the training data,
with both train and dev being drawn from the year
2010, and another (dev 2015) that is close to the
test data, with both dev 2015 and test being drawn
from the winter of 2014–2015. We present a post-
competition system that achieves an F1 of 54.2
using the same features and hyper-parameters as
our submitted system, except that our tagger is
also trained on all provided development data. We
close with an analysis of dev 2015’s relation to
the test set, and argue that these results may over-
estimate the impact that a small, in-domain train-
ing set can have on NER performance.

2 Data Resources

We make use of two external data resources:
gazetteers and unlabeled tweets. For gazetteers,
we begin with the word lists provided with the
W-NUT baseline system, which appear to be
mostly derived from Freebase. We treat each file
in the lexicon directory as a distinct word list. We
update and augment these lists with our own Free-
base queries in Section 3.2.

We use unannotated tweets to build various
word representations (see Section 3.1). Our unan-
notated corpus collects 98M tweets (1,995M to-
kens) from between May 2011 and April 2012.
The same corpus is used by Cherry and Guo
(2015). These tweets have been tokenized and
post-processed to remove many special Unicode
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characters; they closely resemble those that appear
in the provided training and development sets.
Furthermore, the corpus consists only of tweets in
which the NER system of Ritter et al. (2011) de-
tects at least one entity. The automatic NER tags
are used only to select tweets for inclusion in the
corpus, after which the annotations are discarded.
Filtering our tweets in this way has two immediate
effects: first, each tweet is very likely to contain an
entity mention. Second, the tweets are very long,
with an average of 20.4 tokens per Tweet.

As the test data is drawn from the winter of
2014–2015, we attempted to augment our corpus
with more recent data: 13M unannotated English
tweets drawn from Twitter’s public stream, from
between April 24 and May 6, 2015. As we had
very little recent data, we made no attempt to bias
the corpus to be entity-rich. This corpus of re-
cent tweets has an average tweet length of only
13.8 tokens. Our attempts to use this data to build
word representations did not improve NER perfor-
mance on the 2015 development set, regardless of
whether we used the data on its own or in combi-
nation with our larger corpus.

3 Methods

3.1 Base Tagger

We first summarize the approach of Cherry and
Guo (2015), which we build upon for our system.

Tagger: We tag each tweet independently us-
ing a semi-Markov tagger (Sarawagi and Cohen,
2004), which tags phrasal entities using a single
operation, as opposed to traditional word-based
entity tagging schemes. An example tag sequence,
drawn from the 2010 development data, is shown
in Figure 1. Semi-Markov tagging gives us the
freedom to design features at either the phrase or
the word level, while also simplifying our tag set.
Furthermore, with our semi-Markov tags, we find
we have no need for Markov features that track
previous tag assignments, as our entity labels co-
here naturally. This speeds up tagging dramat-
ically. Semi-Markov tagging also introduces a
hyper-parameter P , the maximum entity length in
tokens.

Training: Our tagger is trained online with
large-margin updates, following a structured
variant of the passive aggressive (PA) algo-
rithm (Crammer et al., 2006). We regularize the
model both with a fixed number of epochs E
through the data, and using PA’s regularization

term C, which is similar to that of an SVM. We
also have the capacity to deploy example-specific
C-parameters, allowing us to assign some exam-
ples more weight during training, which we use
only in post-competition analysis.

Lexical Features: Recall that our semi-Markov
model allows for both word and phrase-level fea-
tures. The vast majority of our features are word-
level, with the representation for a phrase being
the sum of the features of its words. Our word-
level features closely follow the set proposed by
Ratnaparkhi (1996), covering word identity, the
identities of surrounding words within a window
of 2 tokens, and prefixes and suffixes up to three
characters in length. Each word identity feature
has three variants, with the first reporting the orig-
inal word, the second reporting a lowercased ver-
sion, and the third reporting a summary of the
word’s shape (“Mrs.” becomes “Aa.”) All word-
level features also have a variant that appends the
word’s Begin/Inside/Last/Unique position within
its entity. Our phrase-level features report phrase
identity, with lowercased and word shape variants,
along with a bias feature that is always on. Phrase
identity features allow us to memorize tags for
common phrases explicitly. Following the stan-
dard discriminative tagging paradigm, all features
have the tag identity appended to them.

Representation Features: We also produce
word-level features corresponding to a number of
external representations: gazetteer membership,
Brown clusters (Brown et al., 1992) and word em-
beddings. For gazetteers, we first segment the
tweet into longest matching gazetteer phrases, re-
solving overlapping phrases with a greedy left-to-
right walk through the tweet. Each word then gen-
erates a set of features indicating which gazetteers
(if any) contain its phrase. For cluster representa-
tions, we train Brown clusters on our unannotated
corpus, using the implementation by Liang (2005)
to build 1,000 clusters over types that occur with
a minimum frequency of 10. Following Miller
et al. (2004), each word generates indicators for
bit prefixes of its binary cluster signature, for pre-
fixes of length 2, 4 8 and 12. For word embed-
dings, we use an in-house Java re-implementation
of word2vec (Mikolov et al., 2013a) to build 300-
dimensional vector representations for all types
that occur at least 10 times in our unannotated cor-
pus. Each word then reports a real-valued feature
(as opposed to an indicator) for each of the 300
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Ducks	  	  sign	  	  LW	  Beleskey	  	  	  to	  	  2-‐year	   extension	   -‐	   San	  Jose	  Mercury	  News	   h=p://dlvr.it/5RcvP	   #ANADucks	  

Team	   O	   Person	   O	   O	   O	   O	   Other	   O	   O	  

Figure 1: An example of semi-Markov tagging.

dimensions in its vector representation. A single
random vector is created to represent all out-of-
vocabulary words. Our vectors and clusters cover
2.5 million types. Note that we do not include
part-of-speech tags as features, as they were not
found to be useful by Cherry and Guo (2015).

3.2 Updated Gazetteers
During development, we found that features in-
volving gazetteers were having a larger impact on
dev than on dev 2015. Therefore, we enhanced
the gazetteers provided with the W-NUT base-
line system with our own Freebase queries, is-
sued between May 6–7, 2015. These updates
are summarized in Table 1. The baseline lexi-
cons for which we could infer Freebase categories
were replaced with updated queries, indicated with
new=no. We also added a number of entirely new
queries (new=yes). Any baseline lexicon that is
not mentioned in Table 1 was left untouched, and
remains included in our updated gazetteers.

3.3 Phrase Embeddings
The work of Passos et al. (2014) suggests that em-
beddings built over phrases may be more useful to
NER than those built over words. To test this for
our tagger, we use the phrase finding tool provided
with word2vec to segment our unannotated corpus
into phrases up to 4 tokens in length (Mikolov et
al., 2013b). Their software uses a simple statis-
tic similar to pointwise mutual information to as-
sess whether two tokens should be combined into
a phrase. Token-pairs passing a threshold are
segmented into phrases, creating a new corpus.
Phrases longer than 2 tokens can be generated by
running this process repeatedly, allowing, for ex-
ample, Toronto to merge with Maple Leafs on the
second pass. Once the phrasal corpus has been
created, we run word2vec as usual. There is no
reason the same procedure could not be applied to
Brown clustering, only time constraints prevented
us from doing so.

The resulting phrase embeddings are used in
place or word embeddings, mostly for efficiency
considerations. We assign each word in the tweet
to its longest embedded phrase that matches the
tweet, resolving conflicts with a greedy, left-

to-right matching process. Each word is then
assigned a vector corresponding to its matched
phrase, meaning that the same vector will be re-
peated for each token in its phrase. This has the
property of having words receive different repre-
sentations, depending on their context. Otherwise,
the embedding features are identical to those de-
scribed in Section 3.1. Phrase embeddings enable
more gazetteer matches for gazetteer-infused vec-
tors, which we discuss next.

3.4 Gazetteer-Infused Phrase Vectors

We employ an auto-encoder to leverage knowl-
edge derived from domain-specific gazetteers to
make the distributed phrase representations more
relevant to our NER task. In recent years, two
sources of information have been found to be
valuable to boost the performance for NER: dis-
tributed representation learned from a large corpus
and domain-specific lexicons (Turian et al., 2010;
Cherry and Guo, 2015). Research has also shown
that merging these two forms of information can
result in further predictive improvement for an
NER system (Passos et al., 2014). A similar strat-
egy for enhancing word embeddings has also been
demonstrated for sentiment analysis (Tang et al.,
2014). Following this line of research, we aim to
tailor (post-process) the unsupervised phrase em-
beddings, created in Section 3.3, for our NER task,
using an auto-encoder.

The auto-encoder eliminates the need to have
access to the original training data and the vec-
tor training model, requiring only the trained dis-
tributed vectors. In this sense, it can be considered
computationally lighter than the above mentioned
information fusion methods.1 Our approach is in-
spired by Ngiam et al. (2011) and Glorot et al.
(2011), where auto-encoders are efficiently de-
ployed to generate improved features for domains
or modalities that are different from those of its
inputs. Here, we employ an auto-encoder to inject

1In practice, a number of popular sets of pre-
trained embedding vectors, trained with very large cor-
pora, are made available online to the research com-
munity, but without the original training data; such as
some sets from http://nlp.stanford.edu/projects/glove/ and
https://code.google.com/p/word2vec/
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Gazetteer # new
architecture.museum 9k no
architecture.structure 111k yes
broadcast.tv channel 1k no
business.brand 9k no
business.consumer company 2k no
business.consumer product 439k no
business.employer 282k yes
business.sponsor 2k no
business.company 393k yes
location.location 1,336k no
location.citytown∗ 189k yes
location.country 1k no
location.state province region∗ 66k yes
film.film 262k yes
music.artist 613k yes
music.musical group 195k yes
people.family name 6k no
people.person 3,200k no
business.product line 439k no
sports.professional sports team 1k yes
sports.school sports team 2k yes
sports.sports facility 7k yes
sports.sports league 4k no
sports.sports team 33k no
tv.tv network 3k no
tv.tv program 74k no
tv.tv series episode 1,316k yes

Table 1: The Freebase gazetteers we either up-
dated (new=no) or added (new=yes) to the baseline
gazetteers. Freebase categories can be recovered
by replacing “.” with “/”. Gazetteers marked with
a ∗ were extracted from /location/mailing address
using the indicated property name.

relevant entity type information derived from our
gazetteers into the pre-trained phrase representa-
tions.

Using learned phrase vectors as input, the auto-
encoder’s goal is to reconstruct both the provided
input vector V and its entity types, as derived from
the collected gazetteers. In our experiments, we
assume the entity membership vector has a 0-1 en-
coding. That is, if there are G lexicon types, then
it has length G, where a 1 indicates membership
in the corresponding gazetteer. We implement the
squared error as the reconstruction cost criterion
for the auto-encoder training:

[V ; G] = f(Wdf(WeV + be) + bd)

where f denotes the hyperbolic tanh function,

while be and bd are the biases for the encoder and
decoder, respectively. We initialize the parame-
ters, namely the decoder matrix Wd and encoder
matrix We, by randomly sampling each value from
a uniform distribution [-0.1, +0.1]. Our experi-
ments use a learning rate of 0.001 and a moment of
0.9. We found the optimal size for the hidden en-
coding layer to be 200 nodes. The auto-encoder is
trained using Stochastic Gradient Descent (SGD)
with 100 iterations, which converges very well for
our data.

With the above experimental settings, our
Gazetteer-Infused phrase vectors are created with
two stages. During the initial phase, we select the
69,329 phrases that are shared by both the phrase
vectors and the collected gazetteers. The resulting
set of phrases is a very small fraction of the to-
tal of 4.5M vector entries created in Section 3.3.
Consequently, the overwhelming number of neg-
ative examples causes a highly imbalanced class
distribution problem for the gazetteer membership
component of our auto-encoder (Guo and Viktor,
2004). To cope with this skewed class challenge,
we randomly down-sample the negative training
data to balance the negative and positive instances.
These rebalanced data are then fed into the auto-
encoder to optimize the parameter matrices. In
the second stage, the trained auto-encoder is used
to generate a new vector [V ; G] for every phrase
created in Section 3.3. These gazetteer-infused
phrase vectors include a decoded version of the
original embedding V , as well as explicit soft pre-
dictions of gazetteer membership in G. Note that
we apply this process for all 45 of our gazetteers,
and not just those that correspond directly to the
types tagged in this task.

4 Results

We have collected results for our submitted sys-
tem, along with some salient pre- and post- com-
petition variants in Table 2. We discuss these re-
sults in detail below.

4.1 Competition Results

Our submitted system is shown as [A]+[U], and in-
cludes all of the features described in Section 3. It
achieves our highest results on both dev 2015 and
the average of dev and dev 2015, and its perfor-
mance on test was sufficient to place third in the
competition.
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dev dev 2015 test
System P R F P R F Avg F P R F Rnk
Baseline 57.0 44.4 49.9 38.5 30.9 34.3 42.1 35.6 29.1 32.0 -
Our Baseline 64.6 38.5 48.2 47.7 27.2 34.7 41.5 44.4 23.3 30.6 8
C&G 2015 68.6 50.3 58.0 56.4 41.9 48.1 53.1 49.8 36.5 42.1 5
Inc. Regularization 70.7 50.8 59.2 57.2 42.3 48.6 53.9 51.4 36.8 42.9 4
[P]hrase vectors 69.4 50.8 58.7 58.0 42.7 49.2 53.9 52.6 37.8 44.0 3
[A]dapted vectors 70.0 51.7 59.5 59.9 42.3 49.6 54.5 52.2 37.5 43.7 4
[U]pdated gazetteers 68.5 51.4 58.8 57.4 42.7 49.0 53.9 52.0 37.4 43.5 4
[P]+[U] 73.7 54.2 62.5 59.7 44.1 50.7 56.6 53.2 38.9 44.9 3
[A]+[U] (Submitted) 72.8 53.4 61.6 62.4 44.5 51.9 56.8 53.2 38.6 44.7 3
+ dev - - - 59.0 44.5 50.7 - 54.9 41.0 46.9 3
+ dev + dev 2015 - - - - - - - 62.5 47.8 54.2 2

Table 2: Experimental results for variants of our system, reporting Precision, Recall and balanced F-
measure. The Avg F column lists the average F-measure across dev and dev 2015, which was our model
selection criterion. The Rnk column lists the retro-active rank of each system in the competition.

4.2 Ablation

The systems above [A]+[U] are intended to
demonstrate our development process. Our base-
line is our attempt to re-implement the provided
baseline in our code base, and includes all lexical
features and the baseline gazetteers.

C&G 2015 adds Brown clusters and word em-
beddings to create a complete re-implementation
of Cherry and Guo (2015). We can see that these
representations have a huge impact on NER per-
formance for all dev and test sets.

We then performed a careful hyper-parameter
sweep using the two provided development sets,
resulting in the Inc. Regularization system. The
hyper-parameters suggested by Cherry and Guo
(2015) (E=10, C=0.01, P=10) were selected to
work well with and without representations. We
found that once we have committed to using rep-
resentations, the tagger benefits from increased
regularization, so long as we allow the model to
converge (E=30, C=0.001, P=8). Although we
revisited these settings periodically, these hyper-
parameters have proved to be quite stable, and we
use them for all remaining experiments.

The next three systems test the three extensions
described in Section 3. Neither [P]hrase vectors
nor [U]pdated gazetteers were able to improve
both dev and dev 2015 when applied alone, while
the [A]dapted vectors did boost performance on
both sets, increasing average F-measure by 0.6. In
particular, the adapted vectors improved the rare
entity types such as movie and sports team. Unfor-
tunately, these improvements do not seem to carry

over to the test set.
As we combine the ideas with [P]+[U] and

[A]+[U], we see even larger improvements on
both development sets. Note that adapted vec-
tors implicitly include phrase vectors, as those are
the vectors that have been adapted. These ideas
may work better in combination because both our
phrase vectors and our updated gazetteers include
many noisy phrasal entries, but their sources of
noise are independent, allowing one to compen-
sate for the other.

4.3 Post-Competition Results

All systems discussed thus far have been trained
only on the official training data. The final two
systems in Table 2 test the impact of adding dev
(599 tweets from 2010) and dev 2015 (420 tweets
from 2014–2015) to the 1,795 training tweets.
When training with dev 2015, we take advan-
tage of our system’s data-weighting capabilities
to assign these examples twice as much weight;
this hyper-parameter was selected only based on
dev 2015’s relatively small size, and we did not
test any other values for it. As one can see, both
development sets have a significant impact on test
performance, with dev 2015 producing a 7.3 point
improvement in F-measure, eclipsing the impact
of all other enhancements to our system.

We chose not to include dev in our final system
because it did not appear to have a positive impact
on dev 2015. We chose not to include dev 2015
in our final system because cross validation exper-
iments, where we train including half of dev 2015
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and then test on the other half, indicated that its
impact would be minimal (less than 1 point of
F-measure), and we did not want to discard the
safety net that a held-out development set provides
when selecting a final system. In retrospect, this
was a fairly large mistake.

4.4 Dev-Test Data Analysis

Does this mean that 420 examples drawn from a
time period close to that of the test set will consis-
tently provide 7 points of F-measure? We do not
believe so, for at least two reasons: time overlap
and Twitter bots.

Time overlap: dev 2015 and test appear to have
both been drawn from overlapping periods of time.
Though the tweets provided for development and
test were not dated, we can infer the date spans
from various bots that tweet the date, producing
tweets like:

@ABCD http://t.co/MA3WYTR72Q
February 02 , 2015 at 10:57 PM

throughout both sets. Using the regular expression
“(December|(Jan|Febr)uary) [0-9]+ , 201[4-5] at”
we were able to find tweets between December 11,
2014 and February 4, 2015 in dev 2015, and be-
tween December 12, 2014 and February 5, 2015
in test. This means that both sets contain the same
major holidays, such as Christmas, and sporting
events, such as Super Bowl 49. Accordingly, our
post-competition system sees its largest improve-
ments in the types sports team and other (which
covers many event names). These sorts of im-
provements are not necessarily indicative of how
a system trained on data from the past will per-
form on new data, which is a common use case for
NER. This also highlights the importance of hav-
ing an NER system’s training data be drawn from
throughout the year. The official training data has
no mention of the Super Bowl and very few of
Christmas, despite these being yearly events.

Twitter bots: bots are common in both dev 2015
and test, but much less prominent in train and dev,
perhaps reflecting an overall change in twitter traf-
fic between 2010 and 2015. For the most part,
bots are harmless, and a system should be tested in
terms of its ability to ignore these sources of noise.
However, some bots tweet entities in an extremely
formulaic manner, and a discriminative NER sys-
tem needs to see very few tweets from such a bot
in order to tag it consistently. One such example

from this competition is the horoscope bot, which
produces tweets that look like:

Your boss may be critical of your easy-
going attitude at work t ... More for
Cancer http://t.co/74bwPzVbiB

This bot can be detected reliably with the regu-
lar expression “[.][.][.] More for [A-Z]”. In the
gold-standard annotations, tweets from this bot
consistently have the astrological sign (Cancer in
this case) tagged as other. While this bot ap-
pears only 4 times in dev 2015, it appears 23 times
in test. If we remove these 23 tweets from the
test set, our submitted system increases is per-
formance to a Precision / Recall / F-measure of
53.5 / 40.0 / 45.8, while our best post-competition
system decreases to 61.0 / 46.2 / 52.6, narrowing
the gap in F-measure by 2.6 points. The ability
to extract entities from formulaic bots such as this
one could be useful, but the core purpose of NER
technology is to enable the extraction of informa-
tion from human-written text.

5 Conclusion

We have summarized our entry to the first W-NUT
Named Entity Recognition in Twitter task. Our
entry extends the work of Cherry and Guo
(2015) with updated lexicons, phrase embeddings,
and gazetteer-infused phrase embeddings. Our
gazetteer infusion technique is novel in that it
allows us to adapt existing vectors, regardless
of their source. Taken together with improved
hyper-parameters, these extensions improve the
approach of Cherry and Guo (2015) by 2.6 F-
measure on a completely blind test. Our final sub-
mission achieves a test F-measure of 44.7, placing
third in the competition, and could have achieved
an F-measure of 54.2 had we included all devel-
opment data as training data. We have also pre-
sented a discussion of how the most recent devel-
opment set relates to the test set, arguing that these
results likely over-estimate the impact of a small,
in-domain training set on NER performance.
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Abstract

In this paper we propose a differential evo-
lution (DE) based named entity recogni-
tion (NER) system in twitter data. In
the first step, we develop various NER
systems using different combinations of
the features. We implemented these fea-
tures without using any domain-specific
features and/or resources. As a base clas-
sifier we use Conditional Random Field
(CRF). In the second step, we propose
a DE based feature selection approach to
determine the most relevant set of fea-
tures and its context information. The op-
timized feature set applied to the train-
ing set yields the precision, recall and F-
measure values of 60.68%, 29.65% and
39.84%, respectively for the fine-grained
named entity (NE) types. When we con-
sider only the coarse-grained NE types, it
shows the precision, recall and F-measure
values of 63.43%, 51.44% and 56.81%, re-
spectively.

1 Introduction

During the last few years there has been a phe-
nomenal growth in the number of users that make
use of different social networking platforms to
share their opinions and views. Twitter now has
upto over 500 million users with approx 302 mil-
lion active users 1. One can easily imagine that
amount of tweets generated per day would be
enormous i.e. almost 500 million tweets per day
2. These information are usually unstructured and
noisy in nature. The reason behind its unstruc-
tured nature is that tweets are rather short mes-
sages (constitute upto 140 characters only), con-
tains several grammatical & spelling mistakes etc.

1http://en.wikipedia.org/wiki/Twitter
2http://www.cnet.com/news/report-twitter-hits-half-a-

billion-tweets-a-day/

The size limitation bounds a user to invent sev-
eral short forms (e.g. 2mrw, tmrw for tomorrow)
of a valid word which a human mind can interpret
easily but, on the other hand, becomes very diffi-
cult to come up with an accurate system for solv-
ing any problem related to natural language pro-
cessing (NLP). Also in order to show their emo-
tions, users sometime put extra emphasis by elon-
gating a valid word (e.g. yeeesssss!! for yes).

Named entity recognition (NER) can be seen
as one of the important and foremost tasks for
many natural language processing (NLP) tasks
such as machine translation, information extrac-
tion, question-answering etc. The task of NER
can be thought of as a two-step process that in-
volves identifying proper names from the text and
classifying them into some predefined categories
such as person, organization, location etc. Al-
though the techniques (Bikel et al., 1999; Ekbal
and Bandyopadhyay, 2008a; Ekbal and Bandy-
opadhyay, 2008b; Sikdar et al., 2012) for recog-
nizing named entities (NEs) in newswire and other
well-formatted traditional corpus has already ma-
tured but it is still a challenging task to perform in
unstructured and noisy twitter data.

The concept of NER in twitter has recently
drawn the attention of researchers worldwide.
Very few authors have reported their works (Liu
et al., 2011; Ramage et al., 2009; Li et al., 2012)
for NER in twitter. A semi-supervised model for
NER has been reported in (Liu et al., 2011) where
K-nearest neighbour classifier is combined with
CRF. Application of LabeledLDA (Ramage et al.,
2009) in supervised environment can be found in
(Ritter et al., 2011). Their method classifies NEs
into fine-grained types of 10 classes (as in our
case). In another work (Li et al., 2012), authors
have used random walk model to build an unsu-
pervised approach to NER. They modelled their
system on local(tweets) and global (www) context
without employing any of the linguistic features.
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Few more related works can be found in (Derczyn-
ski et al., 2015) and (Locke and Martin, 2009).

Due to several challenges it pose, recently there
has been a huge interest to identify NE in twit-
ter data. In compliance with this a shared task
“ACL2015 W-NUT: Named Entity Recognition
in Twitter”3 was organized. The work that we
report here is a part of this shared task. The
main objective of the shared task was to effi-
ciently identify various coarse-grained and fine-
grained named entities. Fine-grained NE types
include 10 different categories namely, person,
product, company, geo-loc, movie, musicartist,
tvshow, facility, sportsteam and other. We have
used a rich feature set based on lexical and syntac-
tic properties of a tweet as discussed in Section
3.9. Our proposed work uses Conditional Ran-
dom Field (CRF) (Lafferty et al., 2001) as learning
algorithm, which is very efficient as a sequence
learner. Subsequently we have applied Differen-
tial Evolution (DE), a stochastic, population based
optimization algorithm, introduced by Storn and
Prince in 1996 (Storn and Price, 1997), to obtain
the optimal feature set for NER in twitter data.

The organization of the paper is as follows. Sec-
tion 2 provides a very brief theoretical discussion
of DE. Feature set and methodology used in the
proposed work are discussed in Section 3. Experi-
mental result and analysis can be found in Section
4. We conclude the paper in Section 5.

2 MultiObjective Differential Evolution
(DE)

Differential Evolution (DE) (Storn and Price,
1997) is a heuristic search optimization technique
and it provides near optimal solution for an opti-
mization problem. Within a search space the pa-
rameters are encoded in the form of string, which
is called chromosome/vector. A chromosome is,
therefore, nothing but of D number of real val-
ues. A collection of such types of chromosomes
is called population. A fitness value is associ-
ated with each chromosome. For single objective
optimization the fitness value depends upon the
these D number of real parameters. For multiob-
jective optimization, more than one fitness value
is associated with each chromosome. The fitness
value denotes the goodness of the chromosome.
DE generates new vector by adding the weighted
difference between two vectors to the third vec-

3http://noisy-text.github.io/

tor. This operation is called the mutation. In the
next step, the mutant vector parameters are mixed
with the parameters of the predefined vector. The
new vector is termed as the trial vector, and the
parameter mixing process is called crossover. The
best vectors are selected from the trial vectors. The
process of selecting new vectors from the current
population is known as selection. The algorithm
that we follow for this is known as the crowding
distance sorting algorithm. The processes of mu-
tation, crossover and selection continue for a fixed
number of generation.

3 Methods

The proposed system is consisting of two steps.
In the very first step we generate many models
based on the best fitting feature sets. Following
this heuristic based approach we select the best
model by fine-tuning on the development data. In
the second step we develop a multiobjective DE
based feature selection approach to find out the
best feature combinations and its contextual infor-
mation from the selected feature set. Schematic
diagram of the proposed system is depicted in fig-
ure 1.

3.1 Problem Formulation

Suppose there are D features available, and these
are denoted by F1, . . . , FD, where A = {Fi : i =
1; D} Determine the subset of features A′ ⊆ A
such that we learn a classifier with these subset of
features and optimize some metrics. In our pro-
posed multiobjective DE, we optimize two func-
tions, namely precision and recall.

3.2 Problem Representation and Population
Initialization

All the chromosomes are initialized with the bi-
nary values of either 0 or 1, where 1 denotes that
the corresponding feature is present and 0 denotes
that the corresponding feature is off. Total number
of available features denote the length of the chro-
mosome, and we set this as D. A classifier learns
with the available set of features. One example of
chromosome representation is shown in Figure 2.

3.3 Fitness Computation

The fitness computation corresponds to determin-
ing the values precision and recall as two objective
functions. If M number of features are present in
the chromosome, a classifier is trained with these
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(a)

(b)

Figure 1: Proposed methodology (a) Step 1 (b)
Step 2.

Figure 2: Chromosome representation: Here
#available features = 15 and #features present =
8

M number of features. The classifier is then evalu-
ated on the development data. We calculate preci-
sion and recall as the two objective functions. The
goal is to maximize these two functions.

3.4 Mutation

In mutation process, a mutant vector Vi,G+1 is
generated for each target vector Xi,G; i =
1, 2, 3, . . . , NP , according to

Vi,G+1 = xr1,G + F × (xr2,G − xr3,G), (1)

where r1, r2, r3 are generated randomly with dif-
ferent indices, not equals to current index i and be-
long to {1, 2, . . . , NP}, G is the generation num-
ber and F is the mutant factor which is set to 0.5. If

the parameters of mutant vector vi,j,G+1 > 1, then
the parameter values are set to 1. If the parameters
of mutant vector vi,j,G+1 < 0, then the parameter
values are set to 0.

3.5 Crossover
To generate better solutions (represented by the
chromosomes) to the next generation population,
crossover is needed. The parameter mixing of
the target vector Xi,G and mutant vector Vi,G+1 is
called crossover. Crossover generates a trial vector
as follows:

Ui,G+1 = (u1,i,G+1, u2,i,G+1, . . . , uD,i,G+1) (2)

where

uj,i,G+1 = vj,i,G+1 if (rj ≤ CR) or j = ir (3)

= xj,i,G if (rj > CR) and j 6= ir (4)

for j = 1, 2, . . . , D, where rj is an uniform ran-
dom number of the jth evaluation which belongs
to [0, 1] and CR is crossover constant which is set
to 0.5. The index value ir belongs to {1, 2, . . . , D}
that ensures that at least one parameter of trial vec-
tors Ui,G+1 gets one parameter from the mutant
vector Vi,G+1.

3.6 Selection
In selection process, trial vectors are merged with
the current population to get the best NP solu-
tions from the merged solutions 2 × NP in the
next generation population. The merged solutions
are sorted based on dominated and non-dominated
concept and generate ranked solutions. As an ex-
ample, the dominated and non-dominated sorting
are shown in Figure 3. The non-dominated solu-
tions are represented in the pareto-optimal surface.
The non-dominated solutions are added to the next
generation population until the number of solu-
tions becomes equal to NP . If the number of so-
lutions in a particular rank exceeds NP , then it is
sorted based on crowding distance algorithm. The
required number of solutions are added from the
beginning of the sorted rank to make NP number
solutions in the next generation population. The
selection process determines the best NP number
of solutions in the next generation population.

3.7 Termination Condition
Mutation, fitness computation, crossover and se-
lection processes run for a maximum number of
generations. At the end, we get a set of non-
dominated solutions.
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Figure 3: Representation of dominated and non-
dominated solutions

3.8 Selecting the best solution

The multiobjective optimization (MOO) based al-
gorithm yields a set of solutions on the Pareto op-
timal front at the end. None of these solutions
is better compared to the others. However, we
may often require to find out a solution at the
end. Depending upon the user’s requirements dif-
ferent criteria for selecting the best solutions can
exist. Each feature vector of the final Pareto op-
timal front generates a classifier. We compute the
F-measure value on the development set for each
classifier. We select the solution which reports
highest F-measure value. The features encoded in
this chromosome is used to train a CRF and report
the final evaluation on the test data.

3.9 Feature Set

In this section we describe the features that we
implement for performing NER. The features
are domain-independent and we implement these
without using any external resources and/or tools.

1. Local context: We use local contextual in-
formation as the features of CRF. We use pre-
vious few and succeeding few words as the
features for learning.

2. Part-of-Speech information: PoS informa-
tion is one of the prominent features in iden-
tifying the NE. We have used CMU-ARK
Twitter NLP tool4 for extracting the PoS in-
formation. We use the PoS information of
preceding and succeeding few tokens as the
features.

4http://www.ark.cs.cmu.edu/TweetNLP/

3. Word length: From the given training data
we observed that NEs generally become
longer in lengths. We define a feature that
is set to high if the length of the candidate
token exceeds a predetermined threshold. In
our case we assume the token to be a NE if if
its length exceeds 5 characters.

4. Suffix and Prefix: Suffixes and prefixes of
length upto 4 characters of the current word
are used as the features.

5. Word normalization: We normalize the cur-
rent token and use it as a feature. For normal-
ization we map the capitalized letter to ‘A’,
small letter to ‘a’ and numbers or symbols to
‘x’.

6. Previous word: We prepare a list of most
frequent words that appear before a NE in the
training data. A binary valued feature is then
defined that fires if the current word appears
in this list.

7. Stop word: This checks whether the current
word appears in the list of stop words or not.
We obtain the list of stop words available at
5.

8. Uppercase: This feature checks whether the
current word starts with a capital letter or
contains a upper case letter inside the word
or all the characters of the word are capital-
ized.

9. All digit: This feature checks whether the
current token is consisting of only digits.

10. AlphaDigit: Tokens having combination of
alphabet and digit have less probability of be-
ing a NE. This concept is used to define a bi-
nary feature in the proposed work which fires
when the token is alphanumeric.

11. First & last word: Tweet level information
are employed for defining two features i.e. if
the current token is the first or last word of a
particular tweet.

12. Word frequency: We observe that most fre-
quently occurring words have a tendency of
not being NE. We prepare a list of most fre-
quent words from the training data. A binary

5http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words
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valued feature is then defined that checks
whether the current word appears in this list
or not.

13. Gazetteer: We prepare a list of NEs from
the training and development datasets. Along
with the NE we also store the NE types. We
define an integer-valued feature that takes the
value that corresponds to the respective NE
type.

4 Datasets and Experiments

In this section we firstly describe the datasets and
then report the evaluation results.

4.1 Data Set
As discussed earlier, objective of the shared task
was to identify both the coarse-grained and fine-
grained NE from the tweets. Shared task orga-
nizers provided two separate versions of train-
ing (trainnotype and train10type) datasets and
four versions of development datasets (devnotype,
dev2015notype, dev10type and dev201510type).
The training dataset comprise of 1,795 tweets
while development datasets comprises of 599 &
420 tweets for dev and dev2015, respectively. A
total of 1,768 NEs are present in the dataset, out
of which 1,140 are present in the training set and
rest 628 are present in the development set. Brief
statistics of the datasets are shown in Table 1 and
Table 2 for the coarse-grained NE tagged and fine-
grained NE tagged datasets, respectively. Gold
standard test datasets comprise of 1,000 tweets.

Dataset # Tweets # Token # NE
train 1795 34899 1140
dev 599 11570 356

dev2015 420 6789 272
test2015 1000 16261 -

Table 1: Statistics of the coarse-grained dataset

4.2 Experimental Results
As a base learning algorithm we make use of
Conditional Random Field (CRF)(Lafferty et al.,
2001). We use the CRF++ 6 based package for
our experiments. Evaluation of all the systems
are performed in compliance with CoNLL 2002
evaluation script7 as recommended in the shared

6http://taku910.github.io/crfpp/
7http://www.cnts.ua.ac.be/conll2002/ner/bin/conlleval.txt

Types train dev dev2015
person 332 117 73
product 79 18 9

company 130 41 33
geo-loc 218 58 46
movie 31 3 3

musicartist 43 12 13
tvshow 26 8 6
facility 84 20 7

sportsteam 33 18 35
other 164 61 47

Table 2: Statistics of the fine-grained dataset.

task. For comparative analysis a baseline system
was also provided by the organizers for both fine-
grained and coarse-grained versions. We started
our experiments by training the model on the fea-
tures defined in Section 3.9. Iteratively we have
trained, tested and evaluated the system in order to
find out the best fitting feature sets. Afterwards we
shifted our focus to DE for optimizing the feature
set in terms of relevant features and its context in-
formation. DE was initialized with the population
size equal to 100, and it was executed for 50 gener-
ations. We have carried out these experiments for
both fine-grained and coarse-grained datasets. On
termination, multiobjective differential evolution
(MODE) reported optimized feature combinations
for both the types of datasets. At the final step
these optimized feature combinations were used to
build the final system. We show the optimized fea-
ture sets as determined by MODE in Table 3.

Results of various models along with the base-
line are reported in Table 4. The upper half of the
table contains the experimental results for three
systems. These three models correspond to the of-
ficial baseline model, model developed with all the
features and the model developed with the selected
features of DE. The MODE based feature selec-
tion model yields the F-measure value of 56.81%
for the test2015 dataset. It is evident that it per-
forms well above the official baseline that showed
the F-measure value of 49.88%. Similarly for the
fine-grained NE types (lower half of the table) our
system (39.84% F-measure) is convincingly ahead
of the baseline model (31.97% F-measure) for the
official test data (test2015).
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Types Dataset Model Precision Recall F-measure Accuracy
Baseline 65.25 55.90 60.21 96.95

dev All features 65.08 57.58 61.10 96.92
MODE 69.81 62.36 65.88 97.12
Baseline 55.79 49.82 52.63 95.08

notype dev2015 All features 51.49 50.92 51.21 94.31
MODE 60.97 53.51 57.43 95.60
Baseline 53.86 46.44 49.88 95.01

test2015 All features 52.37 56.32 54.27 95.55
MODE 63.43 51.44 56.81 95.50
Baseline 57.04 44.38 49.92 96.44

dev All features 61.23 39.04 47.68 96.29
MODE 70.71 39.33 50.54 96.43
Baseline 38.53 30.88 34.29 94.14

10type dev2015 All features 37.14 23.90 29.08 93.50
MODE 48.33 24.26 32.35 94.33
Baseline 35.56 29.05 31.97 93.41

test2015 All features 42.41 30.00 35.14 94.94
MODE 60.68 29.65 39.84 94.54

Table 4: Results of various systems on different dataset. All values are in %.

Features C-grained F-grained
POS

√ √
WordLength

√ √
Suffix

√ √
Prefix

√ √
WordNorm

√ √
PrevOccur

√
Stop word

InitCap
√

AllCap
InnerCap

√
AllDigit

AlphaDigit
√ √

First & last word
WordFreq
Gazetteer

√

Table 3: Optimized feature sets.

5 Conclusion

In this paper we have presented our works that
we carried out as part of our participation in the
Twitter NER shared task. We have used a set of
features which were implemented without using
much domain specific resources and/or tools. We
have considered various combinations of features
and finally select the combination that yields the

best result. We further apply MODE based feature
selection on this feature set. Official evaluation
shows F-measure of 39.84% for the fine-grained
NE types and 56.81% F-measure for the coarse-
grained NE type.

In future we would like to carry out more com-
prehensive analysis on the evaluation results. The
features that we used here are very general in
nature. In future we would like to investigate
domain-specific features to improve the accuracy
of the system.

References

Daniel M. Bikel, Richard Schwartz, and Ralph M.
Weischedel. 1999. An algorithm that learns what’s
in a name. Mach. Learn., 34(1-3):211–231, Febru-
ary.

Leon Derczynski, Diana Maynard, Giuseppe Rizzo,
Marieke van Erp, Genevieve Gorrell, Raphal Troncy,
Johann Petrak, and Kalina Bontcheva. 2015. Anal-
ysis of named entity recognition and linking for
tweets. Information Processing & Management,
51(2):32–49.

Asif Ekbal and Sivaji Bandyopadhyay. 2008a. Bengali
named entity recognition using support vector ma-
chine. In Third International Joint Conference on
Natural Language Processing, IJCNLP 2008, Hy-
derabad, India, January 7-12, 2008, pages 51–58.

66



Asif Ekbal and Sivaji Bandyopadhyay. 2008b. Named
entity recognition in indian languages using maxi-
mum entropy approach. Int. J. Comput. Proc. Ori-
ental Lang., 21(3):205–237.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling
Sequence Data. In ICML, pages 282–289.

Chenliang Li, Jianshu Weng, Qi He, Yuxia Yao, An-
witaman Datta, Aixin Sun, and Bu-Sung Lee. 2012.
Twiner: Named entity recognition in targeted twit-
ter stream. In Proceedings of the 35th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’12, pages
721–730, New York, NY, USA. ACM.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages
359–367, Stroudsburg, PA, USA. Association for
Computational Linguistics.

B. Locke and J. Martin. 2009. Named entity recog-
nition: Adapting to microblogging. University of
Colorado.

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled lda: A su-
pervised topic model for credit attribution in multi-
labeled corpora. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume 1 - Volume 1, EMNLP ’09,
pages 248–256, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 1524–1534, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Utpal Kumar Sikdar, Asif Ekbal, and Sriparna Saha.
2012. Differential evolution based feature selection
and classifier ensemble for named entity recogni-
tion. In COLING 2012, 24th International Confer-
ence on Computational Linguistics, Proceedings of
the Conference: Technical Papers, 8-15 December
2012, Mumbai, India, pages 2475–2490.

Rainer Storn and Kenneth Price. 1997. Differential
evolution a simple and efficient heuristic for global
optimization over continuous spaces. J. of Global
Optimization, 11(4):341–359, December.

67



Proceedings of the ACL 2015 Workshop on Noisy User-generated Text, pages 68–71,
Beijing, China, July 31, 2015. c©2015 Association for Computational Linguistics

Lattice: Data Adaptation for Named Entity Recognition on Tweets with
Features-Rich CRF

Tian TIAN
Lattice / 1 Maurice Arnoux

92120 MONTROUGE
tian.tian@live.cn

Marco Dinarelli
Lattice / 1 Maurice Arnoux

92120 MONTROUGE
marco.dinarelli@ens.fr

Isabelle TELLIER
Lattice / 1 Maurice Arnoux

92120 MONTROUGE
isabelle.tellier@univ-paris3.fr

Abstract

This article describes our CRF named en-
tity extractor for Twitter data. We first dis-
cuss some specificities of the task, with an
example found in the training data. Then
we present how we built our CRF model,
especially the way features were defined.
The results of these first experiments are
given. We also tested our model with
dev 2015 data and we describe the pro-
cedure we have used to adapt older Twit-
ter data to the data available for this 2015
shared task. Our final results for the task
are discussed.

1 Introduction

In this shared task, we have to extract 10 types of
(or not typed) named entities in Twitter data. We
have at our disposal two labelled corpora: train
and dev. The first section shows some specifici-
ties of the data, from an example it contains. We
then construct a CRF model for the task, using the
software Wapiti. Our features for this CRF are
chosen according to the state-of-the-art, they are
described in the second section. The third section
focuses on some experiments with train and dev
and gives the obtained results. The fourth section
is about the procedure we have used to build our fi-
nal model, by applying a domain adaptation strat-
egy. In the last section, we discuss some future
work for this shared task.

2 Data Analysis

Although named entity recognition is a traditional
task of natural language processing (NLP) which
has given rise to a large body of works for writ-
ten English (Finkel et al., 2005) or news wires in
French (Stern and Sagot, 2010), the same task with
Twitter data remains difficult (Ritter et al., 2011).

Today wasz Fun cusz anna Came juss for me <3: hahaha

Figure 1: An example of tweet

This is not only because of the task itself, but also
because of the way tweets are written.

Figure 1 shows an example of tweet. The cor-
rect sentence should be: Today was fun because
Anna came just for me <3: hahaha. We can note
the following phenomena:

• spelling mistakes: wasz (was), cusz (be-
cause), juss (just)

• confusion of upper/lower cases: Fun (fun),
anna (Anna), Came (came)

• emoticon: <3

• interjection: hahaha

We remark here that the only name has no up-
per case letters whereas other words have upper
cases (like ”Fun”, ”Came”). So, it would be diffi-
cult for a named entity extractor to correctly detect
this person name.

3 CRF Implementation and Features

3.1 CRF Features

We used the CRF implementation Wapiti 1.5.0 1

to create our CRF model. The optimization al-
gorithm we chose was rprop+. The features for
the tokens are all in unigrams and within a win-
dow of size 3 (previous token, current token and
next token). The bigrams are only made of labels,
characterizing label transitions. Table 1 shows
the features we implemented. These templates
have been chosen following (Suzuki and Isozaki,
2008), (Lavergne et al., 2010), (Nooralahzadeh et
al., 2014) and (Constant et al., 2011)

1https://wapiti.limsi.fr
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token value
fstUpper
shortCap
longCap
mixCap

hasUpper
allUpper

capType: combination of 6 binary values
allLetter

singleLetter
tokenType: punctuation, 9, x or X

hasNumber
allNumber
isDecimal
onePunct
allPunct
hasPunct
longPunct

hasQuotation
hasAtLeast2periodes
finishedByPeriode

hasDash
lower

returnUnicodeVector
isEmal
isURL
isRT

isUSR
isHashTag

isDate
isTime

isAbbrev
prefixe n, suffixe n (n = 1..5)

postag in PTB: with binary values
category in Brown cluster: in binary tree

Table 1: CRF features

The capType features regroup 6 binary features:
allUpper, shortCap, longCap, allLower, fstUpper,
mixCap. The tokenType feature transforms a to-
ken into a ”skeleton”: in this skeleton, all num-
bers are replaced by 9, all letters in lower case by
x, all letters in upper case by X and the punctua-
tions remain unchanged. The part-of-speech tags
(postags) of the Penn Tree Bank (PTB) (Marcus et
al., 1993) generate 45 distinct features. Each tag
in the PTB becomes a feature with a binary value.
The ”category in Brown cluster” uses the result of
Brown clustering (Brown et al., 1992) executed
with 56,345,753 tweets available at http://

precision recall FB1
dev 69.01% 33.15% 44.78%

dev 2015 43.26% 22.43% 29.54%

Table 2: Experiment results with model trained on
train file

www.ark.cs.cmu.edu/TweetNLP/. The
class of each token is represented with 13 binary
values. These values represent therefore a binary
tree. Each value means one level in the binary
tree. So we took the first value for each token,
i.e. its category with only one level (two possible
values).We then took the first two values of each
token, resulting in the clustering of twitter tokens
into four classes, etc. We took until all 13 values,
to get the classes of the token at every level of the
binary tree.

3.2 Use of Lexical Resources

As they were attached with the available base-
line, we processed a set of entity dictionaries. We
tried to associate these dictionaries with the 10
types of entities defined for the shared task. We
deleted duplicated data (as we kept only cap.1000
but not cap.10 nor others, etc). Then we read
every item of the lists. As some items (enti-
ties) contain more than one token, we extracted
the first tokens (or the only token for one-token-
entities) and the remaining ones before storing
them into different lists. So, for every dictio-
nary we had, we created 2 lists: a ”B-dictionary”
and a ”I-dictionary”, preparing the BIO label-
ings. Finally, we integrated these dictionaries into
the model by binary values. For each token, if
it is present in a dictionary (B-dictionary or I-
dictionary), its value for the corresponding fea-
ture is set to 1, and 0 otherwise. And we could
always try with other ressources like FreeBase
https://www.freebase.com/ and dbpedia
http://dbpedia.org/.

4 Some Experiments and Results

With the templates defined in the previous sec-
tion, we used rprop+ as optimization algorithm
in Wapiti and we did some experiments (only
with the 10 distinct types of entities) with mod-
els trained with ”train” and tested on ”dev”, and
later tested on ”dev 2015”. Table 2 shows some of
these results.
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5 CRF Model Training with Domain
Data Adaptation

As we can see in the previous section, our first
model performs poorly on dev 2105 data com-
pared to dev. This suggests that the data in
dev 2015 are very different from the data in dev
and train. This intuition has indeed been con-
firmed by a quick data analysis.

As a consequence, we had the idea to perform
a kind of domain data adaptation, inspired by the
work of (Raymond and Fayolle, 2010). In this
context, the data we want to adapt is called source
domain. In our case, train and dev data play the
role of this source domain. The role of target do-
main is played by the new version of tweet data
provided for the shared task, that is dev 2105 data.
The approach described in (Raymond and Fayolle,
2010) mixes together data from the source domain
and from the target domain in order to train a CRF
model. The originality of this approach consists
in using more CRF features for the part of the data
constituting the target domain than features for the
data constituting the source domain. The conse-
quence of this choice is that the CRF models learn
word-label dependencies from both domains, but
put much stronger importance (feature scores) on
features in the target domain, since they are de-
scribed by more information (features).

We annotated afterwards the training data,
which we have already seen during the training
phase, with such a model. If the model can ap-
ply stronger dependencies learned from the target-
domain part of the training data, it will apply such
dependencies performing thus the desired adap-
tation. Otherwise it will apply the dependencies
learned from the source-domain part of the train-
ing data, thus keeping the old annotation.

We only applied an approximation of this do-
main adaptation procedure of (Raymond and Fay-
olle, 2010), because of a serious lack of time. In
order to create our final model, we trained our first
CRF model (with the templates mentioned in the
previous section) with dev 2015. We then applied
this first CRF model to train and dev to obtain
train crf and dev crf. So, these data are labelled
with our first CRF model. We got rid of the orig-
inal labels for train and dev. And, in the end, we
trained our final model (always with the same tem-
plates) with dev 2015, train crf and dev crf all to-
gether. We did the same procedure for the 10 types
entities and for no typed data. Our results are de-

precision recall FB1
10 types 55.17% 9.68% 16.47%
no type 58.42% 25.72% 35.71%

Table 3: Results with model trained on dev 2015
then applied to train and dev files

scribed in Table 3.
Compared to results with dev 2015, we had a

better precision, which confirms that the adapta-
tion was worth doing. However we also had a
much worse recall, which could be someway pre-
dicted since the dev 2015 data is much smaller
than the training data. It thus creates a serious low
covering problem. Such problem can be overcome
by applying the exact adaptation procedure de-
scribed in (Raymond and Fayolle, 2010), together
with the use of more external resources (such as
name lists).

6 Future work

In the future, we could do some proper experi-
ments in cross validation with the training data,
in order to find better templates, and find the best
L1 and L2 regularization parameters of the CRF.
We believe that correctly performing the adapta-
tion procedure of (Raymond and Fayolle, 2010)
and thus obtaining a better CRF model for our
named entity extractor would lead to much better
results.
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Abstract

Twitter is a type of social media that con-
tains diverse user-generated texts. Tradi-
tional models are not applicable to tweet
data because the text style is not as gram-
maticalized as that of newswire. In this
paper, we construct word embeddings via
canonical correlation analysis (CCA) on
a considerable amount of tweet data and
show the efficacy of word representation.
Besides word embedding, we use part-
of-speech (POS) tags, chunks, and brown
clusters induced from Wikipedia as fea-
tures. Here, we describe our system and
present the final results along with their
analysis. Our model achieves an F1 score
of 37.21% with entity types and distin-
guishes 53.01% of the entity boundaries.

1 Introduction

Named entity recognition (NER) is a task of find-
ing and classifying names of things, such as per-
son, location, and organization, given a sequence
of words. NER is a very important subtask of in-
formation extraction (IE).
With the development of the Internet, a huge
amount of information has been generated by
users. The information generated on the Inter-
net, particularly on social media (e.g., Twitter and
Facebook), includes very diverse and noisy texts.
The volume of Twitter data has increased rapidly,
and about 500 million tweets are sent per day1.
In recent years, Twitter data have considered a
new source in nature and researchers are paying
increased attention to them (Bollen et al., 2011;
Mathioudakis and Koudas, 2010).
Twitter is a type of microblogging service in which
users are allowed to post contents such as small
messages, individual images, or videos. There

1See “http://www.internetlivestats.com/twitter-statistics/”

are a number of microblogging sites such as Twit-
ter, Tumblr, Plurk and identi.ca. Each service has
its own characteristics. For example, Plurk has a
timeline view for videos and pictures, and Twitter
has “status updates.”
The characteristic of “status updates” is one of the
features that makes the classification of named en-
tities in Twitter difficult. In Twitter, there is a limit
for the number of characters that people can post
at once. People post their thoughts with a short
sentence; this leads to the problem that tweets do
not contain sufficient contextual information (Rit-
ter et al., 2011).
The shared task of ACL W-NUT 2015 is to find
named entities on Twitter. Here, we will fo-
cus on ten types of named entities: company, fa-
cility, geo-loc, movie, musicartist, other, person,
product, sportsteam, and tvshow. We have the
training and development data for Twitter and 53
gazetteers from the abovementioned shared task.
In this paper, we describe the datasets in Section 2
and present the model that we use in this study in
Section 3. In Section 4, we discuss the features
used and the methods used for generating these
features. We present our final results along with
their analysis in Section 5 and conclude this paper
in Section 6.

2 Data and Labels

In this section, we introduce the considered
datasets and describe the data format used. We
also list the characteristics of each entity type with
some examples.

2.1 Data

The datasets provided by shared task are raw
tweets. Table 1 shows an overview of the sizes of
these datasets. In a tweet, each line contains words
and its label is separated by a tab and a blank line
that forms a sentence boundary. All tokens follow
the IOB format. The token with a B-prefix indi-
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cates the beginning of a named entity and the to-
ken with an I-prefix indicates the inside of a named
entity. An I-prefix only follows after a token with
a B-prefix. An O tag indicates that a token does
not belong to a specific named entity.

Data Tweets Tokens
train 1,795 37,899
test 1,000 16,261

Table 1: An overview of datasets.

2.2 Labels

In the system, we focus on the following ten types
of named entities:

company The name of a company or a brand
e.g., Snapchat, Twitter, and Facebook

facility The name of an institution such as a mu-
seum, a center, or a restaurant
e.g., Iowa City schools and Disneyland

geo-loc The name of a city or country
e.g., Chicago and Russia

movie The title of a movie
e.g., Interstellar and Inception

musicartist The name of music groups or disc
jockeys (DJs)
e.g., Taylor Swift and Lady Gaga

other A phrase that can be used generally such as
the name of a ceremony or an anniversary, or
the title of a song
e.g., X-mas and Murphy’s law

person The name of a person; it can be the per-
son’s full name, last name, or first name
e.g., Steve King and Ellen

product The name of a product
e.g., Nokia 5800 and Coke

sportsteam The name of a sports team
e.g., Arsenal and West Ham

tvshow The title of a television (TV) show
e.g., The Persuaders and Pretty Little Liars

3 Model

Conditional Random Fields (CRFs) (Lafferty et
al., 2001) and its variants have been successfully
applied to various sequence labeling tasks (Maaten
et al., 2011; Collins, 2002; McCallum and Li,
2003; Kim and Snyder, 2012; Kim et al., 2015b;
Kim et al., 2015a; Kim and Snyder, 2013a; Kim
and Snyder, 2013b). The NER task produces a
sequence of named entity tags, y = (y1 . . . yn),
given a sequence of words, x = (x1 . . . xn). We
model the conditional probability p(y|x; θ) using
linear-chain CRFs:

p(y|x; θ) =
exp(θ · Φ(x, y))∑

y′∈Y(x) exp(θ · Φ(x, y′))

where θ denotes a set of model parameters. Y
returns all possible label sequences of x, and Φ
maps (x, y) into a feature vector that is a lin-
ear sum of the local feature vectors: Φ(x, y) =∑n

j=1 φ(x, j, yj−1, yj). Given the fully labeled
sequences {(x(i), y(i))}Ni=1, the objective of the
training is to find θ that maximizes the log like-
lihood of the training data under the model with
l2-regularization:

θ∗ = argmax
θ

N∑
i=1

log p(y(i)|x(i); θ)

−λ
2
||θ||2 .

4 Features

In this section, we describe a variety of features
that we have used in this study. We also used
CRFsuite2 because it makes the application of new
features easy. Apart from the base features and
gazetteer features provided by the organizers, we
have used the following new features: POS tags,
chunks, brown clustering, and word representa-
tion. Our model is composed of the following fea-
tures:

4.1 Base features
Base features include the gazetteer features and
orthographic features. In the NER task, a huge
amount of unlabeled data is often used for iden-
tifying unseen entities. There are already 53
gazetteers in the baseline system. The maximum
window size for gazetteer features is 6, and the
model will learn the named entity type associated

2http://www.chokkan.org/software/crfsuite/
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with a specific phrase, if it is in one or more of the
gazetteer lexicons. Orthographic features can be
divided into five types. The orthographic feature
templates are as follows:

• n-gram: wi for i in {-1,0,1}, conjunction of
previous word and current word wi−1|wi for
i in {-1,0}.

• Affixes: Prefixes and suffixes of xi. The first
and last n characters ranging from 1 to 3.

• Capitalization: There are two patterns of cap-
italization: One is an indicator of capitaliza-
tion for the first character, and the other is an
indicator of capitalization for all characters.

• Digit: There are three patterns for numbers:
i) Whether the current word has a digit, ii)
whether the current word is a single digit, and
iii) whether the current word has two digits.

• Non-alphabet: Whether the current word
contains a hyphen and other punctuation
marks. Among the other punctuation marks
is the colon(:). In general, what follows
right after a colon mark represents a feature
weight. To make the model learn correctly,
we normalize only the colon mark.

4.2 POS tags and chunks

In the NER task, POS tags and chunks contain
very useful information for finding and classifying
named entities. We predict POS tags and chunks
by using a model trained with Twitter data. For
POS tags, we use a model trained with the Penn
Treebank-style tagset (Ritter et al., 2011). In a
model, some Twitter-specific tags are added by
Ritter et al. (2011): retweets, @usernames, #hash-
tags, and urls. For chunks, we use a named entity
tagger3 by Ritter et al. (2012). Predicted tags are
used as features as follows:

• POS tag: a conjunction feature with the cur-
rent word and the current POS tag w0|p0.

• Chunk tag: a unigram feature for chunk tag
c0 and a conjunction feature with the current
word and the current chunk tag w0|c0.

3https://github.com/aritter/twitter nlp

4.3 Brown clustering
Brown clustering is a hierarchical clustering
method that groups words into a binary tree of
classes (Brown et al., 1992). We downloaded a
brown clustering4 based on Wikipedia provided by
Turian et al. (2010). We used whole bit string of
the current word.

4.4 Word representation
As a new source, tweet data are not applicable to
the traditional model because of the different text
structure. For a new model, it is natural to use
annotated data. However, it is difficult to create
new labeled data for a rapid generation of tweets.
Instead of constantly annotate new data, the gen-
eral solution is creating induced word representa-
tions from a large body of unlabeled data (Mikolov
et al., 2013; Pennington et al., 2014; Kim et al.,
2014; Anastasakos et al., 2014). A lot of previ-
ous work have used CCA because of its simplic-
ity and generality (Kim et al., 2015c; Kim et al.,
2015d; Stratos et al., 2014; Kim et al., 2015b). We
create a word representation by using the canon-
ical correlation analysis (Hotelling, 1936). Fur-
thermore, word embeddings are induced from 13
million tweets containing 270 million tokens. The
dimension of word embeddings we used is 50 with
words occurring more than twice in the data . The
window size for the contextual information is 3:
the current word and a word to the left and the
right of the current word.

5 Results

5.1 Error analysis
Twitter contains noisy and informal style text, and
most of the state-of-art applications show a weak
performance on Twitter data (Ritter et al., 2011).
In this section, we check the errors for noisy text
from the baseline system and categorize them. The
last two errors are related to user-generated texts
such as Twitter data.

Unseen word sequences: The main cause of this
error is in a previously unseen sequence. A
huge number of tweets are posted on Twit-
ter every day and they contain up-to-date in-
formation on events. The most recent infor-
mation such as new product information can
lead to the formation of unprecedented word
sequences. These sequences do not appear in

4http://metaoptimize.com/projects/wordreprs/
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MnoEmbedding MEmbedding +/-
Type P R F1 P R F1

Overall 35.95 31.92 33.81 39.59 35.10 37.21 +
company 27.59 20.51 23.53 32.14 23.08 26.87 +
facility 24.14 18.42 20.90 32.00 21.05 25.40 +
geo-loc 42.66 52.59 47.10 46.00 59.48 51.88 +
movie 14.29 6.67 9.09 8.33 6.67 7.41 -

musicartist 0.00 0.00 0.00 7.69 2.44 3.70 +
other 18.33 16.67 17.46 20.49 18.94 19.69 +

person 53.27 61.99 57.30 56.99 64.33 60.44 +
product 3.57 2.70 3.08 14.29 8.11 10.34 +

sportsteam 62.50 7.14 12.82 54.55 8.57 14.81 +
tvshow 0.00 0.00 0.00 0.00 0.00 0.00 .

Table 2: Results for model with and without word embedding. MnoEmbedding and MEmbedding represent
the model with and without word embedding, respectively. The rightmost column shows the decrease or
increase in the F1 score with respect to the model without word embedding. MEmbedding denotes our
final model.

the training data and gazetteers, and thus, the
model cannot learn them.

Foreign languages: This error is caused by
tweets written in languages other than En-
glish. Words written in foreign languages
are annotated by the O tag and not include a
named entity. However, some words have the
same spelling as an English word and thus,
activate the gazetteer features. This problem
leads to words with the O tag being predicted
as a named entity type.

Type disambiguation: There are some words
that have the same spelling but belong to dif-
ferent types according to the contextual in-
formation. This error is often observed for
named entities such as sportsteam and musi-
cartist. The word sequences with this error
have a correctly distinguished entity bound-
ary but predict the wrong entity type. For ex-
ample, Tampa Bay in “Losing to the Penguins
quasi-AHL lineup in December is a non-issue
for Tampa Bay” is an entity for sportsteam,
but the model classifies it as geo-loc instead
of sportsteam. In another example, the names
of two music artists in “Will Shawn Mendez
be opening up for Taylor Swift” are predicted
as person and not as musicartist.

Informal name or abbreviations: Twitter users
compress what they want to say to meet the
limit of 140 characters. This leads to in-
formal texts unlike in news articles. Note

that abbreviations do not indicate official full
forms such as airports or countries. For ex-
ample, Southie in “Proud that the 1st modern
Olympic Champion is James Brendan Con-
nolly of #Southie .” is an informal name of
South Boston, and this word does not appear
in the training set and gazetteers. With re-
spect to abbreviations, people use abbreviat-
tions for indicating a day or a month, such as
Mon for Monday and Jan for January. These
words are contained in gazetteers and activate
the gazetteer features. A model makes errors
by predicting them as named entities.

Hashtag: A hashtag is a combination of the “#”
sign and some characters for organizing word
sequences as searchable links in Twitter. The
rule is to not use any space between the char-
acters in the hashtag. For instance, the word
New Delhi is transformed into #NewDelhi
as a hashtag, so it is difficult to check the
gazetteer lexicons for such text.

5.2 The effectiveness of word embedding
In this subsection, we describe the effectiveness
of word embedding by analyzing the results
obtained by using the model with and without
word embedding. The only difference between
both the models is the use of brown clustering and
the word representation based on CCA.
In the NER task, the F1 score is a more appro-
priate metric than accuracy. Most of the labels in
the NER data contain the O tag, indicating that
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they are not an entity. Since this leads to high
accuracy, by using the F1 score, we obtain a more
reasonable harmonic function of the precision and
the recall.
Table 2 shows the results obtained by using
models with and without word embedding. As
shown in table 2, brown clustering and word
embedding have a good effect on performance.
All types of entities except movie show error
reduction. For determining the efficacy of word
embedding, we compare the errors between the
models without word embedding and with word
embedding. We find that word embedding plays
an important role in resolving the problem of
unseen word sequences and the problem of type
disambiguation. First, the model without word
embedding does not learn about an entity ipad
Mini Retina 2nd Generation 16GB wifi because
some of the words do not appear in the training
data. In contrast, the model with embedding can
learn unseen words from the induced word repre-
sentation. This helps the model to predict that the
abovementioned entity indicates a product name.
The model without word embedding also has
the problem of disambiguation of a word Edison
because the model only learns that this word is a
person’s name from the gazetteers. However, in
the word sequence “Edison #weather on January
16 , 2015”, Edison indicates a town in New Jersey.
The model with word embedding is provided
additional information by the word embedding
process and predicts the abovementioned word as
geo-loc correctly.

6 Conclusion

In this paper, we described the data and features
used for generating our model. Besides POS tags
and chunk tags, we used a word representation
based on CCA for improving the model’s perfor-
mance. Our final model shows an error reduc-
tion of 14.08% from the baseline system. We also
presented some primary and Twitter-specific prob-
lems by categorizing errors.
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Abstract 

This paper describes the Twitter lexical nor-
malization system submitted by IHS R&D 
Belarus team for the ACL 2015 workshop on 
noisy user-generated text. The proposed sys-
tem consists of two components: a CRF-
based approach to identify possible normali-
zation candidates, and a post-processing step 
in an attempt to normalize words that do not 
have normalization variants in the lexicon. 
Evaluation on the test data set showed that 
our unconstrained system achieved the  F-
measure of 0.8272 (rank 1 out of 5 submis-
sions for the unconstrained mode, rank 2 out 
of all 11 submissions).  

1 Introduction 

Social media texts found in such services as 
Twitter or Facebook have a great data-mining 
potential, as they offer real-time data that can be 
useful to monitor public opinion on brands, 
products, events, etc. However, current Natural 
Language Processing systems are usually opti-
mized for clean data, which is not the type of 
data found in social media texts, as they are often 
noisy, containing a lot of slang, typos, and ab-
breviations. 

Normalizing such text is challenging. We want 
to achieve high recall, making as many correc-
tions as possible, but not at the expense of preci-
sion – words should not be incorrectly normal-
ized. 

Previous approaches to this task incorporated 
different tools and methods: dictionaries, lan-
guage models, finite state transducers, and ma-
chine translation models. Some of the methods 
are unsupervised, though often requiring adjust-
ment of parameters based on annotated data (Han 
and Baldwin (2011), Liu et al. (2011), and 
Gouws et al. (2011)). Some are supervised, like 
that in Chrupała (2014), making use of a Condi-
tional Random Field (Lafferty et al., 2001) to 

learn the sequences of edit operations from la-
belled data. 

In this paper, we present an approach based on 
the usage of normalization lexicons and a CRF 
model for identifying potential candidates. 

2 Task Description 

2.1 Dataset 

The corpus provided by the organizers consists 
of 2950 annotated tweets. The annotations follow 
these guidelines (Baldwin et al., 2015): 

 Non-standard words are normalized to one 
or more canonical English words based on 
a pre-defined lexicon. For instance, l o v e 
should be normalized to love (many-to-one 
normalization), tmrw to tomorrow (one-to-
one normalization), and cu to see you 
(one-to-many normalization). Additional-
ly, IBM should be left untouched as it is in 
the lexicon and it is in its canonical form, 
and the informal lol should be expanded to 
laughing out loud. 

 Non-standard words may be either out-of-
vocabulary (OOV) tokens (e.g., tmrw for 
tomorrow) or in-vocabulary (IV) tokens 
(e.g., wit for with in “I will come wit 
you”).  

 Only alphanumeric tokens (e.g., 2, 4eva 
and tmrw) and apostrophes used in con-
tractions (e.g., yoou've) are considered for 
normalization. Tokens including hyphens, 
single quotes and other types of contrac-
tions should be ignored. 

 Domain specific entities are ignored even 
if they are in non-standard forms, e.g., 
#ttyl, @nyc 

 It is possible for a tweet to have no non-
standard tokens but still require normaliza-
tion (e.g., the example of wit above), and it 
is also possible for the tweet to require no 
normalization whatsoever. 
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 Proper nouns should be left untouched, 
even if they are not in the given lexicon 
(e.g., Twitter). 

 All normalizations should use the Ameri-
can spelling (e.g., tokenize rather than to-
kenise). 

2.2 Evaluation 

Evaluation was to be carried out according to 
Precision, Recall, and F1 metrics. 

3 Experimental Setup 

First, a normalization lexicon was generated 
from the given training data, enriched with the 
data from several sources: 

 Word pairs extracted from the datasets 
used for lexical normalization (Han, 2011; 
Liu, 2011) 

 The online social media abbreviation list 
of Beal (2015)1. Compared to the previous 
workshops with one-to-one normaliza-
tions, the current task also considers one-
to-many normalizations, and obviously not 
all abbreviations are present in the training 
data, so the use of a list of social media 
abbreviations can be vital to the system. 

At the current stage of development the sys-
tem is unable to differentiate between several 
normalization variants; thus, entries with multi-
ple possible variants were reviewed to make the 
most suitable variant first in the list (entries that 
are most frequent in datasets are placed first, any 
ties were manually reviewed). 

Second, a CRF model was trained. The labels 
chosen were CAND and NOT_CAND, reflecting 
potential normalization candidates and words 
that should not be normalized, respectively. The 
following features were used: 

Token: This feature represents the string of 
the current token. 

Context Feature: The token to the left and 
the token to the right are used as two context fea-
tures. The surrounding words usually convey 
useful information about a token which helps in 
predicting the correct tag for each token.  

Alphanumeric feature: This feature checks 
whether the token adheres to the annotation 
guidelines and makes sure that non-adhering to-
kens are not marked as potential candidates. 

                                                 
1http://www.webopedia.com/quick_ref/textmessageabbr

eviations.asp 

Normalization dictionary feature: This fea-
ture checks whether the token is present in the 
generated normalization lexicon. 

Canonical lexicon feature:  This feature indi-
cates whether or not the token is present in the 
canonical lexicon provided by the workshop or-
ganizers. 

Word length and number of vowels: Two 
separate features as well as their correlation, al-
lowing to tag words with uncommon length-
vowel correlation, like bcz, pls, etc. 

Edit distance feature: marks a token that is 
within an edit distance of 2 or less from any 
word in the canonical lexicon. 

Third, the text is normalized: 
 All tokens tagged as potential candidates 

by the CRF model are normalized to their 
lexicon variants. 

 All alphanumeric words are normalized to 
the American spelling with the VarCon 
tool (Atkinson, 2015)2. This includes the 
tokens which are already normalized using 
the lexicon. 

 We have also tried to improve the normal-
ization results by using a did-you-mean 
(DYM) module that is currently being de-
veloped at IHS R&D team. The DYM 
module corrects user queries/sentences 
with misspellings by providing corrected 
variant(s) with a confidence measure (in-
cluding no correction variant with the cor-
responding confidence measure). The 
DYM module is an SVM model trained on 
a set of features for each of the multiple 
candidates generated for an input que-
ry/sentence. We used the following fea-
tures: error model score, Levenshtein dis-
tance, language model score, the ratio of 
common noun vocabulary words, the ratio 
of proper noun vocabulary words, and the 
number of changes in non-lowercase 
words. An error model score was obtained 
from an autocompletion and autocorrec-
tion module (AAM) for which an index 
was built from 12.4M documents (scien-
tific papers - 42.1%, Wikipedia articles - 
23.5%, patents - 19.4%, social texts - 8%, 
and news - 7%). The 2-gram language 
model was built from 177K patents (1.36G 
words and 2.6M vocabulary). Since we did 
not have enough time to tailor both DYM 
and AAM modules for social text pro-
cessing, DYM and AAM modules were 

                                                 
2http://wordlist.aspell.net/varcon/ 
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used for this Twitter lexical normalization 
system as is, being actually tailored for 
technical and scientific texts. 

 

3.1 Results and error analysis 

Testing was performed on the provided corpus of 
1967 tweets. 

Table 1 shows the performance of our CRF 
candidate model with different features: 

 A baseline model with only token, context 
and alphanumeric features. 

 A baseline model with the normalization 
dictionary and the canonical lexicon fea-
tures added. 

 A model with all features enabled. 
Table 2 reflects our submitted normalization 

result and a result without the DYM module de-
scribed above. 

 

 Precision 
(CRF | 
Final) 

Recall 
(CRF | 
Final) 

F1 
(CRF | 
Final) 

Tokens +  
Context + 

Alphanumeric 

0.991 | 
0.8782 

0.57 | 
0.6013 

0.7237 | 
0.7139 

Added diction-
ary features 

0.907 | 
0.8376 

0.824 | 
0.8133 

0.8635 | 
0.8253 

All features 
0.915 | 
0.8469 

0.817 | 
0.8083 

0.8632 | 
0.8272 

Table 1. Result metrics of candidate CRF model 
with different features (and its impact on the re-
sult after normalization using a submitted sys-
tem). 

 

 Precision Recall F1 
Lexicon  
Normalization 
+ DYM 
(submitted) 

0.8469 0.8083 0.8272 

Lexicon 
Normalization 
without DYM 

0.8765 0.7949 0.8337 

Table 2. Result metrics of two normalization sys-
tem configurations. 
 

The DYM feature does a good job correcting 
typos and removing excessive duplicate letters 
(beutiful  beautiful, tosee  to see, and 
smileeeeee  smile). However, even with a high 
confidence threshold, quite a number of words 
are normalized excessively, mainly those in non-
English (or partially English) tweets, e.g. jeil  
jail, hoje  hope, and wasan  was an, in addi-

tion to some incorrect normalizations like parkd 
 park (instead of parked) or hundread  hun-
dreds (instead of hundred). These mistakes are 
frequent, and an increase in recall does not out-
weigh a loss in precision; thus, the F-measure 
without the DYM feature in its current state is 
even a little bit higher than our submitted system 
with it. Lowering the confidence threshold brings 
more correct normalizations, but due to the na-
ture of tweets even more incorrect ones, leading 
to an overall drop in F1 score. Nevertheless, we 
decided to use and submit the system with DYM, 
since we believe the text normalized this way is 
more suitable for further use. 

Attempts were made to improve the perfor-
mance of the DYM module as well as to select 
the correct candidate from a normalization lexi-
con if there is more than one variant present (ur 
 you’re, your, you). For example, language 
detection works well on regular search queries 
and could potentially forbid the normalization of 
words in non-English tweets. However, it proved 
to be not helpful for tweets – the messages are 
short, some of them are a mixture of English and 
some other language (thus, if there is a normali-
zation restriction on such tweets, potential Eng-
lish normalizations are lost), and slang- and ab-
breviation-rich tweets are hard to analyse. A lan-
guage model was used in an attempt to select a 
correct normalization from multiple variants, but 
this did not prove to be effective, likely because 
the model used was not focused on social media 
texts. 

We see room for potential improvement in 
tuning the DYM tool to social media texts, as 
well as in filtering non-English words from nor-
malization candidates, experimenting with lan-
guage models tailored to social media texts and 
further enriching the lexicon with new normali-
zation data. 

4 Conclusion 

In this paper, we presented a system designed for 
participation in shared task #2 of the ACL 2015 
workshop on noisy user-generated text. Our sys-
tem makes use of CRF for identifying potential 
candidates, lexicons to normalize them and a 
DYM module as a post-processing step to further 
correct some of the misspelled words. Our sys-
tem ranked second among all 11 submissions 
with 0.8272 F-measure and ranked first among 5 
submissions for the unconstrained mode. 
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Abstract

Every day, Twitter users generate vast quan-
tities of potentially useful information in the
form of written language. Due to Twitter’s fre-
quently informal tone, text normalization can
be a crucial element for exploiting that infor-
mation. This paper outlines our approach to
text normalization used in the WNUT shared
task. We show that a very simple solu-
tion, powered by a modestly sized, partially-
curated wordlist—combined with a modest re-
ranking scheme—can deliver respectable re-
sults.

1 Introduction

Twitter is an immense, living collection of written
language from all over the world. Every day, Twit-
ter publishes a staggering 500 million tweets1. The
content of Twitter is virtually unlimited, and has
proven useful for much research, including epidemi-
ology: Chew and Eysenbach (2010); and sentiment
analysis: Barbosa and Feng (2010), Bakliwal et al.
(2013), Rosenthal et al. (2015), Li et al. (2014).

It would take many readers to keep up with Twit-
ter’s output, but, fortunately, we have natural lan-
guage processing (NLP) methods that can automat-
ically filter, condense, or extract information from
text. However, NLP approaches are typically trained
on formal edited text, and struggle with the infor-
mal, unedited text of Twitter. But there is a well-
known way to mitigate this problem: text normal-
ization, i.e. replacing non-standard tokens with their
standard equivalents, yielding text that will be more
agreeable to NLP.

1https://blog.twitter.com/2013/new-tweets-per-second-
record-and-how

One flavor of non-standard writing—what I have
previously focused on—is what I call “vernacular
orthography” (VO). VO is spelling that indicates
itentional non-standard pronunciation, such as when
the string “dat” stands in for “that”. While nu-
merous papers offer solutions for text normalization
(e.g. Han and Baldwin (2011), Yang and Eisenstein
(2013), Zhang et al. (2013), Sproat et al. (2001),
Li and Liu (2014)), and a few build models based
on phonemic similarity (e.g. Kobus et al. (2008),
Choudhury et al. (2007)), none to our knowledge
have addressed VO in particular. This paper, too, ad-
dresses the general normalization problem, but uses
lessons learned attempting to normalize VO.

2 System Architecture

The architecture of this system is very simple, con-
sisting of three main parts: (1) a substitution list, (2)
a couple of rule based components, and (3) a sen-
tence level re-ranker. This provides for a fast per-
token performance.

2.1 Substitution List
Most of the work is done by a semi-supervised sub-
stitution list consisting of ordered pairs. The first
member of each pair is a string representing a non-
standard word. The second member of each pair is
a list of strings representing candidate replacements
for the word. For example, one pair is (“n”, (“and,
in”)). There are just over 45,000 pairs, where only
the first 2000 are hand-curated.

To create the list, we use a collection of tweets
(see “Resources Employed” section) and a derived
dictionary, described presently. The dictionary has
the 18,000 standard words most frequent in the tweet
collection. For the construction of the dictionary, a
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word is considered to be standard if it has at least
four characters, and is found in the CMU pronounc-
ing dictionary, or, if it has fewer than three charac-
ters, it is found in the Norvig dictionary2 and is suffi-
ciently frequent (where sufficient frequency depends
on the word length).

Now we want to find the most frequent OOVs that
need to be normalized. We tokenize the twitter set
and filter out all tokens that appear in our dictionary.
We also filter out all tokens that do not match the
format of normalizable tokens as specified by the
shared task e.g. tokens that have non-alphanumeric
characters other than an apostrophe(’). Lastly, we
filter out those tokens that could be normalized by
our rule-based components (described in next sub-
section).

We count the occurrences of each OOV-candidate
token type, sort by the count, and return the resulting
list. This puts the most useful candidates first and
provides for efficient use of annotation time. Suit-
able replacements require human judgement and oc-
casional reference to outside sources. The outside
sources were (1) Urban Dictionary, which is very
useful for slang and acronyms (2) Twitter, which
tells you how a word is most often used on Twit-
ter, and (3) the training set provided for the shared
task, which tells you how to normalize in ambigu-
ous cases (e.g. “laughing out loud” v. “laugh out
loud”).2

In addition to these hand-curated entries, we
added the Lexical normalization dictionaries,
UniMelb and UTDallas, provided for the shared
task. From these lists we took all entries not already
in the hand-curated list.2

With this initial list in place, we ran it on the train-
ing set and analyzed the errors, looking specifically
at false positives and false negatives. We sorted the
tokens that caused these errors according to a for-
mula that estimated what change would occur to the
f-score if the token was to be removed or added to
the list. If the token represented a false negative, we
would estimate the change to f-score we would get
by adding it to the list, assuming that it’s substitu-
tion would always be the word most often associated
with it in the training set. If it was false positive, we
would estimate the change to f-score we would get

2See “Resources Employed” section.

by deleting it from the list.
This analysis revealed some weak spots in the list.

First, there were a number of false positives caused
by differing beliefs regarding what counts as non-
standard. For example, there are several contractions
(e.g. “gonna”, “gotta”, “wanna”, and “ain’t”) that
are not usually considered standard (rarely seen in
The Wall Street Journal), and have straight forward
normalizations, that are nonetheless considered to
be in-vocabulary in the task. These words were re-
moved from the substitution list, and added to a new
list—a “do-not-normalize” list.

Furthermore, there were of course a number of
false negatives. Many of these come from tokens
that are in the dictionary, but that are often used in a
non-standard way in informal speech. For example,
“wit” is in standard dictionaries, referring to an in-
tellectual feature; however it often appears in Twit-
ter as a non-standard variation of “with”, as in “you
wit me hea?” Likewise on Twitter, “cause” almost
always means “because”. Such tokens were added
to the substitution list.

It might be supposed that using the training set in
this way could lead to severe over-fitting. To avoid
this, we didn’t make any adjustments for tokens ap-
pearing less than three times as a false positive, true
positive, or false negative. The results show that any
over-fitting was not severe, since the test f-score was
just one point less than the training f-score.

2.2 Rule-based components
We also experimented with several rule-based com-
ponents, two of which— because they applied in the
greatest number of cases in the training set—were
used in the final system. These components were
the “ing” rule and the “coool” rule.

The “ing” rule looks for cases in which the ver-
bal suffix “-ing” is altered to an “-in”, “-en”, or “-n”,
such as when “busting” becomes “bustin”. If the test
token is in the dictionary, the component generates
no candidates. If the token is not in the dictionary,
the component checks if the word ends with “-in”,
“-en”, or “-n” proceeded by certain consonants, and
if so, checks for the likelihood of additional sylla-
bles. If those conditions hold, it replaces the iden-
tified ending with “ing”, and if the result is in the
dictionary, it becomes a candidate.

The “coool” rule attempts to normalize text that,

83



for emphasis, repeats characters, as in “Thaatt iss
reallyyyyy neeeeat!” To generate candidates, the
“coool” rule finds every run of more than two re-
peated characters and reduces the length of the run
to two. For every one of these runs, we assume that
the original had either one or two of that character in
that place. We consider every string that can be cre-
ated by reducing a subset of the two-character runs
to one character each, and return only those strings
that occur in the dictionary. For example, if the orig-
inal token is “thaatt”, we consider “thaatt”, “thaat”,
“thatt”, and “that”, but return only “that”, being in
the dictionary.

When the system is run with only the “ing” and
“coool” rules, plus the sentence level re-ranker, we
get a precision of .81 and a recall of .09. However,
when combined with the rest of the system, it’s con-
tribution is insignificant. It seems that the most fre-
quent instances of these rules are already in the sub-
stitution list, so the rules do not generate enough true
positives to offset their generated false positives.

Along with “ing” and “coool”, we tried a num-
ber of similar rule-based components. For example,
we looked for cases where “th” is replaced by ei-
ther “d”, “f”, or “t”. Another example is the “double
consonant” rule, based on the idea that when a word
ends with two consonants, and both are voiced or
both are unvoiced, the second consonant is dropped.
For example “wrist” becomes “wris”. These are
widespread phenomena, but not widespread enough
on Twitter for the true positives to outweigh the false
positives. A more sensitive rule or a better sentence-
level re-ranker would be needed to make these com-
ponents beneficial.

2.3 Sentence Level Reranker
The third major component of the system is the sen-
tence level-re-ranker. This is, in short, a bigram
Viterbi algorithm.

Bigrams were collected from our set of ten mil-
lion tweets. Bigrams with any out-of-vocabulary to-
kens were ignored. From this set, for each bigram
(t1, t2), we computed prob(t2|t1) with Laplacian
smoothing. These became the transition probabili-
ties in our Viterbi problem.

At test time, we generated candidates for each
token. If the substitution list had an entry for an
original token, all suggested substitutions in that en-

try became candidates. For each of these candi-
dates, c, we initialize a weight, wc, where wc =
2 × (rank(c) + 1), and rank(c) refers to c’s po-
sition in the list for the current token’s entry in the
substitution list. If the “ing” rule or the “coool” rule
generated answers, those would also be candidates.
For the “cool” rule, the weight was the number of
deletions required to get the candidate from the orig-
inal token. For the “ing” rule, the weight was, some-
what arbitrarily, 1. Finally, the original token is a
candidate with a weight of 0. These weights were
the emission weights for Viterbi, and were treated as
− log(prob(c)). For each original token in the test
set, we generated on average .04 other candidates.

The system then constructed a lattice from the
tweet and all of its normalization candidates. With
Viterbi dynamic programming it found the maxi-
mum probability path through the lattice. Words in
the maximal path were taken to be the correct word
for the corresponding token.

At the time of the shared task, I compared this ap-
proach to a simpler approach, in which, for any orig-
inal token, the system ignored the context and se-
lected the normalization with the greatest emission
score (emission score as defined above). At first,
the Viterbi method added 10 percentage points f1
over this method. However, after the the shared task
was finished, I discovered that the greatest-emission
method had an error. Having fixed that error, and re-
running the system on the training data, I discovered
that this greatest-emission rule, on the training data,
gives better results than the Viterbi system used for
the shared task: for f1 scores, the Viterbi approach
gets a .768 while the greatest-emission score is .816.
Note that, for the Viterbi approach, the test score,
.757, is not much less than the training score. In
summary, (1) the Viterbi approach, as implemented,
is probably not the best, and (2) the overall normal-
ization approach I describe in this paper is probably
better than the shared task results suggest.

3 Resources Employed

The computations for training and testing were done
on a MacBook. Required computational resources
were minimal. Data resources are as follows:

A. CMU pronouncing dictionary: “an open-
source machine-readable pronunciation dictio-
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Team Name precision recall f1
IHS RD 0.8469 0.8083 0.8272
USZEGED 0.8606 0.7564 0.8052
bekli 0.7732 0.7416 0.7571
gigo 0.7593 0.6963 0.7264
lysgroup 0.4592 0.6296 0.531

Table 1: Team Results for the unconstrained task.

nary for North American English that contains
over 134,000 words and their pronunciations”3

B. count 1w.txt from Peter Norvig: “The 1/3 mil-
lion most frequent words, all lowercase, with
counts.” 4

C. 10 million tweets collected by Steven Bedrick,
of Oregon Health and Sciences University.

D. WNUT Lexical normalisation dictionaries5

a. UniMelb
b. UTDallas

E. WNUT training set.6

F. Urban Dictionary: a highly inclusive user-
generated online dictionary.7

4 Results

Table 1 shows the results for the unconstrained task.
The project described in the present work is named
“bekli”. The training set consisted of 2024 tweets
with a total of 3928 tokens that needed to be nor-
malized. The test set consisted of 1967 tweets with
a total of 2738 tokens that needed to be normalized
Baldwin et al. (2015).

5 Conclusion

The results show that a simple strategy with minimal
computational resources can go along way. For ex-
ample, the space required for the list and rule-based
components is negligible. The only element that re-
quires some heavy lifting is the sentence-level re-
ranker with its long list of bigrams.

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict
4http://norvig.com/ngrams/count 1w.txt
5http://noisy-text.github.io/norm-shared-task.html
6http://noisy-text.github.io/norm-shared-task.html
7http://www.urbandictionary.com/

However, as I described above, selecting the to-
ken with the greatest-emission probability actually
works better than my bigram approach, and requires
far less computation. This leaves the question: what
results could be achieved using a better re-ranker,
one that successfully exploits context? Such a re-
ranker would, among other benefits, make it feasi-
ble to use rules or substitutions that are not, without
using context, capable of high precision.

Another question remaining is how much better
can we do by expanding the curated segment of
the list—if we, for example, double the size? This
would would still allow a program to have a very
small computational imprint, while doing nearly the
work of a more sophisticated system.
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Abstract 

User generated content often contains 
non-standard words that hinder effective 
automatic text processing. In this paper, 
we present a system we developed to per-
form lexical normalization for English 
Twitter text. It first generates candidates 
based on past knowledge and a novel 
string similarity measurement and then 
selects a candidate using features learned 
from training data. The system has a con-
strained mode and an unconstrained 
mode. The constrained mode participated 
in the W-NUT noisy English text normal-
ization competition (Baldwin et al., 2015) 
and achieved the best F1 score. 

1 Introduction 

User generated content, such as customer re-
views, forum discussions, text messages and 
Twitter text, is of great value in applications like 
understanding users, trend discovery and 
crowdsourcing. For example, by reading the 
Twitter text posted by a user, a company can 
learn the user’s preferences and connections and 
use the information for targeted advertising. For 
another example, by reading Amazon customer 
reviews about a certain product, a shopper can 
collect a lot of product information that is not 
available from manufacturers and retailers. Un-
fortunately, user generated content often contains 
ungrammatical sentence structures and non-
standard words, which hinders automated text 
processing. 

In this paper, we present a solution that at-
tempts to perform lexical normalization (Han et 
al., 2011) for English Twitter text based on train-

ing text with human annotation (Baldwin et al., 
2015). The solution has a constrained mode and 
an unconstrained mode. Both modes have the 
same architecture and components. Both use the 
annotated training data and CMU’s ark POS tag-
ger (Gimpel et al., 2011). The difference between 
them is parameter settings and the usage of a ca-
nonical lexicon dictionary by the unconstrained 
mode.  

This paper is organized as follows: Section 2 
describes the architecture and components shared 
by the constrained and unconstrained modes. 
Section 3 lists what resources are used by each 
system. In Section 4, we describe the different 
settings of the constrained and unconstrained 
modes and compare their performance. Section 5 
concludes the paper and discusses future work. 

2 Architecture and Components of the 
System 

Given a tokenized English tweet T = (t1, t2, …, 
tn), where ti is the i-th token and n is the total 
number of tokens, our normalization system pro-
cesses one token at a time and has two compo-
nents: candidate generation and candidate evalu-
ation. To normalize token ti, the system first gen-
erates a small set of candidate canonical forms. 
Then it calculates a confidence score for each 
candidate and selects the one with the highest 
confidence score as the canonical form of token 
ti. How to generate candidates and how to calcu-
late confidence scores are learned from training 
data.  

2.1 Candidate Generation 

The candidates of a token ti include: 
• The token itself 
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• All tokens that are considered canonical 
forms of ti in the training data (static map-
ping dictionary) 

• A split into multiple canonical forms if the 
token ti is not a canonical form (for exam-
ple, “loveyourcar” à “love your car”) 

• Top-m most similar canonical forms found 
in training data (see subsection 2.2 for de-
tails of similarity measurement)  

Figure 1 shows an example of training data 
and a new tweet for normalization. Table 1 
shows a portion of the static mapping dictionary 
learned from the training data. 

For token “ur” in the new tweet, the token it-
self is “ur”. All of its possible canonical forms 
present in the training data are “you are” and 
“your”. Let m = 1, the most similar canonical 
form is “your”. Therefore, the candidates of “ur” 
include “ur”, “you are” and “your”. For token 
“looove” in the new tweet, the token itself is 
“looove”. It is absent in the training data, so it 
does not have its own canonical form available 
as candidates. Among all the canonical forms 
present in training data, canonical form “love” is 
most similar to “looove”. Therefore, the candi-
dates of “looove” include “looove” and “love”. 

 

 
Figure 1: An Example of Training Data and a New 
Tweet for Normalization 

Key (token) Value (canonical forms) 
“ur” “your”, “you are” 
“so” “so” 
“niiice” “nice” 
“luv” “love” 
“car” “car” 
“welcme” “welcome” 
Table 1: Static Mapping Dictionary Learned from 
Training Data 

2.2 Similarity Index 

We measure similarity between two strings by 
first representing each string with a set of simi-
larity features and then evaluating similarity with 
Jaccard Index (Levandowsky et al., 1971) of the 
two similarity feature sets.  

The similarity features of a string s include n-
grams and k-skip-n-grams in s. In this paper, an 
n-gram in string s is defined as a contiguous se-
quence of n characters in s. A k-skip-n-gram in 
string s is a generalization of n-gram with gaps 
between characters and is defined as a sequence 
of n characters where the maximum distance be-
tween two characters is k. We prepend (append) 
a “$” to n-grams that appear at the beginning 
(end) of the string. We use “|” to indicate gaps in 
skip-grams. For example, Table 2 shows the sim-
ilarity feature sets of “love”, “looove”, “car” and 
“cat”, with n=2 and k=1. 

 
String Similarity Feature Set 
“love” “$lo”, “ov”, “ve$”, “l|v”, “o|e” 
“looove” “$lo”, “oo”, “ov”, “ve$”, “l|o”, “o|o”, “o|v”, “o|e” 
“car” “$ca”, “ar$”, “c|r” 
“cat” “$ca”, “at$”, “c|t” 
Table 2: An Example of Similarity Features (n=2, k=1) 

Let the similarity feature set of a string s be 
f(s), then we measure string similarity between s1 
and s2 by: 
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠!, 𝑠!

= 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐼𝑛𝑑𝑒𝑥 𝑓 𝑠! , 𝑓 𝑠!

=
|𝑓(𝑠!) ∩ 𝑓(𝑠!)|
|𝑓(𝑠!) ∪ 𝑓(𝑠!)|

 

For example, in Table 2, “love” and “looove” 
share similarity features {“$lo”, “ov”, “ve$”, 
“o|e”}. The union of their similarity feature sets 
is {“$lo”, “oo”, “ov”, “ve$”, “l|v”, “l|o”, “o|o”, 
“o|v”, “o|e”}. The similarity score between 
“love” and “looove” is 4/9 = 0.44.  

Different weights can be assigned to different 
similarity features when calculating similarity 
scores because n-grams at different positions 
have different importance for word recognition 
(White et al., 2008). For example, in the example 
shown in Table 2, we can assign weight 3 to bi-
grams at the beginning and end of strings and 
weight 1 to other features, and then the similarity 
score between “love” and “looove” becomes 
8/13 = 0.615. 

The similarity feature set calculation can use 
multiple (n, k) configurations instead of just one. 
For example, the similarity feature set can be 
composed of bigrams, trigrams, 1-skip-bigrams 
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and 2-skip-bigrams together. If k = 0, it means no 
skip-gram is used. 

This similarity measurement penalizes text ed-
its such as insertion, deletion and substitution. 
Compared with Levenshtein distance (Le-
venshtein, 1966), one disadvantage of our simi-
larity measurement is that two different strings 
may have 1.0 similarity score because the simi-
larity feature set can only capture local character 
order information. For example, strings “aaabaa” 
and “aaaabaa” have exactly the same similarity 
feature set {“$aa”, “ab”, “ba”, “aa$”, “a|a”, “a|b”, 
“b|a”} and thus have 1.0 similarity score. Includ-
ing skip-gram and using a larger n in similarity 
feature calculation can mitigate this problem but 
cannot prevent it. Fortunately, this should be 
very rare when the similarity measurement is 
applied to two real world twitter tokens because 
such cases require the strings to be long and con-
tain repetitive n-grams and skip-grams. One ad-
vantage of our similarity measurement over Le-
venshtein distance is that it takes into account the 
string length when penalizing text edits. The 
same text edit has a bigger impact when it occurs 
in a short string than in a long string because of 
the denominator in Jaccard Index. Another ad-
vantage of our similarity measurement is that it 
better handles repetition characters, which is 
commonly used in Twitter. For example, for our 
similarity measurement, both “looove” and 
“loooooove” are equally similar to “love”. For 
Levenshtein distance, “loooooove” takes a much 
heavier penalty than “looove”.1 The biggest ad-
vantage of our similarity measurement over Le-
venshtein distance is the lower computational 
complexity. Let the length of a string s be l(s). 
The feature set size of s is bounded by O(l(s)). 
Then the complexity of calculating Levenshtein 
distance between s1 and s2 is O(l(s1)l(s2)), which 
is quadratic when two strings have similar 
length. On the contrary, the complexity of calcu-
lating our similarity measurement is 
O(l(s1)+l(s2)), which is linear.2  

We index all the canonical forms in the train-
ing data based on similarity features to facilitate 
                                                
1 Certain preprocessing can mitigate this problem for Le-
venshtein distance. For example, all single character repeti-
tions get reduced to two before Levenshtein distance is cal-
culated. But it does not handle repetition of multiple charac-
ters, e.g. “lolol”. 
2 The linear complexity depends on using hash table to cal-
culate set union and intersection. Another implementation is 
sorting the similarity features first and then calculating un-
ion and intersection, which has O(l*log(l)) complexity (l is 
the longer string length of the two strings) and is still better 
than quadratic complexity of Levenshtein distance.  

finding top-m canonical forms that are most 
similar to the query token. Given a query token, 
we can quickly narrow down our search space to 
canonical forms that share at least one similarity 
feature with the query token. Further efficiency 
improvement can be achieved by approximating 
the denominator in Jaccard Index based on string 
lengths or by imposing restrictions on the mini-
mum number of similarity features to be shared 
by query token and results.  

2.3 Candidate Evaluation 

Given a tweet T, one of its token ti and one of the 
token’s candidate c, we train a binary classifier 
that predicts whether c is the correct canonical 
form of ti in the tweet T and outputs a confidence 
score for the prediction. Among the candidates 
that the classifier predicts to be the correct ca-
nonical forms, we select the one with the highest 
confidence score as the canonical form of ti. In 
our implementation of the system, we used a 
random forest classifier (Breiman, 2001) mainly 
because its training speed is faster and its per-
formance is relatively insensitive to parameter 
values, but other binary classification algorithm 
should also work. 

This step is mostly feature engineering and we 
used the following features: 

• Support and confidence 

We calculate the support of token ti (number 
of times ti appears) and confidence of token ti 
being normalized to candidate c (percentage 
of times ti is normalized to c) according to 
training data and use them as features for 
classification. For example, in the training da-
ta shown above, the support of token “ur” is 3 
and the confidence of normalizing “ur” to 
“you are” is 2/3 = 0.67. The confidence of 
normalizing “ur” to “your” is 1/3 = 0.33. If 
the token ti is absent in the training data, e.g. 
“looove”, then the support and confidence are 
both zero. If the token ti is present but the 
normalization from ti to c is absent in training 
data, then only the confidence is zero. These 
features are context free and the intuition is 
that the higher the support and confidence are 
(high support is necessary in case of small 
sample), the more likely that c is the correct 
canonical form of ti. 

• String information 

We calculate the string similarity score (Jac-
card Index of feature sets) between token ti 
and candidate c and use it as a feature for 
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classification. String similarity score is a good 
feature for difference between token and its 
canonical form caused by misspelling (for ex-
ample, “seperate” à “separate”), but it is not 
a good feature for difference caused by ab-
breviation (for example, “lol” à “laughing 
out loud”). Therefore, we also add string 
length and difference in string length between 
ti and c so that classifier can choose to ignore 
string similarity score when necessary.  

All string information features are context 
free. 

• POS tagging information 

One of the motivations of text normalization 
is to facilitate subsequent tasks, such as part-
of-speech tagging and named entity recogni-
tion. Therefore, good text normalization 
should make the subsequent tasks easier. We 
observed that in the training data, in 90% of 
the cases where a token is normalized to an-
other token, the canonical form has higher 
POS tagging confidence, based on the ark 
POS tagger (Gimpel et al., 2011), than the 
original. Therefore we use change in POS 
tagging confidence at position i in tweet T be-
fore and after normalizing ti to c as a feature 
for classification.  

We also include change in mean POS tagging 
confidence in tweet T because changing one 
token can affect the confidence of tagging 
other tokens. In addition to change in POS 
tagging confidence, we use POS tags of to-
kens ti-1 and ti as features (tag is empty if ti is 
the first token) because there can be patterns 
of consecutive POS tags and some patterns 
are much more frequent than others.  

All POS tagging features use context infor-
mation. 

The importance of these classification features 
are evaluated in Section 4. 

To train the classifier, we generate candidates 
for each token in training data and label each pair 
according to human annotation. If the candidate 
is the correct canonical form of the token in the 
tweet, then the pair is labeled as class 1; other-
wise the pair is labeled as class 0. Feature vectors 
with features described above are calculated for 
each pair. Then a random forest binary classifier 
is learned. When the classifier is learned, the 
class (label) weights are adjusted inversely pro-
portional to class frequencies in the data because 

the data is imbalanced and majority of the obser-
vations are in class 0. 

3 Resources Employed 

We implemented two modes for our normaliza-
tion system: a constrained mode and an uncon-
strained mode.3 The constrained mode uses only 
the training data train_data_20150430.json and 
the ark twitter POS tagger (Gimpel et al., 2011). 
The unconstrained mode uses the canonical Eng-
lish lexicon dictionary scowl.american.70, in 
addition to all resources used by the constrained 
mode. 

4 Settings and Evaluation 

For both the constrained and unconstrained 
modes, we use only bigrams and 1-skip-bigrams 
as similarity features. The differences between 
the two modes are listed below. 

For the constrained mode:  
• It uses best-scoring canonical forms from 

the similarity index as candidates. 

• It uses similarity index for candidate gen-
eration only when the token contains re-
petitive characters (same character occu-
pying consecutive positions).4   

• It builds a similarity index based on all 
canonical forms present in the training da-
ta.  

• Dictionary and feature learning and classi-
fier training are based on the same data 
set. 

For the Unconstrained mode:  

• It uses top-3 best-scoring canonical forms 
from the similarity index as candidates.  

• It builds a similarity index based on all 
canonical forms in the training data and all 
lexicons in the dictionary 
scowl.american.70.  

• It always uses the similarity index for can-
didate generation.  

                                                
3 The unconstrained mode was developed when we were 
writing this paper, after the annotation for the test data set 
was revealed. Only the constrained mode was submitted for 
the competition. 
4 This is because a similarity index based on smaller vocab-
ulary leads to less reliable candidates. For example, in the 
example shown in Figure 1, the similarity index returns 
“car” as a candidate of “cat” because “car” is the most simi-
lar canonical form in training data. In a larger vocabulary, 
“cat” itself should be the most similar canonical form. 
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• Dictionary and feature learning and classi-
fier training are based on different data 
sets. 

For the constrained mode, dictionaries (includ-
ing static mapping dictionary and similarity in-
dex), classification feature calculation and classi-
fier training are based on the same data set. It 
causes overfitting because the dictionaries and 
the support and confidence features leak label 
information. However, our cross-validation re-
sults show that learning dictionaries, support and 
confidence features, and classifier on the same 
data set generates better generalization as well. It 
leads to better F1 score than splitting the data set 
into two parts and learning dictionaries and fea-
tures on one part and learning the classifier on 
the other part. This is because having large dic-
tionaries is crucial for candidate generation and 
the correct canonical form cannot be found if it is 
not among the candidates. Using all the available 
data instead of splitting it allows the system to 
learn larger dictionaries and more than makes up 
for the overfitting problem. 

For the unconstrained mode, dictionaries and 
features are learned on 67% of the available data 
and the classifier is learned on 33% of the avail-
able data (random split). This is different from 
constrained mode because the unconstrained 
mode already has a very large canonical form 
dictionary in scowl.american.70 and the accura-
cy of selecting the correct canonical form be-
comes the bottleneck.  

We used the data sets provided by the WNUT 
2015 lexical normalization competition (de-
scribed in (Baldwin et al., 2015)) for evaluation. 
During our development of the systems, only the 
training data file train_data_20150430.json was 
used for any parameter selection and design de-
cisions. We used cross-validation to estimate 
system performance. The constrained and uncon-
strained modes have separate classifier training. 

Table 3 shows the performance of the con-
strained mode with different sets of classification 
features based on the test data file test_truth.json 
concealed from development. It can be seen that 
the support and confidence features are the most 
important for achieving high F1 score. Without 
the support and confidence features, the F1 score 
of the constrained mode decreases by 0.0521. 
The POS tagging features constitute the second 
most important feature set. Without POS tagging 
features, the F1 score goes down by 0.0129. The 
string features are the least important set of fea-

tures as they lead to very marginal improvement 
in F1 score. 
 
 Precision Recall F1 Score 
Constrained w/ all features 0.9061 0.7865 0.8421 
Constrained w/o support and 
confidence features 

0.9423 0.6803 0.7901 

Constrained w/o POS tag-
ging features 

0.902 0.7673 0.8292 

Constrained w/o string fea-
tures 

0.9102 0.7825 0.8416 

Table 3: Importance of Classification Features 

In Table 4, we report the evaluation results 
based on the test data file test_truth.json con-
cealed from development. For constrained mode, 
we list the top-two results by teams 
NCSU_SAS_NING (Ning.cm) and 
NCSU_SAS_WOOKHEE (Wookhee.cm). For 
unconstrained mode, we list the top result by 
team IHS_RD (IHS_RD.um) and the result by 
our own unconstrained mode (Ning.um), which 
was developed after the competition ended. 

 
Perfor-
mance 

Constrained Mode Unconstrained Mode 
Ning.cm Wookhee.cm Ning.um IHS_RD.um 

Precision 0.9061 0.9136 0.9339 0.8469 
Recall 0.7865 0.7398 0.7582 0.8083 
F1 Score 0.8421 0.8175 0.837 0.8272 
Table 4: Competition Evaluation Results 

It can be seen that our normalization system has 
the best F1 score in both constrained mode and 
unconstrained mode. In fact, our constrained 
mode has the best F1 score overall, better than 
our unconstrained mode, which seems counterin-
tuitive. Besides, the unconstrained mode is ex-
pected to achieve higher recall than the con-
strained mode because of its much larger dic-
tionary, but the evaluation results show that the 
unconstrained mode has lower recall and higher 
precision than the constrained mode. The follow-
ing three factors lead to the inferior F1 score and 
recall by our unconstrained mode: 

The much larger canonical form dictionary 
used by the unconstrained mode contains many 
rarely used words and having such words as can-
didates causes the candidate evaluation compo-
nent to be more conservative in selecting candi-
dates other than the original tokens (higher preci-
sion and lower recall). A potential solution is to 
use a smaller dictionary of most frequently used 
words instead of a large dictionary or to use a 
dictionary with word frequency based on a large 
corpus. 

Even if we exclude the rare words, the mere 
increase in number of candidates per token 
makes selecting the correct candidate more chal-
lenging. For example, our unconstrained mode 
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successfully suggests “Brooklyn” as a candidate 
for token “Brklyn”, which our constrained mode 
is incapable of, but the candidate evaluation 
component fails to select “Brooklyn” as the cor-
rect canonical form. A potential solution is to 
include more context information for candidate 
evaluation. For example, text likelihood estimat-
ed by a CRF model before and after normaliza-
tion can be added as classification features. Hav-
ing word frequency as a feature can also be help-
ful. 

The binary class labeling in the candidate 
evaluation component does not differentiate 
normalization without change (e.g. “car” à 
“car”) from normalization with change (e.g. “ur” 
à “your”). As a result, we are unable to tune 
parameters to favor normalization with change in 
order to achieve a better trade-off between preci-
sion and recall (higher recall and slightly lower 
precision), which means higher F1 score. A po-
tential solution is to change the candidate evalua-
tion component into a two-level classification. 
The first level classifies whether the normaliza-
tion needs any change. If no, then the token itself 
is output as the normalization result. If yes, then 
the second level classification assigns a confi-
dence score to each candidate that is different 
from the token and outputs the one with the 
highest score as the result. 

5 Conclusions and Future Work 

In this paper, we present a system to perform 
lexical normalization for English Twitter text, 
with a constrained mode and an unconstrained 
mode. Our constrained mode achieves the top F1 
score in the W-NUT noisy text normalization 
competition and outperforms other participants’ 
unconstrained modes. Our unconstrained mode 
currently has slightly lower recall and F1 score 
than the constrained mode, but it has a lot more 
room for improvement as discussed in the evalu-
ation section. Future work includes implement-
ing the ideas to improve the unconstrained mode 
and exploring semi-supervised and unsupervised 
text normalization. One potential solution for 
unsupervised text normalization is first clustering 
tokens based on context (e.g. Brown clustering 
(Brown et al., 1992)) and then choosing the most 
frequent token in each cluster as the canonical 
form for all tokens in that cluster. 
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Abstract

We describe the work carried out by the
DCU-ADAPT team on the Lexical Nor-
malisation shared task at W-NUT 2015.
We train a generalised perceptron to an-
notate noisy text with edit operations that
normalise the text when executed. Fea-
tures are character n-grams, recurrent neu-
ral network language model hidden layer
activations, character class and eligibil-
ity for editing according to the task rules.
We combine predictions from 25 models
trained on subsets of the training data by
selecting the most-likely normalisation ac-
cording to a character language model. We
compare the use of a generalised percep-
tron to the use of conditional random fields
restricted to smaller amounts of training
data due to memory constraints. Fur-
thermore, we make a first attempt to ver-
ify Chrupała (2014)’s hypothesis that the
noisy channel model would not be useful
due to the limited amount of training data
for the source language model, i.e. the lan-
guage model on normalised text.

1 Introduction

The W-NUT Lexical Normalisation for English
Tweets shared task is to normalise spelling and
to expand contractions in English microblog mes-
sages (Baldwin et al., 2015). This includes one-to-
many and many-to-one replacements as in “we’re”
and “l o v e”. Tokens containing characters other
than alphanumeric characters and the apostrophe
are excluded from the task, as well as proper nouns
and acronyms that would be acceptable in well-
edited text. (The input, however, does not identify
such tokens and unnecessarily modifying them is
penalised in the evaluation.)

To make evaluation easier, participants are fur-
ther required to align output tokens to input to-

kens, e.g. when the four tokens “l”, “o”, “v” and
“e” are amalgamated to the single token “love”,
three empty tokens must follow in the output. This
is easy for approaches that process the input token
by token but may require extra work if the input
string is processed differently.

We participate in the constrained mode that al-
lows off-the-shelf tools but no normalisation lexi-
cons and additional data to be used. Furthermore,
we do not use any lexicon of canonical English
but learn our normalisation model purely from the
provided training data.

Our approach follows previous work by
Chrupała (2014) in that we train a sequence la-
beller to annotate edit operations that are intended
to normalise the text when applied to the input
text. However, while Chrupała uses conditional
random fields for sequence labelling, we further
experiment with using a generalised Perceptron
and with using a simple noisy channel model with
character n-gram language models trained on the
normalised side of the training data to select the fi-
nal normalisation from a set of candidate normali-
sation generated from an ensemble of sequence la-
bellers and from selectively ignoring some of the
proposed edit operations.

2 Experimental Setup

2.1 Data Set and Cross-validation

The microblog data set of the shared task contains
2,950 tweets for training and 1,967 tweets for fi-
nal testing. Each tweet is tokenised and the tokens
of the normalised tweets are aligned to the input,
allowing for one-to-one, many-to-one and one-to-
many alignments.

For five-fold cross-validation, we sort the train-
ing data by tweet ID and split it into 5 sets of
roughly the same number of tokens. (The num-
ber of tweets varies from 579 to 606.) Systems
are trained on four sets and tested on the remain-
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ing set. Since the sequence labellers require a
development set, we split the union of the four
sets again into 5 sets to carry out nested cross-
validation, training 25 models in total for each sys-
tem.

2.2 Feature Extraction
For extracting recurrent neural network language
model features, we use Elman1 (Chrupała, 2014),
a modification of the RNNLM toolkit2 (Mikolov et
al., 2010; Mikolov, 2012) that outputs hidden layer
activations. We use the off-the-shelf model from
Chrupała (2014)3. The input are the characters of
the tweet4 in one-hot encoding. The network has a
hidden layer with 400 neurons and it predicts the
next byte. Following Chrupała (2014), we reduce
the 400 activations to 10 binary features: We se-
lect the 10 most active neurons in order and apply
a threshold (0.5) to the activation. The value of the
i-th feature expresses which neuron was i-th active
and whether its activation was below 0.5, e.g. the
first feature states which neuron is most active and
whether or not its activation is below 0.5. As there
are 400 neurons and 2 possible binarised activa-
tions, there are 800 possible values.5

Edit operations are extracted from the parallel
training data searching for the lowest edit distance
and recording the edit operations with dynamic
programming. We customise the edit costs func-
tion to always postpone insertions to after delet-
ing characters so that each input character can be
assigned exactly one edit operation from the set
{do nothing, delete character, insert string before
character}. To capture insertions at the end of the
tweet, we append a NULL byte to all tweets.

The above setup, features and edit operations
are identical to Chrupała (2014) to the best of our
knowledge. We further add a character class fea-
ture {NULL, control, space, apostrophe, punctua-
tion, digit, quote, bracket, lowercase letter, upper-
case letter, non-ASCII, other} and a feature indi-
cating whether the character is part of a token that
is eligible for editing according to the shared task

1https://bitbucket.org/gchrupala/elman
2http://rnnlm.org/
3https://bitbucket.org/gchrupala/

codeswitch/overview
4More precisely, we process UTF-8 bytes. For the train-

ing data, this is the same as characters as the training set does
not contain any multi-byte UTF-8 characters.

5These RNN-LM hidden layer activation features have
been used successfully in text segmentation and word-level
language identification (Chrupała, 2013; Barman et al.,
2014).

rules, i.e. whether or not the characters encoun-
tered since the last space or start of tweet only are
letters, digits, apostrophes and spaces.

2.3 Sequence Labelling

For character-level sequence labelling, we try (a)
Sequor6 (Chrupała and Klakow, 2010), an imple-
mentation of the generalised perceptron (Collins,
2002),7 with 10 iterations, and (b) Wapiti8

(Lavergne et al., 2010)’s implementation of con-
ditional random fields (Lafferty et al., 2001) using
l-bfgs optimisation with a history of 5 steps, elas-
tic net regularisation (ρ1 = 0.333 and ρ2 = 0.001)
and no hard limit on the number of iterations. We
extend the feature templates of Chrupała (2014)9

by including our additional two features. The tem-
plate generates unigram, bigram and trigram char-
acter features within a +/- 2 window. All remain-
ing features are included as unigrams of the cur-
rent value.

Due to the nested cross-validation (see above),
Sequor is trained on 64% (0.82) of the training
data, 16% (0.8 × 0.2) is used as development set
and 20% (1/5) for testing. For Wapiti, we use only
16% for training (and the remaining 64% for de-
velopment set) in each cross-validation fold due to
memory constraints.10

2.4 Generating Candidates

We produce candidate normalisations from the
edit operations proposed by the sequence model.
However, if we allowed each insert and delete op-
eration to be either realised or not, we would pro-
duce up to 2N candidates, where N is the num-
ber of edit operations. With N = 140 (maximum
lengths of a tweet), handling these many candi-
dates is not feasible. Instead, we recursively split
the sequence of edit operations produced by the
sequence labeller into up to eight sections. To find
good split points, we propose to minimise√

|eL − eR|+ max({0, 10− s})/2 (1)

6https://bitbucket.org/gchrupala/
sequor

7The generalised perceptron has been shown to match per-
formance of state-of-the-art methods in word segmentation,
POS tagging, dependency parsing and phrase-structure pars-
ing (Zhang and Clark, 2011).

8https://wapiti.limsi.fr/
9We thank Grzegorz Chrupała for providing his template

and for translating it to the Sequor template format.
10With 64%, memory usage grew to over 400 GB over

night, causing heavy swap activity on our machines with 256
GB RAM (and 410 GB swap space).
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where eL and eR are the number of insert or delete
operations to the left and right respectively, and s
is the number of consecutive no-operations to the
left. The first term tries to balance the number of
edit operations on each side while the second term
introduces a preference to not split clusters of edit
operations.

For each section, we either use the edit opera-
tions produced by the sequence labeller or do not
edit the section. As we split each sequence into
no more than eight sections, we produce up to
28 = 256 candidates.11 Only one candidate, iden-
tical to the input, will be produced if there are no
delete or insert operations and two candidates will
be produced if there is just one delete or insert op-
eration.

In training, we may potentially produce up to
5×256 = 1,280 candidates per tweet as the nested
cross-validation gives us five sequence labellers
per cross-validation run. During testing, up to
25 × 256 = 6,400 candidates may be produced.
(The actual maximum number of candidates may
be lower when labellers agree on the edit opera-
tions.)

2.5 Applying Edit Operations
After producing candidate edit operation se-
quences that use subsets of the edit operations pre-
dicted by a sequence model, the edit operations
are executed to produce candidates strings for the
normalised tweets. As the shared task asks for to-
kenised output aligned to the input tokens, we ap-
ply the edit operations to each token in the follow-
ing sequence:

1. Apply all edit operations at character posi-
tions that correspond to input tokens.

2. Apply insert operations recorded at the space
between tokens and at the end of the tweet to
the preceding token.

3. Apply delete operations at the space between
tokens, moving the contents of the token to
the right to the end of the token to the left,
leaving behind an empty token. (Delete op-
erations at the end-of-tweet marker are ig-
nored.)

Due to time constraints, we do not attempt to
improve the alignment of output tokens to input
tokens.

11Splitting the eight sections again would produce 216 =
65,536 candidates.

2.6 Language Modelling
For language modelling, we train SRILM (Stol-
cke, 2002) on the normalised tweets of the training
data. As we want to build character n-gram mod-
els and SRILM has no direct support for this, we
re-format the candidate strings to make each char-
acter a token. To distinguish space characters from
token separators, we represent them with double
underscores.

2.7 Candidate Selection
We use the noisy channel model12 to select the
most plausible source ŝ for the observed target t
from the set of candidates S(t):

arg max
s∈S(t)

P (t|s)P (s) (2)

P (s) is provided by the language model (Sec-
tion 2.6). Standard models give high probability
to making few or no edits. However, we trust our
sequence models as Chrupała (2014) reported en-
couraging results. Therefore, we give high prob-
ability to using the predicted edit operations. We
consider two models for P (t|s):

P1(t|s) =


0.979 if all edit operations are used

0.020 if s = t

0.001 otherwise
(3)

and

P2(t|s) =

{
1 if all edit operations are used

0 otherwise
(4)

Note that P1 is not a proper probability model as
there is never exactly one “otherwise” case but
2i−2 cases where i is the number of sections con-
sidered in candidate generation, causing the total
to be either 0.999 or between 1.001 and 0.999 +
0.001× (28−2) = 1.253. P2 effectively excludes
the original input and all candidates that use only
some but not all of the edit operations suggested
by the sequence labellers. Since there are five se-
quence labellers per cross-validation fold due to
nested cross-validation and 25 sequence labellers
during testing, P2 effectively selects between 5 or
25 candidates.13

12The noisy channel model has been applied success-
fully to spelling correction (Kemighan et al., 1990; Wilcox-
O’Hearn et al., 2008) and machine translation (Way, 2010),
among other areas.

13Han et al. (2013) also use a trigram language model for
normalisation, but only to reduce a larger candidate set to an
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2 3 4 5 6
WB 14.70 9.97 7.91 7.31 7.19
KN 14.73 9.83 7.81 7.33 7.43
GT 14.63 9.88 7.91 7.45 7.44

Table 1: Average language model perplexity over
the five cross-validation runs for n-gram sizes n =
2, ..., 6 and smoothing methods WB = Witten-
Bell, KN = Keyser-Ney and GT = Good-Turing.
Standard deviation σ ≤ 0.23 for all configura-
tions.

2.8 Evaluation Measures

We evaluate our best systems using the evalution
script provided by the shared task organisers. It
counts:

• The number of correctly modified tokens, i.e.
tokens that need to be replaced by a new non-
empty token and the system correctly pre-
dicts this token.

• Number of tokens needing normalisation, i.e.
tokens that are modified in the gold output.
However, again, tokens that are to be deleted
are ignored, e.g. “l o v e” to “love” counts
as one event only despite the replacement of
three tokens with empty tokens.

• The number of tokens modified by system,
i.e. tokens for which a substitution with a
non-empty token is proposed by the system.

Based on these numbers, precision, recall and F1-
score are calculated and we select the system and
configuration to be used on the test set based
on highest average F1-score over the 5 cross-
validation runs.

3 Results

We use character n-gram language models in the
noisy channel model for candidate selection. To
address sparsity of data that arises when test sen-
tences contain n-grams that are rare or unseen in
the training data, we try Witten-Bell, Keyser-Ney
and Good-Turing smoothing. Table 1 shows av-
erage cross-validation perplexity for these three
smoothing methods and n = 2, ..., 6. Over all
five cross-validation folds, the language model
that gives the lowest perplexity when trained

n-best list before applying more complex models to token-
level candidate selection.

P R F1
P1 W 83.2% 37.7% 51.9%
P1 S 83.2% 41.0% 54.9%
P2 W 85.9% 47.7% 61.4%
P2 S 85.7% 56.1% 67.8%

Table 2: Average cross-validation results over the
five cross-validation runs for transition models
P1 and P2, W = Wapiti CRF sequence labeller
(trained on only 16% of the training data), S =
Sequor generalised perceptron sequence labeller
(trained on 64% of the training data), P = preci-
sion, R = recall, F1 = F1 measure. Standard devi-
ation σ ≤ 0.03 for all cells.

on the training data and applied to the internal
test set is the 6-gram model with Witten-Bell
smoothing. This confirms the recommendations
in the SRILM documentation to use Witten-Bell
smoothing when the vocabulary is small such as
when building a character language model.

Table 2 shows cross-validation results for the
four systems resulting from the choices between
transition models P1 and P2 and using the Wapiti
CRF or the Sequor generalised perceptron se-
quence labeller. The differences are not large in
precision but for recall, the model P1 performs
poorly. Also the CRF consistently has lower re-
call than the respective perceptron model. Inter-
estingly, the CRF achieves best precision. On F1-
score, the best result is obtained with model P2,
which reduces the noisy channel model to selec-
tion between sequence modeller hypotheses, to-
gether with the Sequor sequence modeller.

On the final test set, our best system using P2

and Sequor has precision 81.90%, recall 55.09%
and F1 65.87%, placing it fifth out of six submis-
sions in the “constrained” category.

4 Discussion

A possible explanation for the low recall obtained
with the P1 model is that this noise model cannot
counter the effect that shorter sentences generally
receive higher language model probability scores
and therefore there is a tendency to reject edit op-
erations that insert additional characters.

Furthermore, we observe that our system often
assigns inserted text to the wrong evaluation units,
e.g. inserting the string “ laughing out” before the
space before “lol” and then replacing second “L”
of “lol” with “ud”. This is not wrong on the string

96



level, but in the token-level evaluation, we make
two errors: wrongly appending “ laughing out” to
the previous token and wrongly normalising “lol”
to just “loud” instead of “laughing out loud”.

Since the model P1 did not come out best, we
cannot reject Chrupała (2014)’s hypothesis that
the noisy channel model would not be useful.
However, our observations also do not provide
much support for this hypothesis as we did not in-
clude standard models from previous work (Cook
and Stevenson, 2009; Han et al., 2013) in our ex-
periment.

5 Conclusions

We trained two sequence modellers to predict edit
operations that normalise input text when exe-
cuted and experimented with applying the noisy
channel model to selecting candidate normalisa-
tion strings.

Future work should:

• Train the CRF on the full training data, either
using a more memory-friendly (but possibly
slower) optimisation method or using an even
larger machine.

• Experiment with LSTM sequence modelling
(Hochreiter and Schmidhuber, 1997; Gers,
2001), which has been applied successfully
to speech recognition and caption genera-
tion (Graves and Jaitly, 2014; Vinyals et al.,
2015).

• Combine models with voting rather than lan-
guage model score.

• For the noisy channel model, try stan-
dard models from previous work (Cook and
Stevenson, 2009; Han et al., 2013).

• To better understand the selection prefer-
ences of the noisy channel model, com-
pare the F1-score obtained when evaluating
against the gold data to the F1-score obtained
when evaluating the system output against its
own input, i.e. are we biased towards doing
nothing?

• Introduce a brevity penalty to counter the ef-
fect of selecting short candidate normalisa-
tions in the noisy channel model.

• Automatically revise the alignment to in-
put token according to global co-occurrence
statistics.

• Carry out a full error analysis of what the sys-
tem does well and where it fails.
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Abstract

In this article we describe the microtext
normalization system we have used to par-
ticipate in the Normalization of Noisy Text
Task of the ACL W-NUT 2015 Workshop.
Our normalization system was originally
developed for text mining tasks on Span-
ish tweets. Our main goals during its de-
velopment were flexibility, scalability and
maintainability, in order to test a wide va-
riety of approximations to the problem at
hand with minimum effort. We will pay
special attention to the process of adapting
the components of our system to deal with
English tweets which, as we will show,
was achieved without major modifications
of its base structure.

1 Introduction

The value of Twitter and other microblogging ser-
vices as information sources in domains like mar-
keting, business intelligence, journalism, etc. is
obvious nowadays. Nevertheless, such amount of
information can only be appropriately exploited
through text mining techniques.

However, there are notable differences between
“standard” language and the so-called texting used
in those microtexts. In this kind of writings, it is
important to reduce the number of characters used
to fit their length restrictions while maintaining
the readability of the message to some extent. To
achieve this, most of the techniques applied rely
on phonetics, thus being language-specific (López
Rúa, 2007). For example: intentionally ignoring
orthographic and grammar rules, as in “be like” for
“am/is/are/was/were like” in the case of English
or “asique” for “ası́ que” in the case of Spanish;
the usage of shortenings, contractions and abbre-
viations such as “c u” for “see you” in English or
“ksa” for “casa” in Spanish; or the employment of

smileys to express emotions, for instance :) to ex-
press happiness. These resulting terms are called
lexical variants (Han et al., 2013).

The problem is that, in general, text mining
tools are very sensitive to those phenomena, as
they are designed for dealing with standard texts.
Therefore, it is necessary to normalize these texts
before their processing, that is, to transform them
into standard language. This way “c u nxt week”,
for example, would be transformed into “see you
next week”. This is the goal of the W-NUT 2015
Normalization Task (Baldwin et al., 2015).

The rest of this paper is organized as follows:
Section 2 describes the core architecture of our
system, and how it was adapted to fit this shared
task, and Section 3 presents the resources used.
Next, Section 4 evaluates the system and discusses
the results obtained. Finally, Section 5 presents
our conclusions and considers some possible fu-
ture improvements for our system.

2 Architecture

Our tweet normalization system was developed
taking as basic premises its flexibility, scalabil-
ity and maintainability. As a starting point, we
took a previous prototype for Spanish tweet nor-
malization (Vilares et al., 2013) which, although
fully functional, did not turn out to be as flexi-
ble and maintainable as expected. This could have
become a problem for future developments, since
the adaptation effort needed to integrate new tech-
niques would have been too large, so we decided
to refactor the whole system to solve this.

The general scheme of the original system mim-
ics that of Han and Baldwin (2011) and comprises
three stages:

1. Tweet preprocessing.

2. In-vocabulary word identification (IV), based
on the lexicon of the system, obtaining as
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a result an initial set of out-of-vocabulary
words (OOV).

3. OOV set processing in order to distinguish be-
tween correct words which are out of the sys-
tem lexicon and proper lexical variants, ob-
taining for each one of the latter a normal-
ized form. This last step can be in turn de-
composed into two: the first one, which gen-
erates a set of possible normalization candi-
dates based on the application of certain nor-
malization techniques; and the second one,
which selects one of these candidates as the
normalized form (in our case, in a score-
driven process).

As for the particular normalization techniques em-
ployed throughout our system, we decided to try
first a combination of two of the traditional ap-
proximations to this task (Kobus et al., 2008): the
spell checking and the automatic speech recogni-
tion metaphors.

2.1 The pipeline

We decided to give our system an object oriented
approach (using JAVA) as opposed to the impera-
tive approach of the original prototype (in PERL).
The new system is structured in processors, for-
merly known as modules in the prototype, whose
goal is to apply a certain process to the input
tweets so that we can obtain the normalization
candidates of their terms at its output.

The core component of our system is the
pipeline, consisting of a classic cascade structure
where we can insert an arbitrary number of pro-
cessors and have their inputs and outputs automat-
ically linked. In this way, the original input of the
system becomes the input of the first processor, the
output of the first processor is the input of the sec-
ond one, the output of this second processor is the
input of the third one, and so on, until reaching the
last processor, whose output becomes the output
of the system.

Regarding its design, we have followed good
engineering practices and made extensive use of
design patterns. Among them, it should be noted
the use of the decorator pattern which, in our con-
text, represents a simple pipeline, allowing us to
dynamically stack an arbitrary number of proces-
sors. Its combination with the composition pattern
lets us group them into stages, which enable the
definition of particular processor sequences while

still sharing the same basic processor interface,
thus preserving the flexibility of the decorator.
Thereby, the resulting structure allows for the dy-
namic construction of different pipeline configu-
rations of varying complexity and different levels
of abstraction, not being restricted to the original
settings.

The application of the template pattern allowed
us to factorize great part of the common processes
of the components, such as the sequential iteration
through all the input tweets, which most of the
processors perform. This resulted in a great ho-
mogenization of the code, thus simplifying main-
tenance and allowing us to focus our efforts on the
specific implementation of the processing methods
in each case.

Moreover, some processors make use of exter-
nal tools capable of being changed even at runtime
— something of special interest in multilingual en-
vironments. It should also be possible to integrate
them into other external components, so that their
logic can be reused by others. All this involves
decoupling the processors from the specific imple-
mentations of the external components employed,
which we have achieved through the use of the in-
version of control pattern.

Furthermore, communication between the com-
ponents of the pipeline is done through structured
text files, allowing us to gain flexibility as we can
integrate and exchange with ease new processing
modules regardless of their particular implemen-
tation (Vilares et al., 2013). In this case we have
used XML along with an implementation of the ab-
stract factory pattern for its construction and pars-
ing. This also facilitates possible future migra-
tions to other data representation languages, such
as JSON.

Finally, we have created a dynamic configura-
tion subsystem based on XML files that allows us to
define and instantiate the particular structure of the
pipeline on which we want to process the tweets.
The advantages of such a subsystem are clear, both
for system maintainability and testing:

1. It improves the multilingual support of the
system by enabling the definition of configu-
rations that use processors and resources de-
signed for a particular language.

2. It allows for experimentation in a simple, ag-
ile and documented (the configuration file it-
self also serves as documentation) manner.
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3. It avoids the necessity of modifying the sys-
tem source code.

2.2 Configuration before W-NUT 2015
The current processor configuration for Spanish
tweet normalization derives from that one used
by the initial prototype for its participation in the
TweetNorm 2013 task (Alegrı́a et al., 2013). The
general procedure works like this: firstly, using
processors to prepare the input (preprocessing);
secondly, employing those whose purpose is to
obtain new normalization forms (candidates gen-
eration); thirdly, using those in charge of select-
ing or filtering the best normalization forms (can-
didate filtering/selection); and lastly, employing
those which prepare the final output of the system
(postprocessing). Such setup includes the follow-
ing processors:

• FreelingProcessor, which reads the
input data in the TweetNorm 2013 format
and uses Freeling (Padró and Stanilovsky,
2012) to perform the tokenization, lemmati-
zation and POS tagging (although these tags
are not currently in use) of the text of the
tweet.

• MentionProcessor,
HashtagProcessor, URLProcessor
and SmileyProcessor, which act as
filters for OOVs we do not want to consider
for normalization.

• LaughESProcessor, which normalizes
laugh string representations, as in “ja” for
“jajaja”.

• PhoneticProcessor, which uses a pho-
netic table to map characters to their phonetic
equivalent strings, such as “x” to “por”.1

• SMSDictionaryProcessor, which
looks for normalization candidates in an SMS

dictionary, for example “también” (too/also)
for “tb”.

• AspellProcessor, which obtains nor-
malization candidates using the spell checker
aspell (Aspell, 2011), as in “polémica”
(controversy) for “polemik”. It should be
noted that this tool has been customised
with a new phonetic table for Spanish, based

1The character “x” resembles the multiplication (times)
sign ×, which in Spanish is read as “por”.

on the Metaphone algorithm (Philips, 1990)
and a new Spanish dictionary extracted from
Wikimedia resources.2

• AffixESProcessor, which identifies and
normalizes affix-derived Spanish forms of
base words, also supporting phonetical writ-
ing, as in the case of “chikiyo” for “chiquillo”
(little boy), obtained from “chico” with the
suffix “-illo” (little/small).

• NGramProcessor, which calculates the
scores of those most likely normalization
candidates according to the Viterbi algo-
rithm (Manning and Schütze, 1999, Ch. 9)
taking as reference the Web 1T 5-gram
v1 (Brants and Franz, 2006) Spanish lan-
guage model.

• CandidateProcessor, which selects the
top-scoring candidate for each word.

• ResultProcessor, which dumps the
tweet data obtained by the system to a file us-
ing the required format.

2.3 Adaptation for W-NUT 2015
In general, the adaptation process revolved around
implementing new processors and integrating new
resources to account for the requirements of this
new task, such as the use of English instead of
Spanish on the new I/O data format, while leaving
the base structure of the system untouched. This
was precisely the main goal during the refactoring
process at the beginning of this project.

The resulting configuration includes the follow-
ing new processors (see Section 3 for a description
of the resources they use):

• WNUTTweetProcessor, which parses the
structured input (now in JSON format instead
of plain text) and obtains the system repre-
sentation of the tweets.

• ArkTweetProcessor, which uses the
ark-tweet-nlp POS tagger to obtain the
morphosyntactic information of the input
tweet tokens.

• WNUTFilterProcessor, which filters
out all those terms that should not be normal-
ized according to the task rules (mentions,
hashtags, URLs, etc.) using regular expres-
sions.

2http://wikimediafoundation.org
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• LowerCaseProcessor, which takes
all the candidate forms of a token and
lowercases them; AspellCProcessor,
a constrained version of the original
AspellProcessor described in Sec-
tion 2.2 (see Section 3 for further details).

• WNUTNgramProcessor, which is similar
to the previous NGramProcessor but with
some added modifications to fit the particu-
larities of our new custom language model.

• WNUTResultProcessor, which dumps
all tweet data generated by the system in the
required output format (JSON).

We show in Figure 1 a graphical representation
of the architecture of the system both before (left
side) and after (right side) the adaptation.

Unfortunately, time limitations prevented us
from implementing an English phonetic table for
the PhoneticProcessor, which would have
provided us with mappings such as “two”, “too”
or “to” for “2”. To alleviate this, we did extend the
SMS dictionary to cover some of these cases.

It should be noted that because of those limita-
tions we did not address those cases were multi-
ple contiguous tokens of the input tweet should be
normalized into a single output token (i.e. the so
called “n-1 mappings”). Moreover, since that phe-
nomenon was rare (it appeared in just 11 tweets
out of 2950 of the training dataset) we considered
that leaving this feature behind would have little
impact on the final performance of the system.

3 Integrated resources

The base resources we have used for this task, and
on which most of the system processors rely, are
the following:

• aspell (Aspell, 2011), the well-known
spell-checker together with its default En-
glish dictionary.

• ark-tweet-nlp (Owoputi et al., 2013), a
Twitter-focused NLP toolkit from which we
have used its POS tagger.

• BerkeleyLM (Pauls and Klein, 2011), a
Java library and toolset focused on language
modeling.

• Redis,3 a noSQL key-value datastore; and
the SMS normalization dictionaries, canoni-
cal lexicon and training dataset provided by
the organizers of the task.

As a result of processing the previous resources,
we have obtained the following additional ones:

• A global SMS normalization dictionary im-
plemented as a Redis datastore, whose en-
tries were extracted from the two normaliza-
tion dictionaries and the training dataset pro-
vided by the organizers.

• A Kneser-Ney language model (Kneser and
Ney, 1995) of the target domain (standard
tweet text) obtained with the BerkeleyLM
tools taking as input tweets of the training
dataset.

• A new English dictionary for aspell built
on the canonical lexicon.

With respect to the differences existing between
the configurations of the system for constrained
and unconstrained runs, there is only one. In
the case of the constrained run, since only off-
the-shelf tools are permitted, the aspell spell-
checker was employed using its default dictionary
but filtering its retrieved candidate corrections tak-
ing as reference the canonical lexicon; i.e. only
those candidates that could be found on this lexi-
con were taken into account. On the other hand,
in the case of the unconstrained run, aspell was
used instead with the dictionary obtained from the
canonical lexicon. The rest of the processors and
their parameters remained the same.

Moreover, although we also considered the use
of the Web 1T 5-gram v1 language model in the
unconstrained run, our preliminary tests showed
that the results obtained were very poor in this
case, as we further comment in Section 4.

4 Evaluation

Table 1 shows the results obtained for the train-
ing corpus. It should be noted that these corre-
spond to a slightly overfitted system, since we in-
advertently used a language model built using the
whole training dataset (for candidate selection) in
our 10-fold cross-validation framework. Never-
theless, this also gave us an interesting clue to the
main performance bottleneck of our system, as we
will discuss below.
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Figure 1: Original pipeline (left) and pipeline adapted for W-NUT 2015 (right) integrated into the archi-
tecture of the system.

precision recall F1
constrained 0.8956 0.8746 0.8850
unconstrained 0.8914 0.8739 0.8825

Table 1: Training results.

precision recall F1
constrained 0.4646 0.6281 0.5341
unconstrained 0.4592 0.6296 0.5310

Table 2: Testing results.

Table 2 shows the results obtained for the test
corpus. At the sight of these figures, which differ
considerably from the previous ones, we decided
to analyse them in more detail. For this purpose,

3http://redis.io/

we obtained a recall metric on the scope of the can-
didates proposed by the system; in other words,
we wanted to see how many times the correct can-
didate corresponding to a token of the dataset was
among the ones considered by the system. The
resulting ratio came to 0.87, which means that
most of the times we had had the chance to select
the correct normalization form for a given non-
standard token but the system failed to make the
selection, and is also a consistent figure with re-
spect to those shown on Table 1. This was not a
big surprise for us, mainly because it is a well-
known problem we have been aware of since we
started working on (Spanish) tweet normalization.
Therefore, we can conclude that the performance
bottleneck of our system is still the candidate se-
lection process, which is heavily influenced by the
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language model in use.
In this respect, tuning experiments were also

made by extending our unconstrained configura-
tion through the addition of the Web 1T 5-gram v1
English language model as a knowledge source.
Only unigrams and bigrams could be used be-
cause of unsolved memory limitations. However,
in contrast with previous experiments performed
for Spanish, the resulting performance was unsat-
isfactory. Because of this, the use of these lan-
guage models for our final submission was dis-
missed. According to our analysis, the cause for
this seems to be the great differences, at both the
lexical and syntactical levels, between the texts
used to build this model, which could be con-
sidered as “regular” texts, and those correspond-
ing to tweets, which agrees with the observations
of Chrupała (2014). As illustrative examples of
this type of expressions we can take “I like them
girls” and “Why you no do that?”, which are lex-
ically correct but not syntactically valid, so lan-
guage models built using regular texts will not rec-
ognize them. In the case of our previous experi-
ments on Spanish, this difference was not so clear.

5 Conclusions and Future work

We have presented in this work the tweet normal-
ization system used by our group to participate in
the W-NUT 2015 Normalization Task which, in
turn, is an adaptation of another existing Spanish
tweet normalization system.

Within the scope of this task, it became clear
that most of the normalization mistakes made by
our system occurred during the candidate selec-
tion stage, as it was unable to determine the correct
normalization term obtained in previous stages
from the set of candidates available. The reason
for it is that we do not have at this very moment
enough training data to build a representative lan-
guage model of the target domain (normalized text
of English tweets).

Furthermore, there is another type of normal-
ization phenomena which, at this moment, can-
not be correctly handled by our system: n-1 map-
pings. This is due to the initial approach we took
for this system, which only considered 1-1 and 1-
n mappings, but not n-1 mappings, together with
our time limitations.

All that being said, as future lines of work we
are considering the following improvements to our
system:

• Obtaining a representative language model of
the target domain by using a larger normal-
ized tweet corpus. This corpus will be com-
prised of tweets without non-standard words,
so we can still capture the morphosyntactic
structure of these texts (Yang and Eisenstein,
2013).

• Using POS tags and syntactic information to
improve the candidate selection process.

• Integrating a classifier in the extraction pro-
cess of the final normalization candidates,
taking as features aspects such as the syn-
tactic and morphosyntactic information ob-
tained, their probability according to the lan-
guage model, whether they were selected or
not by the Viterbi algorithm, their string and
phonetic differences with respect to the orig-
inal form, etc.

• Keeping the canonical lexicon updated using
resources like Wikipedia, since the language
model construction process relies heavily
upon a good lexical reference in order to cor-
rectly discard non-standard words.

Moreover, we intend to study the application of
tweet normalization, for both Spanish and English
tweets, in opinion mining tasks (Vilares et al.,
2015).
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Abstract

In this paper we report our work for nor-
malization of noisy text in Twitter data.
The method we propose is hybrid in na-
ture that combines machine learning with
rules. In the first step, supervised ap-
proach based on conditional random field
is developed, and in the second step a set
of heuristics rules is applied to the can-
didate wordforms for the normalization.
The classifier is trained with a set of fea-
tures which were are derived without the
use of any domain-specific feature and/or
resource. The overall system yields the
precision, recall and F-measure values of
90.26%, 71.91% and 80.05% respectively
for the test dataset.

1 Introduction

Twitter has seen a phenomenal growth in the num-
ber of users during the last few years. Over 500
million user accounts have been registered with it
with approx 302 million active users 1. Amount
of user generated contents over the web would
be unarguably enormous i.e. almost 500 million
tweets per day 2. The fact that Twitter data (or
tweets) are typically noisy and unstructured in na-
ture are due to several grammatical & spelling
mistakes it contain. The size limitation (constitute
upto 140 characters only) is the another prominent
reason. It confines a user to devise different short
forms (e.g. ‘c u ltr.’ for ‘see you later.’) of a valid
word. Interpreting such forms may be an easier
task for a human being but, is very difficult to build
an accurate system for solving any problem related
to natural language processing (NLP). At times,
user puts extra emphasis by stretching/elongating

1http://en.wikipedia.org/wiki/Twitter
2http://www.cnet.com/news/report-twitter-hits-half-a-

billion-tweets-a-day/

a valid word to express their feelings. For exam-
ple, they often use word like ‘yeeessss’ to show
their happiness, which is a stretched form of ‘yes’.

Normalization of noisy text is an important and
necessary pre-processing task for building differ-
ent applications related to text processing. It
is pretty obvious from various studies (Liu et
al., 2011; Foster et al., 2011) that presence of
noisy texts makes any natural language process-
ing (NLP) task very tedious to achieve good ac-
curacy levels. The goal of normalization is two-
fold, i.e. a) identification of candidates for nor-
malization and b) converting the candidate word-
forms to the normalized form. Unlike the gen-
eral well-formatted corpus, like newswire, it does
not always contain noisy text. Its main sources
are normally those platforms on which users have
complete freedom to express themselves. There-
fore, user generated tweets are one of the major
sources of noisy texts. In the last couples of years
researchers across worldwide are actively working
for the normalization of noisy contents of twitter
(Han and Baldwin, 2011; Liu et al., 2012; Wang
and Ng, 2013; Porta and Sancho, 2013; Chru-
pala, 2014). In (Han and Baldwin, 2011), a lin-
ear Support Vector Machine (SVM) classifier was
trained for detecting ill-formed words, and then
performed normalization based on morphophone-
mic similarity. Application of edit operations and
recurrent neural embedding can be found in (Chru-
pala, 2014) for text normalization. Their method
learns sequence of edit operations using condi-
tional random field (CRF). In another work, (Liu
et al., 2012) investigated the human perspectives
of enhanced letter transformation, visual priming
and the phonetic similarity for the text normaliza-
tion. The use of beam search decoder and finite-
state transducers can be seen in (Wang and Ng,
2013; Porta and Sancho, 2013) for the word nor-
malization. These existing works are based on dif-
ferent setups and datasets.
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For further advancement of research on text nor-
malization and to provide a common benchmark
setup for evaluation, a shared task “ACL2015 W-
NUT: Normalization of Noisy Text in Twitter”3

was organized. The shared task had two vari-
ants: constrained mode and unconstrained mode.
We participated only for the constrained mode
which did not permit us to use any external re-
sources and/or tools except few that were rec-
ommended by the organizers. In this paper we
report our work for normalization. We imple-
mented a hybrid system where machine learn-
ing along with rules are utilized to perform the
task. We have exploited lexical and syntactic
properties of a tweet as discussed in section 3.1
to derive a feature set for identification of noisy
text in the first step. We train Conditional Ran-
dom Field (CRF) (Lafferty et al., 2001) as a ma-
chine learning algorithm to identify the candi-
date wordforms that need to be normalized. In
second step, we apply some rule based methods
(as defined in section 3.2) in order to normalize
the wordforms which were identified in first step.

The organization of the paper is as follows. A
brief theoretical discussion on CRF is presented
in section 2. Section 3 discuss about the feature
set and methodology used in the proposed work.
Experimental result and analysis can be found in
section 4. We conclude the paper in section 5.

2 Conditional Random Field (CRF)

Conditional Random Field, introduced by (Laf-
ferty et al., 2001), is a robust sequence learning al-
gorithm based on the conditional probability. Let
an observation sequence O =< o1, o2, ..., oT >
is given, then the conditional probability of a state
sequence S =< s1, s2, ..., sT > can be formu-
lated as:

P (S|O) =
1
Z0
exp(

T∑
t=1

K∑
k=1

λk × fk(st−1, st, o, t))

(1)
where λk is the weight of the feature function
fk(st−1, st, o, t), that is to be learned via training.
In general, feature functions takes binary value but
at times it may range between −∞ to +∞. The
output of this function relies on certain state se-
quence i.e. st−1, st and observation properties.
The normalization factor Zo, define in equation 2,
is used to make all conditional probabilities sum

3http://noisy-text.github.io/

up to unity and can be calculated efficiently using
dynamic programming.

Z0 =
∑
s

exp(
T∑

t=1

K∑
k=1

λk × fk(st−1, st, o, t))

(2)

3 Methods

After discussing theoretical aspect of CRF, we
now describe our methodology that we use to per-
form text normalization. It comprises of two steps.
First step consists of training a supervised ma-
chine learning model for the identification of noisy
text. We implement a set of features that were
mostly derived without using any deep domain-
specific resources and/or tools. We perform 3-fold
cross validation on the training data to determine
the best feature combination. In the second step,
potential candidates identified to be noisy were
analysed and subsequently processed using vari-
ous heuristic based rules for normalization. Fig-
ure 1 depicts schematic diagram of the proposed
system.

Figure 1: Proposed methodology. Dotted hori-
zontal line separates two steps.

3.1 Feature Set
This section describes the feature set that was im-
plemented for identifying the potential candidates
that need to be normalized. All the features de-
fined are domain-independent in nature. No other
external resources and/or tools, with the exception
of vocabulary of words 4, were used in the pro-
posed work. Following are the brief descriptions
of the implemented features.

4http://noisy-text.github.io/files/scowl.american.70
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1. Local context: Local contextual information
in the forms of surrounding words are used as
the feature.

2. Vocabulary word: Noisy word can not be a
part of valid vocabulary. Therefore, all out-
of-vocabulary (OOV) are the potential candi-
dates that should be normalized. We define a
feature that fires if the current is OOV.

3. Part-of-Speech (PoS) information: We use
CMU-Tweet PoS tagger 5 for extracting the
PoS information. This is used as a feature of
CRF.

4. Word length: From the given training data
we observed that noisy texts are generally
shorter in lengths. We define a binary val-
ued feature that is set to high if the length of
the candidate token exceeds a predetermined
threshold. In our case we assume the token
to be a noisy text if its length is less than 4
characters.

5. Suffix and Prefix: Suffixes and prefixes of
length upto 4 characters of the current word
are used as the features.

6. Only digit: This feature checks whether the
current token is consisting of only digits or
not. The word has a low probability of be-
ing noisy if it contains only the digits. Few
exceptions are 2(to), 4(for) etc.

7. AlphaDigit: An alphanumeric token have a
high probability of being a noisy text. A bi-
nary valued feature is thus defined in the pro-
posed work which fires when the token is al-
phanumeric.

8. Consecutive characters: This feature fires
when a token consists of more than 2 consec-
utive characters is found. This feature helps
in identifying the stretched/elongated words.

9. Compact word form: Apostrophe mark (’)
is used to indicate the omission of one or
more letters from a word (e.g. i’m, you’re
etc.). A binary feature is defined which iden-
tifies the missing apostrophe mark in a word.

10. Present participle (a.k.a ing-form) of a
verb: From the analysis of training data we

5http://www.ark.cs.cmu.edu/TweetNLP/

observed that people tends to skip ‘i’ or ‘g’
from the present participle, i.e. ing form, of
a verb. For example, they use goin in place
of going. Thus a feature is defined and set to
‘on’ if a token is found with the above pat-
tern.

11. Single character: This feature fires when the
token consists of a single character only with
the exception of two characters i.e. ‘I’ and
‘a’.

12. Hash tag & Username: Hash tags and user-
names in tweets, which starts with # & @ re-
spectively, are not considered as noisy text in
the training data. Therefore this feature is set
to false if a token starts with # or @.

3.2 Heuristic rules for normalization

Once the noisy text was identified in the first step,
we devise a set of rules for normalization. These
rules are heuristic in nature and based on the facts
& analysis on the training data. Below is the list of
rules implemented according to their application
in the proposed work.

1. Frequent abbreviation: This is the first rule
that we apply on the noisy text. We make
use of a list of frequent abbreviations used
in twitter and its normal form. The list was
compiled from the Web 6,7 and training data.
If the token identified as a potential candidate
in the first step is present in the list we simply
replace it with the normal text, otherwise, we
move onto the next rule.

2. Present participle of a verb: A rule is de-
fined for a misspelled present participle verb
as discussed in section 3.1. We identify and
cross check its PoS tag (i.e. VERB) in order
to retrieve its valid equivalent form.

3. Missing apostrophe(’): Twitter users nor-
mally drops apostrophe mark in tweets. We
define a rule to identify and insert a apostro-
phe mark at proper place. This rule was em-
ployed for handling following variants: ’m,
’ll, ’ve, ’re, n’t, ’s etc.

6http://www.webopedia.com/quick ref/Twitter Dictionary Guide.asp
7http://marketing.wtwhmedia.com/30-must-know-

twitter-abbreviations-and-acronyms/
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4. Elongated form: Noisy word in its elon-
gated form (i.e. yeeeeesss for yes) are iden-
tified and translated into valid word by itera-
tively stripping off consecutive characters.

5. Split two merged words: This rule splits a
noisy word, if it is a concatenation of two
valid words. For example ‘thankyou’ is con-
catenation of two separate words i.e. ‘thank’
and ‘you’. We find out word pair at each
split point and applied this rule for the pair
that has both valid word. Token ‘thankyou’
has following word pair for 7 spit point: i.e.
(1: ‘t’, ‘hankyou’; 2: ‘th’, ‘ankyou’; 3: ‘tha’,
‘nkyou’; 4: ‘than’, ‘kyou’; 5: ‘thank, ‘you’;
6: ‘thanky’, ‘ou’; and 7: ‘thankyo’, ‘u’;).
Word pair (‘thank, ‘you’) at split point 5 is
chosen for the normalization. Before apply-
ing this rule a threshold for word length was
heuristically set to 6 characters.

6. British to American standard: American
standard was preferred as an official English
language standard for the shared task. We de-
fine a rule which identifies British standard
word and convert it to corresponding Amer-
ican standard counterpart. Notable differ-
ences between the two standards that we have
incorporated in the work are ‘our’ to ‘or’ (e.g.
labour to labor), ‘ise’ to ‘ize’ (e.g. realise to
realize), ‘re’ to ‘er’ (e.g. centre to center) etc.

4 Datasets and Experiments

In subsequent subsections we discuss the dataset
used in the system and evaluation results, respec-
tively.

4.1 Data Set

Objective of the shared task was to identify and
normalize the noisy text in tweets. Only training
dataset was provided by the shared task organiz-
ers. The training dataset comprise of 2,950 tweets
and a total of 3,942 noisy tokens were present
in the dataset. In absence of the development
dataset, we use 3-fold cross validation for train-
ing the model. Gold standard test datasets con-
tains 1,967 tweets. Table 1 list the statistics of the
datasets.

4.2 Experimental Results

Conditional Random Field (CRF)(Lafferty et al.,
2001) was used as a base learning algorithm in the

Dataset # Tweets # Tokens # Noisy
train 2950 44385 3942
test 1967 29421 2776

Table 1: Statistics of the dataset

proposed work. We use the CRF++ 8 based pack-
age for training and testing. To evaluate the per-
formance of the system, an evaluation script along
with the dataset was provided by the organizers.
We perform 3-fold cross-validation technique to
fine-tune the system, and identify the best fitting
feature combination. The performance of 3-fold
cross validation experiment yields the F-measure
of 92.21% for identification problem (i.e. denot-
ing only the candidates for normalization). For
the test set it shows the F-measure of 86.63%. Af-
ter identifying the candidates of normalization we
apply heuristics to perform normalization. Rules
were applied according to their appearance. We
have tried various combination of rule sequences
and found that the listed sequence is the one which
gives us better performance. While we perform
3-fold cross validation we obtain the precision,
recall and F-measure values of 88.59%, 74.92%
and 81.19%, respectively. Finally we obtain the
precision, recall and F-measure values of 90.26%,
71.91% and 80.05%, respectively. Results of these
experiments are shown in Table 2.

We closely analyze the errors encountered by
our system. We observed that many errors were
due to the incorrect identification of the candidates
that need to be normalized. The jumbled words,
e.g. ‘liek’, ’whta’ etc. were not properly recog-
nized. With more accurate identification system
we would have achieved better result. For example
in case of 100% noisy text identification, we ob-
tained an increase of 3.75% in our final F-measure.
For normalization error, our method arguably lags
behind in two fronts: a) ambiguities in normal-
ization and b) many-to-one mapping cases. Many
of these may be reduced by careful design of the
heuristic rules.

5 Conclusion

In this paper we have reported our works that we
carried out as part of our participation in the Twit-
ter text normalization shared task. We have de-
veloped a hybrid system where in the first step

8http://taku910.github.io/crfpp/
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Task Dataset Precision Recall F-measure Accuracy
3-fold cv 89.51 95.08 92.21 98.70

Identification test 93.08 81.01 86.63 97.64
3-fold cv 88.59 74.92 81.19 -

Normalization test 90.26 71.91 80.05 -

Table 2: Result of the proposed system. All values are in %.

we identify the candidates for normalization us-
ing a CRF based approach, and in the second step
we employed several heuristics for converting the
wordforms into the normalized form. We have im-
plemented the features which are mostly domain-
independent in the sense that we did not make use
of any domain specific resources and/or tools for
their extraction. Official evaluation shows that our
system achieves the F-measure of 80.05%.

In future we would like to carry out more com-
prehensive analysis on the evaluation results. The
features and rules that we used here are very gen-
eral and straightforward in nature. In future we
would like to modify the system into a fully ma-
chine learning based approach and put extra em-
phasis on errors.
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Abstract 

To address the challenges of normalizing 
online conversational texts prevalent in 
social media, we propose a contextual 
long-short term memory (LSTM) recur-
rent neural network based approach, 
augmented with a self-generated diction-
ary normalization technique. Our ap-
proach utilizes a sequence of characters 
as well as the part-of-speech associated 
with words without harnessing any exter-
nal lexical resources. This work is evalu-
ated on the English Tweet data set pro-
vided by the ACL 2015 W-NUT Normal-
ization of Noisy Text shared task. The re-
sults, by achieving second place (F1 
score: 81.75%) in the constrained track of 
the competition, indicate that the pro-
posed LSTM-based approach is a promis-
ing tool for normalizing non-standard 
language. 

1 Introduction 

Recent years have seen increasing use of online 
social media such as Twitter and Facebook that 
has generated a growing body of text where non-
standard language is prevalent. These non-
standard lexical items take many different forms, 
including unintentional errors based on users’ 
cognitive misconceptions and typographical er-
rors, and intentional non-canonical language 
such as abbreviations, word lengthening by du-
plication of characters, Internet slang, phonetic 
substitutions, and creative use of language 
(Chrupała, 2014; Owoputi et al., 2013).  

A key challenge posed by these non-standard 
texts is the negative impact on traditional natural 
language processing (NLP) pipeline processes, 
evidenced by noticeable underperformance of 
their predictive accuracy in various domains such 
as part-of-speech tagging (Gimpel et al., 2011) 
and named entity recognition (Ritter et al., 2011) 
compared to more standard text. As an approach 
to addressing this challenge, text normalization 
techniques have been widely investigated, rang-
ing from extracting domain specific lexical vari-
ants (Gouws et al., 2011), unified letter transfor-
mation (Liu et al., 2011), dictionary based meth-
ods using string substitution (Han et al., 2012) in 
an unsupervised manner, to character-level edit 
operation predictions utilizing conditional ran-
dom fields in a supervised manner (Chrupała, 
2014).  

Because language data consists of sequential 
information, such as streams of characters and 
sequences of words, many NLP approaches lev-
erage computational models that can effectively 
deal with temporal data, such as hidden Markov 
models and conditional random fields (Täck-
ström, 2013; Chrupała, 2014). More recently, 
deep learning models (e.g., multi-layer feed-
forward neural networks, recurrent neural net-
works, recursive neural networks) have been 
used in NLP to achieve state-of-the-art perfor-
mance in areas such as speech recognition (Hin-
ton et al., 2012) and sentiment analysis (Socher 
et al., 2013). The success of deep learning has 
been attainable with the emergence of effective 
training methods for deep networks, such as pre-
training (Vincent et al., 2010) and optimization 
techniques (Zeiler, 2010; Martens and Sutskever, 
2011) that significantly diminish problems asso-
ciated with vanishing and exploding gradient that 
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are often observed in multi-layer neural network 
training.  

In this work, we leverage long-short term 
memory models (LSTMs) (Hochreiter and 
Schmidhuber, 1997; Graves, 2012), a variant of 
recurrent neural networks, to conduct text nor-
malization on the data set given from the W-
NUT English lexical normalization shared task 
(Baldwin et al., 2015). We additionally harness 
the part-of-speech tagger created by Noah’s Ark 
research team (Owoputi et al., 2013), a free re-
source to the constrained task. Similar to Chrupa-
ła’s work that predicts Levenshtein edit opera-
tions between canonical and non-canonical forms 
of words (Chrupała, 2014), this proposed ap-
proach predicts word-level edit operations based 
on character-level inputs. The proposed approach 
is novel compared to previous work from four 
perspectives: (1) it utilizes LSTMs to predict the 
word-level edit operations, along with a diction-
ary induced from the training set, (2) it takes as 
input the surrounding words as well as the cur-
rent word to capture contextual information of 
the predicted word, while any additional contex-
tual information (e.g., part-of-speech tags) is 
treated as heading characters of the word, (3) 
character and part-of-speech embeddings are 
learned on the fly in the normalization task in-
stead of having them trained in a separate model, 
and (4) the self-generated dictionary based nor-
malization as an antecedent step provides statis-
tically significant F1 gains over the standalone 
computational model. 

2 System Architecture 

Our proposed system consists of three steps. In 
the first step, it filters out domain-specific enti-
ties such as tokens beginning with @, hash-tags, 
and URLs. Next, the system searches for words 
contained in a dictionary generated solely from 
the training data and normalizes them when ap-
propriate. If words are not normalized in the pre-
vious steps, they are passed to the third step, 
where an LSTM model predicts the canonical 
form of the word, utilizing the word itself and 
surrounding words (the previous and following 
word). In the next sub-sections, we detail how 
each of the three steps collaboratively operate 
and explain how the LSTM model is learned 
based on the training set along with a high-level 
illustration of the architecture.  

2.1 Sequence Flow 

The proposed model operates in three primary 
phases: (1) domain-specific entity filtering, (2) 
dictionary-based normalization, and (3) LSTM-
based normalization.  

The first step performs a simple preprocessing 
of input words. First, every word is converted to 
the corresponding lowercase word. Second, 
words that are hash-tags, at-mentions, or URLs 
are filtered out and left as-is. This preprocessing 
is useful since the W-NUT normalization task 
guideline suggests not changing domain-specific 
entities, and including them could possibly inject 
noise into predictive models for non-filtered 
word prediction. 

Second, to conduct the dictionary-based nor-
malization, a dictionary is generated from the 
training set as an index of raw tokens with a list 
of their normalized forms. For instance, words 
such as “ur” and “no” are multiple mapped 
words, where multiple canonical forms are ob-
served in the training set such as [“your”, “you 
are”] and [“no”, “know”, “not”], respectively. 
This is mainly because they are normalized dif-
ferently depending on the context used in tweets. 
On the other hand, words that have a single 
mapped word are unique in terms of post-
normalization form. We denote the first type of 
words (multiple mapping) as ambiguous words, 
and the second type of words (single mapping) as 
unique words. We use this mapping information 
as a criterion to decide whether to normalize 
words based on the dictionary or pass the deci-
sion over to the LSTM model in the third step. If 
a word in the test set turns out to be a unique 
word, we label the word with the corresponding 
mapping as defined in the dictionary; otherwise, 
we pass the word to the LSTM model. This is 
based on the assumption that these unique words 
are more likely to have the same unique form in 
unseen texts. 

Finally, once the second normalization step is 
completed, only words that are either ambiguous 
or out-of-vocabulary determined by the training 
set-based dictionary are left and sent to the 
LSTM model. For ambiguous words, it is im-
portant that the model accurately identify the 
right usage of the words considering context in 
the tweets. Additionally, it is necessary to cap-
ture common patterns of standard words, so that 
the model can predict canonical forms of words 
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Figure 1: The input features based on characters and POSs and output label (edit operations) used to 
find the normalized form of nth word (Wordn). The preceding word (Wordn-1) and the following word 
(Wordn+1)’s POS and constituting characters are combined with the current word (Wordn) as input fea-
tures, where Wordn-1, Wordn, and Wordn+1 has x, y, and z characters, respectively. 
 
even when they are not seen in the training set. 
In this work, we formulate an LSTM model to 
predict an integrated list of edit operations of a 
word to become a standard word, leveraging its 
contextual information.  

2.2 Data Set Encoding for LSTM 

A preliminary step to induce an LSTM model is 
to encode the data set in a trainable format (i.e., 
specification of input features and output labels). 
We define the input format as a list of sequential, 
lowercased characters that compose the previous 
word, current word, and following word. Each 
character is mapped to a unique index (0–66), 
since there are a total of 67 different characters 
in the training data after the preprocessing step 
described in 2.1. If the current word does not 
have a previous or next word (e.g., the first or 
last word in a tweet), a padding character is as-
signed for the previous or following word to 
have a consistent format. In this work, we addi-
tionally consider a word’s part-of-speech (POS) 
as extra input to the model, as previous literature 
(e.g., Yarowsky, 1997; Täckström, 2013) indi-
cates POS tags can improve performance in other 
natural language processing tasks, such as text-
to-speech synthesis and NLP parsers. We use an 
off-the-shelf POS tagger that features Brown 
clustering: the CMU Twitter Part-of-Speech 
Tagger, which achieves a state-of-the-art tagging 
result of 93% on a Twitter benchmark data set 
(Owoputi et al., 2013). The extracted POS in-
formation is added as a distinct heading character 
to each word, so that they are leveraged in the 
LSTM models. Similar to the character padding, 
we apply a POS padding for missing previous or 
next words. Note that leveraging POSs about 
words is extendable to utilize any other meta-
information, and we examine the feasibility of 
applying this technique with POS tags in the con-
text of text normalization. The input encoding for 
predicting edit operations of the current word 

(Wordn) is described in Figure 1. To summarize, 
the number of inputs in a sequence is 3 + x + y + 
z, where x, y and z are the number of characters 
of the previous, current, and following word, 
respectively, while 3 is derived from the POS 
tags of all three words. 

Encoding the output is based on the Le-
venshtein distance algorithm (Levenshtein, 1966) 
that supports three operations: insert, replace, 
and delete, inspired by Chrupała’s text normali-
zation work (Chrupała, 2014). In this work, we 
reformulate his approach to predict word-level 
edit operations instead of character-level edit 
operations, by which the model predicts a label 
for an individual token. In the character-level 
prediction, to correctly normalize a token, it re-
quires all correction predictions on every charac-
ter that belongs to a word (i.e., probabilities get 
multiplied), whereas the word-level prediction 
requires one prediction per token.  

Once a training sample is given, the Le-
venshtein distance algorithm calculates the re-
quired edit operations to convert the possibly 
non-standard word into the corresponding canon-
ical form. For example, “dese” and “dey” with 
the canonical forms of “these” and “they”, re-
spectively, have edit operations of “in-
sert_t_replace_h, none, none, none, none” and 
“insert_t_replace_h, none, none, none” (a com-
ma is used as a delimiter for characters). Note 
that the insert operation only supports inserting a 
character before the current character, so to sup-
port insertions at the end of a word, every input 
word (e.g., “doin”) is concatenated with an emp-
ty character (e.g., “doin ”), and edit operations 
are applied on the empty character (e.g., “none, 
none, none, none, insert_g”). Since more class 
labels make this multi-class classification task 
more challenging, it is important to have an op-
timized set of edit operation labels, while the 
model should be still capable of converting to 
canonical words based on the given edit opera-
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tion. For the preceding example, a way to shrink 
the label size is omitting repeated none opera-
tions at the end of the string. With this optimiza-
tion applied, both “dese” and “dey” have the 
same edit operation of “insert_t_replace_h” ig-
noring all following “none”s. From this, the 
model can successfully decode the operation by 
replacing the first character of “d” with “th” and 
appending following stream of characters from 
each example, thereby constructing “these” and 
“they”, respectively. A more pronounced benefit 
of this technique can be found when there is no 
change required in terms of the edit operations. 
No change examples will have a single common 
label of nothing; otherwise, a series of none op-
erations will be generated as independent labels 
based on the length of the word. 

Another challenge in the edit operation ap-
proach lies in dealing with variants of repeated 
occurrence of the same character (e.g., “sooo”, 
“soooo”) often used to emphasize the word, since 
all required edit operations will be treated as dif-
ferent labels (e.g., “none, none, delete, delete”, 
“none, none, delete, delete, delete”) in spite of 
similar forms of edits (note that we omit the last 
none due to the previously-mentioned optimiza-
tion). To address this challenge, we attempt to 
replace characters that subsequently occur more 
than two times with a single character or double 
characters, and see if the converted word exists 
in the dictionary (in this work, the double charac-
ter conversions have a higher priority over the 
single character conversion, if both exist in the 
dictionary). If it appears in the dictionary, we use 
the word as an input word and calculate the edit 
operations based on the converted word setting; 
otherwise, we use the original word as the input 
word. We expect this would reduce the number 
of possible labels (e.g., both “sooo” and “soooo” 
are converted to “so”, as “so” is defined as a ca-
nonical form in the dictionary while “soo” is not, 
and so both of them have edit operations of noth-
ing). As a result, the total number of labels ob-
tained form the training set is reduced from 706 
to 694.  

Training examples for LSTMs are built upon 
all words except for hash-tags, at-mentions, and 
URLs that are filtered in the first step, regardless 
of whether a word is ambiguous or unique. In 
this manner, we expect that LSTMs can capture 
context information from every three-word ex-
ample and thus utilize all available contextual 
dependencies when ambiguous or out-of-
vocabulary words appear in the test set. 

2.3 Long-Short Term Memory (LSTM) for 
Text Normalization 

An LSTM (Hochreiter and Schmidhuber, 1997) 
is a variant of recurrent neural networks (RNNs) 
that is specifically designed for sequence label-
ing on temporal data. LSTM has been extended 
to have a longer term memory compared to tradi-
tional RNNs by introducing a memory block that 
features one or more self-connected memory 
cells along with three gating units: input gate, 
forget gate and output gate (Graves, 2012). Tra-
ditional RNNs often suffer from vanishing and 
exploding gradient problems when training deep 
networks using the backpropagation-through-
time method, and thus prevent RNNs from stor-
ing long-term dependencies from previous time 
steps in the sequential data.  In LSTMs, the input 
and output gate modulate the incoming and out-
going signals on the memory cell, and the forget 
gate controls the previous state of the memory 
cell whether to remember or forget; this structure 
allows it to preserve gradient information over 
long periods of time, and thus effectively address 
vanishing/exploding gradients that make training 
difficult in standard RNNs (Graves, 2012).  

We use an LSTM as our base model, as de-
scribed in Figure 2. Note that in the figure, the 
previous word (Wordt-1) and the following word 
(Wordt+1) are omitted due to the space limita-
tions; it is important to note that they have the 
same structure as in the current word (Wordt). 
For a word’s edit operation prediction, three 
words and their associated POSs are fed into the 
model in the form of a sequence of characters for 
each word. As noted above, the POS of each 
word is inserted before the first character of that 
word, regarded as a heading character that pro-
vides extra information for the associated word.  

When a deep learning model takes words or 
characters as input, an approach to obtaining 
their representation is using one-hot-encoding, 
which is a bit vector whose length is the size of 
the vocabulary of words or characters, where 
only the associated word/character bit is on (i.e., 
1) while all other bits are off (i.e., 0). Another 
popular approach is utilizing word/character em-
beddings, where their representations are learned 
in the context of unsupervised language model-
ing (Mikolov et al., 2013; Pennington et al., 
2014) or supervised tasks of interest  (Mesnil et 
al., 2013). We choose the latter approach and 
learn character embeddings using a linear projec-
tion layer while training the text normalization 
LSTM model in a supervised manner. We set  
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Figure 2: An illustration of the LSTM-based text normalization model 

 
both the character and POS embedding size 
to 256 for this task based on preliminary 
analyses using a grid search. 

For our base code, we utilized a Theano-
based (Bastien et al., 2012) LSTM imple-
mentation1 with a single-cell memory block 
per time, which was implemented targeting 
a sentiment analysis task on an IMDB data 
set.  

In this implementation, the input gate (𝑖!), 
forget gate (𝑓!), and candidate value of the 
memory content (𝑐!) at time t are computed 
by Equation (1), (2), and (3), respectively, in 
which W and U are weight matrices for the 
input (xt) at time t and the cell output (ht-1) at 
time t-1, b is the bias vector of each unit, 
and σ and tanh are the logistic sigmoid and 
hyperbolic tangent function, respectively: 

𝑖! = σ(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)            (1) 
𝑓! = σ(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)           (2) 
𝑐! = tanh(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)        (3) 

Once the three vectors are computed, the 
current memory cell’s state is updated to a 
new state (𝑐!), by modulating the current 
memory candidate value (𝑐!) via the input 
gate (𝑖!) and the previous memory cell state 
(𝑐!!!) via the forget gate (𝑓!). Through this 
process, a memory cell decides whether to 
keep or forget the previous memory state 
and regulates the candidate of the current 
memory state via the input gate. This step is 
described in Equation (4): 

                                                
1 http://deeplearning.net/tutorial/lstm.html 

𝑐! = 𝑖!𝑐! + 𝑓!𝑐!!!                   (4) 

In Equation (5), the output gate (𝑜!), simi-
larly calculated as in Equation (1) and (2), is 
utilized to compute the cell activation (ℎ!) 
of the LSTM block, based on the new 
memory state (𝑐!) (Equation 6): 

𝑜! = σ(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)        (5) 
ℎ! = 𝑜!  tanh(𝑐!)                   (6) 

In this model, as a variant of the LSTM 
proposed by Graves (2012), the input and 
forget gates do not take as input the previous 
memory cell’s state, and the output gate 
does not utilize the current memory cell’s 
state, to take advantage of a computational 
benefit when training models; rather, the 
current memory cell’s state is only utilized 
to calculate the cell’s output representation, 
along with the computed vector from the 
output gate (Equation 6). 

As illustrated in Figure 2, a character or 
POS is fed into the model at each time step, 
inducing a cell output (h) and a cell state (c). 
To predict the label (i.e., edit operations of a 
word), the model performs an average pool-
ing (havg) on a sequence of computed cell 
output representations (h(t-1)0 to h(t+1)z) on the 
training example with the three word input 
sequence, calculates posterior probabilities 
of all candidate labels using the averaged 
representation (havg) in a softmax layer, and 
chooses the label with the highest posterior 
probability value as prediction. 
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For other parameter settings in this exper-

iment, we used 256 hidden units, 25% drop-
out rate (Srivastava et al., 2014), 
ADADELTA (Zeiler, 2012) for the network 
optimization, negative log-likelihood for the 
cost function, and mini-batch based gradient 
descent with the batch size set to 16. To 
avoid overfitting, we set aside a separate 
validation set, and let the training process 
repeat until there is no progress within the 
last ten iterations in terms of performance on 
the validation set. 

3 Empirical Evaluation 

Before submitting our test set result to the 
W-NUT English lexical normalization 
shared task, we ran a 5-fold cross validation 
on the training set to evaluate the proposed 
approach. To conduct the experiment, we 
split the training set into 5 partitions based 
on a Tweet-level separation, and trained an 
LSTM model, iteratively using 4 out of the 5 
partitions in each fold.  

In the first evaluation, we examine two 
variations of our approach to measure the 
impact of dictionary-based normalization as 

an intermediate step: (1) applying phase 1 
and phase 3, in which we do not leverage 
dictionary-based normalization but predict 
labels based on an LSTM model after at-
mention and hash-tag and URL filtering, and 
(2) applying all three phases. The evaluation 
is conducted on contextual models that take 
three word inputs.  

Table 1 describes the result of these two 
approaches for each fold. For pairwise com-
parison of the two approaches, we conduct a 
Wilcoxon signed-rank test on F1 rates. The 
result indicates that there is a statistically 
significant improvement in F1 rates (79.19% 
by achieving 5.4% marginal improvement) 
for “with dictionary normalization” over 
“without dictionary normalization” (Z=-
2.023, p=0.043). To examine the effects of 
the LSTM-based model, we further evaluat-
ed a without-LSTM approach (phase 1 and 2 
only), in which all out-of-vocabulary words 
are left unchanged, and the most often ob-
served canonical form in the dictionary is 
used as the label for ambiguous words (if the 
frequency is tied, the first form in the hash 
table is used). The average F1 score of this 
dictionary only model is 0.7786; the LSTM 

 Without Dictionary Normalization With Dictionary Normalization 
 Precision Recall F1 Precision Recall F1 

Fold 1 0.8777 0.6735 0.7622 0.8803 0.7185 0.7912 
Fold 2 0.9036 0.6546 0.7592 0.9134 0.7232 0.8072 
Fold 3 0.8737 0.6352 0.7356 0.8797 0.6805 0.7674 
Fold 4 0.8671 0.6501 0.7431 0.9107 0.6986 0.7907 
Fold 5 0.8388 0.6867 0.7551 0.8859 0.7347 0.8032 

Averaged score 0.8722 0.6600 0.7510 0.8940 0.7111 0.7919 
 

Table 1: 5-fold cross validation results of LSTMs without dictionary normalization and with dic-
tionary normalization.  

 Non-contextual Model Contextual Model 
 Precision Recall F1 Precision Recall F1 

Fold 1 0.9032 0.6838 0.7783 0.8803 0.7185 0.7912 
Fold 2 0.8776 0.7419 0.8041 0.9134 0.7232 0.8072 
Fold 3 0.8988 0.6704 0.7680 0.8797 0.6805 0.7674 
Fold 4 0.9209 0.6961 0.7929 0.9107 0.6986 0.7907 
Fold 5 0.8589 0.7387 0.7943 0.8859 0.7347 0.8032 

Averaged score 0.8919 0.7062 0.7875 0.8940 0.7111 0.7919 
 

Table 2: 5-fold cross validation results of LSTMs: non-contextual model vs. contextual model. 
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model with the dictionary statistically out-
performs the dictionary only model (Z=-
2.023, p=0.043). 

In the second evaluation, we additionally 
compare another set of two variations: con-
textual model (taking surrounding words as 
well as the current word) vs. non-contextual 
model (only taking the current word). Table 
2 summarizes the comparison on the two 
approaches enriched with the dictionary 
normalization. The contextual model outper-
forms the non-contextual model in terms of 
the F1 score, but the difference does not 
elicit a statistically significant difference 
(Z=-1.214, p=0.225).  

To construct a final model for the test set 
prediction, we utilize an ensemble method 
on contextual LSTM models with dictionary 
normalization. Given a test set, we calculate 
the prediction probability from each of the 5 
models induced from the five-fold cross val-
idation, multiply the probability values from 
the softmax layer, and choose the label with 
the highest resulting probability. In the eval-
uation through the W-NUT competition, this 
approach (NCSU_SAS_WOOKHEE.cm) 
achieved a precision score of 91.36%, recall 
score of 73.98%, and F1 score of 81.75%, 
placing second in the constrained text nor-
malization track. 

4  Conclusion and Future Work 

Text normalization is a key capability for 
addressing the challenges posed by noisy 
text. This paper presents a contextual long-
short term memory based normalization 
method, augmented with a dictionary-based 
normalization technique. Evaluations with 
the training set indicate that the dictionary-
based normalization significantly outper-
forms the without-dictionary model. This 
method was evaluated on the English Tweet 
test set offered by the W-NUT shared task, 
and shows promise as a lexical normalizer 
for noisy texts by achieving an F1 score of 
81.75%. We conclude that inputs encoded 
with a sequence of characters are a natural 
fit for the LSTM’s temporal structure when 
normalizing non-standard language.  

In the future, it will be important to inves-
tigate if including more surrounding words 
as context contributes to the model’s per-
formance, and examine possibilities of using 
different types of word-level meta-data as 
additional heading characters in the model. 
Another direction for future work is to in-
vestigate adaptations of the LSTM model 
with a self-generated dictionary. For exam-
ple, when a word is an ambiguous word, the 
LSTM’s prediction is not necessarily part of 
the normalization candidates given by the 
dictionary for the word. A tight coupling 
between the LSTM model and the candidate 
list or building a separate model targeted to 
only ambiguous words may significantly 
increase performance. 
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Abstract

This paper describes the framework ap-
plied by team USZEGED at the “Lexical
Normalisation for English Tweets” shared
task. Our approach first employs a CRF-
based sequence labeling framework to de-
cide the kind of corrections the individ-
ual tokens require, then performs the nec-
essary modifications relying on external
lexicons and a massive collection of effi-
ciently indexed n-gram statistics from En-
glish tweets. Our solution is based on
the assumption that from the context of
the OOV words, it is possible to recon-
struct its IV equivalent, as there are users
who use the standard English form of the
OOV word within the same context. Our
approach achieved an F-score of 0.8052,
being the second best one among the un-
constrained submissions, the category our
submission also belongs to.

1 Introduction

Social media is a rich source of information which
has been proven to be useful to a variety of ap-
plications, such as event extraction (Sakaki et al.,
2010; Ritter et al., 2012; Ritter et al., 2015)
or trend detection, including the tracking of epi-
demics (Lamb et al., 2013). Analyzing tweets
in general, however, can pose several difficulties.
From an engineering point of view, the streaming
nature of tweets requires that special attention is
paid to the scalability of the algorithms applied
and from an NLP point of view, the often sub-
standard characteristics of social media utterances
has to be addressed. The fact that tweets are often
written on mobile devices and are informal makes
the misspelling and abbreviations of words and ex-
pressions, as well as the use of creative informal
language prevalent, giving rise to a higher number

of out-of-vocabulary (OOV) words than in other
genres.

2 Related Work

The informal language of social media, includ-
ing Twitter, is extremely heterogeneous, making
its grammatical analysis more difficult compared
to standard genres such as newswire. It has been
shown previously, that the performance of linguis-
tic analyzers trained on standard text types de-
grade severely once they are applied to texts found
in social media, especially tweets (Ritter et al.,
2011; Derczynski et al., 2013).

In order to build taggers that perform more re-
liable on social media texts, one possible way is
to augment the training data by including texts
originating from social media (Derczynski et al.,
2013). Such approaches, however, require con-
siderable human effort, so one possible alternative
can be to normalize the social media texts first,
then apply standard analyzers on these normalized
texts. Recently, a number of approaches have been
proposed for the lexical normalization of informal
(mostly social media and SMS) texts (Liu et al.,
2011; Liu et al., 2012; Han et al., 2013; Yang and
Eisenstein, 2013).

Han and Baldwin (2011) rely on the identifica-
tion of the words that require correction, then de-
fine a confusion set containing the candidate IV
correction forms for such words. Finally, a rank-
ing scheme, taking multiple factors into consid-
eration, is applied which selects the most likely
correction for an OOV word. In their subsequent
work, Han et al. (2012) propose an automated
method to construct accurate normalization dictio-
naries.

Liu et al. (2011; 2012) propose a character-level
sequence model to predict insertions, deletions
and substitutions. They first collect a large set of
noisy (OOV, IV) training pairs from the Web.
These pairs are then aligned at the character level
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and provided as training data for a CRF classifier.
The authors also released their 3,802-element nor-
malization dictionary that our work also relies at.

Yang and Eisenstein (2013) introduce an unsu-
pervised log-linear model for the task of text nor-
malization. Besides the features that can be de-
rived from pairs of words (e.g. edit distance), fea-
tures considering the context are also employed in
their model. As the number of class labels in that
model is equal to the size of the IV words an OOV
word could possibly be corrected to (typically on
the order of 104-105, which is far beyond the typ-
ical label size of classification tasks), the authors
propose the use of Sequential Monte Carlo train-
ing approach for learning the appropriate feature
weights.

3 The Task of Lexical Normalization

Formally, given an m-long sequence of words in
the ith tweet, Ti = [ti,1, ti,2, . . . , ti,m], partici-
pants of the shared task had to return a sequence
of normalized in-vocabulary (IV) words, i.e. Si =
[si,1, si,2, . . . , si,m]. The training set of the shared
task consisted of 2,950 tweets comprising 44,385
tokens, while the test set had 1,967 tweets which
included a total of 29,421 tokens. According to
the dataset, most of the words did not require any
kind of corrections, i.e. the proportion of unmodi-
fied words was 91.12% and 90.57% for the train-
ing and test set, respectively. Further details with
respect the shared task can be found in the paper
(Baldwin et al., 2015).

As a consequence, we first built a sequence
model to decide which tokens need to be corrected
and in what way. A typical distinction of the cor-
rection types would be based on the number of
tokens a noisy token and its corrected form com-
prises of. According to this approach, one could
distinguish between one-to-one, one-to-many and
many-to-one corrections on the per token basis.
However, instead of applying the above types of
corrections, we identified a more detailed catego-
rization of the correction types and trained a linear
chain CRF utilizing CRFsuite (Okazaki, 2007).
The correction types a token could be classified
as were the following:

• MissingApos, standing for tokens that only
differ from their corrected version in the ab-
sence of an apostrophe (e.g. youll→ you’ll),

• MissingWS, standing for tokens that only

Training Test
MissingApos 507 369
MissingWS 126 76
1to1ED≤2 1,979 1,405
1to1ED≥3 413 292
1toMABB 917 634
Subtotal 3,942 2,776
O 40,443 26,645
Total 44,385 29,421

Table 1: Distribution of the correction types in the
training and test sets

differ from their corrected version in the ab-
sence of one or more whitespace characters
(e.g. whataburger→ what a burger),

• 1to1ED≤2, standing for corrections where
no whitespace characters had to be inserted
and the augmented edit distance (introduced
in Section 4.2) between the noisy token
and its normalized form was at most 2
(e.g. tmrw→tomorrow),

• 1to1ED≥3, standing for corrections where no
whitespace characters had to be inserted and
the augmented edit distance was at least 3
(e.g. plz→please),

• 1toMABB , standing for corrections where
both whitespace and alphanumeric characters
had to be inserted to obtain a tokens corrected
variant (e.g. lol→ laugh out loud).

For the sake of completeness, we should add that a
further class label (O) was employed. This, how-
ever, corresponded to the case when there was no
correction required to be performed for a token.
As mentioned above, more than 90% of the words
in both the training and test sets belonged to this
category. Table 1 shows the distribution of the cor-
rection types on both the training and test sets.

4 Proposed Approach

Our approach consists of a sequence labeling mod-
ule and relies on lookups from an efficiently in-
dexed n-gram corpus of English tweets. Subse-
quently, we describe the details of these modules.

4.1 Sequence Labeling for Determining
Correction Types

As already mentioned in Section 3, the first com-
ponent in our pipeline was a linear chain CRF
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(Lafferty et al., 2001). Besides the common word
surface forms, such as the capitalization pattern,
the first letter or character suffixes, we relied on
the following dictionary resources upon determin-
ing the features for the individual words:

• the SCOWL dictionary being part of the
aspell spell checker project containing
canonical English dictionary entries,

• the normalization dictionaries of Han et
al. (2012) and Liu et al. (2012),

• the 5,307-element normalization dictionary
derived from the portal noslang.com,
which map common social media abbrevia-
tions to their complete forms.

For each token, word type features were gener-
ated along with the word types of its neighboring
tokens. The POS tags assigned to each token and
its neighboring tokens by the Twitter POS tagger
(Gimpel et al., 2011) were also utilized as features
in the CRF model. The Twitter POS tag set was
useful to us, as it contains a separate tag (G) for
multi-word abbreviations (e.g. ily for I love you),
which was expected to be highly indicative for the
correction type 1toMABB .

In order to be able to discriminate the
MissingWS class, we introduced a feature
which indicates for a token t originating from a
tweet whether the relation

max
s∈split(t)

freq1T (s) ≥ τ

holds, where τ is a threshold calibrated to 106

based on the training set, freq1T (s) is a function
which returns the frequency value associated with
a string s according to the Google 1T 5-gram cor-
pus and the function split(t) returns the set of all
the possible splits of token t such that its com-
ponents are all contained in the SCOWL dictio-
nary. For instance split(“whataburger′′) returns
a set of splits including “what a burger”, “what
a burg er” and “what ab urger”. As there is a
split (i.e. “what a burger”) that is sufficiently fre-
quent according to the n-gram corpus, we take it as
an indication that the original token omitted some
whitespace characters that we need to inserted.

A CRF model with the above feature set was
trained using L-BFGS training method and L1 reg-
ularization using CRFsuite (Okazaki, 2007). The
overall token accuracy this model achieved was

Precision Recall F-score
MissingApos 0.9686 0.9744 0.9715
MissingWS 0.8795 0.5794 0.6986
1to1ED≤2 0.9078 0.8504 0.8782
1to1ED≥3 0.9593 0.6852 0.7994
1toMABB 0.9624 0.8942 0.9271
O 0.9874 0.9959 0.9916
macro average 0.9442 0.8299 0.8777

Table 2: Results of predicting the correction types
for tokens on the training set

Precision Recall F-score
MissingApos 0.9755 0.9702 0.9728
MissingWS 0.7674 0.4342 0.5546
1to1ED≤2 0.8619 0.7950 0.8271
1to1ED≥3 0.8793 0.5240 0.6567
1toMABB 0.9449 0.8659 0.9037
O 0.9816 0.9932 0.9874
macro average 0.9018 0.7638 0.8171

Table 3: Results of predicting the correction types
for tokens on the test set

0.9830 and 0.9746 and the proportion of tweets
for which all the tokens were tagged properly was
0.7902 and 0.7143 for the training and test sets,
respectively. A more detailed breakdown of the
classification performances of the sequence model
on the training and test sets are included in Ta-
ble 2 and Table 3. These tables reveal that the
most difficult error type to identify was the one
where a word missed some whitespace characters
(row MissingWS). This class happens to be the
least frequent and one of the most heterogeneous
class as well, which might be an explanation for
the lower results on that class.

4.2 Augmented Edit Distance

When determining a set of candidate IV words
that an OOV might be rewritten for, it is a com-
mon practice to place an upper bound on the edit
distance between the IV candidates and the OOV
word. In order to measure edit distance between
tokens originating from tweets and their corrected
forms, we implemented a modification of the stan-
dard edit distance algorithm that is especially tai-
lored to measuring the difference of OOV tokens
originating from social media to IV ones.

The edit distance we employed is asymmetric
as insertions of characters into OOV tokens have
no costs. For instance, for the words tmrw and to-
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morrow, the edit distance is regarded as 0 if the
former is considered to be the substandard OOV
token and the latter one as the standard IV one.
Note, however, if the role of the two tokens was
changed (i.e if tmrw was treated as IV and tomor-
row as OOV), their edit distance would become 4.
A further relaxation to the standard edit distance
is that we assign 0 cost to the following kinds of
phonetically motivated transcriptions:

• z → s located at the end of words (e.g. in
catz → cats),

• a → er located at the end of words (e.g. in
bigga→ bigger).

By making the above relaxations to the def-
inition of the standard edit distance, we could
obtain larger candidate sets for a given edit dis-
tance threshold for tokens with higher recall, as we
could reduce the edit distance between the OOV
words and their appropriate IV equivalent in many
cases. Obviously, as the candidate set grows, it
might get increasingly difficult to choose the cor-
rect normalization from it. However, at this stage
of our pipeline, we were more interested in having
the correct IV word in the set of candidate normal-
ization, rather than reducing its size.

4.3 Making Use of Twitter n-gram Statistics
Our basic assumption was that from the context
of an OOV word, it is possible to reconstruct its
IV equivalent, as there are users who use the cor-
rect IV English form of the OOV word within the
same context, e.g. see you tomorrow instead of
see u tmrw. The Twitter n-gram frequencies we
made use of were the ones that we aggregated over
the Twitter n-gram corpus augmented with demo-
graphic metadata described in (Herdadelen, 2013).

For a given token ti at position i in a tweet, we
chose the most probable corrected form according
to the formula

arg max
t′∈C(ti,ct(ti))

P (t′|ti−1)P (ti+1|t′), (1)

where the function C(ti, ct(ti)) returns a set of
IV candidates for the token ti, according to ct(ti),
which is the correction type determined for that
token by the sequence model introduced in Sec-
tion 4.1. We indexed the Twitter n-gram corpus
with the highly effective LIT indexer (Ceylan and
Mihalcea, 2011), which made fast queries of the
form ti−1 ∗ ti+1 possible, the symbol * being a

Correction Precision Recall F-score
MissingApos 0.9972 0.9972 0.9972
MissingWS 0.8684 0.4177 0.5641
1to1 0.9191 0.9219 0.9205
1toMABB 0.8861 0.9533 0.9185

Table 4: Detailed performance on the different
correction types on the training dataset

Correction Precision Recall F-score
MissingApos 1.0000 0.9841 0.992
MissingWS 0.9737 0.4458 0.6116
1to1 0.9141 0.9127 0.9134
1toMABB 0.8523 0.9699 0.9073

Table 5: Detailed performance on the different
correction types on the test dataset

placeholder for any token at the given position.
The only case when we did not choose the normal-
ization of an OOV word according to (1) was when
there was a unique suggestion for an IV word in
the normalization dictionaries we listed in Sec-
tion 4.1.

The performance of the normalization on the
training and test sets, according to the correction
types we defined can be found in Table 4 and Ta-
ble 5, respectively. From these tables, one can see
that the worst results were obtained for the correc-
tion type when spaces were required to be inserted
to a OOV word.

This is in accordance with the fact that our se-
quence model obtained the lowest scores exactly
on this kind of corrections. However, due to the
fact that this error category is the least frequent,
the lower scores on that category does not harm
that much our overall performance as can be seen
in Table 6 for both the training and test corpora.
The results shown in Table 6 also illustrate that
our approach seems to generalize well, as there is
a small gap between the performances observed on
the training and test sets of the shared task.

Training Test
precision 0.8703 0.8606
recall 0.7673 0.7564
F1 0.8156 0.8052

Table 6: Overall performance of our system on the
training and test sets
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5 Conclusion

In this paper, we introduced our approach to the
lexical normalization of English tweets that ranked
second at the shared task among the unconstrained
submissions. Our framework first performs se-
quence labeling over the tokens of a tweet to pre-
dict which tokens need to be corrected and in what
way. This step is followed by correction type-
sensitive candidate set generation, from which set
the most likely IV normalization of an OOV word
is selected by querying an efficiently indexed large
n-gram dataset of English tweets.

References
Timothy Baldwin, Marie Catherine de Marneffe,

Bo Han, Young-Bum Kim, Alan Ritter, and Wei
Xu. 2015. Shared tasks of the 2015 workshop on
noisy user-generated text: Twitter lexical normal-
ization and named entity recognition. In Proceed-
ings of the Workshop on Noisy User-generated Text
(WNUT 2015), Beijing, China.

Hakan Ceylan and Rada Mihalcea. 2011. An efficient
indexer for large n-gram corpora. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: Systems Demonstrations, HLT ’11, pages 103–
108, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter part-of-speech tagging
for all: Overcoming sparse and noisy data. In Pro-
ceedings of the International Conference on Recent
Advances in Natural Language Processing. Associ-
ation for Computational Linguistics.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
HLT ’11, pages 42–47, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a #twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies - Volume 1, HLT ’11,
pages 368–378, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Au-
tomatically constructing a normalisation dictionary
for microblogs. In Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL 2012), pages 421–
432, Jeju Island, Korea.

Bo Han, Paul Cook, and Timothy Baldwin. 2013. Lex-
ical normalization for social media text. ACM Trans.
Intell. Syst. Technol., 4(1):5:1–5:27, February.

Ama Herdadelen. 2013. Twitter n-gram corpus with
demographic metadata. Language Resources and
Evaluation, 47(4):1127–1147.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Alex Lamb, Michael J. Paul, and Mark Dredze. 2013.
Separating fact from fear: Tracking flu infections on
twitter. In In NAACL.

Fei Liu, Fuliang Weng, Bingqing Wang, and Yang Liu.
2011. Insertion, Deletion, or Substitution? Nor-
malizing Text Messages without Pre-categorization
nor Supervision. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 71–
76, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Fei Liu, Fuliang Weng, and Xiao Jiang. 2012. A
Broad-Coverage Normalization System for Social
Media Language. Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Long Papers-Volume 1, pages 1035–1044.

Naoaki Okazaki. 2007. Crfsuite: a fast implementa-
tion of conditional random fields (crfs).

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 1524–1534, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter.
In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’12, pages 1104–1112, New
York, NY, USA. ACM.

Alan Ritter, Evan Wright, William Casey, and Tom
Mitchell. 2015. Weakly supervised extraction of
computer security events from twitter. In Proceed-
ings of the 24th International Conference on World
Wide Web, WWW ’15, pages 896–905, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

124



Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: Real-time
event detection by social sensors. In Proceedings
of the 19th International Conference on World Wide
Web, WWW ’10, pages 851–860, New York, NY,
USA. ACM.

Yi Yang and Jacob Eisenstein. 2013. A Log-Linear
Model for Unsupervised Text Normalization. Pro-
ceedings of the Empirical Methods on Natural Lan-
guage Processing (EMNLP), pages 61–72.

125



Proceedings of the ACL 2015 Workshop on Noisy User-generated Text, pages 126–135,
Beijing, China, July 31, 2015. c©2015 Association for Computational Linguistics

Shared Tasks of the 2015 Workshop on Noisy User-generated Text:
Twitter Lexical Normalization and Named Entity Recognition

Timothy Baldwin
University of Melbourne

tb@ldwin.net

Young-Bum Kim
University of Wisconsin

ybkim@cs.wisc.edu

Marie Catherine de Marneffe
The Ohio State University
demarneffe.1@osu.edu

Alan Ritter
The Ohio State University

ritter.1492@osu.edu

Bo Han
IBM Research

bohan.ibm@au1.ibm.com

Wei Xu
University of Pennsylvania

xwe@cis.upenn.edu

Abstract

This paper presents the results of the
two shared tasks associated with W-NUT
2015: (1) a text normalization task with
10 participants; and (2) a named entity
tagging task with 8 participants. We
outline the task, annotation process and
dataset statistics, and provide a high-level
overview of the participating systems for
each shared task.

1 Introduction

As part of the 2015 ACL-IJCNLP Workshop on
Noisy User-generated Text (W-NUT), we orga-
nized two shared tasks: (1) a text normalization
task (Section 2); and (2) a named entity tagging
task (Section 3).

In the text normalization task, participants were
asked to convert non-standard words to their stan-
dard forms for English tweets. Participating sys-
tems were classified by their use of resources, into
a constrained and an unconstrained category: con-
strained systems were permitted to use only the
provided training data and off-the-shelf tools; un-
constrained systems, on the other hand, were free
to use any public tools and resources. There were
6 official submissions in the constrained category,
and 5 official submissions in the unconstrained
category. Overall, deep learning methods and
methods based on lexicon-augmented conditional
random fields (CRFs) achieved the best results.
The winning team achieved a precision of 0.9061
precision, recall of 0.7865, and F1 of 0.8421.

The named entity recognition task attracted 8
participants. The majority of teams built their sys-
tems using linear-chain conditional random fields
(Lafferty et al., 2001), and many teams also
used brown clusters and word embedding fea-
tures (Turian et al., 2010). Notable new tech-
niques for named entity recognition in Twitter in-
clude a semi-Markov MIRA trained tagger (nrc),

an end-to-end neural network using no hand-
engineered features (multimedialab), an approach
that weights training data to compensate for con-
cept drift (USFD), and a differential evolution ap-
proach to feature selection (iitp). The submission
from the winning team (ousia) achieved supris-
ingly good performance on this difficult task, near
the level of inter-rater agreement.

2 Text Normalization Shared Task

In this section, we outline the Twitter Text Nor-
malization Shared Task, describing the data and
annotation process, and outlining the approaches
adopted by participants.

2.1 Background

Non-standard words are present in many text gen-
res, including advertisements, professional fo-
rums, and SMS messages. They can be the cause
of reading and understanding problems for hu-
mans, and degrade the accuracy of text process-
ing tools (Han et al., 2013; Plank et al., 2014a;
Kong et al., 2014). Text normalization aims to
transform non-standard words to their canonical
forms (Sproat et al., 2001; Han and Baldwin,
2011) as shown in Figure 1. Common examples
of non-standard words include abbreviations (e.g.,
u “you”), and non-standard spellings (e.g., cuming
“coming” or 2mr “tomorrow”). The prevalence of
non-standard words in social media text results in
markedly higher out-of-vocabulary (OOV) rates;
normalizing the text brings OOV rates down to
more conventional levels and makes the text more
amenable to automatic processing with off-the-
shelf tools which have been trained on edited text.

Text normalization over Twitter data has been
addressed at different granularities. For instance,
non-standard words can be considered as spelling
errors at the character (Liu et al., 2011) or
word level (Wang and Ng, 2013). Text nor-
malization can also be approached as a machine
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Figure 1: Normalization examples

translation task, whereby non-standard words are
mapped to more canonical expressions (Aw et
al., 2006). Other approaches have involved deep
learning (Chrupała, 2014), cognitively-inspired
approaches (Liu et al., 2012), random walks (Has-
san and Menezes, 2013), and supervision us-
ing automatically-mined parallel data (Ling et al.,
2013).

One major challenge in text normalization re-
search has been the lack of annotated data for
training and evaluating methods. As a result, most
Twitter text normalization methods have been un-
supervised or semi-supervised (Cook and Steven-
son, 2009; Han et al., 2012; Yang and Eisen-
stein, 2013), and evaluated over small-scale hand-
annotated datasets. This has hampered analysis of
the strengths and weaknesses of individual meth-
ods, and was our motivation in organizing the lex-
ical normalization shared task.

2.2 Shared Task Design

This lexical normalization shared task is focused
exclusively on English, and was designed with
three primary desiderata in mind: (1) to construct a
much larger dataset than existing resources; (2) to
allow all of 1:1, 1:N and N :1 word n-gramm ap-
pings; and (3) to cover not just OOV non-standard
words but also non-standard words that happen to
coincide in spelling with standard words. In all
three regards, the shared task expands upon the
scope of the de facto evaluation datasets of Han
and Baldwin (2011) and Liu et al. (2011).

One constraint that was placed on candidate to-
kens for normalization was that they should be
all-alphanumeric. For normalization, we adopted
American spelling.

In order to establish a more level playing field
for participants, but also encourage the use of
a wide range of resources, participants were re-
quired to nominate their system categories:

• Constrained: participants could not use any
data other than the provided training data to
perform the text normalization task. They
were allowed to use pre-trained tools (e.g.,
Twitter POS taggers), but no normalization
lexicons or extra tweet data.

• Unconstrained: participants could use any
publicly accessible data or tools to perform
the text normalization task.

Evaluation was based on token-level precision,
recall and F-score.

2.2.1 Preprocessing
We first collected tweets using the Twitter Stream-
ing API over the period 23–29 May, 2014, and
then used langid.py (Lui and Baldwin, 2012)1

to remove all non-English tweets. Tokenization
was performed with CMU-ARK tokeniser.2

To ensure that tweets had a high likelihood of
requiring lexical normalization, we filtered out
tweets with less than 2 non-standard words (i.e.
words not occurring in our dictionary — see Sec-
tion 2.2.3). While this biases the sample of tweets,
the decision was made at a pragmatic level to en-
sure a reasonable level of lexical normalization
and “annotation density”. This was based on a pi-
lot study over a random sample of English tweets,
in which we found that many non-standard words
were actually unknown named entities which did
not require normalization. In all, 5,200 randomly-
sampled English tweets were annotated for the
shared task dataset.

2.2.2 Annotation
12 interns and employees at IBM Research Aus-
tralia were involved in the data annotation. All

1https://github.com/saffsd/langid.py
2https://github.com/myleott/

ark-twokenize-py
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annotators had a high level of English proficiency
(IELTS � 6.0) and were reasonably familiar with
Twitter data. Each annotator labeled at least 200
tweets, and each tweet was independently labeled
by two annotators based on the annotation guide-
lines.3 As part of this, any non-English tweets
misclassified by langid.py were manually re-
moved from the dataset. This resulted in the fi-
nal size of the annotated dataset dropping to 4,917
tweets. All annotations were completed within
two weeks, and achieved an average Cohen’s  of
0.5854.

For all instances of annotator disagreement, an
annotator who was not involved in the first-pass
annotation process was asked to adjudicate in the
following week. During the course of the shared
task, we additionally examined and incorporated
a small number of annotation corrections reported
by participants.

2.2.3 English Lexicon
It is impossible to reach consensus on the di-
viding line between standard words and non-
standard words (e.g. are footie, y’all and youse
non-standard or standard words?). We artificially
arrive at such a dividing line via membership in
a prescribed lexicon of English. Specifically, we
use the SCOWL database with American spellings
as the default English lexicon.4 The SCOWL
database integrates words from multiple sources
and also contains valid word spelling variations,
which makes it an excellent English lexicon for
this shared task. As suggested in the database
guidelines, we used a dictionary size of 70%, such
that the lexicon contains words found in most dic-
tionaries, but also many high-frequency proper
nouns such as Obama and Facebook.

The overall English lexicon (after de-
duplication) contains 165,458 words. This
lexicon was used: (a) to pre-filter data, i.e., tweets
with less than two tokens not in this lexicon are
dropped from our annotations; and (b) as the basis
of the standard words for normalization.

2.2.4 Dataset Statistics
The dataset was randomly split 60:40, into 2,950
tweets for the training data and 1,967 tweets for
the test data. Table 1 details the number of (possi-
bly multi-word) tokens in each of the training and

3http://noisy-text.github.io/files/
annotation_guideline_v1.1.pdf

4Version 2014.11.17 was used.

Category 1:1 1:N N :1 Overall

Training 2,875 1,043 10 3,928
Test 2,024 704 10 2,738

Training ratio 0.587 0.597 0.500 0.589

Table 1: Numbers of non-standard words in the
training and test datasets for the lexical normal-
ization task, broken down into 1:1, 1:N and N :1
mappings from non-standard words to standard
words. “Training ratio” represents the number of
non-standard words in the training data divided by
the overall non-standard words in that category.

Rank Training Test Combined

1 u 333 u 236 u 569
2 lol 272 lol 197 lol 469
3 im 182 im 154 im 336
4 dont 92 nigga 60 dont 149
5 omg 67 dont 57 nigga 117
6 nigga 57 lmao 45 omg 101
7 niggas 52 n 43 lmao 96
8 lmao 51 niggas 42 niggas 94
9 n 49 omg 34 n 92

10 ur 46 ur 28 ur 74

Table 2: Top-10 most frequent non-standard words
in each partition of the lexical normalization
dataset.

test data that were normalized based on a 1:1, 1:N
or N :1 mapping. We additionally include the pro-
portion of tokens in each category that were con-
tained in the test data, to confirm that the dataset
is relatively balanced in composition between the
training and test partitions.

Overall, 373 non-standard word types were
found in the intersection of the training and test
data. The number of non-standard word types
unique to the training and test partitions was 777
and 488, respectively. We further show the top-
10 most frequent non-standard words and their to-
ken frequencies in the training, test and combined
datasets in Table 2. Despite the large number of
unique non-standard word in the training and test
partitions, there is relatively strong agreement in
the high-frequency non-standard words across the
dataset partitions.
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2.3 Normalization Approaches and
Discussion

Overall, 10 teams submitted official runs to the
shared task: 6 teams participated in the con-
strained category, 5 teams in the unconstrained
category, and 1 team in both categories.5 The
normalization results for each category are shown
in Tables 3 and 4. Overall, common approaches
were lexicon-based methods, CRFs, and neu-
ral network-based approaches. Among the con-
strained systems, neural networks achieved strong
results, even without off-the-shelf tools. In con-
trast, CRF- and lexicon-based approaches were
shown to be effective in the unconstrained cat-
egory. Surprisingly, the best overall result was
achieved by a constrained system, suggesting
that the relative advantage in accessing additional
datasets or resources has less impact than the qual-
ity of the underlying model that is used to model
the task.

NCSU SAS NING (Jin, 2015) Normalization
candidates were generated based on the training
data, and scored based on Jaccard index over
character n-gram[ s]. Candidates were evaluated
using random forest classifiers to offset parameter
sensitivity, using features including normalization
statistics, string similarity and POS.

NCSU SAS WOOKHEE (Min et al., 2015)
Word-level edits are predicted based on long-short
term memory (LSTM) recurrent neural networks
(RNN), using character sequences and POS tags
as features. The LSTM is further complemented
with a normalization lexicon induced from the
training data.

NCSU SAS SAM (Leeman-Munk et al., 2015)
Two forward feed neural networks are used to pre-
dict: (1) the normalized token given an input to-
ken; and (2) whether a word should be normalized
or left intact. Normalized tokens are further edited
by a “conformer” which down-weights rare words
as normalization candidates.

IITP (Akhtar et al., 2015b) A CRF model is
trained over the training data, with features in-
cluding word sequences, POS tags and morphol-
ogy features. Post-processing heuristics are used
to post-edit the output of the CRF.

5One team (GIGO) didn’t submit a description paper.

DCU-ADAPT (Wagner and Foster, 2015) A
generalized perceptron method is used generate
word edit operations, with features including char-
acter n-gram[ s], character classes, and RNN lan-
guage model hidden layer activation features. The
final normalization word is selected based on the
noisy channel model with a character language
model.

IHD RD (Supranovich and Patsepnia, 2015)
non-standard words are identified using a CRF
tagger, using features such as token-level features,
contextual tokens, dictionary lookup, and edit dis-
tance. Multiple lexicons are combined to gener-
ate normalization candidates. A query misspelling
correction module (i.e., DidYouMean) is used to
post-process the output.

USZEGED (Berend and Tasnádi, 2015) A CRF
model is used to identify tokens requiring normal-
ization, and determine the type of normalization
required. Normalization candidates are then pro-
posed based on revised edit distance. The final
normalization candidate is selected on the basis of
n-grams tatistics.

BEKLI (Beckley, 2015) A substitution dictio-
nary is constructed in which keys are non-standard
words and values are lists of potential normaliza-
tions. Frequent morphology errors are captured by
hand-crafted rules. Finally, the Viterbi algorithm
is applied to bigram sequences to decode the nor-
malized sentence with maximum probability.

LYSGROUP (Mosquera et al., 2015) A system
originally developed for Spanish text normaliza-
tion was adapted to English text normalization.
The method consists of a cascaded pipeline of sev-
eral data adaptors and processors, such as a Twitter
POS tagger and a spell checker.

3 Named Entity Recognition over
Twitter

The second shared task of WNUT2015 is named
entity recognition over Twitter data. Named en-
tity recognition is a crucial component in many
information extraction pipelines, however the ma-
jority of available NER tools were developed for
newswire text and perform poorly on informal text
genres such as Twitter. While performance on
named entity recognition in newswire is quite high
(Tjong Kim Sang and De Meulder, 2003), state-
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Team name Precision Recall F1 Method highlights

NCSU SAS NING 0.9061 0.7865 0.8421 Random Forest
NCSU SAS WOOKHEE 0.9136 0.7398 0.8175 Lexicon + LSTM

NCSU SAS SAM 0.9012 0.7437 0.8149 ANN
IITP 0.9026 0.7191 0.8005 CRF + Rule

DCU-ADAPT 0.8190 0.5509 0.6587 Generalized Perceptron
LYSGROUP 0.4646 0.6281 0.5341 Spanish Normalization Adaption

Table 3: Results of the constrained systems for the lexical normalization shared task

Team name Precision Recall F1 Method highlights

IHS RD 0.8469 0.8083 0.8272 Lexicon + CRF + DidYouMean
USZEGED 0.8606 0.7564 0.8052 CRF + n-gram[ s]

BEKLI 0.7743 0.7416 0.7571 Lexicon + Rule + Ranker
GIGO 0.7593 0.6963 0.7264 N/A

LYSGROUP 0.4592 0.6296 0.5310 Spanish Normalization Adaption

Table 4: Results of the unconstrained systems for the lexical normalization shared task

of-the-art performance on Twitter data lags far be-
hind.

The diverse and noisy style of user-generated
content presents serious challenges. For instance
tweets, unlike edited newswire text, contain nu-
merous nonstandard spellings, abbreviations, un-
reliable capitalization, etc.

Another challenge is concept drift (Dredze et
al., 2010; Fromreide et al., 2014); the distribu-
tion of language and topics on Twitter is constantly
shifting leading to degraded performance of NLP
tools over time. To evaluate the effect of drift in
a realistic scenario, the current evaluation uses a
test set from a separate time period, which was not
announced to participants until the (unannotated)
test data was released at the beginning of the eval-
uation period.

To address these challenges, there has been an
increasing body of work on adapting named entity
recognition tools to noisy social media text (Der-
czynski et al., 2015b; Plank et al., 2014a; Cherry
and Guo, 2015; Ritter et al., 2011; Plank et al.,
2014b), however different research groups have
made use of different evaluation setups (e.g. train-
ing / test splits) making it challenging to perform
direct comparisons across systems. By organiz-
ing a shared evaluation we hope to help establish a
common evaluation methodology (for at least one
dataset) and also promote research and develop-
ment of NLP tools for user-generated social media

text genres.

3.1 Training and Development Data
The training and development data for our task
was taken from previous work on Twitter NER
(Ritter et al., 2011), which distinguishes 10 dif-
ferent named entity types (see Table 5 for the set
of types). The data was split into 1,795 annotated
tweets for training (train) and 599 as a devel-
opment set (dev). Participants were allowed to
use the development data for training purposes in
their final submissions. This data was gathered in
September 2010 and annotated by the 5th author.

3.2 Test Data Annotation
The test data was randomly sampled from Decem-
ber 2014 through February 2015. Two native En-
glish speakers were recruited to independently an-
notate the test data. The annotators were presented
with a set of simple guidelines6 that cover com-
mon ambiguous cases and also instructed to re-
fer to the September 2010 data for reference. The
BRAT tool7 was used for annotation. A screenshot
of the interface presented to annotators is shown
in Figure 2. During an initial training period,
both annotators independently labeled a set of 200
tweets after which disagreements were discussed
and resolved before moving on to annotate the fi-
nal test set. This initial annotation was only done

6http://bit.ly/1FSP6i2
7http://brat.nlplab.org/
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for the purpose of training the annotators and the
resulting data was discarded.

The annotators then went on to double-annotate
a set of 1,425 messages. An adjudicator, the an-
notator of the training and dev sets, went through
each message and resolved disagreements. The
dataset was randomly split into 425 messages as
an additional development set (dev2015) which
was released to participants at the beginning of the
evaluation period. The remaining 1,000 messages
(test) were used for the final evaluation; annota-
tions on the test data were withheld from partici-
pants until the end of the evaluation period.

Table 5 presents precision and recall for each of
the 10 categories treating one annotator’s labels as
gold and the other’s as predicted. This exposes the
challenging nature of this annotation task and can
be viewed as a kind of human upper bound on pos-
sible system performance, though we believe the
consistency of the final annotations to be some-
what higher due to the second pass made by the
adjudicator. The value of Cohen’s  as measured
on word-level annotations is 0.607.

A baseline system was provided to participants
which takes a simple approach based on CRF-
suite8 using a standard set of features which in-
clude contextual, orthographic and gazetteers gen-
erated from Freebase (Bollacker et al., 2008). The
evaluation consisted of 2 sub-tasks: one in which
participants’ systems were required to segment
and classify 10 named entity types and one where
the task is only to predict entity segmentation (no
types).

3.3 Approaches

Eight teams (Table 6) participated in the named
entity recognition shared task. A wide variety of
approaches were taken to tackle this task. Table 7
summarizes the features used by each team and
the machine learning approach taken. Many teams
made use of word embeddings and Brown clus-
ters as features. One team (multimedialab) used
absolutely no hand-engineered features, relying
entirely on word embeddings and a feed-forward
neural-network (FFNN) architecture (Godin et al.,
2015). Other new approaches to Twitter NER in-
clude a semi-Markov MIRA trained tagger devel-
oped by the NRC team (Cherry and Guo, 2015)
and the use of entity-linking based features by ou-

8http://www.chokkan.org/software/
crfsuite/

Precision Recall F�=1

company 41.46 33.33 36.96
facility 50.00 66.67 57.14
geo-loc 63.57 70.09 66.67
movie 35.71 35.71 35.71
musicartist 60.98 47.17 53.19
other 48.21 50.00 49.09
person 60.42 80.56 69.05
product 44.83 19.12 26.80
sportsteam 75.00 71.74 73.33
tvshow 55.56 50.00 52.63

Overall 56.64 57.52 57.07

Table 5: Precision and recall comparing one an-
notator against the other. Cohen’s kappa between
the annotators was 0.607. Disagreements between
the annotators resolved by a 3rd adjudicator for the
final datasets.

Team ID Affiliation

Hallym Hallym University
iitp Indian Institute of Technology Patna
lattice University Paris 3
multimedialab UGent - iMinds
NLANGP Institute for Infocomm Research
nrc National Research Council Canada
ousia Studio Ousia
USFD University of Sheffield

Table 6: Team ID and affiliation of the named en-
tity recognition shared task participants.

sia (Yamada et al., 2015). All the other teams used
CRFs. On top of a CRF, the iitp team used a differ-
ential evolution based technique to obtain an opti-
mal feature set.

Most systems used the training data as well as
both dev sets provided to train their system, ex-
cept multimedialab which did not use dev2015
as training data and NRC which only used train.
9

Tables 8 and 9 report the results obtained by
each team for segmentation and classification of
the 10 named entity types and for segmentation
only, respectively.

3.4 System Descriptions

Following is a brief description of the approach
taken by each team:

9A post-competition analysis of the effect of training on
development sets is presented in the NRC system description
paper (Cherry et al., 2015).

131



Figure 2: Annotation interface.

POS Orthographic Gazetteers Brown clustering Word embedding ML

BASELINE – X X – – CRFsuite
Hallym X – – X correlation analysis CRFsuite
iitp X X X – – CRF++
lattice X X – X – CRF wapiti
multimedialab – – – – word2vec FFNN
NLANGP – X X X word2vec & GloVe CRF++
nrc – – X X word2vec semi-Markov MIRA
ousia X X X – X entity linking
USFD X X X X – CRF L-BFGS

Table 7: Features and machine learning approach taken by each team.

Precision Recall F�=1

ousia 57.66 55.22 56.41
NLANGP 63.62 43.12 51.40
nrc 53.24 38.58 44.74
multimedialab 49.52 39.18 43.75
USFD 45.72 39.64 42.46
iitp 60.68 29.65 39.84
Hallym 39.59 35.10 37.21
lattice 55.17 9.68 16.47

BASELINE 35.56 29.05 31.97

Table 8: Results segmenting and categorizing en-
tities into 10 types.

Hallym (Yang and Kim, 2015) The Hallym
team used an approach based on CRFs using
both Brown clusters and word embeddings
trained using Canonical Correlation Analysis
as features.

iitp (Akhtar et al., 2015a) The iitp team pro-

Precision Recall F�=1

ousia 72.20 69.14 70.63
NLANGP 67.74 54.31 60.29
USFD 63.81 56.28 59.81
multimedialab 62.93 55.22 58.82
nrc 62.13 54.61 58.13
iitp 63.43 51.44 56.81
Hallym 58.36 48.5 53.01
lattice 58.42 25.72 35.71

BASELINE 53.86 46.44 49.88

Table 9: Results on segmentation only (no types).

posed a multi-objective differential evolution
based technique for feature selection in twit-
ter named entity recognition.

lattice (Tian, 2015) Lattice employed a CRF
model using Wapiti. The feature templates
consisted of standard features used in state-
of-the-art. They trained first a model with
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dev 2015 and evaluated this model on train
and dev.

multimedialab (Godin et al., 2015) The goal of
the multimedia lab system was to only use
neural networks and word embeddings to
show the power of automatic feature learn-
ing and semi-supervised methods. A Feed-
Forward Neural Network was first trained,
that used only word2vec word embeddings
as input. Word embeddings were trained on
400 million unlabeled tweets. Leaky ReLUs
were used as activation function in combina-
tion with dropout to prevent overfitting. A
context window of 5 words was used As in-
put (2 words left and right). The output is a
single tag of the middle word. Afterwards, a
rule-based post-processing step was executed
to ensure every I-tag has a B-tag in front of
it and that all tags within a single span are of
the same type. Train and dev were used as
training data and used dev 2015 as validation
set.

NLANGP (Toh et al., 2015) The NLANGP team
modeled the problem as a sequential labeling
task and used Conditional Random Fields.
Several post-processing steps (e.g. rule-
based matching) were applied to refine the
system output. Besides Brown clusters, K-
means clusters were also used; the K-means
clusters were generated based on word em-
beddings.

nrc (Cherry et al., 2015) NRC applied a MIRA-
trained semi-Markov tagger with Gazetteer,
Brown cluster and Word Embedding fea-
tures. The Word Embeddings were built over
phrases using Word2Vec’s phrase finder tool,
and were modified using an auto-encoder to
be predictive of Gazetteer membership.

ousia (Yamada et al., 2015) The main character-
istics of the ousia method is enhancing the
performance of Twitter named entity recog-
nition using entity linking. Once entity men-
tions are disambiguated to the knowledge
base entries, high-quality knowledge can be
easily extracted from a knowledge base such
as the popularity of the entity, the classes of
the entity, and the likelihood that the entity
appears in the given context. They adopted
supervised machine-learning with features

including the results of NER and various in-
formation of the entity in knowledge bases.
We use Stanford NER was used for the NER
and in-house end-to-end entity linking soft-
ware was applied for entity linking.

USFD (Derczynski et al., 2015a) Feature extrac-
tion was based on large Brown clusters,
gazetteers tuned to the input data, and distant
supervision from Freebase. The representa-
tion was tuned for drift by down-weighting
temporally distant training examples. The
classifier was a linear chain CRF with hyper-
parameters tuned for Twitter.

4 Summary

In this paper, we presented two shared tasks on
Twitter text processing: Lexical Normalization
and Named Entity Recognition. We detailed the
task setup and datasets used in the respective
shared tasks, and also outlined the approach taken
by the participating systems. Both shared tasks
were of a scale substantially larger than what had
previously been attempted in the literature, with
two primary benefits. First, we are able to draw
stronger conclusions about the true potential of
different approaches. Second, through analyzing
the results of the participating systems, we are able
to suggest potential research directions for both fu-
ture shared tasks and noisy text processing in gen-
eral.
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Abstract

In this paper, we describe our approach
for Named Entity Recognition in Twitter,
a shared task for ACL 2015 Workshop
on Noisy User-generated Text (Baldwin et
al., 2015). Because of the noisy, short,
and colloquial nature of Twitter, the per-
formance of Named Entity Recognition
(NER) degrades significantly. To address
this problem, we propose a novel method
to enhance the performance of the Twitter
NER task by using Entity Linking which
is a method for detecting entity mentions
in text and resolving them to correspond-
ing entries in knowledge bases such as
Wikipedia. Our method is based on super-
vised machine-learning and uses the high-
quality knowledge obtained from several
open knowledge bases. In comparison
with the other systems proposed for this
shared task, our method achieved the best
performance.

1 Introduction

Named Entity Recognition (NER) refers to the
task of identifying mentions of entities (e.g., per-
sons, locations, organizations) within text. Be-
cause of the noisy, short, and colloquial nature of
Twitter messages (or tweets), the performance of
standard NER software significantly suffers. For
example, Derczynski et al. (Derczynski et al.,
2015) recently demonstrated that the performance
of various state-of-the-art NER software (e.g.,
Stanford NER and ANNIE) is typically lower than
50% F11 for tweets.

Entity Linking (EL) refers to the task of de-
tecting textual entity mentions and linking them
to corresponding entries within knowledge bases
(e.g., Wikipedia, DBpedia (Auer et al., 2007),

1The harmonic mean of precision and recall.

Freebase (Bollacker et al., 2008)). Because of
the recent emergence of large online knowledge
bases (KB), EL has recently gained significant at-
tention. It is evident that the performance of EL
also degrades when analyzing tweets (Derczynski
et al., 2015; Meij et al., 2012). However, Guo
et al. (Guo et al., 2013) recently revealed that
the main failures of Twitter EL are caused while
detecting entity mentions from text, because ex-
isting EL methods usually address the mention
detection task by using external NER software
whose performance is unreliable when processing
tweets. Consequently, several approaches (Guo et
al., 2013; Yamada et al., 2015) have been proposed
with enhanced abilities that address the task in an
end-to-end manner without completely depending
on NER software.

The main objective of this study is to investigate
the possibility of enhancing the performance of
Twitter NER by using an end-to-end EL. Although
EL is typically performed after NER in most of
the existing methods, our approach performs EL
before NER and uses the EL results to enhance the
NER performance. Resolving the entity mentions
to the KB entries enables us to use the high-quality
knowledge in KB for enhancing the NER perfor-
mance. This knowledge includes things such as
the popularity of the entity, the classes of the en-
tity, and the likelihood that the entity appears in
the given context.

We begin by briefly introducing our end-to-end
EL method that specifically focuses on tweets.
Our EL method is based on supervised machine-
learning and addresses the task in an end-to-end
manner. It considers every possible n-gram as a
candidate entity mention and detects the mention
with a corresponding link to a KB entry if the men-
tion exists in the KB. Furthermore, it can handle
mentions that appear as irregular forms (e.g., mis-
spellings, abbreviations, acronyms) using several
approximate string matching algorithms.
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The NER task is split into two separate sub-
tasks: segmentation and classification. During
segmentation, the entity mentions are detected
from tweets. Then, the entity mentions are clas-
sified into the predefined entity types. Both tasks
involve supervised machine-learning with various
features.

For the segmentation task, we use data obtained
from the KB of the corresponding entity men-
tion detected by the EL and the output of a NER
software as the main machine-learning features.
Furthermore, we include several common features
used in traditional NER methods.

For the classification task, the following three
types of features are used as primary features: 1)
the KB types of the entity detected by the EL, 2)
the entity types detected by the NER software, and
3) the vector representation of the entity mention
derived from word embeddings. The entity’s KB
types are extracted from the corresponding entries
in DBpedia and Freebase. Furthermore, the vec-
tor representation of the entity mention is derived
using GloVe word embeddings (Pennington et al.,
2014).

To train and evaluate our system, we used the
dataset given by the Named Entity Recognition in
Twitter shared task. Our proposed method signifi-
cantly outperformed the second ranked system by
a wide margin; 10.3% F1 at the segmentation task,
and 5.0% F1 at the end-to-end (both the segmen-
tation and the classification) task.

2 The Proposed System

2.1 Preprocessing

The system first assigns part-of-speech tags to
the resulting tokens using ARK Twitter Part-of-
Speech Tagger (Gimpel et al., 2011). It also to-
kenizes Twitter hashtags using our enhanced im-
plementation of the hashtag tokenization.

2.2 Entity Linking

We formalize our EL task as follows: Given a
tweet, our goal is to recognize a set of entity
mentions (e.g., Obama, President Obama, Barack
Obama) that appear in a tweet, and then resolve
the mentions into entities (e.g., Barack Obama)
in Wikipedia if they exist.

Our EL system addresses the task using the fol-
lowing two steps; mention candidate generation
and mention detection and disambiguation.

2.2.1 Mention Candidate Generation
Our system first generates a set of candidate en-
tity mentions with the set of corresponding refer-
ent entities. The system takes all the n-grams of
n ≤ 10 and looks up each n-gram in a dictionary,
treats an n-gram as a candidate mention if it exists
in the dictionary, and finally, generates an output
of pairs of mentions and their associated possible
referent entities.

Mention-Entity Dictionary: The system uses a
mention-entity dictionary that maps a mention sur-
face (e.g., apple) to the possible referent entities
(e.g., Apple Inc., Apple (food)). The possible
mention surfaces of an entity are extracted from
the corresponding Wikipedia page title, the page
titles of the Wikipedia pages that redirect to the
page of the entity, and anchor texts in Wikipedia
articles that point to the page of the entity. We
constructed this dictionary using the January 2015
dump of Wikipedia.

Approximate Candidate Generation: One
major problem of the mention candidate gen-
eration task is that many entity mentions in
tweets cannot be detected because they appear as
irregular forms (e.g., misspellings, abbreviations).
In order to address this problem, we introduce
the following three approximate string-matching
methods to improve the ability of this task:

• Fuzzy match searches the mention candidates
that have text surfaces within a certain dis-
tance of the surface of the n-gram measured
by edit distance.

• Approximate token search obtains mention
candidates whose text surfaces have a signif-
icant ratio of words in common with the sur-
face of the n-gram.

• Acronym search retrieves mention candidates
with possible acronyms2 that include the sur-
face of the n-gram.

When using the above methods, we observed
that the number of mention candidates becomes
very large. To deal with this, we use a simple fil-
tering method based on soft tf-idf (Cohen et al.,
2003); we simply use only the mention candidates
that have a similarity greater than a threshold mea-
sured by the soft tf-idf. We use 0.9 as the threshold

2We generate acronyms by tokenizing the mention surface
and simply taking the first characters of the resulting tokens.
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because this achieves the best performance in our
experiments of EL.

2.2.2 Mention Detection and Disambiguation
Given a pair of a mention and its possible refer-
ent entity, it needs to be determined if the possible
referent entity is indeed the correct one for its as-
sociated mention.

In this system, we use a supervised machine-
learning algorithm to assign a relevance score to
each of the pairs and select the entity mention with
the highest score. We use random forest as the
machine-learning algorithm.

Here, we use machine-learning features that are
mostly identical to the method proposed previ-
ously (Yamada et al., 2015). Basically, we use var-
ious features that are commonly observed in EL
studies and enhance the performance further by
introducing two new features: 1) the entity pop-
ularity knowledge extracted from Wikipedia page
views3, and 2) the contextual similarity between
the entity and the tweet measured by word embed-
dings.

2.3 Named Entity Recognition

We address the NER task by performing two sub-
tasks: segmentation and classification.

2.3.1 Segmentation of Named Entities
In this step, entity mentions are detected from
tweets. We formalize this task as follows. Given
an n-gram in a tweet, the goal of this task is
assigning a binary label that represents whether
the n-gram should be detected as an entity men-
tion. Note that in order to enable the straight-
forward integration of EL and this task, we for-
malize this task as simply classifying n-grams
instead of the commonly-used IOB labeling ap-
proach (Ramshaw and Marcus, 1995).

The basic strategy that we adopt here is to com-
bine the output of NER software and the KB
knowledge of the corresponding entity mention
detected by the EL using supervised machine-
learning. We again use random forest as the
machine-learning algorithm.

We use Stanford NER4 as the NER software that
achieves relatively better performance in the Twit-
ter NER task in a recent study (Derczynski et al.,

3http://dumps.wikimedia.org/other/
pagecounts-raw/

4http://nlp.stanford.edu/software/
CRF-NER.shtml

2015). Here, we adopt two models of Stanford
NER to enhance the performance: 1) the standard
three-class model which is included in the soft-
ware and 2) a model that does not use capitaliza-
tion as a feature, in order to deal with the unrelia-
bility of capitalization in tweets.

The results of the NER and the KB knowledge
of the corresponding entity mention detected by
the EL are used as the primary machine-learning
features. We also include features that are tradi-
tionally used in NER such as part-of-speech tags
and the capitalization features. Furthermore, the
ratio of the capitalized words in the tweet is also
used as an indicator of the reliability of the capi-
talization.

The machine-learning features for this step in-
clude:

• EL relevance score∗: The relevance score of
the entity mention assigned by the previous
EL step.

• Link probability∗: The probability of the en-
tity mention appearing as an anchor text in
Wikipedia.

• Capitalization probability∗: The probability
of the entity mention being capitalized in
Wikipedia.

• The number of inbound links∗: The number
of inbound links of the corresponding entity
in Wikipedia.

• The average page view∗: The average
page view of the corresponding entity in
Wikipedia.

• NER span match: Binary values that repre-
sent whether the n-gram is detected by NER
models.

• Part-of-speech tags: Part-of-speech tags of
the previous, first, last, and next words of the
n-gram.

• Context capitalization: Binary values that
represent whether the previous, first, last, and
next words of the n-gram are capitalized.

• Character length: The number of characters
read in the surface of the n-gram.

• Token length: The number of tokens read in
the n-gram.

Note that some features (marked with ∗) are
based on an entity mention detected by EL, thus
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these features can be missing if there is no corre-
sponding entity mention detected by the EL.

We also resolve overlaps of mentions by itera-
tively selecting the longest entity mention from the
beginning of a tweet.

2.3.2 Classification of Named Entities
In this step, detected entity mentions are classified
into the predefined types (i.e., person, geo-loc,
facility, product, company, movie, sportsteam,
musicartist, tvshow, and other) using supervised
machine-learning. Here, linear support vector ma-
chine is used as the machine-learning model.

One main machine-learning feature of this step
is the corresponding entity types retrieved from
KBs. We obtain KB entity types from the corre-
sponding entries in DBpedia5 and Freebase6.

One problem in this step is that there are several
entity mentions that cannot be detected by EL be-
cause of various reasons (e.g., a non-existent entity
in the KB, an error performing EL). In addition,
some minor entities might not have entity types in
the KBs. In order to deal with this problem, we
first include the entity types predicted by Stanford
NER as features. However, because the target en-
tity types of our task do not directly correspond
to the ones given in Stanford NER (i.e., location,
person, and organization), the effectiveness of
these features is obviously limited. Therefore, we
introduce another type of feature based on word
embeddings. For this, we use GloVe word embed-
dings7 to calculate an average vector of vectors of
words in n-gram text.

We also include the relevance score assigned by
the previous EL step that indicates the reliability
of the KB entity types to the model. The number
of words and the number of characters in the n-
gram text are also included as features to enhance
the expressiveness of our model even further.

The machine-learning features for this step in-
clude:

• KB entity types: The entity types in KBs. The
KBs used include DBpedia and Freebase.

• NER detected type: The detected entity types
of the NER model. As mentioned in Section

5http://mappings.dbpedia.org/server/
ontology/classes/

6http://wiki.freebase.com/wiki/Type
7We use the 300-dimensional model generated using

840B tokens obtained from CommonCrawl corpus. http:
//nlp.stanford.edu/projects/glove/

System Name Precision Recall F1
Our Method 72.20% 69.14% 70.63%
NLANGP 67.74% 54.31% 60.29%

USFD 63.81% 56.28% 59.81%
multimedialab 62.93% 55.22% 58.82%

nrc 62.13% 54.61% 58.13%

Table 1: Performances of the proposed systems at
segmenting entities

2.3.1, we use two different models of Stan-
ford NER.

• N-gram vector: The vector representation
of the n-gram derived using the method ex-
plained above and includes each dimension
of the vector as a separate feature.

• EL relevance score: The relevance score as-
signed by the previous EL step.

• Character length: The number of characters
read in the n-gram text.

• Token length: The number of tokens read in
the n-gram.

3 Experiments

3.1 Experimental Setup
To train our proposed EL method, we used the
#Microposts 2015 EL dataset (Rizzo et al., 2015)
that contains 3,998 tweets and 3,993 annotations
of entities.8 The performance of our EL method
using this particular dataset is reported in (Yamada
et al., 2015).

For this shared task, we trained and evaluated
our proposed Twitter NER using the dataset pro-
vided by the workshop.9

3.2 Results
Table 1 shows the results of the segmentation
task of the five top-ranking systems. Our pro-
posed method significantly outperforms the sec-
ond ranked method by 10.3% F1.

The end-to-end results (both segmentation and
classification tasks) of the five top-ranking sys-
tems are shown in Table 2. Here, our method sig-
nificantly outperforms the second ranked method
by 5.0% F1. Table 3 also presents detailed scores
broken down by entity types.

8We use the training and the dev set of the #Microposts
2015 dataset as the training data.

9We use the train, the dev, and the dev 2015 set for train-
ing the NER model.
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System Name Precision Recall F1
Our Method 57.66% 55.22% 56.41%
NLANGP 63.62% 41.12% 51.40%

nrc 53.24% 38.58% 44.74%
multimedialab 49.52% 39.18% 43.75%

USFD 45.72% 39.64% 42.46%

Table 2: Performances of the proposed systems at
both segmentation and classification tasks

Entity Type Precision Recall F1
company 41.82% 58.97% 48.94%
facility 50.00% 26.32% 34.48%
geo-loc 57.59% 78.45% 66.42%
movie 66.67% 40.00% 50.00%

musicartist 70.00% 34.15% 45.90%
other 47.06% 42.42% 44.62%

person 70.97% 77.19% 73.95%
product 34.78% 21.62% 26.67%

sportsteam 66.67% 34.29% 45.28%
tvshow 14.29% 50.00% 22.22%

Table 3: Performance of our system at both seg-
mentation and classification tasks broken down by
entity types

4 Conclusions

In this paper, we proposed a novel method for
the Twitter NER task. We showed that the
data retrieved from open knowledge bases (i.e.,
Wikipedia, DBpedia, Freebase) can be naturally
leveraged to enhance NER using entity linking.
Furthermore, this data appears to be highly effec-
tive for both the segmentation and the classifica-
tion tasks.
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Abstract

This paper describes our system used in
the ACL 2015 Workshop on Noisy User-
generated Text Shared Task for Named
Entity Recognition (NER) in Twitter. Our
system uses Conditional Random Fields to
train two separate classifiers for the two
evaluations: predicting 10 fine-grained
types, and segmenting named entities. We
focus our efforts on generating word rep-
resentations from large amount of unla-
beled newswire data and tweets. Our
experiment results show that cluster fea-
tures derived from word representations
significantly improve Twitter NER perfor-
mances. Our system is ranked 2nd for both
evaluations.

1 Introduction

Named Entity Recognition (NER) is the task of
identifying and categorizing the various mentions
of people, organizations and other named entities
within the text. NER has been an essential analysis
component in many Natural Language Processing
(NLP) systems, especially information extraction
and question answering.

Traditionally, the NER system is trained and
applied on long and formal text such as the
newswire. From the beginning of the new millen-
nium, user-generated content from the social me-
dia websites such as Twitter and Weibo presents a
huge compilation of informative but noisy and in-
formal text. This rapidly growing text collection
becomes more and more important for NLP tasks
such as sentiment analysis and emerging topic de-
tection.

However, standard NER system trained on for-
mal text does not work well on this new and chal-
lenging style of text. Therefore, adapting the
NER system to the new and challenging Twitter

domain has attracted increasing attention of re-
searchers. The ACL 2015 Workshop on Noisy
User-generated Text (W-NUT) Shared Task for
NER in Twitter is organized in response to these
new changes (Tim Baldwin, 2015).

We participated in the above Shared Task,
which consists of two separate evaluations: one
where the task is to predict 10 fine-grained types
(10types) and the other in which only named entity
segments are predicted (notypes).

For both evaluations, we model the problem as
a sequential labeling task, using Conditional Ran-
dom Fields (CRF) as the training algorithm. An
additional postprocessing step is applied to further
refine the system output.

The remainder of this paper is structured as fol-
lows. In Section 2, we report on the external re-
sources used by our system and how they are ob-
tained and processed. In Section 3, the features
used are described in details. In Section 4, the ex-
periment and official results are presented. Finally,
Section 5 summarizes our work.

2 External Resources

External resources have shown to improve the per-
formances of Twitter NER (Ritter et al., 2011).
Our system uses a variety of external resources,
either publicly available, or collected and prepro-
cessed by us.

2.1 Freebase Entity Lists

We use the Freebase entity lists provided by the
task organizers. For some of the lists that are not
provided (e.g. a list of sports facilities), we man-
ually collect them by calling the appropriate Free-
base API.

2.2 Unlabeled Corpora

We gather unlabeled corpora from three differ-
ent sources: (1) Pre-trained word vectors gen-
erated using the GloVe tool (Pennington et al.,
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2014)1, (2) English Gigaword Fifth Edition2, and
(3) raw tweets collected between the period of
March 2015 and April 2015.

For English Gigaword, all articles of story type
are collected and tokenized. Further preprocess-
ing is performed by following the cleaning step
described in Turian et al. (2010). This results in
a corpus consisting of 76 million sentences.

The collected raw tweets are tokenized3

and non-English tweets are removed using
langid.py (Lui and Baldwin, 2012), resulting
in a total of 14 million tweets.

3 Features

This section briefly describes the features used in
our system. Besides the features commonly used
in traditional NER systems, we focus on the use
of word cluster features that have shown to be ef-
fective in previous work (Ratinov and Roth, 2009;
Turian et al., 2010; Cherry and Guo, 2015).

3.1 Word Feature
The current word and its lowercase format are
used as features. To provide additional context in-
formation, the previous word and next word (in
original format) are also used.

3.2 Orthographic Features
Orthographic features based on regular expres-
sions are often used in NER systems. We only use
the following two orthographic features: Initial-
Cap ([A-Z][a-z].*) and AllCaps ([A-Z]+).
In addition, the first character and last two charac-
ters of each word are used as features.

3.3 Gazetteer Feature
The current word is matched with entries in the
Freebase entity lists and the feature value is the
type of entity list matched.

3.4 Word Cluster Features
Unsupervised word representations (e.g. Brown
clustering) have shown to improve the perfor-
mance of NER. Besides brown clusters, we also
use clusters generated using the K-means algo-
rithm. These two kinds of clusters are generated
from the processed Gigaword and tweet corpora
(Section 2.2).

1http://nlp.stanford.edu/projects/glove/
2https://catalog.ldc.upenn.edu/LDC2011T07
3The tweet tokenization script can be found at

https://github.com/myleott/ark-twokenize-py

Brown clusters are generated using the imple-
mentation by Percy Liang4. We experiment with
different cluster sizes ({100, 200, 500, 1000}), re-
sulting in different cluster files for each of the cor-
pora. For each cluster file, different minimum oc-
currences ({5, 10, 20}) and binary prefix lengths
({4, 6, · · · , 14, 16}) are tested. For each word in
the tweet, its corresponding binary prefix string
representation is used as the feature value.

K-means clusters are generated using two dif-
ferent methods. The first method uses the
word2vec tool (Mikolov et al., 2013)5. By vary-
ing the minimum occurrences ({5, 10, 20}), word
vector size ({50, 100, 200, 500, 1000}), cluster
size ({50, 100, 200, 500, 1000}) and sub-sampling
threshold ({0.00001, 0.001}), different cluster
files are generated and tested. Similar to the
Brown cluster feature, the name of the cluster that
each word belongs to is used as the feature value.

The second method uses the GloVe tool to
generate global vectors for word representation6.
As the GloVe tool does not output any form of
clusters, K-mean clusters are generated from the
global vectors using the K-means implementa-
tion from Apache Spark MLlib7. Similarly, by
varying the minimum count ({5, 10, 20, 50, 100}),
window size ({5, 10, 15, 20}), vector size
({50, 100, 200, 500, 1000}), and cluster size
({50, 100, 200, 500, 1000}), different cluster files
are generated and tested.

We also generate K-mean cluster files us-
ing the pre-trained GloVe word vectors (trained
from Wikipedia 2014 and Gigaword Fifth Edi-
tion, Common Crawl and Twitter data) in the same
manner.

We create a cluster feature for each cluster file
that is found to improve the 5-fold cross valida-
tion performance. As there are over 800 cluster
files, we only test a random subset of cluster files
each time and select the best cluster file from the
subset to create a new cluster feature. The proce-
dure is repeated for a new subset of cluster files,
until no (or negligible) improvement is obtained.
Our final settings use one Brown cluster feature
and six K-means cluster features (for both 10types
and notypes settings).

4https://github.com/percyliang/brown-cluster/
5https://code.google.com/p/word2vec/
6Due to memory constraints, only the tweet corpus is used

to generate global vectors.
7https://spark.apache.org/mllib/
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10types
Feature Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall
Word Feature 25.76 23.93 27.59 28.01 9.69 23.94
+ Orthographic Features 36.48 35.64 41.20 43.27 25.34 37.03
+ Gazetteer Feature 44.36 43.94 48.22 44.84 30.35 42.94
+ Word Cluster Features 55.85 57.49 60.07 58.35 44.99 55.95
+ Postprocessing 56.09 57.82 60.07 58.88 45.78 56.31

Table 1: 5-fold cross-validation F1 performances for the 10types evaluation. Each row uses all features
added in the previous rows.

notypes
Feature Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall
Word Feature 30.91 30.08 33.41 36.99 20.69 31.09
+ Orthographic Features 52.06 54.29 52.22 53.11 44.49 51.62
+ Gazetteer Feature 52.26 56.70 58.78 56.74 47.45 54.77
+ Word Cluster Features 65.14 65.57 66.77 68.13 55.31 64.66
+ Postprocessing 65.44 65.85 67.30 68.70 56.00 65.13

Table 2: 5-fold cross-validation F1 performances for the notypes evaluation. Each row uses all features
added in the previous rows.

4 Experiments and Results

Our system is trained using the CRF++ tool8. We
trained separate classifiers for the two different
evaluations (10types and notypes).

To select the optimum settings, we make use
of all available training data (train, dev,
dev_2015) and conduct 5-fold cross validation
experiments. For easier comparisons with other
systems, the 5 folds are split such that dev is the
test set for Fold 1, while dev_2015 is the test set
for Fold 5.

4.1 Preliminary Results on Training Data

Table 1 and Table 2 shows the 5-fold cross val-
idation performances after adding each feature
group for the 10types and notypes evaluations re-
spectively. The use of word clusters significantly
improves the performances for both evaluations.
There is an overall improvement of 13% and 9%
for the 10types and notypes evaluation respec-
tively when word cluster features are added. This
demonstrates the usefulness of word vectors in im-
proving the accuracy of a Twitter NER system.

Comparing the performances of Fold 1 (tested
on dev) and Fold 5 (tested on dev_2015),
we observe a significant performance difference.

8http://taku910.github.io/crfpp/

Similar observations can also be seen for the other
three folds (tested on a subset of train) when
compared with Fold 5. This suggests that there
are notable differences between the data provided
during the training period (train and dev) and
evaluation period (dev_2015), probably because
the two sets of data are collected in different time
periods.

4.2 Postprocessing

We also experiment with a postprocessing step
based on heuristic rules to further refine the sys-
tem output (last row of Table 1 and Table 2). The
heuristic rules are based on string matching of
words with name list entries. To prevent false pos-
itives, we require entries in some of the name lists
to contain at least two words and should not con-
tain common words/stop words. For certain name
lists where single-word entries are common but
ambiguous (e.g. name of sports clubs), we check
for the presence of cue words in the tweet be-
fore matching. For example, for single-word sport
team names that are common in tweets, we check
for the presence of cue words such as “vs”. Exam-
ples of name lists used include names of profes-
sional athletes, music composers and sport facili-
ties.
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10types notypes
System Rank Precision Recall F1 Rank Precision Recall F1

NLANGP 2 63.62 43.12 51.40 2 67.74 54.31 60.29
1st 1 57.66 55.22 56.41 1 72.20 69.14 70.63
2nd 2 63.62 43.12 51.40 2 67.74 54.31 60.29
3rd 3 53.24 38.58 44.74 3 63.81 56.28 59.81

Baseline – 35.56 29.05 31.97 – 53.86 46.44 49.88

Table 3: Comparison of our system (NLANGP) with the top three participating systems and official
baselines for the 10types and notypes evaluations.

10types notypes
System Precision Recall F1 Precision Recall F1

NLANGP 63.62 43.12 51.40 67.74 54.31 60.29
- Word Cluster Features 57.99 25.26 35.19 62.56 38.43 47.61

Table 4: System performances on the test data when word cluster features are not used.

4.3 Evaluation Results
Table 3 presents the official results of our 10types
and notypes submissions. We also include the re-
sults of the top three participating systems and of-
ficial baselines for comparison.

As shown from the table, our system
(NLANGP) is ranked 2nd for both evalua-
tions. Based on our preliminary Fold 5 perfor-
mances, our system performances on the test data
(test_2015, collected in the same period as
dev_2015) are within expectation. In general,
the fine-grained evaluation is a more challeng-
ing task, as seen from the huge performance
difference between the F1 score of 10types and
notypes.

Type Precision Recall F1
COMPANY 80.00 41.03 54.24
FACILITY 52.17 31.58 39.34
GEO-LOC 63.81 57.76 60.63
MOVIE 100.00 33.33 50.00
MUSICARTIST 50.00 9.76 16.33
OTHER 50.00 30.30 37.74
PERSON 70.70 64.91 67.68
PRODUCT 20.00 8.11 11.54
SPORTSTEAM 79.41 38.57 51.92
TVSHOW 0.00 0.00 0.00
Overall 63.62 43.12 51.40

Table 5: Performance of each fine-grained type of
our system.

Table 5 shows the performance of each fine-
grained type of our system. Unlike traditional

NER where state-of-the-art systems can achieve
performances over 90 F1 for the 3 MUC types
(PERSON, LOCATION and ORGANIZATION),
Twitter NER poses new challenges in accurately
extracting entity information in such genre that
does not exist in the past.

We are interested to know the performance con-
tribution of the word clusters on the test data. Ta-
ble 4 shows the performances on the test data
when word cluster features are not used. Simi-
larly to the observations observed in the training
data, word clusters are important features for our
system: a performance drop greater than 16% and
12% is observed for the 10types and notypes eval-
uation respectively.

5 Conclusion

In this paper, we describe our system used in the
W-NUT Shared Task for NER in Twitter. We fo-
cus our efforts on improving Twitter NER using
word representations, namely, Brown clusters and
K-means clusters, that are generated from large
amount of unlabeled newswire data and tweets.
Our experiments and evaluation results show that
cluster features derived from word representations
are effective in improving Twitter NER perfor-
mances. In future, we hope to investigate on the
use of distant supervision learning technique to
build better system that can perform more robustly
across tweets from different time periods. We also
like to perform an error analysis to help us under-
stand which other problems persist so as to address
them in future.
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Abstract

Due to the short and noisy nature of Twit-
ter microposts, detecting named entities
is often a cumbersome task. As part of
the ACL2015 Named Entity Recognition
(NER) shared task, we present a semi-
supervised system that detects 10 types of
named entities. To that end, we leverage
400 million Twitter microposts to generate
powerful word embeddings as input fea-
tures and use a neural network to execute
the classification. To further boost the per-
formance, we employ dropout to train the
network and leaky Rectified Linear Units
(ReLUs). Our system achieved the fourth
position in the final ranking, without using
any kind of hand-crafted features such as
lexical features or gazetteers.

1 Introduction

Users on Online Social Networks such as Face-
book and Twitter have the ability to share micro-
posts with their friends or followers. These mi-
croposts are short and noisy, and are therefore
much more difficult to process for existing Natural
Language Processing (NLP) pipelines. Moreover,
due to the informal and contemporary nature of
these microposts, they often contain Named Enti-
ties (NEs) that are not part of any gazetteer.

In this challenge, we tackled Named Entity
Recognition (NER) in microposts. The goal was
to detect named entities and classify them in one
of the following 10 categories: company, facility,
geolocation, music artist, movie, person, product,

sports team, tv show and other entities. To do so,
we only used word embeddings that were automat-
ically inferred from 400 million Twitter microp-
osts as input features. Next, these word embed-
dings were used as input to a neural network to
classify the words in the microposts. Finally, a
post-processing step was executed to check for in-
consistencies, given that we classified on a word-
per-word basis and that a named entity can span
multiple words. An overview of the task can be
found in Baldwin et al. (2015).

The challenge consisted of two subtasks. For
the first subtask, the participants only needed to
detect NEs without categorizing them. For the
second subtask, the NEs also needed to be cate-
gorized into one of the 10 categories listed above.
Throughout the remainder of this paper, only the
latter subtask will be considered, given that solv-
ing subtask two makes subtask one trivial.

2 Related Work

NER in news articles gained substantial popularity
with the CoNLL 2003 shared task, where the chal-
lenge was to classify four types of NEs: persons,
locations, companies and a set of miscellaneous
entities (Tjong Kim Sang and De Meulder, 2003).
However, all systems used hand-crafted features
such as lexical features, look-up tables and corpus-
related features. These systems provide good per-
formance at a high engineering cost and need a
lot of annotated training data (Nadeau and Sekine,
2007). Therefore, a lot of effort is needed to adapt
them to other types of corpora.

More recently, semi-supervised systems
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showed to achieve near state-of-the-art results
with much less effort (Turian et al., 2010; Col-
lobert et al., 2011). These systems first learn word
representations from large corpera in an unsu-
pervised way and use these word representations
as input features for supervised training instead
of using hand-crafted input features. There exist
three major types of word representations: distri-
butional, clustering-based and distributed word
representations, and where the last type of repre-
sentation is also known as a word embedding. A
very popular and fast to train word embedding is
the word2vec word representation of Mikolov et
al. (2013). When complemented with traditional
hand-crafted features, word representations can
yield F1-scores of up to 91% (Tkachenko and
Simanovsky, 2012).

However, when applied to Twitter microposts,
the F1-score drops significantly. For example, Liu
et al. (2011) report a F1 score of 45.8% when ap-
plying the Stanford NER tagger to Twitter microp-
osts and Ritter et al. (2011) even report a F1-score
of 29% on their Twitter micropost dataset. There-
fore, many researchers (Cano et al., 2013; Cano
et al., 2014) trained new systems on Twitter mi-
croposts, but mainly relied on cost-intensive hand-
crafted features, sometimes complemented with
cluster-based features.

Therefore, in this paper, we will investigate the
power of word embeddings for NER applied to mi-
croposts. Although adding hand-crafted features
such as lexical features or gazetteers would prob-
ably improve our F1-score, we will only focus on
word embeddings, given that this approach can be
easily applied to different corpora, thus quickly
leading to good results.

3 System Overview

The system proposed for tackling this challenge
consists of three steps. First, the individual words
are converted into word representations. For
this, only the word embeddings of Mikolov et al.
(2013) are used. Next, we feed the word rep-
resentations to a Feed-Forward Neural Network
(FFNN) to classify the individual words with a
matching tag. Finally, we execute a simple, rule-
based post-processing step in which we check the
coherence of individual tags within a Named En-
tity (NE).

3.1 Creating Feature Representations

Recently, Mikolov et al. (2013) introduced an ef-
ficient way for inferring word embeddings that
are effective in capturing syntactic and semantic
relationships in natural language. In general, a
word embedding of a particular word is inferred
by using the previous or future words within a
number of microposts/sentences. Mikolov et al.
(2013) proposed two architectures for doing this:
the Continuous Bag Of Words (CBOW) model and
the Skip-gram model.

To infer the word embeddings, a large dataset of
microposts is used. The algorithm iterates a num-
ber of times over this dataset while updating the
word embeddings of the words within the vocabu-
lary of the dataset. The final result is a look-up ta-
ble which can be used to convert every word w(t)
in a feature vector we(t). If the word is not in the
vocabulary, a vector only containing zeros is used.

3.2 Neural Network Architecture

Based on the successful application of Feed-
Forward Neural Networks (FFNN) using word
embeddings as input features for both recognizing
NEs in news articles (Turian et al., 2010; Collobert
et al., 2011) and Part-of-Speech tagging of Twitter
microposts (Godin et al., 2014), a FFNN is used as
the underlying classification algorithm. Because a
NE can consist of multiple words, the BIO (Begin,
Inside, Outside NE) notation is used to classify the
words. Given that there are 10 different NE cate-
gories that each have a Begin and Inside tag, the
FFNN will assign a tag(t) to every word w(t) out
of 21 different tags.

Because the tag tag(t) of a word w(t) is also
determined by the surrounding words, a context
window centered around w(t) that contains an odd
number of words, is used. As shown in Fig-
ure 1, the corresponding word embeddings we(t)
are concatenated and used as input to the FFNN.
This is the input layer of the neural network.

The main design parameters of the neural net-
work are the type of activation function, the num-
ber of hidden units and the number of hidden
layers. We considered two types of activation
functions, the classic tanh activation function and
the newer (leaky) Rectified Linear Units (ReLUs).
The output layer is a standard softmax function.
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we(t)we(t− 1) we(t + 1)

we(2) we(3) we(4) BORDERwe(1)BORDER

w(2) = to w(3) = New w(4) = Y orkw(1) = goin

tag(2) = O tag(3) = B − geoloc tag(4) = I − geoloctag(1) = O

t=1 t=2 t=3 t=4

Look − up table with word embeddings

Figure 1: High-level illustration of the FFNN that classifies each word as part of one of the 10 named
entity classes. At the input, a micropost containing four words is given. The different words w(t) are
first converted in feature representations we(t) using a look-up table of word embeddings. Next, a feature
vector is constructed for each word by concatenating all the feature representations we(t) of the other
words within the context window. In this example, a context window of size three is used. One-by-one,
these concatenated vectors are fed to the FFNN. In this example, a one-hidden layer FFNN is used. The
output of the FFNN is the tag tag(t) of the corresponding word w(t).

3.3 Postprocessing the Neural Network
Output

Given that NEs can span multiple words and given
that the FFNN classifies individual words, we ap-
ply a postprocessing step after a micropost is com-
pletely classified to correct inconsistencies. The
tags of the words are changed according to the fol-
lowing two rules:

• If the NE does not start with a word that has
a B(egin)-tag, we select the word before the
word with the I(nside)-tag and replace the
O(utside)-tag with a B-tag and copy the cate-
gory of the I-tag.

• If the individual words of a NE have differ-
ent categories, we select the most frequently
occurring category. If it is a tie, we select the
category of the last word within the NE.

4 Experimental Setup

4.1 Dataset

The challenge provided us with three different
datasets: train, dev and dev_2015. These datasets
have 1795, 599 and 420 microposts, respectively,
also containing 1140, 356 and 272 NEs, respec-
tively. The train and dev datasets came from
the same period and therefore have some over-
lap in NEs. Moreover, they contained the com-
plete dataset of Ritter et al. (2011). The micro-
posts within dev_2015, however, were sampled
more recently and resembled the test set of this
challenge. The test set consisted of 1000 microp-
osts, having 661 NEs. The train and dev dataset
will be used as training set throughout the exper-
iments and the dev_2015 dataset will be used as
development set.

For inferring the word embeddings, a set of
raw Twitter microposts was used, collected during
300 days using the Twitter Streaming API, from
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1/3/2013 till 28/2/2014. After removing all non-
English microposts using the micropost language
classifier of Godin et al. (2013), 400 million raw
English Twitter microposts were left.

4.2 Preprocessing the Data

For preprocessing the 400 million microposts, we
used the same tokenizer as Ritter et al. (2011). Ad-
ditionally, we used replacement tokens for URLs,
mentions and numbers on both the challenge
dataset and the 400 million microposts we col-
lected. However, we did not replace hashtags as
doing so experimentally demonstrated to decrease
the accuracy.

4.3 Training the Model

The model was trained in two phases. First, the
look-up table containing per-word feature vec-
tors was constructed. To that end, we applied
the word2vec software (v0.1c) of Mikolov et al.
(2013) on our preprocessed dataset of 400 million
Twitter microposts to generate word embeddings.
Next, we trained the neural network. To that end,
we used the Theano library (v0.6) (Bastien et al.,
2012), which easily effectuated the use of our
NVIDIA Titan Black GPU. We used mini-batch
stochastic gradient descent with a batch size of
20, a learning rate of 0.01 and a momentum of
0.5. We used the standard negative log-likelihood
cost function to update the weights. We used
dropout on both the input and hidden layers to pre-
vent overfitting and used (Leaky) Rectified Linear
Units (ReLUs) as hidden units (Srivastava et al.,
2014). To do so, we used the implementation of
the Lasagne1 library. We trained the neural net-
work on both the train and dev dataset and iterated
until the accuracy on the dev_2015 set did not im-
prove anymore.

4.4 Baseline

To evaluate our system, we made use of two differ-
ent baselines. The word embeddings and the neu-
ral network architecture were evaluated in terms
of word level accuracy. For these components, the
baseline system simply assigned the O-tag to ev-
ery word, yielding an accuracy of 93.53%. For the
postprocessing step and the overall system eval-
uation, we made use of the baseline provided by
the challenge, which performs an evaluation at the
level of NEs. This baseline system uses lexical

1https://github.com/Lasagne/Lasagne

Table 1: Evaluation of the influence of the context
window size of the word embeddings on the ac-
curacy of predicting NER tags using a neural net-
work with an input window of five words, 500 hid-
den Leaky ReLU units and dropout. All word em-
beddings are inferred using negative sampling and
a Skip-gram architecture, and have a vector size
of 400. The baseline accuracy is achieved when
tagging all words of a micropost with the O-tag.

Context
Window

Accuracy Error Rate
Reduction

Baseline 93.53%

1 95.64% -32.57%
3 95.57% -31.44%
5 95.52% -30.72%

features and gazetteers, yielding an F1-score of
34.29%. Note that we only report the performance
for subtask two (i.e., categorizing the NEs), except
for the final evaluation.

5 Experiments

5.1 Word Embeddings
For inferring the word embeddings of the 400 mil-
lion microposts, we mainly followed the sugges-
tions of Godin et al. (2014), namely, the best word
embeddings are inferred using a Skip-gram archi-
tecture and negative sampling. We used the de-
fault parameter settings of the word2vec software,
except for the context window.

As noted by Bansal et al. (2014), the type of
word embedding created depends on the size of
the context window. In particular, a bigger context
window creates topic-oriented embeddings while
a smaller context window creates syntax-oriented
embeddings. Therefore, we trained an initial ver-
sion of our neural network using an input window
of five words and 300 hidden nodes, and evaluate
the quality of the word embeddings based on the
classification accuracy on the dev_2015 dataset.
The results of this evaluation are shown in Table 1.
Although the difference is small, a smaller context
window consistently gave a better result.

Additionally, we evaluated the vector size. As
a general rule of thumb, the larger the word em-
beddings, the better the classification (Mikolov et
al., 2013). However, too many parameters and too
few training examples will lead to suboptimal re-
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sults and poor generalization. We chose word em-
beddings of size 400 because smaller embeddings
experimentally showed to capture not as much de-
tail and resulted in a lower accuracy. Larger word
embeddings, on the other hand, made the model
too complex to train.

The final word2vec word embeddings model
has a vocabulary of 3,039,345 words and word
representations of dimensionality 400. The model
was trained using the Skip-gram architecture and
negative sampling (k = 5) for five iterations, with
a context window of one and subsampling with a
factor of 0.001. Additionally, to be part of the vo-
cabulary, words should occur at least five times in
the corpus.

5.2 The Neural Network Architecture

The next step is to evaluate the Neural Network
Architecture. The most important parameters are
the size of the input layer, the size of the hidden
layers and the type of hidden units. Although we
experimented with multiple hidden layers, the ac-
curacy did not improve. We surmise that (1) the
training set is too small and that (2) the word em-
beddings already contain a fixed summary of the
information and therefore limit the feature learn-
ing capabilities of the neural network. Note that
the word embeddings at the input layer can also
be seen as a (fixed) hidden layer.

First, we will evaluate the activation function
and the effectiveness of dropout (p = 0.5). We
compared the classic tanh function and the leaky
ReLU with a leak rate of 0.012. As can be seen in
Table 2, both activation functions perform equally
good when no dropout is applied during training.
However, when dropout is applied, the gap be-
tween the two configurations becomes larger. The
combination of ReLUs and dropout seems to be
the best one, compared to the classic configuration
of a neural network3.

Next, we will evaluate a number of neural net-
work configurations for which we varied the input
layer size and the hidden layer size. The results
are depicted in Table 3. Although the differences
are small, the best configuration seems to be a neu-
ral network with five input words and 500 hidden
nodes.

2This is the default value in Lasagne and showed to work
the best for us

3Given that dropout also acts as a regularization tech-
nique, a comparison with other regularization techniques
should be conducted to be complete (e.g., L2 regularization)

Table 2: Evaluation of the influence of the activa-
tion function and dropout on the accuracy of pre-
dicting NE tags. A fixed neural network with an
input window of five, word embeddings of size
400 and 500 hidden units is used. The baseline
accuracy is achieved when tagging all words of a
micropost with the O-tag.

Activ.
Function

Dropout Accuracy
Error Rate
Reduction

Baseline 93.53%

Tanh
No 95.01% -22.78%
Yes 95.49% -30.30%

L. ReLU
No 95.02% -23.01%
Yes 95.64% -32.57%

Finally, we evaluate our best model on the NE
level instead of on the word level. To that end, we
calculated the F1-score of our best model using the
provided evaluation script. The F1-score of our
best model on dev_2015 is 45.15%, which is an
absolute improvement of almost 11% and an error
reduction of 16.52% over the baseline (34.29%)
provided by the challenge.

5.3 Postprocessing

As a last step, we corrected the output of the neu-
ral network for inconsistencies because our clas-
sifier does not see the labels of the neighbouring
words. As can be seen in Table 4, the postprocess-
ing causes a significant error reduction, yielding a
final F1-score of 49.09% on the dev_2015 devel-
opment set, and an error reduction of 22.52% over
the baseline.

Additionally, we also report the F1-score on the
dev_2015 development set for subtask one, where
the task was to only detect the NEs but not to cat-
egorize them into the 10 different categories. For
this, we retrained the model with the best param-
eters of subtask two. The results are shown in Ta-
ble 5.

If we compare both subtasks, we see that the
neural network has a similar error reduction for
both subtasks but that the postprocessing step ef-
fectuates a larger error reduction for subtask two.
In other words, a common mistake of the neural
network is to assign different categories to differ-
ent words within one NE. These mistakes are eas-
ily corrected by the postprocessing step.
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Table 3: Evaluation of the influence of the input layer and hidden layer size on the accuracy/error reduc-
tion when predicting NE tags. The fixed neural network is trained with dropout, word embeddings of
size 400 and ReLUs. The error reduction values are calculated using the baseline which tags all words
with an O-tag.

Window
Number of hidden units

300 500 1000

Three 95.63% / -32.35% 95.58% / -31.66% 95.55% / -31.21%
Five 95.57% / -31.44% 95.64% / -32.57% 95.61% / -32.12%

Table 4: Evaluation of the postprocessing step for
detecting named entities. The baseline was pro-
vided by the challenge.

Configuration F1
Error Rate
Reduction

Baseline 34.29%

Without postprocessing 45.15% -16.52%
With postprocessing 49.09% -22.52%

Table 5: Evaluation of the postprocessing step
for detecting named entities without categorizing
them. The baseline was provided by the challenge.

Configuration F1
Error Rate
Reduction

Baseline 52.63%

Without postprocessing 60.04% -15.64%
With postprocessing 60.80% -17.24%

6 Evaluation on the Test Set

Our best model realized a F1-score of 58.82%
on subtask one (no categories), hereby realizing
an error reduction of 17.84% over the baseline
(49.88%). On subtask two (10 categories), an F1-
score of 43.75% was realized, yielding an error re-
duction of 17.32% over the baseline (31.97%). A
break-down of the results on the different NE cate-
gories can be found in Table 6. Our system ranked
fourth in both subtasks.

7 Conclusion

In this paper, we presented a system to apply
Named Entity Recognition (NER) to microposts.
Given that microposts are short and noisy com-

pared to news articles, we did not want to invest
time in crafting new features that would improve
NER for microposts. Instead, we implemented
the semi-supervised architecture of Collobert et al.
(2011) for NER in news articles. This architec-
ture only relies on good word embeddings inferred
from a large corpus and a simple neural network.

To realize this system, we used the word2vec
software to quickly generate powerful word em-
beddings over 400 million Twitter microposts.
Additionally, we employed a state-of-the-art neu-
ral network for classification purposes, using leaky
Rectified Linear Units (ReLUs) and dropout to
train the network, showing a significant benefit
over classic neural networks. Finally, we checked
the output for inconsistencies when categorizing
the named entities.

Our word2vec word embeddings trained
on 400 million microposts are released to
the community and can be downloaded at
http://www.fredericgodin.com/software/.
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Abstract 

As a participant in the W-NUT Lexical 
Normalization for English Tweets chal-
lenge, we use deep learning to address 
the constrained task. Specifically, we use 
a combination of two augmented feed 
forward neural networks, a flagger that 
identifies words to be normalized and a 
normalizer, to take in a single token at a 
time and output a corrected version of 
that token. Despite avoiding off-the-shelf 
tools trained on external data and being 
an entirely context-free model, our sys-
tem still achieved an F1-score of 81.49%, 
comfortably surpassing the next runner 
up by 1.5% and trailing the second place 
model by only 0.26%. 

1 Introduction 

The phenomenal growth of social media, web 
forums, and online reviews has spurred a grow-
ing interest in automated analysis of user-
generated text. User-generated text presents sig-
nificant computational challenges because it is 
often highly disfluent. To address these chal-
lenges, we have begun to see a growing demand 
for tools and techniques to transform noisy user-
generated text into a canonical form, most re-
cently in the Workshop on Noisy User Text at 
the Association for Computational Linguistics. 
This work describes a submission to the Lexical 
Normalization for English Tweets challenge as 
part of this workshop (Baldwin et al., 2015)  

Motivated by the success of prior deep neural 
network architectures, particularly denoising au-
toencoders, we have developed an approach to 
transform noisy user-generated text into a canon-
ical form with a feed-forward neural network 
augmented with a projection layer (Collobert et 
al., 2011; Kalchbrenner, Grefenstette, & 
Blunsom, 2014; Vincent, Larochelle, Bengio, & 
Manzagol, 2008). The model performs a charac-
ter-level analysis on each word of the input. The 
absence of hand-engineered features and the 
avoidance of direct and indirect external data 
make this model unique among the three top-
performing models in the constrained task. 

This paper is organized as follows. In Sec-
tion 2 we describe each component of our model. 
In Section 3 we describe the specific instantia-
tion of our model, and in Section 4 we present 
and discuss results. 

2 Architecture and Components 

Our model consists of three components: a Nor-
malizer that encodes the input and then recon-
structs it in normalized form, a Flagger that de-
termines whether the Normalizer should be used 
or if the word should be taken as-is, and a Con-
former that attempts to smooth out simple errors 
introduced by quirks in the Normalizer. 

In this section we will use the simple example 
transformation of “u” to “you” where “u” is the 
input text and “you” is the gold standard normal-
ization. In our example we use a maximum word 
size of three. Figure 1 shows the flow of our ex-
ample through the model. In broad overview, the 
input is preprocessed and sent to both the Nor-
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malizer and the Flagger. The Normalizer com-
putes a candidate normalization, and the Flagger 
determines whether to use that candidate or the 
original word. The Normalizer’s output is passed 
to the Conformer, which conforms it to a word in 
the vocabulary list, and then the candidate, the 
flag, and the original input word are passed to a 
simple decision component that either keeps the 
original word or uses the normalized version 
based on the output of the Flagger. While it may 
seem inefficient that the normalized version is 
always computed, even if it is not used, this ap-
proach is used so that the Normalizer and Flag-
ger can be run in parallel on many inputs at once.  

2.1 Deep Feed-Forward Neural Networks 

As the central element of the Flagger and the 
Normalizer, the deep feed-forward neural net-
work forms the basis of our model. A deep feed-
forward neural network takes a vector of num-
bers as input. This vector is known as a layer and 
each value within it is a neuron. The network 

multiplies the input layer by a matrix of weights 
to return another vector. This new vector is then 
transformed by a non-linearity. A number of 
functions can serve as the non-linearity, includ-
ing the sigmoid and the hyperbolic tangent, but 
our model uses a rectified linear unit, given by 
the following expression. 

𝑦 = max 𝑥, 0  
The rectified linear unit has been successful in a 
number of natural language tasks such as speech 
processing (Zeiler et al., 2013), and it was effec-
tive in an unpublished part-of-speech tagging 
model we developed. 

The transformed vector is referred to as a hid-
den layer because its values are never directly 
observed in the normal functioning of the model. 

A deep feed-forward neural network can contain 
any number of hidden layers, each going through 
the same process, multiplying by a matrix of 
weights and transforming via a non-linearity. 
Hidden layers may also be of any size. Multiple 
applications of learnable weight matrices and 
non-linear transformations together allow a deep 
neural network to represent complex relation-
ships between input and output (Bengio, 2009). 

Deep feed-forward neural networks are trained 
by backpropagation. Backpropagation is a train-
ing method by which the gradient of any given 
weight in a network can be calculated from the 
error between the output of the network and a 
gold standard. It is described in more detail in 
(Rumelhart, Hinton, & Williams, 1986). 

2.2 The Normalizer 

Our use of deep feed-forward neural networks 
for the task of normalization is inspired by the 
success of denoising autoencoders. (Vincent et 
al., 2008). Denoising autoencoders are neural 

networks whose output is the same as their input. 
That is, they specialize in developing a robust 
encoding of an input such that the input can be 
reconstructed from the encoding alone. The de-
noising aspect refers to the fact that to encourage 
robustness, denoising autoencoders are given 
inputs that have been deliberately corrupted, or 
“noised” and are expected to reconstruct them 
without the noise. It is this “denoising” aspect 
that makes denoising autoencoders so interesting 
for text normalization. 

The main component of our model, the Nor-
malizer, uses a feed-forward neural network that 
functions on a similar principle to that of a de-
noising autoencoder. It reads the character se-
quence that describes the word and encodes it 

Figure 1: A flowchart detailing the process of normalizing a word. Information flows from left to right and ellipses represent 
data objects while rectangles represent processes. 

155



internally, outputting the denoised (normalized) 
version. It accomplishes this in three sets of lay-
ers. First the character projection layer takes a 
string and represents it as a fixed-length numeric 
vector. Next, a feed-forward neural network con-
verts the data into its internal representation and, 
with a special output layer, into a denoised ver-
sion of the input. Figure 2 shows a diagram of 
the Normalizer’s architecture. 

The first step of the Normalizer is performed 
by the character projection layer (Collobert et al., 
2011). The character projection layer learns 
floating point vector representations of charac-
ters, which it concatenates into one large floating 
point vector word representation. In our example, 
the letter “u” is represented by n floating point 
numbers. For example, if n = 3 the representation 
for “u” might be [0.1, -1.2, -0.3]. This vector was 
chosen arbitrarily, but in the actual model, values 
are learned in training. The representations allow 
more information to be associated with a charac-
ter than a simple numeric index.    

In this simple example, the word “u” is com-
posed of one character, but if it were longer, each 
letter would be separately represented. A key 
challenge at this point is that a feed-forward neu-
ral network cannot handle an arbitrary number of 
inputs. Because each position in the vector is a 
neuron matched directly to a set of weights, 
changing the size of the vector would require 
changing the size of the learned weights, and the 
model would have to be retrained.  

To accommodate this, we use a fixed window. 
Before we send our input to the Normalizer, we 

preprocess it to meet a specified length, filling in 
unused spaces with a sentinel padding “charac-
ter” that projects to its own set of learned 
weights like the other characters. Since the max-
imum word size in our example is 3, we use a 
window of size 3. Therefore, our input “u” be-

comes [u, _, _] and then is projected and concat-
enated and becomes something like [0.1, -1.2, -
0.3, 1.3, 0.0, -1.1, 1.3, 0.0, -1.1]. Notice that we 
have nine values now in our input. That is the 
three values from “u” and then the three values 
for “_” ([1.3, 0.0, -1.1]) twice, once for each “_”. 
After this step, the system has a numeric vector 
representation of a word that is always the same 
length. It now sends it to the first layer of the 
feed-forward neural network. We deliberately 
select a large enough window that only in a small 
minority of cases does a word have to be reduced 
to fit into the window. 

The last hidden layer’s values go through one 
final matrix multiplication to output a list of val-
ues wv in size, where w is the size of the window 
and v is the number of possible characters includ-
ing the padding character, that is, the number of 
characters in the alphabet, which is shared be-
tween the input and output layers. In this last 
layer the nonlinear transformation is a special 
version of the softmax operation.  

The softmax operation transforms a vector 
such that each of its values is between zero and 
one and the new vector sums to one. Mathemati-
cally, it is given as: 

𝜎 𝑧 ! =
𝑒!"

𝑒!"!
!!!

 

Where K is the number of values in the vector. In 
our model, K = v, the size of the alphabet. These 
individual values can alternately be considered 
posterior probabilities for each of the possible 
decisions. If each value is mapped to a character, 

one can simply take the highest value to select 
the most likely character. In this case, we are 
predicting a window of w characters rather than a 
single character, so we perform softmax sepa-
rately on each of the w sets of v values in the lay-
er. In prediction, we simply take the index of the 

Figure 2: A diagram of the Normalizer correcting "u" to "you." The circles represent values, the lines weights. 
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highest value in each of the w sets, but in training 
we take the whole prediction distribution and try 
to maximize the likelihood of each correct letter. 
We do not attempt to predict character embed-
dings because we are learning them, and the 
model would be likely to learn a trivial function 
with character embeddings that are all equal. 

Training the Normalizer as a whole relies on 
generating posterior distributions and attempting 
to minimize the total negative log likelihood of 
the gold standard. Mathematically, our objective 
function is  

cost = − 𝑙𝑛 𝑝
!∈!

 

Where p is an element in P, the vector of the 
probabilities of each gold standard letter. So, if 
our model predicts “y” as 75% likely for charac-
ter 1, “o” as 95% likely for character 2, and “u” 
as 89% likely for character 3 in our window of 
size 3, the negative log likelihoods calculated as 
(.29, .05, .12) are summed to get the error. This 
sum error gives a simple measurement of per-
formance to optimize, which backpropagates 
through the model to learn all the weights de-
scribed above (Rumelhart et al., 1986). 

2.3 The Flagger 

The Flagger identifies what does and does not 
require normalization. The vast majority of the 
training data (91%) does not require normaliza-
tion, so returning the reconstructed encoding of 
every word would risk incorrectly regenerating 
an already canonical token.  

The Flagger has the same general structure as 
the Normalizer itself except for the final layer. 
Instead of generating text at the last layer, a 
softmax layer predicts whether the token should 
be normalized at all. Thus, the Flagger’s output 
layer is two neurons in size, one representing the 
flag “Do Normalize,” and another representing 
the flag “Do Not Normalize.” In the construction 
of the gold standard for the task, there were three 
reasons a token would not be normalized: firstly, 
the token is already correct, second, the token is 
in a protected category (hashtags or foreign 
words), or third, it was simply unrecognizable 
such that the human normalizer could not find 
the correct form. The Flagger accounts for but 
does not distinguish between these three possibil-
ities. 

2.4 The Conformer 

Even when a token should be corrected, it is pos-
sible that the normalizer will come very close to 

correcting it without succeeding. Reconstructing 
the word “laughing,” for instance, the normalizer 
can fail completely if it predicts even one letter 
wrong. An early analysis of validation data found 
that the normalizer had predicted “laugling” in-
stead of laughing. These off-by-one errors are a 
frequent enough occurrence to merit a module to 
deal with them. The Conformer is also useful for 
correctly normalizing rare words whose correct 
normalization is too long for the window to rep-
resent. In particular “lmfao” expands to an im-
pressive 27 characters, but if the Normalizer pre-
dicts only the first 25 characters, the Conformer 
can easily select the correct token. 

To correct these small normalizer errors we 
construct the Conformer by collecting a diction-
ary from the gold standard training data. The dic-
tionary is simply a list of all the unique words in 
the gold standard data. Then at runtime, whenev-
er the Normalizer runs and predicts a word that is 
not present in the dictionary, we replace it with 
the closest word in the dictionary according to 
Levenshtein distance (Levenshtein, 1966). Ties 
are resolved based on which word comes first in 
the dictionary. Because Python’s set function, 
which does not guarantee a specific order of its 
contents, is used to construct the dictionary, the 
dictionary’s order is not predictable and thus ties 
are resolved unpredictably. 

3 Settings and Evaluation 

The model was implemented in Theano, a Py-
thon library for fast evaluation of multi-
dimensional arrays using matrix operations 
(Bastien et al., 2012; Bergstra et al., 2010). We 
used Theano’s implementation of backpropaga-
tion to train our model. For our window size, we 
selected 25 characters, which is large enough to 
completely represent 99.9% of the tokens in the 
training data while remaining computationally 
feasible. There are also a number of hyper-
parameters: the number and size of hidden lay-
ers, the size of character embeddings, and the 
dropout rate. We tried various combinations of 
values between 50 and 6000 for the size and 1 
and 4 for the number of hidden layers in both our 
Normalizer and Flagger. Some combinations we 
tried can be seen in the results section. Especially 
large sizes and numbers of layers proved to re-
quire more memory than our GPU could support, 
and training them on our CPU was exceptionally 
slow. We also tried 50% and 75% dropout, 
meaning that during training we randomly ex-
cluded hidden nodes from consideration at each 
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layer. Dropout has been shown to improve per-
formance by discouraging overfitting on the 
training data, and 50% and 75% are common 
dropout rates (Hinton, 2014). 

We found the highest F1 score on the valida-
tion data for the Normalizer with two hidden lay-
ers of size 2000 each and 50% dropout. This was 
close to the maximum size our GPU could sup-
port without reducing the batch size to be too 
small to take advantage of the parallelism. The 
Flagger’s highest score was found at two hidden 
layers of size 1000 each and 75% dropout. At-
tempts to provide hidden layers of different sizes 
consistently found inferior results. For the size of 
each embedding in the character projection layer, 
10 had proven effective earlier in a simpler un-
published Twitter part-of-speech task. We select-
ed 25 for our character embedding size to ac-
count for the greater complexity of a normaliza-
tion task. 

We separated the provided training data into 
90% training data, 5% validation data and 5% 
was held out as test data. In order to construct a 
useful model on the small amount of available 
data, we iterate training over the same data many 
times. Our model stopped training after 150 
training iterations in which there was no im-
provement on the validation set. We chose 150 
iterations as the smallest value that did not lead 
to ending the training at a clearly suboptimal 
value. The training also stops at 5,000 iterations 
but in practice it converged before reaching this 
value.  

Early in development we found that the Nor-
malizer had exceptional trouble reconstructing 
twitter-specific objects, that is, hash-tags 
(#goodday), at-mentions (@marysue) and URLs 
(http://blahblah.com). Generally its behavior in 
all three cases was to follow the standard marker 
characters (@, #, http://) with a string of gibber-
ish unrelated to the word itself. Because these are 
protected categories that should not be changed, 
we removed them from the training data and rely 
on the Flagger to flag them as not to be correct-
ed. 

 We used layer-wise pre-training, meaning we 
first trained with zero hidden layers (going di-
rectly from the character projection to the soft-
max layer) to initialize the character embeddings, 
then we trained with one hidden layer, initializ-
ing the character embeddings with their previ-
ously trained values. When we trained the full 
model using two hidden layers, we initialized 
both the character projection layer and the 
weights from the projected input to the first hid-

den layer with the values learned before. The 
model continued to learn all the weights it used. 
Pretrained weights continued to be trained in the 
full model, although “freezing” some pretrained 
weights after pretraining and only training later 
weights in the full model has shown success 
when working with large amounts of unsuper-
vised data and may be worthwhile to consider in 
future work (Yosinski, Clune, Bengio, & Lipson, 
2014).  

Running on an NVIDIA GeForce GTX 680 
GPU with 2 GB of onboard memory, training the 
Normalizer took about six hours. We do not in-
clude CPU and RAM specifications because they 
were not heavily utilized in the GPU implemen-
tation. The Flagger was considerably faster to 
train than the Normalizer, taking only a little 
over half an hour. 

4 Results and Discussion 

The model earned third place in the competition, 
with scores very close to the second place model. 
The model’s results in the competition compared 
to the first, second, and fourth place models is 
shown in Table 1. The precision scores are much 
higher than the recall scores for all models be-
cause in this task precision measures the capabil-
ity of the model to not normalize what does not 
need normalizing while recall requires that a 
model both correctly identify what needs to be 
normalized and correctly normalize it.  

In addition to the challenge results, we per-
formed a more in-depth analysis on our own 
held-out validation and test data. Our analysis of 
the scores is shown in Table 2. 

Initial data on the Flagger is in Table 3. We 
further analyzed the different errors made on the 
validation data. Our findings can be found in Ta-
ble 4. Given the large proportion of errors mis-
takenly marked “Do Not Normalize,” we looked 
at these errors. A few examples can be found in 
Table 5. Although the Flagger was not trained 
with Normalizer confidence in mind, it does an 
impressive job of only cancelling a normalization 
when the normalization is either unnecessary or 
would fail. In no case did the Flagger prevent the 
Normalizer from making a correct normalization. 

An analysis in Figure 3 shows some early re-
sults from using only the Normalizer without a 
Conformer or Flagger. To fit this many runs in a 
reasonable time span, we used only ten percent 
of the training data. In this analysis, error rate is 
measured by token. To put the error rates in per-
spective, our final error rate was close to three 
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percent. We show this graph to illustrate a num-
ber of points. Particularly, we wish to illustrate 
the challenge of encoding and reconstructing 
every item in a massive vocabulary, the value of 
additional iterations of layer-wise pre-training, 
and the large spikes in the error rates at certain 
points in the model. 

 
Model Precision Recall F1-Score 

NCSU_SAS 
_NING 

0.9061 0.7865 0.8421 

NCSU_SAS 
_WOOKHEE 

0.9136 0.7398 0.8175 

NCSU_SAS 
_SAM 

0.9012 0.7437 0.8149 

Iitp 0.9026 0.7191 0.8005 
Table 1: Results of the constrained task 

Data Precision Recall F1-
Score Accuracy 

Valida-
tion  

0.8942 0.7752 0.8305 0.9740 

Test 0.8229 0.6870 0.7488 0.9656 
Table 2: Model Scores on Validation and Test Data 

Data Precision Recall F1-
Score Accuracy 

Valida-
tion  

0.9818 0.9939 0.9878 0.9776 

Test 0.9783 0.9930 0.9856 0.9736 
Table 3: Flagger scores on Validation and Test Data 

Error Percentage 
Occurrence 

Correctly flagged, 
misnormalized 13.85% 

Mistakenly flagged 
“Do Not Normalize” 66.15% 

Mistakenly flagged 
“Do Normalize” 20.00% 

Table 4: Analysis of errors. Percentages given are out of the 
total error count.  

Original Gold Stand-
ard Normalized 

FB Facebook fabol 
Fuhh f*** fuhh 

OPENFOLLOW open follow openffolow 
Feela Feels feela 
Bkuz because bkuze 
Kin kind of kin 

Bruuh brother bruuhr 
Table 5: Examples of tokens that were mistakenly flagged 
"Do Not Normalize.” The “Normalized” column is what the 
model would have produced if the Flagger had produced the 
flag “Do Normalize” 

The Normalizer demands much more rep-
resentational power when not assisted by the 
Flagger. Before we added the Flagger, we 

saw continual improvement of results going 
up to four layers of six thousand nodes each. 
We saw greater improvements from adding 
more nodes per layer than from adding more 
layers. The cluster of three lines near the top 
all have layers of 1500 or 2000 nodes each, 
and the next cluster down is the models we 
tried with 4500 and 6000 nodes. Incidentally, 
all but the smallest of these models were too 
large for our GPU’s 2GB of onboard 
memory. As a reminder, after we added the 
flagger, we only required two layers of 2000 
nodes each to get competitive results. In each 
case we used a dropout rate of 50%. 

The default models pre-trained each layer for 
250 iterations and we also trained models with 
the same structure for 500 iterations. We find a 
noticeable improvement in the error rate for the 
models that were pre-trained for more iterations. 
In the graph, the models with more pre-training 
make up the cluster of lines near the bottom of 
the graph. 

Looking at the graphs, one may notice that 
some lines have brief spikes multiple percentage 
points in size. Because it only takes a one-letter 
mistake for a word to be misnormalized, we ex-
pect that at these times a small error arose that 
affected a large number of words. It is worth 
pointing out that each model continues to im-
prove while in its spike, eventually dropping 
back to pre-spike levels. 

The model is unique among the three top-
performing models in that it avoids external data 
both directly and through indirect sources. The 
constrained task does not allow external data, but 
it does allow the use of off-the-shelf tools trained 
on external data. Our model does not use any 
such tools. Without the assistance of tools such 
as part-of-speech taggers, attempts to use context 
proved ineffective, likely because of increased 
sparsity. A given word that appears in the train-
ing set three hundred times may only appear 
three times after another particular word, and 
may not occur more than once with a particular 
prior word and following word, so it is more dif-
ficult to find patterns in limited data. Future 
work could either attempt to use tools to provide 
additional information or could simply take ad-
vantage of large amounts of data to learn directly 
the relationships such tools traditionally abstract 
for the benefit of conventional machine learning. 

There is one other point:  the human graders 
often made different decisions about whether or 
what a term should be normalized to.  For exam-
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ple, sometimes the word “pics” used to refer to 
pictures was normalized to “pictures” but other 
times it was left as “pics”.  These inconsistencies 
in the gold standard make it difficult to accurate-
ly judge the quality of the models submitted. Oc-
casionally when we examined mistakes the mod-
el made, we found that the model’s prediction 
was correct according to the gold standard, but 
that the gold standard was wrong. An inter-rater 
reliability measure would help us to gauge not 
only how well our models compare to each other 
but how they compare to agreement between 
human coders.  

5 Conclusions and Future Work 

Normalization of Twitter text is a challenging 
task. With a direct application of simple deep 
learning techniques and without relying on any 
sources of external data, direct or indirect, we 
built a model that performed competitively with 
the other models in the task. Our method shows 
the ability of deep learning to tackle complex 
tasks without labor-intensive hand-engineering 
of features. 

An important direction for future work is sim-
plifying the normalization pipeline. The need for 
a Conformer in particular suggests that there is 
room for improvement in the model. Although 
constructing the normalized form rather than se-
lecting from a list leaves the possibility open that 
a system could normalize to a correct word that 
did not appear in the training data, in practice 

this happened much less often than having the 
system normalize incorrectly. A model that pre-
dicts words from a vocabulary instead of recon-
structing them would be faster to train and would 
not require a Conformer, and, considering the top 
two models were vocabulary based, might out-
perform our reconstruction-based model.  

A second direction for future work centers on 
leveraging external data. With more time and 
greater computing power, it may be the case that 
it is possible to learn sophisticated language 
models in an unsupervised fashion from both 
standard conversational text and twitter data. 

With this additional data, a model may be able to 
effectively use context in distinguishing between 
multiple possible normalizations of a word. De-
noising autoencoders in particular are known to 
make good use of unsupervised data. 

A third direction for future work is to investi-
gate more challenging normalization tasks that 
include correction of syntax and do not present 
the text already tokenized. These will give us an 
opportunity to attempt tasks closer to the chal-
lenges our normalization systems will face in the 
real world. 

Finally, it will be important to investigate the 
overall utility of normalization of text as a pre-
processing step for other analysis. While many 
tasks will only benefit from cleaning the data, it 
is not clear that the canonical forms of words 
retain the same connotations that the original 
“noisy” versions held. For a simple example, if 
we were to normalize “cooooooool” to “cool” we 

Figure 3: The Normalizer component validation scores by epoch. Model structures are given by “LxN” where L is the size of 
each layer and N is the number of layers and more_pretrain indicates that pretraining has continued for 500 instead of 250 
iterations, and they cluster at the bottom with the lowest error.  To smooth the graphs and make them more interpretable, 
values at each epoch are the average of a 10-epoch window. 

160



would lose the emphasis implied by the elonga-
tion of the vowel. For some tasks, it may be im-
portant to retain the information contained in 
such non-canonical forms. 
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Abstract

Brown clusters enable POS taggers
to generalize better to words that did
not occur in the labeled data, cluster-
ing distributionally similar seen and
unseen words, thereby making mod-
els more robust to sparsity effects
and domain shifts. However, Brown
clustering is a transductive cluster-
ing method, and OOV effects still
arise. Words neither in the labeled
data nor in the unlabeled data cannot
be assigned to a cluster, and hence,
are frequently mis-tagged. This paper
presents a simple method of learning
finite state automata from Brown clus-
ters that accept and give representa-
tions to truly unseen words. We show
that using automata rather than Brown
clusters lead to significant improve-
ments in performance in unsupervised
cross-domain POS tagging.

1 Introduction

Out-of-vocabulary (OOV) effects are proba-
bly the most common sources of errors in nat-
ural language processing. OOV effects arise
when supervised models are trained on manu-
ally annotated corpora (labeled data) and ap-
plied to new text containing words not in the

∗The work was done while Julie was a MSc student
at University of Copenhagen.

labeled data. The most popular technique to
combat OOV effects in the last decade has ar-
guably been Brown clustering (Brown et al.,
1992). Other alternatives exist, like word em-
beddings (Turian et al., 2010), but more than
twice as many ACL papers talk about word
clusters than about word embeddings.

The main problem with Brown clusters – as
well as word embeddings – is that they are in-
tended for transductive use, i.e., Brown clus-
ters are used to induce distributional classes
(representations) for observed words. In other
words, while they may minimize OOV effects
by bridging between words observed in small
labeled corpora and words observed in huge
unlabeled corpora, they still do not give us
representations for words that we encounter
for the first time in our test data. That is,
words neither in the labeled nor in the unla-
beled data. Such words could, for example,
be spelling variants or truly new words (neol-
ogisms, etc.).

In newswire most truly new words may be
proper nouns, but on social media like Twit-
ter we see a lot of linguistic creativity, many
spelling variants, and all sorts of neologisms.
In our Twitter data, for example, about 40% of
the word types were not observed in neither
the labeled nor the unlabeled data used to in-
fer our POS tagging model.

This paper presents a relatively simple tech-
nique for learning open-ended word represen-
tations from Brown clusters, covering also
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a large portion of the truly unknown words.
In our experiments, we obtain representations
for about 1/4 of these words (1/4 of 40%).
The technique, briefly put, is about construct-
ing minimal finite state automata (FSAs) from
Brown clusters, collect evidence for produc-
tive morpho-phonological alternations (reen-
trant branchings; see §3), and using these to
augment the FSAs. We apply the FSA-based
word representations to unsupervised domain
adaptation of POS taggers to Twitter data -
and show how this leads to significant im-
provements over a strong baseline system.

2 Related work

FSAs Many of the rules used in phonol-
ogy and morphology can be analyzed as spe-
cial cases of regular expressions, and many
linguistic descriptions at this level can be
compiled into finite state automata (FSAs)
(Kaplan and Kay, 1994; Karttunen et al.,
1997). Learning minimal FSAs from samples
is generally NP-hard (Gold, 1978), and most
FSAs used to model phono-/morphotactic
constraints have been manually constructed.
However, learning a minimal FSA for a fixed
set of members of a Brown clusters, is obvi-
ously a much easier problem. We extend the
FSAs to capture spelling variations better us-
ing a simple propagation principle (see §3).

Noeman and Madkour (2010) use FSAs for
named entity transliteration, a problem which
is very related to ours. They learned translit-
eration patterns using techniques from phrase-
based SMT, but formalized the translitera-
tion grammars by composing FSAs. Simi-
larly, de Vinaspre et al. (2013) use FSAs to
learn transliteration of SNOMED CT terms
in Basque. Spelling variations and transliter-
ation seem to form a continuum, from non-
dialectal spelling variations such as Face-
book/fbook, over dialectal variations such
as Baltimore/Baltimaw (observed on Twit-

ter), to cross-language variations such as
München/Munich.

POS tagging with Brown clusters Brown
et al. (1992) introduced the Brown cluster-
ing algorithm, which induces a hiearchy of
clusters optimizing the likelihood of a hid-
den Markov model. Each word is assigned
to at most one cluster. The algorithm can be
used as an unsupervised POS tagger (Blunsom
and Cohn, 2011), but Brown clusters have
also been used as features in discriminative se-
quence modeling (Turian et al., 2010).

Ritter et al. (2011) and Owoputi et al.
(2013) use Brown clusters induced from a
large Twitter corpus to improve a POS tagger
trained on a small corpus on hand-annotated
tweets (Gimpel et al., 2011). Several re-
cent papers on domain adaptation of POS tag-
gers use discriminative taggers trained with
Brown clusters as features as their baseline,
e.g., Plank et al. (2014).

3 FSA word representations

Our approach is to learn FSAs from Brown
clusters and use statistics over the learned
FSAs to propagate non-determinisms, in-
creasing the coverage of our word representa-
tions in domains such as Twitter. We explain
our word representation algorithm by the fol-
lowing example:

Say we have learned the Brown cluster
{cos, coz, coss, cozzz} consisting of short
forms of because. We can then construct
the minimal FSA that accepts only these four
strings. However, in this case, we can con-
struct an even smaller FSA if we allow cyclic
transitions going out from the first accepting
state. This leads to the automaton in Fig-
ure 1, which accepts the regular expression
co{s|z}+. In practice we will introduce cy-
cles whenever we observe character duplica-
tion, replacing a1a2 . . . am with a+. This is
supposed to capture productive character du-
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plication in Twitter English, e.g.:

(1) Also, crackers and cheeeese is the best.

However, spelling variation on Twitter goes
beyond character duplication, e.g.:

(2) Jimmy keeps me company in the baf-
room

We therefore introduce the notion of k-
bounded reentrant branchings in minimal
FSAs. Formally, a k-bounded reentrant
branching is a pair of paths p and p′ of length
at most k such that 〈si, sj〉 ∈ p, i.e., there is
a path of at most k transitions labeled p tak-
ing you from si to sj , and 〈si, sj〉 ∈ p′, and
p 6= p′. In all our experiments, k = 3. From
the automaton in Figure 1, we derive the 3-
bound reentrant branchings s-ss, s-sss, s-z, s-
zz, s-zzz, s-zz, s-zzz, z-ss, . . .

After we have learned FSAs from C Brown
clusters, we rank the observed 3-bound reen-
trant branchings by their frequency. We then
take the m most frequent 3-bound reentrant
branchings and use them to construct new
FSAs. If an FSA F contains a transition la-
beled s from state si to sj , for example, and
s − z is in the top m most frequent non-
determinisms, we create a copy FSA with all
the states and transitions of F , as well as with
a transition z from si to sj .

From 1000 clusters used in our experiments
below, we generate 565,807 3-bound reentrant
branchings.

Just like we can construct feature represen-
tations over Brown clusters, e.g., a bag-of-
words (or bag-of-clusters) representation indi-
cating which Brown clusters have active mem-
ber words in the current sliding window, we
can use FSAs the same way. For example, we
can use a sliding window to represent emis-
sions by what unigrams and bigrams occur
as neighbors of the target word, as well as

o

s

z

c

s

z

Figure 1: Example FSA for Brown cluster
{cos, coz, coss, cozzz}

’s s s z
a e ie y

ed ing ey y
ing n d ed

d s in n

Table 1: Top 10 3-bound reentrant branchings
in our Twitter clusters

what FSAs accept the target or the neighbor-
ing words. This way each word can be rep-
resented as a binary vector indicating what
FSAs accept this word. We use binary fea-
tures for lexical forms, Brown clusters, as well
as the extended set of FSAs.

DATA baseline FSAs err.red
FOSTER.DEV 90.0 90.3 0.030
GIMPEL.DEV 74.4 75.0 0.023
FOSTER.TEST 90.0 90.4 0.040
RITTER.TEST 81.8 82.3 0.027
HOVY.TEST 82.2 83.2 0.056

Table 2: Results (k = 200, tuned on dev).
Effect significant over the entire test data (p <
0.01 using Wilcoxon’s test)
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4 Experiments

We train a linear CRF model on newswire,
using a publicly available implementation
(CRFsuite),1 and adapt the feature representa-
tion to optimize performance on Twitter data.

Data As our training data we use the
OntoNotes 4.0 training split of the Wall Street
Journal section of the Penn Treebank. As our
held-out data, we use the development sec-
tions of Foster et al. (2011) and Gimpel et al.
(2011). Our test datasets come from Foster et
al. (2011), Ritter et al. (2011) (using the splits
from Derczynski et al. (2013)), and Hovy et
al. (2014). In other words, one out of three
test sets comes from the same sample as one
of our development sets, but two come from
new ones. This prevents false findings due
to over-fitting. All datasets were mapped to
the universal tagset presented in Petrov et al.
(2011), following Hovy et al. (2014).

Learning CRFsuite uses L-BFGS and L2-
regularization by default.

Features Our baseline feature representa-
tion uses a combination of unigram, bigram
and Brown cluster features, i.e., the CRF-
suite default feature model augmented with
Brown clusters. The Brown clusters were in-
duced from an in-house Twitter dataset of 57m
tweets using Percy Liang’s code,2 after tok-
enizing the tweets using Twokenize.3 We use
a minimum frequency cut-off at two and in-
duce 1,000 clusters (C = 1000). We induce
our base FSAs from these clusters using the
XFST toolkit.4 The extended set of FSAs is
used to build binary word representations in a
sliding window (see above).

The only parameter set is the k-most fre-
quent 3-bound reentrant branchings (set to

1http://www.chokkan.org/software/crfsuite/
2https://github.com/percyliang/brown-cluster/
3http://www.ark.cs.cmu.edu/
4http://web.stanford.edu/∼-

laurik/fsmbook/home.html

200). All other parameters were default in
CRFsuite. As already mentioned, we detect
565,807 3-bound reentrant branchings, so by
setting k = 200 we only use a very small
fraction of these. At k = 200, the least fre-
quent 3-bound reentrant branchings occur 8
times in our clusters. The most frequent non-
determinism occurs 117 times. The top 10
3-bound reentrant branchings are listed in Ta-
ble 1. Note that some of these 3-bound reen-
trant branchings capture inflectional forms,
e.g., ed-ing, while others capture spelling vari-
ations such as ’s-s and d-ed.

5 Results

Our results are presented in Table 2. It is
clear that going from Brown clusters to FSAs
lead to modest, but consistent improvements
across the board. This is not only the case on
development data, or test data taken from the
same sample as some of our development data
(FOSTER.TEST), but across all test sets, in-
cluding a much newer dataset (HOVY.TEST).
The improvements are statistically significant
(p < 0.001).

Setting k = 200 results in 1,699 new words
being assigned representations in the anno-
tated Twitter data. Coverage, even with au-
tomata representations, was only 69%, show-
ing the need for inductive representations.
When we analyze the errors of our FSA-based
model, it is clear that most errors are due to
known hard cases such as distinguishing be-
tween adjectives and adverbs, or distinguish-
ing between adpositions and particles. See
Plank et al. (2014) for some discussion.

6 Conclusions

We introduced a new approach to distri-
butional word representations, representing
words by the FSAs that accept them. We
learn the FSAs from Brown clusters induced
from Twitter data, by propagating frequent
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3-bound reentrant branchings. The 3-bound
reentrant branchings seem to capture morpho-
logical rules and known spelling variations
well, and lead to significant improvements in
POS tagging of Twitter.
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Abstract

Part-of-Speech (POS) tagging is a key step
in many NLP algorithms. However, tweets
are difficult to POS tag because there are
many phenomena that frequently appear in
Twitter that are not as common, or are en-
tirely absent, in other domains: tweets are
short, are not always written maintaining
formal grammar and proper spelling, and
abbreviations are often used to overcome
their restricted lengths. Arabic tweets also
show a further range of linguistic phenom-
ena such as usage of different dialects,
romanised Arabic and borrowing foreign
words. In this paper, we present an evalu-
ation and a detailed error analysis of state-
of-the-art POS taggers for Arabic when
applied to Arabic tweets. The accuracy of
standard Arabic taggers is typically excel-
lent (96-97%) on Modern Standard Arabic
(MSA) text ; however,their accuracy de-
clines to 49-65% on Arabic tweets. Fur-
ther, we present our initial approach to im-
prove the taggers’ performance. By mak-
ing improvements based on observed er-
rors, we are able to reach 74% tagging ac-
curacy.

1 Introduction

The last few years have seen an enormous growth
in the use of social networking platforms such as
Twitter in the Arab World1. There are millions
of tweets daily, yielding a corpus which is noisy
and informal, but which is sometimes informa-
tive. Tweets are short and contain a maximum of
140 characters. Tweets also are not always written
maintaining formal grammar and proper spelling.
They are ambiguous and rich in acronyms. Slang

1Arabic was the fastest growing language on Twitter in
2011 (source:Semiocast)

and abbreviations are often used to overcome their
restricted lengths. POS tagging is an essential pro-
cessing step in a wide range of high level text pro-
cessing applications such as information extrac-
tion, machine translation and sentiment analysis.
However, people working on Arabic tweets have
tended to concentrate on low level lexical relations
which were used for shallow parsing and senti-
ment analysis such as Mourad and Darwish (2013)
and El-Fishawy et al. (2014). The properties listed
above of the microblogging domain make POS
tagging on Twitter very different from their coun-
terparts in more formal texts. It is an open question
how well the features and techniques of NLP used
on more well-formed data will transfer to Twit-
ter in order to understand and exploit tweets. Our
contributions in this paper are as follows: 1) Eval-
uating how robust state-of-the-art POS taggers for
MSA are on Arabic tweets, 2) Identifying problem
areas in tagging Arabic tweets and what caused the
majority of errors and 3) Boosting the taggers’ per-
formance on Arabic tweets by making improve-
ments based on observed errors.

2 Related Work

POS tagging is a well-studied problem in compu-
tational linguistics and NLP over the past decades.
This can be inferred from high accuracy of state-
of-the-art POS tagging not only for English, but
also most other languages such as Arabic, which
reaches 97% for Arabic and English being at
97.32% (Gadde et al., 2011). However, the per-
formance of standard POS taggers for English is
severely degraded on Tweets due to their noisi-
ness and sparseness (Ritter et al., 2011). There-
fore, POS taggers for English tweets have been
developed such as ARK, T-Pos and GATE TwitIE
which reach 92.8%, 88.4% and 89.37% accuracy
respectively (Derczynski et al., 2013).

There has been relatively little work on building
POS tools for Arabic tweets or similar text styles.
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Al-Sabbagh and Girju (2012) and Abdul-Mageed
et al. (2012) are strictly supervised approaches for
tagging Arabic social media and they have as-
sumed labelled training data. Their weakness is
that they need a high quantity and quality of train-
ing data and this labelled data quickly becomes
unrepresentative of what people post on Twitter.
They also have been built specifically for dialectal
Arabic and subjectivity and sentiment analysis.

Our work is, to best of our knowledge, the first
step towards developing a POS tagger for Arabic
tweets which can benefit a wide range of down-
stream NLP applications. We utilise the existing
standard POS taggers for MSA instead of building
a separate tagger. We use pre- and post-processing
modules to improve their accuracy. Then, we use
agreement-based bootstrapping on unlabelled data
to create a sufficient amount of labelled training
tweets that we can train our proposed tagger on it.

3 Data Collection

There is a growing interest within the NLP com-
munity to build Arabic social media corpora by
harvesting the web such as Refaee and Rieser
(2014) and Abdul-Mageed et al. (2012). How-
ever, none of these resources are publicly avail-
able yet. Hence, we built our own corpus which
preserves all phenomena of Arabic tweets. We
used Twitter Stream API to crawl Twitter by set-
ting a query to retrieve tweets from the Arabian
Peninsula and Egypt by using latitude and longi-
tude coordinates of these regions since Arabic di-
alects in these regions share similar characteristics
and they are the closest Arabic dialects to MSA.
We did not restrict tweets language to ”Arabic” in
the query since users may use other character sets
such as English to write their Arabic tweets (Ro-
manisation) or they may mix Arabic script with
another language in the same tweets. Next, we ex-
cluded all tweets which were written completely
in English. Then, we sampled 390 tweets (5454
words) from the collected set to be used in our ex-
periments (similar studies for English tweets also
use a few hundred of tweets e.g. (Gimpel et al.,
2011)).

4 Evaluating Existing POS Taggers

We evaluate three state-of-the-art publicly avail-
able POS taggers for Arabic, namely AMIRA
(Diab, 2009), MADA (Habash et al., 2009) and
Stanford Log-linear (Toutanova et al., 2003).

4.1 Gold Standard

A set of correctly annotated tweets (gold standard)
is required in order to compare the outputs of the
POS taggers with it. Since there is no publicly
available annotated corpus for Arabic tweets, we
have created POS tags for Twitter phenomena (i.e.
REP, MEN, HASH, LINK, USERN, RET, EMOT
and EMOJ for replies, mentions, hashtags, links,
usernames, retweets, emoticons and emoji respec-
tively). To speed up manual annotation, we tagged
tweets by using the taggers, and then we corrected
the output of the taggers to construct a gold stan-
dard.

4.2 POS Tagging Performance Comparison

We compare three taggers on 390 tweets (5454
words) from our corpus. The performance of these
taggers are computed by comparing the output of
each tagger against the manually corrected gold
standard. The results for the AMIRA, MADA
and Stanford which were trained on newswire text
present poor success rates (see Table 1). This huge
drop in the accuracy of these taggers when ap-
plied to Arabic tweets warrants some analysis of
the problem and of mistagged cases.

Tagger Newswire Arabic Tweets
AMIRA 96.0% 60.2%
MADA 97.0% 65.8%
Stanford 96.5% 49.0%

Table 1: POS tagging performance comparison

4.3 Error Analysis

We noticed that most of the mistagged tokens are
unknown words. In this case, the taggers rely
on contextual clues such as the word’s morphol-
ogy and its sentential context to assign them the
most appropriate POS tags. We identified the un-
known words that were mistagged and classified
them into three groups: Arabic words, non-Arabic
tokens and Twitter-specific (see Table 2).
Arabic words These are words which are writ-
ten in Arabic, but which were assigned incorrect
POS tags by the taggers. This category represents
73.5%, 68.1% and 79.2% of the total of mistagged
items by AMIRA, MADA and Stanford respec-
tively. We observed that words in this category
have different characteristics and most of them are
twitter phenomena. So, we classify them into sub-
categories as follows:
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AMIRA 
% of  Errors 53.3% 1.8% 0.8% 8.7% 0.6% 6.2% 0.9% 1.2% 1.0% 0.5% 2.8% 2.6% 19.6% 
Accuracy 71.8% 0.0% 40.0% 49.2% 35.0% 30.4% 16.7% 61.8% 21.4% 0.0% 0.0% 35.6% 0.0% 

MADA 
% of Errors 45.5% 2.1% 0.8% 8.5% 0.6% 7.1% 1.0% 2.4% 1.4% 0.5% 3.3% 3.9% 22.8% 
Accuracy 79.3% 0.0% 50.0% 57.0% 40.0% 32.0% 20.8% 35.3% 7.1% 0.0% 0.0% 17.2% 0.0% 

Stanford 
% of Errors 65.5% 1.4% 0.9% 3.2% 0.6% 6.4% 0.5% 0.8% 0.7% 0.4% 2.2% 2.4% 15.1% 
Accuracy 55.0% 0.0% 20.0% 75.7% 20.0% 7.2% 45.8% 67.6% 25.0% 0.0% 0.0% 21.8% 0.0% 

 

 
Table 2: Errors percentage of each mistagged class and its accuracy

MSA words These are proper words which are
used in well-formed text and part of MSA vocab-
ulary, but which were assigned incorrect POS tags
by the taggers. We observed that the accuracy
of MSA words which are not noisy dropped from
96% for AMIRA, 97% for MADA and 96.5% for
Stanford on newswire domain to 71.8%, 79.3%
and 55% respectively on Arabic tweets.

Concatenation In this classification, two or
more words were connected to each other to form
one token. So, the taggers struggled to label them.
Users may connect words deliberately to over-
come tweets restricted length or accidentally. In
this experiment, the taggers mistagged all con-
nected words in the subset.

Repeated letters Words in this classification
have one or more letters repeated. Users repeat
letters deliberately to express subjectivity and sen-
timent.

Named entities All of these words should be
labelled proper noun by the taggers because they
refer to person, place or organization, but they
mistagged them since these words were not part
of their training data.

Spelling mistakes It is not easy to know the in-
tent of the user, but some words seem likely to
have been accidentally misspelled. Most words
belonging to this category were mistagged by the
taggers.

Slang The words in this category are regarded
as informal and are typically restricted to a partic-
ular context or group of people. They are often
mistagged by the taggers.

Characters deletion Arabic users delete letters
from words deliberately to overcome tweets re-
stricted length or because they do not have enough
time to write complete words.

Transliteration Arabic users borrow some
words and multiwords abbreviations from En-

glish. They use their Arabic transliteration in
Arabic tweets. For example, LOL in English
(Laugh Out Loud) is written in Arabic as ”ÈñË”.

Twitter-specific They are elements that are
unique to Twitter such as reply, mention, retweet,
hashtag and url. They represent 19.6%, 22.8% and
15.1% of the total of mistagged items by AMIRA,
MADA and Stanford respectively. In fact, taggers
mistagged all Twitter-specific elements in the
experiment and they tokenised them in different
ways (see Table 3).

AMIRA MADA/Stanford
Twitter element Token Tag Token Tag
@Moh Ali @ PUNC @Moh Ali noun

Moh NN
PUNC

Ali NN

Table 3: Twitter element tokenised and tagged by
taggers

Non-Arabic tokens This group contains the
remaining twitter phenomena which are appear
in Arabic tweets, but which are not written by
using the Arabic alphabet. They represent 6.9%,
9.1% and 5.7% of the total of mistagged items by
AMIRA, MADA and Stanford respectively.We
classify them into subcategories based on their
shared characteristics as follows:

Romanisation Arabic users sometimes use
Latin letters and Arabic numerals to write Arabic
tweets because the actual Arabic alphabet is un-
available for technical reasons, difficult to use or
they speak Arabic but they cannot write Arabic
script. For example, the word 3ala which is the
Romanised form of the Arabic word ”úÎ«”.

Emoticons They are constructed by using tra-
ditional alphabetics or punctuation, usually a face
expression. They are used by users to express
their feelings or emotions in tweets. AMIRA and
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MADA break emoticons into parts during tokeni-
sation processes and they deal with each part as
punctuation so all emoticons lost their meaning.

Untagged emoji Emoji means symbols pro-
vided in software as small pictures in line with the
text which are used by users to express their feel-
ings or emotions in tweets. AMIRA and MADA
omitted these symbols in the tokenisation stage
and they did not tag them.

Foreign words Some Arabic tweets contain
foreign words especially from English. These
words may refer to events, locations, English
hashtags or retweet of English tweets with com-
ments written in Arabic.

5 Improving POS Tagging Performance

Our experiments show that the taggers present
poor success rates since they were trained on
newswire text and designed to deal with MSA text.
They fail to deal with Twitter phenomena. As a re-
sult, their outcomes are not useful to be used in lin-
guistics downstream processing applications such
as information extraction and machine translation
in microblogging domain. Therefore, there is a
need for a POS tagger which should take into con-
sideration the characteristics of Arabic tweets and
yield acceptable results.

Our goal is not to build a new POS tagger for
Arabic tweets. The goal is to make existing POS
taggers for MSA robust towards noise. There are
two ways to do so, one is to retrain POS tag-
gers on Arabic tweets and alter their implemen-
tation if needed, the other is to overcome noise
through pre- and post-processing to the tagging.
Our approach is based on both approaches. We
will combine normalisation and external knowl-
edge to boost the taggers’ performance. Then, we
will retrain our augmented version of Stanford tag-
ger on Arabic tweets since its speed is ideal for
tweets domain and it is only the retrainable tagger.
However, we do not have suitable labelled training
data to do so. Therefore, we will use bootstrapping
on unlabelled data to create a sufficient amount of
labelled training tweets.

5.1 Pre- and Post-processing

As seen in error analysis, unknown words (out-
of-vocabulary tokens or OOV) represent a large
proportion of mistagged tokens. We argue that
normalisation will reduce this proportion which
will improve the performance of the proposed tag-

ger. Normalisation is the process of providing
in-vocabulary (IV) versions of OOV words (Han
and Baldwin, 2011). We will create a mapping
from OOV tokens to their IV equivalents by us-
ing suitable dictionaries and the original token is
replaced with its equivalent IV token. External
sources of knowledge such as regular expression
rules, gazetteer lists and an output of English tag-
ger will also be used. The combination of normal-
isation and external knowledge will be applied to
text as pre- and post-processing steps.

5.2 Agreement-based Bootstrapping

Bootstrapping is used to create a labelled train-
ing data from large amounts of unlabelled data
(Cucerzan and Yarowsky, 2002; Zavrel and Daele-
mans, 2000). There are different ways to select
the labelled data from the taggers’ outputs. We
will follow (Clark et al., 2003) in using agreement-
based training method. We will use the augmented
versions of AMIRA, MADA and Stanford taggers
to tag a large amount of Arabic tweets and add the
tokens which they agreed upon to the pool of train-
ing data. The taggers use different tagsets. There-
fore, we will map these tagsets to a unified tagset
consisting of main POS tags. Finally, we will re-
train our augmented version of Stanford tagger on
the selected labelled data.

6 Tagging Twitter-specific Items

We took the first step towards improving the ac-
curacy of MSA taggers on Arabic tweets by tag-
ging Twitter-specific elements. In these experi-
ments, we used regular expression rules to detect
and tag Twitter-specific elements such as men-
tions, hashtags, urls and etc. by doing some
pre-processing and then tagging and finally do-
ing post-processing. Due to the space limit, we
present our effort to tag hashtags and all the re-
maining Twitter elements are tagged in similar
way. First, we detected hashtags by using regu-
lar expression rules. Then, we removed the hash-
tag signs and underscores from raw tweets. Next,
we tagged them by using AMIRA, MADA and
Satnford. Finally, we inserted hashtag signs in
their original place in tweets to indicate the begin-
ning and the end of hashtags content. In fact, the
taggers not just mistagged Twitter elements, but
they also mistagged some MSA words in the same
tweets because the text being noisy and the taggers
rely on contextual clues.
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7 Results

By using the above approach, we are not just
able to tag Twitter elements correctly but we also
make the context less noisy so the taggers are
more likely to tag MSA word correctly. This ap-
proach boosts AMIRA, MADA and Stanford per-
formance to 68.5%, 74.7% and 62.2% respectively
as shown in Table 4.

Tokens AMIRA MADA Stanford
MSA words 72.5% 80.7% 62.1%
Twitter-specific 100% 100% 100%
Overall 68.5% 74.7% 62.2%

Table 4: Taggers performance after tagging
Twitter-specifics

8 Conclusion and Future Work

We have examined the consequences of applying
MSA-trained POS tagging to Arabic tweets. En-
couragingly, some comparatively simple pre- and
post-processing steps go some of the way towards
improving the taggers’ accuracy over the MSA
baseline. However, much work remains to be done
to reach acceptable results. So, our next steps
are to implement all the proposed steps in our ap-
proach to improve taggers’ performance. Then,
we will use bootstrapping and taggers agreement
on unlabelled data to create a sufficient amount of
labelled training tweets to retrain our augmented
version of Stanford on it.
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