
ACL-IJCNLP 2015

The 3rd Workshop on Continuous Vector Space Models
and their Compositionality (CVSC)

Proceedings of the Workshop

July 26-31, 2015
Beijing, China

Production and Manufacturing by
Taberg Media Group AB
Box 94, 562 02 Taberg
Sweden

c©2015 The Association for Computational Linguistics
and The Asian Federation of Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-66-4 / 1-932432-66-3 (Volume 1)
ISBN 978-1-932432-67-1 / 1-932432-67-1 (Volume 2)

ii

Introduction

In most natural language processing applications the goal is to extract linguistic information from raw
text or to transform linguistic observations into an alternative form, for instance from speech to text
or one language to another. All of these applications often involve statistical models that rely heavily
on a discrete representation of linguistic concepts, such as words and their POS tags, phrases and
their syntactic categories or sentences, documents, etc. This includes any model parameterized with
large probability tables or based on the extraction of multiple co-occurrence features (e.g. bigrams
or tag/word pairs). Such a representation poorly models statistical structure not explicitly represented
within the parameterization, but that might be very relevant from a morphological, syntactic and semantic
standpoint. This hinders the generalization power of the model and reduces its ability to adapt to other
domains. Another consequence is that such statistical models can only model very restricted contexts
of text, without suffering from the sparsity of data. For instance, even the Google n-gram corpus only
includes grams up to length 5. Data sparsity is a well-known and fundamental issue in statistical NLP,
for which the existing remedies based on smoothing techniques can be insufficient.

In recent years, there has been a growing interest in algorithms that learn a continuous representation
for words, phrases, or documents. For instance, one can see latent semantic analysis and latent Dirichlet
allocation as a mapping of documents or words into a continuous lower dimensional topic-space. Another
example, continuous word vector-space models, represent word meanings with vectors that capture
semantic and syntactic information. These representations can be used to induce similarity measures
by computing distances between the vectors, leading to many useful applications, such as information
retrieval, search query expansions, document classification and question answering.

The idea of continuous vector spaces for language modeling has been used to develop neural language
models that have reached state of the art performance in several applications. Another different trend
of research on continuous vector space models belongs to the family of spectral methods developed to
overcome some limitations of discrete latent space models. A further line of research is distributional
semantic models that are historically more tied with linguistic theories.

Despite the success of single word vector space models, they are severely limited since they do not
capture compositionality, the important quality of natural language that allows speakers to determine the
meaning of a longer expression based on the meanings of its words and the rules used to combine them.
This prevents them from gaining a deeper understanding of the semantics of longer phrases or sentences.
For this reason, recently, there has been much progress in capturing compositionality in vector spaces.

Given this background, the first and second workshops on Continuous Vector Space Models and
their Compositionality have been organized, and received high quality contributions, as well as high
participation. As a result, this workshop has successfully served as a bridge between communities
working on the different kinds of semantics models mentioned above. We believe, further progress
on the applications of such models could be made by gathering both applied and theoretical researchers
interested in developing systems that capture natural language semantics. This broader vision is reflected
by the new list of topics this year. In addition, given the high interest and rapid development of various
continuous semantic models, we invited more keynote speakers, compared to previous years.

This year, we continued in this direction, with the following list of topics:

• Neural networks

• Spectral methods

• Distributional semantic models

iii

• Language modeling for automatic speech recognition, statistical machine translation, and
information retrieval

• Automatic annotation of texts

• Unsupervised and semi-supervised word sense induction and disambiguation

• Phrase and sentence-level distributional representations

• The role of syntax in compositional models

• Formal and distributional semantic models

• Language modeling for logical and natural reasoning

• Integration of distributional representations with other models

• Multi-modal learning for distributional representations

• Knowledge base embedding

In brief, we aimed to highlight the ongoing effort to address some of these points, either by theoretical
reasoning, or through example via demonstrating interesting properties of new or existing distributional
models of semantics. We also aimed to gather formal semanticists, computational linguists, machine
learning researchers and computational neuroscientists to tackle these fascinating problems.

Organizers:

Alexandre Allauzen, LIMSI-CNRS/Université Paris-Sud
Edward Grefenstette, Google DeepMind
Karl Moritz Hermann, Google DeepMind
Hugo Larochelle, Université de Sherbrooke
Scott Wen-tau Yih, Microsoft Research

iv

Organizers:

Alexandre Allauzen, LIMSI-CNRS/Université Paris-Sud
Edward Grefenstette, Google DeepMind
Karl Moritz Hermann, Google DeepMind
Hugo Larochelle, Université de Sherbrooke
Scott Wen-tau Yih, Microsoft Research

Program Committee:

Marco Baroni, University of Trento
Yoshua Bengio, Université de Montreal
Phil Blunsom, University of Oxford
Antoine Bordes, Facebook
Leon Bottou, Microsoft
Stephen Clark, University of Cambridge
Shay Cohen, University of Edinburgh
Georgiana Dinu, University of Trento
Kevin Duh, Nara Institute of Science and Technology
Andriy Mnih, Google DeepMind
Mehrnoosh Sadrzadeh, University of London
Mark Steedman, University of Edinburgh
Peter Turney, NRC
Jason Weston, Facebook
Guillaume Wisniewski, LIMSI-CNRS

Invited Speaker:

Kyunghyun Cho, Université de Montréal
Stephen Clark, University of Cambridge
Yoav Goldberg, Bar Ilan University
Ray Mooney, University of Texas at Austin
Percy Liang, Stanford University

v

Table of Contents

Learning Embeddings for Transitive Verb Disambiguation by Implicit Tensor Factorization
Kazuma Hashimoto and Yoshimasa Tsuruoka . 1

Recursive Neural Networks Can Learn Logical Semantics
Samuel R. Bowman, Christopher Potts and Christopher D. Manning . 12

Concept Extensions as the Basis for Vector-Space Semantics: Combining Distributional and Ontological
Information about Entities

Jackie Chi Kit Cheung . 22

Joint Semantic Relevance Learning with Text Data and Graph Knowledge
Dongxu Zhang, Bin Yuan, Dong Wang and Rong Liu . 32

Exploring the effect of semantic similarity for Phrase-based Machine Translation
Kunal Sachdeva and Dipti Sharma . 41

Incremental Adaptation Strategies for Neural Network Language Models
Alex Ter-Sarkisov, Holger Schwenk, Fethi Bougares and Loïc Barrault . 48

Observed versus latent features for knowledge base and text inference
Kristina Toutanova and Danqi Chen . 57

vii

Conference Program

Friday, July 31, 2015

09:00–09:05 Opening Remarks

09:05–09:50 INVITED TALK - Kyunghyun Cho

09:50–10:10 CONTRIBUTED TALK - Observed versus latent features for knowledge base and
text inference, Kristina Toutanova and Danqi Chen

10:10–10:30 CONTRIBUTED TALK - Learning Embeddings for Transitive Verb Disambigua-
tion by Implicit Tensor Factorization, Kazuma Hashimoto and Yoshimasa Tsu-
ruoka

10:30–11:00 Coffee Break

11:00–11:45 INVITED TALK - Yoav Goldberg

11:45–12:30 INVITED TALK - Percy Liang

12:30–14:00 Lunch

14:00–14:45 INVITED TALK - Stephen Clark

14:45–15:30 INVITED TALK - Ray Mooney

15:30–16:00 Coffee Break

16:00–17:00 Poster session

Learning Embeddings for Transitive Verb Disambiguation by Implicit Tensor Fac-
torization
Kazuma Hashimoto and Yoshimasa Tsuruoka

ix

Friday, July 31, 2015 (continued)

Recursive Neural Networks Can Learn Logical Semantics
Samuel R. Bowman, Christopher Potts and Christopher D. Manning

Concept Extensions as the Basis for Vector-Space Semantics: Combining Distribu-
tional and Ontological Information about Entities
Jackie Chi Kit Cheung

Joint Semantic Relevance Learning with Text Data and Graph Knowledge
Dongxu Zhang, Bin Yuan, Dong Wang and Rong Liu

Exploring the effect of semantic similarity for Phrase-based Machine Translation
Kunal Sachdeva and Dipti Sharma

Incremental Adaptation Strategies for Neural Network Language Models
Alex Ter-Sarkisov, Holger Schwenk, Fethi Bougares and Loïc Barrault

Observed versus latent features for knowledge base and text inference
Kristina Toutanova and Danqi Chen

17:00–17:30 Panel

x

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 1–11,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Learning Embeddings for Transitive Verb Disambiguation
by Implicit Tensor Factorization

Kazuma Hashimoto and Yoshimasa Tsuruoka
The University of Tokyo, 3-7-1 Hongo, Bunkyo-ku, Tokyo, Japan

{hassy,tsuruoka}@logos.t.u-tokyo.ac.jp

Abstract

We present an implicit tensor factorization
method for learning the embeddings of
transitive verb phrases. Unlike the implicit
matrix factorization methods recently pro-
posed for learning word embeddings, our
method directly models the interaction be-
tween predicates and their two arguments,
and learns verb phrase embeddings. By
representing transitive verbs as matrices,
our method captures multiple meanings of
transitive verbs and disambiguates them
taking their arguments into account. We
evaluate our method on a widely-used verb
disambiguation task and three phrase sim-
ilarity tasks. On the disambiguation task,
our method outperforms previous state-of-
the-art methods. Our experimental results
also show that adjuncts provide useful in-
formation in learning the meanings of verb
phrases.

1 Introduction

There is a growing interest in learning vector-
space representations of words and phrases using
large training corpora in the field of Natural Lan-
guage Processing (NLP) (Mikolov et al., 2013;
Mitchell and Lapata, 2010). The phrase represen-
tations are usually computed by composition mod-
els that combine the meanings of words into the
meanings of phrases. While some studies focus on
representing entire phrases or sentences using syn-
tactic structures (Hermann and Blunsom, 2013;
Socher et al., 2011), others focus on representing
the meaning of transitive verb phrases (Grefen-
stette and Sadrzadeh, 2011; Grefenstette et al.,
2013; Kartsaklis et al., 2012).

In this paper, we investigate vector-space repre-
sentations of transitive verb phrases. The mean-
ing of a transitive verb is often ambiguous and
disambiguated by its arguments, i.e., subjects and
objects. Investigation of transitive verb phrases
should therefore provide insights into how com-
position models can capture such semantic inter-
actions between words. Moreover, in practice,
capturing the meanings of transitive verb phrases
should be useful in many real-world NLP appli-
cations such as semantic retrieval (Miyao et al.,
2006) and question answering (Who did What to
Whom?) (Srihari and Li, 2000).

There are several approaches to representing
transitive verb phrases in a vector space using
large unannotated corpora. One is based on tensor
calculus (Grefenstette and Sadrzadeh, 2011; Kart-
saklis et al., 2012; Van de Cruys et al., 2013) and
another is based on neural networks (Hashimoto
et al., 2014; Muraoka et al., 2014; Tsubaki et
al., 2013). In the tensor-based methods, transi-
tive verbs are represented as matrices, and they are
constructed by using the pre-trained word embed-
dings of their subjects and objects. One limitation
of this approach is that the embeddings of subject-
verb-object phrases are computed statically, i.e.,
the composition process and the embedding (or
matrix) construction process are conducted sepa-
rately. In the neural network-based methods, the
embeddings of words and phrases can be learned
jointly (Hashimoto et al., 2014). However, the
strong interaction between verbs and their argu-
ments is not fully captured in their method because
it relies on shallow neural networks using diago-
nal weight matrices which are designed to work
on large training corpora.

To bridge the gap between the two approaches,
we present an implicit tensor factorization method

1

for learning the embeddings of transitive verb
phrases. We assume a three-mode tensor in which
the value of each element represents the level of
plausibility of a tuple of a predicate and its two
arguments (Van de Cruys et al., 2013). We then
implicitly factorize the tensor into three latent fac-
tors, namely one predicate tensor and two argu-
ment matrices. This is motivated by the recently
proposed implicit matrix factorization methods for
learning word embeddings (Levy and Goldberg,
2014; Mikolov et al., 2013). Our method trains
matrices representing predicates and embeddings
of their arguments so that they maximize the accu-
racy of predicting the plausibility of the predicate-
argument tuples in the training corpus. The tran-
sitive verb matrices and the embeddings of their
subject and object are thus jointly learned. Fur-
thermore, this method allows us to exploit the role
of prepositional adjuncts when learning the mean-
ing of verb phrases by modeling the relationship
between prepositions and verb phrases.

Our experimental results show that our method
enables predicates and their arguments to strongly
interact with each other and that adjuncts are use-
ful in learning the meaning of verb phrases. We
evaluate our method using a widely-used verb
disambiguation task and three phrase similarity
tasks. On the disambiguation dataset provided
by Grefenstette and Sadrzadeh (2011), we have
achieved a Spearman’s rank correlation score of
0.614, which is significantly higher than the state
of the art (0.456). This result demonstrates that
the direct interaction between verbs and their ar-
guments is important in tackling verb disambigua-
tion tasks. Qualitative evaluation further shows
that the meanings of ambiguous verbs can be dis-
ambiguated according to their arguments and the
learned verb matrices capture multiple meanings
of transitive verbs.

2 Method

To learn the embeddings of transitive verb phrases,
we focus on the role of adjuncts, which optionally
complement the meaning of the verb phrases. For
example, in the following sentence, the preposi-
tional phrase starting from the preposition “in” is
an adjunct of the verb “make”:

An importer might be able to make payment
in his own domestic currency.

The transitive verb “make” is inherently ambigu-
ous, but this sentence tells us that the action ex-

Predicate Argument 1 Argument 2
make an importer payment
in make payment his own domestic currency

Table 1: Example output from the Enju parser.

Predicate Argument 1 Argument 2
make importer payment
in importer make payment currency

Table 2: Modified examples.

pressed by the verb phrase “make payment” is car-
ried out by means of a currency. If we further ob-
serve the verb phrase “pay money” with a sim-
ilar adjunct in another sentence, those two sen-
tences tell us that the two phrases “make payment”
and “pay money” are semantically similar to each
other. We therefore expect such prepositional ad-
juncts to be useful in learning the meaning of verb
phrases. In the disambiguation processes, strong
interactions between transitive verbs and their ar-
guments are desirable as with the method in Tsub-
aki et al. (2013). More specifically, the meaning of
“make” changes according to its object “payment”
and the meaning of “pay” changes according to its
object “money”.

We use the probabilistic HPSG parser
Enju1 (Miyao and Tsujii, 2008) to identify
transitive verbs with their subjects and objects,
and as adjuncts, we also extract prepositional
phrases with transitive verbs. In the grammar
of the Enju parser, each word in a sentence is
a predicate with zero or more arguments, i.e.,
prepositions, too, are treated as predicates.

In the example sentence shown above, the tran-
sitive verb “make” and the preposition “in” are
predicates which take two arguments. Table 1
shows the output from the Enju parser. In this ex-
ample, the transitive verb “make” takes two argu-
ments: the first argument (the subject) is the noun
phrase “an importer” and the second argument (the
object) is the noun “payment”. The preposition
“in” also takes two arguments: the first argument
is the verb phrase “make payment” and the sec-
ond argument is the noun phrase “his own domes-
tic currency”. For simplicity we use only the head
word of each noun phrase, so the subjects and ob-
jects of the transitive verbs are nouns and the sec-
ond arguments of the prepositions are also nouns.
We further modify the output by incorporating the

1http://kmcs.nii.ac.jp/enju/.

2

subject for each verb phrase which is the first ar-
gument of prepositions when the subject exists 2.
Therefore, the words used in this paper are verbs,
nouns, and prepositions. Table 2 shows the modi-
fied output of the examples in Table 1.

To model the co-occurrence statistics of
predicate-argument structures, we follow Van de
Cruys et al. (2013) and assume a three-mode
tensor, which is just a three-dimensional array,
T ∈ R|P|×|A1|×|A2| in which plausibility scores
are stored as real values. P is the set of predi-
cates of a particular category in the training cor-
pus, A1 is the set of the first argument of the pred-
icates in P, and A2 is the set of the second ar-
gument. When treating transitive verbs as pred-
icates, A1 is the set of their subjects and A2 is
the set of their objects. Table 1 shows an exam-
ple, where “make”, “an importer”, and “payment”
are a member of P, A1, and A2, respectively. The
plausibility score T (i, j, k) corresponds to the tu-
ple of the i-th (1 ≤ i ≤ |P|) predicate having the
j-th (1 ≤ j ≤ |A1|) first-argument and the k-th
(1 ≤ k ≤ |A2|) second-argument. The larger the
value of T (i, j, k) is, the more plausible the tu-
ple (i, j, k) is. In the above example, if the tuple
(i, j, k) corresponds to “make”, “an importer”, and
“payment” and i′ corresponds to “eat”, the value
of T (i, j, k) is expected to be larger than that of
T (i′, j, k).

As with Van de Cruys et al. (2013), we factorize
the large three-mode tensor T into three factors:

• three-mode tensor P ∈ R|P|×d×d,

• matrix A1 ∈ Rd×|A1|, and

• matrix A2 ∈ Rd×|A2|.

The dimensionality d is a hyperparameter that de-
termines the size of the latent factors. Using these
factors, we can compute a plausibility score:

T (i, j, k) = a1(j)TP(i)a2(k) (1)

where a1(j) ∈ Rd×1 and a2(k) ∈ Rd×1 are the j-
th and k-th column vectors of A1 and A2, respec-
tively, and P(i) ∈ Rd×d is the i-th slice, which
is just a matrix, of P . a1(j)T is the transpose of
a1(j). By this tensor factorization, each predicate
in P is represented with a matrix, which we call
a predicate matrix, and each argument in A1 and

2Subjects can be absent. For example, in the sentence
“Learning word embedings is interesting” the subject of the
transitive verb “learn” is absent.

A2 is represented with a vector, which we call an
argument embedding. As with Hashimoto et al.
(2014), arguments are not restricted to words in
our method, and thus we compute argument em-
beddings using a composition function when the
arguments consist of more than two words.

To learn the predicate matrices and argument
embeddings, we define a plausibility judgment
task by using a cost function for each predicate-
argument tuple observed in the training corpus.
For each predicate-argument tuple (i, j, k), the
cost function E(i, j, k) is defined as follows:

− log σ(T (i, j, k))− log(1− σ(T (i′, j, k)))
− log(1− σ(T (i, j′, k)))
− log(1− σ(T (i, j, k′)))

(2)

where i′ ∈ P is a randomly drawn predicate, and
j′ ∈ A1 and k′ ∈ A2 are randomly drawn argu-
ments. σ(x) is the logistic function, so the cost
function E(i, j, k) in Eq. (2) measures whether
we can discriminate between the plausible tuple
and other three implausible tuples by means of
logistic regressions. We follow Mikolov et al.
(2013) to draw the random predicates and argu-
ments according to their frequencies weighted by
an exponent of 0.75 and ensure that each of the
randomly generated tuples is not observed in the
corpus. The overall objective function is defined
as the sum of the cost functions for all observed
predicate-argument tuples and minimized by Ada-
Grad (Duchi et al., 2011) in a mini-batch setting.

The partial derivative ∂E(i,j,k)
∂P(i) for updating the

model parameters is computed as follows:

∂E(i, j, k)
∂P(i)

= (σ(T (i, j, k))− 1)a1(j)⊗ a2(k)+

σ(T (i, j′, k))a1(j′)⊗ a2(k)+
σ(T (i, j, k′))a1(j)⊗ a2(k′)

(3)

where ⊗ denotes the outer-product of two vec-
tors. Similarly, the partial derivatives ∂E(i,j,k)

∂a1(j) and
∂E(i,j,k)
∂a2(k) are computed as follows:

∂E(i, j, k)
∂a1(j)

= (σ(T (i, j, k))− 1)P(i)a2(k)+

σ(T (i′, j, k))P(i′)a2(k)+
σ(T (i, j, k′))P(i)a2(k′)

(4)

3

∂E(i, j, k)
∂a2(k)

= (σ(T (i, j, k))− 1)P(i)Ta1(j)+

σ(T (i′, j, k))P(i′)Ta1(j)+

σ(T (i, j′, k))P(i)Ta1(j′)
(5)

which can be used to learn the composition func-
tion using the backpropagation algorithm if the ar-
guments are not words. When the arguments are
words, we then use the partial derivatives to di-
rectly update the argument embeddings. P(i′),
a1(j′), and a2(k′) are also updated but for the sake
of brevity the partial derivatives for them are not
shown here. Equation (3) shows that a predicate
matrix is updated to capture the information about
which argument pairs are or are not relevant to the
predicate. Argument embeddings are learned to
capture similar information.

2.1 Transitive Verb Phrases with Adjuncts

While our method is applicable to any categories
of predicates which take two arguments, in this pa-
per, we focus on learning the embeddings of tran-
sitive verb phrases by treating transitive verbs and
prepositions as predicates. Thus, we factorize two
tensors Tv and Tp for transitive verbs and prepo-
sitions, respectively. Tv is factorized into a verb
tensor V (corresponding to P), a subject matrix
S (corresponding to A1), and an object matrix O
(corresponding to A2). To compute argument em-
beddings composed by subject-verb-object tuples,
we use the copy-subject function in Kartsaklis et
al. (2012):

s(m)⊙ (V(l)o(n)) (6)

where V(l) is a verb matrix, s(m) is a subject em-
bedding, and o(n) is an object embedding. ⊙ de-
notes the element-wise multiplication of two vec-
tors. The composed verb phrase embeddings are
taken as the first arguments of the prepositions.
The copy-subject function is also used to com-
pute verb-object phrase embeddings by omitting
the subject embedding in Eq. (6):

V(l)o(n) (7)

Compared with other composition functions de-
fined in Kartsaklis et al. (2012), such as the copy-
object function, the copy-subject function allows
us to compute embeddings for both of subject-
verb-object and verb-object phrases.

In the case of the copy-subject function, assum-
ing that Eq. (4) is defined as δ1, the subject em-
bedding in Eq. (6) is updated using the following
partial derivative:

∂E(i, j, k)
∂s(m)

= δ1 ⊙ (V(l)o(n)) (8)

We then define δ2 as follows:

δ2 = δ1 ⊙ s(m) (9)

and update the verb matrix and object embedding
using δ2:

∂E(i, j, k)
∂V(l)

= δ2o(n)T (10)

∂E(i, j, k)
∂o(n)

= V(l)Tδ2 (11)

The model parameters used in the composition
function are shared across the overall proposed
method. That is, the verb matrices and sub-
ject/object embeddings are used for computing the
composed embeddings and the plausibility scores
in Eq. (1).

2.2 Relationship to Previous Work

Representing transitive verbs with matrices and
computing transitive verb phrase embeddings have
been proposed by Grefenstette and Sadrzadeh
(2011) and others (Kartsaklis et al., 2012; Mila-
jevs et al., 2014; Polajnar et al., 2014). All of
them first construct word embeddings by using ex-
isting methods and then compute or learn transi-
tive verb matrices. This kind of approach requires
one to figure out which word embeddings are suit-
able for each method or task (Milajevs et al.,
2014). By contrast, our method does not require
any other word embedding methods and instead
jointly learns word embeddings and matrices from
scratch, which saves us from the time-consuming
process to test which word representations learned
by existing methods are suitable for which com-
position models. Moreover, our method learns the
embeddings of transitive verb phrases by using ad-
juncts rather than statically computing them using
learned word embeddings and matrices as done in
the previous work.

The information stored in the verb matrices
learned by Eq. (3) is similar to that in Grefen-
stette and Sadrzadeh (2011). In Grefenstette and
Sadrzadeh (2011), a verb matrix is computed by

4

the sum of the outer-products of the embeddings of
its subject-object pairs observed in the corpus. By
using such matrices, Kartsaklis et al. (2012) pro-
posed the copy-subject function which has proven
effective in representing transitive verb phrases.
Using the copy-subject function is therefore a rea-
sonable choice for our composition function.

The use of adjuncts constructed by preposi-
tional phrases for learning verb phrase embed-
dings has been presented in Hashimoto et al.
(2014). However, they used a variety of categories
of predicates simultaneously, and thus it is not
clear how adjuncts are useful in improving the em-
beddings of transitive verb phrases. In this paper,
we use only transitive verbs and prepositions and
clarify the effects of adjuncts. Moreover, the inter-
actions between predicates and their arguments are
weak in their method because their method relies
on shallow neural networks using diagonal weight
matrices. In contrast, our method allows the pred-
icates to directly interact with their arguments.

The way of factorizing the three-mode tensors is
based on Van de Cruys et al. (2013). The main dif-
ference between our method and theirs is that our
method can treat phrases as the arguments. Their
method is based on co-occurrence count statistics,
and thus it is not straightforward to modify their
method to treat phrases as well as words.

Our implicit tensor factorization method is mo-
tivated by Levy and Goldberg (2014). They in-
troduced a way to interpret the recently developed
word embedding learning method (Mikolov et al.,
2013) by using matrix factorization. While their
method only produces embeddings of single to-
kens, our method jointly learns word and phrase
embeddings by focusing on the relationship be-
tween predicates and their two arguments.

3 Experimental Settings

3.1 Training Corpora

We separately used two corpora as our training
corpora. The first one is the British National
Corpus (BNC), from which we extracted 6 mil-
lion sentences. The second one is a snapshot of
the English Wikipedia3 (enWiki) from November
2013. We extracted 80 million sentences from the
original Wikipedia file. We then used the Enju
parser (Miyao and Tsujii, 2008) to parse all the
extracted sentences.

3http://dumps.wikimedia.org/enwiki/

Using the parsing results, we constructed the
vocabulary for each training corpus. To be more
specific, we used the 100,000 most frequent base-
form words paired with their corresponding part-
of-speech tags in each corpus. Using verbs, nouns,
and prepositions in the vocabulary, we extracted
predicate-argument tuples whose predicate cate-
gories are verb arg12 or prep arg12 defined in the
Enju parser. We then pre-processed the output as
shown in Table 2. Consequently, BNC consists of
about 1.38 million instances (1.23 million types)
for the verb data and about 0.93 million instances
(0.88 million types) for the preposition data, and
enWiki consists of about 23.6 million instances
(15.8 million types) for the verb data and about
17.3 million instances (13.5 million types) for the
preposition data. We call the verb data SVO and
the combination of the two data SVOPN 4.

For each corpus, we randomly split the data
into the training data (80%), the development data
(10%), and the test data (10%). We used the de-
velopment data for tuning hyperparameters to be
used in downstream NLP tasks. When splitting
the data, we ensured that each type of predicate-
argument tuples appeared in only one of the three
parts. Hence, for example, instances in the test
data do not appear in either of the training or the
development data.

To evaluate our method on the plausibility judg-
ment task, for each predicate-argument tuple type
in the development and the test data, we randomly
sampled implausible tuples N times in the same
way as defining the cost function in Eq. (2). That
is, we prepared N sets of the development and the
test data. For each set of the development and the
test data, we calculated the accuracy of the plausi-
bility judgment task; concretely, for each type of
predicate-argument tuples (i, j, k), we evaluated
whether T (i, j, k) is larger than all of T (i′, j, k),
T (i, j′, k), and T (i, j, k′) and then calculated the
ratio of the number of types counted as correct to
the total number of the types in the development
or the test data. Finally, we calculated the average
accuracy of the N set. For BNC, we set N to 50
and for enWiki we set N to 10.

4The training data, the training code, and the learned
model parameters used in this paper are publicly available at
http://www.logos.t.u-tokyo.ac.jp/˜hassy/
publications/cvsc2015/

5

3.2 Initialization and Hyperparameters
We initialized the noun embeddings, the verb ma-
trices, and the preposition matrices with zero-
mean gaussian noise with a variance of 1

d , 1
d2 , and

1
d2 , respectively. The hyperparameters for train-
ing the embeddings and the matrices are the em-
bedding dimensionality d, the learning rate α for
AdaGrad (Duchi et al., 2011), the mini-batch size,
and the number of iterations n over the training
data. In our preliminary experiments, we have
found that varying the mini-batch size is not so
influential in our experimental results. We thus
fixed the mini-batch size to 100. For other hy-
perparameters, we set d to {25, 50, 100}, α to
{0.01, 0.02, 0.04, 0.06, 0.08, 0.1}, and the maxi-
mum number of n to 20. We selected the values
of the hyperparameters so that the accuracy of the
plausibility task was maximized on the develop-
ment data described in Section 3.1.

3.3 Baseline Method
We mainly compared our method with the method
called PAS-CLBLM in Hashimoto et al. (2014)
since PAS-CLBLM is designed to learn composed
representations as well as word embeddings using
a variety of predicate-argument structures. PAS-
CLBLM is modeled as a word predication model
using predicate-argument structures, which means
that, as with our method, the training relies on
the co-occurrence statistics of predicate-argument
structures. PAS-CLBLM achieved state-of-the-art
results on transitive verb phrase similarity tasks.
To train PAS-CLBLM, we used the same data de-
scribed in Section 3.1. We selected the Waddnl

function in PAS-CLBLM to compute the embed-
ding of each subject-verb-object tuple (i, j, k):

tanh(ws⊙ s(j)+wv⊙v(i)+wo⊙o(k)) (12)

where ws,wv,wo ∈ Rd×1 are the weight vec-
tors (or the diagonal weight matrices) for compo-
sition and s(j),v(i),o(k) ∈ Rd×1 are the embed-
dings of the subjects, verbs, and objects, respec-
tively. PAS-CLBLM has the same hyperparame-
ters as our method described in Section 3.2. We
used the development data for tuning the hyperpa-
rameters and added d = 200 to the candidate val-
ues for d since PAS-CLBLM is computationally
less expensive than our method. We thus evalu-
ated PAS-CLBLM also on the plausibility judg-
ment task. Concretely, for each type of predicate-
argument tuples (i, j, k) in the development data,

BNC enWiki
d Acc. (%) Acc. (%)

Our method
25 57.44 (0.11) 64.77 (0.03)
50 57.80 (0.11) 66.98 (0.03)

100 57.48 (0.10) 68.18 (0.03)

PAS-CLBLM

25 54.44 (0.14) 60.40 (0.03)
50 55.69 (0.13) 63.42 (0.02)

100 55.66 (0.12) 64.81 (0.02)
200 55.48 (0.15) 65.20 (0.03)

Table 3: Evaluation results on the plausibility
judgment task on the SVO development data.

the tuple is counted as correct when the predica-
tion scores for i, j, and k are larger than those for
i′, j′, and k′, respectively.

4 Results and Discussion

We first tuned the hyperparameters in both our
method and the baseline method using the plau-
sibility judgment task. Table 3 shows the aver-
age accuracy with the standard deviation for each
dimensionality on the SVO development data5.
As shown in the table, our method outperforms
PAS-CLBLM on both BNC and enWiki. The
number of the model parameters in PAS-CLBLM
(d = 200) is larger than that of the model pa-
rameters in our method (d = 50). This result
demonstrates that the model architecture itself is
more important than the number of the model pa-
rameters. The results on the SVO test data were
57.76% (our method, d = 50) and 55.66% (PAS-
CLBLM, d = 50) for BNC. For enWiki, the re-
sults were 68.18% (our method, d = 100) and
65.19% (PAS-CLBLM, d = 200). We observed
a similar trend on the SVOPN data and in the next
section, for each embedding dimensionality, we
used the model parameters which performed best
on the plausibility task.

4.1 Evaluation on Transitive Verb Tasks
4.1.1 Evaluation Settings
We evaluated the learned embeddings of transitive
verbs using a transitive verb disambiguation task
and three tasks for measuring the semantic simi-
larity between transitive verb phrases. Each phrase

5Van de Cruys (2014) reported much higher accuracy in
a similar evaluation setting with a neural network model, but
as discussed in Chambers and Jurafsky (2010), this is because
using the uniform distribution over words for producing im-
plausible tuples leads to optimistic results.

6We replicated the results reported in their pa-
per using the model parameters publicly provided at
http://www.logos.t.u-tokyo.ac.jp/˜hassy/
publications/emnlp2014/.

6

Dis. Phrase similarity
Data d GS’11 ML’10 KS’13 KS’14

SVO
25 0.410 0.511 0.392 0.440
50 0.374 0.550 0.164 0.290

Our 100 0.373 0.474 0.312 0.418
method

SVOPN
25 0.574 0.543 0.439 0.432
50 0.535 0.586 0.403 0.397
100 0.508 0.545 0.487 0.517

SVO

25 0.270 0.601 0.592 0.722
50 0.412 0.581 0.523 0.721
100 0.390 0.463 0.465 0.699

PAS- 200 0.369 0.458 0.434 0.602
CLBLM

SVOPN

25 0.241 0.562 0.550 0.715
50 0.281 0.605 0.590 0.760
100 0.337 0.593 0.585 0.758
200 0.342 0.561 0.549 0.744

Milajevs et al. (2014) 0.456 n/a n/a 0.732
Hashimoto et al. (2014)6 0.422 0.669 0.612 0.770
Polajnar et al. (2014) 0.35 n/a 0.58 n/a

Table 4: Results for the transitive verb tasks using
the BNC data.

pair in the four datasets is paired with multiple hu-
man ratings: the higher the rating is, the more se-
mantically similar the phrases are. To evaluate the
learned verb phrase embeddings on each dataset,
we used the Spearman’s rank correlation between
the human ratings and the cosine similarity be-
tween the phrase embeddings. We calculated the
correlation scores using averaged human ratings.
Each phrase pair in the datasets was annotated by
more than two annotators and we took the average
of the multiple human ratings for each phrase pair.

Transitive verb disambiguation. The first
dataset GS’11 is provided by Grefenstette and
Sadrzadeh (2011). GS’11 consists of pairs of
transitive verbs and each verb pair takes the same
subject and object. As discussed in previous
work (Kartsaklis and Sadrzadeh, 2013; Milajevs
et al., 2014; Polajnar et al., 2014), GS’11 has an
aspect of a verb sense disambiguation task. For
example, the transitive verb “run” is known as
a polysemous word and this task requires one
to identify the meanings of “run” and “operate”
are similar to each other when taking “people”
as their subject and “company” as their object.
In the same setting, however, the meanings of
“run” and “move” are not similar to each other.
The task is suitable for evaluating our method
since our method allows verbs and their subjects
and objects to multiplicatively interact with each
other.

Dis. Phrase similarity
Data d GS’11 ML’10 KS’13 KS’14

SVO
25 0.438 0.403 0.255 0.406
50 0.480 0.416 0.359 0.481

Our 100 0.433 0.392 0.239 0.409
method

SVOPN
25 0.576 0.435 0.372 0.555
50 0.614 0.495 0.422 0.566
100 0.576 0.558 0.420 0.548

SVO

25 0.342 0.500 0.407 0.624
50 0.313 0.527 0.502 0.710
100 0.358 0.534 0.470 0.655

PAS- 200 0.361 0.535 0.459 0.653
CLBLM

SVOPN

25 0.171 0.571 0.583 0.697
50 0.320 0.501 0.518 0.729
100 0.321 0.606 0.540 0.742
200 0.374 0.588 0.515 0.744

Milajevs et al. (2014) 0.456 n/a n/a 0.732
Hashimoto et al. (2014) 0.422 0.669 0.612 0.770
Polajnar et al. (2014) 0.35 n/a 0.58 n/a

Table 5: Results for the transitive verb tasks using
the enWiki data.

Transitive verb phrase similarity. The other
datasets are ML’10 provided by Mitchell and La-
pata (2010), KS’13 provided by Kartsaklis and
Sadrzadeh (2013), and KS’14 provided by Kart-
saklis and Sadrzadeh (2014). ML’10 consists of
pairs of verb-object phrases and KS’13 comple-
ments ML’10 by incorporating an appropriate sub-
ject for each verb-object phrase. KS’14 is the re-
annotated version of KS’13 using a cloud sourcing
service. Unlike GS’11, these three datasets require
one to capture the topical similarity rather than the
disambiguation aspect (Polajnar et al., 2014).

4.1.2 Result Overview
Table 4 and 5 show the evaluation results using
BNC and enWiki, respectively. The results are
shown for each method, data type, and embedding
dimensionality. These tables also show the results
from other work (Hashimoto et al., 2014; Mila-
jevs et al., 2014; Polajnar et al., 2014) on the same
tasks while the training settings, such as the corpus
and information used in the training, are different
from those in this work. However, the evaluation
settings are the same with those in the previous
work. That is, in the previous work, averaged hu-
man ratings were used to evaluate the Spearman’s
rank correlation scores, similarity scores between
subject-verb-object phrases were used for GS’11,
KS’13, and KS’14, and similarity scores between
verb-object phrases were used for ML’10.

Effects of using adjuncts. Except for the re-
sults for GS’11 using PAS-CLBLM, the correla-

7

Our method PAS-CLBLM
SVO SVOPN SVOPN

make dollar make saving make cash earn billion make cash make penny
make make pay use money make dollar earn million make dollar make baht
money make profit make cent make profit make gamble make yen make salary

make cash do business earn baht make pound make pay make profit
earn profit sell coin earn pound earn earning make fund make rupee
make repayment make expenditure make loan pay reimbursement make loan make cost

make make loan pay subsidy make repayment pay remuneration make repayment make receipt
payment pay amount pay deposit pay fine make raise make compensation make guarantee

make offer make transaction pay amount pay cost make expense make rebate
pay compensation pay donor pay surcharge pay fee make debt make purchase
use material use approach use number use one make usage make sort

make use type use method use concept use element make placement make size
use use concept use technique use approach use set make kind make utilization

use form use instrument use method use system make quality make redundancy
use one use system use model use type make alternative make handling

Table 6: Nearest neighbor verb-object phrases.

tion scores consistently improve when using the
SVOPN data compared with using the SVO data,
which shows using adjuncts is helpful in learning
the meanings of verb phrases. Using the SVO data
alone, verb phrase embeddings themselves are not
directly learned but computed separately. By con-
trast, the SVOPN data provides the opportunity for
learning verb phrase embeddings.

Effects of the training corpora. In previous
work on learning and evaluating word embed-
dings, it is generally observed that increasing the
training data results in better results. However, as
opposed to our expectation, Table 4 and 5 show
that using enWiki does not necessarily lead to bet-
ter results. A possible explanation is that the na-
ture of the training corpus matters the most. The
usage of each word depends on the training cor-
pora, and at least for these verb sense tasks, the
size of BNC is sufficient and the nature of BNC
fits these tasks.

4.1.3 Disambiguation Task
Our method outperforms both the baseline and
the previous state of the art for GS’11, which
demonstrates that our method better handles the
disambiguation of transitive verbs. This result
is somewhat expected since our method provides
stronger interaction between predicates and their
arguments than the baseline method.

Table 6 shows some examples7 of verb-object
phrases with their nearest neighbor ones in the em-
bedding space according to the cosine similarity.
For our method, we show the results of using the
SVO and SVOPN data, and for PAS-CLBLM, we

7The verb-object phrase “make use” is the part of the id-
iomatic expression “make use of”.

show the results of using the SVOPN data. In each
setting, we used the enWiki data with d = 50.

Table 6 clearly shows the difference between
our method and the baseline method. In our
method, the meaning of “make” becomes close
to those of “earn”, “pay”, and “use” when tak-
ing “money”, “payment”, and “use”, respectively,
as its object. By contrast, PAS-CLBLM simply
emphasizes the head word “make”. In previous
work, it is also reported that the weighed addition
composition functions put more weight on head
words (Hashimoto et al., 2014; Muraoka et al.,
2014; Socher et al., 2013). As opposed to these
previous methods, our method has the ability of
selecting the meaning of transitive verbs accord-
ing to their objects.

Table 6 also shows that the phrase embeddings
in our method are influenced by using the adjunct
data (i.e., the SVOPN data). For example, in the
example of “make money”, the results for using
the SVO data include “use money” as the nearest
neighbors. When using the SVOPN data, the fo-
cus seems to shift to the true meaning of “make
money”.

4.1.4 Phrase Similarity Task
In the phrase similarity tasks, our method com-
pares favorably to PAS-CLBLM for ML’10, but
PAS-CLBLM outperforms our method for KS’13
and KS’14. These results are consistent with
those in previous work. In Milajevs et al.
(2014) and Polajnar et al. (2014), using the sim-
plest composition function (the element-wise vec-
tor addition) achieves much better correlation
scores than other tensor-based complex compo-
sition functions. These results indicate that our
method is suitable for capturing the disambigua-

8

Verb Nearest neighbors

run

27th operate, execute, insert, hold, grid,
col. produce, add, assume, manage, render
34th release, operate, create, override, govern,
row oversee, distribute, host, organize

all operate, start, manage, own, launch,
continue, establish, open, maintain

encode

28th denature, transfect, phosphorylate,
row polymerize, subtend, acid
39th format, store, decode, embed,
row concatenate, encrypt, memorize

all concatenate, permute, phosphorylate,
quantize, composite, transfect, transduce

Table 7: Nearest neighbor verbs.

tion rather than capturing the topical similarity be-
tween phrases.

4.2 Qualitative Evaluation on Verb Matrices

Finally, we inspect the learned verb matrices us-
ing the SVO data of enWiki with d = 50. Com-
pared with the word embeddings, the verb matri-
ces have two-dimensional structure. According to
Eq. (3), each row vector and each column vector in
a verb matrix are updated to capture the informa-
tion about what subject-object pairs are relevant
(or irrelevant) to the verb.

Table 7 shows the nearest neighbor verbs using
the cosine similarity between row (or column) vec-
tors in the verb matrices. For reference, we also
show the results using the vectorized representa-
tion of the verb matrices (denoted as “all” in the
table). While the entire matrices capture the gen-
eral similarity between verbs as with word embed-
dings, some specific rows (or columns) capture the
multiple meanings of usages of the verbs.

5 Related Work

Based on the distributional hypothesis (Firth,
1957), various methods for word embeddings have
been actively studied (Levy and Goldberg, 2014;
Mikolov et al., 2013). Recent studies also inves-
tigate how to learn phrase and/or sentence em-
beddings using syntactic structures and word em-
beddings (Socher et al., 2011). Along the same
line of research, there is a growing body of work
on representing transitive verb phrases using word
embeddings (Grefenstette and Sadrzadeh, 2011;
Hashimoto et al., 2014; Kartsaklis et al., 2012;
Tsubaki et al., 2013). Those studies can be split
into two approaches: one is based on tensor calcu-
lus and the other is based on neural networks.

In contrast to the recent studies on word embed-
dings, the tensor-based methods represent words
with tensors which are not limited to vectors. That
is, higher order tensors such as matrices and three-
mode tensors are also used. In the case of repre-
senting transitive verb phrases, for example, each
transitive verb is represented as a matrix and each
noun is represented as a vector in Grefenstette and
Sadrzadeh (2011). Based on Coecke et al. (2010),
Grefenstette and Sadrzadeh (2011) presented a
method for calculating a verb matrix using word
embeddings of its observed subjects and objects.
The word embeddings were constructed by the
method in Mitchell and Lapata (2008). Grefen-
stette and Sadrzadeh (2011) then introduced com-
position functions using the verb matrices and the
noun embeddings. Their approach has been fol-
lowed by some recent studies (Kartsaklis et al.,
2012; Milajevs et al., 2014; Polajnar et al., 2014;
Van de Cruys et al., 2013).

In the neural network-based methods each word
is usually represented with a vector. Tsubaki et
al. (2013) presented a neural network language
model focusing on the binary relationship between
verbs and their objects. Their co-compositionality
method enables verb embeddings to be multi-
plicatively influenced by the objects, and vice
versa. Subsequently, Hashimoto et al. (2014) in-
troduced a method which jointly learns word and
phrase embeddings by using a variety of predicate-
argument structures. While their method achieves
state-of-the-art results on phrase similarity tasks,
the interaction between predicates and their argu-
ments is weak.

6 Conclusion and Future Work

We have presented an implicit matrix factorization
method for learning the embeddings of transitive
verb phrases. The verb matrices learned by our
method capture the multiple meanings of transi-
tive verbs and we have shown that adjuncts play an
important role in learning the meanings of transi-
tive verb phrases. In our experiments, our method
outperforms the previous state of the art on a tran-
sitive verb disambiguation task. In future work,
we will investigate how the learned phrase embed-
dings improve real-world NLP applications.

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments and suggestions.

9

References
Nathanael Chambers and Daniel Jurafsky. 2010. Im-

proving the Use of Pseudo-Words for Evaluating Se-
lectional Preferences. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 445–453.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen
Clark. 2010. Mathematical Foundations for a Com-
positional Distributional Model of Meaning. CoRR,
abs/1003.4394.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine
Learning Research, 12:2121–2159.

John Rupert Firth. 1957. A Synopsis of Linguistic
Theory 1930-55. In Studies in Linguistic Analysis,
pages 1–32.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011.
Experimental Support for a Categorical Composi-
tional Distributional Model of Meaning. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1394–
1404.

Edward Grefenstette, Georgiana Dinu, Yao-Zhong
Zhang, Mehrnoosh Sadrzadeh, and Marco Baroni.
2013. Multi-Step Regression Learning for Compo-
sitional Distributional Semantics. In Proceedings of
the 10th International Conference on Computational
Semantics, pages 131–142.

Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa,
and Yoshimasa Tsuruoka. 2014. Jointly Learning
Word Representations and Composition Functions
Using Predicate-Argument Structures. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 1544–1555.

Karl Moritz Hermann and Phil Blunsom. 2013. The
Role of Syntax in Vector Space Models of Composi-
tional Semantics. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 894–904.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2013.
Prior Disambiguation of Word Tensors for Con-
structing Sentence Vectors. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1590–1601.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2014. A
Study of Entanglement in a Categorical Framework
of Natural Language. In Proceedings of the 11th
Workshop on Quantum Physics and Logic (QPL),
Kyoto, Japan, June.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen
Pulman. 2012. A Unified Sentence Space for
Categorical Distributional-Compositional Seman-
tics: Theory and Experiments. In Proceedings of
the 24th International Conference on Computational
Linguistics, pages 549–558.

Omer Levy and Yoav Goldberg. 2014. Neural Word
Embedding as Implicit Matrix Factorization. In Ad-
vances in Neural Information Processing Systems
27, pages 2177–2185.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh
Sadrzadeh, and Matthew Purver. 2014. Evaluating
Neural Word Representations in Tensor-Based Com-
positional Settings. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 708–719.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
Models of Semantic Composition. In Proceedings
of 46th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 236–244.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in Distributional Models of Semantics. Cognitive
Science, 34(8):1388–1439.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature for-
est models for probabilistic HPSG parsing. Compu-
tational Linguistics, 34(1):35–80, March.

Yusuke Miyao, Tomoko Ohta, Katsuya Masuda, Yoshi-
masa Tsuruoka, Kazuhiro Yoshida, Takashi Ni-
nomiya, and Jun’ichi Tsujii. 2006. Semantic Re-
trieval for the Accurate Identification of Relational
Concepts in Massive Textbases. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1017–
1024.

Masayasu Muraoka, Sonse Shimaoka, Kazeto Ya-
mamoto, Yotaro Watanabe, Naoaki Okazaki, and
Kentaro Inui. 2014. Finding The Best Model
Among Representative Compositional Models. In
Proceedings of the 28th Pacific Asia Conference
on Language, Information, and Computation, pages
65–74.

Tamara Polajnar, Laura Rimell, and Stephen Clark.
2014. Using Sentence Plausibility to Learn the
Semantics of Transitive Verbs. In Proceedings of
Workshop on Learning Semantics at the 2014 Con-
ference on Neural Information Processing Systems.

Richard Socher, Eric H. Huang, Jeffrey Pennin,
Christopher D Manning, and Andrew Y. Ng. 2011.
Dynamic Pooling and Unfolding Recursive Autoen-
coders for Paraphrase Detection. In Advances in
Neural Information Processing Systems 24, pages
801–809.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with Compo-
sitional Vector Grammars. In Proceedings of the

10

51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
455–465.

Rohini Srihari and Wel Li. 2000. A Question Answer-
ing System Supported by Information Extraction. In
Proceedings of the Sixth Conference on Applied Nat-
ural Language Processing, pages 166–172.

Masashi Tsubaki, Kevin Duh, Masashi Shimbo, and
Yuji Matsumoto. 2013. Modeling and Learning Se-
mantic Co-Compositionality through Prototype Pro-
jections and Neural Networks. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 130–140.

Tim Van de Cruys, Thierry Poibeau, and Anna Korho-
nen. 2013. A Tensor-based Factorization Model of
Semantic Compositionality. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1142–1151.

Tim Van de Cruys. 2014. A Neural Network Approach
to Selectional Preference Acquisition. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 26–35.

11

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 12–21,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Recursive Neural Networks Can Learn Logical Semantics

Samuel R. Bowman∗†
sbowman@stanford.edu

Christopher Potts∗
cgpotts@stanford.edu

{∗Dept. of Linguistics, †NLP Group, ‡Dept. of Computer Science}
Stanford University

Stanford, CA 94305, USA

Christopher D. Manning∗†‡
manning@stanford.edu

Abstract

Tree-structured recursive neural networks
(TreeRNNs) for sentence meaning have
been successful for many applications, but
it remains an open question whether the
fixed-length representations that they learn
can support tasks as demanding as logi-
cal deduction. We pursue this question
by evaluating whether two such models—
plain TreeRNNs and tree-structured neural
tensor networks (TreeRNTNs)—can cor-
rectly learn to identify logical relation-
ships such as entailment and contradiction
using these representations. In our first set
of experiments, we generate artificial data
from a logical grammar and use it to eval-
uate the models’ ability to learn to handle
basic relational reasoning, recursive struc-
tures, and quantification. We then evaluate
the models on the more natural SICK chal-
lenge data. Both models perform compet-
itively on the SICK data and generalize
well in all three experiments on simulated
data, suggesting that they can learn suit-
able representations for logical inference
in natural language.

1 Introduction

Tree-structured recursive neural network models
(TreeRNNs; Goller and Kuchler 1996; Socher
et al. 2011b) for sentence meaning have been
successful in an array of sophisticated language
tasks, including sentiment analysis (Socher et al.,
2011b; Irsoy and Cardie, 2014), image descrip-
tion (Socher et al., 2014), and paraphrase detection
(Socher et al., 2011a). These results are encourag-
ing for the ability of these models to learn to pro-
duce and use strong semantic representations for
sentences. However, it remains an open question
whether any such fully learned model can achieve

the kind of high-fidelity distributed representa-
tions proposed in recent algebraic work on vector
space modeling (Coecke et al., 2011; Grefenstette,
2013; Hermann et al., 2013; Rocktäschel et al.,
2014), and whether any such model can match the
performance of grammars based in logical forms
in their ability to model core semantic phenom-
ena like quantification, entailment, and contradic-
tion (Warren and Pereira, 1982; Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Liang et al.,
2013).

Recent work on the algebraic approach of Co-
ecke et al. (2011) has yielded rich frameworks for
computing the meanings of fragments of natural
language compositionally from vector or tensor
representations, but has not yet yielded effective
methods for learning these representations from
data in typical machine learning settings. Past ex-
perimental work on reasoning with distributed rep-
resentations have been largely confined to short
phrases (Mitchell and Lapata, 2010; Grefenstette
et al., 2011; Baroni et al., 2012). However, for ro-
bust natural language understanding, it is essential
to model these phenomena in their full generality
on complex linguistic structures.

This paper describes four machine learning ex-
periments that directly evaluate the abilities of
these models to learn representations that sup-
port specific semantic behaviors. These tasks fol-
low the format of natural language inference (also
known as recognizing textual entailment; Dagan
et al. 2006), in which the goal is to determine
the core inferential relationship between two sen-
tences. We introduce a novel NN architecture for
natural language inference which independently
computes vector representations for each of two
sentences using standard TreeRNN or TreeRNTN
(Socher et al., 2013) models, and produces a judg-
ment for the pair using only those representations.
This allows us to gauge the abilities of these two
models to represent all of the necessary semantic

12

information in the sentence vectors.

Much of the theoretical work on natural lan-
guage inference (and some successful imple-
mented models; MacCartney and Manning 2009;
Watanabe et al. 2012) involves natural logics,
which are formal systems that define rules of in-
ference between natural language words, phrases,
and sentences without the need of intermediate
representations in an artificial logical language.
In our first three experiments, we test our mod-
els’ ability to learn the foundations of natural lan-
guage inference by training them to reproduce the
behavior of the natural logic of MacCartney and
Manning (2009) on artificial data. This logic de-
fines seven mutually-exclusive relations of syn-
onymy, entailment, contradiction, and mutual con-
sistency, as summarized in Table 1, and it pro-
vides rules of semantic combination for project-
ing these relations from the lexicon up to com-
plex phrases. The formal properties of this sys-
tem are now well-understood (Icard and Moss,
2013a; Icard and Moss, 2013b). The first exper-
iment using this logic covers reasoning with the
bare logical relations (§3), the second extends this
to reasoning with statements constructed compo-
sitionally from recursive functions (§4), and the
third covers the additional complexity that results
from quantification (§5). Though the performance
of the plain TreeRNN model is somewhat poor
in our first experiment, we find that the stronger
TreeRNTN model generalizes well in every case,
suggesting that it has learned to simulate our target
logical concepts.

The experiments with simulated data provide a
convincing demonstration of the ability of neural
networks to learn to build and use semantic repre-
sentations for complex natural language sentences
from reasonably-sized training sets. However, we
are also interested in the more practical question of
whether they can learn these representations from
naturalistic text. To address this question, we ap-
ply our models to the SICK entailment challenge
data in §6. The small size of this corpus puts data-
hungry NN models like ours at a disadvantage,
but we are nonetheless able to achieve competi-
tive performance on it, surpassing several submit-
ted models with significant hand-engineered task-
specific features and our own NN baseline. This
suggests that the representational abilities that we
observe in the previous sections are not limited to
carefully circumscribed tasks. We conclude that

P (@) = 0.8

all reptiles walk vs. some turtles move

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N
layers

Pre-trained or randomly initialized learned word vectors
all reptiles

all reptiles walk

all reptiles walk

some turtles

some turtles move

some turtles move

Figure 1: In our model, two separate tree-
structured networks build up vector representa-
tions for each of two sentences using either NN
or NTN layer functions. A comparison layer then
uses the resulting vectors to produce features for a
classifier.

TreeRNTN models are adequate for typical cases
of natural language inference, and that there is not
yet any clear level of inferential complexity for
which other approaches work and NN models fail.

2 Tree-structured neural networks

We limit the scope of our experiments in this paper
to neural network models that adhere to the lin-
guistic principle of compositionality, which says
that the meanings for complex expressions are de-
rived from the meanings of their parts via specific
composition functions (Partee, 1984; Janssen,
1997). In our distributed setting, word meanings
are embedding vectors of dimensionN . A learned
composition function maps pairs of them to single
phrase vectors of dimension N , which can then be
merged again to represent more complex phrases,
forming a tree structure. Once the entire sentence-
level representation has been derived at the top of
the tree, it serves as a fixed-dimensional input for
some subsequent layer function.

To apply these recursive models to our task, we
propose the tree pair model architecture depicted
in Fig. 1. In it, the two phrases being compared are
processed separately using a pair of tree-structured
networks that share a single set of parameters. The
resulting vectors are fed into a separate compari-
son layer that is meant to generate a feature vec-
tor capturing the relation between the two phrases.
The output of this layer is then given to a softmax
classifier, which produces a distribution over the
seven relations represented in Table 1.

For the sentence embedding portions of the net-
work, we evaluate both TreeRNN models with the

13

Name Symbol Set-theoretic definition Example

(strict) entailment x @ y x ⊂ y turtle, reptile
(strict) reverse entailment x A y x ⊃ y reptile, turtle
equivalence x ≡ y x = y couch, sofa
alternation x | y x ∩ y = ∅ ∧ x ∪ y 6= D turtle, warthog
negation x ∧ y x ∩ y = ∅ ∧ x ∪ y = D able, unable
cover x` y x ∩ y 6= ∅ ∧ x ∪ y = D animal, non-turtle
independence x# y (else) turtle, pet

Table 1: The seven relations of MacCartney and Manning (2009)’s logic are defined abstractly on pairs
of sets drawing from the universe D, but can be straightforwardly applied to any pair of natural language
words, phrases, or sentences. The relations are defined so as to be mutually exclusive.

standard NN layer function (1) and those with the
more powerful neural tensor network layer func-
tion (2) proposed in Chen et al. (2013). The non-
linearity f(x) = tanh(x) is applied elementwise
to the output of either layer function.

~yTreeRNN = f(M
[
~x(l)

~x(r)

]
+~b)(1)

~yTreeRNTN = ~yTreeRNN + f(~x(l)TT[1...n]~x(r))(2)

Here, ~x(l) and ~x(r) are the column vector represen-
tations for the left and right children of the node,
and ~y is the node’s output. The TreeRNN concate-
nates them, multiplies them by an N × 2N ma-
trix of learned weights, and adds a bias ~b. The
TreeRNTN adds a learned full rank third-order
tensor T, of dimension N × N × N , modeling
multiplicative interactions between the child vec-
tors. The comparison layer uses the same layer
function as the composition layers (either an NN
layer or an NTN layer) with independently learned
parameters and a separate nonlinearity function.
Rather than use a tanh nonlinearity here, we found
better results with the leaky rectified linear func-
tion (Maas et al., 2013): f(x) = max(x, 0) +
0.01 min(x, 0).

Other strong tree-structured models have been
proposed in past work (Socher et al., 2014; Irsoy
and Cardie, 2014; Tai et al., 2015), but we believe
that these two provide a valuable case study, and
that positive results on here are likely to generalize
well to stronger models.

To run the model forward, we assemble the two
tree-structured networks so as to match the struc-
tures provided for each phrase, which are either
included in the source data or given by a parser.
The word vectors are then looked up from the vo-
cabulary embedding matrix V (one of the learned
model parameters), and the composition and com-
parison functions are used to pass information up

the tree and into the classifier. For an objective
function, we use the negative log likelihood of the
correct label with tuned L2 regularization.

We initialize parameters uniformly, using the
range (−0.05, 0.05) for layer parameters and
(−0.01, 0.01) for embeddings, and train the model
using stochastic gradient descent (SGD) with
learning rates computed using AdaDelta (Zeiler,
2012). The classifier feature vector is fixed at
75 dimensions and the dimensions of the recur-
sive layers are tuned manually. Training times on
CPUs vary from hours to days across experiments.
On the experiments which use artificial data, we
report mean results over five fold cross-validation,
where variance across runs is typically no more
than two percentage points. In addition, because
the classes are not necessarily balanced, we report
both accuracy and macroaveraged F1.1 Source
code and generated data can be downloaded from
http://stanford.edu/˜sbowman/.

3 Reasoning about semantic relations

The simplest kinds of deduction in natural logic
involve atomic statements using the relations in
Table 1. For instance, from the relation p1 A p2

between two propositions, one can infer the rela-
tion p2 @ p1 by applying the definitions of the
relations directly. If one is also given the relation
p2 A p3 one can conclude that p1 A p3, by basic
set-theoretic reasoning (transitivity of A). The full
set of sound such inferences on pairs of premise
relations is depicted in Table 2. Though these ba-
sic inferences do not involve compositional sen-
tence representations, any successful reasoning
using compositional representations will rely on
the ability to perform sound inferences of this kind

1We compute macroaveraged F1 as the harmonic mean
of average precision and average recall, both computed for
all classes for which there is test data, setting precision to 0
where it is not defined.

14

≡ @ A ∧ | ` #
≡ ≡ @ A ∧ | ` #
@ @ @ · | | · ·
A A · A ` · ` ·
∧ ∧ ` | ≡ A @ #
| | · | @ · @ ·
` ` ` · A A · ·
· · # · · ·

Table 2: In §3, we assess our models’ ability to
learn to do inference over pairs of relations using
the rules represented here, which are derived from
the definitions of the relations in Table 1. As an ex-
ample, given that p1 @ p2 and p2

∧ p3, the entry in
the @ row and the ∧ column lets us conclude that
p1 | p3. Cells containing a dot correspond to situa-
tions for which no valid inference can be drawn.

Train Test

only 53.8 (10.5) 53.8 (10.5)
15d NN 99.8 (99.0) 94.0 (87.0)
15d NTN 100 (100) 99.6 (95.5)

Table 3: Performance on the semantic relation ex-
periments. These results and all other results on
artificial data are reported as mean accuracy scores
over five runs followed by mean macroaveraged
F1 scores in parentheses. The “# only” entries
reflect the frequency of the most frequent class.

in order to be able to use unseen relational facts
within larger derivations. Our first experiment
studies how well each model can learn to perform
them them in isolation.

Experiments We begin by creating a world
model on which we will base the statements in
the train and test sets. This takes the form of a
small Boolean structure in which terms denote sets
of entities from a small domain. Fig. 2a depicts
a structure of this form with three entities (a, b,
and c) and eight proposition terms (p1–p8). We
then generate a relational statement for each pair
of terms in the model, as shown in Fig. 2b. We
divide these statements evenly into train and test
sets, and delete the test set examples which can-
not be proven from the train examples, for which
there is not enough information for even an ideal
system to choose a correct label. In each experi-
mental run, we create a model with 80 terms over
a domain of 7 elements, yielding a training set of
3200 examples and a test set of 2960 examples.

We trained models with both the NN and NTN

{a, b, c}

p1, p2

{a, b}
p3

{a, c}
p4

{b, c}

p5, p6

{a} {b}
p7, p8

{c}

{}
(a) Example boolean structure, shown with edges idicat-
ing inclusion. The terms p1–p8 name the sets. Not all
sets have names, and some sets have multiple names, so
that learning ≡ is non-trivial.

Train Test

p1 ≡ p2 p2
∧ p7

p1 A p5 p2 A p5

p4 A p8 p5 ≡ p6

p5 | p7 p7 @ p4

p7
∧ p1 p8 @ p4

(b) A few examples of atomic statements about the
model depicted above. Test statements that are not
provable from the training data shown are crossed out.

Figure 2: Small example structure and data for
learning relation composition.

comparison functions on these data sets.2 In both
cases, the models are implemented as described in
§2, but since the items being compared are single
terms rather than full tree structures, the composi-
tion layer is not used, and the two models are not
recursive. We simply present the models with the
(randomly initialized) embedding vectors for each
of two terms, ensuring that the model has no infor-
mation about the terms being compared except for
the relations between them that appear in training.

Results The results (Table 3) show that NTN is
able to accurately encode the relations between the
terms in the geometric relations between their vec-
tors, and is able to then use that information to re-
cover relations that are not overtly included in the
training data. The NN also generalizes fairly well,
but makes enough errors that it remains an open
question whether it is capable of learning repre-
sentations with these properties. It is not possible
for us to rule out the possibility that different opti-
mization techniques or finer-grained hyperparam-
eter tuning could lead an NN model to succeed.

As an example from our test data, both mod-

2Since this task relies crucially on the learning of a pair of
vectors, no simpler version of our model is a viable baseline.

15

els correctly labeled p1 @ p3, potentially learning
from the training examples {p1 @ p51, p3 A p51}
or {p1 @ p65, p3 A p65}. On another example
involving comparably frequent relations, the NTN
correctly labeled p6 A p24, likely on the basis of
the training examples {p6 `p28, p28

∧ p24}, while
the NN incorrectly assigned it #.

4 Recursive structure

A successful natural language inference system
must reason about relations not just over famil-
iar atomic symbols, but also over novel structures
built up recursively from these symbols. This sec-
tion shows that our models can learn a composi-
tional semantics over such structures. In our evalu-
ations, we exploit the fact that our logical language
is infinite by testing on strings that are longer and
more complex than any seen in training.

Experiments As in §3, we generate artificial
data from a formal system, but we now replace
the unanalyzed symbols from that experiment
with complex formulae. These formulae repre-
sent a complete classical propositional logic: each
atomic symbol is a variable over the domain {T,
F}, and the only operators are truth-functional
ones. Table 4a defines this logic, and Table 4b
gives some short examples of relational statements
from our data. To compute these relations between
statements, we exhaustively enumerate the sets of
assignments of truth values to propositional vari-
ables that would satisfy each of the statements, and
then we convert the set-theoretic relation between
those assignments into one of the seven relations
in Table 1. As a result, each relational statement
represents a valid theorem of the propositional
logic, and to succeed, the models must learn to re-
produce the behavior of a theorem prover.3

In our experiments, we randomly generate
unique pairs of formulae containing up to 12 in-
stances of logical operators each and compute the
relation that holds for each pair. We discard pairs
in which either statement is either a tautology or a
contradiction, for which the seven relations in Ta-
ble 1 are undefined. The resulting set of formula

3 Socher et al. (2012) show that a matrix-vector TreeRNN
model somewhat similar to our TreeRNTN can learn boolean
logic, a logic where the atomic symbols are simply the values
T and F. While learning the operators of that logic is not triv-
ial, the outputs of each operator can be represented accurately
by a single bit. In the much more demanding task presented
here, the atomic symbols are variables over these values, and
the sentence vectors must thus be able to distinguish up to 226

distinct conditions on valuations.

Formula Interpretation

p1, p2, p3, p4, p5, p6 JxK ∈ {T,F}
notϕ T iff JϕK = F
(ϕ and ψ) T iff F /∈ {JϕK, JψK}
(ϕ or ψ) T iff T ∈ {JϕK, JψK}

(a) Well-formed formulae. ϕ and ψ range over all well-
formed formulae, and J·K is the interpretation function
mapping formulae into {T,F}.

not p3
∧ p3

not not p6 ≡ p6

p3 @ (p3 or p2)
(p1 or (p2 or p4)) A (p2 and not p4)

not (not p1 and not p2) ≡ (p1 or p2)

(b) Short examples of the type of statements used for
training and testing. These are relations between well-
formed formulae, computed in terms of sets of satisfying
interpretation functions J·K.

Table 4: Natural logic relations over sentences of
propositional logic.

pairs is then partitioned into 12 bins according the
number of operators in the larger of the two formu-
lae. We then sample 20% of each bin for a held-
out test set. If we do not implement any constraint
that the two statements being compared are similar
in any way, then the generated data are dominated
by statements in which the two formulae refer to
largely separate subsets of the six variables, which
means that the # relation is almost always cor-
rect. In an effort to balance the distribution of re-
lation labels without departing from the basic task
of modeling propositional logic, we disallow indi-
vidual pairs of statements from referring to more
than four of the six propositional variables.

In order to test the model’s generalization to un-
seen structures, we discard training examples with
more than 4 logical operators, yielding 60k short
training examples, and 21k test examples across
all 12 bins. In addition to the two tree models, we
also train a summing NN baseline which is largely
identical to the TreeRNN, except that instead of
using a learned composition function, it simply
sums the term vectors in each expression to com-
pose them before passing them to the comparison
layer. Unlike the two tree models, this baseline
does not use word order, and is as such guaranteed
to ignore some information that it would need in
order to succeed perfectly.

Results Fig. 3 shows the relationship between
test accuracy and statement size. While the sum-
ming baseline model performed poorly across the

16

25d$TreeRNTN45d$TreeRNN45d$SumNN #$only

1 0.997436 1 0.912822 0.55641026
2 1 1 0.769072 0.54370894
3 0.998156 0.99208 0.673682 0.55973684
4 0.992548 0.98416 0.569818 0.52244508
5 0.944722 0.958418 0.532628 0.53370183
6 0.917322 0.9446 0.508392 0.53020632
7 0.884528 0.930692 0.484128 0.51434879
8 0.847334 0.91881 0.468566 0.51935768
9 0.815692 0.881188 0.44767 0.48873109
10 0.784936 0.89109 0.440252 0.50021901
11 0.784942 0.857428 0.459278 0.5156038
12 0.757292 0.847528 0.420036 0.50459841

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

A
cc

ur
ac

y

Size of longer expression

25d TreeRNTN

45d TreeRNN

45d SumNN

only

Figure 3: Results on recursive structure. The ver-
tical dotted line marks the size of the longest train-
ing examples.

board, we found that both recursive models were
able to perform well on unseen small test ex-
amples, with TreeRNN accuracy above 98% and
TreeRNTN accuracy above 99% on formulae be-
low length five, indicating that they learned correct
approximations of the underlying logic. Training
accuracy was 66.6% for the SumNN, 99.4% for
the TreeRNN, and 99.8% for the TreeRNTN.

After the size four training cutoff, performance
gradually decays with expression size for both
tree models, suggesting that the learned approx-
imations were accurate but lossy. Despite the
TreeRNTN’s stronger performance on short sen-
tences, its performance decayed more quickly than
the TreeRNN’s. This suggests to us that it learned
to interpret many specific fixed-size tree structures
directly, allowing it to get away without learning
as robust generalizations about how to compose
terms in the general case. Two factors may have
contributed to the learning of these narrower gen-
eralizations: even with the lower dimension, the
TreeRNTN composition function has about eight
times as many parameters as the TreeRNN, and
the TreeRNTN worked best with weaker L2 reg-
ularization than the TreeRNN (λ = 0.0003 vs.
0.001). However, even in the most complex set
of test examples, the TreeRNTN classifies true ex-
amples of every class but ≡ (which is rare in long
examples, and occurs only once here) correctly the
majority of the time, and the performance of both
models on those examples indicates that both have
learned reasonable approximations of the underly-
ing theorem proving task over recursive structure.

5 Reasoning with quantifiers and
negation

We have seen that recursive models can learn an
approximation of propositional logic. However,
natural languages can express functional meanings
of considerably greater complexity than this. As a
key test of whether our models can capture this
complexity, we now study the degree to which
they are able to develop suitable representations
for the semantics of natural language quantifiers
like most and all as they interact with negation
and lexical entailments. Quantification and nega-
tion are far from the only place in natural language
where complex functional meanings are found, but
they are natural focus, since they have formed a
standard case study in prior formal work on natu-
ral language inference (Icard and Moss, 2013b).

Experiments Our data consist of pairs of sen-
tences generated from a grammar for a sim-
ple English-like artificial language. Each sen-
tence contains a quantifier, a noun which may be
negated, and an intransitive verb which may be
negated. We use the quantifiers some, most, all,
two, and three, and their negations no, not-all,
not-most, less-than-two, and less-than-three, and
also include five nouns, four intransitive verbs,
and the negation symbol not. In order to be able
to define relations between sentences with differ-
ing lexical items, we define the lexical relations
for each noun–noun pair, each verb–verb pair, and
each quantifier–quantifier pair. The grammar then
generates pairs of sentences and calculates the re-
lations between them. For instance, our models
might then see pairs like (3) and (4) in training
and be required to then label (5).

(most turtle) swim | (no turtle) move(3)

(all lizard) reptile @ (some lizard) animal(4)

(most turtle) reptile | (all turtle) (not animal)(5)

In each run, we randomly partition the set of
valid single sentences into train and test, and then
label all of the pairs from within each set to gen-
erate a training set of 27k pairs and a test set of
7k pairs. Because the model doesn’t see the test
sentences at training time, it cannot directly use
the kind of reasoning described in §3 at the sen-
tence level (by treating sentences as unanalyzed
symbols), and must instead jointly learn the word-
level relations and a complete reasoning system
over them for our logic.

17

Train Test

only 35.4 (7.5) 35.4 (7.5)
25d SumNN 96.9 (97.7) 93.9 (95.0)
25d TreeRNN 99.6 (99.6) 99.2 (99.3)
25d TreeRNTN 100 (100) 99.7 (99.5)

Table 5: Performance on the quantifier experi-
ments, given as % correct and macroaveraged F1.

We use the same summing baseline as in §4.
The highly consistent sentence structure in this ex-
periment means that this model is not as disadvan-
taged by the lack of word order information as it is
in the previous experiment, but the variable place-
ment of not nonetheless introduces potential un-
certainty in the 58.8% of examples that contain a
sentence with a single token of it.

Results The results (Table 5) show that both tree
models are able to learn to generalize the underly-
ing logic almost perfectly. The baseline summing
model can largely memorize the training data, but
does not generalize as well. We do not find any
consistent pattern in the handful of errors made by
either tree model, and no errors were consistent
across model restarts, suggesting that there is no
fundamental obstacle to learning a perfect model
for this problem.

6 The SICK textual entailment challenge

The specific model architecture that we use is
novel, and though the underlying tree structure ap-
proach has been validated elsewhere, our experi-
ments so far do not guarantee that it viable model
for handling inference over real natural language
data. To investigate our models’ ability to handle
the noisy labels and the diverse range of linguis-
tic structures seen in typical natural language data,
we use the SICK textual entailment challenge cor-
pus (Marelli et al., 2014b). The corpus consists of
about 10k natural language sentence pairs, labeled
with entailment, contradiction, or neutral. At only
a few thousand distinct sentences (many of them
variants on an even smaller set of template sen-
tences), the corpus is not large enough to train a
high quality learned model of general natural lan-
guage, but it is the largest human-labeled entail-
ment corpus that we are aware of, and our results
nonetheless show that tree-structured NN models
can learn to approximate natural logic-style infer-
ence in the real world.

Adapting to this task requires us to make a few

additions to the techniques discussed in §2. In or-
der to better handle rare words, we initialized our
word embeddings using 200 dimensional vectors
trained with GloVe (Pennington et al., 2014) on
data from Wikipedia. Since 200 dimensional vec-
tors are too large to be practical in an TreeRNTN
on a small dataset, a new embedding transforma-
tion layer is needed. Before any embedding is
used as an input to a recursive layer, it is passed
through an additional tanh neural network layer
with the same output dimension as the recursive
layer. This new layer allows the model to choose
which aspects of the 200 dimensional represen-
tations from the unsupervised source it most val-
ues, rather than relying on GloVe—which is has no
knowledge of the task—to do so, as would be the
case were GloVe asked to directly produce vectors
of the lower dimensionality. An identical layer is
added to the SumNN between the word vectors
and the comparison layer.

We also supplemented the SICK training data4

(4500 examples) with 600k examples of approxi-
mate entailment data from the Denotation Graph
project (DG, Hodosh et al. 2014, also used by the
winning SICK submission), a corpus of noisy au-
tomatically labeled entailment examples over im-
age captions, the same genre of text from which
SICK was drawn. We trained a single model on
data from both sources, but used a separate set of
softmax parameters for classifying into the labels
from each source, and forced the model to sample
SICK examples and DG examples about equally
often during training.

We parsed the data from both sources with the
Stanford PCFG Parser v. 3.3.1 (Klein and Man-
ning, 2003). We also found that we were able to
train a working model much more quickly with
an additional technique: we collapse subtrees that
were identical across both sentences in a pair by
replacing them with a single head word. The train-
ing and test data on which we report performance
are collapsed in this way, and both collapsed and
uncollapsed copies of the training data are used in
training. Finally, in order to improve regulariza-
tion on the noisier data, we used dropout (Srivas-
tava et al., 2014) at the input to the comparison
layer (10%) and at the output from the embedding

4We tuned the model using performance on a held out de-
velopment set, but report performance here for a version of
the model trained on both the training and development data
and tested on the 4,928 example SICK test set. We also report
training accuracy on a small sample from each data source.

18

The patient is being helped by the doctor entailment The doctor is helping the patient (PASSIVE)
A little girl is playing the violin on a beach contradiction There is no girl playing the violin on a beach (NEG)
The yellow dog is drinking water from a bottle contradiction The yellow dog is drinking water from a pot (SUBST)
A woman is breaking two eggs in a bowl neutral A man is mixing a few ingredients in a bowl (MULTIED)
Dough is being spread by a man neutral A woman is slicing meat with a knife (DIFF)

Table 6: Examples of each category used in error analysis from the SICK test data.

neutral 30d 30d 50d
only SumNN TrRNN TrRNTN

DG Train 50.0 68.0 67.0 74.0
SICK Train 56.7 96.6 95.4 97.8
SICK Test 56.7 73.4 74.9 76.9

PASSIVE (4%) 0 76 68 88
NEG (7%) 0 96 100 100
SUBST (24%) 28 72 64 72
MULTIED (39%) 68 61 66 64
DIFF (26%) 96 68 79 96

SHORT (47%) 50.0 73.9 73.5 77.3

Table 7: Classification accuracy, including a cat-
egory breakdown for SICK test data. Categories
are shown with their frequencies.

transform layer (25%).

Results Despite the small amount of high qual-
ity training data available and the lack of resources
for learning lexical relationships, the results (Ta-
ble 7) show that our tree-structured models per-
form competitively on textual entailment, beating
a strong baseline. Neither model reached the per-
formance of the winning system (84.6%), but the
TreeRNTN did exceed that of eight out of 18 sub-
mitted systems, including several which used so-
phisticated hand-engineered features and lexical
resources specific to the version of the entailment
task at hand.

To better understand our results, we manually
annotated a fraction of the SICK test set, using
mutually exclusive categories for passive/active
alternation pairs (PASSIVE), pairs differing only
by the presence of negation (NEG), pairs differing
by a single word or phrase substitution (SUBST),
pairs differing by multiple edits (MULTIED), and
pairs with little or no content word overlap (DIFF).
Examples of each are in Table 6. We annotated
100 random examples to judge the frequency of
each category, and continued selectively annotat-
ing until each category contained at least 25. We
also use the category SHORT for pairs in which
neither sentence contains more than ten words.

The results (Table 7) show that the TreeRNTN
performs especially strongly in the two categories

which pick out specific syntactic configurations,
PASSIVE and NEG, suggesting that that model
has learned to encode the relevant structures well.
It also performs fairly on SUBST, which most
closely parallels the lexical entailment inferences
addressed in §5. In addition, none of the models
perform dramatically better on the SHORT pairs
than on the rest of the data, suggesting that the
performance decay observed in §4 may not impact
models trained on typical natural language text.

It is known that a model can perform well on
SICK (like other natural language inference cor-
pora) without taking advantage of compositional
syntactic or semantic structure (Marelli et al.,
2014a), and our summing baseline model is pow-
erful enough to do this. Our tree models nonethe-
less perform substantially better, and we remain
confident that given sufficient data, it should be
possible for the tree models, and not the summing
model, to learn a truly high-quality solution.

7 Discussion and conclusion

This paper first evaluates two recursive models on
three natural language inference tasks over clean
artificial data, covering the core relational alge-
bra of natural logic with entailment and exclu-
sion, recursive structure, and quantification. We
then show that the same models can learn to per-
form an entailment task on natural language. The
results suggest that TreeRNTNs, and potentially
also TreeRNNs, can learn to faithfully reproduce
logical inference behaviors from reasonably-sized
training sets. These positive results are promising
for the future of learned representation models in
the applied modeling of compositional semantics.

Some questions about the abilities of these mod-
els remain open. Even the TreeRNTN falls short
of perfection in the recursion experiment, with
performance falling off steadily as the size of the
expressions grows. It remains to be seen whether
these deficiencies are limiting in practice, and
whether they can be overcome with stronger mod-
els or learning techniques. In addition, interesting
analytical questions remain about how these mod-

19

els encode the underlying logics. Neither the un-
derlying logical theories, nor any straightforward
parameter inspection technique provides much in-
sight on this point, but we hope that further exper-
iments may reveal structure in the learned param-
eters or the representations they produce.

Our SICK experiments similarly only begin to
reveal the potential of these models to learn to per-
form complex semantic inferences from corpora,
and there is ample room to develop our under-
standing using new and larger sources of natural
language data. Nonetheless, the rapid progress the
field has made with these models in recent years
provides ample reason to be optimistic that learned
representation models can be trained to meet all
the challenges of natural language semantics.

Acknowledgments
We thank Jeffrey Pennington and Richard Socher,
as well as Neha Nayak for developing the SICK
collapsing technique.

We also gratefully acknowledge support from
a Google Faculty Research Award, a gift from
Bloomberg L.P., the Defense Advanced Re-
search Projects Agency (DARPA) Deep Explo-
ration and Filtering of Text (DEFT) Program un-
der Air Force Research Laboratory (AFRL) con-
tract no. FA8750-13-2-0040, the National Science
Foundation under grant no. IIS 1159679, and the
Department of the Navy, Office of Naval Re-
search, under grant no. N00014-10-1-0109. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
authors and do not necessarily reflect the views
of Google, Bloomberg L.P., DARPA, AFRL NSF,
ONR, or the US government.

References
M. Baroni, R. Bernardi, N.Q. Do, and C.C. Shan. 2012.

Entailment above the word level in distributional se-
mantics. In Proc. EACL.

D. Chen, R. Socher, C.D. Manning, and A.Y. Ng. 2013.
Learning new facts from knowledge bases with neu-
ral tensor networks and semantic word vectors. In
Proc. ICLR.

B. Coecke, M. Sadrzadeh, and S. Clark. 2011. Math-
ematical foundations for a compositional distributed
model of meaning. Linguistic Analysis, 36(1–4).

I. Dagan, O. Glickman, and B. Magnini. 2006. The
PASCAL Recognising Textual Entailment Chal-
lenge. In Machine Learning Challenges. Evaluating

Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment. Springer.

C. Goller and A. Kuchler. 1996. Learning task-
dependent distributed representations by backprop-
agation through structure. In Proc. IEEE Interna-
tional Conference on Neural Networks.

E. Grefenstette, M. Sadrzadeh, S. Clark, B. Coecke,
and S. Pulman. 2011. Concrete sentence spaces for
compositional distributional models of meaning. In
Proc. IWCS.

E. Grefenstette. 2013. Towards a formal distributional
semantics: Simulating logical calculi with tensors.
In Proc. *SEM.

K.M. Hermann, E. Grefenstette, and P. Blunsom. 2013.
“Not not bad” is not “bad”: A distributional account
of negation. In Proc. of the 2013 Workshop on Con-
tinuous Vector Space Models and their Composition-
ality.

M. Hodosh, P. Young, A. Lai, and J. Hockenmaier.
2014. From image descriptions to visual denota-
tions: New similarity metrics for semantic inference
over event descriptions. TACL.

T.F. Icard and L.S. Moss. 2013a. A complete calculus
of monotone and antitone higher-order functions. In
N. Galatos, A. Kurz, and C. Tsinakis, editors, Proc.
Topology, Algebra, and Categories in Logic.

T.F. Icard and L.S. Moss. 2013b. Recent progress on
monotonicity. LILT, 9(7).

O. Irsoy and C. Cardie. 2014. Deep recursive neural
networks for compositionality in language. In Proc.
NIPS.

T.M.V. Janssen. 1997. Compositionality. In J. van
Benthem and A. ter Meulen, editors, Handbook of
Logic and Language. MIT Press and North-Holland.

D. Klein and C.D. Manning. 2003. Accurate unlexi-
calized parsing. In Proc. ACL.

P. Liang, M.I. Jordan, and D. Klein. 2013. Learning
dependency-based compositional semantics. Com-
putational Linguistics, 39(2).

A.L. Maas, A.Y. Hannun, and A.Y. Ng. 2013. Recti-
fier nonlinearities improve neural network acoustic
models. In Proc. ICML.

B. MacCartney and C.D. Manning. 2009. An extended
model of natural logic. In Proc. IWCS.

M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi,
S. Menini, and R. Zamparelli. 2014a. SemEval-
2014 task 1: Evaluation of compositional distribu-
tional semantic models on full sentences through se-
mantic relatedness and textual entailment. SemEval-
2014.

20

M. Marelli, S. Menini, M. Baroni, L. Bentivogli,
R. Bernardi, and R. Zamparelli. 2014b. A SICK
cure for the evaluation of compositional distribu-
tional semantic models. In Proc. LREC.

J. Mitchell and M. Lapata. 2010. Composition in dis-
tributional models of semantics. Cognitive Science,
34(8).

B.H. Partee. 1984. Compositionality. In Fred Land-
man and Frank Veltman, editors, Varieties of Formal
Semantics. Foris.

J. Pennington, R. Socher, and C.D. Manning. 2014.
GloVe: Global vectors for word representation. In
Proc. EMNLP.

T. Rocktäschel, M. Bosnjak, S. Singh, and S. Riedel.
2014. Low-dimensional embeddings of logic. In
Proc. the ACL 2014 Workshop on Semantic Parsing.

R. Socher, E.H. Huang, J. Pennington, C.D. Manning,
and A.Y. Ng. 2011a. Dynamic pooling and unfold-
ing recursive autoencoders for paraphrase detection.
In Proc. NIPS.

R. Socher, J. Pennington, E.H. Huang, A.Y. Ng, and
C.D. Manning. 2011b. Semi-supervised recursive
autoencoders for predicting sentiment distributions.
In Proc. EMNLP.

R. Socher, B. Huval, C.D. Manning, and A.Y. Ng.
2012. Semantic compositionality through recursive
matrix-vector spaces. In Proc. EMNLP.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Man-
ning, A.Y. Ng, and C. Potts. 2013. Recursive deep
models for semantic compositionality over a senti-
ment treebank. In Proc. EMNLP.

R. Socher, A. Karpathy, Q.V. Le, C.D. Manning, and
A.Y. Ng. 2014. Grounded compositional semantics
for finding and describing images with sentences.
TACL.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. 2014. Dropout: A sim-
ple way to prevent neural networks from overfitting.
JMLR, 15(1).

K.S. Tai, R. Socher, and C.D. Manning. 2015.
Improved semantic representations from tree-
structured long short-term memory networks. In
Proc. ACL.

D.H.D. Warren and F.C.N. Pereira. 1982. An efficient
easily adaptable system for interpreting natural lan-
guage queries. American Journal of Computational
Linguistics.

Y. Watanabe, J. Mizuno, E. Nichols, N. Okazaki, and
K. Inui. 2012. A latent discriminative model for
compositional entailment relation recognition using
natural logic. In Proc. COLING.

M.D. Zeiler. 2012. ADADELTA: An adaptive learning
rate method. arXiv:1212.5701.

J.M. Zelle and R.J. Mooney. 1996. Learning to
parse database queries using inductive logic pro-
gramming. In Proc. AAAI.

L.S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In Proc.
of the 21st Conference on Uncertainty in Artificial
Intelligence.

21

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 22–31,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Concept Extensions as the Basis for Vector-Space Semantics: Combining
Distributional and Ontological Information about Entities

Jackie Chi Kit Cheung
McGill University
3480 University

Montreal, Quebec, Canada
jcheung@cs.mcgill.ca

Abstract

We propose to base the development of
vector-space models of semantics on con-
cept extensions, which defines concepts to
be sets of entities. We investigate two
sources of knowledge about entities that
could be relevant: distributional informa-
tion provided by word or phrase embed-
dings, and ontological information derived
from a knowledge base. We develop a
feedforward neural network architecture
to learn entity representations that are used
to predict their concept memberships, and
show that the two sources of information
are actually complementary. In an entity
ranking experiment, the combination ap-
proach that uses both types of information
outperforms models that only rely on one
of the two. We also perform an analysis of
the output using fuzzy logic techniques to
demonstrate the potential of learning con-
cept extensions for supporting inference
involving classical semantic operations.

1 Introduction

The extensional definition, or denotation, of a con-
cept is the set of entities in the world to which that
concept applies. For example, the definition of
Celebrity would be the set of entities in the world,
including Will Smith, Paris Hilton, etc.

In formal semantics and pragmatics, this con-
ception of meaning has played an important role
in the accounts of a wide range of compositional
constructions, including definite and indefinite ar-
ticles, quantifiers, presuppositions, and intersec-
tive adjectives. For example, the extension of
a noun phrase such as “red apple” that is com-

posed of a noun and a modifying adjective is de-
rived by taking the set intersection of the exten-
sions of “red” and “apple”. In an applied setting,
explicitly enumerating the members of these ex-
tensions seems to be an impossible task, as there
are large numbers of entities and relations, not to
mention infinitely many possible contexts and do-
mains. Thus, the direct application of this view
of semantics would seem to be confined to limited
domains.

Distributional semantics is a potential solution
to this problem. The long-touted advantages of
distributional approaches are that they can be eas-
ily trained from a large corpus, and they enable a
graded notion of similarity. Typically, such mod-
els are trained to optimize distributional criteria
based on similarity correlations or predicting a
word in context. However, it is not enough to
rely solely on these criteria. Similarity only sup-
ports relative reasoning about relations between
concepts, and it is difficult to adapt such mea-
sures to make absolute inferences about the truth
value of a proposition. The applications of distri-
butional semantics (DS) to date have reflected this
bias. The most common approach to evaluate DS
models has been to correlate predicted similarity
judgments against judgments gathered from hu-
mans (Finkelstein et al., 2002; Agirre et al., 2012).
More recent applications in paraphrase detection
(Socher et al., 2011), textual entailment (Beltagy
et al., 2013) and analogical reasoning (Mikolov et
al., 2013) are also primarily concerned with the re-
lationships between phrases.

A more serious issue is that distributional se-
mantics alone seems to be insufficient for handling
rarely occurring events and entities, if we treat
them as just another target phrase in the corpus.
Consider the following passage:

22

(1) He is an American actor, producer, and
rapper. As of 2014, 17 of the 21 films in
which he has had leading roles have
accumulated worldwide gross earnings of
over $100 million each.

Given just this short description of the entity, we
are able to make several inferences about its prop-
erties. For example, we are able to infer that this
entity is a male human, working in the entertain-
ment industry. He can most likely vote in Ameri-
can elections, obtain a passport, and he is likely a
wealthy celebrity, given the success of the movies
he has acted in. We might even be able to guess
the identity of this person (Will Smith)1.

While it may be possible to learn these char-
acteristics from the contexts of the bigram “Will
Smith” in a large training corpus, this is less plau-
sible for a rarely occurring, or perhaps an entirely
invented entity. Clearly, these inferences are en-
abled by extracting the concept and relational in-
formation present in the local context, then relat-
ing them to other concepts of interest based on our
knowledge of the world.

In this paper, we propose to use concept exten-
sion predictions as the overall training objective
of a vector-space model of semantics. While dis-
tributional information will still be a crucial com-
ponent of our model, what distinguishes our ap-
proach is that it optimizes directly for an objective
which is well justified by compositional theories
of semantics, rather than an objective that is inter-
nal to considerations within distributional seman-
tics such as similarity measurements.

To predict these concept extensions, we train a
model that learns a representation of an input en-
tity using features derived from distributional se-
mantics and ontological information derived from
a knowledge base. Our model, which we call
Ontological Distributional Semantics, employs a
simple feedforward neural network architecture to
learn interactions between these two sources of in-
formation.

We conduct experiments on Freebase (Bol-
lacker et al., 2008), taking Freebase types to be
concepts, and the entity set that the Freebase type
contains to be that concept’s extension. The results
of an entity ranking experiment show that Onto-
logical Distributed Semantics outperforms either
distributed representations or ontological informa-
tion alone across three entity classes.

1This passage is an edited version of his Wikipedia article.

Because a large, complete knowledge base may
not always be available, we further test our model
under conditions in which there is incomplete on-
tological knowledge about an entity, and we ana-
lyze the relative contributions of the distributional
and ontological components of our model.

Finally, to illustrate how our approach can take
advantage of insights from classical approaches to
semantics, we develop a method to extract seman-
tic relations between concepts from the output pre-
dictions of our model without further training us-
ing fuzzy set logic operations. These results argue
for the importance of learning concept extensions
not just to develop a better model of entities, but
also as a potential method to better integrate dis-
tributional semantics with formal, compositional
approaches to semantics.

2 Related Work

Several models have recently been proposed
which combine distributional with ontological in-
formation (Fried and Duh, 2014; Yang et al.,
2014). The goal of these papers is to encode the
ontological relationships as some kind of regular-
ity in the learned vector space, usually as a lin-
ear transformation; e.g., that objective encourages
there to be a consistent vector addition operation
that represents the part-of relationship between
two concepts. By contrast, our work argues for
an entirely different kind of objective function for
a vector-space model motivated by classical com-
positional semantics.

Herbelot and Ganesalingam (2013) investigate
KL-divergence of a semantic vector as a simple
information-theoretic measure to determine hyper-
nym/hyponym relations, but found that this was
outperformed by a word frequency baseline. Other
work employs distributional similarity to learn to
cluster concepts into a hierarchy (Yamada et al.,
2009, for example). There have also been super-
vised methods for hypernymy detection (Roller et
al., 2014, for example). Typically, this is done
for upward-entailing concept-to-concept reason-
ing, for example between word pairs (e.g., van en-
tails car) as in the BLESS data set (Baroni and
Lenci, 2011).

Another thread of related work is in relation ex-
traction (Banko et al., 2007; Bunescu and Mooney,
2007; Riedel et al., 2013, for example), and
knowledge base population, such as the TAC
shared task (McNamee and Dang, 2009). This

23

work is concerned with extracting the relation-
ships between entities, in order to improve the
quality of a database. Our work can be seen as
a way of integrating distributional semantics into
large-scale reasoning about entities.

Most recently, Gupta et al. (2015) investigate a
similar problem, using a logistic regression model
to map features derived from distributional meth-
ods to referential properties of countries that are
derived from Freebase. In our work, we explore
the effect of combining distributional and ontolog-
ical information, and perform a number of analy-
ses on the output of our models.

3 Framework and Model

Our model is designed to learn entity representa-
tions that are useful for predicting concept exten-
sions, which are sets of entities in the domain. Let
C = {c1, c2, ...} be the set of concepts of interest,
and E = {e1, e2, ...} be the set of entities. Since
we are interested in extensional meaning, each
concept c is defined by its extension, exten(c), a
set of elements drawn from E. Rather than explic-
itly enumerating these sets, we instead aim to learn
a function f : E → P(C) that maps an input en-
tity to the concepts of which it is an element. For
example, f(Will Smith) would evaluate to the con-
cepts Male and Actor, but also ¬Female, among
others.

We frame this as a supervised multi-label clas-
sification problem. For an entity e ∈ E, the input
to the classifier is a feature vector representation
of the entity, ~x. The classifier predicts a binary
output vector ~y of length |C|, in which yk = 1
means that e ∈ exten(ck), and yk = 0 means that
e /∈ exten(ck). In our experiments, we will actu-
ally assume that the classifier makes probabilistic,
“soft” decisions, so that the entries of the output
vector will range from 0 to 1, representing the pre-
dicted probability of the entity being a member of
the concept extension.

It is possible to view this task as a series of
standard binary classification problems, one for
each of the concepts. However, this would require
training a large number of concept-specific mod-
els. Our hope in learning entity representations is
that they will be more generally useful, for exam-
ple, in a compositional setting in which inferences
are to be made about phrases containing entities
for which we have already learned a representa-
tion.

3.1 Input features
We now specify the input feature vector represen-
tation of the entity, as well as a learning algorithm
for the function f . Our full model combines onto-
logical information with pre-trained distributional
semantic vectors to learn the extensional meaning
of concepts. To measure the effect of each of these
components, we also train baseline versions of the
model that omit one or the other feature set. Thus,
we compare the following three sets of features:

DS We derive a distributional vector of features
from word2vec, a popular recent approach to dis-
tributional semantics (Mikolov et al., 2013). We
use the 300-dimensional pre-trained vectors avail-
able on their website, which include both single-
word and multi-word entities. We chose word2vec
as it is a popular recent model of distributional se-
mantics which has been shown to work well on
a variety of existing semantic tasks (Baroni et al.,
2014). We leave the comparison of this model to
other recent distributional semantic models (Pen-
nington et al., 2014, for example) to future work.

ONTO For the ontological features, we derive an
ontological vector of an entity from its Freebase
entry. Each dimension of the ontological vector
corresponds to a concept, represented by a Free-
base type. The vector takes a value of 1 at that di-
mension if the entity is an instance of that concept,
and 0 otherwise. For example, if the first three di-
mensions of the ontological vector correspond to
the concepts Male, Actor, and Female, their val-
ues for the ontological vector of Will Smith would
be 1, 1, and 0, respectively.

ONTODS We concatenate the above two feature
vectors into an ontological distributional semantic
vector.

3.2 Learning algorithm
The learning algorithm of our model is a sim-
ple feedforward neural network. The neural net-
work has one hidden layer, the entity representa-
tion, which is then used to predict the output vec-
tor ~y. The network is trained by stochastic gradi-
ent descent with a mean squared error loss, a sig-
moid nonlinearity and weight decay. All of the
parameters to the model are tuned according to
performance on a held-out development set (Sec-
tion 4.1).

Using a neural network offers several advan-
tages. First, despite its simplicity, it is able to learn

24

Concept predictions

Entity representation

Ontological vectorDistributional vector

Figure 1: Graphical representation of the ON-
TODS model as a feedforward neural network ar-
chitecture

a more complex function over the vector space
than the typical candidates for inference with dis-
tributional semantics; namely, vector addition and
cosine similarity. Second, we are able to train one
model that jointly predicts all of the concept la-
bels in one feedforward pass, rather than training
separate classifiers for each concept. A graphical
representation of the architecture of our model is
presented in Figure 1.

Note that in this architecture, both the ontologi-
cal features in the input vector and the predictions
in the output vector refer to the membership of the
entity in concept extensions. In our experiments,
the features in the output vector will actually be
a subset of the features in the ontological vector,
because we will only use the model to make pre-
dictions about the most commonly occurring con-
cepts. This design architecture is reminiscent of
autoencoders, which have been applied to learn
a compositionality function for distributional se-
mantics (Socher et al., 2011), though in our case,
the input and output vectors are not identical. Our
use of regularization, weight decay, and parame-
ter tuning on a development set prevents the model
from overfitting to the training data by simply mir-
roring the appropriate values of the input vector.

4 Experiments

Our experiments were conducted on the collabora-
tive knowledge base, Freebase. We extracted three
classes of entities from the June 9, 2014 dump of
Freebase by taking instances of top-level concepts
(i.e., Freebase types) corresponding to People, Or-
ganizations, and Locations, as shown in Table 1.
We chose these classes because they are the en-
tity classes most often modelled by other work in
NLP, such as by NER taggers (Finkel et al., 2005).
These classes also tend to be a part of many differ-
ent scenarios, thus there should be rich ontological

structures to learn. In addition to the entities, we
extracted all of the concepts that these entities are
tagged with, in order to construct the ontological
vector component of our model.

We then filtered the entities and concepts ac-
cording to several frequency and quality criteria.
For entities, we required the following characteris-
tics: (1) there must be a word2vec vector available
for that entity, as determined by a string match to
the entity’s name or one of its aliases; (2) the en-
tity must belong to a minimum of five concepts;
(3) the entity must satisfy a minimum frequency
threshold, as follows.

We estimate the frequency of an entity by taking
the frequency of the name of the entity in the Giga-
word corpus. Where the name consists of multiple
words, the minimum of these is taken. We used a
frequency threshold of 150, which is actually quite
low given the size of the Gigaword corpus. We
chose to filter on frequency so that the distribu-
tional component would have seen the entity often
enough to learn something useful about it.

Of the roughly one million entities in Freebase
in these three categories, 84,286 entities passed the
above filters.

For the concepts, we required the following
characteristics: (1) the concept must contain a
minimum of ten entity instances; (2) the concept
must not be a /user or /m type. The second crite-
rion removes many concepts that are overly spe-
cific and only of interest to a particular user, con-
taining for example lists of landmarks that a user
would like to visit. In addition, we removed the
concept used to construct an entity category, and
the concept /common/topic, because all of the en-
tities in an entity class would be instances of these
concepts. 1,262 concepts of the original 5,024
were retained after filtering.

Following filtering, the remaining entities are
randomly assigned to training, development, and
test sets in a 60%-20%-20% split. Table 1 provides
a summary of several statistics about the data sets
that we extracted.

4.1 Method
We applied the models described above to predict
the concept memberships of entities in the fifty
most common concepts of each entity class. We
focused on the most common concepts, because
they are likely to be the important high-level divi-
sions in the entity class, and are also more likely

25

Entity category Freebase ID N entities (train + dev + test) N concepts
People /people/person 23053 + 7684 + 7685 530
Organizations /organization/organization 4771 + 1591 + 1591 260
Locations /location/location 22746 + 7582 + 7583 472

Table 1: Basic statistics concerning the subsets of Freebase that we extracted for our experiments. Free-
base ID refers to the top-level concept used to define the entity classes that we extract. N represents the
count of unique entities or concepts.

to be correctly annotated. These fifty concepts to
be predicted are themselves part of the ontological
vector used in the ONTO and ONTODS models.
To ensure that the models do not have access to the
label to be predicted at prediction time, we predict
the membership for each concept separately, and
mask the corresponding element of the ontologi-
cal vector by setting it to zero. So, if we are pre-
dicting whether an entity is Male, we set the di-
mension corresponding to the Male concept in the
input ontological vector to 0. We repeat this pro-
cess for each concept to be predicted in the output
vector. In Section 4.3, we will also test the effect
of having only partial or no ontological informa-
tion in the ontological vector for the ONTO and
ONTODS models.

We train the feedforward neural network model
by backpropagation using stochastic gradient de-
scent with a decreasing learning rate schedule, and
weight decay to prevent overfitting. To tune the
parameters involved, as well as other parameters
such as the number of units in the hidden layer,
the amount of randomness in the initialization of
the weight matrices, and the number of training
epochs to perform, we use the Spearmint Bayesian
optimization package (Snoek et al., 2012). We
tune the parameters on the held-out development
set for each entity class separately. For almost all
of the models, training for 20 iterations with 100
hidden units achieves the best performance on the
development set 2.

As our evaluation measure, we adopt mean av-
erage precision (MAP) from work in relation ex-
traction and information retrieval. For each con-
cept, the predictions from the model results in
a ranking of entities that belong to the concept,
in decreasing order of probability. This ranking
is compared against the gold-standard extracted
from FreeBase using the average precision mea-

2The best parameter settings are available on the author’s
website or upon request.

People Organ. Loc.
DS 45.06 43.66 38.15
ONTO 41.12 47.55 73.26
ONTODS 50.04 56.60 75.63

Table 2: Entity ranking results by input feature set
in terms of the mean average precision measure
(%). All differences are statistically significant by
a randomized bootstrap test at p < 0.0001.

sure:

AP =
∑N

k=1(P (k)× rel(k))
N

, (2)

where P (k) is the precision of the top k entities
ranked by our model, rel(k) is an indicator func-
tion that is 1 exactly when the kth entity is cor-
rectly predicted to be an instance of the concept,
and N is the total number of entities that this con-
cept contains. The mean average precision (MAP)
is then the mean of the average precisions over all
concepts. MAP is the appropriate measure for this
task, as classification accuracy would give a mis-
leading picture of performance; most entities do
not belong to most concepts, so simply predicting
that all entities belong to no concepts would give
a very high accuracy score.

4.2 Results
The results of our concept prediction models are
presented in Table 2. All differences in MAP be-
tween models trained on the same data set are
statistically significant, by the randomized boot-
strap method. The results show that our ON-
TODS model achieves the best performance on all
three entity classes in terms of MAP, outperform-
ing both the ONTO and the DS models. Com-
paring ONTO and DS, DS achieves better perfor-
mance on People, but not on Organization, and is
substantially worse on Locations.

26

People Organizations Locations
/people/deceased person
Benjamin Franklin 1
Christopher Columbus 1
Ronald Reagan 1
Duke Ellington 1

/dining/restaurant
Cold Stone Creamery 1
Rainforest Cafe 1
Frontera Grill 1
Waffle House 1

/architecture/venue
Staples Center 1
Candlestick Park 1
MTS Centre 1
Xcel Energy Center 1

/film/music contributor
Frank Sinatra 0
Sean Combs 0
Fred Astaire 0
Ice Cube 1

/organization/organization member
MIT 1
University of Virginia 1
University of Connecticut 0
DirecTV Group 0

/geography/river
Yamuna 1
Sugar Creek 1
Sugar Creek 1
Brazos River 1

Figure 2: The highest-ranked entities for six select concepts according to the ONTODS model. Next to
the name of the entity, a 1 indicates that the entity belongs to the concept according to Freebase, and 0
means it does not. For the river concept, Sugar Creek appears twice due to a duplicate entry in Freebase.

model: condition People Organ. Loc.
ONTO: half 29.62 32.76 58.28
ONTO: all-but-one 41.12 47.55 73.26
ONTODS: none 32.62 40.42 27.08
ONTODS: half 44.85 48.78 65.08
ONTODS: all-but-one 50.04 56.60 75.63

Table 3: Entity ranking results in the partial on-
tological information experiment, by MAP (%).
The results from “all-but-one” rows are identical
to corresponding rows in Table 2.

Figure 2 shows several rankings made by the
best performing ONTODS model for different
concepts. Overall, almost all of the top rank-
ings are correct according to the information ex-
tracted from Freebase. Several apparently incor-
rect rankings seem to be related to problems with
the coverage of Freebase. For example, Frank
Sinatra, Sean Combs, and Fred Astaire are not la-
belled as film music contributors in the version of
Freebase we used. Other errors are in categories
that seem to be less well-defined, such as /orga-
nization/organization member, a concept that de-
scribes entities that belong to some other unspeci-
fied organization.

4.3 Partial Ontological Information
Earlier, we motivated the need for ontological in-
formation to model rare occurring or invented en-
tities, yet knowledge bases are incomplete, and re-
liable ontological information about an entity is
not always available. In this section, we simulate

having partial ontological information of an input
entity by masking some of the features in the on-
tological vector. In future work, we would like to
design a system that can extract ontological infor-
mation about an entity from a short passage.

Using the same trained models from the previ-
ous section, we conducted experiments in which
we mask some of the input features in the ontolog-
ical vector under the following three conditions,
representing a decreasing amount of available in-
formation about an entity:

All-but-one This condition represents the same
setting as the previous experiments, in which the
model predicts the output features one at a time,
and has access to all of the ontological features
except for the one being predicted.

Half We ranked the output concepts by the num-
ber of entities that they contain, and then as-
signed them into two groups in an alternating man-
ner. The two groups of concepts are thus roughly
matched in terms of the number of entities they
contain. We predict each group separately, mask-
ing those concepts in the input ontological vector;
i.e., when predicting the first group of concepts,
the model only has access to information about the
second group of concepts, and vice versa.

None We masked all of the concepts to be
predicted in the ontological vector, setting all of
those features to zero. Note that the model still
has access to the remaining ontological features
that are not in the output vector. Thus, this setting
still has access to some ontological information,
unlike the DS model.

27

Avg. Max. Jaccard
People 0.3525
Organizations 0.4509
Locations 0.5717

Table 4: Average maximum Jaccard similarity for
the top 50 concepts in each entity class

We applied the ONTODS model under all of
these conditions, and the ONTO model under the
all-but-one and half conditions only, as we found
that it would have very little information to make
predictions on under the none condition. We
used the same best performing models from the
previous experiment, as the training was not af-
fected. The results of this experiment are pre-
sented in Table 3. Unsurprisingly, the performance
of both models degrade substantially when given
only partial ontological information. Note, how-
ever, that the ONTODS model in the half condi-
tion is still better than the DS and ONTO models
in the all-but-one condition on two of the three en-
tity classes.

4.4 Discussions
What accounts for the differing contributions of
the ontological and the distributional components
to the performance for the different entity classes?
In particular, ontological information seems to be
especially important for the Locations entity class,
whereas distributional information seems to be
better for the People entity class. We consider the
correlations between the different concepts as an
explanation for this result. Intuitively, the greater
the correlations between the concepts for a certain
entity class, the more useful ontological informa-
tion is in making inferences about concept mem-
berships of entities.

We compute a measure based on Jaccard simi-
larity between the concepts for this analysis. For
each of the top 50 concepts represented in the out-
put vector, we find the maximum Jaccard similar-
ity between that concept and the other concepts in
the training set:

maxJ(c) = max
c′
|exten(c) ∩ exten(c′)|
|exten(c) ∪ exten(c′)| . (3)

Then, we take the average of this maximum Jac-
card similarity over the top 50 concepts. We use

the maximum similarity to other concepts rather
than the average; the average similarity could be
low due to having many unrelated concepts, which
a statistical learner would identify as irrelevant.
Across the three entity classes, the ranking of the
average maximum Jaccard similarity matches the
apparent importance of the ontological component
of the models in the entity ranking task (Table 4).
This result provides an explanation for the differ-
ent performances of the models in the entity rank-
ing task, and could be used to approximate model
performance given a new data set.

5 Deriving Semantic Relations

We further analyze our model’s performance by
examining its ability to recognize semantic rela-
tions between concepts. This analysis is not a for-
mal evaluation of the models, but serves two pur-
poses. First, it is a qualitative test of the entity
rankings of our model. Second, it demonstrates
inferences that follow directly from concept ex-
tension predictions without the need to train yet
another special-purpose classifier, for example to
determine hypernymy or synonymy.

Whereas relations such as hypernymy and syn-
onymy follow directly from crisp, 0-1 concept ex-
tensions predictions, we choose instead to use the
ranking probabilities that are the output of our
model. This avoids issues with choosing an ap-
propriate cut-off for the predictions, and also al-
lows the models to make soft predictions of lexi-
cal semantic relations between concepts. We fo-
cus below on hypernym/hyponym relations; be-
cause Freebase explicitly attempts to standardize
and canonicalize all entities and types, we do not
expect to find good synonyms.

We thus view the predictions produced by the
models as fuzzy sets (Zadeh, 1965)3, and use stan-
dard operations from fuzzy set logic to determine
hypernymy. Our models above learn a function
~y = f(~x), where yk is the probability that the in-
put entity belongs to concept ck. For a given con-
cept ck, let us now aggregate the model predictions
over all entities into a vector µk(x), which has a
length equal to the number of entities in the data
set. This can be seen as a membership function
of a fuzzy set that provides a score between 0 and
1 of an entity x in exten(ck). We use the follow-

3We leave aside the philosophical issue of whether our
models’ output values should be interpreted as probabilities
of set membership or degrees of set membership.

28

ci cj ⊆ ⊇ ci cj ⊆ ⊇
People ONTODS People DS
tv program guest /film/actor 0.99 0.35 cricket bowler cricket player 0.99 0.68
theater actor /film/actor 0.99 0.41 olympic athlete pro athlete 0.98 0.18
celebrity /film/actor 0.95 0.43 football player pro athlete 0.97 0.18
Organizations ONTODS Organizations DS
venture company employer 1.0 0.08 airline employer 0.99 0.03
football team sports team 0.99 0.22 airline aircraft owner 0.98 0.91
restaurant employer 0.99 0.05 university educ inst 0.92 0.85
Locations ONTODS Locations DS
river geog feature 0.99 0.28 capital admin div stat region 0.99 0.09
river body of water 0.97 0.38 university educ inst 0.95 0.91
body of water geog feature 0.97 0.70 building structure 0.96 0.57

Figure 3: Scores for several subset and superset relations learned by two of our models using fuzzy
set logic operations. The ⊆ columns display the score hypo(ci, cj), while the ⊇ columns display
hypo(cj , ci). We have abbreviated several concept names for space reasons.

ing definitions of intersection and union between
fuzzy sets A and B:

µA∩B = min(µA, µB) (4)

µA∪B = max(µA, µB). (5)

A concept c is a hyponymy of another concept
c′ if exten(c) ⊆ exten(c′). We determine the sub-
set relation in fuzzy logic reducing it to fuzzy set
intersection and set equality, and we determine
fuzzy set equality by using a generalized version
of Jaccard similarity using L1-norms:

A ⊆ B ↔ A ∩B = A (6)

fuzzyJ(µA, µB) =
‖µA∩B‖1
‖µA∪B‖1 . (7)

The degree of hyponymy of ci to cj , hypo(ci, cj),
is then simply hypo(ci, cj) = fuzzyJ(µi∩j , µi).

We present several subset relations discovered
by the ONTODS and DS models in Figure 3, as
indicated by a high hypo score between the con-
cepts. We chose these models because the former
is the best-performing model in entity ranking, and
the latter does not include ontological information
in its entity representation. This method finds sev-
eral good hyponym/hypernym relations, such as
football team⊆ sports team, and restaurant⊆ em-
ployer. It also finds chains of relations, such as
sports facility ⊆ venue ⊆ structure, and river ⊆
body of water ⊆ geographical feature.

6 Conclusion

We have argued that concept extensions can form
the basis of a vector-space model of semantics.

Our model learns entity representations by com-
bining ontological information derived from a
knowledge base with distributional information
trained to predict concept extensions. Our exper-
iments indicate the success of this model, and we
perform several analyses to explain the relative im-
portance of the ontological and distributional se-
mantic components of our model, as well as the
ability of the model to recover semantic relations
between concepts using fuzzy set logic.

Learning concept extensions provides a method
to integrate distributional semantics with formal,
compositional semantics. For example, seman-
tic relations between concepts could be detected
based on their formal, set-theoretic definitions, as
shown in Section 5. The framework and model
presented in this paper suggest a natural way to
predict these and other semantic relations without
the need for another classification step.

It would also be interesting to see whether
the ontological information/concept extensions,
which in this work was supplied by a knowledge
base, could be derived or augmented through other
means, such as by using image data (Young et al.,
2014).

Acknowledgments

We would like to thank Patricia Araujo Thaine,
Aida Nematzadeh, Nissan Pow, and the anony-
mous reviewers for useful discussions and feed-
back. This work is funded by the Natural Sciences
and Engineering Research Council of Canada.

29

References
Eneko Agirre, Mona Diab, Daniel Cer, and Aitor

Gonzalez-Agirre. 2012. Semeval-2012 task 6: A
pilot on semantic textual similarity. In Proceedings
of the First Joint Conference on Lexical and Com-
putational Semantics-Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation, pages 385–393. Associa-
tion for Computational Linguistics.

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction for the web. In IJCAI,
volume 7, pages 2670–2676.

Marco Baroni and Alessandro Lenci. 2011. How
we BLESSed distributional semantic evaluation. In
Proceedings of the GEMS 2011 Workshop on GE-
ometrical Models of Natural Language Semantics,
pages 1–10. Association for Computational Linguis-
tics.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 238–247, Baltimore, Maryland,
June. Association for Computational Linguistics.

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Gar-
rette, Katrin Erk, and Raymond Mooney. 2013.
Montague meets Markov: Deep semantics with
probabilistic logical form. In Proceedings of the
Second Joint Conference on Lexical and Computa-
tional Semantics (*SEM-2013).

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. ACM.

Razvan C. Bunescu and Raymond J. Mooney. 2007.
Learning to extract relations from the web using
minimal supervision. In Proceedings of the 45th An-
nual Meeting of the Association for Computational
Linguistics, volume 45, pages 576–583.

Jenny R. Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 363–370, Ann Arbor, Michi-
gan, June. Association for Computational Linguis-
tics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing search in context: The

concept revisited. ACM Transactions on Informa-
tion Systems, 20(1):116–131.

Daniel Fried and Kevin Duh. 2014. Incorporating both
distributional and relational semantics in word rep-
resentations. arXiv preprint arXiv:1412.4369.

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
Sebastian Padó. 2015. Mapping conceptual features
to referential properties. In Proceedings of the 3rd
International ESSENCE Workshop: Algorithms for
Processing Meaning.

Aurélie Herbelot and Mohan Ganesalingam. 2013.
Measuring semantic content in distributional vec-
tors. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 440–445, Sofia, Bul-
garia, August. Association for Computational Lin-
guistics.

Paul McNamee and Hoa T. Dang. 2009. Overview of
the TAC 2009 knowledge base population track. In
Text Analysis Conference (TAC), volume 17, pages
111–113.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia, June. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 74–84, Atlanta, Georgia, June. Association
for Computational Linguistics.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1025–
1036, Dublin, Ireland, August. Dublin City Univer-
sity and Association for Computational Linguistics.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Infor-
mation Processing Systems, pages 2951–2959.

30

Richard Socher, Eric H. Huang, Jeffrey Pennin,
Christopher D. Manning, and Andrew Ng. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in
Neural Information Processing Systems, pages 801–
809.

Ichiro Yamada, Kentaro Torisawa, Jun’ichi Kazama,
Kow Kuroda, Masaki Murata, Stijn De Saeger, Fran-
cis Bond, and Asuka Sumida. 2009. Hypernym dis-
covery based on distributional similarity and hierar-
chical structures. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 929–937, Singapore, August. As-
sociation for Computational Linguistics.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics, 2:67–78.

Lotfi A. Zadeh. 1965. Fuzzy sets. Information and
Control, 8(3):338–353.

31

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 32–40,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Joint Semantic Relevance Learning with Text Data and Graph Knowledge

Dongxu Zhang1,3, Bin Yuan1,3, Dong Wang∗1,2, Rong Liu1,4

1CSLT, RIIT, Tsinghua University
2Tsinghua National Lab for Information Science and Technology

3PRIS, Beijing University of Posts and Telecommunications
4Huilan Limited, Beijing, P.R. China

{zhangdx,yuanb,lr}@cslt.riit.tsinghua.edu.cn
wangdong99@mails.tsinghua.edu.cn

Abstract

Inferring semantic relevance among enti-
ties (e.g., entries of Wikipedia) is impor-
tant and challenging. According to the in-
formation resources, the inference can be
categorized into learning with either raw
text data, or labeled text data (e.g., wik-
i page), or graph knowledge (e.g, Word-
Net). Although graph knowledge tends to
be more reliable, text data is much less
costly and offers a better coverage.

We show in this paper that different re-
sources are complementary and can be
combined to improve semantic learning.
Particularly, we present a joint learning ap-
proach that learns vectors of entities by
leveraging resources of both text data and
graph knowledge. The experiments con-
ducted on the semantic relatedness task
show that text-based learning works well
on general domain tasks, however for tasks
in specific domains, joint learning that in-
volves both text data and graph knowledge
offers significant improvement.

1 Introduction

With the development of deep learning and the
establishment of large knowledge bases, knowl-
edge embedding has gained much interest in nat-
ural language processing. In general, knowledge
can be represented by some entities that represent
semantic concepts, plus the relations among them.
Knowledge embedding involves representing enti-
ties of knowledge bases in a low-dimensional con-
tinuous space so that the relations among them
can be well represented. The embedding can be
conducted with different objectives with different
tasks in concern. This paper focuses on the se-
mantic learning task which intends to optimize the
semantic relevance among entities by knowledge
embedding, e.g., inferring appropriate knowledge
(entity) vectors.

According to the information resource that is
used to learn with, knowledge embedding can be
classified into three categories: raw text learning,
labeled text learning and graph knowledge learn-
ing. In the raw text learning, the entities are treated
as words or phrases, and the local word contex-
t information in the raw text is used to drive the
embedding. Various approaches of word/phrase
embedding belong to this category (Huang et al.,
2012; Mikolov et al., 2013). In the labeled text
learning, the embedding is based on the descrip-
tion text associated to each entity. A simple ap-
proach belonging to this category derives the vec-
tor of an entity by averaging the word vectors of
the description associated to the entity. Essential-
ly, the knowledge used in this learning is the co-
occurrence statistics of the words in the descrip-
tions. Finally, in the graph knowledge learning,
the relations among entities labeled by people are
used to direct the embedding. Representative ap-
proaches of this category include TransE (Bordes
et al., 2013) and NTN (Socher et al., 2013).

Different information resources possess their
respective advantages and disadvantages. Raw
text is totally unstructured and unsupervised (no
data annotated). The training data is easy to be col-
lected and in most cases, it offers good entity cov-
erage. The shortcoming, however, is that the use-
ful information is often buried in noise and there-
fore it is not trivial to extract the desired informa-
tion. Finally, the learning purely relies on word
occurrence statistics, which often under-estimates
entities that are infrequent in the training data.

labeled text offers a text description for each en-
tity, so it is more supervised than raw text in the
sense that some human-specified annotations are
involved. However, the supervision is rather weak,
since the relations among entities are not explicit-
ly annotated but implicitly encoded within word
co-occurrences of entity descriptions. A particular
advantage of the labeled text learning is that the
entities that are difficult to learn with raw text be-
cause of their limited occurrences can be learned

32

by referring to the words in the descriptions, for
instance by averaging the vectors of the words.

Finally, graph knowledge is the most structured
and supervised information resource. It is annotat-
ed by people and therefore is much more clean and
reliable, and the relations among entities can be far
beyond the ones that are represented by word local
contexts as in raw text. Additionally, the learning
does not rely on word statistics and so is most-
ly suitable for new and infrequent entities, for in-
stance those in a specific domain. An obvious dis-
advantage of graph knowledge is the high cost in
data annotation and the low coverage of the enti-
ties and relations. The emergence of large-scale
public knowledge bases such as Freebase and Ya-
go partly solved the problem, however for many
infrequent entities, the annotations are far from
satisfactory and most of the relations are missing.

Due to the respective advantages and disadvan-
tages of different information resources, it is nat-
ural to combine them to provide better knowl-
edge embedding. A number of researches have
been conducted in this direction. For example,
Yu and Dredze (2014) proposed a method to em-
ploy graph knowledge to improve word embed-
ding, and Weston et al. (2013) used text data to
assist new relation discovery for graph knowledge
bases. Nevertheless, there is not a satisfactory
framework to learn with multiple and heteroge-
neous information resources. Particularly, there is
limited investigation on to what extent heteroge-
neous information can be complementary and how
they contribute in different situations.

This paper presents a joint learning approach
that learns entity vectors by leveraging resources
of both raw and labeled text as well as graph
knowledge. We first present a joint text learn-
ing approach which learns word and entity vec-
tors together with both raw and labeled text. This
is similar to the paragraph vector (PV) model (Le
and Mikolov, 2014) though a different training ap-
proach is adopted in our study. This joint text
learning approach is then combined with the graph
knowledge learning to form a joint text and graph
learning, by integrating the cost functions of the
two learning methods.

The experiments are conducted with three in-
formation resources: Wikipedia as the raw and la-
beled text, WordNet and Yago as the graph knowl-
edge. The entity relatedness task is selected to e-
valuate the performance of the learning methods.
Two scenarios have been conducted, one is based
on WordNet and the other is based on Yago. The

test on WordNet is a general domain task while the
test on Yago is a specific domain task. The experi-
mental results show that the joint text learning of-
fers consistent improvement compared to learning
with raw text only. When involving graph knowl-
edge, the performance on the general domain task
does not show apparent improvement, however on
the specific domain task, a significant performance
improvement has been observed. These results
confirm the importance of learning with heteroge-
neous information resources.

The rest of the paper is organized as follows:
Section 2 briefly describes the related works, Sec-
tion 3 presents the joint learning approach. The
experiments are presented in Section 4, and some
discussions are in Section 5. Section 6 concludes
the paper.

2 Related work

Many researches have been conducted to learn se-
mantic relevance from raw text data, labeled text
data or graph knowledge bases. Most of the stud-
ies learn from single information resource.

For raw text learning, various unsupervised
learning algorithms have been proposed to learn
word representations from large-scale raw tex-
t (Huang et al., 2012; Mikolov et al., 2013; Pen-
nington et al., 2014). These methods hypothesize
that statistics of word co-occurrences in contexts
involve rich semantic and syntactic information
and can be utilized to embed words and/or phras-
es.

Some approaches have been presented to
learn with raw text and labeled text together.
Gabrilovich and Markovitch (2007) introduced the
explicit semantic analysis which represents a word
by its distribution over the labeled wikipedia pages
instead of the latent concepts as in LSA (Deer-
wester et al., 1990) and LDA (Blei et al., 2003). Its
great performance owes to learning from the com-
bination of raw text and labeled text (wiki pages
labeled by entries) resources. Recently, paragraph
vector (PV) was also applied to semantic relevance
tasks (Dai et al., 2014), which infers word vectors
and paragraph vectors together, as the joint text
learning presented in this study.

In the field of relevance learning with graph
knowledge, early studies focused on measuring
word similarity based on the graph theory, for in-
stance, (Rada et al., 1989; Wu and Palmer, 1994;
Resnik, 1995). Recent studies focus on vari-
ous distributed representation models which em-
bed entities and relations of large knowledge graph

33

databases into a low-dimensional continuous s-
pace (Bordes et al., 2013; Socher et al., 2013; Fan
et al., 2015).

Various approaches have been proposed to uti-
lize heterogeneous resources. Recently, Riedel et
al. (2013) demonstrated that text data can help dis-
covering new relation in graph completing task.
Weston et al. (2013) used text data for the same
purpose while they used word vectors that may
leverage text resources more effectively.

Most recently, joint learning approaches have
been proposed to learn from heterogeneous re-
sources. Yu and Dredze (2014) learned word vec-
tors by considering not only the word context in
text data but also relations in knowledge bases.
Their training algorithm draws close the words
that are proximate in both text and the knowledge
graph. Xu et al. (2014) considered relation types
in the joint training process. Faruqui et al. (2014)
learned lexicon knowledge by forcing each word
in the lexicon to be close to the corresponding pre-
trained word vector. These studies demonstrat-
ed that learning word vectors with both text data
and graph knowledge is beneficial to semantic rel-
evance learning.

This study is an extension to the existing join-
t learning methods. Particularly, we also learn
knowledge embedding from descriptions(labeled
text). This is contrary to most of the existing
researches which learn the knowledge only from
context and knowledge graph. Additionally, a new
joint learning framework is presented in this work,
which integrates text and graph learning as a uni-
fied learning processing. Moreover, the contribu-
tions of different resources in different situations
will be investigated.

3 Method

This section first presents the joint text learning
approach which learns entity vectors based on the
descriptions that are extracted from Wikipedia.
Then the graph knowledge learning is described.
Finally the joint text and graph learning is pre-
sented which learns with both text data and graph
knowledge.

3.1 Joint text learning

Learning entity vectors with raw text can be sim-
ply implemented by treating entities as words (or
phrases) and learning them together with other
words. There are a number of approaches to learn-
ing word vectors (Huang et al., 2012; Mikolov
et al., 2013; Pennington et al., 2014). In this

study, the skip-gram model implemented in the
word2vec tool1 is adopted.

The simple approach to learning with labeled
text is to average the vectors of words involved
in the description of the current entity e. This is
formulated by:

ve =
1
|De|

∑
w∈De

vw

where ve denotes the vector of entity e, and vw

denotes the vector of word w. De represents set of
word tokens within the description of e, and |De|
represents the size of De.

A better approach is to learn word and entity
vectors simultaneously. The training is based on
negative sampling (Mikolov et al., 2013), with the
cost function defined as follows:

Ltxt =
∑
e∈E

K∑
i=1

max{0, γtxt − vT
e vwi + vT

e vw′
i
}

where E is the set of entities to learn, and γtxt is
the boundary margin which has been empirically
set to 0.5 in this study. (wi, w

′
i) is a pair of word-

s for which wi is sampled from the description of
entity e, and w′i is sampled from a proposal distri-
bution. wi is constrained to be different each time
of sampling for a particular entity. K is the num-
ber of samples for each entity. In our study, K is
set to 30 unless the description is shorter than 30
words. The proposal distribution for sampling w′i
is set to be the unigram distribution of all the word-
s involved in the descriptions of all the entities. We
call this model the joint text learning model. The
stochastic gradient descendent (SGD) algorithm is
employed to optimize Ltxt with respect to the en-
tity and word vectors.

Note that this model is similar to PV-DBOW,
a distributed bag-of-words model proposed by Le
and Mikolov (2014). In PV-DBOW, paragraphs
are represented by paragraph vectors (PV) and are
trained together with word vectors. The PVs cor-
respond to the entity vectors in our model. A main
difference between our model and the PV-DBOW
model is that the cost function of our model is
based on the hinge loss, while PV-DBOW uses the
softmax function. This new cost function provides
almost the same performance but offers a lower
computation complexity because we don’t need to
count the sum of distances of the whole dictionary
(which is what softmax does).

1http://code.google.com/p/word2vec

34

In the experiments, word vectors that are pre-
trained with raw text are used to initialize the en-
tity vectors. This pre-training leads to a big im-
provement compared with random initialization,
as will be shown in Section 4.

3.2 Graph knowledge learning
As mentioned in Section 1, knowledge bases such
as WordNet and Yago contain plenty of entities
and their relations, leading to complex knowledge
graphs. Since these entities and relations are an-
notated by people, graph knowledge is highly reli-
able and can be used to embed entities. Note that
different knowledge bases contain different types
of relations. For WordNet, nearly half of the re-
lations are the hypernym-hyponym (is-a) relation,
and for Freebase, the relation types are much more
complicated. Although it is possible to learn d-
ifferent relations (Bordes et al., 2013), this study
does not consider it since our focus is semantic re-
latedness instead of relation prediction. More dis-
cussions about relation type learning will be given
in Section 5.

For this reason, only entity vectors are learned
(the global relation vector can be absorbed in-
to the entity vectors). This is similar to the un-
structured model in Bordes’s early work (Bordes
et al., 2013), except that distance between vectors
is measured by inner product in our model, while
Bordes’s work used Euclidean distance. We make
this choice for two reasons: firstly, to make the
graph knowledge learning consistent with the join-
t text learning so that their results are comparable,
and more importantly they can be combined into a
joint text and graph learning as will be presented
in the next section; secondly, word vectors trained
with raw text can be used to pre-train (initialize)
the entity vectors, which has been demonstrated to
be highly effective, as will be seen in Section 4.

Similar to the text learning, the negative sam-
pling approach is used to train the model. Denote
the related entity pairs defined by the knowledge
base by P = {Pi;Pi = (eli, e

r
i)}. For each pair

Pi, the negative sampling corrupts the pair by re-
placing either the left entity eli or the right entity
eri with a randomly selected entity. The learning
optimizes the following hinge loss function:

Lgrh =
∑
Pi∈P

max{0, γgrh − vel
i

T ver
i
+ ve′l

i

T ve′r
i
}

where γgrh is the boundary margin which is em-
pirically set to 1.0 in this study, and (e′li, e′

r
i) is

the corrupted version of (eli, e
r
i) (only one entity

corrupted). Again, the SGD algorithm is used to
optimize Lgrh with respect to the entity vectors.

3.3 Joint text and graph learning

The joint text learning and the graph knowledge
learning can be combined. In fact, the two learning
approaches are based on the same measure space
(the inner product space) and the objective func-
tions are both hinge loss; additionally, both the
learning methods train the model using SGD and
negative sampling. This means that they are high-
ly consistent and can be easily combined without
much change, except that the objective function is
modified to integrate the loss derived from both
text and graph knowledge. This is formulated by:

Ljoint = Ltxt + βLgrh (1)

where β is a hyper-parameter that is set to balance
the contributions of the text data and the graph
knowledge. The SGD algorithm is employed to
optimize Ljoint with respect to the entity vectors
and the vectors of words that are involved in the
entity descriptions. In practice, an iterative strat-
egy is adopted in this work, which performs the
joint text learning and the graph knowledge train-
ing alternatively and iteratively, with their respec-
tive negative sampling schemes applied.

4 Experiments

This section reports the experimental settings and
results. The semantic relatedness task was cho-
sen in the study, which measures semantic relat-
edness among entities and compare the measure-
ments with human-specified scores. We start by
presenting the databases, and then report the re-
sults on a general domain task and a specific do-
main task. The data sets and codes are available
online. 2

4.1 Databases

Training data
Three information resources are used in the ex-
periments: Wikipedia as the raw and labeled tex-
t, Wordnet and Yago as the graph knowledge.
Wikipedia3 is a free-access, free content internet
encyclopedia which at present contains more than
4.7 millions of English entries. Wikipedia itself
offers plenty of information, including the main

2http://git.cslt.org/zhangdx/
jointsemanticlearning

3http://wikipedia.org

35

content in plain text (description), category infor-
mation, links to other entries, and info-boxes. On-
ly the plain text and the entry name (title) of de-
scriptions are used in this study. WordNet (Fell-
baum, 1998) is a well-known semantic knowledge
base which contains 117k English words and the
associated information such as brief text descrip-
tions and relations. Yago (Fabian et al., 2007) is
another popular semantic knowledge base, derived
from Wikipedia, WordNet and GeoNames.

The training (entity vector embedding) is con-
ducted on two development data sets: a subset
of entities of WordNet that involves only noun-
s (WNet-N) and a subset of entities of Yago that
involves animal names (Yago-A). WNet-N can be
regarded as a data set in the general domain, while
Yago-A is a data set in a particular domain. For
each entity in the two data sets, the corresponding
wiki page is retrieved from Wikipedia, from which
the plain text is retrieved and used as the labeled
text for the entity. The plain text of all the entities
in WNet-N and Yago-A are used as raw text. More
details of the data sets are described as follows.

• WNet-N: A subset of WordNet which con-
tains 68569 entities and 70040 relation pairs.
All the entities are nouns and are words or
phrases in the general domain. 36519 enti-
ties find their text descriptions in Wikipedia
(labeled text), resulting in 111MB raw text.

• Yago-A: A subtree of Yago which contain-
s 39900 entities, 72936 relation pairs. All
the entities are Animal names, which means
the entities are domain-specific. 6415 enti-
ties find their text descriptions (labeled text),
resulting in 19MB raw text.

Note that both WNet-N and Yago-A maintain a
connected graph structure which means that for
any two entities in the graph, there is at least one
path that connects them. This enables the simple
connection-based relevance inference which de-
rives relateness of two entities as the connection
strength between them in the knowledge graph.
Section 5 will compare this simple approach with
our proposal.

Test data
As mentioned, this study chooses the seman-
tic relatedness task to evaluate the performance
of learned entity vectors. This task computes
the relevance (distance) of two entities and then
compares the resulting relevance score with the
human-specified score. The Spearman coefficient

is a widely-adopted metric to evaluate correlation
between two variables and is used in this study to
measure the consistence of the derived relevance
with the human specification.

To test the performance on WNet-N, a sub-
set of WordSimilarity-3534 is used. The
WordSimilarity-353 collection is a well-known
test set for semantic relatedness tasks, which con-
tains 353 word pairs and the relatedness scores of
all the pairs are manually annotated. After filtering
out the words that are absent from the entities of
WNet-N, the resulted 301 pairs are used as the test
set, named as Sim-301 in the following sections.

For the test on Yago-A, we propose a new test
set Animal-143, which contains 143 pairs of com-
mon animal names and 92 different animals in-
cluding mammals, birds, insects and marine ani-
mals. All the names are entities of Yago-A. The
relatedness score of each pair has been evaluated
by 9 persons, and the average is used as the hu-
man judgement. The range of score is from 0 to 3.
For instance, the score between antelope and swan
should probably be 0, and the score between cattle
and bison can be 3. Table 1 summarizes the data
sets used in the experiments.

4.2 Individual learning

The first experiment studies the performance of
learning with raw text, labeled text and graph
knowledge individually. As mentioned already,
the test are conducted on two data sets: WNet-
N and Yago-A, which represent a general domain
task and a specific domain task, respectively. The
impact of the dimension of the entity vectors is al-
so investigated. The results in terms of Spearman
coefficients are reported in Table 2.

For the raw text learning, the entities are treated
as words or word sequences (phrases). The vec-
tors of these words and word sequences are then
learned by the word2vector tool, together with
other words. The raw text data of WNet-N and
Yago-A are merged, and combined with addition-
al 200MB plain text to form a training data set to
conduct the word vector training. Using the tex-
t of both the two data sets is to demonstrate the
advantage that word vectors can be learned with
out-of-domain data. Note that multi-word entities
can be learned as phrase vectors (Mikolov et al.,
2013), though this is not considered in this study
since the two test sets Sim-301 and Animal-143
contain only single-word entities. The results with

4http://www.cs.technion.ac.il/˜gabr/
resources/data/wordsim353/

36

Training Set Graph Knowledge labeled Text Raw Text Test Set
WNet-N 68569 entities 36519 entities 111MB Sim-301

70040 relations
Yago-A 39900 entities 6415 entites 19MB Animal-143

72936 relations

Table 1: Data sets for knowledge embedding and relatedness test.

raw text learning are reported in the row denoted
by ‘Word2vec’ in Table 2.

For the labeled text learning, the entity vectors
are derived as the mean vectors of the words in-
volved in the text descriptions. This approach in
fact involves both raw text learning (for word vec-
tors) and labeled text learning (vector average),
however the main knowledge source is the entity
labels of the descriptions. The results with labeled
text learning are reported in the row denoted by
‘LT-mean’ in Table 2.

Different from the mean-vector approach which
first trains word vectors and then derives entity
vectors, the joint text learning learns word vectors
and entity vectors together. Two configurations
are tested: in JT-rand, the entity vectors are ran-
domly initialized, while in JT-prt, the entity vec-
tors are initialized (pre-trained) by corresponding
word vectors. Note that all the multi-word enti-
ties can not be pre-trained as the phrase vectors
are not trained, however this does not much im-
pact the resulting performance since the test sets
do not involve multi-word entities.

For the graph knowledge learning, two configu-
rations have been tested as well: with and without
pre-training. For those entities that can’t be pre-
trained, random initialization is employed. The
results are reported in the rows denoted by ‘GR-
rand’ and ‘GR-prt’ in Table 2, for the configura-
tions with and without pre-training, respectively.

From the results, it can be observed that the
three learning approaches behave differently on
the two test sets. The text-based learning ex-
hibits clear advantage compared to graph knowl-
edge learning on the WNet-N test, however on
the Yago-A test, the graph knowledge learning is
superior. This can be explained by the fact that
WNet-N is in the general and involves popular en-
tities that can be well trained with raw and labeled
text, however for Yago-A, most of the entities are
domain-specific and so it is not easy to learn the
entities (and their relations) from unstructured tex-
t data. In this case, the human-specified knowl-
edge, i.e., the relations offered by the graph knowl-
edge, tends to provide the most valuable informa-

tion. On the other hand, the graph knowledge of
the general domain tends to be sparse and noisy,
which will be discussed in Sec 5, while the graph
knowledge of specific domains are generally less
sparse and also quite clean. This also leads to more
reliable inference with graph knowledge in specif-
ic domains.

Another observation is that the dimension of the
entity vectors indeed impacts the performance. A
larger dimension tends to perform better, at the
cost of higher complexity in model training. In
the following experiments, the dimension will be
set to 100.

It can be also observed that the mean vector (LT-
mean) approach does not work well, probably due
to the information loss with the simple average.
The joint text learning with pre-training (JT-prt)
outperforms both LT-mean and Word2Vec. As JT-
prt makes use of both raw text and labeled text,
this superiority confirms that learning with hetero-
geneous information resources is beneficial, and
the joint learning (JT-prt) is an appropriate way to
utilize heterogeneous information effectively.

Finally, it can be seen that the pre-training with
word vectors (trained with raw text) contributes
to both the text learning and the graph knowledge
learning: the pre-trained systems (JT-prt and GR-
prt) significantly outperform the random initial-
ized systems (JT-rand and GR-rand). This from
another perspective confirms the importance of in-
volving multiple and heterogeneous information
resources in knowledge embedding. In addition,
the poor performance of JT-rand is mainly due to
the incompleteness and bias of descriptions. And
the bad results on GR-rand are probably caused
by the loss of relation types in databases and also
the loss of the variation of length on edges since
every edge is trained equally. Thus, pre-training
method helps a lot since additional knowledge can
be added in and the incompleteness of both de-
scription and graph can be hugely solved.

4.3 Joint text and graph learning

This section reports the experiment with the joint
text and graph learning. From the experimental re-

37

Model
Spearman Coefficient

WNet-N Yago-A
50 100 200 50 100 200

Word2vec 0.700 0.720 0.729 0.668 0.681 0.704
LT-mean 0.084 0.091 0.083 0.366 0.421 0.470
JT-rand 0.421 0.447 0.422 0.436 0.466 0.449
JT-prt 0.726 0.744 0.749 0.677 0.704 0.719
GR-rand 0.119 0.178 0.180 0.305 0.303 0.410
GR-prt 0.644 0.690 0.690 0.726 0.727 0.718

Table 2: Experimental results with raw text learning, labeled text learning, joint text learning and graph
knowledge learning. Bold numbers shows the highest performance in each column.

sults of the previous section, it has been found that
learning with multiple resources is helpful, even
if with the simple pre-training. The joint text and
graph learning takes into account both word con-
texts and relations when learning the entity vec-
tors, and so may utilize text data and graph knowl-
edge in a more effective way.

Figure 1 presents the experimental results with
the joint text and graph learning. The two curves
present the Spearman coefficients on WNet-N and
Yago-A respectively. The learning rate of the SGD
algorithm is set to 0.01, and the iteration number is
set to 200. The dimension of the entity vectors and
word vectors is set to 100. According to the cost
function (1), the learning is impacted by the hyper-
parameter β, so the results with various values of
β are reported in Figure 1.

From the results presented in Figure 1, very
different patterns on the two test sets are ob-
served: for WNet-N, the best β is close to 0.0,
which means that involving graph knowledge in
the learning simply reduce the performance. How-
ever for Yago-A, the best β is around 1.0, which
means that to achieve the best performance, the
contribution from text and graph resources should
be balanced. This discrepancy on the optimal β
can be explained in the same way as in the previ-
ous experiment, that Yago-A is a specific domain
test so that the entities can not be well trained by
either text data or graph knowledge, so the two
resources need to be utilized together, which is
where the joint training contributes. In practical
applications, people should increase the β when
domain becomes narrow.

4.4 Performance comparison

The joint text and graph learning with the indi-
vidual learning methods are compared in Table 3,
where the optimal values of β (0.0 for WNet-N
and 1.0 for Yago-A) have been applied. It can be

0 1 2 3 4 5
0.65

0.7

0.75

0.8

β

S
p

e
a

rm
a

n
 c

o
e

ff
ic

ie
n

t

Yago−A
WNet−N

Figure 1: Experimental results with joint text and
graph learning, with various values of β.

seen that the joint learning contributes significant-
ly to the specific domain task on Yago-A, while for
the general domain task on WNet-N, no improve-
ment is found. Nevertheless, since the individual
learning is a special case of the joint learning, the
latter should be not worse than the former, given
that the optimal β is applied.

Model Spearman Coefficient
WNet-N Yago-A

Word2vec 0.720 0.681
JT-prt 0.744 0.704
GR-prt 0.690 0.727
JTGR-prt 0.744 0.735

Table 3: Experimental results with joint text and
graph learning, where β has been optimized.

5 Discussion

5.1 Performance of graph knowledge
learning on different domains

In Section 4, it has been found that graph knowl-
edge training does not work well on the gener-
al domain task WNet-N (refer to Table 2). This
is possibly caused by the incompleteness of rela-
tions when domain becomes wider and the loss of

38

the variation of length on edges in the knowledge
base since every edge is trained equally. Notice
that, the number of relation pairs in WNet-N is
close to Yago-A while entities in WNet-N is more
than entities in Yago-A. To further investigate the
problem, two simple ‘direct inference’ algorithms
are employed to conduct the tests on WNet-N and
Yago-A respectively. The first algorithm is based
on the shortest path between two entities in query,
and the second one is Wu&Palmer’s model (1994)
which considers not only the shortest path but al-
so the depth of their common parents. Note that
both these two models do not learn any entity vec-
tors but infer relatedness from the relations in the
knowledge base, so the results can reflect the qual-
ity of the knowledge base.

The results are presented in Table 4. It can be
seen clearly that both the shortest-path approach
and Wu&Palmer’s model show much better per-
formance on Yago-A than on WNet-N. These re-
sults provide strong evidence that the general do-
main is much more complicated, so that the lack of
graph knowledge and the problem caused by iden-
tical length of edges will easily hurt graph-based
inference.

It is also clear that the two direct inference ap-
proaches outperform the graph learning approach
when no pre-training applied, however with pre-
training, the graph learning approach is much
more superior, particularly for the WNet-N task.
This suggests that learning with broad domain
knowledge base is pretty hard, and extra informa-
tion from raw text is essentially important.

Model Spearman Coefficient
WNet-N Yago-A

Shortest path 0.312 0.638
Wu&Palmer 0.338 0.662
GR-random 0.178 0.303
GR-prt 0.690 0.727

Table 4: Experimental results with various graph-
based entity relateness inference methods.

5.2 Relation type learning
In our experiments, all the relations in the graph
knowledge bases are treated indifferently. One
may argue that different types of relations should
be distinguished and learned distinctively. This
is true for some tasks such as relation prediction;
however, for the semantic learning task, it is still
challenging to use relation information.

Table 5 presents the results with TransE as the
graph knowledge learning using all the relation

pairs from prolog of WordNet 3.0 which includes
15 types of relations. Note that TransE learns dif-
ferent types of relations as different relation vec-
tors. It can be seen that substituting with TransE
has very little effect on performance in both graph
knowledge learning (TransE-prt) and joint text and
graph learning (JTGR-TransE-prt).

Model Spearman
JT-prt 0.729
Gr-prt 0.723
TransE-prt 0.726
JTGR-prt 0.739
JTGR-TransE-prt 0.740

Table 5: Performance with TransE in graph knowl-
edge learning.

This can be explained as follows. Intuitively,
when people evaluate the relatedness of two enti-
ties, both the relation types and the number of re-
lations (directly and indirectly) between them are
considered. Although different relation types may
impact the judgement differently, learning relation
types may force entity vectors to learn to distin-
guish different types of relations. This is an extra
constraint that is irrelevant to our semantic relat-
edness task. If the constraint is too strong (TransE
for example), it may lead to biased learning. Still,
relations should be used, but maybe a weak con-
straint is more appropriate. This is one of the fu-
ture work.

6 Conclusions

This paper presented a joint text and graph learn-
ing method which can learn entity vectors with
text data and graph knowledge bases together.
We evaluated the proposed method on the se-
mantic relatedness task, and found that involving
both text data and graph knowledge does improve
performance. Particularly, the experimental re-
sults demonstrated that for general domain tasks,
the graph knowledge tends to be incomplete thus
learning with raw or labeled text is the most effec-
tive, however for specific domain tasks, the graph
knowledge tends to be more complete, that it can
contribute a lot to learning.

Acknowledge

This research was supported by the National
Science Foundation of China (NSFC) under the
project No. 61371136, and the MESTDC PhD
Foundation Project No. 20130002120011. It was
also supported by Sinovoice and Huilan Ltd.

39

References
David M Blei, Andrew Y Ng, and Michael I Jordan.

2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3:993–1022.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26, pages 2787–2795.

Andrew M Dai, Christopher Olah, Quoc V Le, and
Greg S Corrado. 2014. Document embedding with
paragraph vectors. In NIPS 2014 in Deep Learning
and Representation Learning Workshop.

Scott C. Deerwester, Susan T Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. Journal
of The American Society for Information Science,
41(6):391–407.

MS Fabian, K Gjergji, and W Gerhard. 2007. Yago: A
core of semantic knowledge unifying wordnet and
wikipedia. In 16th International World Wide Web
Conference, WWW, pages 697–706.

Miao Fan, Qiang Zhou, Andrew Abel, Thomas Fang
Zheng, and Ralph Grishman. 2015. Probabilistic
belief embedding for knowledge base completion.
CoRR, abs/1505.02433.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2014.
Retrofitting word vectors to semantic lexicons. arX-
iv preprint arXiv:1411.4166.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of
the 20th International Joint Conference on Artificial
Intelligence, volume 7, pages 1606–1611.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistic-
s: Long Papers-Volume 1, pages 873–882. Associa-
tion for Computational Linguistics.

Quoc V Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In Pro-
ceedings of The 31st International Conference on
Machine Learning, pages 1188–1196.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for
word representation. Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014), 12.

Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria
Blettner. 1989. Development and application of a
metric on semantic nets. Systems, Man and Cyber-
netics, IEEE Transactions on, 19(1):17–30.

Philip Resnik. 1995. Using information content to e-
valuate semantic similarity in a taxonomy. In In Pro-
ceedings of the 14th International Joint Conference
on Artificial Intelligence, pages 448–453.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of NAACL-HLT, pages 74–84.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
26, pages 926–934.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. In Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2013), pages 1366–1371.

Zhibiao Wu and Martha Palmer. 1994. Verbs seman-
tics and lexical selection. In Proceedings of the 32nd
annual meeting on Association for Computational
Linguistics, pages 133–138. Association for Com-
putational Linguistics.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang
Wang, Xiaoguang Liu, and Tie-Yan Liu. 2014. Rc-
net: A general framework for incorporating knowl-
edge into word representations. In Proceedings of
the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management,
pages 1219–1228. ACM.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics, volume 2, pages 545–
550.

40

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 41–47,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Exploring the effect of semantic similarity for Phrase-based Machine
Translation

Kunal Sachdeva, Dipti Misra Sharma
Language Technologies Research Centre, IIIT Hyderabad

kunal.sachdeva@research.iiit.ac.in, dipti@iiit.ac.in

Abstract

The paper investigates the use of semantic
similarity scores as feature in the phrase
based machine translation system. We
propose the use of partial least square
regression to learn the bilingual word
embedding using compositional distribu-
tional semantics. The model outperforms
the baseline system which is shown by an
increase in BLEU score. We also show
the effect of varying the vector dimension
and context window for two different ap-
proaches of learning word vectors.

1 Introduction

The current state of the art Statistical Machine
Translation (SMT) systems (Koehn et al., 2003)
do not account for semantic information or seman-
tic relatedness between the corresponding phrases
while decoding the n-best list. The phrase pair
alignments extracted from the parallel corpora of-
fers further limitation of capturing contextual and
linguistic information. Since the efficiency of sta-
tistical system depends on the quality of parallel
corpora, low resourced language pair fails to meet
the desired standards of translation.

Word representation is being widely used in
many Natural Language Processing (NLP) appli-
cations like information retrieval, machine trans-
lation and paraphrasing. The word representation
computed from continuous monolingual text pro-
vide useful information about the relationship be-
tween different words. Distributional semantics
offers a notion of capturing semantic similarity be-
tween words occurring in similar context, where
similar meaning words are grouped closely in a
high dimension word space model. Each word
is associated with an n-dimensional vector which
represents its position in a vector space model and
similar words are at small distance in comparison
to relatively opposite meaning words.

The recent work in word vectors have shown
to capture the linguistic relations and regulari-
ties. The relation between words can be expressed
as a simple mathematical relation between their
corresponding word vectors. The recent paper
by Mikolov (Mikolov et al., 2013c) have shown
through a word analogy task that the vec (”man”)
- vec (”woman”) + vec(”king”) should be close to
vec(”queen”). Capturing of these relations along
with word composition have shown significant im-
provements in various NLP and information re-
trieval tasks.

In this paper, we present our ideas of captur-
ing the semantic similarity between phrase pairs
in context of SMT and use the scores as fea-
tures while decoding n-best list. We make use of
word representations computed from two different
methods: word2Vec (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014) and show the ef-
fect of varying the context window and vector di-
mension for Hindi-English language pair. We use
partial least squares (PLS) regression to learn the
bilingual word embeddings using a bilingual dic-
tionary, which is most readily available resource
for any language pair. In this work we are not opti-
mizing over the vector dimension and context win-
dow, but provide insights (through experiments)
on how these two parameters effect the similarity
tasks.

The rest of the paper is organized as follows.
We first present the related work in vector space
models and their utilization in machine transla-
tion domain (section 2). Section 3 describes the
two methods we have adopted for computing word
embeddings. The basic SMT setup, formulating
transformation model and phrase similarity scores
are described in section 4. In section 5 we present
our results and conclude the paper in section 6
with some future directions.

41

2 Related Work

The current research community has shown spe-
cial interest towards vector space models by or-
ganizing various dedicated workshops in top rated
conferences. Word representations have been used
in many NLP applications like information extrac-
tion (Paşca et al., 2006; Manning et al., 2008), sen-
timent prediction (Socher et al., 2011) and para-
phrase detection (Huang, 2011).

In the past various methodologies have been
suggested to learn bilingual word embeddings for
various natural language related tasks. (Mikolov
et al., 2013b) and (Zou et al., 2013) have shown
significant improvements by using bilingual word
embeddings in context of machine translation ex-
periments. The former applies linear transforma-
tion to bilingual dictionary while the latter uses
word alignments knowledge. Zhang (2014) pro-
posed an auto-encoder based approach to learn
phrase embeddings from the word vectors and
showed improvements by using semantic similar-
ity score in MT experiments. The phrase vector is
generated by recursively combining the two chil-
dren vector into a same dimensional parent vec-
tor using the method suggested by (Socher et al.,
2011).

The work of (Gao et al., 2013) proposes a
method for learning the semantic representation
of phrase using features (multi-layer neural net-
work) which is then used to compute the distance
between them in a low dimensional space. The
learning of weights in the neural network is guided
by the BLEU score (ultimate goal to improve the
quality of translation through increase in BLEU
score) which makes it sensitive towards the score.
Wu (2014) proposed an approach of using super-
vised model of learning context-sensitive bilin-
gual embedding where the aligned phrase pairs are
marked as true labels.

Since these defined methods depends heavily
on the quality of word vectors, a number of ap-
proaches have been suggested in past to learn
word representations from monolingual corpus:
word2Vec (Mikolov et al., 2013a), GloVe (Pen-
nington et al., 2014) and (Huang et al., 2012).

In this work, we extend the phrase similarity
work by using the regression approach to learn
the bilingual word embeddings. We employ vec-
tor composition approach to compute the phrase
vector, where we add vectors of each constituent
word to achieve the phrase vector. We also present

the comparison of using different word embedding
models along with varying context window and
vector dimension which has not been shown (in
detail) in any of the previous works. As pointed
by (Mikolov et al., 2013b) linear transformation
works well for language pairs which are closely
related, however in this work we experiment with
PLS regression which also establishes a linear re-
lationship between words but is much more effi-
cient than the simple least squares regression (ex-
plained in 4.2).

3 Learning word representation

We have used a part of WMT’141 monolingual
data and news crawled monolingual data to learn
word representations for English and Hindi re-
spectively. We added the ILCI bilingual corpus
(Jha, 2010) of English and Hindi to the monolin-
gual data. The corpus statistics (after cleaning) are
provided in table 1. The vocabulary refers to the
words in embeddings with a minimum frequency
of five within the corpus.

Language # of Words Vocabulary
English 250M 274K
Hindi 80M 184K

Table 1: Monolingual corpus statistics

3.1 word2Vec
The word2Vec model proposed by (Mikolov et al.,
2013a) computes vectors by skip-gram and contin-
uous bag of words (CBOW) model. These models
use a single layer neural networks and are com-
putationally much more efficient than any previ-
ously proposed model. The CBOW architecture
of model predicts the current word based on the
context whereas the skip-gram model predicts the
neighboring words depending on the current word.
Experiments have shown CBOW architecture to
perform better on the syntactic task and skip-gram
based architecture on the semantic tasks.

We have used the skip-gram architecture of
word2Vec in our experiments as it has been shown
to perform better for semantic related tasks.

3.2 GloVe
The Global Vector model of learning word rep-
resentation was proposed by (Pennington et al.,
2014) which computes the word vectors from a

1http://www.statmt.org/wmt14/translation-task.html

42

global word-word co-occurrence matrix. The re-
lationship between words is extracted by using
the ratio of co-occurrence probability with vari-
ous probe words, which distinguishes between the
relevant and irrelevant words. The co-occurrence
probability of word ’i’ to that of word ’j’ is stud-
ied on the basis of a probe word ’k’ which is com-
puted on the basis of a ratio Pik/Pjk. The ratio
is expected to be higher if word ’k’ is more re-
lated to word ’i and low if it is related to word ’j’.
The author shows significant improvement over
the word2Vec model on various NLP tasks (word
similarity, word analogy and named entities recog-
nition).

For training both the models we have altered the
vector size and the context window, while all other
parameters are set to default.

4 Experiments

4.1 Baseline MT System

We have used the ILCI corpora (Jha, 2010) which
contains 50000 Hindi-English parallel sentences
(49300 after cleaning) from health and tourism do-
mains. The corpus is randomly split (equal varia-
tion of sentence length) into training (48300 sen-
tences), development (500 sentences) and testing
(500 sentences).

Division # of sentences
Training 48300
Development 500
Testing 500

Table 2: MT system corpus statistics

We trained two Phrase based (Koehn et al.,
2003) MT systems (Hindi - English and English -
Hindi) using the Moses toolkit (Koehn et al., 2007)
with phrase-alignments (maximum phrase length
restricted to 4) extracted from GIZA++ (Och and
Ney, 2000). We have used the SRILM (Stol-
cke and others, 2002) with Kneser-Ney smooth-
ing (Kneser and Ney, 1995) for training a lan-
guage model of order five and MERT (Och, 2003)
for tuning the model with development data. We
achieve a BLEU (Papineni et al., 2002) score
of 19.89 and 22.82 on English-Hindi and Hindi-
English translation systems respectively. These
translation scores serves as our baseline for further
experiments.

4.2 Partial Least Square (PLS) Regression
We generate the word embeddings of both Hindi
and English using monolingual corpus using two
previously mentioned methods (section 3). Since
both the word embeddings are in different space
(computed independently), there is a need to map
the source vector space to target vector space or
vice versa.

We employ the PLS (Abdi, 2003) regression to
learn the transformation matrices. The observable
variables (X) are the word embeddings of one lan-
guage, while the predictable variables (Y) are the
word embeddings of the other language. The ob-
servable and the predictable are n × d matrices,
where ’n’ is the number of words used (explained
in subsection 4.3) and ’d’ is the word embedding
dimension. Our task is to compute a transforma-
tion matrix of d× d dimension which will be used
to transform any given language word vector to its
corresponding other language vector.

The PLS2 regression algorithm works by pro-
jecting both X and Y matrices to a new space, and
decomposes them into a set of orthogonal factors.
The observables are first decomposed as T = XW
where ’T’ and ’W’ are the factor score matrix and
weight matrix respectively. The predictable ’Y’ is
then estimated as Y = TQ+E where ’Q’ and ’E’
are regression coefficient matrix and error term.
We have the final regression model as Y = XB+E
where B = WQ acts as our transformation matrix.

Dimension word2Vec GloVe
CW 5 CW 7 CW 5 CW 7

50 0.53 0.51 0.48 0.49
100 0.47 0.49 0.43 0.44
150 0.44 0.47 0.41 0.42
200 0.42 0.45 0.38 0.41
250 0.41 0.43 0.38 0.39
300 0.40 0.41 0.37 0.39
400 0.40 0.38 0.35 0.36
500 0.38 0.37 0.34 0.36

Table 3: Average word cosine similarity scores on
test set. Context Window (CW)

4.3 Learning Transformation matrix
We employ PLS regression to learn bilingual word
embeddings using a English-Hindi bilingual dic-
tionary 3. We have used 15000 words for train-

2http://www.statsoft.com/Textbook/Partial-Least-Squares
3http://www.shabdkosh.com/

43

ing the regression model and another set of 1500
words for testing purpose. The bilingual pair
of training words are selected based on the fre-
quency of those words occurring in a large plain
text which consist of 10000 words from high fre-
quency and 2500 words each of low and medium
frequencies.

The observable variable and the predictable
variables in the PLS regression are the word
vectors of each word pair from their respective
language word embedding models. We finally
achieve two transformation models which trans-
forms source to target vector space and target to
source vector space. We have presented average
similarity score on the test set in table 3 after trans-
forming English words to Hindi word space.

4.4 Decoding with semantic similarity score

In the phrase based MT system we add two fea-
tures (semantic similarity scores) to the bilingual
phrase pairs. Since we need the vector representa-
tion of a phrase, we employ the works of (Mitchell
and Lapata, 2008) on compositional semantics
(adding the vectors) to compute the phrase repre-
sentation. For a give phrase pair (s,t), we trans-
form each constituent word of the source phrase
’s’ to the target word space and add the the trans-
formed word embedding to the resultant source
vector. We ignore the word if it does not oc-
cur in the word embeddings vocabulary. Simi-
larly, we compute the phrase representation of the
target phrase ’t’ by simply adding the word vec-
tors to the resultant target vector. We then com-
pute the cosine similarity between the two vectors
which acts as a feature for the MT decoder. We
also include the similarity score of transforming
the target word phrase to source phrase as another
feature. The phrase table is tuned with the pre-
viously used development data (development set
used for tuning baseline MT system) using the
MERT algorithm to compute the weight parame-
ters for the baselines features and semantic simi-
larity features.

5 Results and Discussion

The results of word similarity scores on the test
set (bilingual dictionary words section 4.3) are
presented in table 3 using the computed transfor-
mation matrix for English to Hindi. The simi-
larity scores are continuously decreasing with in-
crease in dimension, which shows that the pro-

Dimension Eng-Hin Hin-Eng
50 19.69 22.97
100 19.39 22.69
150 19.58 22.90
200 19.80 23.31
250 20.05 23.15
300 20.18 23.21
400 19.75 23.34
500 19.37 23.36

Table 4: BLEU score of system using Word2Vec
model with a context window of 5.

posed approach works better at lower dimensions
for word similarity task. The word2Vec model
is performing better than the GloVe model on
word-similarity task. Within the same model the
word2vec model with context window of five per-
forms better than the model with context window
of seven, while it is opposite for the GloVe model.

The results of our experiments (on the same test
data used for evaluating the baseline MT systems)
with varying dimensionality and context window
are presented in table 4, 5, 6 and 7. Each of
the bold marked values in the tables indicate an
increase in BLEU score over the baseline. The
figure 1, 2, 3 and 4 presents the comparison
of BLEU score for each of the model. The high-
est BLEU score achieved for English-Hindi trans-
lation system is 20.53 (increase of 0.64 BLEU
score over the baseline) using GloVe model with a
500 dimension vector and a context window of 5,
whereas the highest score for Hindi-English sys-
tem is 23.56 (increase of 0.74 BLEU score over
the baseline) using word2Vec model and context
window of 7. It is quite interesting to note that
the increasing dimensionality and context window
does not ensure increasing BLEU scores. It is ev-
ident that at a certain dimensionality the decoder
algorithm (combining feature scores using log-
linear model) can start distinguishing between the
good and bad translations. The Hindi-English sys-
tem shows improvements for almost all the cases,
whereas English-Hindi system does not show sim-
ilar behavior. Though the word similarity scores
indicates better performance at lower dimensions,
the MT experiments BLEU scores does follow the
same trend. Since this language pair has not been
widely explored, the results on word similarity and
MT scores are not directly comparable to the ear-
lier proposed methods.

44

Dimension Eng-Hin Hin-Eng
50 19.81 22.93
100 19.85 23.01
150 19.55 23.29
200 20.37 22.85
250 20.36 23.16
300 20.02 22.32
400 19.47 23.13
500 19.67 23.56

Table 5: BLEU score of system using Word2Vec
model with a context window of 7.

Dimension Eng-Hin Hin-Eng
50 19.75 23.41
100 19.60 22.84
150 20.28 23.08
200 19.77 22.93
250 20.04 23.30
300 19.97 23.17
400 19.85 22.93
500 20.53 22.72

Table 6: BLEU score of system using GloVe
model with a context window of 5.

Dimension Eng-Hin Hin-Eng
50 20.35 22.78
100 19.81 23.27
150 20.12 22.81
200 19.12 23.16
250 19.85 22.60
300 19.88 23.29
400 20.07 22.83
500 20.01 23.07

Table 7: BLEU score of system using GloVe
model with a context window of 7.

0 100 200 300 400 500

20

22

24

Baseline

Baseline

Dimension

B
L

E
U

Sc
or

e

English-Hindi
Hindi-English

Figure 1: Plot of BLEU score variation using
Word2Vec with a context window of 5

0 100 200 300 400 500

20

22

24

Baseline

Baseline

Dimension

B
L

E
U

Sc
or

e

English-Hindi
Hindi-English

Figure 2: Plot of BLEU score variation using
Word2Vec with a context window of 7

0 100 200 300 400 500

20

22

24

Baseline

Baseline

Dimension

B
L

E
U

Sc
or

e

English-Hindi
Hindi-English

Figure 3: Plot of BLEU score variation using
GloVe with a context window of 5

0 100 200 300 400 500

20

22

24

Baseline

Baseline

Dimension

B
L

E
U

Sc
or

e

English-Hindi
Hindi-English

Figure 4: Plot of BLEU score variation using
GloVe with a context window of 7

45

6 Conclusion and Future Work

In this paper we explore the use of semantic simi-
larity between phrase pairs as features while de-
coding the n-best list. The bilingual word em-
beddings are learnt through PLS regression using
a bilingual dictionary (which is an easily avail-
able resource considering low resourced language
pairs as well) with limited vocabulary size. This
method shows an increase in BLEU score for
both English-Hindi and Hindi-English MT sys-
tems. This approach is quite effective in terms
of overall complexity as the models developed by
Zou (2013) and Zhang (2014) require much larger
time for training.

As a part of future work, we propose the use
of auto-encoders(Socher et al., 2011) to learn
phrase representations as currently we are treating
’black’+’forest’ and ’forest’+’black’ to be having
the same vector representation while semantically
they are different . Since the words in one lan-
guage can not be just linearly transformable to an-
other language we will try to explore the use of
feed-forward neural networks to learn non-linear
transformations while minimizing the euclidean
distance between the word embedding pairs. We
also plan to extend the work by including the lin-
guistic information in the word embeddings and
taking the advantage of Hindi being a morpholog-
ically rich language.

References
Hervé Abdi. 2003. Partial least squares regression

(pls-regression).

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and
Li Deng. 2013. Learning semantic representations
for the phrase translation model. arXiv preprint
arXiv:1312.0482.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 873–882. Asso-
ciation for Computational Linguistics.

Eric Huang. 2011. Paraphrase detection using recur-
sive autoencoder.

Girish Nath Jha. 2010. The tdil program and the indian
language corpora initiative (ilci). In Proceedings of
the Seventh Conference on International Language
Resources and Evaluation (LREC 2010). European
Language Resources Association (ELRA).

Reinhard Kneser and Hermann Ney. 1995. Im-
proved backing-off for m-gram language modeling.
In Acoustics, Speech, and Signal Processing, 1995.
ICASSP-95., 1995 International Conference on, vol-
ume 1, pages 181–184. IEEE.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 48–54. Association for Computa-
tional Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
pages 177–180. Association for Computational Lin-
guistics.

Christopher D Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to informa-
tion retrieval, volume 1. Cambridge university press
Cambridge.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever.
2013b. Exploiting similarities among lan-
guages for machine translation. arXiv preprint
arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In ACL, pages
236–244.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of the
38th Annual Meeting on Association for Computa-
tional Linguistics, pages 440–447. Association for
Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Compu-
tational Linguistics-Volume 1, pages 160–167. As-
sociation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

46

Marius Paşca, Dekang Lin, Jeffrey Bigham, Andrei
Lifchits, and Alpa Jain. 2006. Names and simi-
larities on the web: fact extraction in the fast lane.
In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual
meeting of the Association for Computational Lin-
guistics, pages 809–816. Association for Computa-
tional Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for
word representation. Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014).

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 151–161. Association for
Computational Linguistics.

Andreas Stolcke et al. 2002. Srilm-an extensible lan-
guage modeling toolkit. In INTERSPEECH.

Haiyang Wu, Daxiang Dong, Wei He, Xiaoguang Hu,
Dianhai Yu, Hua Wu, Haifeng Wang, and Ting
Liu. 2014. Improve statistical machine transla-
tion with context-sensitive bilingual semantic em-
bedding model. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 142–146.

Jiajun Zhang, Shujie Liu, Mu Li, Ming Zhou, and
Chengqing Zong. 2014. Bilingually-constrained
phrase embeddings for machine translation. In Pro-
ceedings of the 52th Annual Meeting on Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

Will Y Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
EMNLP, pages 1393–1398.

47

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 48–56,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Incremental Adaptation Strategies
for Neural Network Language Models

Aram Ter-Sarkisov, Holger Schwenk, Loı̈c Barrault and Fethi Bougares
School of Computer Science, University of Maine,

Le Mans, France
tersarkisovl@lium.univ-lemans.fr

Abstract

It is today acknowledged that neural net-
work language models outperform back-
off language models in applications like
speech recognition or statistical machine
translation. However, training these mod-
els on large amounts of data can take sev-
eral days. We present efficient techniques
to adapt a neural network language model
to new data. Instead of training a com-
pletely new model or relying on mixture
approaches, we propose two new methods:
continued training on resampled data or
insertion of adaptation layers. We present
experimental results in an CAT environ-
ment where the post-edits of professional
translators are used to improve an SMT
system. Both methods are very fast and
achieve significant improvements without
over-fitting the small adaptation data.

1 Introduction

A language model (LM) plays an important role
in many natural language processing applications,
namely speech recognition and statistical machine
translation (SMT). For a very long time, back-off
n-gram models were considered to be the state-of-
the-art, in particular when large amounts of train-
ing data are available.

An alternative approach is based on the use of
high-dimensional embeddings of the words and
the idea to perform the probability estimation in
this space. By these means, meaningful interpola-
tions can be expected. The projection and proba-
bility estimation can be jointly learned by a neu-
ral network (Bengio et al., 2003). These mod-
els, also called continuous space language models
(CSLM), have seen a surge in popularity, and it
was confirmed in many studies that they system-
atically outperform back-off n-gram models by a

significant margin in SMT and speech recogni-
tion. Many variants of the basic approach were
proposed during the last years, e.g. the use of
recurrent architectures (Mikolov et al., 2010) or
LSTM (Sundermeyer et al., 2012). More recently,
neural networks were also used for the transla-
tion model in an SMT system (Le et al., 2012;
Schwenk, 2012; Cho et al., 2014), and first trans-
lations systems entirely based on neural networks
were proposed (Sutskever et al., 2014; Bahdanau
et al., 2014).

However, to the best of our knowledge, all these
systems are static, i.e. they are trained once on a
large representative corpus and are not changed or
adapted to new data or conditions. The ability to
adapt to changing conditions is a very important
property of an operational SMT system. The need
for adaptation occurs for instance in a system to
translate daily news articles in order to account for
the changing environment. Another typical appli-
cation is the integration of an SMT system in an
CAT1 tool: we want to improve the SMT systems
with help of user corrections. Finally, one may
also want to adapt a generic SMT to a particular
genre or topic for which we lack large amounts
of specific data. Various adaptation schemes were
proposed for classical SMT systems, but to the best
of our knowledge, there is only very limited works
involving neural network models.

We are interested in a setting where an LM
needs to be adapted to a small amount of data
which is representative of a domain change, so that
the overall system will perform better on this do-
main in the future. Our task, which corresponds
to concrete needs in real-world applications, is the
translation of a document by an human over sev-
eral days. The human translator is assisted by an
SMT system which proposes translation hypothe-
sis to speed up his work (post editing). After one
day of work, we adapt the CSLM to the transla-

1Computer Assisted Translation

48

tions already performed by the human translator,
and show that the SMT system performs better on
the remaining part of the document.

In this paper, we use the open-source MateCat
tool2 and a closely integrated SMT system3 which
is already adapted to the task (translation of le-
gal documents). For each source sentence, the
system proposes an eventual match in the transla-
tion memory and a translation by the SMT system.
The human translator can decide to either post-edit
them, or to perform a new translation from scratch.
After one day of work, we want to use all the post-
edited sentences to adapt the SMT systems, so that
the translation quality is improved for the next day.
This means that the SMT system will be adapted to
the specific translation project. One important par-
ticularity of the task is that we have a very small
amount of adaptation data, usually around three
thousand words per day.

This paper is organized as follows. In the next
two sections, we summarize basic notions of sta-
tistical machine translation and continuous space
language models. We then present our tasks and
results. The paper concludes with a discussion and
directions of future research.

2 Related work

Popular approaches to adapt the LM in an SMT
system are mixture models, e.g. (Foster and Kuhn,
2007; Koehn and Schroeder, 2007) and data selec-
tion. In the former case, separate LMs are trained
on the available corpora and are then merged into
one, the interpolation coefficients being estimated
to minimize perplexity on an in-domain develop-
ment corpus. This is known as linear mixture
models. We can also integrate the various corpus-
specific LMs as separate feature functions in the
usual log-linear model of an SMT system.

Data selection aims at extracting the most rele-
vant subset of all the available LM training data.
The approach proposed in (Moore and Lewis,
2010) has turned out to be the most effective one in
many settings. Adaptation of the LM of an SMT
models in an CAT environment was also investi-
gated in several studies, e.g. (Bach et al., 2009;
Bertoldi et al., 2012; Cettolo et al., 2014).

Adaptation to new data was also investigated in
the neural network community, usually by some
type of incremental training on a (subset) of the

2https://www.matecat.com/
3http://www.statmt.org/moses/

data. Curriculum learning (Bengio et al., 2009),
which aims in presenting the training data in a
particular order to improve generalization, could
be also used to perform adaptation on some new
data. There are a couple of papers which investi-
gate adaptation in the context of a particular ap-
plication, namely image processing and speech
recognition. One could for instance mention a re-
cent work which investigated how to transfer fea-
tures in convolutional networks (Yosinski et al.,
2014), or research to perform speaker adaptation
of a phoneme classifier based on TRAPS (Trmal
et al., 2010).

There are also a few publications which investi-
gate adaptation of neural network language mod-
els, most of them very recent. The insertion of an
additional adaption layer to perform speaker adap-
tation was proposed by Park et al. (Park et al.,
2010). Earlier this idea was explored in (Yao et
al., 2012) for speech recognition through an affine
transform of the output layer. Adaptation through
data selection was studied in (Jalalvand, 2013)
(selection of sentences in out-of-domain corpora
based on similarity between sentences) and (Duh
et al., 2013) (training of three models: n-gram,
RNN and interpolated LM on two SMT systems:
in-domain data only and all-domain). Several vari-
ants of curriculum learning are explored by Shi
et al. to adapt a recurrent LM to a sub-domain,
again in the area of speech recognition (Shia et
al., 2014). Finally, one of the early applications of
RNN was in (Kombrink et al., 2011): it was used
to rescore the n-best list, speed-up the rescoring
process, adapt an LM and estimate the influence
of history.

3 Statistical Machine Translation

In the statistical approach to machine translation,
all models are automatically estimated from exam-
ples. Let us assume that we want to translate a sen-
tence in the source language s to a sentence in the
target language t. Then, the fundamental equation
of SMT is, applying Bayes rule:

t∗ = arg max
t
P (t|s) = arg max

t
P (s|t)P (t)

(1)
The translation model P (s|t) is estimated from bi-
texts, bilingual sentence aligned data, and the lan-
guage model P (t) from monolingual data in the
target language. A popular approach are phrase-
based models which translate short sequences of
words together (Koehn et al., 2003; Och and

49

projection
layer

output
layer

projections
shared

input

hidden layers

inserted
adaptation layer

softmax

tanh tanhtanh

Neural Network

probability estimation

Figure 1: Basic architecture of an CSLM and in-
sertion of an adaptation layer (dashed red).

Ney, 2003). The translation probabilities of these
phrase pairs are usually estimated by simple rel-
ative frequency. The LM is normally a 4-gram
back-off model. The log-linear approach is com-
monly used to consider more models (Och, 2003),
instead of just a translation and language model:

t∗ = arg max
t

M∑
m=1

λmhm(s, t), (2)

where hm(s, t) are so-called feature functions.
The weights λm are optimized during the tuning
stage. In the Moses system, fourteen feature func-
tions are usually used.

Automatic evaluation of an SMT system re-
mains an open question and many metrics have
been proposed. In this study we use the BLEU
score which measures the n-gram precision be-
tween the translation and a human reference trans-
lation (Papineni et al., 2002). Higher values mean
better translation quality.

4 Continuous Space Language Model

The basic architecture of an CSLM is shown in
Figure 1. The words are first projected onto a con-
tinuous representation, the remaining part of the
network estimates the probabilities. Usually one
tanh hidden and a softmax output layer are used,
but recent studies have shown that deeper archi-
tecture perform better (Schwenk et al., 2014). We
will use three tanh hidden and a softmax output
layer as depicted in Figure 1. This type of architec-
ture is now well known and the reader is referred
to the literature for further details, e.g. (Schwenk,
2007).

All our experiments were performed with the
open-source CSLM toolkit4 (Schwenk, 2013),
which was extended for our purposes. A major
challenge for neural network LMs is how to handle
the words at the output layer since a the softmax
normalization would be very costly for large vo-
cabularies. Various solutions have been proposed:
short-lists (Schwenk, 2007), a class decomposi-
tion (Mikolov et al., 2011) or an hierarchical de-
composition (Le et al., 2011). In this work, we
use short-lists, but our adaptation scheme could be
equally applied to the other solutions.

4.1 Adaptation schemes

As mentioned above, the most popular and most
successful adaptation schemes for standard back-
off LMs are data selection and mixture models.
Both could be also applied to CSLMs. In practice,
this would mean that we train a completely new
CSLM on data selected by the adaptation process,
or that we train several CSLMs, e.g. a generic
and task-specific one, and combine them in lin-
ear or log-linear way. However, full training of an
CSLM usually takes a substantial amount of time,
often several hours or even days in function of the
size of the available training data. Building several
CSLMs and combining them would also increase
the translation time.

Therefore, we propose and compare CSLM
adaptation schemes which are very efficient: they
can be performed in a couple of minutes. The un-
derlying idea of both techniques is not to train new
models, but to slightly change the existing CSLM
in order to account for the new training data. In
the first method, we perform continued training
of the CSLM with a mixture of the new adapta-
tion data and the original training data. In the
second method, adaptation layers are inserted
in the neural network as outlined in red in Fig-
ure 1. This additional layer is initialized with the
identity matrix and only the weights of this layer
are updated. This idea was previously proposed in
framework of a speech recognition system (Park
et al., 2010). We build on this work and explore
different variants of this technique. An interest-
ing alternative is to keep the original architecture
of the NN and to only modify one layer, e.g. the
weights between two tanh layers in Figure 1. This
variant will be explored in future work.

4The CSLM toolkit is available at http://www-lium.univ-
lemans.fr/˜cslm/

50

Corpus En/German En/French
All data:

Bitexts 129M 512M
Monolingual 643M 1300M
After data selection:

Bitexts 49M 26M
Monolingual 44M 178M

Table 1: Statistics of the available resources (num-
ber of tokenized words)

5 Task and baselines

Our task is to improve an SMT system which is
closely integrated into an open-source CAT tool
with the post-edits provided by professional hu-
man translators. This tool and algorithms to up-
date standard phrase-based SMT systems, includ-
ing back-off language models, were developed in
the framework of the European project MateCat
(Cettolo et al., 2014). We consider the transla-
tion of legal texts from English into German and
French. The available resources for each language
pair are summarized in Table 1.

Each SMT system is based on the Moses toolkit
(Koehn et al., 2007) and built according to the fol-
lowing procedure: first we perform data selection
on the parallel and monolingual corpora in order
to extract the data which is the most representative
to our development set. In our case, we are inter-
ested in the translation of legal documents. Data
selection is now a well established method in the
SMT community. It is performed for the language
and translation model using the methods described
in (Moore and Lewis, 2010) and (Axelrod et al.,
2011) respectively.

We train a 4-gram back-off LM and a phrase-
based system using the standard Moses parame-
ters. The coefficients of the 14 feature functions
are optimized by MERT to maximize the BLEU
score on the development data. This system is
then used to create up to 1000 distinct hypotheses
for each source sentence. We then add a 15th fea-
ture function corresponding to the log probability
generated by CSLM for each hypothesis and the
coefficients are again optimized. This is usually
referred to as n-best list rescoring. We call this fi-
nal system domain-adapted since it is optimized
to translate legal documents. This system is then
used to assist human translators to translate a large
document in the legal domain.

Typically, we will process day by day: after
one day of work, all the human translations (cre-
ated from scratch or by post-editing the hypothe-
ses from the SMT system) are injected into the
system and we hope that SMT will perform better
on the rest of the document to be translated, e.g.
on the second day of work. This procedure can be
repeated over several days when the document is
rather large (see section 5.2). Usually humans are
able to translate approximately 3 000 words per
day. We call this procedure project-adaptation.

5.1 Results for the English/German system

The 4-gram back-off LM built on the selected data
has a perplexity of 151.1 on the domain-specific
development data. Given the fact that an CSLM
can be very efficiently trained on long context win-
dows, we used a 28-gram in all experiments. By
these means we hope to capture the long range de-
pendencies of German. The projection layer of the
CSLM was of dimension 320, followed by three
tanh hidden layers of size 1024 and a softmax out-
put layer of 32k neurons (short-list). This short-
list accounts for around 92 % of the tokens used
in the corpus. The initial learning rate was set
to 0.06 and exponentially decreased over the it-
erations. The network converged after 7 epochs
with a perplexity of 96.6, i.e. a 36% relative re-
duction. The total training time is less than 7 hours
on a Nvidia K20x GPU. Table 2 (upper part) gives
the BLEU score of these baseline domain-adapted
systems.

To analyze our project adaptation techniques we
have split another legal document into two part,
“Day 1” and “Day 2”. The first part, “Day 1”,
containing around 3.2K words, is used to adapt
the SMT system and the CSLM, aiming to im-
prove the translation performance on the second
part, named “Day 2”. Note that the performance
on “Day 1” itself, after adaptation, is of limited
interest since we could quite easily overtrain the
model on this data. On the other hand, it is infor-
mative to monitor the performance on the domain-
generic development set. Ideally, we will improve
the performance on “Day 2”, i.e. future text of the
same project than the adaptation data, with only a
slightly loss on the generic development data.

Various adaptation schemes are compared in Ta-
ble 4. The network is adapted on the data from
Day 1 and we want to improve performance on
Day 2. At the same time, we do not want to

51

LM BLEU score
Approach Adaptation Dev Day 1 Day 2

Domain adapted:
Back-off n/a 26.18 27.53 19.31
CSLM n/a 26.89 27.14 20.28

Project adapted;
Back-off data selection 25.76 (28.45) 20.14

none 26.45 (28.65) 20.57
CSLM continued training 26.27 (33.10) 21.12

additional layers 26.39 (31.94) 21.26

Table 2: Comparative BLEU scores for the English/German systems. Italic values in parenthesis are for
information only. They are biased since the reference translations are used in training.

Percentage of Generic data Day 1 data # examples training time
adaptation data (44M words) (3.2k words) per epoch per epoch
Domain-adapted CSLM:

none 19.3M (42%) n/a 19.3M 3250 sec
Project-adapted CSLM:

14% 19 356 (0.042%) 3 220 22 576 3.5 sec
25% 9 696 (0.021%) 3 220 12 916 2.0 sec
45% 3 899 (0.008%) 3 220 7 119 1.1 sec
62% 1 967 (0.004%) 3 220 5 187 0.6 sec
77% 1 003 (0.002%) 3 220 4 223 0.5 sec

Table 3: English/German system: number of examples (28-grams) seen by the CSLM at each epoch.
For the domain adapted system, we randomly resample about 42% of the examples at each epoch. For
the project-adapted system, we experimented with various mixtures between generic and project specific
data (Day 1). We don’t want to train on Day 1 data only since this would result in strong over-fitting.

overfit the data and keep good performance on
the domain-specific Dev set. To achieve this, we
continued training of the networks with a mix-
ture of old and new data. All the adaptation data
was always used (Day 1, 3.2k words) and small
fractions of the domain-selected data were ran-
domly sampled at each epoch, so that the adapta-
tion data accounts for 14, 25, 45, 62 and 77 % re-
spectively. Since the networks are trained on very
small amounts of data (4 - 23k words), the overall
adaptation process takes only a few minutes. The
statistics of the data used at each epoch is detailed
in Table 3. We will show below that it is impor-
tant to perform the adaptation of the CSLM with a
mixture of generic and adaptation data to prevent
overfitting.

We experiment along the following lines:

1. different resampling coefficients of adapta-
tion and generic data according to Table 3.

2. network topologies:

a) continue training of the original network
updating all the weights.

b) insert one or two hidden layers with
1024 neurons using linear or hyper-
bolic tangent activation functions re-
spectively. These additional layers are
initialized with the identity matrix and
only these layers are updated using
backpropagation function.

We record the perplexity of the adapted CSLM
on Day 2 (∼ 11K words), which is then used as
a guideline for selecting the best networks to inte-
grate into an SMT system (marked with an asterisk
in the Table 4). Lowest perplexity was obtained by
keeping the baseline network topology (upper part
of Table 4) when Day 1 data constituted 14 % of
the incremental training data set: the perplexity on
Day 2 decreases from 126.1 to 94.6, with a minor
increase on the Dev set (96.6→98.7). Using larger

52

Network Updated Activation Addtl. Percentage of Perplexity
architecture layers function params adapt. data Day 2 Dev

Original network architecture:

1024-1024-1024
without adaptation

- Tanh - - 126.1 96.6

1024-1024-1024
All Tanh -

14% 94.6∗ 98.7

with incremental training
25% 103.7 97.3

45% 102.9 98.9
62% 102.7 100.2

Insertion of an adaptation layer:

1024-1024-1024-1024
inserted

Linear 1M
14% 106.0 97.4

one only 25% 104.9 99.5

1024-1024-1024-1024
inserted

Linear 1M
14% 103.8 98.8

one only 25% 97.9 102.5

1024-1024-1024-1024 inserted
Linear 1M

14% 101.2 100.8
one only 25% 102.2 104.1

1024-1024-1024-1024
inserted

Tanh 1M
14% 105.7 96.8

one only 25% 104.6 98.9

1024-1024-1024-1024
inserted

Tanh 1M
14% 103.5 96.4

one only 25% 102.6 98.4

1024-1024-1024-1024 inserted
Tanh 1M

14% 101.5 95.1∗

one only 25% 101.3 97.4

Table 4: Perplexities of CSLMs with one new hidden layer adapted to Day 1. Bold values in the architec-
ture column are the new hidden layers. Bold values in the last two columns are the best perplexities for
the respective test corpora. Tanh is a shorthand notation for the hyperbolic tangent activation function.
Percentage is the proportion of Day 1 data in the total corpora (see Table 3). All networks have been
trained for 50 iterations.

fractions of Day 1 leads to over-fitting of the net-
work: the perplexity on Day 2 and the generic Dev
set increases.

The lower part of Table 4 summarizes the re-
sults when inserting one adaptation layer, with a
linear or tanh activation function, at three differ-
ent slots respectively. For each configuration, we
explored five different proportions of the baseline
corpora and Day 1 (cf. Table 3), but for clarity,
we only report the most interesting results. The
overall tendency was that using more than 25%
of Day 1 systematically leads to over-fitting of
the network. Several conclusions can be made:
a) an tanh adaptation layer outperforms a linear
one; b) it is better to insert the adaptation layer at
the end of the network; c) updating the weights
of the inserted layer only overfits less than in-
cremental training the whole network (comparing
the last block in Table 4 with the second block):
the perplexity on Day 1 decreases substantially
(126.1→101.5) and we observe a slight improve-

ment on the Dev set (96.6→95.1).
Finally, Table 2 lower part gives the BLEU

scores of the project-adapted systems. When no
CSLM is used, the BLEU score on Day 2 increases
from 19.31 to 20.14 (+0.83). This is achieved
by adapting the translation and back-off LM (de-
tails of the algorithms can be found in (Cettolo
et al., 2014)). Both CSLM adaptation schemes
obtained quite similar BLEU scores: 21.12 and
21.26 respectively, the insertion of one additional
tanh layer having a slight advantage. Overall,
the adapted CSLM yields an improvement of 1.12
BLEU (20.14 to 21.26) while it was about 1 point
BLEU for the domain-adapted system (19.31 to
20.28). This nicely shows the effectiveness of our
adaptation scheme, which can be applied in a cou-
ple of minutes.

5.2 Results for the English/French system

A second set of experiments was performed to
confirm the effectiveness of our adaptation proce-

53

dure on a different language pair: English/French.
In the MT community it is well known that the
translation into German is a very hard task which
is reflected in the low BLEU scores around 20 (see
Table 2). On the other hand, our baseline SMT
system for the English/French language pair has a
BLEU score well above 40. One may argue that
it is more complicated to further improve such a
system.

In addition, we investigate adaptation of the
SMT system and the CSLM over five consecutive
days: the human translator works for one day and
corrects the SMT hypothesis, these corrections are
used to adapt the system for the second day. Hu-
man corrections are again inserted into the system
and a new system for the third day is built, and
so on. With this adaptation scheme we want to
verify whether our methods are robust or quickly
overfit the adaptation data. The number of words
for each day are about three thousand. A 16-gram
CSLM for the French target language with a short-
list of 12k was used. Training was performed for
15 epochs.

Day Day 1 Days 1-2 Days 1-3 Days 1-4
1 39 % 27.9 % 21.6 % 17.7 %
2 - 29.6 % 22.9 % 18.8 %
3 - - 22.3 % 18.1 %
4 - - - 17.4 %

Table 6: English/French task: proportion of each
day in the adaptation data set, e.g. at the end of
Day 2, we create an adaptation corpus which con-
sists of 27.9% and 29.6% of data from Day 1 and
Day 2 respectively, the remaining portions are ran-
domly resampled in the training data.

For this task, we only used the incremental
learning method (see Table 4) as it yielded the low-
est perplexity in the English/German experiment.
The data from the five consecutive days is com-
ing from one large document which is assumed
to be from one domain only. Therefore, we de-
cided to always use all the available data from the
preceding days to adapt our models. For instance,
after the third day, the data from Day 1, 2 and 3
is used to build a new system for the fourth day.
The proportions of each day in the corpus used to
continue the training of the CSLM are given in Ta-
ble 6 (note that every day’s proportion decreases,
but their combined share increases from 39% to
68%). The perplexities of the various CSLMs are

given in Table 7.

Data CSLM baseline CSLM adapted
Day 1 233.9 -
Day 2 175.6 130.3
Day 3 153.0 130.2
Day 4 189.4 169.4
Day 5 189.2 167.7

Table 7: English/French task: perplexities of base-
line and adapted CSLM (on all preceding days),
e.g. the CSLM tested on Day 4 is the baseline
CSLM that had been adapted with Days 1-3.

One first observation is the rather high perplex-
ity of the models on each day. This shows the im-
portance of project adaptation even when domain
related data is available. Adaptation allows to de-
crease the perplexity by more than 10% relative
for each day. While the perplexities vary between
the project days, they are reduced in every case,
which demonstrates the effectiveness of the adap-
tation method.

In order to evaluate the impact of the CSLM
adaptation on the SMT system, we performed var-
ious translation experiments. The results are pro-
vided in Table 5. The BLEU scores of the var-
ious systems using the baseline and the adapted
CSLMs are presented. We run tests with three
different human translators - for the sake of clar-
ity, we provide detailed results for one translator
only. The observed tendencies are similar for the
two other translators. First of all, one can see
that the CSLM improves the BLEU score of the
baseline systems between 2.3 to 3.4 BLEU points,
e.g. for Day 2 from 44.07 to 46.61. Adapting the
whole SMT system to the new data improves sig-
nificantly the translation quality, e.g. from 46.61
to 52.01 for Day 2, without changing the CSLM.
The proposed adaptation scheme of the CSLM
achieves additional important improvements, in
average 2.6 BLEU points. This gain is relatively
constant for all days.

For comparison, we also give the BLEU scores
when using four reference translations: the one of
the three human translators and one independent
translation which was provided by the European
Commission.

We still observe some small gains although
three out of four translations were not used in the
adaptation process. This shows that our adaptation
scheme not only learns the particular style of one

54

Approach Day 1 Day 2 Day 3 Day 4 Day 5
Baseline SMT system:
back-off LM 48.84/63.69 44.07/62.13 46.88/67.14 43.22/64.74 47.77/67.07
CSLM 52.25/67.04 46.61/65.64 49.73/70.70 45.68/68.61 50.06/69.70
Adapted SMT system:
baseline CSLM

n/a

52.01/66.68 57.35/75.31 54.99/71.88 59.11/74.49
adapted CSLM 54.61/67.97 60.23/75.90 57.19/72.05 61.83/5.21
Improvement obtained

2.60/1.29 2.88/0.56 2.20/0.17 2.72/0.72
by adapted CSLM

Table 5: BLEU scores obtained by a baseline SMT (without and with an CSLM) and a project-adapted
SMT with baseline (unadapted) CSLM and adapted CSLM. The first value in every cell is the BLEU
score obtained with respect to the reference translation of the human translator; the second one is cal-
culated with respect to all the 3 references created by the professional translators (i.e. obtained by
post-edition) and an independent reference.

translator, but also achieves more generic im-
provements. This also shows that the adaptation
process is beneficial for improving state-of-the-art
systems which already perform very well on cer-
tain tasks.

6 Conclusions

In this paper, we presented a thorough study of
different techniques to adapt a continuous space
language model to small amounts of new data. In
our case, we want to integrate user corrections so
that a statistical machine translation system per-
forms better on similar texts. Our task, which cor-
responds to concrete needs in real-world applica-
tions, is the translation of a document by an human
over several days. The human translator is assisted
by an SMT system which proposes translation hy-
pothesis to speed up his work (post editing). After
one day of work, we adapt the CSLM to the trans-
lations already performed by the human translator,
and show that the SMT system performs better on
the remaining part of the document.

We explored two adaptation strategies: contin-
ued training of an existing neural network LM, and
insertion of an adaptation layer with the weight
updates being limited to that layer only. In both
cases, the network is trained on a combination
of adaptation data (3–15k words) and a portion
of similar size, randomly sampled in the original
training data. By these means, we avoid over-
fitting of the neural network to the adaptation data.
Overall, the adaptation data is very small – less
than 50k words – which leads to very fast training
of the neural network language model: a couple of
minutes on a standard GPU.

We provided experimental evidence of the ef-
fectiveness of our approach on two large SMT
tasks: the translation of legal documents from En-
glish into German and French respectively. In both
cases, significantly improvement of the translation
quality was observed.

References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain data
selection. In EMNLP, pages 355–362.

Nguyen Bach, Roger Hsiao, Matthias Eck, Paisarn
Charoenpornsawat, Stephan Vogel, Tanja Schultz,
Ian Lane, Alex Waibel, and Alan W. Black. 2009.
Incremental Adaptation of Speech-to-Speech Trans-
lation. In NAACL, pages 149—-152, Boulder, US-
CO.

D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural
machine translation by jointly learning to align and
translate. In NIPS workshop on Modern Machine
Learning and Natural Language Processing.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. JMLR, 3(2):1137–1155.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML.

Nicola Bertoldi, Mauro Cettolo, Marcello Federico,
and Christian Buck. 2012. Evaluating the Learn-
ing Curve of Domain Adaptive Statistical Machine-
Translation Systems. In Workshop on SMT, pages
433–441, Montréal, Canada.

Mauro Cettolo, Nicola Bertoldi, Marcello Federico,
Holger Schwenk, Loı̈c Barrault, and Christophe Ser-
van. 2014. Translation project adaptation for MT-

55

enhanced computer assisted translation. Machine
Translation, 28(2):127–150.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In EMNLP, pages
1724–1734.

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and Ha-
jime Tsukada. 2013. Adaptation data selection us-
ing neural language models: Experiments in ma-
chine translation. In ACL (2), pages 678–683.

George Foster and Roland Kuhn. 2007. Mixture-
model adaptation for SMT. In EMNLP, pages 128–
135.

Shahab Jalalvand. 2013. Improving language model
adaptation using automatic data selection and neural
network. In RANLP, pages 86–92.

Philipp Koehn and Josh Schroeder. 2007. Experiments
in domain adaptation for statistical machine transla-
tion. In Second Workshop on SMT, pages 224–227,
June.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based machine translation.
In HLT/NACL, pages 127–133.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL, demonstration session.

Stefan Kombrink, Tomas Mikolov, Martin Karafiát,
and Lukás Burget. 2011. Recurrent neural network
based language modeling in meeting recognition. In
INTERSPEECH, pages 2877–2880.

Hai-Son Le, I. Oparin, A. Allauzen, J-L. Gauvain, and
F. Yvon. 2011. Structured output layer neural net-
work language model. In ICASSP, pages 5524–
5527.

Hai-Son Le, Alexandre Allauzen, and François Yvon.
2012. Continuous space translation models with
neural networks. In NAACL.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech, pages 1045–1048.

Tomáš Mikolov, A. Deoras, D. Povey, L. Burget, and
J. Černocký. 2011. Strategies for training large
scale neural network language models. In ASRU,
pages 196–201.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In ACL,
pages 220–224.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignement
models. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In ACL, pages 160–
167.

K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2002.
BLEU: a method for automatic evaluation of ma-
chine translation. In ACL, pages 311–318.

Junho Park, Xunying Liu, Mark J. F. Gales, and Phil C.
Woodland. 2010. Improved neural network based
language modelling and adaptation. In Interspeech,
pages 1041–1044.

Holger Schwenk, Fethi Bougares, and Loı̈c Barrault.
2014. Efficient training strategies for deep neural
network language models. In NIPS workshop on
Deep Learning and Representation Learning.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech and Language, 21:492–
518.

Holger Schwenk. 2012. Continuous space translation
models for phrase-based statistical machine transla-
tion. In Coling, pages 1071–1080.

Holger Schwenk. 2013. CSLM - a modular open-
source continuous space language modeling toolkit.
In Interspeech, pages 1198–1202.

Yangyang Shia, Martha Larsona, and Catholijn M.
Jonkera. 2014. Recurrent neural network language
model adaptation with curriculum learning. Com-
puter Speech & Language, 33(1):136–154.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Interspeech.

I. Sutskever, O. Vinyals, and Q. Le. 2014. Sequence
to sequence learning with neural networks. In NIPS,
pages 3104–3112.

Jan Trmal, Jan Zelinka, and Ludek Müller. 2010.
Adaptation of a feedforward articifical neural net-
work using a linear transform. In Text, Speech and
Dialogue, pages 423–430.

Kaisheng Yao, Dong Yu, Frank Seide, Hang Su,
Li Deng, and Yifan Gong. 2012. Adaptation
of context-dependent deep neural networks for au-
tomatic speech recognition. In Spoken Language
Technology Workshop (SLT), 2012 IEEE, pages
366–369. IEEE.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In NIPS, pages 3320–3328.

56

Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 57–66,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Observed versus latent features for knowledge base and text inference

Kristina Toutanova
Microsoft Research

Redmond, WA, USA

Danqi Chen∗
Computer Science Department

Stanford University

Abstract

In this paper we show the surprising
effectiveness of a simple observed fea-
tures model in comparison to latent fea-
ture models on two benchmark knowl-
edge base completion datasets, FB15K
and WN18. We also compare latent and
observed feature models on a more chal-
lenging dataset derived from FB15K, and
additionally coupled with textual mentions
from a web-scale corpus. We show that
the observed features model is most effec-
tive at capturing the information present
for entity pairs with textual relations, and
a combination of the two combines the
strengths of both model types.

1 Introduction

Representing information about real-world en-
tities and their relations in structured knowl-
edge bases (KBs) enables numerous applications.
Large, collaboratively created knowledge bases
have become recently available (some examples
are Freebase (Bollacker et al., 2008), YAGO
(Suchanek et al., 2007), and DBPedia (Auer et
al., 2007)), but even though they are impres-
sively large, their coverage is far from complete.
This has motivated research in automatically de-
riving new facts to extend a manually built knowl-
edge base, by using information from the exist-
ing knowledge base and information from textual
mentions of entities in documents.

Many statistical models for predicting new links
in knowledge bases have been applied to this task,
with most successful ones being latent feature
models that learn continuous representations for
entities and relations (Bordes et al., 2011; Nickel
et al., 2011; Bordes et al., 2013), and observed
feature models which predict based on observable

∗ Parts of this research were conducted during the au-
thor’s internship at Microsoft Research.

features in the knowledge graphs (Lao et al., 2011;
Riedel et al., 2013). Additionally, studies have
looked at the contribution of text-based extraction
to knowledge base completion (Lao et al., 2012;
Gardner et al., 2013).

In this paper we compare empirically a very
simple observed features model to state-of-the-art
latent feature models recently applied to two com-
monly used datasets for knowledge base comple-
tion: a dataset adapted from the Freebase KB,
called FB15K (Bordes et al., 2013) and a dataset
derived from the WordNet graph WN18, also in-
troduced in (Bordes et al., 2013). We show that the
simple observed features model substantially out-
performs latent feature models, possibly due to the
arguably unrealistic redundancy in the KB graphs
of these datasets. Nevertheless, it is intriguing that
the latent feature models studied are not able to
learn the target concept as well, even given a large
number of latent features.

We also construct a harder, perhaps more re-
alistic dataset derived from FB15K, in which we
remove near-duplicate or inverse-duplicate rela-
tions. We show that in this new dataset our studied
latent feature models substantially outperform the
observed feature models. When we augment the
newly constructed dataset with textual mentions
derived from the ClueWeb 12 web-scale document
collection, we see that the observed features model
is more powerful than the latent feature models,
but also that a combination of the two is superior
to either of them.

2 Related Work

There has been a large amount of work on statisti-
cal models for knowledge base completion. Nickel
et al. (2015) provide a recent overview.

Most related to our current focus is recent work
applying latent feature models to the FB15K and
WN18 datasets (Bordes et al., 2013; Wang et al.,
2014; Yang et al., 2015), work containing compar-
isons between observed and latent feature mod-

57

Knowledge Base

Barack
Obama

United
States

Honolulu

Textual Mentions

Barack Obama is the 44th and current
President of United States.

Obama was born in the United States
just as he has always said.

…

ClueWeb

place_of_birth
city_of

nationality

Figure 1: A knowledge base fragment coupled with textual
mentions of pairs of entities.

els (Dong et al., 2014; Nickel et al., 2014), and
work using inference from both text and knowl-
edge base relations (Lao et al., 2012; Riedel et al.,
2013; Dong et al., 2014; Gardner et al., 2014).

Our work differs from this prior work in that we
compare a very simple form of observed feature
models, based on using only direct links between
candidate entity pairs, to state-of-the-art latent fea-
ture models on two benchmark datasets, with sur-
prising results.

Our work on using textual mentions for knowl-
edge base inference differs from prior work in the
scale and richness of the knowledge base and tex-
tual relations used, as well as in that we evaluate
the impact of text not only on mentioned entity
pairs like (Gardner et al., 2014; Riedel et al., 2013)
but on all links. We represent knowledge base and
textual patterns in a single knowledge graph, like
Lao et al. (2012) and Riedel et al. (2013), but re-
fine the learning method to treat textual relations
differently in the loss function, to maximize pre-
dictive performance on the knowledge base rela-
tions. We show the impact of observed and latent
feature models and their combination in knowl-
edge graphs with and without textual relations.

3 Models for knowledge base completion

We begin by introducing notation to define the
task, largely following the terminology in Nickel
et al. (2015). We assume knowledge bases are
represented using RDF triples, in the form (subject,
predicate, object), where the subject and object are
entities and the predicate is the type of relation.
For example, the KB fragment shown in Figure 1
is shown as a knowledge graph, where the entities
are the nodes, and the relations are shown as di-

rected labeled edges: we see three entities which
participate in three relation instances indicated by
the edges.

The task we are interested in is, given a train-
ing KB consisting of entities with some relations
between them, to predict new relations (links) that
do not appear in the training KB. For example, the
triple (Barack Obama, nationality, United States) could
be predicted from the training KB triples (Barack

Obama, place of birth, Honolulu) and (Honolulu, city of,
United States). More specifically, we will build mod-
els that rank candidate entities for given queries
(e1, r, ?) or (?, r, e2), which ask about the subject
or object of a given relation.

The following notation will help us define the
statistical models over knowledge graphs that we
consider. Let E = (e1, e2, . . . , eNe) denote the
set of entities in the knowledge graph and let
R = (r1, r2, . . . , rNr) denote the set of rela-
tion types. We denote each possible triple as
xi,j,k = (ei, rk, ej) and model its presence with
a binary random variable yi,j,k ∈ {0, 1} which
indicates whether the triple exists. We will fo-
cus on models that score possible triples xi,j,k us-
ing either observed features from the knowledge
graph or latent features of the three elements of
the triple. Both model classes use scoring func-
tions f(xi,j,k; Θ) that represent the model’s confi-
dence in the existence of the triple. We first spec-
ify the forms of scoring functions we consider in
this study, and later detail the loss functions used
for training model parameters. We use the same
loss function (as a function of triple scores) for
training all models in this study.

3.1 Observed feature models

We consider an extremely simple form of ob-
served feature models, which can be seen as an
impoverished variant of path ranking (PRA) for
KB completion (Lao and Cohen, 2010; Lao et
al., 2011). In particular we define features for
existing paths of length one for candidate triples
(ei, rk, ej). These can be paths from ei to ej or
from ej to ei. Length one paths from ei to ej :
we define binary features of the form 1(r′&rk),
which fire when the triple ei, r′, ej exists in the
training knowledge graph, and r′ 6= rk. This fea-
ture type captures correlations among multiple re-
lation types for the same entity pair – for exam-
ple, if someone lives in a certain city, they might
be likely to work in the same city. Length one

58

paths from ej to ei: we define binary indicator
features of the form 1(r′inv&rk), which fire when
the triple ej , r′, ei exists in the training knowledge
graph. Here r′ can capture the correlation with
inverse relations, for example nationality and peo-
ple of nationality.

Such features will fire only if the candidate en-
tity pair (ei, ej) is already directly connected in
the training knowledge graph (by a link in either
direction). Thus such features are expected to be
helpful only when there are multiple correlated re-
lation types that tend to connect similar sets of
entity pairs. In the experiments section, we will
show that this is indeed the case for two commonly
used KB completion datasets we study. It is also
true for knowledge graphs augmented with textual
links, where each co-occurrence of (ei, ej) in a
document collection induces a link of a textually-
defined relation type. In addition to the features
looking at length one paths, for the observed fea-
ture models we define an indicator feature for ev-
ery entity and relation in the triple. This captures
a bias for these entities to occur in the subject or
object position of the relation. The features are
1(ei = s&rk) and 1(ej = o&rk), where s and o
indicate the subject and object positions, respec-
tively. These features can capture the frequency
with which each argument of the relation is oc-
cupied by a specific entity. For example, we can
learn that United States is a common nationality
for entities in Freebase.

Given a feature vector Φi,j,k, the score of a
triple is defined by its dot product with a param-
eter vector, which contains a weight for each fea-
ture: f(xi,j,k; Θ) = ΦT

i,j,kΘ.

3.2 Latent feature models

In latent feature models, the score of a candidate
triple is assumed to depend only on learned latent
features of the entities and relations, and possi-
bly additional global parameters. In this work we
consider two simple latent feature models, which
have been found to be competitive or outperform
more complex alternatives in prior work (Yang et
al., 2015; Riedel et al., 2013).

The first model we consider is model E (abbre-
viated from ENTITY), which captures the compat-
ibility between entities and the subject and object
positions of relations. It can be seen as learning a
soft notion of entity types. The model was applied
to knowledge-base completion for text-augmented

ns

. .+

no

rs ro

Figure 2: The continuous representations for model E.

ns no

�

(ns, no)

. .
r r

Figure 3: The continuous representations for model DIST-
MULT.

knowledge graphs using a universal schema ap-
proach (Riedel et al., 2013). For each relation
type, the model learns two latent feature vectors
rs and ro of some dimensionality K. For each en-
tity (node) ei, the model also learns a latent fea-
ture vector ni of the same dimensionality. The
model is depicted in Figure 2. The score of a
candidate triple (es, r, eo) where the sub-scripts s
and o are used to indicate subject and object po-
sitions, respectively, is defined as: f(xs,r,o) =
rs

Tns + ro
Tno.

The second model, DISTMULT, is a special
form of a bilinear model like RESCAL (Nickel et
al., 2011), where the non-diagonal entries in the
relation matrices are assumed to be zero. This
model was proposed in Yang et al. (2015) un-
der the name DISTMULT, and was shown to out-
perform the more highly parameterized bilinear
model, as well as the additive model TRANSE
(Bordes et al., 2013). In this model, each entity
ei is assigned a latent feature vector (embedding)
ni of dimensionality K and each relation type is
assigned an embedding r of the same dimension-
ality. The model form is shown in Figure 3. The
score of a candidate triple (es, r, eo) is defined as:
f(xs,r,o) = rT (ns ◦ no).

If there are Ne entities, Nr relations, and la-
tent feature vectors of dimensionality K are used,
model E has KNe +2KNr parameters and model
DISTMULT has KNe +KNr parameters.
Combined models

We also consider weighted combinations of la-

59

tent feature models and observed feature mod-
els in a method similar to the one used in the
Additive Relational Effects Model of Nickel et
al. (2014). Given scoring functions f1(xi,j,j ,Θ1)
and f2(xi,j,j ,Θ2) defined by two different mod-
els, we define a combined model for which the
score of a triple is a weighted combination of
the scores by the two models w1f1(xi,j,j ,Θ1) +
w2f2(xi,j,j ,Θ2). The component models could be
latent of observed feature models, and the com-
bination weights are either uniform (set to 1), or
non-uniform and selected via a grid search on a
validation set. We train the parameters of com-
bined models jointly, by minimizing the loss func-
tion based on the combined scores.

3.3 Training loss function
Our loss function is motivated by the link pre-
diction task and the performance measures used
to assess model performance. As mentioned ear-
lier, the task is to predict the subject or object en-
tity for given held-out triples (e1, r, e2), i.e. to
rank all entities with respect to their likelihood
of filling the respective position in the triple. We
would thus like the model to score correct triples
(e1, r, e2) higher than incorrect triples (e′, r, e2)
and (e1, r, e′) which differ from the correct triple
by one entity. One could use a margin-based loss
function as used in several approaches (Nickel et
al., 2015). We use an approximation to the nega-
tive log-likelihood of the correct entity filler. We
define the conditional probabilities p(e2|e1, r) and
p(e1|r, e2) for object and subject entities given
the relation and the other argument as follows:

p(e2|e1, rk; Θ) = e
f(xe1,e2,k;Θ)∑

e′2∈Neg(e1,rk,?) e
f(x

e1,e′2,k
;Θ) .

Here the denominator is defined using a set of
entities that do not fill the object position in any
relation triple (e1, r, ?) in the training knowledge
graph. Since the number of such entities is im-
practically large, we sample negative triples from
the full set (we use 200 negative examples in our
experiments). In some settings we also limit the
candidate entities to ones that have types consis-
tent with the position in the relation triple (Chang
et al., 2014; Yang et al., 2015). We derive approxi-
mate type information automatically (as discussed
below), but such information could also be present
in the knowledge graphs.

Conditional probabilities for subject enti-
ties given relation and object are defined
analogously, as follows: p(e1|rk, e2; Θ) =

e
f(xe1,e2,k;Θ)∑

e′1∈Neg(?,rk,e2) e
f(x

e′1,e2,k
;Θ)

Given the definition of subject and object con-
ditional probabilities for triples, our training loss
function is defined as the sum of the negative log-
probabilities of observed triples, also including an
L2 penalty on the model parameters. If X de-
notes the set of all triples in the training knowledge
graph, the training loss is defined as:

L(X,Θ, λ) = −
∑

xe1,e2,rk
∈X

log p(e2|e1, rk; Θ)

−
∑

xe1,e2,rk
∈X

log p(e1|rk, e2; Θ)

+λΘT Θ

3.3.1 Entity types
We define the type of an entity e as a pair of sets
of relation types [Rs,Ro]; Rs is the set of rela-
tion types r for which e is the source node of a
link with type r in the training knowledge graph
and Ro is the set of relation types for which e is
the target node of link with type r. For each rela-
tion, we compute a set of allowable entity types by
checking the percentage of its arguments that have
a given type and restricting the allowable types to
the top t (chosen on a validation set, usually two
or three). For example, for the subject position of
a parents relation the most frequent type would be
parents (meaning subject of parent). A second
frequent type might be born ins meaning subject
of born in. Using this construction we define the
compatibility between entities and relation argu-
ment positions, which prunes the space of candi-
dates quite significantly in many cases, while still
maintaining a high upper bound on achievable per-
formance. Details on the impact of usage of types
are presented in Section 4.

3.4 Representation and loss for
text-augmented knowledge graphs

In addition to knowledge graphs containing only
relations r from a given manually developed on-
tology, we consider knowledge graphs augmented
with textual relations derived from sentence co-
occurrences of entity pairs. This follows the ap-
proaches of Lao et al. (2012) anf Riedel et al.
(2013), who represent both textual and knowl-
edge base relations in a single graph of “univer-
sal” relations, which allows joint reasoning from

60

Barack Obama is the 44th and current President of United States.

Mention

Barack Obama is the 44th and current President of United States.

Dependency paths

Linear paths

Barack Obama President of United States

nsubj prep pobj

011 111

Figure 4: Textual relation extracted from an entity pair
mention.

the two types of relations. Figure 4 shows the
lexicalized dependency path between two entities
that occur together in a sentence. An instance

of textual relation of type “
nsubj←−−− president

prep−−→
of

obj−→ United States”, corresponding to the sen-
tence is added to the knowledge graph based on
this occurrence. Textual co-occurrences of entity
pairs often express relations between the entities,
which might correspond exactly or approximately
to knowledge base relations. Text could thus be a
strong signal for predicting knowledge base rela-
tions (Lao et al., 2012).

Once a knowledge graph is augmented with tex-
tual relations, we can train the same models as be-
fore, treating knowledge base and text relations in
a uniform manner. However, since we are only
interested in predicting knowledge-base relations,
it might be suboptimal for the model to try to fit
its parameters toward predicting textual relations
as hard as it tries to optimize for knowledge base
relations. In other words, the part of the loss
function looking at subject and object probabili-
ties for textual relations t is only useful to pro-
vide an auxiliary prediction task which is bene-
ficial for the main task using a multi-task learn-
ing setting. Therefore, one might choose an opti-
mal weight τ which could be expected to be less
than the weight of the primary loss function. We
thus consider a modified loss function for KB+text
model training, defined as follows. If the set of all
triples using KB relations is X and the set of all
triples using text relations is T , the loss is defined
as L(X ∪ T,Θ) = L(X,Θ) + τL(T,Θ). In the
experiments section we will see that this simple
modification can provide large performance bene-
fits.

4 Experiments

We perform experiments with latent and observed
feature models and their combination. We first

present results on the FB15K dataset, which was
originality constructed (using Freebase) by Bordes
et al. (2013) and was subsequently used in sev-
eral research studies (Wang et al., 2014; Yang et
al., 2015). The number of relations and triples in
the training, development and test portions of the
datasets are given in Table 5.

4.1 Task and Evaluation Protocol

Given a set of triples in a set disjoint from a train-
ing knowledge graph, we test models on predict-
ing the subject or object of each triple, given the
relation type and the other argument. We rank all
entities in the training knowledge base in order of
their likelihood of filling the argument position.
We report the mean reciprocal rank of the correct
entity, as well as HITS@10 – the percent of test
triples for which the correct argument was ranked
in the top ten. We use filtered measures follow-
ing the protocol proposed in Bordes et al. (2013)
– that is, when we rank entities for a given posi-
tion, we remove all other entities that are known
to be part of an existing triple in the training, de-
velopment, or test set. This avoids penalizing the
model for ranking other correct fillers higher than
the tested argument. We thus report filtered mean
reciprocal rank (labeled MRR in the Figures), and
filtered HITS@10. In the figures we present MRR
values scaled by 100, so that the maximum possi-
ble MRR is 100.
Implementation details and hyper-parameter
settings

For all models implemented in this work, we
trained the models using the loss function pre-
sented in Section 3.3, using λ = 1 as the weight
of the L2 regularizer. We used a batch learn-
ing parameter optimization method, after initial
experiments showed it did better than stochastic
optimization using AdaGrad. We experimented
with LBFGS (Liu and Nocedal, 1989) and RProp
(Riedmiller and Braun, 1993), and found RProp to
converge faster to similar values of the objective
for the latent feature models. All reported results
use RProp. We also used early stopping to termi-
nate optimization when the MRR on the validation
set stopped improving.

We chose the optimal number of latent features
via a grid search to optimize MRR on the valida-
tion set, testing the values 10,50,100,200,500,and
1,000. Similarly, we performed a grid search
over the values of the parameter τ which weighs

61

Dataset Relations Entities Triples in Train / Validation / Test % Test Linked
FB15K 1,345 14,951 483,142 50,000 59, 071 80.9
FB15KSelected 237 14,541 272,115 17,535 20, 466 0
WN18 18 40,943 141,442 5,000 5,000 94.0

Figure 5: Datasets used in this study. FB15K and WN18 have been used in prior work and FB15KSelected is a new dataset
derived from FB15K and ClueWeb (described in text).

Model FB15K FB15K
Type Constraints No Type Constraints

MRR HITS@10 MRR HITS@10
E 22.7 34.0 21.8 33.6
DISTMULT 63.1 79.0 55.5 79.7
E+DISTMULT 65.9 81.0 56.2 78.3
TransE 32.0 53.9
DISTMULT (Yang et al., 2015) 36.0 57.7
TransH (bern.) (Wang et al., 2014) 64.4
NodeFeat 21.7 32.6 21.6 32.4
LinkFeat 79.1 80.8 77.9 80.4
Node+LinkFeat 82.1 86.1 82.2 87.0

Figure 6: Results on FB15K with and without type constraints for candidate filtering in training and testing.

the textual relations loss, testing values in the set
{0.01, 0.1, 0.25, 0.5, 1}.

4.2 Experiments on KB Completion using
FB15K and WN18

We present experiments of different models intro-
duced in this paper on these datasets, and addi-
tionally include results reported in prior work. We
also evaluate the impact of our use of types as hard
constraints in training and testing, and how these
constraints impact latent feature models versus ob-
served feature models.

Figure 6 presents the results under two settings:
using automatically derived types versus not us-
ing them. The results not using types are pre-
sented in the right half of the Figure. The first six
rows report performance measures obtained using
latent feature models. The first three models pre-
sented are the ones defined in Section 3.2 and im-
plemented in this work. We evaluate these models
when type constraints are used or when they are
not used. The next three rows report results from
prior work by directly copying reported numbers
from the respective papers. Since these papers
did not use type constraints, we list the results in
the right two columns only. The model TransE
was proposed in (Bordes et al., 2013) but we use
the results from the implementation of (Yang et
al., 2015), because these results were higher. The
TransH (bern.) results are obtained by the model
presented in (Wang et al., 2014).

The last three rows show results from observed
feature models, as defined in Section 3.1, where
the first model uses only node features, the second

uses only direct link features, and the third uses
both feature types.

The type constraints were defined using the
method presented in Section 3.3.1. We choose
the best settings for the method based on coverage
of the correct triples in the validation set. Given
the hard pruning of candidates by type filtering,
the method using types has less than 100 percent
achievable accuracy — the oracle HITS@10 by
using type constraints is 98.3. We found that the
number of latent features did not have a large im-
pact on performance for model E, but did have
large impact for the other two models. Using
500 hidden dimensions was optimal for these two
models. Even though the form of the scoring func-
tion for DISTMULT is exactly the same as defined
in (Yang et al., 2015), we obtain much higher per-
formance. We attribute this to the larger number
of hidden dimensions (500 vs 100), and the use of
the softmax-based loss function with 200 negative
examples and batch training.1 As seen, the impact
of the type constraints is large and positive, espe-
cially on the MRR values. Our implementation of
these embedding models outperforms the other re-
cent results by TransH (Wang et al., 2014), which
we also attribute to the loss function and optimiza-
tion.

The most striking result on this dataset is seen
in the last two rows of the Table, where we can

1We chose the optimal number of hidden dimensions to
optimize MRR on the development set. We found that per-
formance improved with dimensionality up to 500 dimen-
sions. For DISTMULT with type constraints, the MRR for di-
mensionality {10, 100, 500} was {35.2, 55.8, 63.1}, respec-
tively.

62

Model FB15KSelected
MRR a/t/nt HITS@10 a/t/nt

Without Text
E 23.5 20.2 24.4 35.6 31.7 36.9
DISTMULT 25.3 20.9 26.7 40.8 34.8 42.6
E+DISTMULT 26.6 23.1 27.7 43.0 38.4 44.4
NodeFeat 23.5 20.3 24.5 35.6 31.7 36.8
LinkFeat 6.3 3.1 7.3 7.9 5.2 8.7
Node+LinkFeat 22.6 19.3 23.7 34.7 30.6 36.0
Combined 26.8 23.1 28.0 42.8 37.8 44.3

With Text
E+DISTMULT (τ = 1) 26.6 24.0 27.3 41.3 38.4 42.2
E+DISTMULT (τ = .1) 27.4 24.3 28.3 43.8 39.8 45.0
Node+LinkFeat 27.2 39.6 23.4 41.4 60.5 35.5
Combined ((τ = .1) 29.3 39.1 26.3 46.2 60.0 41.9

Figure 7: Results on FB15KSelected with and without addition of textual links. Model Combined is a combination of the
latent feature models E and DISTMULT and the observed feature model Node+LinkFeat.

Model WN18
MRR HITS@10

TRANSE (Bordes et al., 2013) 89.2
DISTMULT (Yang et al., 2015) 83.0 94.2
BILNEAR (Yang et al., 2015) 89.0 92.8
TransH (unif) (Wang et al., 2014) 86.7
NodeFeat 2.9 5.0
LinkFeat 93.8 93.9
Node+LinkFeat 94.0 94.3

Figure 8: Results on WN18 using performance reported in prior work as well as performance of observed feature models.

see the performance of the observed feature mod-
els based on direct links. The performance of
these models (in MRR) is much higher that the
performance of the latent feature models obtained
in this work and in prior work. This is per-
haps not so surprising when we look at the num-
ber of test set triples (e1, r, e2) for which either
(e1, r′, e2) or (e2, r′, e1) occur in the training set
– i.e., which are directly linked in the training
knowledge graph. This number is almost 81%
(reported in Table 5), and explains why the ob-
served features model which uses this information
directly can do so well. What is more surprising
is that latent feature models have not approached
this performance, even given a large number of la-
tent feature dimensions. We see this is an inter-
esting datapoint which can motivate analysis and
improvement in the state-of-the-art in knowledge
base completion using latent variable models.

Two other interesting results from these exper-
iments are that the observed feature model using
only entity features (NodeFeat) has almost the
same performance as the latent feature model E
and both can be seen as learning a unigram distri-
bution over entities for argument positions of re-
lations. Additionally, the observed feature models
are not substantially affected by the use of type
constraints, since they effectively learn to model

similar type concepts using the features.

We also tested the models on WN18, and report
results from prior work using latent feature mod-
els as well as our implementation of the observed
feature models in Figure 8. As seen, the observed
feature models using link features strongly outper-
form prior work in the MRR measure (achieving
around 45% error reduction over the best previ-
ously reported results), and are comparable to the
best models according to the HITS@10 measure.
As shown in Table 5, 94.0 of test triple entities are
directly linked in the training KB, explaining the
success of these simple models.

Given our analysis of the FB15k and WN18
datasets and the power of a simple observed fea-
tures model, we are motivated to construct a more
realistic knowledge base completion dataset for
which we can assume that trivially entailed facts
(due to relation symmetry or the presence of in-
verse relations) have already been inferred and
the task is to entail facts requiring non-trivial in-
ference. To this effect we construct a subset
of FB15K, which we term FB15KSelected, and
which represents a more challenging learning set-
ting.

63

4.3 Experiments using knowledge graph and
text inference on FB15KSelected

The dataset FB15KSelected2 was constructed by
first limiting the set of relations in FB15K to
the most frequently used 401 relations (a set-
ting using this subset of frequent relations was
also used in (Yang et al., 2015)). We then au-
tomatically detected near-duplicate and inverse
relations by checking whether the set of entity
pairs in the relations is either almost the same (at
least 97% of the pairs are in the intersection), or
whether the set of inverse entity pairs is almost
the same e.g. comparing [e1, e2] for r to the set
[e2, e1] for r′. For example, this process detected
that the relation /award/award nominee is inverse of
/award nominee/award. Given this information, we
filtered the set of relations to keep only one of a
set of inverse or duplicate relations; this resulted
in 237 relations, and we limited the training, val-
idation, and development set triples to these rela-
tions. We also filtered from the validation and test
sets any triples whose entity pairs were directly
linked in the training database. Such direct links
could admittedly be legitimately present in a real-
istic scenario but we excluded them to avoid addi-
tional trivial cases which could have not been de-
tected via the prior filtering step. The statistics for
this resulting dataset are shown in Table 5.

While for this more realistic dataset we have
excluded all direct KB links for test entity pairs,
there is a realistic source of direct relations be-
tween test entity pairs – textual relations expressed
by sentences containing these pairs of entities.
We use the ClueWeb12 3 corpus coupled with
Freebase mention annotations (Gabrilovich et al.,
2013) to extract textual relations for all entity pairs
in the knowledge base. We extract textual pat-
terns from 200 million dependency-parsed sen-
tences and we represent the textual relations via
the fully lexicalized dependency path connecting
two entities, as shown in Figure 4. After prun-
ing, we use 25,000 unique textual relations and
add links to the training knowledge graph based on
these relations. There are 6.6 million links induced
from the textual relations for the FB15KSelected
knowledge base. Of the test KB triples, 23.3%
of the entity pairs have textual mentions. For the

2A release of the dataset will be available soon. Contact
the authors for more details if interested.

3http://www.lemurproject.org/
clueweb12.php/

training set, 31% of the entity pairs that have a KB
link have a textual mention, and having a mention
increases the chance that a random entity pair has
a relation from .1% to 4.2% – a forty-fold increase.

Figure 7 shows the results for this dataset – the
upper portion contains results for models not us-
ing textual mentions, and the lower part contains
results of models also using the text. The results
are shown using the MRR and HITS@10 mea-
sures, and these are further broken down into over-
all/with textual mentions/without textual mentions
(a/t/nt).

For the setting where no textual mentions are
used, we see that the latent feature models outper-
form the observed feature models (since there are
no direct links in the training set for test triples,
the observed features model LinkFeat has perfor-
mance which is random subject to the type con-
straints (and where ties are broken by order of ap-
pearance in the training set)). Using node fea-
tures only is best for the observed feature mod-
els, and the overall MRR of this model (23.5), is
substantially below that of the best latent feature
model, E+DISTMULT with overall MRR of 26.6.
A model which combines the latent and observed
features (shown in row 7), does not bring substan-
tial improvement.

The second (lower) part of the Figure shows
model results when the training knowledge graph
is expanded with textual relations. First, for the
best latent feature model E+DISTMULT which
treats knowledge base and textual relations uni-
formly, using τ = 1 as in the universal schema
approach (Riedel et al., 2013), we see no improve-
ment from using the textual mentions. Indeed,
there is an improvement in MRR on the test triples
that have mentions (23.1 to 24.0), but performance
degrades on the more numerous test cases without
mentions. When τ is optimized via grid search
to a value of τ = .1 we see a good improve-
ment to overall MRR 27.4 due to using text, which
holds for cases with mentions as well as ones
without mentions. The observed features model
benefits from text strongly, and in particular the
MRR on test triples with mentions increases from
19.3 to 39.6. The performance on triples without
mentions is very low, however. Since the latent
and observed feature models have complementary
strengths, their combination (last row in the Fig-
ure) substantially outperforms both kinds of mod-
els, reaching an overall MRR of 29.3 and overall

64

HITS@10 of 46.2. The MRR on test triples with
mentions is almost doubled compared to the mod-
els not using text.
Conclusion

This work provided two main lessons for
knowledge base completion. First, we showed that
the presence of relations between candidate pairs
can be an extremely strong signal in some cases,
and that this signal was not effectively captured
by the studied latent feature models. Second, we
showed that textual links extracted from a large
document collection and added to an existing KB-
completion dataset brought substantial improve-
ments, especially on test cases with textual occur-
rences. It was beneficial to use the direct textual
links as features in an observed features model and
to combine that with a latent feature model, to ef-
fectively capture inferences among KB relations
and direct cues from text. We also showed that in
a dataset where training and test triples are not arti-
ficially limited to only ones that have textual men-
tions, it becomes important to tradeoff the weight
of the loss incurred from textual versus KB rela-
tions.

Acknowledgements

We would like to thank Jianfeng Gao, Scott Yih,
Patrick Pantel, Michael Gamon, Hoifung Poon
and the anonymous reviewers for useful sugges-
tions.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
Springer.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. ACM.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Conference on Artifi-
cial Intelligence, number EPFL-CONF-192344.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems (NIPS).

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and
Christopher Meek. 2014. Typed tensor decompo-
sition of knowledge bases for relation extraction. In
Empirical Methods in Natural Language Processing
(EMNLP).

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In International Conference on Knowl-
edge Discovery and Data Mining (KDD).

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. FACC1: Freebase anno-
tation of ClueWeb corpora, Version 1 (release date
2013-06-26, format version 1, correction level 0).

Matt Gardner, Partha Pratim Talukdar, Bryan Kisiel,
and Tom Mitchell. 2013. Improving learning and
inference in a large knowledge-base using latent
syntactic cues. In Empirical Methods in Natural
Language Processing (EMNLP).

Matt Gardner, Partha Talukdar, Jayant Krishnamurthy,
and Tom Mitchell. 2014. Incorporating vector space
similarity in random walk inference over knowledge
bases. In Empirical Methods in Natural Language
Processing (EMNLP).

Ni Lao and William W Cohen. 2010. Relational re-
trieval using a combination of path-constrained ran-
dom walks. Machine learning.

Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Empirical Methods in Natural
Language Processing (EMNLP).

Ni Lao, Amarnag Subramanya, Fernando Pereira, and
William W Cohen. 2012. Reading the web
with learned syntactic-semantic inference rules. In
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP/CoNLL).

Dong C Liu and Jorge Nocedal. 1989. On the limited
memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th international conference on machine learn-
ing (ICML-11), pages 809–816.

Maximilian Nickel, Xueyan Jiang, and Volker Tresp.
2014. Reducing the rank in relational factor-
ization models by including observable patterns.
In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
1179–1187. Curran Associates, Inc.

65

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2015. A review of re-
lational machine learning for knowledge graphs:
From multi-relational link prediction to automated
knowledge graph construction. arXiv preprint
arXiv:1503.00759.

Sebastian Riedel, Limin Yao, Benjamin M. Marlin,
and Andrew McCallum. 2013. Relation extraction
with matrix factorization and universal schemas.
In North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

Martin Riedmiller and Heinrich Braun. 1993. A direct
adaptive method for faster backpropagation learn-
ing: The rprop algorithm. In Neural Networks,
1993., IEEE International Conference on, pages
586–591. IEEE.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international con-
ference on World Wide Web, pages 697–706. ACM.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence,
pages 1112–1119.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In International Conference on Learning
Representations (ICLR).

66

Author Index

Barrault, Loïc, 48
Bougares, Fethi, 48
Bowman, Samuel R., 12

Chen, Danqi, 57
Cheung, Jackie Chi Kit, 22

Hashimoto, Kazuma, 1

Liu, Rong, 32

Manning, Christopher D., 12

Potts, Christopher, 12

Sachdeva, Kunal, 41
Schwenk, Holger, 48
Sharma, Dipti, 41

Ter-Sarkisov, Alex, 48
Toutanova, Kristina, 57
Tsuruoka, Yoshimasa, 1

Wang, Dong, 32

Yuan, Bin, 32

Zhang, Dongxu, 32

67

	Program
	Learning Embeddings for Transitive Verb Disambiguation by Implicit Tensor Factorization
	Recursive Neural Networks Can Learn Logical Semantics
	Concept Extensions as the Basis for Vector-Space Semantics: Combining Distributional and Ontological Information about Entities
	Joint Semantic Relevance Learning with Text Data and Graph Knowledge
	Exploring the effect of semantic similarity for Phrase-based Machine Translation
	Incremental Adaptation Strategies for Neural Network Language Models
	Observed versus latent features for knowledge base and text inference

