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Instituto de Computação

Universidade Federal Fluminense (UFF)
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Abstract

Most state-of-the-art named entity recog-
nition (NER) systems rely on handcrafted
features and on the output of other NLP
tasks such as part-of-speech (POS) tag-
ging and text chunking. In this work we
propose a language-independent NER sys-
tem that uses automatically learned fea-
tures only. Our approach is based on the
CharWNN deep neural network, which
uses word-level and character-level rep-
resentations (embeddings) to perform se-
quential classification. We perform an ex-
tensive number of experiments using two
annotated corpora in two different lan-
guages: HAREM I corpus, which contains
texts in Portuguese; and the SPA CoNLL-
2002 corpus, which contains texts in Span-
ish. Our experimental results give evi-
dence of the contribution of neural char-
acter embeddings for NER. Moreover, we
demonstrate that the same neural network
which has been successfully applied to
POS tagging can also achieve state-of-the-
art results for language-independet NER,
using the same hyperparameters, and with-
out any handcrafted features. For the
HAREM I corpus, CharWNN outperforms
the state-of-the-art system by 7.9 points in
the F1-score for the total scenario (ten NE
classes). For the SPA CoNLL-2002 cor-
pus, CharWNN outperforms the state-of-
the-art system by 0.8 point in the F1.

1 Introduction

Named entity recognition is a natural language
processing (NLP) task that consists of finding
names in a text and classifying them among sev-
eral predefined categories of interest such as per-
son, organization, location and time. Although

machine learning based systems have been the
predominant approach to achieve state-of-the-art
results for NER, most of these NER systems rely
on the use of costly handcrafted features and on
the output of other NLP tasks (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003;
Doddington et al., 2004; Finkel et al., 2005; Mi-
lidiú et al., 2007). On the other hand, some recent
work on NER have used deep learning strategies
which minimize the need of these costly features
(Chen et al., 2010; Collobert et al., 2011; Passos
et al., 2014; Tang et al., 2014). However, as far as
we know, there are still no work on deep learning
approaches for NER that use character-level em-
beddings.

In this paper we approach language-
independent NER using CharWNN, a recently
proposed deep neural network (DNN) architecture
that jointly uses word-level and character-level
embeddings to perform sequential classification
(dos Santos and Zadrozny, 2014a). CharWNN
employs a convolutional layer that allows effec-
tive character-level feature extraction from words
of any size. This approach has proven to be very
effective for language-independent POS tagging
(dos Santos and Zadrozny, 2014a; dos Santos and
Zadrozny, 2014b).

We perform an extensive number of experi-
ments using two annotated corpora: HAREM I
corpus, which contains texts in Portuguese; and
the SPA CoNLL-2002, which contains texts in
Spanish. In our experiments, we compare the
performance of the joint and individual use of
character-level and word-level embeddings. We
provide information on the impact of unsupervised
pre-training of word embeddings in the perfor-
mance of our proposed NER approach. Our exper-
imental results evidence that CharWNN is effec-
tive and robust for Portuguese and Spanish NER.
Using the same CharWNN configuration used by
dos Santos and Zadrozny (2014) for POS Tagging,

25



we achieve state-of-the-art results for both cor-
pora. For the HAREM I corpus, CharWNN out-
performs the state-of-the-art system by 7.9 points
in the F1-score for the total scenario (ten NE
classes), and by 7.2 points in the F1 for the se-
lective scenario (five NE classes). For the SPA
CoNLL-2002 corpus, CharWNN outperforms the
state-of-the-art system by 0.8 point in the F1.

This work is organized as follows. In Section
2, we briefly describe the CharWNN architecture.
Section 3 details our experimental setup and Sec-
tion 4 discuss our experimental results. Section 6
presents our final remarks.

2 CharWNN

CharWNN extends Collobert et al.’s (2011) neu-
ral network architecture for sequential classifica-
tion by adding a convolutional layer to extract
character-level representations (dos Santos and
Zadrozny, 2014a). Given a sentence, the network
gives for each word a score for each class (tag)
τ ∈ T . As depicted in Figure 1, in order to score
a word, the network takes as input a fixed-sized
window of words centred around the target word.
The input is passed through a sequence of layers
where features with increasing levels of complex-
ity are extracted. The output for the whole sen-
tence is then processed using the Viterbi algorithm
(Viterbi, 1967) to perform structured prediction.
For a detailed description of the CharWNN neu-
ral network we refer the reader to (dos Santos and
Zadrozny, 2014a).

2.1 Word- and Character-level Embeddings

As illustrated in Figure 1, the first layer of the
network transforms words into real-valued fea-
ture vectors (embeddings). These embeddings are
meant to capture morphological, syntactic and se-
mantic information about the words. We use a
fixed-sized word vocabulary V wrd, and we con-
sider that words are composed of characters from
a fixed-sized character vocabulary V chr. Given a
sentence consisting of N words {w1, w2, ..., wN},
every word wn is converted into a vector un =
[rwrd; rwch], which is composed of two sub-
vectors: the word-level embedding rwrd ∈ Rdwrd

and the character-level embedding rwch ∈ Rclu of
wn. While word-level embeddings capture syntac-
tic and semantic information, character-level em-
beddings capture morphological and shape infor-
mation.

Word-level embeddings are encoded by col-
umn vectors in an embedding matrix Wwrd ∈
Rdwrd×|V wrd|, and retrieving the embedding of a
particular word consists in a simple matrix-vector
multiplication. The matrix Wwrd is a parameter
to be learned, and the size of the word-level em-
bedding dwrd is a hyperparameter to be set by the
user.

The character-level embedding of each word is
computed using a convolutional layer (Waibel et
al., 1989; Lecun et al., 1998). In Figure 1, we il-
lustrate the construction of the character-level em-
bedding for the word Bennett, but the same pro-
cess is used to construct the character-level em-
bedding of each word in the input. The convo-
lutional layer first produces local features around
each character of the word, and then combines
them using a max operation to create a fixed-sized
character-level embedding of the word.

Given a word w composed of M characters
{c1, c2, ..., cM}, we first transform each charac-
ter cm into a character embedding rchrm . Character
embeddings are encoded by column vectors in the
embedding matrix W chr ∈ Rdchr×|V chr|. Given a
character c, its embedding rchr is obtained by the
matrix-vector product: rchr = W chrvc, where vc

is a vector of size
∣∣V chr

∣∣ which has value 1 at in-
dex c and zero in all other positions. The input for
the convolutional layer is the sequence of charac-
ter embeddings {rchr1 , rchr2 , ..., rchrM }.

The convolutional layer applies a matrix-
vector operation to each window of size
kchr of successive windows in the sequence
{rchr1 , rchr2 , ..., rchrM }. Let us define the vector
zm ∈ Rdchrkchr

as the concatenation of the
character embedding m, its (kchr − 1)/2 left
neighbors, and its (kchr − 1)/2 right neighbors:

zm =
(
rchrm−(kchr−1)/2, ..., r

chr
m+(kchr−1)/2

)T
The convolutional layer computes the j-th element
of the vector rwch, which is the character-level em-
bedding of w, as follows:

[rwch]j = max
1<m<M

[
W 0zm + b0

]
j

(1)

where W 0 ∈ Rclu×dchrkchr
is the weight matrix of

the convolutional layer. The same matrix is used to
extract local features around each character win-
dow of the given word. Using the max over all
character windows of the word, we extract a fixed-
sized feature vector for the word.
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Figure 1: CharWNN Architecture

Matrices W chr and W 0, and vector b0 are pa-
rameters to be learned. The size of the character
vector dchr, the number of convolutional units clu
(which corresponds to the size of the character-
level embedding of a word), and the size of the
character context window kchr are hyperparame-
ters.

2.2 Scoring and Structured Inference

We follow Collobert et al.’s (Collobert et al., 2011)
window approach to score all tags T for each word
in a sentence. This approach follows the assump-
tion that in sequential classification the tag of a
word depends mainly on its neighboring words.
Given a sentence with N words {w1, w2, ..., wN},
which have been converted to joint word-level
and character-level embedding {u1, u2, ..., uN},
to compute tag scores for the n-th word wn in the
sentence, we first create a vector r resulting from
the concatenation of a sequence of kwrd embed-
dings, centralized in the n-th word:

r =
(
un−(kwrd−1)/2, ..., un+(kwrd−1)/2

)T

We use a special padding token for the words with
indices outside of the sentence boundaries.

Next, the vector r is processed by two usual
neural network layers, which extract one more
level of representation and compute the scores:

s(wn) = W 2h(W 1r + b1) + b2 (2)

where matrices W 1 ∈ Rhlu×kwrd(dwrd+clu) and
W 2 ∈ R|T |×hlu , and vectors b1 ∈ Rhlu and
b2 ∈ R|T | are parameters to be learned. The trans-
fer function h(.) is the hyperbolic tangent. The
size of the context window kwrd and the number
of hidden units hlu are hyperparameters to be cho-
sen by the user.

Like in (Collobert et al., 2011), CharWNN uses
a prediction scheme that takes into account the
sentence structure. The method uses a transi-
tion score Atu for jumping from tag t ∈ T to
u ∈ T in successive words, and a score A0t for
starting from the t-th tag. Given the sentence
[w]N1 = {w1, w2, ..., wN}, the score for tag path
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[t]N1 = {t1, t2, ..., tN} is computed as follows:

S
(
[w]N1 , [t]

N
1 , θ

)
=

N∑
n=1

(
Atn−1tn + s(wn)tn

)
(3)

where s(wn)tn is the score given for tag tn at word
wn and θ is the set of all trainable network param-
eters

(
Wwrd,W chr,W 0, b0,W 1, b1,W 2, b2, A

)
.

After scoring each word in the sentence, the
Viterbi algorithm (Viterbi, 1967) is used to find
the most likely tag sequence [t∗]N1 , which consists
in the tag path that leads to the maximal score:

[t∗]N1 =[t]N1 ∈TN S
(
[w]N1 , [t]

N
1 , θ

)
(4)

2.3 Network Training
We train CharWNN by minimizing a negative
likelihood over the training setD. In the same way
as in (Collobert et al., 2011), we interpret the sen-
tence score (3) as a conditional probability over a
path. For this purpose, we exponentiate the score
(3) and normalize it with respect to all possible
paths. Taking the log, we arrive at the following
conditional log-probability:

log p
(
[t]N1 |[w]N1 , θ

)
= S

(
[w]N1 , [t]

N
1 , θ

)
−log

 ∑
∀[u]N1 ∈TN

eS([w]N1 ,[u]
N
1 ,θ)

 (5)

The log-likelihood in Equation 5 can be com-
puted efficiently using dynamic programming
(Collobert, 2011). We use stochastic gradient
descent (SGD) to minimize the negative log-
likelihood with respect to θ. We use the backprop-
agation algorithm to compute the gradients of the
neural network. We implemented CharWNN us-
ing the Theano library (Bergstra et al., 2010).

3 Experimental Setup

3.1 Unsupervised Learning of Word
Embeddings

The word embeddings used in our experiments
are initialized by means of unsupervised pre-
training. We perform pre-training of word-
level embeddings using the skip-gram NN archi-
tecture (Mikolov et al., 2013) available in the
word2vec 1 tool.

In our experiments on Portuguese NER, we use
the word-level embeddings previously trained by

1http://code.google.com/p/word2vec/

dos Santos and Zadrozny (2014a). They have used
a corpus composed of the Portuguese Wikipedia,
the CETENFolha2 corpus and the CETEMPub-
lico3 corpus.

In our experiments on Spanish NER, we use
the Spanish Wikipedia. We process the Spanish
Wikipedia corpus using the same steps used by dos
Santos and Zadrozny (2014a): (1) remove para-
graphs that are not in Spanish; (2) substitute non-
roman characters by a special character; (3) tok-
enize the text using a tokenizer that we have imple-
mented; (4) remove sentences that are less than 20
characters long (including white spaces) or have
less than 5 tokens; (5) lowercase all words and
substitute each numerical digit by a 0. The result-
ing corpus contains around 450 million tokens.

It is important to note that although we per-
form unsupervised pre-training of word embed-
dings, we also leave the word embeddings be up-
dated during the supervised step, i.e., during the
training with the NER labeled data.

Following dos Santos and Zadrozny (2014a),
we do not perform unsupervised learning of
character-level embeddings. The character-level
embeddings are initialized by randomly sam-
pling each value from an uniform distribution:

U (−r, r), where r =
√

6
|V chr|+ dchr

. The

weight matrices W 0, W 1 and W 2 are initialized
in a similar way.

3.2 Corpora

We use the corpus from the first HAREM
evaluation (Santos and Cardoso, 2007) in our
experiments on Portuguese NER. This corpus
is annotated with ten named entity categories:
Person (PESSOA), Organization (ORGANIZA-
CAO), Location (LOCAL), Value (VALOR), Date
(TEMPO), Abstraction (ABSTRACCAO), Title
(OBRA), Event (ACONTECIMENTO), Thing
(COISA) and Other (OUTRO). The HAREM cor-
pus is already divided into two subsets: First
HAREM and MiniHAREM. Each subset corre-
sponds to a different Portuguese NER contest.
In our experiments, we call HAREM I the setup
where we use the First HAREM corpus as the
training set and the MiniHAREM corpus as the
test set. This is the same setup used by dos Santos
and Milidiú (2012). Additionally, we tokenize the

2http://www.linguateca.pt/cetenfolha/
3http://www.linguateca.pt/cetempublico/
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Table 1: Named Entity Recognition Corpora.
Training Data Test Data

Corpus Language
Sentenc. Tokens Sentenc. Tokens

HAREM I Portuguese 4,749 93,125 3,393 62,914
SPA CoNLL-2002 Spanish 8,323 264,715 1,517 51,533

HAREM corpus and create a development set that
comprises 5% of the training set. Table 1 present
some details of this dataset.

In our experiments on Spanish NER we use
the SPA CoNLL-2002 Corpus, which was de-
veloped for the CoNLL-2002 shared task (Tjong
Kim Sang, 2002). It is annotated with four named
entity categories: Person, Organization, Location
and Miscellaneous. The SPA CoNLL-2002 corpus
is already divided into training, development and
test sets. The development set has characteristics
similar to the test corpora.

We treat NER as a sequential classification
problem. Hence, in both corpora we use the IOB2
tagging style where: O, means that the word is not
a NE; B-X is used for the leftmost word of a NE
type X; and I-X means that the word is inside of a
NE type X. The IOB2 tagging style is illustrated in
the following example.

Wolff/B-PER ,/O currently/O a/O
journalist/O in/O Argentina/B-LOC ,/O
played/O with/O Del/B-PER Bosque/I-PER
in/O the/O final/O years/O of/O the/O

seventies/O in/O Real/B-ORG
Madrid/I-ORG

3.3 Model Setup
In most of our experiments, we use the same hy-
perparameters used by dos Santos and Zadrozny
(2014) for part-of-speech tagging. The only ex-
ception is the learning rate for SPA CoNLL-2002,
which we set to 0.005 in order to avoid diver-
gence. The hyperparameter values are presented
in Table 2. We use the development sets to deter-
mine the number of training epochs, which is six
for HAREM and sixteen for SPA CoNLL-2002.

We compare CharWNN with two similar neu-
ral network architectures: CharNN and WNN.
CharNN is equivalent to CharWNN without word
embeddings, i.e., it uses character-level embed-
dings only. WNN is equivalent to CharWNN with-
out character-level embeddings, i.e., it uses word
embeddings only. Additionally, in the same way
as in (Collobert et al., 2011), we check the impact
of adding to WNN two handcrafted features that

contain character-level information, namely cap-
italization and suffix. The capitalization feature
has five possible values: all lowercased, first up-
percased, all uppercased, contains an uppercased
letter, and all other cases. We use suffix of size
three. In our experiments, both capitalization and
suffix embeddings have dimension five. The hy-
perparameters values for these two NNs are shown
in Table 2.

4 Experimental Results

4.1 Results for Spanish NER

In Table 3, we report the performance of different
NNs for the SPA CoNLL-2002 corpus. All results
for this corpus were computed using the CoNLL-
2002 evaluation script4. CharWNN achieves the
best precision, recall and F1 in both development
and test sets. For the test set, the F1 of CharWNN
is 3 points larger than the F1 of the WNN that uses
two additional handcrafted features: suffixes and
capitalization. This result suggests that, for the
NER task, the character-level embeddings are as
or more effective as the two character-level fea-
tures used in WNN. Similar results were obtained
by dos Santos and Zadrozny (2014) in the POS
tagging task.

In the two last lines of Table 3 we can see the
results of using word embeddings and character-
level embeddings separately. Both, WNN that
uses word embeddings only and CharNN, do not
achieve results competitive with the results of the
networks that jointly use word-level and character-
level information. This is not surprising, since
it is already known in the NLP community that
jointly using word-level and character-level fea-
tures is important to perform named entity recog-
nition.

In Table 4, we compare CharWNN results with
the ones of a state-of-the-art system for the SPA
CoNLL-2002 Corpus. This system was trained us-
ing AdaBoost and is described in (Carreras et al.,
2002). It employs decision trees as a base learner

4http://www.cnts.ua.ac.be/conll2002/ner/bin/conlleval.txt
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Table 2: Neural Network Hyperparameters.
Parameter Parameter Name CharWNN WNN CharNN
dwrd Word embedding dimensions 100 100 -
kwrd Word context window size 5 5 5
dchr Char. embedding dimensions 10 - 50
kchr Char. context window size 5 - 5
clu Convolutional units 50 - 200
hlu Hidden units 300 300 300
λ Learning rate 0.0075 0.0075 0.0075

Table 3: Comparison of different NNs for the SPA CoNLL-2002 corpus.

NN Features Dev. Set Test Set
Prec. Rec. F1 Prec. Rec. F1

CharWNN word emb., char emb. 80.13 78.68 79.40 82.21 82.21 82.21
WNN word emb., suffix, capit. 78.33 76.31 77.30 79.64 78.67 79.15
WNN word embeddings 73.87 68.45 71.06 73.77 68.19 70.87

CharNN char embeddings 53.86 51.40 52.60 61.13 59.03 60.06

and uses handcrafted features as input. Among
others, these features include gazetteers with peo-
ple names and geographical location names. The
AdaBoost based system divide the NER task into
two intermediate sub-tasks: NE identification and
NE classification. In the first sub-task, the system
identifies NE candidates. In the second sub-task,
the system classifies the identified candidates. In
Table 4, we can see that even using only automat-
ically learned features, CharWNN achieves state-
of-the-art results for the SPA CoNLL-2002.

4.2 Results for Portuguese NER

In Table 5, we report the performance of different
NNs for the HAREM I corpus. The results in this
table were computed using the CoNLL-2002 eval-
uation script. We report results in two scenarios:
total and selective. In the total scenario, all ten
categories are taken into account when scoring the
systems. In the selective scenario, only five chosen
categories (Person, Organization, Location, Date
and Value) are taken into account. We can see
in Table 5, that CharWNN and WNN that uses
two additional handcrafted features have similar
results. We think that by increasing the training
data, CharWNN has the potential to learn better
character embeddings and outperform WNN, like
happens in the SPA CoNLL-2002 corpus, which is
larger than the HAREM I corpus. Again, CharNN
and WNN that uses word embeddings only, do not
achieve results competitive with the results of the

networks that jointly use word-level and character-
level information.

In order to compare CharWNN results with
the one of the state-of-the-art system, we report
in tables 6 and 7 the precision, recall, and F1
scores computed with the evaluation scripts from
the HAREM I competition5 (Santos and Cardoso,
2007), which uses a scoring strategy different from
the CoNLL-2002 evaluation script.

In Table 6, we compare CharWNN results with
the ones of ETLCMT , a state-of-the-art system for
the HAREM I Corpus (dos Santos and Milidiú,
2012). ETLCMT is an ensemble method that uses
Entropy Guided Transformation Learning (ETL)
as the base learner. The ETLCMT system uses
handcrafted features like gazetteers and dictionar-
ies as well as the output of other NLP tasks such as
POS tagging and noun phrase (NP) chunking. As
we can see in Table 6, CharWNN outperforms the
state-of-the-art system by a large margin in both
total and selective scenarios.

In Table 7, we compare CharWNN results by
entity type with the ones of ETLCMT . These
results were computed in the selective scenario.
CharWNN produces a much better recall than
ETLCMT for the classes LOC, PER and ORG. For
the ORG entity, the improvement is of 21 points
in the recall. We believe that a large part of this
boost in the recall is due to the unsupervised pre-

5http://www.linguateca.pt/primeiroHAREM/harem Ar-
quitectura.html
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Table 4: Comparison with the state-of-the-art for the SPA CoNLL-2002 corpus.
System Features Prec. Rec. F1

CharWNN word embeddings, char embeddings 82.21 82.21 82.21
words, ortographic, POS tags, trigger words,

AdaBoost bag-of-words, gazetteers, word suffixes, 81.38 81.40 81.39
word type patterns, entity length

Table 5: Comparison of different NNs for the HAREM I corpus.

NN Features Total Scenario Selective Scenario
Prec. Rec. F1 Prec. Rec. F1

CharWNN word emb., char emb. 67.16 63.74 65.41 73.98 68.68 71.23
WNN word emb., suffix, capit. 68.52 63.16 65.73 75.05 68.35 71.54
WNN word embeddings 63.32 53.23 57.84 68.91 58.77 63.44

CharNN char embeddings 57.10 50.65 53.68 66.30 54.54 59.85

Table 6: Comparison with the State-of-the-art for the HAREM I corpus.

System Features Total Scenario Selective Scenario
Prec. Rec. F1 Prec. Rec. F1

CharWNN word emb., char emb. 74.54 68.53 71.41 78.38 77.49 77.93
words, POS tags, NP tags,

ETLCMT capitalization, word length, 77.52 53.86 63.56 77.27 65.20 70.72
dictionaries, gazetteers

training of word embeddings, which can leverage
large amounts of unlabeled data to produce reli-
able word representations.

4.3 Impact of unsupervised pre-training of
word embeddings

In Table 8 we assess the impact of unsuper-
vised pre-training of word embeddings in Char-
WNN performance for both SPA CoNLL-2002
and HAREM I (selective). The results were com-
puted using the CoNLL-2002 evaluation script.
When unsupervised pre-training is not used, the
word embeddings are initialized by randomly
sampling each value from an uniform distribution:

U (−r, r), where r =
√

6
|V wrd|+ dwrd

.

We can see in Table 8 that, for both corpora,
CharWNN results are improved when using unsu-
pervised pre-training. The impact of unsupervised
pre-training is larger for the HAREM I corpus
(13.2 points in the F1) than for the SPA CoNLL-
2002 (4.3 points in the F1). We believe one of
the main reasons of this difference in the impact is
the training set size, which is much smaller in the
HAREM I corpus.

5 Related Work

Some recent work on deep learning for named en-
tity recognition include Chen et al. (2010), Col-
lobert et al. (2011) and Passos et al. (2014).

Chen et al. (2010) employ deep belief networks
(DBN) to perform named entity categorization. In
their system, they assume that the boundaries of
all the entity mentions were previously identified,
which makes their task easier than the one we
tackle in this paper. The input for their model is
the character-level information of the entity to be
classified. They apply their system for a Chinese
corpus and achieve state-of-the-art results for the
NE categorization task.

Collobert et al. (2011) propose a deep neural
network which is equivalent to the WNN architec-
ture described in Section 3.3. They achieve state-
of-the-art results for English NER by adding a fea-
ture based on gazetteer information.

Passos et al. (2014) extend the Skip-Gram
language model (Mikolov et al., 2013) to pro-
duce phrase embeddings that are more suitable
to be used in a linear-chain CRF to perform
NER. Their linear-chain CRF, which also uses
additional handcrafted features such as gazetteer
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Table 7: Results by entity type for the HAREM I corpus.

Entity CharWNN ETLCMT

Prec. Rec. F1 Prec. Rec. F1
DATE 90.27 81.32 85.56 88.29 82.21 85.14
LOC 76.91 78.55 77.72 76.18 68.16 71.95
ORG 70.65 71.56 71.10 65.34 50.29 56.84
PER 81.35 77.07 79.15 81.49 61.14 69.87

VALUE 78.08 74.99 76.51 77.72 70.13 73.73
Overall 78.38 77.49 77.93 77.27 65.20 70.72

Table 8: Impact of unsup. pre-training of word emb. in CharWNN performance.
Corpus Pre-trained word emb. Precision Recall F1

SPA CoNLL-2002
Yes 82.21 82.21 82.21
No 78.21 77.63 77.92

HAREM I
Yes 73.98 68.68 71.23
No 65.21 52.27 58.03

based, achieves state-of-the-art results on two En-
glish corpora: CoNLL 2003 and Ontonotes NER.

The main difference between our approach and
the ones proposed in previous work is the use of
neural character embeddings. This type of em-
bedding allows us to achieve state-of-the-art re-
sults for the full task of identifying and classify-
ing named entities using only features automati-
cally learned. Additionally, we perform experi-
ments with two different languages, while previ-
ous work focused in one language.

6 Conclusions

In this work we approach language-independent
NER using a DNN that employs word- and
character-level embeddings to perform sequential
classification. We demonstrate that the same DNN
which was successfully applied for POS tagging
can also achieve state-of-the-art results for NER,
using the same hyperparameters, and without any
handcrafted features. Moreover, we shed some
light on the contribution of neural character em-
beddings for NER; and define new state-of-the-art
results for two NER corpora in two different lan-
guages: Portuguese and Spanish.
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