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Abstract

Kernel-based methods are widely used for
relation extraction task and obtain good
results by leveraging lexical and syntac-
tic information. However, in biomedi-
cal domain these methods are limited by
the size of dataset and have difficulty in
coping with variations in text. To ad-
dress this problem, we propose Extended
Dependency Graph (EDG) by incorporat-
ing a few simple linguistic ideas and in-
clude information beyond syntax. We be-
lieve the use of EDG will enable machine
learning methods to generalize more eas-
ily. Experiments confirm that EDG pro-
vides up to 10% f-value improvement over
dependency graph using mainstream ker-
nel methods over five corpora. We con-
ducted additional experiments to provide
a more detailed analysis of the contribu-
tions of individual modules in EDG con-
struction.

1 Introduction

With growing amount of biomedical information
available in textual form, there has been consid-
erable interest in applying NLP techniques and
machine-learning (ML) methods to biomedical
literature. Some of these projects involve ex-
tracting relations such as protein-protein interac-
tion (Krallinger et al., 2008).

In biomedical domain, most relation extraction
work is currently applied on the abstracts of arti-
cles. These abstracts by nature are dense with in-
formation and often use constructions such as ap-
positives and relative clauses. The abundance of
textual variations can thus be problematic for ML
systems, especially with small training corpora.

One solution to this issue is to find a suitable
level of abstraction in the text representation so

that ML methods become easier to generalize. Use
of syntax and parse information provides one such
abstraction. Using syntactic dependency informa-
tion has become prevalent in biomedical relation
extraction. It has been suggested dependency links
are close to the semantic relationship needed for
the next stage of interpretation (Covington, 2001).

There have been significant advances in the de-
velopment of advanced machine learning and ker-
nel methods and the use of sophisticated parame-
ter tuning in the biomedical domain. In this work,
we focus on the representation of the text used
in learning rather than the machine learning tech-
nique, with the hope that advances in both direc-
tions will be improve the performance of the re-
lation extraction systems. In this paper we pro-
pose Extended Dependency Graph (EDG), which
includes information about text that goes beyond
syntax. We will define EDG and discuss how we
construct it from a given sentence by using some
simple linguistic notions.

The hypothesis we test here is that EDG allows
ML techniques to generalize more easily. To de-
termine the effect of EDG, we conducted experi-
ments on protein-protein interaction (PPI) extrac-
tion. For this purpose, we used two kernels: a
simple kernel based on edit distance (Erkan et al.,
2007) and a more elaborate kernel that is one of
the top performing kernels on the PPI task (Airola
et al., 2008). We compared the performance of
both kernels using dependency graph and EDG on
5 corpora. Our results suggest EDG provides up to
10% f-value improvement over dependency graph.
On 3 out of 5 corpora the results are better than
the overall best system in the study of (Tikk et al.,
2010), as well as an ensemble method that builds
on them (Miwa et al., 2009a). We also evaluate
the contributions of the individual components in-
cluded in EDG.
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Figure 1: Framework.

2 Related work

Many kernel-based relation extraction systems
have employed lexical and syntactic informa-
tion (Bunescu and Mooney, 2005; Zhou et al.,
2007; Ning and Qi, 2011). There has been a
growth in the use of more complex kernels and so-
phisticated parameter tuning methods to improve
the results (Zhang et al., 2006; Choi and Myaeng,
2010). In PPI task, machine learning methods
using rich feature vectors (Miwa et al., 2009b),
edit distance kernel (Erkan et al., 2007), depen-
dency tree kernel (Chowdhury et al., 2011), all-
path graph kernel (Airola et al., 2008), or their
combination and variations (Miwa et al., 2009a;
Zhang et al., 2012) have been proposed.

Our focus is on improving the representation of
information in natural texts, rather than on devel-
oping new kernels. There have been several at-
tempts to leverage syntax and shallow semantic
argument structure (Miwa et al., 2010; Van Lan-
deghem et al., 2010; Van Landeghem et al., 2012;
Liu et al., 2013; Oepen et al., 2014; Peng et al.,
2014; Nguyen et al., 2015). Though the focus of
these works was not to utilize the information with
machine learning methods, they offer insight on
utility of information beyond syntax. We develop
the EDG approach for relation extraction based on
these ideas.

3 Method

Figure 1 illustrates the overall architecture with
the core component highlighted: EDG construc-
tion. The input is a sentence with named enti-
ties marked. We use Charniak-Johnson parser and
Stanford conversion tool to get the basic syntactic
dependency graph (SDG). Our approach focuses
on how to leverage simple linguistic principles and
information beyond syntax to construct EDG from
SDG.

3.1 Extended dependency graph (EDG)

In this paper, we use EDG to represent the struc-
ture of the sentence. Like in the case of many
dependency graph representations used in relation

extraction, the vertices in a EDG are labelled with
information such as the text, part-of-speech, and
the word lemma. If an entity mention spans mul-
tiple tokens in a sentence, we merge their corre-
sponding vertices (called contracting vertices) into
one vertex.

EDG has two types of dependencies. The syn-
tactic dependencies that are obtained from col-
lapsed dependencies output by applying Stan-
ford dependencies converter on a syntactic pars-
ing tree (De Marneffe and Manning, 2008). The
other type of dependencies are the numbered argu-
ments based on the guidelines of PropBank (Bo-
nial et al., 2012). Because we are currently fo-
cusing on binary relation extraction, we use only
arg0 and arg1 (probably better stated as not-arg0)
in EDG. Figure 2 shows EDGs of three text frag-
ments with syntactic edges appearing above the
words and numbered argument edges appearing
below. From a relation extraction perspective, the
syntactic dependencies in Figure 2 are less rele-
vant but their numbered arguments between two
entity mentions are same.

There are two motivations for using numbered
arguments. One is to “provide consistent argument
labels across different syntactic realizations of the
same verb” (Bonial et al., 2012) with the intention
of making generalizations easier downstream. The
other is to add/propagate new arg0 and arg1 using
reasoning that goes beyond syntax.

Following these two motivations, we will first
discuss how to capture arg0 and arg1 using dif-
ferent syntactic dependencies obtained from Stan-
ford dependencies. Then we will describe rela-
tions such as is-a, member-collection, and part-
whole and how to propagate arg0 and arg1 using
them.

3.2 Syntax based arg0 and arg1

We follow approaches of SemRep (Rinaldi et al.,
2006) and PASMED (Nguyen et al., 2015) to ob-
tain the basic edges arg0 and arg1 from the syntac-
tic dependencies. For example, EDG will include
an arg0 from a verb to the noun if the syntactic de-
pendency is nsubj or agent and include an arg1 if
the dependency is nsubjpass or dobj.

In addition, we consider situation where verbs
in gerund form are used as noun modifiers. Fig-
ure 3 shows a compound noun phrase. We know
that there is a PPI between “retinoblastoma” and
“protein”, because we can rewrite the phrase into
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Jak-2 activated Raf-1

nsubj dobj

arg0 arg1

(a)

Raf-1 was activated by Jak-2

auxpass prep by
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arg1 arg0

(b)
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prep by

arg1
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Figure 2: Sample EDGs with an active (a), passive
(b), or normalized (c) verb.

the retinoblastoma binding protein , RBP1

nn
nn

appos

arg0 arg1
arg1 (propagation)

Figure 3: A sample compound noun phrase.

“retinoblastoma binds to protein, RBP1”. There-
fore, we add arg1 from “binding” to “protein” in
Figure 3. This operation will introduce cyclicity
because the gerund is included in the noun phrase
headed by “protein”. We posit that these edges
are useful when found in combination with other
construction, such as appositive. We will discuss
how to propagate arg1 from the gerund “binding”
to “RBP1” later.

Next we consider two cases of argument elision.
Elided argument relation Here we con-

sider cases when the argument of a predicate is
not explicit but implicit. Figure 4 shows a sen-
tence where arg0(interaction, Presenilin 1) can
be inferred. The SDG includes a prep via from
the first verb “suppresses” to the nominalized verb
“interaction”, to indicate the PP attachment to the
verb. In this case, we add an edge arg0 from
the nominalized verb to the arg0-argument of the
first verb. In constructing EDG, we also consider
prep through as well as prep by when a gerund
verb, rather than a nominalized verb, follows it.

Reduced relative clauses Relative clause is
a clause that modifies a noun phrase. There are
two types of relative clauses that frequently ap-
pear in biomedical text. Full relative clauses are
introduced by relative pronouns, such as “which”

serine/threonine kinase that is phosphorylated by Pto

nsubjpass
auxpass agent

arg1 arg0

(a) A sample full relative clause.

a Ca(2+)-binding protein phosphorylated by protein kinase A

vmod prep by

arg1 arg0

(b) A sample reduced relative clause.

Figure 5: Sample relative clauses.

and “that”. Reduced relative clauses start with a
gerund or past participle and have no overt sub-
ject.

The PropBank annotation guidelines (Bonial et
al., 2012) posit a numbered argument link from
the relative clause verb to the trace in the parse
tree which also indicates the referent noun phrase.
For full relative clauses, we follow the normal pro-
cedure for verbs (Figure 5a). For reduced rela-
tive clauses, since we use the dependency struc-
ture that includes no traces, we use the edge vmod
in the SDG from the head of the noun phrase to
the reduced relative clause’s verb (Figure 5b). The
direction of this edge indicates that the relative
clause is syntactically included in the larger noun
phrase. For the arg edge, we reverse the direc-
tion of vmod and create an edge from the relative
clause’s verb, as shown in Figure 5b. When com-
pared to Figure 5a, the arg construction unifies the
treatment for full relative clauses.

Notice that although in both cases, the arg1 is
not an incident on named entities, it might still
lead to the named entity through the propagation
of edges as discussed in the next subsection.

3.3 Going Beyond Syntax

Here we consider the propagation of arg using in-
formation that goes beyond syntax.

Co-reference If an edge arg from a vertex
v reaches a pronominal node, we add a new edge
arg from v to any named entity the pronoun co-
refers to. To detect the coreference we use the
implementation of the technique described in (Qiu
et al., 2004). For the acronyms with long-form
and short-form, we treat them in the same way as
coreference. We add extra edge arg when there
is an arg incident on the long-form. We use the
acronym detector of (Schwartz and Hearst, 2003)
to add acronyms missed in SDG. Interestingly,
SDG uses appos for both acronym and appositive.

Appositive Reconsider the fragment “the
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Presenilin 1 suppresses the function of c-Jun homodimers via interaction with QM/Jif-1

nsubj
dobj

det nn
prep of
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arg0 (elided)

arg1 arg1

Figure 4: A sample elided argument relation.

HOX11 is a cellular oncogene that targets · · ·
amod

det
cop

nsubj

nsubj

rcmod

is-a arg0
arg0 (propagation)

Figure 6: A sample is-a relation.

retinoblastoma binding protein, RBP1” in Fig-
ure 3. Using the construction discussed thus far,
the arg1 will reach “protein”. Further, SDG uses
an edge appos from “protein” to “RBP1” for ap-
positional modifier. We integrate arg1 and appos
to construct another edge arg1 from “binding” to
the actual named entity “RBP1”.

Is-A In addition to appositive, we consider
other forms of is-a relation mentioned textually,
but cannot be directly found from the syntactic
dependences. For example, in Figure 6, there is
no edge in SDG to explicitly capture the is-a re-
lation. It is worth noting that the edge nsubj it-
self does not indicate the is-a relation, but together
with two other edges cop and det, we can figure it
out. Hence we add a new edge from “oncogene”
to “HOX11” to reflect this relation in EDG (dotted
edge). Afterwards, we propagate arg0 from “tar-
gets” to “HOX11”.

Besides the pattern shown in Figure 6, we also
identify “known as”, “designated as”, “considered
as”, “identified as” and “act as” as patterns that
signal is-a relations. These patterns contain and
extend rules in (Snow et al., 2005; Hearst, 1992).

Member-collection links a generic reference
(called collection) to a group of entity mentions
(called members). Like in Figure 7, typical key
words that can identify member-collection rela-
tions are “including” and “such as”. We consider
the cases where mention group follows the key-
words and the generic reference precedes these
words. After the detection, we propagate arg from
the collection to its members.

Part-whole links an entity part to its mention,
typically denoting construction of larger entities
out of smaller ones. Just like “breaking the glass

TBP binds to distinct domains of hTAFII28

nsubj
prep to

amod prep of

arg0 arg1 part-whole
arg1 (propagation)

Figure 8: A sample part-whole relation.

of the window” can be stated as “breaking the win-
dow”, in biomedical tasks an action on a larger
unit can often be inferred from a mention of the
action applied on its part. That is, in Figure 8, af-
ter we detect a part-whole relation, an edge arg1
incident on the part is propagated to the object that
contains it.

In this paper, we focus on three types of pat-
terns to recognize part-whole relations. The first
is the preposition phrase such as “domain of e”.
Here “domain” indicates the part and e indicates
the larger entity mention the “domain” belongs
to. Other keywords indicating parts include “frag-
ment”, “portion”, and “region”. The second struc-
tural elements is a compound nominal like “e do-
main”. The third group exploits keywords such
as “contain”, “consist”, and “compose”. For each
part-whole relation, we propagate edges from the
part to its entity mention.

4 Experiments

We evaluated our method on protein-protein in-
teraction (PPI) extraction task, where the system
identifies whether a given protein pair in a sen-
tence has PPI relationship or not. We used SDG
or EDG as input representation of the sentences,
which includes the named protein entities.

4.1 Kernels

We tested the effect of using EDG on two kernels
that have been employed for PPI extraction.

Edit distance kernel is based on the edit dis-
tance among the shortest paths between entities in
the dependency graph and is based on the minimal
number of operations (deletion, insertion, substi-
tution at word level) needed to transform one path
(p1) into the other (p2). Following (Erkan et al.,
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Cdi1 interacts with cyclin-dependent kinases , including human Cdc2 , Cdk2 , and Cdk3
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arg0 arg1 member-collection
member-collection

member-collection
arg1 (propagation)

arg1 (propagation)

arg1 (propagation)

Figure 7: A sample member-collection relation.

2007), this number is normalized by the length
of the longer path and converted into a similarity
measure.

sime(p1, p2) = e−γeditdist(p1,p2) (1)

When comparing two shortest paths, we consid-
ered the word lemma and the edge labels . We also
renamed the candidate pair in the sentence as “E1”
and “E2” and the remaining proteins provided in
the annotation as “EX”. For example, the follow-
ing are the shortest paths of Figure 2a, 3, and 8.

(a) E1← arg0← activate→ arg1→ E2
(b) E1← arg0← bind→ arg1→ E2
(c) E1← arg0← bind→ arg1→ E2

Therefore, the edit distance between (a) and (b) is
1 because the predicate verbs are different. The
distance between (b) and (c) is 0. It shows the
generalizability of using EDG.

All-paths graph kernel is a practical instanti-
ation of a graph kernel framework (Gärtner et al.,
2003). It counts weighted shared paths of all pos-
sible lengths in a graph (Airola et al., 2008). All-
paths graph kernel uses two graph representations:
(1) a dependency graph where all edges on the
shortest paths between the candidate pair receive a
weight of 0.9 and other edges receive a weight of
0.3; and (2) a linear graph where each word node is
connected by an edge to its succeeding word node
with weight 0.9.

We used word (not lemma) and edge labels
to compute the all-paths graph kernel. Sim-
ilar to the case with the edit distance ker-
nel, we replaced the protein names in a sen-
tence with “E1”, “E2” and “EX”. We use the
APG software (http://mars.cs.utu.fi/
PPICorpora/GraphKernel.html) to train
and test the kernel. The software uses sparse reg-
ularized least squares method instead of SVM.

Table 1: Basic statistics of the corpora.

Corpus Sentences # Positives # Negatives

AIMed 1,955 1,000 4,834
BioInfer 1,100 2,534 7,132
HPRD50 145 163 270
IEPA 486 335 482
LLL 77 164 166

4.2 Experimental setup

We evaluated our method on five PPI cor-
pora that have been used in the community:
AIMed (Bunescu et al., 2005), BioInfer (Pyysalo
et al., 2007), HPRD50 (Fundel et al., 2007),
IEPA (Ding et al., 2002), and LLL (Nédellec,
2005). These corpora have different sizes (Ta-
ble 1) and vary slightly in their definition of
PPI (Pyysalo et al., 2008).

(Tikk et al., 2010) conducted a compari-
son of a variety of PPI extraction systems on
these corpora (http://mars.cs.utu.fi/
PPICorpora). We used the same experimen-
tal setup to evaluate our methods: self-interactions
were excluded from the corpora and 10-fold
document-level cross-validation is used for eval-
uation.

For our experiments, we used the Charniak-
Johnson parser (Charniak and Johnson, 2005) and
the Stanford conversion tool with “Collapsed” set-
ting to obtain SDG (De Marneffe and Manning,
2008). The edit distance kernel was trained with
LIBSVM (Chang and Lin, 2011). The APG ker-
nel was trained with APG software.

Both these kernels have several parameters,
whose settings can influence the performance. In
this paper, we did not perform exhaustive system-
atic parameter search and optimization. We be-
lieve such parameter tuning techniques might lead
to further improvements.

For the edit kernel, we set γ to 4.5, which was
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the value used in the original application of edit
kernel on these corpora (Erkan et al., 2007). We
set c in SVM to 10, which was the average best
value used in (Tikk et al., 2010). For the APG ker-
nel, we used the default settings of implementation
of (Airola et al., 2008) which uses a grid parame-
ter search for each iteration of the 10-fold cross
validation. The parameter search selects the best
setting based on a random set of 1,000 samples
from the training sets (9 folds). If there are less
than 1,000 samples, the software used the whole
training set. Note that the test sets (the remaining
fold) were not used for the parameter tuning.

4.3 Results

Performance, as measured by precision, recall,
and F-value, is shown in Table 2. To provide con-
text, we also include the results published in (Tikk
et al., 2010) and (Miwa et al., 2009a). The first
reports the results of the APG kernel (Airola et al.,
2008) that was found to be a leading performer on
these 5 corpora in the study reported in (Tikk et
al., 2010). The second set of results is those of an
ensemble method that combines different systems.

Although we are using the same corpora in the
study of (Tikk et al., 2010), and the same imple-
mentation of the APG kernel, the results in Row 1
and Row 6 in the table are not the same. The dif-
ferences are possibly due to the fact that different
parsers were used and how parameters were cho-
sen. However, we want to emphasize that all our
own measurements (e.g., in Rows 3-5 or Rows 6-
8) are directly comparable to each other because
the same parameter settings were used for each
corpus.

The first part of Table 2 shows results us-
ing the edit distance kernel with original depen-
dency graph (Row 3), and with the complete EDG
(Row 4). We also experimented with different
configurations of EDG by dropping one of the
extra edge types added in EDG. The results ob-
tained by the best configuration are reported in
Row 5. On three of the corpora, the best results
are obtained by using the full EDG. However, bet-
ter results were obtained on HPRD50, when the
member-collection relations were not included and
on LLL, when the is-a relations were not included.
In the next subsection we will address why these
relations were not included.

Overall, comparing Rows 3 and 4, we obtain F-
value improvements using EDG over using SDG

on 4 corpora (except LLL), with around 10% gains
on AIMed and HPRD50 and noticeable gain in re-
call. For 3 of the corpora (AIMed, HPRD50 and
IEPA), there is an increase in both precision and
recall. For BioInfer, the gain in precision slightly
exceeds the loss in recall whereas in LLL the gain
in precision is slightly lower than the loss in re-
call. When Row 5 is used for comparison, we ob-
tain an improvement in F-value for all 5 corpora
with improvement in recision and recall in 4 cor-
pora (BioInfer being the exception). We now see
over 18% F-value improvement on HPRD50.

Despite weak performance of the edit kernel us-
ing the baseline SDG, the performance of this ker-
nel with full EDG is close to or exceeds the results
of the leading PPI systems using kernel methods
(Rows 1 and 2) on 4 corpora and exceeds them on
these 4 corpora when results of Row 5 is consid-
ered.

The second part of Table 2 (Rows 6–8) shows
results using the APG kernel. The EDG (Best) in
Row 8 is achieved on AIMed, BioInfer and LLL
by dropping the is-a relation and on HPRD50 by
not including the member-collection relations. We
see F-value gains on 4 corpora through the use of
EDG.

Comparing the results on the edit distance and
APG kernels, we find that the more complex APG
kernel (the best one overall in (Tikk et al., 2010)
study) gets generally better results than Edit kernel
using the baseline SDG. However, the use of EDG
not only closes the gap between the kernels but in
fact, edit kernel with EDG obtains higher F-value
than APG with SDG or EDG in 4 of the 5 corpora.

To provide the comparision with non-kernel
methods, we also include the results published in
(Miwa et al., 2009b), which is the state-of-the-art
system on the five corpora. This paper develops
several systems that use a rich feature vector, com-
bining analysis from different parsers and the val-
ues obtained from multiple kernels including the
APG’s score. L2-SVM and SVM-CW are among
the leading SVM-based systems proposed in this
paper.

Row 9 shows the results of L2-SVM on these
corpora. We observe that both edit kernel and
APG kernel with EDG (Best) gets improvements
on two of the corpora. Row 10 shows the results of
SVM modified for corpora weighting (SVM-CW).
Using one of the corpora as the target corpus,
SVM-CW weights the remaining corpora (called
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Table 2: Evaluation results. Performance is reported in terms of Recall/Precision/F-value.

Kernel AIMed BioInfer HPRD50 IEPA LLL

1 (Tikk et al., 2010) 53.6 /59.9 /56.2 61.3 /60.2 /60.7 69.8 /68.2 /67.8 82.6 /66.6 /73.1 98.0 /68.0 /78.4
2 (Miwa et al., 2009a) 68.8 /55.0 /60.8 71.1 /65.7 /68.1 76.1 /68.5 /70.9 78.6 /67.5 /71.7 86.0 /77.6 /80.1

Edit kernel
3 SDG 40.0 /61.4 /48.4 64.7 /49.5 /56.1 55.8 /68.4 /61.5 69.6 /74.7 /72.0 89.6 /71.7 /79.7
4 EDG 57.3 /65.3 /61.1 57.6 /59.9 /58.7 66.9 /75.7 /71.0 69.9 /76.2 /72.9 85.4 /74.1 /79.3
5 EDG (Best) – – 76.7 /83.3 /79.9 – 92.1 /78.2 /84.6

All-paths graph kernel
6 SDG 69.0 /48.0 /56.6 73.5 /58.8 /65.3 69.3 /60.1 /64.4 77.9 /65.4 /71.1 87.8 /69.9 /77.8
7 EDG 66.0 /52.3 /58.3 72.1 /56.1 /63.1 71.2 /62.7 /66.7 75.2 /65.3 /69.9 82.9 /69.4 /75.6
8 EDG (Best) 71.3 /51.1 /59.5 69.2 /58.7 /63.5 76.1 /62.6 /68.7 76.1 /68.2 /71.9 87.2 /75.3 /80.8

Feature vector (Miwa et al., 2009b)
9 L2-SVM 63.2 66.2 67.2 73.0 80.3

10 SVM-CW 64.0 66.7 72.7 75.2 85.9

the source corpora) with “goodness” for training
on the target corpus, adjusting the effect of their
compatibility and incompatibility (Miwa et al.,
2009b). Thus, their results are not directly com-
parable with our results. However we obtain im-
provements using edit kernel with EDG (Best) on
HPRD50.

4.4 Contribution of individual relation

Table 3 compares the effects of different tech-
niques in EDG on five corpora using the edit dis-
tance kernel. We first evaluated SDG obtained
from the Stanford conversion tool with “CCPro-
cessed” setting (Row 2) for processing conjunc-
tions, and next added only syntax based arg0 and
arg1 (Row 3). After that, we added in succes-
sion referential links (including coreference, ap-
positive, and is-a), member-collection, and part-
whole detection in the EDG construction step by
step (Row 4–6). Overall, using “CCProcessed”
increases the F-values on all five corpora. EDG
constructed using syntax based arg achieves addi-
tional increases on 4 out of 5 corpora (exception
was IEPA). Every subsequent step generally pro-
vides more improvements on F-values. However,
we observed that on HPRD50, member-collection
decreased F-value. Therefore we tried to switch
off this part in the EDG construction but included
the rest of the relations and achieved a higher F-
value of 79.9% on this corpus (Row 7). This cor-
responds to the same result we displayed in Row
5 (EDG Best) in Table 2. On the LLL corpus,
as components were successively added, we no-
ticed a drop in F-value when referential linking
was added. So similarly by turning off is-a detec-
tion and including all other EDG edges enabled us

to obtain the EDG best F-value of 84.6% on LLL.
We also identified that is-a decreased F-values

on IEPA, however no further improvement could
be made by switching it off. We plan to further
analyze this result in the future.

Additionally, due to the gap in the performance
between our system and (Miwa et al., 2009a) on
BioInfer, we analyzed the error cases and noticed
several cases similar to the following example.
The candidate pair of named enitites are marked
in bold.

• This process involves other actin-binding
proteins, such as cofilin and coronin.

Using techniques as shown in Figure 3, we
can create arg0 (binding, actin) and arg1 (bind-
ing, proteins) in EDG and also detect member-
collection relation between “actin-binding pro-
teins” and “cofilin”. With propogation, an inter-
action between “actin” and “cofilin” can be pre-
dicted. However, this relation is annotated as a
negative, but instead the annotation in BioInfer in-
cludes a positive relation between “actin-binding
proteins” and “cofilin”. Because of similar exam-
ples in BioInfer, the member-collection and is-a
and propagation failed to improve the results in
BioInfer.

5 Conclusion

In this paper, we strive to find a level of abstrac-
tion that is more suitable for tasks such as rela-
tion extraction. For this purpose, we introduced
techniques to create a new dependency graph rep-
resentation (EDG) that goes beyond syntactic de-
pendencies. We evaluated the efficacy of EDG
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Table 3: Contributions of different part in SDG and EDG using edit kernel. Performance is reported in
terms of Recall/Precision/F-value.

Kernel AIMed BioInfer HPRD50 IEPA LLL

1 SDG (Collapsed) 40.0 /61.4 /48.4 64.7 /49.5 /56.1 55.8 /68.4 /61.5 69.6 /74.7 /72.0 89.6 /71.7 /79.7
2 SDG (CCProcessed) 46.4 /58.9 /51.9 56.2 /57.1 /56.6 58.9 /67.6 /63.0 70.2 /74.8 /72.4 89.6 /73.5 /80.8
3 EDG (syntax based arg) 48.1 /61.2 /53.9 56.3 /58.5 /57.4 66.9 /73.2 /69.9 69.3 /74.4 /71.7 89.0 /74.1 /80.9
4 EDG (above, coref, app, isa) 52.2 /58.6 /55.2 56.7 /58.3 /57.5 65.6 /77.0 /70.9 69.0 /74.0 /71.4 87.2 /72.2 /79.0
5 EDG (above, mem-coll) 53.2 /59.2 /56.0 57.1 /58.6 /57.8 64.4 /77.8 /70.5 69.6 /76.4 /72.8 85.4 /74.5 /79.6
6 EDG (above, part-whole) 57.3 /65.3 /61.1 57.6 /59.9 /58.7 66.9 /75.7 /71.0 69.9 /76.2 /72.9 85.4 /74.1 /79.3
7 EDG (Best) 57.3 /65.3 /61.1 57.6 /59.9 /58.7 76.7 /83.3 /79.9 69.9 /76.2 /72.9 92.1 /78.2 /84.6

with the edit distance and APG kernels and ap-
plied them on 5 different PPI-related datasets. We
obtained improvements in F-value by using EDG.
We find that despite the simplicity of the edit ker-
nel and its weak performance with the baseline
graph, results comparable to state-of-the-art sys-
tems using kernel methods are obtained on differ-
ent corpora with the inclusion of EDG.

While the use of EDG has led to gain in recall
as well as precision mostly, the recall drops with
BioInfer dataset. We would like to analyze this re-
sult further in the future. One of our main motiva-
tions for developing EDG is to develop methods to
learn with small datasets and whether the abstrac-
tion captured in EDG allows for easier generaliza-
tion. The testing of learning with small datasets
and use in context of active learning will be inves-
tigated in the future.

We plan to test the use of EDG on other rela-
tion extraction tasks in the biomedical domain. We
also plan to investigate richer features and their
combinations in conjunction with the use of EDG.
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