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Abstract

Complex mechanisms, such as cell-signaling 
pathways, consist of many highly intercon-
nected components, yet they are often de-
scribed in disconnected fragmentary ways. 
The goal of DRUM (Deep Reader for Under-
standing Mechanisms) is to develop a system 
that can read papers and combine results of 
individual studies into a comprehensive ex-
planatory model. A first step is to automati-
cally extract relevant events and event rela-
tionships from the literature. This paper de-
scribes initial steps in extending an existing 
general deep language understanding system, 
TRIPS, to read biomedical papers. In a pre-
liminary evaluation, our system was the best 
performing system among the participants, 
achieving results close to human expert per-
formance. These results suggested that our 
system is viable for complex event extraction 
and, ultimately, understanding complex sys-
tems and mechanisms.

1. Introduction

Complex mechanisms consist  of many highly  
interconnected components, yet  they are often 
described in disconnected fragmentary ways.  
Examples include ecosystems, social dynamics 
and signaling networks in biology. The study of 
these complex systems is often focused on a 
small portion of a mechanism at a time. In addi-
tion, the huge volume of scientific literature 
makes it difficult to track the fast developments 
in the field to achieve a comprehensive under-
standing of the often distant  and convoluted in-
teractions in the system.

The goal of the DRUM (Deep Reader for Un-
derstanding Mechanisms) project is to develop a 
system that can read papers and combine re-
search results of individual studies into a com-
prehensive explanatory model of a complex 
mechanism. The system will automatically read 
scientific papers, extract  relevant new model 
fragments, and compose them into larger models 
that will expose the interactions and relationships 
between disparate elements in the mechanism.

A first  step towards this goal is to automati-
cally extract  relevant events and event relation-

ships from the literature. In this paper we will 
describe initial steps in extending an existing 
general deep language understanding system, 
TRIPS (Allen et  al, 2008), to the genre of scien-
tific writing, in particular in the biomedical do-
main. Events in biomedical research papers are 
described in a highly specialized and technical 
language, with complex formulations and nested 
constructions. We will discuss adaptations made 
and how the design principles of TRIPS facilitate 
such adaptations.

We will report  on an experimental evaluation 
of this extended system on extracting events and 
relationships centered on the Ras signaling 
pathways from a number of text  passages in sci-
entific papers. Our system was the best  perform-
ing system among those evaluated, achieving  
results close to human expert performance. 

Admittedly this was a small and preliminary 
evaluation.  However, the results suggested our 
system is viable for complex event  extraction. Of 
note, unlike typical statistical approaches, we did 
not train on text  describing the Ras signaling 
pathways (or on any other text for that matter).  
Our results were achieved using a general deep 
language understanding system, with little 
domain-specific customization beyond the rec-
ognition of named entities and some specialized 
vocabularies. Most  important, our goal does not 
stop at  the surface extraction of events, as is the 
case for many existing bio-event  extraction tasks. 
With a general deep language understanding sys-
tem, we are in a good position to develop an un-
derstanding of the underlying connections in 
complex models, and the methods developed to 
achieve that  understanding will be readily trans-
ferrable to domains other than biology.  

2. The TRIPS Architecture

Much recent  text  processing work has focussed 
on developing “shallow”, statistically driven 
techniques. TRIPS takes a different  approach,  
using statistical methods as a preprocessing step 
to provide guidance to a deep parsing system that 
uses a detailed, hand-built, grammar of English 
with a rich set of semantic restrictions. Figure 1 
shows an overview of the system architecture. In 
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the rest  of this section we will describe briefly 
the main components of the system. The content 
extractor, customized for biomedical text, will be 
discussed in more detail in Section 4.

2.1. Parser
The TRIPS grammar is a lexicalized context-free 
grammar, augmented with feature structures and 
feature unification. The grammar is motivated by 
X-bar theory (Jackendoff, 1977), and draws on 
principles from GPSG (Gazdar et  al., 1985), for 
example head and foot features, and HPSG (Pol-
lard and Sag, 1987, 1994). The search in the 
parser is controlled by a set  of hand-built  prefer-
ences encoded as weights on the rules, together 
with domain-general selectional restrictions (en-
coded in the lexicon and ontology) to eliminate 
semantically anomalous sense combinations.

The TRIPS parser uses a packed-forest chart 
representation and builds constituents bottom-up 
using a best-first search strategy similar to A*, 
based on rule and lexical weights and the influ-
ences of the front end components (described 
below). 

The parser constructs from the input a logical 
form, which is a semantic representation that 

captures an unscoped modal logic (Allen, 1995; 
Manshadi et al., 2008). The logical form includes 
the surface speech act, semantic types, semantic 
roles for predicate arguments, and dependency 
relations. Consider the sentence:

ASPP2 can be phosphorylated at serine 
827 by MAPK1.

Figure 2 is a graphical depiction of the logical 
form of this sentence produced by DRUM. The 
nodes in the graph represent the word senses and 
ontology types, together with quantification in-
formation, and the edges represent  semantic role 
relations. Of particular interest are two of the 
core semantic roles: AGENT  (here, MAPK1), 
identifying objects that  play a causal role in an 
event; and AFFECTED (here, ASPP2), identify-
ing objects that are changed as part  of an event. 
Other roles also provide key information that 
needs to be extracted. For instance, LOCATION 
identifies the molecular site (here, serine 827) or 
cellular location (e.g., cytoplasm) associated with 
an event of interest. The logical form also cap-
tures tense, modality and aspect  information, 
which is crucial for determining, for example, 
whether a statement is a stated fact, a conjecture 
or a possibility (as indicated by the modality).

Figure 1. System Architecture.

Figure 2. The logical form produced by DRUM of the sentence “ASPP2 can be phosphorylated 
at serine 827 by MAPK1.”
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2.2. Ontology and Lexicon
The parser draws on a general purpose semantic 
lexicon and ontology which define a range of 
word senses and lexical semantic relations. The 
core semantic lexicon was constructed by hand 
and contains approximately 7,500 lemmas (gen-
erating approximately three times that many 
words) and 2,000 concepts in the ontology. 

The ontology is organized hierarchically and 
each ontology concept has associated with it pos-
sible semantic roles and selectional preferences 
that further refine the concept. For instance, it 
can be specified that  the AFFECTED role of 
phosphorylate may only take a physical object 
that is part  of a molecule (e.g., a protein or a mo-
lecular site). Figure 3 shows a portion of the 
TRIPS upper ontology for events and their asso-
ciated core semantic roles.

A TRIPS lexicon entry is composed of two 
key parts. The first  is the ontology type of the 
word sense, and it  receives the roles and restric-
tions specific to its ontology type together with 
those inherited from its ancestors in the ontology 
hierarchy. The second is the grammatical con-
structions that  the word can participate in, in the 
form of rules that  map syntactic patterns to in-
stantiations of objects from the ontology.

2.3. Extending the Lexicon
To attain broad lexical coverage beyond its hand-
defined core lexicon, TRIPS uses input from a 
variety of external resources, some of which will 
be described in the next  sections. Using the built-
in subsystem WordFinder, TRIPS can augment 

its lexicon by dynamically building lexical en-
tries with plausible semantic and syntactic struc-
tures for virtually any word in WordNet  (Fell-
baum, 1998), thus extending its coverage to over 
100,000 words. 

For words not in the core lexicon, WordFinder 
uses a hand-built mapping between the hy-
pernym information in WordNet  (for all the 
WordNet senses) and the TRIPS ontology. For 
each identified TRIPS class it gathers all the pos-
sible constructions that  words of this class in the 
TRIPS lexicon participate in. It  then generates a 
set of lexical entries for the unknown word by 
combining each possible ontological class with 
each possible construction for that class. While 
this procedure may over-generate, the key is to 
include the correct constructions among the gen-
erated possibilities, since these correct construc-
tions will be the ones realized in parsing sen-
tences (for more information see Allen, 2014). 

2.4. Front End Components
To support more robust processing and domain 
configurability, the core system has the capabil-
ity to incorporate a variety of statistical and sym-
bolic natural language processing components in 
the front end, as well as domain-specific compo-
nents such as specialized named entity recogniz-
ers. These include several off-the-shelf natural 
language tools such as the Shlomo Yona senten-
cizer1, the Stanford part-of-speech tagger 
(Toutanova and Manning, 2000), the Stanford 
named-entity recognizer (NER) (Finkel et al., 
2005) and the Stanford Parser (Klein and Man-
ning, 2003). The output of these and other spe-

1 http://search.cpan.org/~kimryan/Lingua-EN-Sentence-0.29/

Figure 3. A subset of the TRIPS upper event ontology, showing core roles 
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cialized preprocessors (e.g., a street  address rec-
ognizer) is sent to the parser as advice. The 
parser then decides whether to follow these 
pieces of advice as it  searches for the optimal 
parse of the sentence.

3. Extensions and Customization for the 
Biomedical Genre

We describe below several extensions to the gen-
eral TRIPS system to better handle the text char-
acteristics of the biomedical literature.

3.1. Genre Specialization
The chart produced by the parser is searched us-
ing a dynamic programming algorithm to find 
the least cost sequence of constituents according 
to a cost  table that can be varied by genre. For 
instance, in dialogue systems speech acts such as 
CONFIRM (e.g., ok) or GREET (e.g., hello) are 
expected. For papers in the biomedical domain, 
such speech acts almost  never occur and thus are 
discounted in favor of TELL statements. Simi-
larly, in dialogue systems utterances are expected 
to be fairly short and colloquial, whereas in sci-
entific text the sentence structures are expected 
to be much more formal and involved. The pa-
rameters for parsing and the cost table are set 
accordingly.

In addition, the system can choose to incorpo-
rate different  front end components. For instance, 
for the biomedical literature a street address rec-
ognizer would not be very useful, but  a named 
entity recognizer for protein names would be 
most crucial. 

Such customizations not only optimize the 
parser efficiency, but also reduce the potential 

ambiguities the parser has to deal with, since 
each additional component offers additional, po-
tentially conflicting, advice the parser has to take 
into account.

3.2. Lexicon and Ontology Enhancements
The biomedical domain uses specific terminol-
ogy that is outside the core TRIPS lexicon and 
ontology. We extended the system’s coverage by 
incorporating domain-specific terminology, with  
mappings to TRIPS ontology classes. In some 
cases we introduced new ontology categories to 
accommodate domain-specific concepts. Table 4 
lists the resources used, as well as the types of 
entities mapped to the TRIPS ontology. Some of 
these resources organize concepts in ontologies 
(e.g., using the OBO format (Smith et  al., 2007)); 
for these, we grafted the relevant  nodes onto the 
TRIPS ontology (see Blaylock et  al., 2011). For 
example, most  GO biological processes are 
mapped to the existing TRIPS ontology category 
ONT::event-of-change; however, children of 
GO:0007165 (signal transduction) are names/
types of signaling pathways, and they are 
mapped to ONT::signaling-pathway—a domain-
specific category newly added to the TRIPS on-
tology. Controlled vocabularies for single entity 
types (e.g., neXtProt’s Cellosaurus) were 
mapped to single TRIPS ontology types (e.g., 
ONT::cell-line).

In addition, we used the SPECIALIST  lexicon 
(McCray et  al., 1994) for obtaining syntactic 
category information about  domain-specific lexi-
cal items, which is helpful during parsing; how-
ever, since SPECIALIST  does not  include se-
mantic information, the lexical entries are not 
mapped into the TRIPS ontology.

Resource Entities References
BRENDA Tissue Ontology tissues, cell types, cell lines Gremse et al., 2011

Cell Ontology (CL) cell types Diehl et al., 2011

Chemical Entities  of Biological  Interest 
(ChEBI)

chemicals, molecule types, cell components Degtyarenko et al., 2008

Gene Ontology (GO) molecular functions, biological processes, path-
ways, cell components, macromolecular complexes

Ashburner et al., 2000

HUGO Gene Nomenclature (HGNC) genes Gray et al., 2015

Medical  Subject Headings (MeSH®), 
Supplementary Concept Records (SCR)

drugs and chemicals Lipscomb, 2000

neXtProt cell lines, protein families Gaudet et al., 2015

Pfam protein families Finn et al., 2014

Proteomics Standards Initiative for Mo-
lecular Interaction (PSI-MI)

molecular interactions, molecule type, macro-
molecular complexes, genes and proteins, biologi-
cal roles, units of measurement

Hermjakob et al., 2004

UniProtKB (Swiss-Prot) proteins Uniprot Consortium, 2014

Table 4. Sources of domain-specific terminology/concepts and the types of entities 
incorporated into the TRIPS ontology
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3.3. Specialized Constructions
The TRIPS component WordFinder can construct 
lexical entries for words not explicitly found in 
the core lexicon, using a mapping between 
WordNet and the TRIPS ontology.  This mecha-
nism provides broad coverage of words in gen-
eral use.  However, certain “everyday” words 
have specialized usage in biology.  For instance, 
“association” is not just  a vague relationship but 
a specific kind of binding between molecules. 
Some other words are used in idiosyncratic con-
structions.  For instance, “the protein localizes to 
the nucleus”, which means the protein exists in 
the nucleus, required a novel syntactic template 
(and semantic characterization). These words 
pose particular difficulties for our system as our 
automatically derived general constructions 
would be inadequate.  For such cases we often 
have to provide hand-tailored lexical entries with 
appropriate syntactic templates and semantic re-
strictions to distinguish the everyday and bio-
logical senses of the words.

3.4. Handling Nominalizations
Nominalization is prevalent  in the biomedical 
genre (see for instance the example sentence in 
Figure 5). The TRIPS parser has a general 
mechanism for handling verb nominalizations. 

This is enabled by the fact  that the ontological 
information is identical between the verbal and 
nominal forms of the same event (e.g., dominate 
and dominance). The only difference between 
verbal and nominal forms is the grammatical 
linking rules involved. For instance, for verbal 
forms the subject of a certain verb might  map to 
the AGENT role, and the direct  object  to the AF-
FECTED role. In nominalizations, the possessive 
would map to the role identified with the subject 
of the verbal form, and the object  of an of prepo-
sitional phrase would map to the role identified 
with the direct  object  of the verb. While there are 
a number of different constructions used with 
nominals, they appear to be generic across the 
entire set of nominalizations, and a set of a dozen 
or so generic rules is all that is needed. In addi-
tion, virtually all adjunct modifications (e.g., for 
three hours) apply equally well to both verbal 
and nominal forms using the same adverbial 
modification rules in the grammar. 

4. Event Extraction

From the logical forms produced by the extended 
TRIPS parser we need to extract  the events and 
event  relationships of interest. Because much of 
the variation expected in sentence constructions 
is handled by the extended TRIPS system, we are 

Figure 5. The logical form of “RAS activation regulates ASPP2 phosphorylation.”
 and the events and terms extracted by DRUM.

(EVENT ONT::V31830 ONT::REGULATE :AGENT ONT::V31826 :AFFECTED ONT::V31848 :TENSE W::PRES 
:START 0 :END 46)

(EVENT ONT::V31826 ONT::ACTIVATE :AFFECTED ONT::V31823 :START 0 :END 15)

(EVENT ONT::V31848 ONT::PHOSPHORYLATION :AFFECTED ONT::V31845 :DRUM ((:DRUM :ID GO::|0016310| 
:NAME "phosphorylation"...)) :START 25 :END 46)

 (TERM ONT::V31823 ONT::PROTEIN-FAMILY :NAME W::RAS :DRUM ((:DRUM :MEMBER-TYPE ONT::PROTEIN 
:MEMBERS (HRAS NRAS KRAS))) :START 0 :END 4)

(TERM ONT::V31845 ONT::PROTEIN :NAME W::ASPP-2 :DRUM ((:DRUM :ID UP::Q13625)) :START 25 :END 31
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able to use a relatively compact specification for 
defining the events and relationships of interest, 
while coping with fairly complex and nested 
formulations.

4.1. An Example
Consider the sentence: 

RAS activation regulates ASPP2 phos-
phorylation.

whose logical form is depicted in Figure 5. There 
are three events in this sentence: the central regu-
lation event and two nested events, activation 
and phosphorylation, that  serve as the arguments 
to the regulation event. The extractions of the 
three events are also shown in Figure 5, together 
with the two terms, RAS and ASPP2, involved in 
the events.  Note that  the word “activation” is 
mapped to the TRIPS ontology type ONT::start.  
It  is this ontology type that  triggers the extraction 
rule for an ACTIVATE event (see Figure 6).

In addition to the AGENT  and AFFECTED 
roles, the :DRUM slot provides DRUM-specific 
grounding information about  the events and enti-
ties, mostly derived from bio-resources (see Sec-
tion 3.2). For example, UP::Q13625 is the Uni-
Prot identifier for the protein ASPP2.

4.2. Extraction Rule Specification
We capitalized on the TRIPS ontology and parser 
to develop a compact  and easy-to-maintain speci-
fication of event extraction rules. Instead of hav-
ing to write one rule to match each keyword/
phrase that could signify an event, many of these 
words/phrases have already been systematically 
mapped to a few types in the TRIPS ontology, 
using a combination of the TRIPS internal lexi-
con and the WordFinder component  which al-
lows us to attain the coverage of WordNet. For 
instance, accumulate, gain, amplify, multiply, 
boost, double, among others, all map to the 
TRIPS ontology type ONT::increase.

In addition, the parser handles various surface 
structures, and the logical form returned contains 
normalized semantic roles. For example, 

RAS activates RAF
RAF is activated by RAS
The activation of RAF by RAS
Activated RAF
RAF activation

all are parsed into the same basic logical form 
with the semantic roles AFFECTED: RAF and, 
where applicable, AGENT: RAS. Thus, we 

needed very few (often only one) extraction rule 
specifications for each event type, covering a 
wide range of words and syntactic patterns. 

Finally, since most  events of interest  are 
events of action, the usage patterns of these event 
words are often essentially identical, modulo the 
ontology types that  signify the events and (less 
often) the semantic roles that correspond to the 
event  arguments. We generated these rules using 
a module with standardized rule components,  
parameterized by only the event-specific ontol-
ogy types and semantic role mappings. For ex-
ample, X activates / decreases / regulates / phos-
phorylates Y, though denoting different events, 
all exhibit  the same basic structure with the main 
semantic roles AGENT and AFFECTED. Com-
plements denoting for example molecular sites 
and cellular locations for the most  part retain the 
same structure across event types.

Figure 6 shows the stylized specification of 
two event types, ACTIVATE and DECREASE. 
The ACTIVATE line is read as follows:

name of rule: activate
priority of rule: 40
name of event to be extracted: ACTIVATE
semantic role 1: AGENT
semantic role 2: AFFECTED
ontology types: ONT::start; ONT::start-object 

where the rule priority determines which rule is 
selected when multiple rules apply, and the on-
tology types are those in TRIPS that  map to the 
target  event  type (here, ACTIVATE). The seman-
tic roles may have further constraints on the 
types that  can fill these roles.  For instance, only 
molecular and cellular participants (e.g., pro-
teins, chemicals, nucleus) are of interest in the 
context of biological events. 

Note the similarity between the information 
for ACTIVATE and DECREASE. The only dif-
ference between the two lines is the ontology 
types that represent the respective event types 
(ONT::start, ONT::start-object for the former and  
ONT::decrease for the latter). This compact rep-
resentation makes it  easy to specify, maintain and 
update the extraction rules.

These rules were developed from general 
principles rather than based on specific training 
samples on the Ras signaling pathways. They 
were subsequently augmented as we learned 
more about specific biological usages. Although 
we do base our rules on the biological literature, 
we emphasize that  neither the extraction rules 
described above nor any of the domain-specific 

Figure 6. Specification of the extraction rules for two event types

rule-activate (40): ACTIVATE(AGENT, AFFECTED) ← [ONT::start ONT::start-object] (AGENT, AFFECTED)
rule-decrease (20): DECREASE(AGENT, AFFECTED) ← [ONT::decrease] (AGENT, AFFECTED)
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enhancements to our system discussed in Section 
3 are specific to the language or mechanisms 
describing the Ras signaling pathways.  Thus, we 
expect  our system to have comparable perform-
ance on any input describing bio-molecular 
mechanisms.

5. System Evaluation

We participated in a preliminary evaluation of 
event  extraction, in the context of “reading with 
a model”. A biological model was given in Bio-
PAX (Demir et al., 2010), BEL (Selventa, 2011), 
and English. Given a set of text passages from 
scientific papers on the Ras signaling pathways, 
the goal was to extract from these passages 
events (and their arguments) that were relevant 
to the given model and make explicit the links 
between the extracted events and the model.

BioPAX and BEL do not have the linguisti-
cally motivated features and expressivity needed 
for our approach. To minimize hand coding and 
to create a uniform system, we created our initial 
model by reading and processing sentences sim-
plified from the given English model sentences, 
using the same process as for reading and ex-
tracting information from the test  passages. The 
model entities and events such processed were 
then compared to the entities and events ex-
tracted from the text passages. Figure 7 shows an 
overview of the automated end-to-end extraction 
and reasoning system.

Two types of events were distinguished here: 
mechanistic (e.g., X binds to Y) and regulatory/

causal relationship (e.g., X increases Y). These 
were further classified with respect  to the given 
model as: 1) new mechanism and 2) new rela-
tionship not  in the model; 3) specialization and 
4) corroboration of information in the model; and 
5) conflict  with the model. In addition, each re-
sult  was to be accompanied by the supporting 
source text.

The reasoner aligned the extracted entities us-
ing their standardized identifiers (e.g., UniProt, 
HUGO, Gene Ontology). In addition, we derived 
the relationships between the model and text  ex-
tractions based on the hierarchical organization 
of the event types. For instance, a regulation 
event  subsumes a stimulation event, and thus “X 
regulates Y” corroborates “X stimulates Y” and 
the latter is a specialization of the former. 

6. Results

Several passages, mainly from the results and 
discussion sections of two scientific papers, were 
selected as evaluation inputs. An example pas-
sage, from (Godin-Heymann et al., 2013), is 
shown in Figure 8.

The extractions and model comparisons were 
manually scored by a third party, based on the 
combined answers provided by two separate 
teams of biologists (30 events) and the addition 
of 5 events adopted from system submissions 
(see below). In “lenient” scoring for precision, 
incomplete results and results that were correct 
but irrelevant  were excluded, whereas in “strict” 
scoring these results were counted as incorrect. 

Eleven systems of varying degrees of automa-
tion participated in the evaluation. We have 
available only the lenient scores of other teams, 
as shown in Figure 9. For lenient scoring our 
system was the best performing system and our 
performance was close to human performance.

Note that  although the human biologists had 
high precision, there was considerable non-
overlap between the answers they provided. This 
accounted for the approximately 0.50 recall for 
either of the human teams, using the pooled an-
swers of the two teams as the gold standard. 

Figure 7.  Overview of the end-to-end extraction and reasoning system.

Figure 8. Example text passage for evaluation.

We and others have recently shown that ASPP2 can poten-
tiate RAS signaling  by binding  directly via the ASPP2 N-
terminus [2,6]. Moreover, the RAS-ASPP interaction en-
hances the transcription function of p53 in cancer  cells [2]. 
Until now, it has been unclear how RAS could  affect ASPP2 
to  enhance p53 function. We show here that ASPP2 is 
phosphorylated by the RAS/Raf/MAPK pathway and that 
this  phosphorylation leads to its increased translocation to 
the cytosol/nucleus and increased binding to p53, providing 
an  explanation of how RAS can activate p53 pro-apoptotic 
functions (Figure 5). Additionally, RAS/Raf/MAPK pathway 
activation stabilizes ASPP2 protein, although the underly-
ing mechanism remains to be investigated.
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Our precision, recall and F1 results for both 
the lenient and strict scorings are as follows:

P R F1
lenient
(strict)

1.00
(0.67)

0.40 0.57

7. Analysis

We believe precision is much more important 
than recall. A high precision system can generate 
valuable knowledge nuggets, even if it  does not 
have high throughput, whereas output  from a 
system with high recall but  low precision cannot 
be trusted to be accurate. This is especially the 
case for such information-rich domains. Because 
of the huge volume of scientific literature, infor-
mation is likely to be duplicated in multiple pa-
pers, and often also repeated in different forms in 
the same paper. Therefore, extracting (accu-
rately) even a relatively small portion of the in-
formation in these papers could amount  to a fair 
body of knowledge, even if we cannot extract 
everything from every sentence.

Our system showed promising performance on 
the evaluation data set. We achieved perfect  pre-
cision, and recall close to the human experts. The 
modest  recall even for the human experts indi-
cated that  this is a fairly difficult  domain and 
there is not a clear-cut  way to extract  and encode 
the knowledge represented in these papers.  In 
fact, after considering the submitted results, sev-
eral additional events extracted by the systems 
but not  by the human experts were incorporated 
into the gold standard.

We were able to extract  some fairly complex, 
nested, events, similar to the one depicted in 
Figure 5.  The ontology-based extraction and the 
lexical coverage extended by WordFinder al-
lowed us to cope with a variety of expressions.  
For instance, from “... ASPP2 can potentiate RAS 
signaling...” we were able to map “potentiate” to 

an INCREASE event even though “potentiate” is 
not in the TRIPS core lexicon.

Another interesting example is “... monoubiq-
uitination abrogates GAP-mediated GTP hy-
drolysis”.  This  fairly complex sentence illus-
trates some of the strengths and weaknesses of 
our system.  The system was able to extract two 
interleaving events:

ev1: REGULATE(AGENT: GAP; AFFECTED: ev2)
ev2: HYDROLYSIS(AFFECTED: GTP)

In the raw processing we also had the following:
ev3: INHIBIT(AGENT: MONOUBIQUITINATION; 

AFFECTED ev2)

but we failed to identify what was being monou-
biquitinated and thus were not able to include 
this extraction in our results.  The answer, that 
Ras was being monoubiquitinated, could only be 
identified with more sophisticated discourse 
processing. 

We identified several main reasons for omis-
sions in our extractions: 1) fragmented parses 
due to the long and complex sentence structures 
common in scientific publications; 2) insufficient 
domain-specific background knowledge, includ-
ing language patterns specific to biology; 3) need 
for improved discourse processing and corefer-
ence resolution; and 4) lack of inference capa-
bilities and persistent  memory of inferences 
made.  

The last point  can be illustrated by the sen-
tence “... the RAS-ASPP interaction enhances the 
transcription function of p53...”  Here we need to 
be able to deduce that RAS-ASPP interaction 
produces a complex of the two, which then par-
ticipates in further reactions.  

As a final example, to be able to make sense 
of the seemingly simple sentence “We obtained 
similar results using K-Ras...” we need to ad-
dress all of the above issues.  Due to space limi-
tation we will not  discuss here the ongoing work 
towards tackling these challenges.

Figure 9.  Evaluation results for eleven teams.  The diamond ◆ represents the results of our system.  
The two topmost points are the manual scores of the two teams of human biologists.
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8. Related Work and Discussion

With the advent of relatively successful text min-
ing strategies (named entity recognition, infor-
mation extraction and retrieval) for the recogni-
tion and normalization of biologically relevant 
entities, automatic extraction of more complex, 
relational information from the biomedical litera-
ture has become a very active area of research. 
Shared Tasks (STs) such as the Protein-Protein 
Interaction (PPI) Task introduced at BioCreative 
II (Krallinger et  al., 2008) and the BioNLP GE-
NIA Event Extraction Task (Kim et  al., 2009; 
Kim et al., 2011; Kim et  al., 2013) have spurred 
a lot of activity in this area, although examples of 
earlier work certainly exist. 

The goal in the PPI task is to extract binary 
protein-protein interaction pairs from full-text 
articles. More general biological events (e.g., 
regulatory events) beyond PPI involve much 
more varied relationships between entities and, 
indeed, between events themselves, leading to 
complex nested structures. The BioNLP STs 
have evolved to include more complex types of 
events and arguments. The GENIA ST (in par-
ticular 2013 which included coreference) and the 
Epigenetics and Post-translational Modifications 
task (EPI) introduced in 2011 (Ohta et al., 2011) 
are similar to our task. However, there are sig-
nificant  differences, too. We were not provided 
with gold annotations for entities; all relevant 
entities (including drugs, cell lines, cell compo-
nents, sites) had to be extracted, and most of 
them had to be grounded in a reference database. 
Protein families were also important, as was the 
relation between families and the member pro-
teins. Not only were coreferences supposed to be 
resolved, but, as indicated in Section 5, some-
times complex inferences were required to obtain 
a target event. In summary, our task was not de-
signed to accommodate specific Information Ex-
traction (IE) techniques; rather, in our evaluation 
the gold standard was human performance. 

We would like to stress that our goal goes be-
yond IE. The need for deeper semantic ap-
proaches has been recognized before (see, e.g., 
Ananiadou et al., 2010). Still, the field is domi-
nated by ML classifiers (for a list  of the top-
performing systems in the three BioNLP STs 
held so far, see Ananiadou et al., 2014). This 
sometimes results in seemingly paradoxical re-
sults, where systems can extract  with relatively 
good performance phosphorylation events, but 
not ubiquitination events because the training 
data did not contain enough examples of the lat-
ter (Kim et al., 2011).

Indeed, ontological information is rarely used 
in current systems. GenIE (Cimiano et al., 2005) 

is an early example of an ambitious ontology-
driven system that  attempts to identify events 
based on constructing a full semantic representa-
tion of the text (using a semantic lexicon and 
semantic restrictions), as well as relations be-
tween events (using discourse information). The 
ontology they used, however, was a small, 
domain-specific one. To our knowledge the sys-
tem has not  been tested on any of the more recent 
event extraction tasks.

Although semantic (deep) parsing techniques 
have been rarely used for bio-event extraction, 
we note the PPI extraction study by Miyao et  al. 
(2009), who found an HPSG-based parser to 
outperform (particularly in terms of precision) 
dependency and syntactic parsers, especially 
when trained on domain-specific corpora. How-
ever, they used the predicate-argument structures 
output by the parser as additional features for a 
statistical classifier. 

In contrast, we do not depend on training with 
a domain specific corpus (although we have the 
capability to incorporate modules that  do); rather, 
we extract  events directly from the predicate-
argument structures represented in the logical 
form, based on linguistic first  principles that can 
be easily adapted to different domains. The ad-
vantage of this approach can be readily seen in 
this evaluation, in which, with a relatively short 
(but  intensive) ramp up, we were able to outper-
form all other systems in the extraction of com-
plex events and event  relations. Of note, this was 
despite the fact that  our system had lower named 
entity recognition scores than most others, par-
ticularly those with a history of participation in 
biomedical information extraction shared tasks.

The purpose of this evaluation was not a rig-
orous ranking of the different  participating sys-
tems.  Rather, we learned key areas we needed to 
improve. The results of this evaluation suggested 
that our system is viable for complex event  ex-
traction. This is however only the first  step in 
understanding complex models and mechanisms. 
A general deep language understanding system 
that can be extended with domain-specific in-
formation will allow us to go beyond standard 
surface extraction tasks and develop the capabili-
ties to truly understand big and complex mecha-
nisms.
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