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Abstract

Semantically complex queries which in-
clude attributes of objects and relations
between objects still pose a major chal-
lenge to image retrieval systems. Re-
cent work in computer vision has shown
that a graph-based semantic representation
called a scene graph is an effective repre-
sentation for very detailed image descrip-
tions and for complex queries for retrieval.
In this paper, we show that scene graphs
can be effectively created automatically
from a natural language scene description.
We present a rule-based and a classifier-
based scene graph parser whose output can
be used for image retrieval. We show that
including relations and attributes in the
query graph outperforms a model that only
considers objects and that using the output
of our parsers is almost as effective as us-
ing human-constructed scene graphs (Re-
call@10 of 27.1% vs. 33.4%). Addition-
ally, we demonstrate the general useful-
ness of parsing to scene graphs by showing
that the output can also be used to generate
3D scenes.

1 Introduction

One of the big remaining challenges in image re-
trieval is to be able to search for very specific im-
ages. The continuously growing number of im-
ages that are available on the web gives users ac-
cess to almost any picture they can imagine, but in
order to find these images users have to be able to
express what they are looking for in a detailed and
efficient way. For example, if a user wants to find
an image of a boy wearing a t-shirt with a plane
on it, an image retrieval system has to understand
that the image should contain a boy who is wear-
ing a shirt and that on that shirt is a picture of a
plane.

Figure 1: Actual results using a popular image
search engine (top row) and ideal results (bottom
row) for the query a boy wearing a t-shirt with a
plane on it.

Keyword-based image retrieval systems are
clearly unable to deal with the rich semantics of
such a query (Liu et al., 2007). They might be
able to retrieve images that contain a boy, a t-shirt
and a plane but they are unable to interpret the re-
lationships and attributes of these objects which is
crucial for retrieving the correct images. As shown
in Figure 1, a possible but incorrect combination
of these objects is that a boy is wearing a t-shirt
and playing with a toy plane.

One proposed solution to these issues is the
mapping of image descriptions to multi-modal
embeddings of sentences and images and using
these embeddings to retrieve images (Plummer et
al., 2015; Karpathy et al., 2014; Kiros et al., 2015;
Mao et al., 2015; Chrupala et al., 2015). How-
ever, one problem of these models is that they are
trained on single-sentence captions which are typ-
ically unable to capture the rich content of visual
scenes in their entirety. Further, the coverage of
the description highly depends on the subjectiv-
ity of human perception (Rui et al., 1999). Cer-
tain details such as whether there is a plane on the
boy’s shirt or not might seem irrelevant to the per-
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son who writes the caption, but for another user
this difference might determine whether a result is
useful or not.

Johnson et al. (2015) try to solve these prob-
lems by annotating images with a graph-based se-
mantic representation called a scene graph which
explicitly captures the objects in an image, their
attributes and the relations between objects. They
plausibly argue that paragraph-long image de-
scriptions written in natural language are currently
too complex to be mapped automatically to im-
ages and instead they show that very detailed im-
age descriptions in the form of scene graphs can
be obtained via crowdsourcing. They also show
that they can perform semantic image retrieval on
unannotated images using partial scene graphs.

However, one big shortcoming of their model
is that it requires the user to enter a query in the
form of a scene graph instead of an image descrip-
tion in natural language which is unlikely to find
widespread adoption among potential users. To
address this problem, we propose a new task of
parsing image descriptions to scene graphs which
can then be used as a query for image retrieval.

While our main goal is to show the effective-
ness of parsing image descriptions for image re-
trieval, we believe that scene graphs can be a use-
ful intermediate representation for many applica-
tions that involve text and images. One great ad-
vantage of such an intermediate representation is
the resulting modularity which allows independent
development, improvement and reuse of NLP, vi-
sion and graphics subsystems. For example, we
can reuse a scene graph parser for systems that
generate 2D-scenes (Zitnick et al., 2013) or 3D-
scenes (Chang et al., 2014) which require input in
the form of similar graph-based representations to
which a scene graph can be easily converted.

In this paper, we introduce the task of parsing
image descriptions to scene graphs. We build and
evaluate a rule-based and a classifier-based scene
graph parser which map from dependency syn-
tax representations to scene graphs. We use these
parsers in a pipeline which first parses an image
description to a scene graph and then uses this
scene graph as input to a retrieval system. We
show that such a pipeline outperforms a system
which only considers objects in the description
and we show that the output of both of our parsers
is almost as effective as human-constructed scene
graphs in retrieving images. Lastly, we demon-

strate the more general applicability of our parsers
by generating 3D scenes from their output.

We make our parsers and models available
at http://nlp.stanford.edu/software/scenegraph-
parser.shtml.

2 Task Description

Our overall task is retrieving images from image
descriptions which we split into two sub-tasks:
Parsing the description to scene graphs and retriev-
ing images with scene graphs. In this paper, we
focus exclusively on the first task. For the latter,
we use a reimplementation of the system by John-
son et al. (2015) which we briefly describe in the
next section.

2.1 Image Retrieval System

The image retrieval system by Johnson et al.
(2015) is based on a conditional random field
(CRF) (Lafferty et al., 2001) model which – unlike
the typical CRFs in NLP – is not a chain model
but instead capturing image region proximity. This
model ranks images based on how likely it is that a
given scene graph is grounded to them. The model
first identifies potential object regions in the image
and then computes the most likely assignment of
objects to regions considering the classes of the
objects, their attributes and their relations. The
likelihood of a scene graph being grounded to an
image is then approximated as the likelihood of
the most likely assignment of objects to regions.

2.2 Parsing to Scene Graphs

The task of parsing image descriptions to scene
graphs is defined as following. Given a set of ob-
ject classes C, a set of relation types R, a set of at-
tribute types A, and a sentence S we want to parse
S to a scene graph G = (O,E). O = {o1, ..., on}
is a set of objects mentioned in S and each oi is a
pair (ci, Ai) where ci ∈ C is the class of oi and
Ai ⊆ A are the attributes of oi. E ⊆ O × R × O
is the set of relations between two objects in the
graph. For example, given the sentence S =
“A man is looking at his black watch” we want
to extract the two objects o1 = (man, ∅) and
o2 = (watch, {black}), and the relations e1 =
(o1, look at, o2) and e2 = (o1, have, o2). The sets
C, R and A consist of all the classes and types
which are present in the training data.

71



2.3 Data

We reuse a dataset which we collected for a differ-
ent task using Amazon Mechanical Turk (AMT)
in a similar manner as Johnson et al. (2015)
and Plummer et al. (2015). We originally anno-
tated 4,999 images from the intersection of the
YFCC100m (Thomee et al., 2015) and Microsoft
COCO (Lin et al., 2014b) datasets. However, un-
like previous work, we split the process into two
separate passes with the goal of increasing the
number of objects and relations per image.

In the first pass, AMT workers were shown an
image and asked to write a one sentence descrip-
tion of the entire image or any part of it. To get
diverse descriptions, workers were shown the pre-
vious descriptions written by other workers for the
same image and were asked to describe something
about the image which had not been described by
anyone else. We ensured diversity in sentence de-
scriptions by a real-time BLEU score (Papineni et
al., 2002) threshold between a new sentence and
all the previous ones.

In the second pass, workers were presented
again with an image and with one of its sentences.
They were asked to draw bounding boxes around
all the objects in the image which were mentioned
in the sentence and to describe their attributes and
the relations between them. This step was repeated
for each sentence of an image and finally the par-
tial scene graphs are combined to one large scene
graph for each image. While the main purpose of
the two-pass data collection was to increase the
number of objects and relations per image, it also
provides as a byproduct a mapping between sen-
tences and partial scene graphs which gives us a
corpus of sentence-scene graph pairs that we can
use to train a parser.

2.3.1 Preprocessing

The AMT workers were allowed to use any la-
bel for objects, relations and attributes and con-
sequently there is a lot of variation in the data. We
perform several preprocessing steps to canonical-
ize the data. First, we remove leading and trailing
articles from all labels. Then we replace all the
words in the labels with their lemmata and finally
we split all attributes with a conjunction such as
red and green into two individual attributes.

We also follow Johnson et al. (2015) and discard
all objects, relations and attributes whose class or
type appears less than 30 times in the entire dataset

Raw Processed Filtered

Images 4,999 4,999 4,524
Sentences 88,188 88,188 50,448
Sentences per image 17.6 17.6 11.2

Object classes 18,515 15,734 798
Attribute types 7,348 6,442 277
Relation types 9,274 7,507 131

Objects per image 21.2 21.2 14.6
Attributes per image 16.2 16.4 10.7
Relations per image 18.6 18.6 10.3

Attributes per sent. 0.92 0.93 0.93
Relations per sent. 1.06 1.06 0.96

Table 1: Aggregate statistics of the raw, canoni-
calized (processed) and filtered datasets.

for the following two reasons. First and foremost,
computer vision systems require multiple training
examples for each class and type to be able to learn
useful generalizations, and second, rare classes
and types are often a result of AMT workers mak-
ing mistakes or not understanding the task prop-
erly. As we make the assumption that the scene
graph of one sentence is complete, i.e., that it cap-
tures all the information of the sentence, we have
to apply a more aggressive filtering which discards
the entire scene graph of a sentence in case one of
its objects, attributes or relations is discarded due
to the threshold. In case we discard all sentences
of an image, we discard the entire image from our
data. Despite the aggressive filtering, the average
number of objects, relations and attributes per im-
age only drops by 30-45% and we only discard
around 9% of the images (see Table 1).

3 Scene Graph Parsers

We implement two parsers: a rule-based parser
and a classifier-based parser. Both of our parsers
operate on a linguistic representation which we re-
fer to as a semantic graph. We obtain semantic
graphs by parsing the image descriptions to de-
pendency trees followed by several tree transfor-
mations. In this section, we first describe these
tree transformations and then explain how our two
parsers translate the semantic graph to a scene
graph.

3.1 Semantic Graphs

A Universal Dependencies (de Marneffe et al.,
2014) parse is in many ways close to a shallow se-
mantic representation and therefore a good start-
ing point for parsing image descriptions to scene
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ROOT Both of the men are riding their horses
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det:qmod
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Figure 2: Dependency tree and final semantic graph of a sentence. men is promoted to be the subject;
men, riding, and horses are duplicated; and their is deleted following coreference resolution.

graphs. Basic dependency trees, however, tend
to follow the linguistic structure of sentences too
closely which requires some post-processing of
the parses to make them more useful for a se-
mantic task. We start with the enhanced depen-
dency representation output by the Stanford Parser
v3.5.2 (Klein and Manning, 2003)1 and then per-
form three additional processing steps to deal with
complex quantificational modifiers, to resolve pro-
nouns and to handle plural nouns.

3.1.1 Quantificational modifiers
Several common expressions with light nouns
such as a lot of or a dozen of semantically act like
quantificational determiners (Simone and Masini,
2014). From a syntactic point of view, however,
these expressions are the head of the following
noun phrase. While one of the principles of the
Universal Dependencies representation is the pri-
macy of content words (de Marneffe et al., 2014),
light nouns are treated like any other noun. To
make our dependency trees better suited for se-
mantic tasks, we change the structure of all light
noun expressions from a manually compiled list.
We make the first word the head of all the other
words in the expression and then make this new
multi-word expression a dependent of the follow-
ing noun phrase. This step guarantees that the se-
mantic graph for both cars and for both of the cars
have similar structures in which the semantically
salient word cars is the head.

3.1.2 Pronoun resolution
Some image descriptions such as “a bed with a
pillow on it” contain personal pronouns. To re-

1We augment the parser’s training data with the Brown
corpus (Marcus et al., 1993) to improve its performance on
image descriptions which are often very different from sen-
tences found in newswire corpora.

cover all the relations between objects in this sen-
tence it is crucial to know that it refers to the ob-
ject a bed and therefore we try to resolve all pro-
nouns. We found in practice that document-level
coreference systems (e.g. Lee et al. (2013)) were
too conservative in resolving pronouns and hence
we implement an intrasential pronoun resolver in-
spired by the first three rules of the Hobbs algo-
rithm (Hobbs, 1978) which we modified to oper-
ate on dependency trees instead of constituency
trees. We evaluate this method using 200 ran-
domly selected image descriptions containing pro-
nouns. Our pronoun resolver has an accuracy of
88.5% which is significantly higher than the accu-
racy of 52.8% achieved by the coreference system
of Lee et al. (2013).

3.1.3 Plural nouns
Plural nouns are known to be a major challenge
in semantics in general (Nouwen, 2015), and also
in our task. One particular theoretical issue is
the collective-distributive ambiguity of sentences
with multiple plural nouns. For example, to obtain
the intended distributive reading of “three men
are wearing jeans” we have to extract three man
objects and three jeans objects and we have to
connect each man object to a different jeans ob-
ject. On the other hand, to get the correct parse
of “three men are carrying a piano” we probably
want to consider the collective reading and extract
only one piano object. A perfect model thus re-
quires a lot of world knowledge. In practice, how-
ever, the distributive reading seems to be far more
common so we only consider this case.

To make the dependency graph more similar
to scene graphs, we copy individual nodes of the
graph according to the value of their numeric mod-
ifier. We limit the number of copies per node to 20
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as our data only contains scene graphs with less
than 20 objects of the same class. In case a plural
noun lacks such a modifier we make exactly one
copy of the node.

Figure 2 shows the original dependency tree and
the final semantic graph for the sentence “Both of
the men are riding their horses”.

3.2 Rule-Based Parser

Our rule-based parser extracts objects, relations
and attributes directly from the semantic graph.
We define in total nine dependency patterns using
Semgrex2 expressions. These patterns capture the
following constructions and phenomena:

• Adjectival modifiers

• Subject-predicate-object constructions and
subject-predicate constructions without an
object

• Copular constructions

• Prepositional phrases

• Possessive constructions

• Passive constructions

• Clausal modifiers of nouns

With the exception of possessives for which
we manually add a have relation, all objects,
relations and attributes are words from the se-
mantic graph. For example, for the semantic
graph in Figure 2, the subject-predicate-object

pattern matches man
nsubj←−−− riding

dobj−−→ horse

and man′ nsubj←−−− riding′ dobj−−→ horse′. From
these matches we extract two man and two
horse objects and add ride relations to the
two man-horse pairs. Further, the poss-

esive pattern matches man
nmod:poss←−−−−−− horse and

man′ nmod:poss←−−−−−− horse′ and we add have rela-
tions to the two man-horse pairs.

3.3 Classifier-Based Parser

Our classifier-based parser consists of two com-
ponents. First, we extract all candidate objects
and attributes, and second we predict relations be-
tween objects and the attributes of all objects.

2http://nlp.stanford.edu/software/tregex.shtml

3.3.1 Object and Attribute Extraction
We use the semantic graph to extract all object
and attribute candidates. In a first step we extract
all nouns, all adjectives and all intransitive verbs
from the semantic graph. As this does not guaran-
tee that the extracted objects and attributes belong
to known object classes or attribute types and as
our image retrieval model can only make use of
known classes and types, we predict for each noun
the most likely object class and for each adjec-
tive and intransitive verb the most likely attribute
type. To predict classes and types, we use an
L2-regularized maximum entropy classifier which
uses the original word, the lemma and the 100-
dimensional GloVe word vector (Pennington et al.,
2014) as features.

3.3.2 Relation Prediction
The last step of the parsing pipeline is to determine
the attributes of each object and the relations be-
tween objects. We consider both of these tasks as a
pairwise classification task. For each pair (x1, x2)
where x1 is an object and x2 is an object or an
attribute we predict the relation y which can be
any relation seen in the training data, or one of
the two special relations IS and NONE which in-
dicate that x2 is an attribute of x1 or no relation
exists, respectively. We noticed that for most pairs
for which a relation exists, x1 and x2 are in the
same constituent, i.e. their lowest common ances-
tor is either one of the two objects or a word in
between them. We therefore consider only pairs
which satisfy this constraint to improve precision
and to limit the number of predictions.

For the predictions, we use again an L2-
regularized maximum entropy classifier with the
following features:

Object features The original word and lemma,
and the predicted class or type of x1 and x2.

Lexicalized features The word and lemma of
each token between x1 and x2. If x1 or x2 ap-
pear more than once in the sentence because they
replace a pronoun, we only consider the words in
between the closest mentions of x1 and x2.

Syntactic features The concatenated labels
(i.e., syntactic relation names) of the edges in the
shortest path from x1 to x2 in the semantic graph.

We only include objects in the scene graph
which have at least one attribute or which are in-
volved in at least one relation. The idea behind
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that is to prevent very abstract nouns such as set-
ting or right to be part of the scene graph which
are typically not part of relations. However, we
observed for around 30% of the sentences in the
development set that the parser did not extract any
relations or attributes from a sentence which re-
sulted in an empty scene graph. In these cases, we
include all candidate objects in the scene graph.

3.3.3 Training
As the scene graph’s objects and attributes are not
aligned to the sentence, we have to align them in
an unsupervised manner. For each sentence, we
extract object and attribute candidates from the
semantic graph. For each object-relation-object
triple or object-attribute pair in the scene graph
we try to align all objects and attributes to a can-
didate by first checking for exact string match of
the word or the lemma, then by looking for can-
didates within an edit distance of two, and finally
by mapping the object or attribute and all the can-
didates to 100-dimensional GloVe word vectors
and picking the candidate with the smallest eu-
clidean distance. To limit the number of false
alignments caused by annotators including objects
in the scene graph that are not present in the corre-
sponding sentence, we also compute the euclidean
distances to all the other words in the sentence and
if the closest match is not in the candidate set we
discard the training example.

We use this data to train both of our classifiers.
For the object and attribute classifier, we only con-
sider the alignments between words in the descrip-
tion and objects or attributes in the graph.

For the relation predictor, we consider the com-
plete object-relation-object and object-is-attribute
triples. All the aligned triples constitute our pos-
itive training examples for a sentence. For all the
object-object and object-attribute pairs without a
relation in a sentence, we generate negative exam-
ples by assigning them a special NONE relation.
We sample from the set of NONE triples to have
the same number of positive and negative training
examples.

4 Experiments

For our experiments, we split the data into train-
ing, development and held-out test sets of size
3,614, 454, and 456 images, respectively. Table 2
shows the aggregated statistics of our training and
test sets. We compare our two parsers against the
following two baselines.

Train Dev Test

Images 3,614 454 456
Sentences 40,315 4,953 5,180
Relation instances 38,617 4,826 4,963
Attribute instances 37,580 4,644 4,588

Table 2: Aggregate statistics of the training, de-
velopment (dev) and test sets.

Nearest neighbor Our first baseline computes a
term-frequency vector for an input sentence and
returns the scene graph of the nearest neighbor in
the training data.

Object only Our second baseline is a parser that
only outputs objects but no attributes or relation-
ships. It uses the first two components of the
classifier-based parser, namely the semantic graph
processor and the object extractor, and then simply
outputs all candidate objects.

We use the downstream performance on the
image retrieval task as our main evaluation met-
ric. We train our reimplementation of the model
by Johnson et al. (2015) on our training set with
human-constructed scene graphs. For each sen-
tence we use the parser’s output as a query and
rank all images in the test set. For evaluation,
we consider the human-constructed scene graph
Gh of the sentence and construct a set of images
I = i1, ..., in such that Gh is a subgraph of the im-
age’s complete scene graph. We compute the rank
of each image in I and compute recall at 5 and 10
based on these ranks3. We also compute the me-
dian rank of the first correct result. We compare
these numbers against an oracle system which uses
the human-constructed scene graphs as queries in-
stead of the scene graphs generated by the parser.

One drawback of evaluating on a downstream
task is that evaluation is typically slower compared
to using an intrinsic metric. We therefore also
compare the parsed scene graphs to the human-
constructed scene graphs. As scene graphs consist
of object instances, attributes, and relations and
are therefore similar to Abstract Meaning Repre-
sentation (AMR) (Banarescu et al., 2013) graphs,
we use Smatch F1 (Cai and Knight, 2013) as an
additional intrinsic metric.

3As in Johnson et al. (2015), we observed that the results
for recall at 1 were very unstable so we only report recall at 5
and 10 which are typically also more relevant for real-world
systems that return multiple results.
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Development set Test set

Smatch R@5 R@10 Med. rank Smatch R@5 R@10 Med. rank

Nearest neighbor 32% 1.2% 2.3% 206 32% 1.1% 2.3% 205
Object only 48% 15.0% 29.3% 20 48% 12.6% 24.8% 25
Rule 43% 16.4% 31.6% 17 44% 13.5% 27.1% 20
Classifier 47% 16.7% 32.9% 16 47% 13.8% 27.1% 20

Oracle - 19.4% 39.8% 13 - 16.6% 33.4% 15

Table 3: Intrinsic (Smatch F1) and extrinsic (recall at 5 and 10, and median rank) performance of our
two baselines, our rule-based and our classifier-based parser.

R@5 R@10 Med. rank

Johnson et al. (2015) 30.3% 47.9% 11
Our implementation 27.6% 45.6% 12

Table 4: Comparison of the results of the original
implementation by Johnson et al. (2015) and our
implementation. Both systems were trained and
tested on the data sets of the original authors.

5 Results and Discussion

Table 3 shows the performance of our baselines
and our two final parsers on the development and
held-out test set.

Oracle results Compared to the results of John-
son et al. (2015), the results of our oracle systems
are significantly worse. To verify the correctness
of our implementation, the original authors pro-
vided us with their training and test set. Table 4
shows that our reimplementation performs almost
as well as their original implementation. We hy-
pothesize that there are two main reasons for the
drop in performance when we train and evaluate
our system on our dataset. First, our dataset is a
lot more diverse and contains many more object
classes and relation and attribute types. Second,
the original authors only use the most common
queries for which there exist at least five results to
retrieve images while we evaluate on all queries.

Effectiveness of Smatch F1 As mentioned in
the previous section, having an intrinsic evalua-
tion metric can reduce the length of development
cycles compared to using only an extrinsic evalua-
tion. We hoped that Smatch F1 would be an appro-
priate metric for our task but our results indicate
that there is no strong correlation between Smatch
F1 and the performance of the downstream task.

Comparison of rule-based and classifier-based
system In terms of image retrieval performance,

there does not seem to be a significant dif-
ference between our rule-based system and our
classifier-based system. On the development set
the classifier-based system slightly outperforms
the rule-based system but on the test set both seem
to work equally well. Nevertheless, their results
differ in some cases. One strength of the classifier-
based system is that it learns that some adjectival
modifiers like several should not be attributes. It
is also able to learn some basic implications such
as the shirt looks dirty implies in the context of an
image that the shirt is dirty. On the other hand, the
rule-based system tends to be more stable in terms
of extracting relations while the classifier-based
system more often only extracts objects from a
sentence.

Comparison to baselines As shown in Table 3,
both of our parsers outperform all our baselines
in terms of recall at 5 and 10, and the median
rank. This difference is particularly significant
compared to the nearest neighbor baseline which
confirms the complexity of our dataset and shows
that it is not sufficient to simply memorize the
training data.

The object only baseline is a lot stronger but still
performs consistently worse than our two parsers.
To understand in what ways our parsers are supe-
rior to the object only baseline, we performed a
qualitative analysis. A comparison of the results
reveals that the image retrieval model is able to
make use of the extracted relations and attributes.
Figure 3 shows the top 5 results of our classifier-
based parser and the object only baseline for the
query “The white plane has one blue stripe and
one red stripe”. While the object only model
seems to be mainly concerned with finding good
matches for the two stripe objects, the output of
our parser successfully captures the relation be-
tween the plane and the stripes and correctly ranks
the two planes with the blue and red stripes as the
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Figure 3: Top 5 results of the object only baseline (top row) and our classifier-based parser (bottom row)
for the query “The white plane has one blue stripe and one red stripe”. The object only system seems
to be mainly concerned with finding images that contain two stripe objects at the expense of finding an
actual plane. Our classifier-based parser also outputs the relation between the stripes and the plane and
the colors of the stripes which helps the image retrieval system to return the correct results.

Figure 4: 3D scenes for the sentences “There is a
wooden desk with a red and green lamp on it” and
“There is a desk with a notepad on it”.

top results.

Error analysis The performance of both of
our parsers comes close to the performance of
the oracle system but nevertheless there still
remains a consistent gap. One of the rea-
sons for the lower performance is that some
human-constructed scene graphs contain informa-
tion which is not present in the description. The
human annotators saw both the description and the
image and could therefore generate scene graphs
with additional information.

Apart from that, we find that many errors oc-
cur with sentences which require some external
knowledge. For example, our parser is not able to
infer that “a woman in black” means that a woman
is wearing black clothes. Likewise it is not able
to infer that “a jockey is wearing a green shirt
and matching helmet” implies that he is wearing
a green helmet.

Other errors occur in some sentences which talk

about textures. For example, our parsers assume
that “a dress with polka dots” implies that there is
a relation between one dress object and multiple
polka dot objects instead of inferring that there is
one dress object with the attribute polka-dotted.

One further source of errors are wrong depen-
dency parses. Both of our parsers heavily rely on
correct dependency parses and while making the
parser’s training data more diverse did improve re-
sults, we still observe some cases where sentences
are parsed incorrectly leading to incorrect scene
graphs.

6 Other Tasks

As mentioned before, one appeal of parsing sen-
tences to an intermediate representation is that we
can also use our parser for other tasks that make
use of similar representations. One of these tasks
is generating 3D scenes from textual descriptions
(Chang et al., 2014). Without performing any fur-
ther modifications, we replaced their parser with
our classifier-based parser and used the resulting
system to generate 3D scenes from several indoor
scene descriptions. Two of these generated scenes
are shown in Figure 4. Our impression is that the
system performs roughly equally well using this
parser compared to the one used in the original
work.
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7 Related Work

Image retrieval Image retrieval is one of the
most active areas in computer vision research.
Very early work mainly focused on retrieving im-
ages based on textual descriptions, while later
work focused more on content-based image re-
trieval systems which perform retrieval directly
based on image features. Rui et al. (1999), Liu
et al. (2007), and Siddiquie et al. (2011) provide
overviews of the developments of this field over
the last twenty years. Most of this work focused
on retrieving images from keywords which are not
able to capture many semantic phenomena as well
as natural language or our scene graph representa-
tion can.

Multi-modal embeddings Recently, multi-
modal embeddings of natural language and
images got a lot of attention (Socher et al., 2014;
Karpathy et al., 2014; Plummer et al., 2015; Kiros
et al., 2015; Mao et al., 2015; Chrupala et al.,
2015). These embeddings can be used to retrieve
images from captions and generating captions
from images. As mentioned in the introduction,
these models are trained on single-sentence image
descriptions which typically cannot capture all
the details of a visual scene. Further, unlike
our modular system, they cannot be used for
other tasks that require an interpretable semantic
representation.

Parsing to graph-based representations Rep-
resenting semantic information with graphs has re-
cently experienced a resurgence caused by the de-
velopment of the Abstract Meaning Representa-
tion (AMR) (Banarescu et al., 2013) which was
followed by several works on parsing natural lan-
guage sentences to AMR (Flanigan et al., 2014;
Wang et al., 2015; Werling et al., 2015). Con-
sidering that AMR graphs are, like dependency
trees, very similar to scene graphs, we could have
also used this representation and transformed it
to scene graphs. However, the performance of
AMR parsers is still not competitive with the per-
formance of dependency parsers which makes de-
pendency trees are more stable starting point.

There also exists some prior work on parsing
scene descriptions to semantic representations. As
mentioned above, Chang et al. (2014) present a
rule-based system to parse natural language de-
scriptions to scene templates, a similar graph-
based semantic representation. Elliott et al. (2014)

parse image descriptions to a dependency gram-
mar representation which they also use for im-
age retrieval. Lin et al. (2014a) also use rules to
transform dependency trees into semantic graphs
which they use for video search. All of this work,
however, only consider a limited set of relations
while our approach can learn an arbitrary number
of relations. Further, they all exclusively use very
specific rule-based systems whereas we also in-
troduced a more general purposed classifier-based
parser.

8 Conclusion

We presented two parsers which can translate im-
age descriptions to scene graphs. We showed that
their output is almost as effective for retrieving im-
ages as human-generated scene graphs and that in-
cluding relations and attributes in queries outper-
forms a model which only considers objects. We
also demonstrated that our parser is well suited for
other tasks which require a semantic representa-
tion of a visual scene.
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