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Preface

The Workshop on Vision and Language 2015 (VL’15) took place in the beautiful city of Lisbon,
Portugal on September 18th 2015, as part of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2015). The workshop was organized by the new European
Network on Integrating Vision and Language, an initiative funded as a European COST Action
under the Horizon 2020 programme supported by the European Commission.

The 2015 edition of the VL workshop is a successful continuation of the previous VL edi-
tions, where the VL workshops have the following general aims:

1. to provide a venue for reporting and discussing planned, ongoing and completed research
that involves both language and vision; and

2. to enable NLP and computer vision researchers to meet, exchange ideas, expertise and
technology, and form new research partnerships.

The flagship workshop’s main purpose is to establish a strong inter-disciplinary forum which
will ignite fertilizing discussions and ideas on how to combine and integrate established and
novel techniques from different (but related) fields into new unified modeling approaches, as
well as how to approach the problem of multi-modal data processing for NLP and vision from a
completely new angle.

The call for papers for VL’15 soliciting both full research papers and short abstracts was
issued in May 2015 and elicited a good number of high-quality submissions (23 in total), each
of which was peer-reviewed by three members of the program committee. The interest in the
workshop from leading NLP and computer vision researchers and the quality of submissions was
high, so we aimed to be as inclusive as possible within the practical constraints of the workshop.
In the end we accepted 13 full research papers, and 5 short abstracts.

The resulting workshop program packed a lot of exciting and diverse content into one day.
We were delighted to be able to include in the program two great keynote speakers: Krystian
Mikolajczyk and Marco Baroni. Our technical program combined 7 oral papers, and 11 poster
presentations accompanied by short 5-minute poster spotlights.

The program also included a discussion session on future directions for the VL community
and workshops, including plans for shared task competitions, summer schools, and expansions
towards other related fields and research communities (e.g., information retrieval, data mining,
digital humanities, Web search, cognitive science).

We would like to thank all the people who contributed to the organization and delivery of
this workshop: the authors who submitted such high-quality papers; the program committee
for their prompt and effective reviewing; our keynote speakers; the EMNLP 2015 organising
committee, especially the workshops chairs, Zornitsa Kozareva and Jörg Tiedemann, and the
publication chairs, Yuval Marton and Daniele Pighin; the participants in the workshop; and
future readers of these proceedings for your shared interest in this exciting new area of research.

September 2015 VL’15 Organizers
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Visually-Verifiable Textual Entailment:
A Challenge Task for Combining Language and Vision

Jayant Krishnamurthy
Allen Institute for Artificial Intelligence

2157 N. Northlake Way, Suite 110
Seattle, WA 98103

jayantk@allenai.org

Abstract

We propose visually-verifiable textual en-
tailment as a challenge task for the emerg-
ing field of combining language and vi-
sion. This task is a variant of the well-
studied NLP task of recognizing textual
entailment (Dagan et al., 2006) where
every entailment judgment can be made
purely by reasoning with visual knowl-
edge. We believe that this task will spur
innovation in the language and vision field
while simultaneously producing inference
algorithms that can be used in NLP.

1 Introduction

It has long been acknowledged by the NLP com-
munity that extensive world knowledge and in-
ference capabilities are necessary to perform ba-
sic language understanding tasks, such as read-
ing a children’s story (Minsky, 1975). Shallow
knowledge representation techniques relying on
only textual information have proven difficult to
apply to complex inference problems because (1)
much world knowledge is too obvious to be ex-
pressed in text, and (2) it is difficult to capture the
complex structure of the real world within logical
knowledge representations. Meanwhile, recent ad-
vances in computer vision have made it possible to
train accurate object detectors (Russakovsky et al.,
2014), suggesting that visual knowledge from im-
ages may be used to solve these natural language
inference problems. However, many open prob-
lems must be addressed to successfully perform
this combination, suggesting the need for a com-
prehensive challenge task to measure progress.

We propose that visually-verifiable textual en-
tailment is a promising challenge task for combin-
ing language and vision. The task is to predict,
given two texts, known as the text (T ) and the hy-
pothesis (H), whether the text entails the hypoth-
esis (T � H). T is said to entail H if, typically, a

human reading T would infer that H is most likely
true (Dagan et al., 2006). For example:

Text: A man is flying a kite.
Hypothesis: It is not raining

This example is an entailing pair because people
typically do not fly kites in the rain. In visually-
verifiable textual entailment, every entailment de-
cision can be made purely on the basis of visual
knowledge, i.e., knowledge that can be extracted
from a large corpus of natural images. This cri-
terion is satisfied by the above example – an im-
age search for “man flying kite” returns no images
where it is raining.

We believe that the task of visually-verifiable
textual entailment is an exciting task for both the
NLP and vision communities. From the NLP
perspective, this task encourages the development
of deep knowledge representation and inference
techniques. These techniques may be able to solve
more sophisticated inference problems than the
shallow techniques – such as learning lexical sub-
stitution rules – currently in use (Giampiccolo et
al., 2007). Recent work has also demonstrated
the promise of using visual knowledge for entail-
ment (Young et al., 2014). Furthermore, many
NLP problems, such as coreference resolution and
prepositional phrase attachment, can be posed as
textual entailment problems; thus, this task pro-
vides a natural pathway for incorporating any de-
veloped techniques into downstream applications.

From the computer vision perspective, success-
fully performing this task requires developing ac-
curate detection models of not just individual
objects, but rather entire situations possibly un-
seen during training. The natural algorithm for
visually-verifiable textual entailment is, given text
T and hypothesis H , to first identify two sets of
images, IT and IH , where the text and the hy-
pothesis are true, respectively. Then, predict “en-
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eating pizza eating spaghetti eating an apple
holding pizza/a slice 3 enjoying spaghetti/meal 4 holding a fruit/apple 3
enjoying pizza 2 slurping spaghetti 2 thinking about things/apple 2
chewing pizza/food 2 holding a spoon/fork 2 posing with apple 2
consuming pizza 1 posing with spaghetti 1 biting apple 2

Table 1: Situation descriptions generated by Mechanical Turkers for three “eating” situations in prelimi-
nary data collection experiments. The descriptions are sorted by verb occurrence frequency.

tails” if IH ⊆ IT and “not entails” otherwise.1

Implementing this algorithm requires the ability
to detect a wide variety of not just individual ob-
jects, but also attributes, relationships and events
in images. Furthermore, it must be possible to
compose these individual detectors in novel ways
to form detectors for complete sentences. The
variety problem has been partially addressed by
webly-supervised algorithms for objects (Divvala
et al., 2014; Chen et al., 2013) and subject-verb-
object phrases (Sadeghi et al., 2015). The compo-
sition problem has also been examined, albeit with
a very limited set of detectors (Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013). Progress
on the proposed task requires improving on and
combining these techniques.

2 Data Set

We propose to construct a data set for visually-
verifiable textual entailment. As a starting point,
we propose to focus on entailments between sim-
ple situations, given by a verb and optionally a
subject and/or a direct object. This choice is mo-
tivated the fact that these situations are linguisti-
cally simple, yet can have complex entailments.
For example, “eating an apple” � “holding an
apple.” However, “eating spaghetti” 2 “holding
spaghetti;” rather “eating spaghetti” � “holding a
fork.” In the future, this data set can be expanded
by including more complex language, e.g., prepo-
sitional modifiers.

To collect this data, we propose to use web im-
age search and Mechanical Turk. First, we will
manually identify a set of visual verbs and col-
lect common arguments for them using a large cor-
pus of syntactically parsed sentences. Combining
these verb/argument pairs will produce a collec-
tion of situations. Second, we will feed these sit-
uations to an image search engine to retrieve mul-
tiple images depicting each situation. Third, we
will construct a Mechanical Turk task for each im-
age/situation pair, asking the worker to generate

1This algorithm is unlikely to work in practice because it
does not account for noise in the detections.

additional descriptions of the image. The design
of this task will be tuned to generate more spe-
cific or general variants of the prompt situation
(as in the example above). Because the genera-
tion occurs in the context of a particular image,
not all of the generated situations will be entailed
by the prompt situation. A final Mechanical Turk
task will determine which situation pairs are en-
tailments, thereby generating a data set with both
positive and “near-miss” negative examples.2

We performed some preliminary experiments
with this Mechanical Turk pipeline generating 18
situation descriptions for each of three “eating”
phrases. The most frequent generations (sorted by
verb) for each phrase are shown in Table 1. The
resulting generations – though somewhat noisy –
contain interesting structure: for example, both
apples and pizza are held while being eaten. Ap-
ples are described with “biting,” while spaghetti is
described with “slurping.”

3 Conclusion

We propose the task of visually-verifiable textual
entailment as a challenge task for the field of com-
bining language and vision. The object of this task
is, given a text and a hypothesis, to predict whether
the text entails the hypothesis. Crucially, the task
design guarantees that each entailment decision
can be made purely on the basis of visual knowl-
edge. As a starting point, we propose to construct
a data set of entailments between situations, i.e.,
verb/argument pairs, which appear to be the sim-
plest case where nontrivial inference is required.
Solving this entailment problem can require com-
plex reasoning about real world situations, such as
“eating pizza” � “holding pizza,” whereas “eat-
ing spaghetti” 2 “holding a fork.” We propose a
data set collection methodology and present some
preliminary data that demonstrates the potential of
this task.

2If a binary yes/no entailment decision proves too am-
biguous, we may also consider a ranking variant of the entail-
ment task. In this variant, given a text and two hypotheses,
the object is to predict which of the two hypotheses is more
likely to be true.
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Computational Integration of Human Vision and
Natural Language through Bitext Alignment

Preethi Vaidyanathan, Emily Prud’hommeaux, Cecilia O. Alm, and Jeff B. Pelz
Rochester Institute of Technology

(pxv1621|emilypx|coagla|jbppph)@rit.edu

Abstract

Multimodal integration of visual and lin-
guistic data is a longstanding but cru-
cial challenge for modeling human un-
derstanding. We propose a framework
that uses an unsupervised bitext alignment
method to integrate visual and linguistic
data. We present an empirical study of the
various parameters of the framework. Our
results exceed baselines using both ex-
act and delayed temporal correspondence.
The resulting alignments can be used for
image classification and retrieval.

1 Introduction
Modeling and characterizing human expertise is a
major bottleneck in advancing image-based appli-
cation systems. We propose a framework for inte-
grating experts’ eye movements and verbal narra-
tions as they examine and describe images in or-
der to understand images semantically. Eye move-
ments can act as pointers to important image re-
gions, while the co-captured descriptions provide
conceptual labels associated with those regions.

Although successful when applied to scenic
images in controlled experiments, many multi-
modal integration techniques do not transfer di-
rectly to scenarios requiring domain-specific ex-
pertise. Our approach is inspired by Yu and Bal-
lard (2004), who combine NLP methods with eye
movements to generate linguistic descriptions of
videos, and Forsyth et al. (2009), who use im-
age features to match words to the correspond-
ing pictures. We expand here on earlier work
(Vaidyanathan et al., 2015) exploring multimodal
integration in medical image annotation.

Because an exact temporal match between the
visual and verbal modalities cannot be assumed
(Griffin, 2013), our framework integrates the two
modalities without enforcing strict temporal corre-
spondence. We use a bitext word alignment algo-

rithm, originally developed for word alignment in
machine translation, to align an expert’s fixations
on an image with the words in that expert’s de-
scription of that image. The resulting alignments
are then used to annotate image regions with cor-
responding conceptual labels, which in turn may
aid image labeling and captioning applications. In
this paper we discuss the parameters of our frame-
work and their effects on alignment accuracy.

2 Data and Method
We eye tracked and voice recorded 26 dermatolo-
gists as they examined and described 29 derma-
tological images. From the narrations, we ex-
tract nouns and adjectives to create a temporally
ordered set of linguistic units. To obtain the vi-
sual units, we cluster the fixations for all observers
using mean shift clustering with a bandwidth (72
pixels) approximating the foveal size (Santella and
DeCarlo, 2004). For each observer, we use these
clusters to produce a temporally ordered sequence
of visual units. Figure 1 shows a manually tran-
scribed narrative, a scanpath for an observer, and
clusters of fixations from all observers.

Prior research has established that there is a
temporal lag between fixations and concept men-
tions (Griffin, 2013). Our method aligns visual
and linguistic units without explicit assumptions
about their temporal relationships. This is anal-
ogous to translating one language into another
where the structural characteristics and word order
of the two languages may be different. In our mul-
timodal scenario, the observer’s narrative descrip-
tion and fixations on an image represent a training
pair. To create a sufficiently large parallel corpus,
we use a 5-second sliding window over the pairs
and add the linguistic and visual units within each
window as a “sentence” to the corpus.

The sequences of visual units are substantially
longer than the sequences of linguistic units. In
order to balance the sequence lengths, we select

4



okay looking at a face  
uh looks like the primary lesion is a depigmented macule 
uh at the vermilion border 
involving the right lower lip in the right um corner of the mouth 
as well as the right cutaneous lip 
uh  this is most likely vitiligo  
also would consider um post-in�ammatory hypopigmentation  
um a atypical mycosis fungoides 
i am ninety percent sure that this is vitiligo  
next 

Transcribed narrative Eye movement data Mean shift clustering

Figure 1: Example of a multimodal data pair. Center: Circle and circle size represent observer gaze
location and duration, respectively. Right: Clusters shown with colors and/or shape and numerical labels.

P (SD) R (SD) F1 (SD)
1-sec. delay 0.38 (0.1) 0.44 (0.17) 0.39 (0.1)

bitext alignment 0.45 (0.1) 0.56 (0.16) 0.49 (0.1)

Table 1: Comparison of performance for the 1-
second delay baseline and our alignment method.

visual units in two ways, both preserving temporal
order. In one method, the fixations are selected at
random. In the other, the fixations are ranked and
selected according to their duration.

We use the Berkeley aligner (Liang et al.,
2006), an EM-based word aligner known for high
accuracy and adaptability. The aligner is run on
each visual-linguistic parallel corpus (one for each
image), with the posterior threshold for decoding
set to 0.1, a value empirically determined using a
data subset. The resulting alignments for each cor-
pus are evaluated against a set of reference align-
ments produced manually by an investigator expe-
rienced in analyzing dermatological images.

3 Results and Conclusions
We test the model on pairs of full narratives and
fixation sequences. The alignment results are
compared with two temporal baselines. One base-
line assumes that an observer utters the word cor-
responding to a region at the moment the eyes fix-
ate on that region. The second baseline assumes
that there is a one-second delay (Griffin, 2013) be-
tween a fixation and the utterance of the word cor-
responding to that region.

Our alignment method yields strong perfor-
mance in comparison to both baselines. As shown
in Table 1, we achieve 7%, 10%, and 12% absolute
improvement over the baselines in precision, F-
measure, and recall, respectively. The results hold
on a per-image basis as well, with the alignment
approach yielding higher recall in all 29 images,
higher F-measure in 28 images, and higher preci-
sion in 24 images. Using fixation length to select
the visual units substantially improves the perfor-

mance in comparison to the random selection pro-
cess. Neither the size of the sliding window nor
the ratio of visual to linguistic units affected align-
ment performance.

Both methods perform well on images with soli-
tary lesions, and performance generally decreases
as the number of lesions increases. Interestingly,
the largest improvement of our aligner over the
baseline occurs in images with multiple lesions,
suggesting that a fixed temporal correspondence
is particularly unlikely in more complex images.

In future work, we plan to use image segmen-
tation algorithms to extract image features and a
medical ontology to discover more complex re-
lationships between image regions and semantic
concepts. In addition, we will explore methods of
alignment with soft temporal constraints to better
model the relationship the two modalities.
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Abstract 

This poster presents a pilot where audio de-

scription is used to enhance automatic con-

tent analysis, for a project aiming at creating 

a tool for easy access to large AV archives. 

1 Introduction 

This poster presents a pilot study for a new inter-

disciplinary project which aims at creating an 

automated, time-aligned and language-based ac-

cess to large archives of audiovisual documents. 

The idea is to facilitate the work of researchers 

who wish to pinpoint particular segments of AV 

material without having to browse through entire 

data sets. The project analyses human descrip-

tions and film-viewing patterns in order to inte-

grate that knowledge into an automatic content 

analyser. The pilot was set out to compare the 

results of the automatic and human methods 

available for content description. 

2 AD vs. AMCA 

Currently verbal content description for retriev-

ing visual data is still scarce, although different 

methods exist: human-made audio description 

(AD) verbalizes visual information for visually 

impaired people (Maszerowska & al 2014) but is 

a slow and costly process. Automatic Multimodal 

Content Analysis (AMCA), on the other hand, 

consists of computer-driven detection of visual 

and auditory elements from multimedia 

(Rohrbach & al 2015; Viitaniemi & al 2015). 

AMCA is cost-effective and produces consistent 

output, but is still insufficient for high-level se-

mantic analysis.  

Our project combines these approaches to 

create an automatically produced narrative, but 

which is more informative than a mere list of 

descriptive concepts.  

3 The pilot and its tools 

We are now tackling our first pilot, a 15-minute 

excerpt from a documentary (Helsinki, forever, 

Peter von Bagh, 2008), a genre which the whole 

project will be concentrating on.  

3.1 Automatic tools 

A preliminary AMCA has already been made, 

based on earlier filmic contents, giving lists of 

descriptive concepts for each picture as an out-

put. Consider the following example: 

 

 
Screenshot from Helsinki, forever. 

 

For this shot of 301 frames, the AMCA provides 

the following occurrence numbers for concepts:  

Body_Parts (301); Man_Made_Thing (301); Outdoor 
(278); Legs (277); Building (254); Suits (245); Actor 
(184); Suburban (163); Person (141); etc. 

Naturally, such concepts might seem coun-

terintuitive for a human reading of an image, 

mainly because they do not inform us about the 

respective relevance of the various semantic el-

ements retrieved from the picture. The AMCA 

concepts will thus need further filtering. 

Another tool used for the visual description 

is automatic sentence-like caption generation per 

frame (Karpathy & Fei-Fei 2015), which will be 

combined with the abovementioned concept re-

triever. For the same shot, we now get for 97% 

of the frames:  

a man in a suit and tie standing in front of a building  

For the audio, an automatic transcription of 

the dialogue and voice-over can be made, using 
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voice recognition (see Remes & al 2015). The 

output is a transcript that is coded on a confi-

dence basis, informing the researcher on the de-

gree of certainty of the recognized linguistic 

segments. A description of on-screen sounds, 

including automatic music recognition, could 

also enhance the validity of relevant concept re-

trieval.  

3.2 Human input 

In order to improve these automatic describers, 

three human ADs of the excerpt were ordered 

from professionals. The comparison of those 

ADs is important for the pilot since it reveals the 

characteristics they share in terms of visual ele-

ment selection and lexical choices (identicality of 

referents and words, synonymy, level of abstrac-

tion etc.). For our example shot, the ADs are 

(translated from Finnish):  

AD1: “A nervous looking man […] stops at the corner 
of the bank changing his briefcase from hand to hand 
and throwing glances around him.”  

AD2: “A man […] stops in front of a ‘Bank’ sign look-
ing confused and hesitating, holding a briefcase with 
both hands.”  

AD3: “A black suited man stops at the door of the 
bank and hesitates. He looks around, fingering his 
portfolio.”  

Some words are identical in all ADs (man; stops; 

bank), some concepts are almost synonymous 

(briefcase / portfolio; hesitating / nervous looking), 

and some expressions reveal a “point of view” 

(at the corner of x / in front of x / at the door of x; 
changing y from hand to hand / holding y with both 

hands / fingering y). It appears that all descriptions 

are similar in terms of the thematised entities and 

actions, but the various lexical items used in re-

ferring to them invites to re-evaluate the idea that 

there is only one equivalent description per im-

age. All in all, the pilot studies the semantic vari-

ability of the descriptions by both qualitative and 

quantitative comparative analyses.  

These human descriptions will then serve to 

feed the AMCA, helping to filter its concept-

suggestions in terms of relevance, adequacy and 

degree of precision. For instance, key word lists 

created in a corpus analysis enable us to compare 

the descriptions, harmonize the content words of 

AD and finally merge them with the concepts 

suggested by the AMCA.  

Furthermore, we also use eye tracking 

(Kruger & al, 2015) in the pilot, to identify con-

vergence patterns in the gaze positions of aver-

age viewers watching the excerpt. This “natural 

viewing” gives further insight into the relevance 

of the visual element selection made by the AD 

and the AMCA. Within the selected shot, we can 

notice that people tend to look at the most in-

formative parts of the image (the man’s face and 

the “Bank” sign) especially during the first sec-

onds of their appearance on screen:  

 

  
SMI heat maps (21 viewers) on the same shot. 

4 Outcomes of the pilot 

This poster presentation includes a demo video 

of each of these tools and their respective out-

puts. Later on, all the collected data from the ex-

cerpt will be integrated to the AMCA to enhance 

its output, which can be further enriched by new 

human input. Such a recursive machine learning 

process will lead, eventually, to a reliable auto-

matic description tool for documentary films.  
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1 Introduction

Recurrent neural networks (RNN) have gained a
reputation for beating state-of-the-art results on
many NLP benchmarks and for learning repre-
sentations of words and larger linguistic units
that encode complex syntactic and semantic struc-
tures. However, it is not straight-forward to un-
derstand how exactly these models make their de-
cisions. Recently Li et al. (2015) developed meth-
ods to provide linguistically motivated analysis for
RNNs trained for sentiment analysis. Here we fo-
cus on the analysis of a multi-modal Gated Recur-
rent Neural Network (GRU) architecture trained to
predict image-vectors - extracted from images us-
ing a CNN trained on ImageNet - from their cor-
responding descriptions. We propose two meth-
ods to explore the importance of grammatical cat-
egories with respect to the model and the task.
We observe that the model pays most attention
to head-words, noun subjects and adjectival modi-
fiers and least to determiners and coordinations.

2 Method

We used the IMAGINET model from Chrupała et
al. (2015), trained on the MSCOCO dataset (Lin
et al., 2014). It learns visually grounded mean-
ing representations from textual and visual input
and consists of two GRU pathways, TEXTUAL

and VISUAL, with a shared word-embedding ma-
trix. The inputs to the model are pairs of captions
and their corresponding images. Each sentence is
mapped to two sequences of hidden states: one by
TEXTUAL and another by VISUAL. At each time-
step TEXTUAL predicts the next word in the sen-
tence from its current hidden state hT

t , while VI-
SUAL predicts the image vector from its last hid-
den representation hV

full. The model is trained us-
ing a multi-task objective which combines cross-
entropy loss for the word predictions and a mean
squared error for the image predictions.

We focus our analysis on the hidden states and
update-gate activations of VISUAL to assess the
impact of syntactic structure on the learned mean-
ing representations of sentences used to predict
images. For each input sentence of length n, VI-
SUAL produces n hidden activations hV

1 , ..., hV
n

and n update-gate activations zV
1 , ..., zV

n . We
associate each word in the input sentence with
their part-of-speech (POS) and dependency rela-
tion (DepRel) labels1, and assess the contribution
of the (word, POS, DepRel) tuples by estimating
the following two scores:

1. dred measures the distance reduction at each
step by calculating the cosine distance be-
tween the current ht and the last hidden state
hfull and subtracting it from the previous dis-
tance: dt

red = dt−1
red − cos(ht, hfull). The idea

is to see how much each word brings the cur-
rent state closer to, or further away from, the
final interpretation.

2. zmean assigns the average activation of the
update-gate z at time step t to the tuple at
positions t. The activation function for z is
sigmoid, therefore it has values between 0-1.
High values of zmean indicate that the model
places more importance on the previous tu-
ples until t− 1 than on the current one at t.

3 Results

We measure dred and zmean for every position in the
first 5000 captions from the validation portion of
MSCOCO and use them to analyze the importance
of both POS and DepRel categories. We only re-
port results on the grammatical categories that ap-
pear at least 500 times. Figure 1 demonstrates the
dred measurements for each word in an example
sentence. A large distance between two adjacent

1We used the dependency parser from Martins et al.
(2013) for both the POS and DepRel tags.
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Figure 1: An example of the impact of each word in the sentence Stop sign with words written on it with
a black marker, measured by dred. Left: best retrieved image; middle: reduction of distance from hV

full;
right: dred scores for each word.

Figure 2: Importance of dependency relations as measured by zmean on the left chart. Contribution of
POS categories (middle) and DepRel categories (right) measured by dred.

words signals the arrival of a highly informative
word. Figure 2 shows the impact of both measures
for each grammatical category. The low zmean
scores (left) for the roots, adjectival modifiers
(amod), direct objects (dobj), noun compound
modifiers (nn), noun subjects (nsubj), conjuncts
(conj) and objects of prepositions (pobj) suggest
that the model remembers words of these cate-
gories, while prefers to forget determiners (det),
coordinations (cc), prepositions (prep) and auxil-
iaries. As indicated by the high dred scores (mid-
dle graph), nouns (N), adjectives (JJ) verbs (V)
and prepositions (PRP) provide the largest contri-
bution to the meaning representations of the sen-
tences, while determiners (DET) and conjunctions
(C) provide the least. The dred scores for DepRels
are in line with the zmean scores; they highlight the
importance of nsubj, nn, amod, pobj and dobj.

4 Conclusions

We propose two measures to assess the impact
of grammatical categories on sentence representa-
tions learned for predicting images. The observed
patterns likely reflect the visual salience and in-

formativeness of the lexical items associated with
each category. They also provide insights into the
details of the task e.g.: nouns came out signifi-
cantly more important then other content word cat-
egories, indicating that predicting the correct enti-
ties is the most important aspect of the task.
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Abstract

In this paper, we introduce the notion of
visually descriptive language (VDL) – in-
tuitively a text segment whose truth can be
confirmed by visual sense alone. VDL can
be exploited in many vision-based tasks,
e.g. image interpretation and story illus-
tration. In contrast to previous work re-
quiring pre-aligned texts and images, we
propose a broader definition of VDL that
extends to a much larger range of texts
without associated images. We also dis-
cuss possible VDL annotation tasks and
make recommendations for difficult cases.
Lastly, we demonstrate the viability of
our definition via an annotation exercise
across several text genres and analyse
inter-annotator agreement. Results show
reasonably high levels of agreement be-
tween annotators can be reached.

1 Introduction

Recent years have seen rapid growth in research
integrating visual and textual modalities, includ-
ing associating named entities in captions with
faces in images (Berg et al., 2004), generating im-
age descriptions (Kulkarni et al., 2011; Yang et al.,
2011), text/image retrieval (Hodosh et al., 2013),
story illustration (Feng and Lapata, 2010), and
learning visual recognition of fine-grained object
categories (Wang et al., 2009). This previous work
concentrates on solving image-based tasks, and is
heavily reliant upon datasets with pre-aligned im-
ages and texts, most of which have been manu-
ally collected and/or annotated. Thus, such image-
centric texts are assumed to be at least partially, if
not predominantly, ‘visually descriptive’ in nature.
This raises some interesting research questions: (i)
how much text out there without associated im-
ages is ‘visually descriptive’ and thus potentially

useful for such image-based tasks? (ii) can these
‘visually descriptive’ text segments be identified
automatically within documents which may con-
sist of predominantly ‘non-visual’ text?

To be able to answer these questions, we first re-
quire a robust, inter-subjectively reliable definition
of ‘visually descriptive’ text. Although previous
work exists that models the ‘visualness’ of terms
or concepts from images (Yanai and Barnard,
2005; Jeong et al., 2012), they are presented with-
out an explicit definition apart from the intuitive
notion that a visual term should exhibit some con-
sistent visual characteristics across different ob-
jects. To our knowledge, the only work that ex-
plicitly proposes a definition for visually descrip-
tive text is that of Dodge et al. (2012), where noun
phrases within an image caption are classified as
to whether or not they are depicted in the corre-
sponding image.

In this paper, we propose a broader definition of
Visually Descriptive Language (VDL). Our work
differs from Dodge et al. (2012) in that our def-
inition revolves around identifying text segments
that express propositions that can be ‘visually con-
firmed’ rather than identifying ‘visually concrete’
noun phrase segments whose denotation can be lo-
cated in an associated image. The consequences of
this different definition are significant: (i) we are
not restricted to mining VDL from texts with asso-
ciated images, but can exploit any text, massively
extending the volume of data that can be mined;
(ii) we can gather larger, richer fragments of text
than just noun phrases; (iii) we are not limited to
the sort of language found in image captions or
texts with embedded images (typically news), but
can consider texts of any genre.

It is unlikely there is any one ‘correct’ defini-
tion of VDL. Rather, any proposed definition may
be assessed in terms of how useful it is for some
particular purpose and how easy it is to apply. Our
purpose in defining VDL is to allow us to identify,
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within a broad corpus of texts, segments that can
be used to inform computational models useful in
image interpretation and description. For exam-
ple, co-occurrence in VDL of certain attribute val-
ues and object types, or of pairs of objects types,
or of object types in particular semantic roles in
relation to an activity or event type provide prior
information that can be used in Bayesian models
to help interpret or describe a new image. Cor-
pora of VDL can also be used to learn language
models for generating image descriptions, e.g. for
the visually impaired. Other potential applica-
tions include identifying candidate text segments
within a novel to be illustrated, automatic collec-
tion of joint visual-text training data, and auto-
matic extraction of discriminative object descrip-
tions for visual recognition (e.g. butterfly descrip-
tions in Wang et al. (2009)).

1.1 Overview
The rest of the paper is structured as follows. Sec-
tion 2 presents and discusses our definition of
VDL. Section 3 describes possible VDL annota-
tion tasks based on our definition and discusses
and makes recommendations on difficult cases. To
assess the viability of the definition, we have car-
ried out a pilot annotation exercise on texts of
different genres. Section 4 describes and anal-
yses this exercise, including agreement statistics
and insights on conflicting annotations. Finally,
Section 5 offers conclusions and discusses future
work.

2 Definition of VDL

Our intuition is that a segment of text is visually
descriptive if we can determine what it says is true
or false by visual sense alone. More precisely:

Definition. A text segment is visually descrip-
tive iff it asserts one or more propositions about
either (a) a specific scene or entity whose truth can
be confirmed or disconfirmed through direct visual
perception (e.g. (1)), or (b) a class of scenes or en-
tities whose truth with respect to any instance of
the class of scenes or entities can be confirmed or
disconfirmed through direct visual perception (e.g.
(2)).

(1) John carried the bowl of pasta across the
kitchen and placed in on the counter.

(2) Tigers have a pattern of dark verti-
cal stripes on reddish-orange fur with a
lighter underside.

(3) * Maria is thinking about what the future
holds for her. (Not VDL1 )

By direct visual perception we mean that:
1. An observer could determine the truth of the

relevant proposition without intervening in
the scene to acquire additional visual inputs.
E.g. the truth of John weighs 65 kg might
be determined visually by placing John on a
scale and taking a reading; but if this scale
and Johns standing on it are not part of the
scene then this sentence is not VDL.

2. Any inference that needs to be carried out to
confirm or disconfirm the proposition is such
that it would typically be made by an ob-
server drawn from the population of intended
readers of the text without knowledge of the
preceding textual content. For example, most
observers of a scene that includes a boy sit-
ting on the end of a dock holding a fishing rod
whose line disappears into the water before
him would infer without question that the boy
is fishing, allowing them to confirm the truth
of “The boy sat fishing on the dock” directly
from the scene and without knowledge of ear-
lier parts of the text in which the sentence is
embedded. This example illustrates just how
tightly coupled inference and perception are
and that “what we see” is a product of both.
Also, note how our definition is analogous to
that of textual entailment where given a pair
of textual expressions T and H “We say that
T entails H if, typically, a human reading T
would infer that H is most likely true” (Da-
gan et al., 2006); i.e. we rely on a judgement
that would typically be made about what is
going on in the scene.

3. An observer can visually identify any named
entities. For example, in (1) we assume an
observer knows who John is in this scene.
This may only be possible because of knowl-
edge obtained from other textual context, but
we don’t want to rule out the visualness of
(1) on the grounds that not all the informa-
tion that may be needed to identify John in
the scene is present in (1).

By asserts a proposition we mean that text seg-
ments must express, explicitly or implicitly a pred-
ication, i.e. something that may be judged true

1We can neither confirm nor disconfirm through direct vi-
sual perception alone that Maria is thinking (she might be just
staring into space), let alone know what she is thinking.
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or false. Sentences or clauses with tensed verbs
are candidates, as are noun phrases that predicate
something of an entity. Thus, we rule out bare
noun phrases (the man)2, but include phrases such
as the tall man or a man wearing a green shirt.

By text segment here we mean a phrase, clause,
sentence or sequence of sentences, i.e. a sequence
of contiguous words. One consequence of this
constraint is that phrases like (4) are not VDL,
since while they contain a mix of visual (tall) and
non-visual (well-educated) attributes, they do not
form a contiguous sequence of words which is
visually confirmable as a whole. Since we fre-
quently observed such cases, we want our scheme
to accommodate them. We call such segments im-
pure visually descriptive language (IVDL). To be
IVDL a segment S1 must contain discontinuous
subsequences that if conjoined form a segment S2

such that (a) S2 is VDL, and (b) in context S2 as-
serts a proposition that is entailed by the proposi-
tion S1 asserts (this rules out conjoining of unre-
lated subsequences – see (5)). We annotate IVDL
subsequences belonging to the same (discontinu-
ous) segment with the same subscript indices.

(4) {the tall}1 , well-educated {man}1
Condition (b) serves to rule out cases like:

(5) * {the tall}1 wardrobe beside the well-
educated {man}1

as from (5) we cannot derive the tall man, since
the predication it expresses is not entailed by those
expressed by (5).

Note that IVDLs are distinct from partially vi-
sual segments such as (6) containing both visual
and non-visual phrasal subcomponents:

(6) As {he walked by the lake}, John thought
about his dad.

(6) contains a contiguous sub-segment that is
VDL, unlike (4), which is IVDL.

3 Annotating VDL

We describe several possible VDL annotation
tasks and provide recommendations on how to ap-
proach and annotate some difficult cases.

2man is undoubtedly a visually perceivable entity, but
a list of such terms is available under the physical object
synset in WordNet and we do not need a programme of text
annotation to acquire them.

3.1 Possible Annotation Tasks

We distinguish two annotation tasks: sentence-
level annotation and segment-level annotation.

Sentence-level annotation
We define a sentence-level annotation task as fol-
lows. Each sentence S in a document is assigned
one of three values: (i) 0 if it contains no VDL;
(ii) 1 if the entire sentence is VDL; (iii) 2 if it
contains one or more proper sub-segments which
are VDL, but the single segment comprising the
whole sentence is not VDL. S=2 may be further
classified as 2P (containing only pure VD sub-
segments) and 2I (contains pure and/or impure VD
sub-segments). Variants of the task may be defined
depending on whether VDL is taken to include
pure VDL only, or to include both pure and impure
VDL. In many texts there are significant numbers
of impure VDL segments, so omitting them leads
to the loss of a substantial quantity of potentially
valuable VDL. On the other hand, including them
requires substantially more annotation effort and is
only likely to be useful if accurate automatic tech-
niques for extracting pure from impure segments
can be developed.

Segment-level annotation
Here the exact words comprising a VDL segment
are annotated using a swipe and click annotation
tool. Variants arise depending on whether one in-
cludes impure segments. Note that doing so re-
quires the multiple sequences making up the pure
non-contiguous subsequence of the segment to be
selected and their association recorded. A simpler,
but less informative, alternative is to give the full
IVDL segment a distinct code, effectively defer-
ring the task of identifying the pure subsequence
in the impure segment. Another variant is to allow
annotation to extend over multiple sentences (e.g.
to gather action descriptions for interpreting video
sequences instead of static scenes). Note that ex-
tending the scope of annotation to multiple sen-
tences may affect the content of the annotations.
Example (7) is a full single VDL segment in a
multi-sentence annotation task.

(7) {John took a sip of coffee. He read the
newspaper for a minute then took a second
sip}

However, as a single-sentence annotation task,
the second sentence will be impure as we cannot
verify that the sip is a second one (i.e. (8)).
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(8) {He read the newspaper for a minute then
took a}1 second {sip}1

Note that sentence-level annotations may be in-
ferred from segment-level annotations.

3.2 Guidelines for difficult cases

Inevitably, various difficult cases emerge during
annotation. While it is to be expected that some ar-
eas of variation between annotators will unavoid-
ably remain, consistency across annotators is in-
creased and annotation decisions simplified if a
standard approach is taken to various anticipated
difficult cases. Because of space constraints, here
we highlight only a subset of such cases and rec-
ommend ways to annotate them. The full set of
guidelines, with extensive discussions and exam-
ples, is available online3. Below we proceed on
the assumption that VDL is being annotated at the
segment level, sentence-by-sentence.

Metaphors
In general, judgements that A is like B, X appeared
to be Y, C was as if D etc., will not be VDL since
the judgement of similarity underlying such state-
ments is not something that is likely to be shared
by an observer in viewing the entity to which they
metaphor is applied. However, the expressions de-
scribing the entity to which the metaphor is ap-
plied and that supplying the metaphor may them-
selves be VDL.

(9) the pews appeared to be {broad stairs in a
long dungeon}

(10) he panted like {a big dog that has been
running too long}

Words with mixed visual/aural or
visual/experiential meanings
Many words mix visual and aural or visual and ex-
periential senses. For example, verbs like shout,
shuffle and pant have an aural and a visual com-
ponent, not necessarily in the same proportion.
Verbs like shudder and flinch, adjectives like som-
bre and insolent (insolent green eyes) and adverbs
like deathly (deathly pale) signal not just move-
ment or appearance but also underlying emotional
experience or response. Such words should be an-
notated if visual input alone is judged sufficient to
allow a typical observer to unambiguously apply
the words, e.g. {a dreary housing estate}.

3http://vdlang.github.io/

Temporal adverbials of frequency
Temporal adverbs of frequency (often, sometimes,
usually) determine how frequently an activity
takes place. These are considered VDL, because
our imaginary observer could determine visually,
over a period of time, how frequently the activity
takes place and make an assessment of whether the
temporal term applies. The exception is for adver-
bials that reference calendrical units (On Tuesdays
{Bob goes to the park for a picnic}), because we
cannot directly see that it is a Tuesday.

Temporal adverbials of duration
Temporal adverbs of duration determine how long
an activity takes. They are marked as VDL where
the duration is intuitively assessable as part of
the viewing process ({for a few minutes}), but
not marked when reference to a watch or calen-
dar would be needed for precision or for tracking
the extent of the activity (in 9.58 seconds, for two
weeks).

Multiple visual perspectives
Sometimes a sentence may contain information
that is visually confirmable, but only from more
than one distinct perspective or frame of reference.
For example, in (11), an observer could visually
confirm that Billy was climbing a tree wearing his
backpack. He or she could also visually confirm
that the backpack contained various objects. But
any position from which an observer could con-
firm the climbing would not simultaneously allow
the visual confirmation of the contents of the back-
pack.
(11) {Billy climbed the tree wearing his back-

pack}, {which contained his slingshot,
some pebbles and a magnifying glass}.

In such cases, we advocate annotating distinct
VDL segments, one for each visual perspective or
frame of reference, as in (11). The reason for this
is that we want to derive models of VDL usage that
can be used to help interpret or describe images or
video that will be taken from a single perspective
(at any given time point). Therefore descriptions
that mix perspectives are more likely to be confus-
ing than helpful.

Intentional contexts
For the most part, sentences expressing proposi-
tional attitudes will not be VDL. However, the
sub-constituent that expresses the proposition to-
wards which the speaker has an attitude may well
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Text Type |S| S=1 S=2 VDL IVDL %Agree Kappa IoU

O
z Ch7 Children’s Story 95 0.13 0.51 51 47 0.76 0.73 0.65

Ch9 Children’s Story 78 0.12 0.42 38 23 0.72 0.69 0.62
B

ro
w

n
A13 Sports Reportage 111 0.11 0.27 25 20 0.78 0.60 0.51
A30 Culture Reportage 128 0.04 0.34 31 21 0.78 0.56 0.57
G32 Biography 101 0.02 0.47 32 29 0.74 0.50 0.43
L05 Mystery Fiction 151 0.21 0.31 65 20 0.87 0.79 0.63
N13 Western Fiction 122 0.12 0.46 58 38 0.70 0.49 0.57
P15 Romance Fiction 179 0.08 0.24 40 21 0.82 0.62 0.73

Table 1: Selected texts and results of the annotation experiment. Column |S| shows the number of
sentences, columns S=1 and S=2 the average proportion of sentences labelled for each VDL type, and
columns VDL and IVDL the number of segments marked as pure and impure VDL on average. Columns
% Agree and Kappa show the inter-annotator agreement at sentence level, and IoU the agreement at
segment level. Please refer to main text for more details.

be: John believed that {Mary was playing in the
garden}.
Hypotheticals, modals, counterfactuals and
subjunctives
Hypothetical or conditional propositions assert
something to be the case provided something else
is the case. We cannot literally see a conditional,
so sentences expressing such propositions are not
VDL. However, the antecedent and consequents of
such propositions may be visual: If {Jack sets the
table} then {Will serves dinner}.

Modal (including negation and future tense)
and counterfactual sentences may be IVDL since
while overall their truth value is not visually deter-
minable, it relates to that of a visually descriptive
segment derivable from them. For example, we
cannot ‘see’ that {James}1 may {practice Tai Chi
in the garden}1. But the truth of the derived sen-
tence is visually determinable (and is key in possi-
ble worlds treatments of the semantics of modals).

Locational information
Locational information is in some cases visually
determinable and other cases not. As a general
rule any locational information that relies upon
geopolitical naming, street plans or compass di-
rections is not marked as VDL. Example (12) is
VDL, whist examples (13) and (14) are not VDL.

(12) {The Episcopal Church stood across the
street}.

(13) The Episcopal Church was one block
down Sussex Street.

(14) The Eiffel Tower is in the 7th Arrondisse-
ment in Paris.

Note that although The Episcopal Church and
The Eiffel Tower are named entities and thus vi-
sually identifiable according to our definition (see
Section 2), locational information may require sig-
nificant inference using world knowledge that is
not part of the text, and thus may not be VDL.
For example, we cannot necessarily confirm that
someone is in a city called Lisbon based on visual
perception alone.

Statements of purpose
Components of sentences that express an agents
purpose in doing something should not be anno-
tated as VDL: {Billy climbed to the rooftop} to
shoot at crows.

Imperative and interrogative sentences
Imperative (e.g. (15)) and interrogative (e.g. (16))
sentences do not assert propositions and there-
fore, by our definition, cannot be VDL as a whole.
However, they may contain components which are
VDL, for example in (16).

(15) Come out to the field and call us.
(16) How did {you escape from the beast}?

Participial phrases
Participial phrases may express predications
where they occur within a noun phrase ({a man
wearing a green shirt}). However, in some cases
participial phrases may be extraposed and func-
tion, not so much as a reduced relative clause as
a sentence adverbial. In this case we annotate
across phrasal boundaries, in order to capture the
argument of the activity described in the particip-
ial phrase, i.e. the entity about which something
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visual is being predicated. For example in (17),
where John is included as a VDL segment.

(17) {Walking slowly across the ice, John}
thought about his mother.

Dialogues
Text segments that report dialogues do so using
either direct (e.g. (18)) or indirect (e.g. (19)) quo-
tation.

(18) Dorothy said that {Toto was running
away}.

(19) Dorothy said, “{Toto is running away}”.

In both cases we mark the segment spoken as
VDL, if it is VDL. As a matter of convention we
do not mark the words reporting who spoken even
if we could determine visually whether the person
reporting was speaking. This is because (a) these
segments are of little interest, and (b) there are
many verbs that express fine shades of meaning
with respect to spoken utterances, many of which
are not visually determinable (reply, ask, exhort,
assert) and it is easiest just to rule them all out.

4 Results and Analysis

4.1 Experiments and Results

A small pilot annotation exercise was carried out
to test the viability of our definition and annota-
tion guidelines on a variety of text genres. As
data we used two random chapters from The
Wonderful Wizard of Oz and six samples from
the Brown Corpus, selected randomly among five
hand-picked categories (two news articles, one bi-
ography and three novels). As a pilot study, all
texts were annotated by the authors at segment-
level, the Oz texts by three annotators and the
Brown texts by two, using the brat rapid annota-
tion tool 4. Sentence-level annotations are inferred
from these segment-level annotations. We chose
to annotate at segment level rather than sentence
level as identifying VDL segments must be done
mentally at sentence level anyway. Marking the
segments directly with just a little additional effort
will result in a more informative resource.

Table 1 shows the selected texts and an analy-
sis of the resulting annotations. All texts are of
similar length (mean 10,834, standard deviation
1,558 characters). Column |S| shows the number
of sentences in each corpus. Columns S=1 and

4http://brat.nlplab.org/

S=2 shows the average proportion of sentences la-
belled for each VDL type (VDL or partially VDL),
and columns VDL and IVDL the number of seg-
ments marked as pure and impure VDL on aver-
age (rounded to the nearest integer). Percentage
agreement (% Agree) and Kappa are computed
at the sentence level. We also report an analysis of
the annotation at the segment level: column IoU
(Intersection-over-Union) shows the overlap of the
annotations at word level; i.e. the ratio of words la-
belled by two annotators as visually descriptive to
total number of labelled words by any annotator;
at this point we did not distinguish between pure
and impure VDL. Figures for the Oz data are av-
eraged pairwise scores over the three annotators.

4.2 Analysis
As Table 1 shows, agreement values are consis-
tently high among annotators and across all gen-
res, supported also by high Kappa scores.

Results show what one would expect: children’s
stories contain many visual descriptions, hence the
higher proportion of VDL sentences and annotator
agreement. News articles and biographies contain
less VDL than fiction, especially fully visual sen-
tences (column S=1). In adult fiction, adventure
novels are naturally more visually descriptive than
romance, which tends to focus on the mental states
and processes of the characters.

Regarding the segment-level analysis, the over-
lap (IoU column) is reasonably high among all
texts, indicating that the majority of the visually
descriptive phrases were correctly identified. Fur-
thermore, examining the annotations reveals that
most inconsistencies are a result of a mistake of
just one of the annotators, rather than fundamental
difference of opinion, so a revision phase would
further increase the agreement.

4.3 Discussion
Further examination of the annotated data revealed
some difficult cases in which annotators disagreed.
We present and discuss a few example disagree-
ments:

Word with mixed visual/experiential meanings
(20) {Susan stared at him with hurt blue

eyes}1.
(21) * {Susan stared at him with}1 hurt {blue

eyes}1.

Here, hurt is used here as an adjective for eyes,
which signals both the appearance of the eyes and

15



an underlying emotion within Susan. We believe
that hurt can be accurately applied based on the
appearance of Susan’s eyes alone, and thus include
it as part of the VDL segment.

Inference
(22) {Rourke was talking on the phone when he

came}1 back.
(23) * {Rourke was}1 talking {on the phone

when he came}1 back.

As with the fishing example in Section 2, most
observers may infer that Rourke is talking on the
phone from a scene that involves him holding a
phone by his ear while moving his mouth. Thus,
we consider talking on the phone in this context as
VDL.

Context
(24) {The Lion went back}1 a third time {and

got the Tin Woodman}1.
(25) * {The Lion went back a third time and

got the Tin Woodman}.
Without context, the annotator has no knowledge
about the previous two attempts. Therefore, a
third time is considered not VDL.

Visual observations over long periods
(26) From the way {the wound in his head}was

itching, Dan knew that it would heal.
(27) * From the way {the wound in his head}

was itching, Dan knew that {it}1 would
{heal}1.

Although one is able to observe a wound healing,
it is a very slow process that spans a long period,
analogous to watching grass grow. To be able to
confirm this proposition would require observa-
tion over a long period of time. Therefore, it is
preferable not to annotate such cases as VDL.

Explicit naming of entities
(28) {They go to school with a girl} named

Gloriana
(29) * {They go to school with a girl named

Gloriana}
According to our definition an observer can visu-
ally identify any named entities. However, in this
particular case, we cannot visually confirm that the
name of the girl is Gloriana. Contrast this to {They
go to school with Gloriana}, where Gloriana is a
known named entity, and we can visually confirm
the proposition asserted by the text segment.

Directional information
(30) {He crossed the street and walked

swiftly}1 southward {to circle back to the
Boulevard and}1 north {a block to the
open restaurant.}1

(31) * {He crossed the street and walked
swiftly southward to circle back to the
Boulevard and north a block to the open
restaurant.}

It is stated in the guidelines that locational infor-
mation that relies on compass directions should
not be marked as VDL. Example (30) is thus the
correct annotation.

Subjective opinions
(32) They must be {dreadful beasts}.
(33) * {They}1 must {be}1 dreadful

{beasts}1.
(34) * They must be dreadful beasts.

Here, the adjective dreadful should be considered
VDL if it would typically be inferred by an ob-
server given only visual input. Clearly dreadful
also has an experiential sense, dependent on the
subjective impression made on the observer. So
the question is are a vast majority likely to agree
that the beasts are dreadful? In this case, we accept
(32) as valid, although a more complete version
would be {They}1 must {be dreadful beasts}1.

Intensifier adverbials and Negation of entities
(35) {The sides were so steep} that {none of

them}1 could {climb down}1
(36) {The sides were}1 so {steep}1 that none

of them could climb down
(37) {The sides were so steep that none of them

could climb down}
This is a difficult case where all three annotators
annotated differently. Our guidelines did not ad-
dress cases of adverbs such as so and too. Another
issue that was not addressed in the guidelines is
how to deal with the negation of entities (none of
them). We hope to address these issues in future
iterations of the guidelines.

5 Conclusion and future work

In this work we have offered a precise definition
of Visually Descriptive Language (VDL), a notion
with many possible applications at the intersection
of language and vision, a subject of increasing in-
terest. We have conducted a pilot annotation ex-
ercise, showing that the proposed definition and
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annotation guidelines can be used to successfully
identify visual fragments in documents of differ-
ent genres with good levels of agreement across
annotators.

We believe that VDL is a useful concept to fur-
ther stimulate research integrating language and
vision. In the future we aim to further refine the
proposed annotation guidelines, to explore the fea-
sibility of adapting the annotation task for large-
scale crowd-sourcing and to extract features and
train models for automatically detecting visual
fragments in new documents.
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Abstract

The automatic generation of image cap-
tions has received considerable attention.
The problem of evaluating caption gener-
ation systems, though, has not been that
much explored. We propose a novel eval-
uation approach based on comparing the
underlying visual semantics of the candi-
date and ground-truth captions. With this
goal in mind we have defined a seman-
tic representation for visually descriptive
language and have augmented a subset of
the Flickr-8K dataset with semantic anno-
tations. Our evaluation metric (BAST) can
be used not only to compare systems but
also to do error analysis and get a better
understanding of the type of mistakes a
system does. To compute BAST we need
to predict the semantic representation for
the automatically generated captions. We
use the Flickr-ST dataset to train classi-
fiers that predict STs so that evaluation can
be fully automated 1.

1 Introduction

In recent years, the task of automatically generat-
ing image captions has received considerable at-
tention. The task of evaluating such sentences,
though, has not been that much explored, and
mainly holds on metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin and Hovy, 2003),
originally proposed for evaluating machine trans-
lation systems. These metrics have been shown to
poorly correlate with human evaluations (Vedan-
tam et al., 2014). Their main problem comes from
the fact that they uniquely consider n-grams agree-
ment between the reference and candidate sen-
tences, focusing thus only on the lexical informa-

1System and data are made available here: https://
github.com/f00barin/semtuples

tion and obviating the agreement at the visual se-
mantic level. These limitations are illustrated in
Figure 1.

Vedantam et al. (2014) have proposed to ad-
dress these limitations by making use of a Term
Frequency Inverse Document Frequency (TF-IDF)
that places higher weight on n-grams that fre-
quently occur in the reference sentence describing
an image, while reducing the influence of popular
words that are likely to be less visually informa-
tive.

In this paper, we consider a different alterna-
tive to overcome the limitations of BLEU and
ROUGE metrics, by introducing a novel approach
specifically tailored to evaluate systems for im-
age caption generation. To do this, we first define
a semantic representation for visually descriptive
language, that allows measuring to which extent
an automatically generated caption of an image
matches the underlying visual semantics of human
authored captions.

To implement this idea we have augmented
a subset of the Flickr-8K dataset (Nowak and
Huiskes, 2010) with a visual semantic represen-
tation, which we call Semantic Tuples (ST). This
representation shares some similarity with the
more standard PropBank (Kingsbury and Palmer,
2002) style Semantic Roles (SRL). However, SRL
was designed to have high coverage of all the
linguistic phenomena present in natural language
sentences. In contrast, our ST representation is
simpler and focuses on the aspects of the predi-
cate structure that are most relevant for capturing
the semantics of visually descriptive language.

This ST representation is then used to measure
the agreement between the underlying semantics
of an automatically generated caption and the se-
mantics of the gold reference captions at differ-
ent levels of granularity. We do this by aggregat-
ing the STs from the gold captions and forming
a Bag of Aggregated Semantic Tuples represen-
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Ref: A man sliding down a huge sand dune on a sunny day 

SA: A man slides during the day on a dune. 

SB: A dinosaur eats huge sand and remembers a sunny day. 

System	   1-‐gram	   2-‐gram	   3-‐gram	   4-‐gram	  

A	   0.47	   0.29	   0.16	   0.11	  

B	   0.49	   0.36	   0.23	   0.17	  

Figure 1: The limitations of the BLEU evaluation metric: SA and SB are two automatically generated
sentences that we wish to compare against the manually authored Ref. However, while SB does not relate
to the image, it obtains higher n-gram similarity than SA, which is the basis of BLEU and ROUGE.

tation (BAST) that describes the image. We do
the same for the automatically generated sentences
and compute standard agreement metrics between
the gold and predicted BAST. One of the appeals
of the proposed metric is that it can be used not
only to compare systems but also to do error anal-
ysis and get a better understanding of the type of
mistakes a system does.

In the experimental section we use the ST aug-
mented portion of the Flickr-8K dataset (Flickr-
ST) as a benchmark to evaluate two publicly avail-
able pre-trained models of the Multimodal Recur-
rent Neural Network proposed by (Vinyals et al.,
2014) and (Karpathy and Fei-Fei, 2014) that gen-
erate image captions directly from images. To
compute BAST we need to predict STs for the
automatically generated captions. This is sub-
optimal because, ideally, we would like a metric
that can be computed without human intervention.
We therefore use the Flickr-ST dataset to train
classifiers that predict STs from sentences. While
this might add some noise to the evaluation, we
show that the STs can be predicted from sentences
with a reasonable accuracy and that they can be
used as a good proxy for the human annotated STs.

In summary our main contributions are:

• A definition of a linguistic representation (the
ST representation) that models the relevant
semantics of visually descriptive language.

• Using ST we propose a new approach to eval-
uate sentence generation systems that mea-
sures caption-gold agreement with respect to
the underlying visual semantics expressed in
the reference captions.

• A new dataset (Flickr-ST) of captions aug-
mented with corresponding semantic tuples.

• A new metric BAST (Bag of Aggregated Se-
mantic Tuples) to compare systems. In ad-
dition, this metric is useful to understand the
types of errors made by the systems.

• A new fully automated metric that uses
trained classifiers to predict STs for candidate
sentences.

The rest of the paper is organized as follows:
Section 2 presents the evaluation approach, in-
cluding the proposed ST representation, the hu-
man annotation process to produce a dataset of
captions and STs and the proposed BAST met-
ric computed over the ST representation. Sec-
tion 3 describes in detail the proposed BAST met-
ric. Section 4 describes the annotation process and
the creation of the Flickr-ST dataset. Section 5
gives some details about the automatic sentence
to ST predictors used to compute the (fully auto-
matic) BAST metric. Section 6 discusses related
work. Finally, Section 7 presents experiments us-
ing the proposed metric to evaluate state-of-the-art
Multimodal Recurrent Neural Networks for cap-
tion generation.

2 Semantic Representation of Visually
Descriptive Language

We next describe our approach for evaluating sen-
tence generation systems. Figure 3 illustrates the
steps involved in the evaluation of a generated cap-
tion. Given a caption we first generate a set of se-
mantic tuples (STs) which capture the underlying
semantics. While these STs could be generated
by human annotators this will not be feasible for
an arbitrarily large number of generated captions.
Thus, in Section 5 we describe an approach to au-
tomatically generate STs from captions.
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Participants (PA)
Predicates (PR) 
Locatives (LO) 

= {MAN}
= {SLIDE}
= {DUNE, DAY}

<SLIDE, MAN, NULL, DUNE (Spatial)>
<SLIDE, MAN, NULL, DAY (Temporal)>

PatientAgentPredicate Locative

PA+PR 
PA+LO 
PR+LO 

= {SLIDE-MAN}
= {MAN-DUNE, MAN-DAY}
= {SLIDE-DUNE, SLIDE-DAY}

PA+PR+LO = {SLIDE-MAN-DUNE, 
                  SLIDE-MAN-DAY}

Arguments-Pairs

Arguments-Triplets

Single-Arguments
Bag of Aggregated Semantic Tuples (BAST)

Semantic Tuples (ST)
Ref: A man sliding down a hugh sand dune on a sunny day

Figure 2: Bag of Aggregated Semantic Tuples.

In the second step of the evaluation we map the
set of STs for the caption to a bag of arguments
representation which we call BAST. Finally, we
compare the BAST of the caption to that of the
gold captions. The proposed metric allows us to
measure the precision and recall of a system in
predicting different components of the underlying
visual semantics.

In order to define a useful semantic represen-
tation of Visually Descriptive Language (VDL)
(Gaizauskas et al., 2015) we follow a basic de-
sign principle: we strive for the simplest represen-
tation that can cover most of the salient informa-
tion encoded in VDL and that will result in annota-
tions that are not too sparse. The last requirement
means that in many cases we will prefer to map
two slightly different visual concepts to the same
semantic argument and produce a coarser seman-
tic representation.

In contrast, the PropBank representation (SRL)
(Kingsbury and Palmer, 2002) is what we would
call a fine-grained representation which was de-
signed with the goal of covering a wide range of
semantic phenomena, i.e. cover small variations in
semantic content. Furthermore, the SRL represen-
tation is designed so that it can represent the se-
mantics of any natural language sentence whereas
our representation focuses on covering the seman-
tics present in VDL. Our definitions of semantic
tuples are more similar to the proto-roles described
by Dowty (1991).

Given an image caption we wish to generate
a representation that captures the main underly-
ing visual semantics in terms of the events or ac-
tions (we call them predicates), who and what are

the participants (we call them agents and patients)
and where or when is the action taking place (we
call them locatives). For example, the caption
“A brown dog is playing and holding a ball in a
crowded park” would have the associated seman-
tic tuple: [predicate = play; agent = dog; patient =
null; locative = park] and [predicate = hold; agent
= dog; patient = ball; locative = park]. We call
each field of a tuple an argument; an argument
consists of a semantic type and a set of values. For
example the first argument of the first semantic tu-
ple is a predicate with value play. Notice that argu-
ments of type agent, patient and locative can take
more than one value. For example: “A young girl
and an old woman eat fruits and bread in a park on
a sunny day” will have the associated semantic tu-
ple: [predicate = eat; agent = girl, woman; patient
= fruits, bread; locative = park, day].

Note also that we use italics to represent ar-
gument values and distinguish them from vari-
ables (over some well defined discrete domain)
and words or phrases in the caption that we might
regard as lexical evidence for that value. For ex-
ample, the caption “A brown dog is playing and
holding a ball in a crowded park” will have the as-
sociated semantic tuple: [predicate = play; agent
= dog; patient = null; locative = park]. The word
associated with the predicate play is playing, but
play is a variable. In this case we are assuming
that the domain for the predicate variable is the set
of all lemmatized verbs.

Argument values will in most cases have some
word or phrase in the caption that can be regarded
as the lexical realization of the value. We refer to
such a realization as the ‘span’ of the value on the
caption. From the previous example, the span of
the predicate is ‘playing’, and its value is play. Not
all values will have an associated span, since as we
describe below, argument values might have tacit
spans which can be inferred from the information
contained in the caption but they are not explic-
itly mentioned. In practice to generate the seman-
tic representation we will ask human annotators to
mark the spans in the caption corresponding to the
argument values (for non-tacit values). We will
define the argument variable to be a ‘canonical’
representation of the span. How this ‘canonical’
representation is defined will be described in more
detail in the next section, where we discuss the an-
notation process.
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A man sliding down a huge sand dune on a sunny day

A man slides during the day on a dune. A dinosaur eats huge sand and remembers a sunny day.

<Pr: SLIDE, Ag: MAN, Pa: NULL, Lo (S): DUNE>
<Pr: SLIDE, Ag: MAN, Pa: NULL, Lo (T): DAY>

<Pr: EAT, Ag: DINOSAUR, Pa: SAND, Lo: NULL>
<Pr: REMEMBER, Ag: DINOSAUR, Pa: DAY, Lo: NULL>

Participants (PA)
Predicates (PR) 
Locatives (LO) 
PA+PR 
PA+LO 
PR+LO 
PA+PR+LO 

= {MAN}
= {SLIDE}
= {DUNE, DAY}
= {SLIDE-MAN}
= {MAN-DUNE, MAN-DAY}
= {SLIDE-DUNE, SLIDE-DAY}
= {SLIDE-MAN-DUNE, 
                  SLIDE-MAN-DAY}

Participants (PA)
Predicates (PR) 
Locatives (LO) 
PA+PR

PA+LO 
PR+LO 
PA+PR+LO 

= {DINOSAUR, SAND, DAY}
= {EAT, REMEMBER}
= {NULL}
= {EAT-DINOSAUR, REMEMBER-DAY,
     REMEMBER-DINOSAUR, EAT-SAND}
= {DINOSAUR-NULL, SAND-NULL, DAY-NULL}
= {EAT-NULL, DINOSAUR-NULL}
= {EAT-DINOSAUR-NULL, REMEMBER-DAY-NULL, 
      EAT-SAND-NULL, REMEMBER-DINOSAUR-NULL}

Step 1: Compute STs

Step 2: Compute BAST 

Step 3: Compute Prec-Rec-F1 Metrics with respect to reference BAST 
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Figure 3: Computation of the BAST metric.

3 The Bag of Semantic Tuples Metric

As mentioned earlier, our semantic representation
is ‘coarser’ than PropBank style semantic role an-
notations. Furthermore, there are two other im-
portant differences: 1) We do not represent the se-
mantics of atomic sentences but that of captions
that might actually consist of multiple sentences,
and 2) Our representation is truly semantic mean-
ing that resolving the argument value of a predi-
cate might involve making logical inferences. For
example we would annotate the caption: “A man
is standing on the street. He is holding a camera”
with [predicate = standing; agent = man; patient
= null; locative = street] and [predicate = hold;
agent = man; patient = null; locative = street]. This
means that in contrast to the SRL representation,
our semantic representation will not, in general, be
‘aligned’ with the syntax of the caption.

We now give a more detailed description of each
argument type:

• The Predicate is the main event described by

the sentence. We consider two types of pred-
icates, those that describe an action and those
that describe a state. Action predicates are
in most cases expressed in the caption using
verb-phrases. However, some action predi-
cates might not be explicitly mentioned in the
caption but can be naturally inferred. For ex-
ample, the caption “A woman in a dark blue
coat, cigarette in hand” would be annotated
with the tuple: [predicate = hold; agent =
woman; patient = cigarette; locative = null].
In the case that the predicate is indicating a
state of being, there is typically a conjugation
of the verb “to be”, i.e. is, are, was. For ex-
ample: “A person is in the air on a bike near
a body of water.”

• The Agent is defined as the entity that is per-
forming the action. Roughly speaking, it is
the answer to the question: Who is doing the
action? For example: in the sentence “The
man is sleeping under a blanket in the street
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as the crowds pass by” we have the predicate
= sleeping with agent = man, and predicate =
pass with agent = crowd. In the case of predi-
cates that describe a state of being such as “A
person is in the air on a bike near a body of
water”, we define the agent to be the answer
to the question: Whose state is the predicate
describing? Thus for the given example we
would have agent = person.

• The Patient is the entity that undergoes a
state of change or is affected by the agent per-
forming some action. For example, the cap-
tion “A woman in a dark blue coat, cigarette
in hand.” would have: [patient = cigarette].
Unlike the predicate and agent, the patient
is not always present, for example in “Two
people run in the sand at the beach.” The
patient is never present with state-of-being
predicates as: “A person is in the air on a bike
near a body of water”. When there is no pa-
tient we say that the argument value is null.

• The Locative is defined as the answer to the
question: Where or When is the action tak-
ing place? So there are two main types of
locatives, spatial locatives such as on the wa-
ter and temporal locatives such as at night.
Spatial locatives in turn can be of different
types, they can be scenes such as on-beach
or they can express the relative location of
the action with respect to a reference object
such as under-blanket in the caption “A man
sleeping under the blanket”. The locatives are
actually composed of two parts: a preposi-
tion (if present), which expresses the tempo-
ral or spatial situation, and the main object
or scene. Locatives, like the patient, are not
always present. Thus the locative might also
take the value null.

We could also consider a richer semantic repre-
sentation that includes modifiers of the arguments,
for example for the caption: “A brown dog is play-
ing and holding a ball in a crowded park” we
would have the associated semantic tuples: [pred-
icate = play; agent = dog; agent-mod = brown
patient = null; locative = park] and [predicate =
hold; agent = dog; patient = ball; locative = park,
locative-mod = crowded]. For the first version of
the ST dataset, however, we opted for keeping the
representation as simple as possible and decided
not to annotate argument modifiers. One of the

reasons is that we observed that in most cases if we
can properly identify the main arguments extract-
ing their modifiers can be done automatically by
looking at the syntactic structure of the sentence.
For example if we can obtain a dependency parse
tree for the reference caption, extracting the syn-
tactic modifiers of dog is relatively easy.

4 The Flickr-ST Dataset: Human
Annotation of Semantic Tuples

We believe that one of the main reasons why most
of the evaluations used to measure caption genera-
tion performance involve computing surface met-
rics is that until now there was no dataset anno-
tated with underlying semantics.

To address this limitation we decided to create
a new dataset of images annotated with semantic
tuples as described in the previous section. Our
dataset has the advantage that every image is an-
notated with both the underlying semantics in the
form of semantic tuples and natural language cap-
tions that constitute different lexical realizations
of the underlying visual semantics. To create our
dataset we used a subset of the Flickr-8K dataset
with captions, proposed in (Hodosh et al., 2013).
This dataset consists of 8,000 images of people
and animals performing some action taken from
Flickr, with five crowd-sourced descriptive cap-
tions for each one. These captions are sought to
be concrete descriptions of what can be seen in
the image rather than abstract or conceptual de-
scriptions of non-visible elements (e.g. people or
street names, or the mood of the image).

We asked human annotators to annotate 250 im-
age captions, corresponding to 50 images taken
from the development set of Flickr-8K. In order
to ensure the alignment between the information
contained in the captions and their corresponding
semantic tuples, annotators were not allowed to
look at the referent image while annotating every
caption.

Annotators were asked to list all the unique tu-
ples present in the caption. Then, for each argu-
ment of the tuple, they had to decide if its value is
null, tacit or explicit (i.e. an argument value that
can be associated with a text span in the caption).
For explicit argument values we asked the anno-
tator to mark the corresponding span in the text.
That is, instead of giving a value for the argument,
we ask them to mark in the caption the evidence
for that argument.

22



To create the STs that we use for evaluation we
first need to compute the argument values. We as-
sume that we can compute a function that maps
spans of text to argument variables, and we call
this the grounding function. Currently, we use a
very simple mapping from spans to argument val-
ues: they map to lowercase lemmatized forms.
Given the annotated data and a grounding func-
tion, we refer to the process of computing argu-
ment values for argument spans as projecting the
annotations.

With our approach for decoupling surface (i.e.
argument spans) from semantics (argument val-
ues) we can address some common problems in
caption generation evaluation. The idea is sim-
ple, we can use the same annotation with different
grounding functions to get useful projections of
the original annotation. One clear problem when
evaluating caption generation systems is how to
handle synonymity, i.e. the fact that two surface
forms might refer to the same semantic concept.
For example, if the reference caption is: “A boy
is playing in a park”, the candidate caption: “A
kid playing on the park” should not be penalized
for using the surface form boy instead of kid. We
can address this problem by building a grounding
function that maps the argument span boy and the
argument span kid to the same argument variable.
We could automatically build such function using
a thesaurus.

Another common problem when evaluating
caption generation is the fact that the same vi-
sual entity can be described with different levels
of specificity. For example, for the previous refer-
ence caption it is clear that “A person is playing in
a park” should have a higher evaluation score than
“A dog playing in a park”. This is because any hu-
man reading the caption would agree that person is
just a ‘coarser’ way of referring to the same entity.
With our approach we could handle this problem
by having a coarser grounding function that maps
the argument span kid and the argument span per-
son to the same argument value human. The im-
portant thing is that for any grounding function we
can project the annotations and compute the eval-
uation, thus we can analyze the performance of a
system in different dimensions.

Our goal is to define an evaluation metric that
measures the similarity between the STs of the
ground-truth captions for an image and the STs of
a generated image caption. We wish to define a

metric that is useful not only to compare systems,
but also that allows for error analysis and some in-
sight on the types of mistakes performed by any
given system.

To do this we will first use the STs correspond-
ing to the ground-truth captions to compute what
we call a Bag of Aggregated Semantic Tuples rep-
resentation (BAST). Figure 2 shows a reference
caption and its corresponding STs and BAST. No-
tice that for simplicity we show a single reference
caption, in reality if there are k captions for an im-
age, we will first compute the STs corresponding
to all of them. The BAST representation is com-
puted in the following manner:

1. For the locatives and predicate arguments
compute the union of all the corresponding
argument values appearing in any ST. For the
patient and agent we will compute a single
set which we refer to as the participants set.
We call this portion of the BAST the bag of
single arguments representation.

2. We compute the same representation but
now we look at pairs of argument val-
ues, meaning: predicate+participant, partic-
ipant+locative and predicate+locative. We
call these the bag of argument pairs.

3. Similarly we can also compute a
bag of argument triplets for predi-
cate+participant+locative

We can also compute the BAST representation
of an automatically generated caption. This can
be done via human annotation of the caption’s STs
or using a model that predicts STs from captions
(such a model is described in the next section).
Now if we have the ground-truth BAST and the
BAST of the candidate caption we can compute
standard precision, recall and F1 metrics over the
different components of the BAST. More specif-
ically, for the single argument component of the
BAST we compute:

• Predicate-Precision: This is the number of
predicted predicates present in the BAST of
the candidate caption that where also present
in the BAST of the ground-truth reference
captions for the corresponding image. That is
this is the number of correctly predicted pred-
icates.
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• Predicate-Recall: This is the number of pre-
dicted predicates present in the BAST of the
ground-truth captions that were also present
in the BAST of the candidate caption.

• Predicate-F1: This is the standard metric,
i.e. the harmonic mean of precision and re-
call.

We can compute the same metrics for other ar-
guments and for argument pairs and triplets of ar-
guments. Figure 3 shows an example of comput-
ing the BAST evaluation metric for two captions.

5 Automatic Prediction of Semantic
Tuples from Captions

To compute the BAST metric we need to have STs
for the candidate captions, one option is to perform
a human annotation. The problem is that collect-
ing human annotations is an expensive and time
consuming task. Instead we would prefer to have
a fully automated metric. In our case that means
that we need an automated way of generating STs
for candidate captions. We show in this section
that we can use the Flickr-ST dataset to train a
model that maps captions to their underlying ST
representation.

We would like to point out that while this task
has some similarities to semantic-role labeling, it
is different enough so that the STs can not be di-
rectly derived from the output of an SRL system,
in fact our model uses the output of an SRL sys-
tem in conjunction with other lexical and syntactic
features.

Our model exploits several linguistic features
of the caption extracted with state-of-the-art tools.
These features range from shallow part of speech
tags to dependency parsing and semantic role la-
beling(SRL). More specifically, we use the FreeL-
ing lemmatizer (Carreras et al., 2004), Stanford
part of speech(POS) tagger (Toutanova et al.,
2003), TurboParser (Martins et al., 2013) for de-
pendency parsing and Senna (Collobert et al.,
2011) for semantic role labeling. We also tried
using state-of-the art SRL system from Roth and
Woodsend (2014), but we observed that Senna per-
formed better on our dataset.

We extract the predicates by looking at the
words tagged as verbs by the POS tagger. Then,
the extraction of arguments for each predicate is
resolved as a classification problem. More specifi-
cally, for each detected predicate in a sentence we

Model 1 Model 2
Participants (PA) 0.967 0.865
Predicates (PR) 0.703 0.808
Locatives (LO) 0.793 0.819
PA-PR 0.884 0.812
PR-LO 0.779 0.723
PA-LO 0.849 0.757
PA-PR-LO 0.815 0.704

Table 1: F1 score of the automatic BAST extractor
taking as reference the manually annotated tuples
for the sentences generated by the two models.

regard each noun as a positive or negative training
example of a given relation depending on whether
the candidate noun is or is not an argument of the
predicate. We use these examples to train an SVM
that decides if a candidate noun is or is not an argu-
ment of a given predicate in a given sentence. This
classifier exploits several linguistic features com-
puted over the syntactic path of the dependency
tree connecting the candidate noun and the pred-
icate and features of the predicted semantic roles
of the predicate.

Table 1 shows the F1 of our predicted STs com-
pared against manually annotated STs for the two
caption generation systems that we evaluate in the
experiments section.

6 Related Work

Our definition of semantic tuple is reminiscent in
spirit to Farhadi et al. (2010) scene-object-action
triplets. In that work, the authors proposed to use
a triplet meaning representation as a bridge be-
tween images and natural language descriptions.
However, the similarity ends there because their
goal was neither to develop a formal semantic
representation of VDL nor to provide a semanti-
cally annotated dataset that could be used for au-
tomatic evaluation of captioning systems. At the
end, their dataset was created in a very simplis-
tic manner by extracting subject-verb, object-verb
and locative-verb pairs from a labeled dependency
tree by checking for dependencies where the head
and modifier matched a small fix set of possible
objects, actions and scenes. As we have illus-
trated with multiple caption examples, the seman-
tics of VDL can be quite complex and it can be
very ‘loosely aligned’ with the syntactic (e.g. de-
pendency structure) of the sentence. There has
also been some recent work on semantic image
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retrieval based on scene graphs (Johnson et al.,
2015), where they model semantic representation
of image content to retrieve semantically related
images.

BLEU has been the most popular metric used
for evaluation, its limitations when used in the
context of evaluation of caption quality have been
investigated in several works (Kulkarni et al.,
2013; Elliott and Keller, 2013; Callison-Burch et
al., 2006; Hodosh et al., 2013). Another com-
mon metric is ROUGE which has been shown to
have some weak correlation with human evalua-
tions (Elliott and Keller, 2013). An alternative
metric for caption evaluation is METEOR which
seems to be better correlated with human evalua-
tions than BLEU and ROUGE (Elliott and Keller,
2014). Recently a new consensus based metric
was proposed by Vedantam et al. (2014), here, the
main idea is to measure similarity of a caption to
the majority of ground-truth reference captions.
One of the limitations of metrics based on con-
sensus is that they are better suited for cases when
many ground-truth annotations exist for each im-
age. We take a different approach, instead of aug-
menting a dataset with more captions, we directly
augment it with annotations which reflect what
are the most relevant pieces of information in the
available captions.

Hodosh et al. (2013) propose a different metric
for evaluating image-caption ranking systems and
it can not be directly applied to evaluate sentence
generation systems (i.e. systems that output novel
sentences).

7 Experiments

7.1 The evaluated models

The evaluated models are two instances of the
Multimodal Recurrent Neural Network described
in (Simonyan and Zisserman, 2014a) and (Karpa-
thy and Fei-Fei, 2014), that takes an image and
generates a caption. content of the image in natu-
ral language).

This model addresses the caption generation
task combining recent advances in Machine Trans-
lation and Image Recognition: it combines a
Convolutional Neural Network (CNN) initially
trained to extract image features, and a Long Short
Term Memory Recurrent Neural Network (RNN-
LSTM), which is used as a Language Model con-
ditioned by the image features to generate the cap-
tions one word at a time.

Both networks can then be re-trained (or fine-
tuned) together by back-propagation for the task
of generating sentences. However, in this work
we use the pre-trained models provided by Karpa-
thy 2 for both the CNN and the RNN, which have
been trained sequentially. is fed by the features ex-
tracted by the CNN during the training process).

The CNN used in our experiments is the 16-
layer model described in (Simonyan and Zisser-
man, 2014b), which achieves state-of-the-art re-
sult in many image recognition tasks, provided by
the authors of the paper, and we used the standard
feature extraction procedure.

For the RNN-LSTM part, we have evaluated
two models to generate two distinct sets of cap-
tions that then could be evaluated using the BAST
metric. The architecture is the same in both
networks but one is trained using the Flickr-
8K (LSTM-RNN-Flickr-8K) train set, dubbed
Model 1 in the rest of the paper, and the other
is trained using MicrosoftCOCO (LSTM-RNN-
MsCOCO) training set, dubbed Model 2. Both
networks can be downloaded from the NeuralTalk
project web-page. Results for the two models
using the existing metrics3 can be seen in Ta-
ble 2; notice that our installation reproduces ex-
actly these results (third row).

7.2 BAST Metric Results
Figure 5 shows BAST scores for the two caption
generation models, we show both results with the
manually annotated STs and with the ones auto-
matically predicted by the models. The first obser-
vation is that the automatically generated STs are
a good proxy for the human evaluation. For all ar-
gument combinations, with the exception of loca-
tives (where the differences between the two sys-
tems are small) both the BAST computed from au-
tomatic and manually annotated STs sort the two
systems in the same way. Figure 4 shows some
example images and generated captions with the
extracted BAST tuples.

Another observation is that overall the numbers
are quite low. Despite all the enthusiasm with the
latest NN models for sentence generation the F1
of the system for locatives and predicates is quite

2We have used the open source project NeuralTalk
https://github.com/karpathy/neuraltalk
which makes it easy to use different pre-trained models for
each network.

3Evaluation metrics other than BAST have been com-
puted using the tools available at the MsCOCO Challenge
website (Lin et al., 2014)
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Dataset test RNN CIDEr Bleu 4 Bleu 3 Bleu 2 Bleu 1 ROUGE L METEOR
MSCOCO* web ref. 0.666 0.220 0.317 0.461 0.646 0.469 0.205
MSCOCO* Model 1 0.146 0.068 0.127 0.253 0.448 0.341 0.128
MSCOCO* Model 2 0.666 0.220 0.317 0.461 0.646 0.469 0.205
Flickr-ST Model 1 0.356 0.157 0.242 0.377 0.559 0.422 0.178
Flickr-ST Model 2 0.208 0.101 0.179 0.316 0.528 0.374 0.145

Table 2: Results with current metrics for the two models described in the text. MSCOCO* is the subset
of MSCOCO used in the NeuralTalk reference experiments. The first row are the results reported in the
NeuralTalk project web-site.

A dog is standing in the 
grass with a frisbee.

Model 1 <dog, run, grass><dog, run, grass>A dog runs through the grass.
Manual annotation Automatic extractionGenerated sentence

Model 2 <dog, stand, grass> <dog, be, {grass, frisbee}>
<dog, stand, {grass, frisbee}>

A dog chases a nerf ball in the grass.
A dog playing fetch in a green field.
A multicolor dog chasing after a ball across the grass.
A dog chasing after a ball on the grass.
Wolf-like dog chasing white wiffle ball through a green 

<{dog, ball}, chase, grass>
<{dog, fetch}, play, field>
<{dog, ball}, chase-after, grass>
<{dog, ball}, chase-after, grass>
<{dog, ball}, chase, field>

Gold captions Gold tuples

A bird is standing on a 
rock in the water.

Model 1 <dog, jump, log><dog, jump, log>A dog jumps over a log.
Manual annotation Automatic extractionGenerated sentence

Model 2 <bird, stand, {water, 
rock}>

<bird, be, {water, rock}>
<bird stand, {water, rock}>

A large white bird goes across the water.
A white bird is flying off the water surface.
A white bird is preparing to catch something in the water.
The large white bird's reflection shows in the water.
White bird walking across wet sand.

<bird, go, water>
<bird, fly, water>
<{bird, something}, catch, water>
<reflection, show, water>
<bird, walk, sand>

Gold captions Gold tuples

Figure 4: Example results of the two caption generation systems and BAST tuples.

modest, below 25%. Of all the argument types the
participants seem to be the easiest to predict for
both models, followed by locatives and predicates.
This is not surprising since object recognition is
probably a more mature research problem in com-
puter vision and state-of-the-art models perform
quite well. Overall, however, it seems that caption
generation is by no means a solved problem and
that there is quite a lot of room for improvement.

8 Conclusion

In this paper we have studied the problem of rep-
resenting the semantics of visually descriptive lan-
guage. We defined a simple, yet useful, repre-
sentation and a corresponding evaluation metric.
With the proposed metric we can better quantify
the agreement between the visual semantics ex-
pressed in the gold captions and a generated cap-
tion. We show that the metric can be implemented
in a fully automatic manner by training models
that can accurately predict the semantic represen-
tation from sentences. To allow for an objective
comparison of caption generation systems we cre-
ated a new manually annotated dataset of images,
captions and underlying visual semantics repre-

PA PR LO PA−PR PR−LO PA−LOPA−PR−LO
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 1 (hand)
Model 1 (auto)
Model 2 (hand)
Model 2 (auto)

Figure 5: F1 score of the BAST tuples, manu-
ally and automatically extracted, from the captions
generated by the two evaluated systems for the 50
annotated Flickr-8k validation set images.
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sentation by augmenting the widely used Flickr-
8K dataset.

Our metric can be used to compare systems but,
more importantly, we can use the metric to do a
better error analysis. Another nice property of our
approach, is that by decoupling the realization of
a concept as a lexical item from the underlying vi-
sual concept (i.e. the real world entity or event)
our annotated corpus can be used to derive differ-
ent evaluation metrics.
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Abstract

We examine the possibility that recent
promising results in automatic caption
generation are due primarily to language
models. By varying image representation
quality produced by a convolutional neu-
ral network, we find that a state-of-the-
art neural captioning algorithm is able to
produce quality captions even when pro-
vided with surprisingly poor image rep-
resentations. We replicate this result in
a new, fine-grained, transfer learned cap-
tioning domain, consisting of 66K recipe
image/title pairs. We also provide some
experiments regarding the appropriateness
of datasets for automatic captioning, and
find that having multiple captions per im-
age is beneficial, but not an absolute re-
quirement.

1 Introduction

Describing the content of an image is an easy task
for humans, but, until recently, had been difficult
or impossible for computers. Recent work in com-
puter vision has addressed this task of automati-
cally generating the caption of an input image with
promising results (Farhadi et al., 2010; Kulkarni et
al., 2013; Ordonez et al., 2011; Karpathy and Li,
2014; Mao et al., 2014; Vinyals et al., 2014; Kiros
et al., 2014; Donahue et al., 2014; Fang et al.,
2014). Several state-of-the-art approaches couple
a pre-trained deep convolutional neural network
(CNN) for image representation with a recurrent
neural network (RNN) to generate captions that
describe image content.

We consider the possibility that the generation
of these captions, however, is not heavily reliant
upon the image representation input. For instance,
if one was to train a RNN directly on image cap-
tions, one could learn a fair amount about the

general language of image captions. Sutskever
et al. (2011) demonstrate that RNNs are capa-
ble of producing diverse and surprisingly read-
able sentences, given a short starting sequence of
seed words. Furthermore, non-neural memoiza-
tion techniques like those proposed by Wood et
al. (2009) and Gasthaus et al. (2010) are capable
of producing very convincing language models for
particular domains.

While it is clear that existing algorithms do dis-
criminate based on image inputs, it is still unclear
if the apparently highly specific generated cap-
tions are primarily a result of language modeling
rather than image modeling. If it could be de-
termined that either image modeling or language
modeling is acting as the bottleneck in this mul-
timodal setting, research efforts could be directed
appropriately.

To examine the relative multimodal model-
ing capacities of existing neural captioning algo-
rithms, we execute a series of experiments where
we vary image representation quality produced
from a fixed CNN, and examine how the output
captions are affected.

For two existing datasets and a new domain we
analyze here, our results suggest that caption qual-
ity does not scale well with increased classifica-
tion accuracy of a fixed CNN. In fact, as the test-
ing/validation accuracy of a CNN with fixed archi-
tecture increases, all seven caption evaluation met-
rics we consider appear to saturate at surprisingly
low classification accuracies. While this does not
prove that better image modeling algorithms could
not produce better captions, it appears that many
apparently fine-grained aspects of generated nat-
ural language are the result of surprisingly coarse
grained visual distinctions.

For a fixed vision model, our results indicate
that there is likely little room for caption improve-
ment via gathering more training images alone.
We further postulate that progress could be made
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most quickly through the development of language
modeling techniques that take better advantage of
existing image representations. In particular, cou-
pling our results with independent but consistent
observations made by Karpathy and Li (2014) and
Vinyals et al. (2014) regarding model modifica-
tions that lead to overfitting, it’s very likely that
overfitting language models to image features is
still a big problem for many caption generation al-
gorithms. Our analysis highlights what we believe
to be an important question for these types of al-
gorithms going forward: if better image represen-
tations contain useful, fine-grained information, is
it possible to take advantage of that information
without overfitting?

To supplement our analysis of image represen-
tations, we consider a new caption generating task:
generating recipe titles based on images of food.
The motivation for this new task results from the
intuition that image representations might matter
more in visually fine-grained domains, where al-
gorithms must be able to discriminate between
minute changes in the input images. We col-
lect a dataset consisting of images of food cou-
pled with recipe titles (e.g. “thai chicken curry”)
from Yummly.com for this purpose. When com-
pared to captioning the coarse-grained ImageNet
domain, the specificity of our food dataset calls
for more subtle visual discrimination.

Instead of learning a food image representing
CNN from scratch to derive representations, we
apply transfer learning on a dataset of 101K food
images. Using this approach, we significantly
surpass current state-of-the-art performance for a
classification task on this dataset, despite using
a somewhat outdated deep architecture. We fur-
ther demonstrate that this transfer learning process
does indeed improve food captioning, though we
observe a similar “flattening” of all linguistic eval-
uation metrics, after a point.

2 Related Work

2.1 Automatic Captioning

The model we choose to analyze in detail is the
“Neural Image Captioning” (NIC) model detailed
by Vinyals et al. (2014), though we believe the
experiments we address here are relevant to re-
searchers working on distinct but related models.
In a similar fashion to Donahue et al. (2014)
and Karpathy and Li (2014), NIC feeds a pre-
classification representation of images produced

by an architecture like GoogLeNet (Szegedy et
al., 2014) or AlexNet (Krizhevsky et al., 2012)
to a LSTM recurrent neural network (Hochreiter
and Schmidhuber, 1997) for language generation.
The RNN weights are usually trained on datasets
consisting of pairs of images and several corre-
sponding human-generated annotations, such as
Flickr8k (Hodosh et al., 2013), Flickr30k (Young
et al., 2014), or Microsoft COCO (Lin et al.,
2014). The CNN is often pre-trained on a very
large set of images such as ImageNet (Deng et al.,
2009) and held fixed while the RNN is trained.
For many existing captioning datasets, ImageNet
is a convenient starting point, presumably because
images in most modern captioning datasets are of
similar objects.

More complicated caption generation mod-
els have also demonstrated success on several
datasets. To the knowledge of the authors, Fang
et al. (2014) hold the current best result (in terms
of BLEU-4) on the MSCOCO official captioning
test set, though Vinyals et al. (2014) reportedly
outperform Fang et al. on 2/5 evaluation met-
rics detailed on the MSCOCO captioning leader-
board.1 Their pipeline involves training a lan-
guage model directly on captions and a discretized
image representation consisting of a likely set of
objects in that image. Switching from a fine-
tuned AlexNet (Krizhevsky et al., 2012) to a fine-
tuned VGG-net (Simonyan and Zisserman, 2014)
improved BLEU-4 by 2.4 points, and METEOR
by 1.4 points. Because their image representa-
tions were discrete, it’s possible that their lan-
guage models were less prone to overfitting. It’s
not immediately obvious that a similar improve-
ment would occur for language models that oper-
ate on extracted vector representations of images
like NIC, however.

In contrast to the previous approaches that pro-
vide their RNNs with a representation of an image
only at the first timestep, Mao et al. (2014) pro-
pose an extension of a single-layer RNN, dubbed
the “multimodal RNN,” that feeds a representation
of an image to the RNN at every word generation
step. Finally, Kiros et al. (2014) propose a model
that first uses a CNN and an RNN to embed an
image and its corresponding caption in the same
semantic space, and then feeds vectors from this
space into a “language generating structure con-
tent neural language model”, an extension of a

1mscoco.org/dataset/
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Figure 1: Word cutoff versus log-scale vocab size
per image. This metric captures both dataset size
and vocabulary size and shows that Yummly has
the smallest vocabulary by a margin.

multiplicative RNN that “disentangles the struc-
ture of a sentence to its content.”

Among models that directly input extracted fea-
tures to a generating RNN, it is clear that image
representations can be mishandled. Specifically,
several authors note that passing image represen-
tations to the RNN at every timestep empirically
leads to worse performance. While Karpathy and
Li (2014) do not offer speculation as to why this
is the case, Vinyals et al. (2014) briefly mention
that this operation leads to over-fitting. These in-
dependent observations demonstrate that it is easy
to overfit to image features.

2.2 Caption Evaluation Metrics

To evaluate captions, we use BLEU-{1,2,3,4} (Pa-
pineni et al., 2002) METEOR (Denkowski and
Lavie, 2014) and CIDEr/CIDEr-D (Vedantam et
al., 2014). BLEU-n is a precision measure over
n-grams, whereas METEOR is a more sophisti-
cated metric that involves the computation of an
alignment between candidate and reference cap-
tions; both were originally conceived in the con-
text of machine translation. CIDEr/CIDEr-D was
created to evaluate captions of images and focuses
on consensus, particularly in cases where there are
multiple reference captions.

2.3 Recipe Title Prediction Tasks

To extend the scope of our investigation, we com-
pile a dataset consisting of images of food cou-
pled with recipe titles from Yummly.com. In
this dataset, the title of a recipe is usually several
words long and can be thought of as a “summary”
of the image, rather than a direct description, as

not all image content is described in the caption.
The image associated with “garlic butter shrimp,”
for instance, contains shrimp, a bowl, a lemon,
and a human hand, and the captioning algorithms
must learn to pick out which items are important
to describe. Furthermore, there is less grammati-
cal structure present in this dataset.

We view this task as distinct from existing cap-
tioning tasks for three reasons. First, the cap-
tions within Yummly are both short and restricted;
a caption in the Yummly setting has an average
length of 4.5 words, which is very low compared
to Flickr or MSCOCO settings (both have an av-
erage of 10 words per caption) and the vocabu-
lary is very small (see Figure 1). Second, to ad-
dress this data fully, models must learn very fine-
grained visual distinctions. Compared to the broad
ImageNet domain, the Yummly images generally
consist of some food item on a plate, coupled with
several words from a small vocabulary. Finally,
this dataset contains a single caption for each im-
age, thus the learning task is more difficult. Previ-
ous work (Hodosh et al., 2013) has emphasized the
importance of having multiple captions per image
in a caption ranking setting, though its unclear if
similar observations extend to a generation setting.

While we are only aware of the work of Mal-
maud et al. (2015) that address food in a mul-
timodal fashion, Bossard et al. (2014) compile
the Food 101 dataset which generalizes and in-
creases the scale of previous food image datasets
(i.e. Chen et al. (2009), Yang et al. (2010)). Their
dataset includes 101k images of 101 types of foods
and the task they address is classification.

2.4 Choosing a CNN/RNN Architecture

While substantial improvements have been made
in terms of classification accuracy on ImageNet
using increasingly deep architectures, we rely
on the canonical neural network described in
Krizhevsky et al. (2012) to generate our repre-
sentations in most of our experiments. The use of
AlexNet in particular allows for more direct com-
parison with previous work (i.e. Bossard et al.
(2014)) and faster training time when compared
to other deep models. This is beneficial particu-
larly because our experiments are not specifically
designed to produce state-of-the-art results.

We perform 20 random parameter searches to
determine decent parameter settings using the
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Figure 2: Transfer learned Food-101 CNN accuracy across various classes in the dataset, presented for
easy comparison with Figure 6 in Bossard et al. (2014). In general, this model finds the same classes
difficult to classify as the models described in previous work, suggesting that some types of fine-grained
distinctions are difficult for many models.

Neuraltalk 2 library for all captioning experiments,
selecting parameter settings resulting in the low-
est validation set perplexity, unless specified other-
wise. Settings we take as fixed include a minimum
vocabulary threshold of 5, weight optimization us-
ing RMSprop (Tieleman and Hinton, 2012), and
a hidden representation size of 256. We restrict
our consideration to NIC because we believe it to
be representative of the state-of-the-art in neural
captioning. When we are evaluating models, we
generate captions using a beam search of width
20. For the recipe title prediction evaluation, we
include an end-of-caption token to avoid issues re-
lating to predicted zero length captions; this has
the result of artificially inflating evaluation metrics
such that numerical cross-dataset comparisons are
not valid.

2.5 Adapting the Food CNN through
Transfer Learning

To represent food images properly, we find it ap-
propriate to learn a model specific to the task of
food recognition. Food-101 (Bossard et al., 2014)
consists of only 101K images, which is a rela-
tively low number of images to train a CNN from
scratch. As such, we use a set of ImageNet-trained
weights as initializations for our training of a CNN
on the Food-101 classification task. This process
is commonly referred to as transfer learning (Caru-
ana, 1995; Bengio, 2012).

The intuition behind transfer learning in CNNs
is that low-level features learned early on in the
base network (which are generally observed to be

2github.com/karpathy/neuraltalk

color blob and Gabor features (Yosinski et al.,
2014)) are useful to networks trained on diverse
classification tasks. Initializing the weights of the
network to weights successful in another classifi-
cation task should allow training of the new net-
work to converge faster and to a better local opti-
mum than if random initializations were used.

In fact, for the Food-101 dataset, we achieve
a rank-1 accuracy of 66.80% when using transfer
learning, when compared with the 56.40% rank-
1 accuracy reported by Bossard et al. (2014) us-
ing the same AlexNet architecture; class-by-class
accuracies are given in Figure 2 for comparison
with previous work. Our network is learned using
only 100k iterations of the Caffe library at a re-
duced learning rate, whereas training from scratch
required Bossard et al. 450k iterations. For our
tuning process, we follow the guidelines and pa-
rameter settings specified by the transfer learning
example distributed with Caffe.3

Once the network is tuned, we compute 4096
dimensional vector representations for each image
in Yummly dataset by extracting the network acti-
vations in the final fully-connected layer.

3 Yummly Dataset: Description and
Baselines

After establishing that a CNN could be transfer
learned to classify images of dishes at state-of-the-
art performance, we were able to shift our focus to
caption generation in a food domain.

The food dataset we collect contains roughly
66K recipes, each consisting of a single image-

3https://github.com/BVLC/caffe
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Figure 3: Examples of the captioning system output on several images. The first row of images represents
images that are well captioned. The second row represents different types of images the system believes
to be sandwiches. The third row represents images that the system has captioned incorrectly.

recipe pair. This data was taken from
Yummly.com, a website that aggregates and per-
forms analysis of millions of recipes. Out of the
66K recipes, 6K are reserved for testing, 6K are
designated as a validation set, and the remaining
54K are used for model training.

This dataset differs from the Flickr datasets and
MSCOCO both in terms of vocabulary and in
terms of image content. The vocabulary size per
image is smaller than any of the other datasets by
a wide margin (see Figure 1). While it’s clear the
vision task requires more subtle distinction when
compared to ImageNet, because the average cap-
tion length is shorter, it’s ambiguous as to whether
or not the Yummly language generation task is par-
ticularly “fine-grained.”

3.1 Baseline Results

Table 1 presents some baseline results using the
algorithms listed. Common-3 predicts a reason-
able ordering of the three most common words
(“with chicken and”) for all captions. Nearest
neighbor predicts the caption of nearest neigh-

bor in the transfer-learned 4096-dimensional em-
bedding space. Common-Tri/Bi predict the most
common tri/bigram in our dataset (“macaroni and
cheese”/“ice cream”) for all images.

Across the board, and particularly for BLEU-
{2,3,4} scores, the caption generating programs
outperform all baselines, which suggests the pro-
posed task is adequately framed. However, it is
worth noting that only roughly 300/6117 (roughly
5%) of generated captions are unique. This is
rather low when compared with a representative
result for Flickr8k, a dataset of similar size, where
200/1000 (roughly 20%) of generated captions
are unique. It might be possible to re-frame the
Yummly generation task as one of classification,
however, it’s not obvious how one might drive a
fixed set of labels. In a later section we discuss
whether or not only having one caption per image
or other dataset features is a contributing factor to
this result.
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(a) Yummly: Transfer learned domain (b) Flickr8k: Directly learned domain

Figure 4: Classification accuracy of CNN versus seven different normalized (100 is best possible) lin-
guistic criteria for both the transfer learned (left) and directly learned (right) domains.

B-1 B-2 B-3 B-4
Com-3 14.2 2.7 0.8 0.0
N-Neigh 20.5 2.5 0.6 0.0
Com-Tri 30.4 6.5 3.4 2.2
Com-Bi 35.4 8.9 5.2 0.0
Karpathy and Li
(2014)

42.7 19.6 11.9 13.2

Vinyals et al.
(2014)

46.2 23.1 14.8 10.2

Table 1: Yummly baseline BLEU-{1,2,3,4} scores
for several baselines and two high performing lan-
guage generation algorithms.

4 Image Representations

4.1 Experiment Descriptions

We vary image representation quality as follows:
for the Flickr8k and Flickr30k datasets, we com-
pute the representations given by snapshots of
AlexNet taken mid-training on the ILSVRC2012
(Russakovsky et al., 2015) task. We use snap-
shots taken at intervals of 10k from 0k (random
initialization) to 100k iterations. While this range
of iterations is before the model has entirely con-
verged, the rank-1 classification accuracy of the
trained CNN over the ImageNet validation set in-
creases from roughly 0% to over 40% during this
time (after the model converges at 450k iterations,
the rank-1 validation accuracy is 57%). From
the standpoint of examining representation qual-
ity, this set of snapshots is important because this
is likely where the network is learning most of
its layer-by-layer abstractions, and the behavior of

the network after 100k iterations can be extrapo-
lated based on the data we analyze here.

In a similar fashion, for Yummly we com-
pute representations generated by snapshots of the
transfer learned network at intervals of 10k from
0k to 90k, though our starting point is a fully-
converged CNN that produces 57% rank-1 accu-
racy on ImageNet’s validation set.

We train 5 NIC models from a random initial-
ization per CNN for Flickr8k and Yummly, and
2-4 NIC models per CNN for Flickr30k. Ev-
ery data point described in the following section
is the result of up to six days of parallel com-
putation using a modern 4/8-core machine. It
should be noted that test/validation accuracy of
these CNNs is not monotonically increasing with
snapshot number. While the trend is that training
CNNs for more iterations results in higher accu-
racy, there is some noise. For instance, for the
Food-101 transfer learned CNN, rank-1 test accu-
racy drops from 61% to 60% over the snapshots
extracted at 10k and 20k iterations respectively,
before abruptly jumping to 66% testing accuracy
in the next 10k iterations.

4.2 Results
We evaluate predicted captions using seven cap-
tion evaluation metrics, namely, BLEU-{1,2,3,4},
METEOR, and CIDEr/CIDEr-D. Figure 4 shows
our main results for both the directly learned and
transfer learned domains. In both cases, all cap-
tioning metrics appear to level off early, and do
not improve significantly with increased classifi-
cation rate after a point. This suggests that weight
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settings for a fixed CNN with higher classification
rates are unlikely to produce significantly better
captions in terms of these seven evaluation met-
rics, after a point.

To quantify this lack of improvement, for each
dataset we select a CNN that performs its asso-
ciated visual classification task relatively poorly,
and compare it to all better-classifying CNNs. For
Flickr8k, for instance, we consider a CNN that
produces 30.5% rank-1 accuracy on ImageNet’s
validation set, and compare its caption perfor-
mance against that of 8 “better” CNNs that achieve
between 34.6% and 41.7% accuracy; there are a
total of 56 comparisons, in this case.

Though it is difficult to compute accurate
statistics with only 5 observations in each
group, we conduct three separate statistical tests,
each with different variance/normality assump-
tions/efficiencies. The tests we perform are Stu-
dents’ t-test, Mann-Whitney U-test, and Welch’s
unpaired t-test.

In the case of Flickr8k, there are very few sig-
nificant differences between the 30.5%-CNN and
more accurate CNNs. In fact, in 14/56 cases (in-
cluding half the time among BLEU-1/2 scores) the
lower classifying CNN actually produced better
captions. The results significant at the 5% level for
any statistical test suggested that the 38%-CNN
outperformed the 30.5%-CNN in terms of BLEU-
1/2, and that the 39.5%-CNN outperformed the
30.5%-CNN in terms of METEOR.

The results for Flickr30k were very similar to
the results for Flickr8k. In Figure 5 we present
results from this dataset presented against CNN it-
eration number rather than CNN classification ac-
curacy. We modify the presentation of our data
simply to demonstrate that caption quality and it-
eration number (not just testing/validation accu-
racy) are also apparently independent after a point.
No evidence of improvement was observed after
the 30.5%-CNN, though only 2-4 observations per
CNN could be made due to computational restric-
tions.

In total, in the directly-learned domain
(Flickr8k/30k) all metrics appear to saturate after
AlexNet reaches 30% classification accuracy over
the ImageNet validation set. It is possible that
training to convergence could result in slightly
higher quality captions. However, our results
indicate that efforts on ImageNet which result
in less than a roughly 10% rank-1 classification

Figure 5: Caption quality versus CNN iteration (in
thousands of iters) that representations were de-
rived from. It is clear that a caption quality satura-
tion happens very early on, and there is little to no
improvement in captions as the CNNs are trained
for more time.

accuracy increase for a fixed network are likely
not worth undertaking if one’s end goal is higher
quality captions.

In the transfer learned domain, it is clear that
domain adaptation improves caption quality, even
after a small number of iterations. All statistical
tests for all evaluation metrics indicate a highly
significant difference (p < .01) between captions
generated by a CNN trained directly on ImageNet,
and one that has been transfer-learned using Food-
101 for just 10K iterations (producing a rank-1
testing accuracy of 61.2% on that dataset). After
a point, however, we observe the same indepen-
dence of caption quality and classification accu-
racy.

It seems that “knowing more” about the image
does not help the RNN generate more accurate
captions after a point because the language pat-
terns it learns are sufficient. This result is akin to
prior work (e.g. Sutskever et al. (2011)) which
demonstrates that RNNs are able to generate rea-
sonable natural language, given a relatively weak
seeding signal. The “weak” signal in this case is
provided by image representations, rather than by
a short sequence of starting words.

4.3 The Effect of Changing CNN
Architectures

Our analysis thus-far has focused on a single im-
age model, AlexNet, for extracting image repre-
sentations. In this experiment, we compare the
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captions generated on Flickr8k when using an im-
proved CNN. We train 15 NIC models based on
features extracted from a fully converged AlexNet,
and 15 NIC models based on features extracted
form a fully converged 16-layer VGGNet (Si-
monyan and Zisserman, 2014). The former model
produces a 57.1% rank-1 accuracy over Ima-
geNet’s validation set, while the later outperforms
this mark, producing 75.6% rank-1 validation ac-
curacy. The default train/valiation/test split of
6k/1k/1k images is used for training.

Our results are summarized in Table 2. In addi-
tion to the seven caption evaluation metrics we’ve
used in previous experiments, this table also in-
cludes the proportion of the 1k generated captions
that are unique, and the train/validation perplexi-
ties.

Counter-intuitively, we find that, despite pro-
ducing 18% lower rank-1 validation accuracy
across ImageNet’s validation set, AlexNet gener-
ates better captions than VGG net by all evalua-
tion metrics. Notably, the models using VGG fea-
tures produce lower perplexity across the valida-
tion split. Because we used validation perplexity
as a metric for hyperparameter selection, it’s likely
that the VGG net models are overfitting to the par-
ticular Flickr8k validation split we used. However,
the AlexNet trained models do not suffer a simi-
lar performance degradation. Here, it appears that
not overfitting to image features is more important
than taking advantage of very detailed image rep-
resentations.

Our results from this experiment illustrate that
better image representations might actually cause
models like NIC to become more prone to overfit-
ting. It’s possible, too, that the early saturation of
caption quality observed in the previous sections
could be primarily due to overfitting. Future work
would be well suited to evaluate different methods
of hyperparameter selection.

4.4 One caption per image?

We conclude with a final experiment to address
one potential shortcoming of domains similar to
Yummly, where one is only able to extract a single
caption per image. Though Yummly differs from
the other datasets we explore in several ways (cap-
tion length/vocab size) a fundamental question
arises from its examination: for a fixed amount of
training data, is it better to have more captions per
image, or more images with single captions? In

short, we hope to experimentally examine Hodosh
et al.’s (2013) suggestion that having multiple cap-
tions per image is vital.

To address this question, we use Flickr30k,
which provides five captions per image. We subset
this dataset in two ways. In the first, we remove 4
captions randomly from each image in the train-
ing set, but keep all images (the “more images”
method). In the second, we randomly remove 80%
of training images, but keep all 5 captions for the
remaining (the “more captions” method). This
subsetting scheme is such that the overall num-
ber of image/caption pairs is the same between
both methods, but the training data is of a different
form.

We extract image representations from the Im-
ageNet CNN at 100k iterations (which produces
roughly 40% rank-1 classification accuracy over
the ImageNet validation set) and train NIC on 6
random datasets constructed via the “more im-
ages” subsetting method, and 7 random datasets
constructed via the “more captions” subsetting
method. Finally, we generate captions and com-
pare performance. A good hyperparameter setting
for Flickr30k is borrowed from the random search
conducted over the whole dataset experiments de-
scribed in the previous section.

Our findings, summarized in Table 3, gener-
ally align with the accepted notion that having
more captions and less images is better than hav-
ing more images with single captions. For all
seven evaluation metrics, the mean score for the
models trained on the “more captions” datasets
was greater than the mean score for the models
trained on the “more images” datasets, and the re-
sults were significant at the 5% level for all three
statistical tests in the case of BLEU-1 and BLEU-
2. Interestingly, for CIDEr/CIDEr-D, the results
were somewhat significant (all 6 p-values less than
.15) but the results for METEOR were the least
significant (all 3 p-values greater than .94).

The validation perplexity of the “more images”
method is lower when compared to the more cap-
tions method, whereas the training perplexity is
higher. Despite the fact that the output captions
are better overall, this is an indication that hav-
ing multiple captions per image can actually make
NIC more prone to overfitting.

Finally, the NIC models trained on the “more
caption” subsets produced higher proportions of
unique captions on the test set. This suggests
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AlexNet VGG
Top-1 ImageNet
Val Acc

57.1% 75.6%

B-1 54.187 53.913
B-2 33.967 33.527
B-3** 20.640 20.007
B-4** 12.833 12.213
METEOR 14.559 14.559
CIDEr 32.416 31.362
CIDEr-D* 26.200 25.242
Proportion
Unique***

20.5% 17.0%

Training
Perplexity***

10.79 11.04

Validation
Perplexity***

17.84 17.66

Table 2: Effect on caption quality when using
the fully converged AlexNet and VGGNet on
Flickr8k. Significance for all 3 statistical tests that
there was a true difference between the subsetting
techniques: ***p < .001, **p < .01, *p < .05

that the single-caption per image feature of the
Yummly dataset contributed to a lack of caption
innovation.

Despite only having one caption per image,
however, NIC was still able to produce good re-
sults on the single-captioned subsets. This indi-
cates that quality captioning datasets can be built
with only one caption per image. The number of
additional images one needs to gather to compen-
sate for this feature, however, is likely greater than
the number of captions one would need to add to
existing images.

5 Conclusion

We demonstrate the relationship between CNN
classification accuracy and the quality of captions
generated by a state of the art neural captioning
algorithm. Training increasingly accurate image
classifiers does not lead to better captions, after a
point. This early saturation of caption quality is an
indication that the performance of neural caption
generating algorithms likely cannot be increased
directly by producing more accurate CNNs. Fur-
thermore, many of the apparently highly-specific
generated captions output by models like NIC are
likely due to language models capturing coarse
grained information and generating corresponding
plausible natural language sequences.

The role of overfitting to image features is dif-

More Captions More Images
B-1** 55.167 54.243
B-2* 33.567 32.814
B-3 20.633 20.300
B-4 13.133 13.014
METEOR 13.105 13.096
CIDEr 21.428 20.418
CIDEr-D 16.350 15.550
Proportion
Unique**

14.8% 9.96%

Training
Perplexity**

14.69 16.01

Validation
Perplexity*

25.86 25.33

Table 3: Evaluations for the NIC models trained
on subsets of Flickr30k containing more captions
(5 captions per image, 1/5 the total number of im-
ages) and more images (1 caption per image, all
training images). Significance for all 3 statistical
tests that there was a true difference between the
subsetting techniques: **p < .01, *p < .05

ficult to quantify. On one hand, there is extra in-
formation contained in image representations that
NIC, for instance, does not take advantage of, and
even commonly overfits to. However, it’s not clear
that this extra, fine-grained information is even
worth taking into account. The success of mod-
els that generate language based on discretized
image representations (e.g. (Young et al., 2014))
demonstrates that algorithms are capable of state-
of-the-art performance without consideration of
rich, real-valued vector features. It’s likely that
these types of models are less prone to overfitting,
as well.
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Abstract

A key task to understand an image and its
corresponding caption is not only to find
out what is shown on the picture and de-
scribed in the text, but also what is the
exact relationship between these two el-
ements. The long-term objective of our
work is to be able to distinguish differ-
ent types of relationship, including lit-
eral vs. non-literal usages, as well as fine-
grained non-literal usages (i.e., symbolic
vs. iconic). Here, we approach this chal-
lenging problem by answering the ques-
tion: ‘How can we quantify the degrees
of similarity between the literal meanings
expressed within images and their cap-
tions?’. We formulate this problem as a
ranking task, where links between enti-
ties and potential regions are created and
ranked for relevance. Using a Ranking
SVM allows us to leverage from the pref-
erence ordering of the links, which help us
in the similarity calculation for the cases
of visual or textual ambiguity, as well as
misclassified data. Our experiments show
that aggregating different features using a
supervised ranker achieves better results
than a baseline knowledge-base method.
However, much work still lies ahead, and
we accordingly conclude the paper with a
detailed discussion of a short- and long-
term outlook on how to push our work on
relationship classification one step further.

1 Introduction

Despite recent major advances in vision and lan-
guage understanding, the classification of usage
relationships between images and textual cap-
tions is still an open challenge, which is still
to be addressed from a computational point of

view. Relationships between images and texts
can be classified from a general perspective into
three different types, namely literal, non-literal
and no-relationship. Literal relations cover cap-
tions and/or longer corresponding texts that have a
descriptive character with respect to the associated
image. Non-literal refers instead to images and
captions having a relationship that arouses broad
associations to other topics, e.g., abstract topics.

The class of non-literal relationships itself can
be further divided: Symbolic photographs are a
common example of non-literal relations. Pictures
of this kind can be used without any further expla-
nation on the basis of common socially-mediated
understanding, e.g., a heart as a symbol of love,
an apple and the snake as an symbol of original
sin, or the peace symbol. Social media typically
use another type of language and sometimes can
only be understood by insiders or people, who at-
tended to the situation the photo has been taken,
e.g., “Kellogs in a pizza box”, with a photo show-
ing a cat sleeping in a pizza box. Without the im-
age, it would have been only clear to those who
know Kellogs that a cat is meant by this caption.
To the ordinary reader, this would rather suggest
a typo and thus, cereals in the pizza box. Those
types of relationships can often be found on Flickr,
e.g., in the SBU 1M dataset (Ordonez et al., 2011).

A third category is the one of Media icons (Perl-
mutter and Wagner, 2004; Drechsel, 2010), which
is typically focused on hot, sensitive, and abstract
topics, which are hard to depict directly. Pic-
tures of this kind are often used by news agencies,
politicians, and organizations, e.g., a polar bear
on an ice floe for global warming. This type of
non-literal relationship uses a combination of de-
scriptive parts and language beyond a literal mean-
ing, which assumes fine-grained domain and back-
ground knowledge, e.g., the ice floe melting as a
result of global warming. When knowledge of this
kind is not readily available to the reader, it can be
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Figure 1: Caption: ”A girl with a black jacket and
a blue jeans is sitting on a brown donkey; another
person is standing behind it; a brown, bald slope
in the background.”

still acquired by reading associated articles or, in
general, by getting to know further facts about a
topic. This way the readers are able to create the
association of the topic to the image-caption pair.

In our work, we aim at developing methods
for automatic understanding of relations between
natural language text and pictures beyond literal
meanings and usages. In particular, we ultimately
aim to automatically understand the cultural se-
mantics of iconic pictures in textual contexts (i.e.,
captions, associated texts, etc.). Far from being
an abstract research topic, our work has the poten-
tial to impact real-world applications like mixed
image-text search (Panchenko et al., 2013), es-
pecially in cases of ambiguous or abstract topics
in textual queries. Even if current state-of-the-
art search engines perform very well, not every
search query is answered with what a user ex-
pects, e.g., in cases of ambiguity or image and text
pairs with non-literal meaning. Being able to as-
sess if a caption and an image are in literal, non-
literal, or no relationship can have positive effects
to search results. Another, more specific use case
is the training of image detectors with the use of
captions, which are available in large amounts on
the World Wide Web. Training image detectors
requires image-caption pairs of the literal class, so
being able to reliably identify such instances will
arguably produce better, more reliable, and pre-
cise object or scene detection models. This is par-
ticularly of interest in the news and social media

Figure 2: Non-literal caption: “Deforestation to
make way for palm oil plantations has threatened
the biodiversity of Borneo, placing species such
as the orangutan at risk.”. Literal caption: “Two
orangutans hugging each other on a field with
green leaves. A wooden trunk lays in the back-
ground.”. Photograph: BOSF I VIER PFOTEN

domain, where customizing image detectors for
trending entities is of high interest.

Most of the datasets used for training and test-
ing methods from natural language processing,
computer vision, or both, are focusing on im-
ages with literal textual description. When hu-
mans are asked to annotate images with a descrip-
tion, they tend to use a literal caption (cf., e.g.,
Figure 1). However, captions in real world news
articles are devised to enhance the message and
build bridges to a more abstract topic, thus have a
non-literal or iconic meaning – cf., e.g., the cap-
tion of Figure 2 on deforestation in combination
with an image showing the orangutan mother with
her baby in an open field without trees. Note that
image-captions of this kind are typically designed
to arouse an emotive response in the reader: in
this case, the non-literal usage aims at leading the
reader to focus on an abstract topic such as the
negative impacts of palm oil plantations. In con-
trast, the literal caption for this image would rather
be “Two orangutans hugging each other on a field
with green leaves. A wooden trunk lays in the
background.” The literal image-caption pair, with-
out further background knowledge, does not trig-
ger this association.

Existing methods from Natural Language Pro-
cessing (NLP), Computer Vision (CV) do not, and
are not meant to find a difference between the
same images being used in another context or the
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same textual contexts depicted with other view-
points of an abstract topic. In the case of image
detection there is no difference between the image
with the literal or non-literal caption – it is still the
same image, classified as e.g., orangutans. Only
when the caption is incorporated into the predic-
tion process, we are able to identify the image-
caption pair into the appropriate usage classes, ei-
ther in a coarse-grained (i.e., ‘literal’ versus ‘non-
literal’) or fine-grained (e.g., ‘media icons‘ versus
‘symbolic photographs’).

Spinning our example further, if we would re-
place the image of Figure 2 with a picture show-
ing a supermarket shelf with famous palm-oil-rich
products, it should still be classified as non-literal.
However, when regarding the caption as arbitrary
text without the context of a picture, this does
not have any iconic meaning. Likewise, image
processing without considering text cannot predict
the relationship to this abstract topic. Therefore,
the classification into ‘literal’ or ‘non-literal’ (re-
spectively ‘media iconic’) needs to integrate NLP
and CV together. Our working assumption is that
the iconic meaning reveals itself through the mis-
matches between objects mentioned in the caption
and objects present in the image.

In this paper we set to find methods and mea-
sures to being able to classify these different
image-text usage relationships. Consequently, we
aim at answering the following research questions:

• What constitutes a literal class of image-
caption pair?

• Which method or measure is required to clas-
sify a pair as being literal?

• Are we able to derive methods and measures
to approach the detection of non-literal pairs?

• How to differentiate literal, non-literal, and
not-related classes from each other?

As a first step towards answering these questions,
we focus here on detecting literal text-image us-
ages. Therefore, we focus on a dataset of images
and captions with literal usages. Our hunch is that
the more links between entities from the caption
and regions in the image we can create, the more
literal the relationship becomes. In order to verify
this hypothesis, we need to create links between
entities from the text and regions with an object in
the image, a problem we next turn to.

2 Methods

We provide a first study of the problem of visual
entity linking on the basis of a machine learn-
ing approach. To the best of our knowledge,
Weegar et al. (2014) is the only previous work
to address the problem of automatically creating
links between image segments and entities from
the corresponding caption text. For their work,
they use the segmented and annotated extension of
the IAPR-TC12 dataset (Grubinger et al., 2006),
which consists of segmented and textual annotated
images and corresponding captions – we refer to
this dataset as SAIAPR-TC12 (Escalante et al.,
2010) in the following. In contrast to their work
we aim at exploring the benefits of a supervised
learning approach for the task at hand: this is be-
cause, in line with many other tasks in NLP and
CV, we expect a learning framework such as the
one provided by a Ranking SVM to effectively
leverage labeled data, while coping with ambigu-
ity within the images and associated text captions.

2.1 Ranking SVM
Given a tuple (Q,S,M), with Q as a query, S
the ranked segments of an image, and M defined
based on the different methods to generate and ex-
tract features. Then the score Hθ(Q,S) between
a query Q and a segment S, can be obtained by
maximizing over M (Lan et al., 2012; Joachims,
2002): Hθ(Q,S) = arg maxM Fθ(Q,S,M),
where θ is the feature vector consisting of at least
one feature or a combination of features. We now
proceed to describe such features in details.

2.2 Ranking SVM with Textual Features
GloVe-based cosine similarity: We use the dis-
tributional vectors from Pennington et al. (2014)
to provide us with a semantic representation of
the captions. For each noun of the caption, the
GloVe vector calculated on a pre-trained model
(Wikipedia 2014, 300d) is used to calculate se-
mantic similarity as:∑

qi∈q\qcolor∩l
α(f(q), f(l))

where q \ qcolor refers to queries without color en-
tities. l is defined with l ∈ Ij , where l denotes
the label of the segment of the current image (Ij).
f(q) and f(l) is defined as the feature vector from
GloVe and α is defined as the cosine similarity
function between those vectors.
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GloVe-based cosine similarity with color enti-
ties: Besides nouns, GloVe is also able to im-
plicitly associate colors to words, allowing us to
determine that, e.g., the color name ‘green’ and
the noun ‘meadow’ have a high similarity. The
SAIAPR-TC12 dataset has more descriptive cap-
tions, where a lot of color names are used to
describe how the objects and scenes look like.
Besides, the text-based label catalog uses color
names to further specify a subcategory of a diverse
hypernym, e.g., ‘sky’ can be ‘blue’, ‘light’, ‘night’
and, ‘red-sunset-desk’. We accordingly extend the
GloVe feature as:∑

qi∈q∩l
α(f(q), f(l))

where q consists of all possible queries, including
the color entities.

In the text-only setting the ranking SVM uses only
the textual description of the labels and no visual
features. The ranking SVM features thus consist
of cosine similarities between segment labels and
a query consisting of entities and color names. The
result thus consists of a ranking of potential seg-
ment labels.

2.3 Ranking SVM with Visual Features

HOG: Since images usually do not come with
manual segmented and textual annotated regions,
we include visual features to systematically sub-
stitute textual and manually set information in the
images. Thus, we make use of image features as
an alternative to the text-based label catalog.

Histogram of Oriented Gradients (HOG): In
this stage we still leverage from the image seg-
ments, but instead of using the textual label, we
apply a classification to every segment. Based on
the label statistics from our dataset, models are
trained using a binary SVM. For each label, we
collect data from ImageNet (Deng et al., 2009),
where bounding box information for some objects
are provided. With the images from ImageNet,
SVM classifiers based on Histogram of Oriented
Gradients (HOG) (Dalal and Triggs, 2005) are
trained1. After training, bounding boxes around
every segment are defined. From the normalized

1Note that for our purposes we cannot use existing mod-
els, like Pascal VOC (Everingham et al., 2010), for instance,
because it has only a small overlap in the set of objects in our
data.

version of bounding boxes, HOG features are ex-
tracted. These features are then used to classify
the test data within every of the trained models.
The resulting predictions are stored and serve as
features for the Ranking SVM. Thus, our HOG-
based features are defined as:∑

qi∈q\qcolor∩s
βTi f(S)

Where βi is the prediction of a linear SVM of de-
tecting object i and f(S) denotes the HOG feature
vector of segment S.

HOG and Color Names: Based on Ionescu et
al. (2014), we use eleven different color names,
which are extracted from the captions of the texts
from our dataset. For every normalized bound-
ing box of the segments from the training dataset,
color histograms are calculated. The bins of the
color histograms serves as a feature vector for the
color Ranking SVM. The colors of the bounding
boxes are ranked with respect to the context of the
color in the caption:∑

qi∈q\qentities∩s
γTi f(S)

The queries are now color names without object
entities, f(S) defines the distribution of a color
defined in γ. We assume entities, which are fur-
ther described with a color name in the caption,
as multi-word queries. The predictions from both
rankings are summed to build the final ranking.

3 Evaluation

3.1 Dataset
We conduct experiments on the SAIAPR-TC12
dataset (Escalante et al., 2010). Whilst the
Flickr30k dataset (Plummer et al., 2015) is 1.5
the size of the SAIAPR-TC12, it lacks accurate
segmentations, which might be relevant for image
processing. The IAPR-TC12 consists of 20,000
images with a caption each. The images are cov-
ering topics of interesting places, landscapes, an-
imals, sports, and similar topics, which can typ-
ically be found in image collections taken from
tourists on their holidays. A caption consists of
one to four sentences (23.06 words per caption on
average (Grubinger et al., 2006)). In addition, the
extension delivers segmentation masks of each im-
age, where an image can have multiple segmen-
tation (4.97 segments per image on average (Es-
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Figure 3: Figure 1 with segmentation masks. The
segments are labeled with: mammal-other, moun-
tain, woman, sand-desert

calante et al., 2010)). Each segmentation has ex-
actly one label from a predefined catalog of 276
annotations created by a concept hierarchy. Fur-
thermore, spatial relations (adjacent, disjoint, be-
side, X-aligned, above, below and Y-aligned) of
the segmentation masks are defined and image fea-
tures are given, with respect to the segments (area,
boundary/area, width and height of the region, av-
erage and standard deviation in x and y, convexity,
average, standard deviation and skewness in both
color spaces RGB and CIE-Lab).

An example image of the SAIPR-TC12 with
segmentation masks and the affiliated caption is
given in Figure 1 and 3. The example also shows
that due to the limited amount of labels objects are
not inevitably represented by the same word in im-
ages and captions. Links between entities of the
captions and corresponding image segments are
not given by default. Due to the topics, covered
by the dataset, which are similar to other datasets,
the SAIAPR-TC12 can be used as training data.
Whereas other, non segmented datasets can be
used as testing data, e.g., MediaEval Benchmark-
ing (Ionescu et al., 2014).

3.2 Baseline

We build upon previous work from Weegar et al.
(2014) and develop a text-based baseline for our
task. To this end, we selected 39 images with 240
segments (from 69 different objects) and corre-
sponding captions with 283 entities (133 different

Entity Amount Label Amount
Sky 12 Leaf 16
Mountain 9 Rock 14
Rock 8 Sky (Blue) 13
Tree 7 Plant 13
House 7 Man 11
Wall 6 Woman 11
People 6 Mountain 10
Building 5 Ground 9
Woman 4 Grass 8
Water 4 Vegetation 8

Table 1: Most common 10 labels and entities of
test data selection.

entities), with an average of 6.15 and 7.26, respec-
tively. An overview of object representations in
the amount of labels and entities, and their distri-
bution within the test data is given by Table 1.

From each of the 39 images we use the tex-
tual image segment labels (in the latter referred
to as label) and the captions. With Stanford
CoreNLP (Manning et al., 2014) we extract the
nouns (NN/NNS) from the captions (in the latter
referred to as ‘entity’). If a noun is mentioned
in plural form (NNS), we use the lemma instead
(e.g., horses is stored as horse). The extracted en-
tities and labels are stored and further processed
image-wise, so that only links between an image
segment and an entity from the corresponding cap-
tion can be created.

With WordNet and the similarity measure ac-
cording to WUP (Wu and Palmer, 1994), we calcu-
lated the similarity between every label and every
entity. A link is stored between the most similar
label and entity. Whereas we allow to link multi-
ple segments to one entity. This is done to be able
to link multiple instances of one object in an image
to the lemmatized entity. To simplify the method
with respect to any ambiguity, we used the most
frequent sense in WordNet. Overall, the method
results in precision of 0.538 and F1 measure of
0.493, thus providing us with a baseline approach
with results comparable to the original ones from
Weegar et al..

3.3 Experimental Settings and Results

We manually created links between the 240 seg-
ments and 231 entities of the originally 281 ex-
tracted ones. Since some entities are abstract
words, describing images, e.g. ’background’,
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Different Ranking SVM Precision Recall F1-Measure
Baseline 0.5375 0.45583 0.4933
Cosine Similarity of GloVe 0.7853 0.9392 0.7473
Cosine Similarity of GloVe (Color Entities included) 0.6848 0.9003 0.6551
HOG 0.5459 0.5322 0.3512
HOG and CN 0.6379 0.5796 0.4059

Table 2: Results of the baseline and the different ranking SVM with the two metrics for relevance (Pre-
cision), diversity (Recall), and mean of relevance and diversity (F1-Measure).

those entities are filtered in advance (already in
the baseline). Overall, 98 color names, that are
further describing entities, can be extracted. All
links are rated with respect to the query. Within
a leave-one-out approach we cross validated every
method. As color features are low level features,
and rather supposed to enrich the HOG model, it
is not separately evaluated. All Ranking SVM re-
sults are evaluated for Precision (P), Recall (R)
and F1-Measure (F1).

The text-based Baseline achieves precision and
F1 with around 50% (cf Table 2). The also text-
based Cosine Similarity of GloVe achieves around
one and a half better results than the baseline, but
these results are reduced for around 10% after in-
tegrating the cosine similarities of color names
and labels. Vice versa, the two visual feature ap-
proaches show better results when integrating both
feature types – HOG and color (P: 63.79% vs.
54.59%, F1:40.59% vs. 35.12%).

The results indicate, that visual feature selec-
tion and extraction needs further improvement, but
they also show, that a post-processing, e.g., re-
ranking with aggregation can have positive im-
pacts.

4 Related Work

Recent years have seen a growing interest for in-
terdisciplinary work which aims at bringing to-
gether processing of visual data such as video
and images with NLP and text mining techniques.
However, while most of the research efforts so
far concentrated on the problem of image-to-text
and video-to-text generation – namely, the auto-
matic generation of natural language descriptions
of images (Kulkarni et al., 2011; Yang et al., 2011;
Gupta et al., 2012), and videos (Das et al., 2013b;
Krishnamoorthy et al., 2013) – few researchers fo-
cused on the complementary, yet more challeng-
ing, task of associating images or videos to arbi-
trary texts – Feng and Lapata (2010) and Das et

al. (2013a) being notable exceptions. However,
even these latter contributions address the easier
task of generating visual descriptions for standard,
news text. But while processing newswire text
is of great importance, this completely disregards
other commonly used, yet extremely challenging,
dimensions of natural language like metaphorical
and figurative language usages in general, which
are the kinds of contexts we are primarily inter-
ested in. The ubiquity of metaphors and iconic
images, in particular, did not inspire much work
in Computer Science yet: researchers in NLP, in
fact, only recently started to look at the problem of
automatically detecting metaphors (Shutova et al.,
2013), whereas research in computer vision and
multimedia processing did not tackle the problem
of iconic images at all.

To the best of our knowledge there is only one
related work about the link creation between im-
age segments and entities from the corresponding
caption text, namely the study from Weegar et al.
(2014), who use the segmented and annotated ex-
tension (Escalante et al., 2010) of the IAPR-TC12
dataset (Grubinger et al., 2006), which consists of
segmented and textual annotated images and cor-
responding captions. Due to the textual annotated
images, Weegar et al. are able to follow a text-
only approach for the linking problem. They pro-
pose a method which is based on word similarity
using WordNet, between extracted nouns (entities)
from the caption and the textual annotation labels
of the image segments. For evaluation purposes,
they manually created links in 40 images from the
dataset with 301 segments and 389 entities. The
method results in a precision of 55.48% and serves
as an inspiration for the baseline used to compare
our own method.

In Plummer et al. (2015) annotators were asked
to annotate only objects with bounding boxes that
were mentioned in the caption. Not every object in
images is asked for a bounding box and an anno-
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tation, but those which are mentioned in the cap-
tions. Within experiments (bidirectional image-
sentence retrieval and text-to-image co reference),
they showed the usefulness of links between im-
ages and captions, but they also pointed out the
issue we are addressing here: Leveraging the links
is dependent on a high accuracy between the re-
gions of an image and the textual phrases.

Hodosh at al. (2015) formulates the image de-
scription task as ranking problem. Within their
method five different captions for one image are
ranked. Their results show that metrics using
ranked lists, and not only one query result, are
more robust.

Dodge et al. (2012) developed methods to clas-
sify noun phrases into visual or non-visual text.
Visual means things that can be seen on an image.
Their results indicate, that using visual features
improves the classification. Overall, the classifi-
cation of visual and non-visual text is especially
interesting for the classification of literal and non-
literal pairings.

5 Conclusions and Future work

In this work we developed a supervised ranking
approach to visual linking. Ranking links between
entities and segments is inspired by several as-
pects of creating the links between caption enti-
ties and segments. First, there might be several
segments which perfectly fit to one mention in the
caption. Second, as object detection approaches
are far from being robust and perfect, it might be
helpful to limit ourselves not to one decision (bi-
nary) but rather to use a ranking, where correct ob-
ject class might be on lower rank but still to con-
sidered. Third, if an object is not covered within
a pre-trained model, these objects either will not
be considered in the detection and evaluation or
wrongly classified.

Visual linking provides us with a first attempt
in the direction of solving the question of whether
caption is the literal description of the image it is
associated with. That is, our goal is not to find
an object detector with the highest precision (e.g.,
answering the question “Is there an orangutan or a
chimpanzee on the image?”), but rather if and how
much related the images and the captions are to
each other. If the caption is talking about palm-oil
harvesting and the image shows an orangutan to
depict the endangered species, we are interested in
receiving detector results with a high probability

for an animal as such, and being able to create the
non-literal link between these two topics.

In the short term, a necessary step is to develop
a model that does not rely on manually defined
enrichments of the dataset (e.g., textual labels or
segmentation masks). We will accordingly look at
ways to perform predictions about regions of in-
terest from the linear SVM and work without the
bounding boxes from the dataset. To this end, our
dataset needs to be extended, so that we can apply
our improved methods also on non-literal image-
caption pairings.

In the long term, we need to directly investigate
the hypothesis of whether the more links between
entities from the caption and regions in the im-
age can be created, the more literally the relation-
ship becomes. That is, a hypothesis for non-literal
relationships needs to be computationally formu-
lated and also investigated. Besides this, it would
be interesting to discover interesting discrimina-
tive characteristics between literal and non-literal
images. Finally, future work will concentrate on
the differentiation of cultural influences in the in-
terpretation of non-literal image-caption pairs, for
instance by taking the background of coders into
account (e.g., on the basis of a crowdsourced-
generated dataset).
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Extended Abstract

One of the main challenges for scaling up object
recognition systems is the lack of annotated images
for real-world categories. It is estimated that hu-
mans can recognize and discriminate among about
30,000 categories (Biederman and others, 1987).
Typically there are few images available for train-
ing classifiers form most of these categories. This
is reflected in the number of images per category
available for training in most object categorization
datasets, which, as pointed out in (Salakhutdinov et
al., 2011), shows a Zipf distribution.

The problem of lack of training images becomes
even more sever when we target recognition prob-
lems within a general category, i.e., subordinate cat-
egorization, for example building classifiers for dif-
ferent bird species or flower types (estimated over
10000 living bird species, similar for flowers).

In contrast to the lack of reasonable size training
sets for large number of real world categories, there
are abundant of textual descriptions of these cate-
gories. This comes in the form of dictionary entries,
encyclopedia entries, and various online resources.
For example, it is possible to find several good de-
scriptions of ”Bobolink” in encyclopedias of birds,
while there are only few images available for it on-
line.

The main question we address in this paper is
how to use purely textual description of categories
with no training images to learn a visual classifiers
for these categories. In other words, we aim at
zero-shot learning of object categories where the de-
scription of unseen categories comes in the form of
typical text such as an encyclopedia entry; see Fig 1.

This is a domain adaptation problem between het-
erogeneous domain (textual and visual). We explic-
itly address the question of how to automatically de-
cide which information to transfer between classes
without the need of any human intervention. In con-
trast to most related work, we go beyond simple use
of tags and image captions, and apply standard Nat-
ural Language Processing techniques to typical text
to learn visual classifiers.

Similar to the setting of zero-shot learning, we
use classes with training data (“seen classes”) to
predict classifiers for classes with no training data
(“unseen classes”). Recent works on zero-shot
learning of object categories focused on leverag-
ing knowledge about common attributes and shared
parts (Lampert et al., 2009; Farhadi et al., 2009).
Typically, attributes are manually defined by hu-
mans and are used to transfer knowledge between
seen and unseen classes. In contrast, in our work,
we do not use any explicit attributes. The descrip-
tion of a new category is purely textual, and the pro-
cess is totally automatic without human annotation
beyond the category labels.

In general, knowledge transfer aims at enhanc-
ing recognition by exploiting shared knowledge be-
tween classes. This can come in different ways.
Sharing knowledge can by achieved by enforcing a
hierarchical structure on the classes, general to spe-
cific. Such hierarchy is used to impose constraints
on the classifier parameters. Such hierarchies can
be exported from text domain, e.g., WordNet, or
learned from visual features. Our work can be seen
in this context, where, we use learned visual classi-
fiers and textual information to learn across-domain
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Testing with unseen classes 

Tell	  the	  machine	  
about	  an	  unseen	  
class	  using	  text	  
descrip5on	  (no	  
images	  ).	  	  

	  
	  

Fire Lily 
Lilium bulbiferum, common 
names Orange Lily, Fire Lily or 
Tiger Lily, is a herbaceous 
p e r e n n i a l  p l a n t  w i t h 
underground bulbs, belonging 
to the genus Liliums of the 
Liliaceae family. The Latin 
name bulbi ferum of th is 
species, meaning "bearing 
bulbs", refers to the secondary 
bulbs on the stem. 
……… 
……… 

Fire Lily flower 
 (unseen) 

Training with seen classes 

Tell	  the	  machine	  
about	  some	  seen	  
classes	  and	  give	  
some	  images	  for	  
them.	  	  

Gerbera Flower 
Gerbera is a genus of 
ornamental plants from 
the sunf lower fami ly 
(Asteraceae) . I t was 
named in honour of the 
German botanist and 
naturalist Traugott Gerber 
(1743) who t ravel led 
extensively in Russia and 
was a friend of Carolus 
Linnaeus. 
……… 
……… 
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Side Information (e.g. text) 
The machine can infer how to 
classify the unseen class 

Figure 1: Zero Shot Learning from Side Information (e.g., text)

correlation that facilitates the prediction of visual
classifiers for unseen classes.

Scope of the presentation
In this talk, we will present an on-going research
on the task of learning visual classifiers from purely
textual description with zero or very few visual ex-
amples. In an ICCV13 (Elhoseiny et al., 2013),
we investigated this new problem, we proposed two
baseline formulations based on regression and do-
main adaptation. Then, we proposed a new con-
strained optimization formulation that combines a
regression function and a knowledge transfer func-
tion with additional constraints to solve the prob-
lem. In this talk/presentation, we will present our
new zero-shot learning framework for predicting
kernelized classifiers in the visual domain for cat-
egories with no training images where the knowl-
edge comes from textual description about these cat-
egories. Through our new optimization framework,
the proposed approach is capable of embedding the
class-level knowledge from the text domain as ker-

nel classifiers in the visual domain. We also pro-
posed a distributional semantic kernel between text
descriptions which is shown to be effective in our
setting. The proposed framework is not restricted
to textual descriptions, and can also be applied to
other forms knowledge representations. Our ap-
proach was applied for the challenging task of zero-
shot learning of fine-grained categories from text
descriptions of these categories. The results sur-
passes the results in (Elhoseiny et al., 2013) under
the same setting, and also other baselines includ-
ing (Norouzi et al., 2014). We also show the value
of our proposed distributional semantic kernel under
this setting. We also show that our framework is ap-
plicable to other form of side information including
weak attributes in addition to text.
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Abstract

Semantic data regarding points of interest
in urban areas are hard to visualize. Due to
the high number of points and categories
they belong, as well as the associated tex-
tual information, maps become heavily
cluttered and hard to read. Using tradi-
tional visualization techniques (e.g. dot
distribution maps, typographic maps) par-
tially solve this problem. Although, these
techniques address different issues of the
problem, their combination is hard and
typically results in an efficient visualiza-
tion. In our approach, we present a method
to represent clusters of points of interest as
shapes, which is based on vacuum pack-
age metaphor. The calculated shapes char-
acterize sets of points and allow their use
as containers for textual information. Ad-
ditionally, we present a strategy for plac-
ing text onto polygons. The suggested
method can be used in interactive visual
exploration of semantic data distributed in
space, and for creating maps with simi-
lar characteristics of dot distribution maps,
but using shapes instead of points.

1 Introduction

Understanding the urban land use is one of the
central pillars of urban planning and management.
Traditionally this analysis relies on census surveys
having limitations in terms of spatial and temporal
scale. However, with the advent, and wide deploy-
ment of pervasive computing devices (e.g. cell
phones, GPS devices, smart cards and digital cam-
eras) some of these limitations may be overcome.
For instance, collecting and analyzing information
of how people use urban space may be done dy-
namically and in more precise way.

By using services of modern web platforms
(e.g. Facebook, Foursquare, etc.), a user leaves

“digital footprints”. These are precise data in
terms of temporal (when) and spatial locations
(where), and in general, can be captured without
human intervention. The information about hu-
man activity (what) if not explicitly introduced by
humans may be inferred by other ways. One of
which is about to retrieve the information about
visited place. This place, denominated Point of In-
terest (POI), offers a range of services and has spe-
cial utility. Such information is not always avail-
able. Hence, it is necessary to enrich semantically
the information about the visited places, in order to
understand what was done there. Collecting infor-
mation of how people use urban space has become
a very important task on creating the city image
from the perspective of its inhabitants, since places
are often associated by meaning, i.e. relationship
between people and places.

Most smart devices integrate contextual pro-
cessing. However, it is difficult to enable context-
awareness without semantic information. Al-
though, semantic information has been available
for years, the Internet, in most cases, abandons
such information. In a recent work Alves (2012)
presented various perspectives on semantic enrich-
ment of places and extraction of such information
from the Internet.

That said, there is a necessity of proper visual-
ization that depicts large amounts of point-based
data along with textual information. Geovisual-
ization field provides techniques to visualize geo-
referenced data, known as thematic maps. One
of the well known techniques to represent point-
based data is a dot distribution map. However, this
kind of maps is limited to representation of points
on the map, additionally using color to distinguish
points that belong to different groups. On the
other hand, typographic maps are used to represent
textual information on the map regarding natural
and artificial features of urban space (e.g. street
names, rivers, places, etc.). But, in order to visu-
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alize both textual and point-based information one
cannot simply overlay two maps. In this case the
visualization becomes highly cluttered and illegi-
ble. Moreover, it would be difficult to reveal spa-
tial patterns in such hard-overlapped maps. There-
fore, from these observations we propose a method
to represent this kind of information in a visual-
ization with low degree of visual clutter retaining
the possibility to both reveal high-level informa-
tion and detailed exploration of the map.

Our approach consists in creating visual ele-
ments that convey spatial distribution of POIs of
same type (a cluster), as well as the distribution
of clusters in urban area. More precisely, our al-
gorithm generates a shape for each group of POIs
revealing its unique visual form in regard to their
geographic distribution. Additionally, textual in-
formation – clusters tags and POI names – are
drawn using different typeface weights and scaled
according to the relevance of each cluster.

With that said, in this paper we present a method
for visualizing clusters of POIs and the associated
semantic information. The dataset is detailed in
section 3. The shape of each cluster is calculated
using a vacuum package metaphor (see details in
section 4). Additionally, this paper presents an
interactive web-based application that allows ex-
ploring the data with varying degree of details (see
section 5).

2 Background and Related Work

Our approach touches on diverse methods and
techniques of visualization of spatial information.
In this work we consider dot distribution maps.
This type of maps are especially efficient in visual-
ization of distribution and densities of point-based
data. Regarding the visualization of textual infor-
mation our approach relies on typographic maps.
This particular type of subjective maps efficiently
communicates textual information prioritizing ty-
pographic hierarchy depending on the relevance of
information.

Dot distribution maps, often referred to as
density map, they represent spatial distribution of
geo-referenced data using basic graphical element
– a point (Slocum, 2009). Each point on the map
is used to represent either one datum with known
geo-location, or aggregation of values. Addition-
ally, dot distribution maps are used to depict densi-
ties in corresponding geographic areas, rather than
specific locations.

A historical example of the use of a dot dis-
tribution map is the disease map produced by
John Snow (Tufte and Graves-Morris, 1983). This
map depicts the distribution of cholera in London.
Deaths are represented by dots and eleven water
pumps are represented by crosses. The observa-
tion led Snow to discover that cholera occurred in
the areas near the Broad Street water pump. This
map helped understand the issue of the cholera by
revealing disease patterns in spatial context.

One of a more recent example of density map is
the Racial Dot Map by Cable (2013). This visu-
alization depicts geographical distribution, popu-
lation density and racial diversity of people living
in USA. Each dot represents one individual person
at smaller zoom levels and aggregation of dots at
national or regional levels. The color encodes race
and ethnicity of inhabitants.

Typographic maps may be seen as an “artis-
tic” representation of textual information, rather
than an accurate mapping of spatial data. Often,
the information being represented by these maps
is a description of the relationship of the place and
its meaning, which depends of many human, cul-
tural, political, social or historical factors. There-
fore, these kind of maps are considered subjective
maps (Chen, 2011).

In typographic maps, as the name indicates,
textual information is represented using typogra-
phy. For instance, the maps drawn by Paula Scher
are mainly typographical, representing the world,
its continents, countries, islands, etc. through
typography (Scher, 1990 2010). Likewise, the
maps produced by Axis Maps, depict the infor-
mation about locations and space using text (Axis
Maps, nd). Moreover, the geometry of each word
is curved along a path, mimicking the shape of
the object being represented (e.g. streets, parks,
rivers, etc.). This typographic maps were com-
posed with auxiliary of software-based tools (e.g.
Adobe Illustrator) and represent information us-
ing digital typography. Finally, the graphical el-
ements are placed over OpenStreetMap. These
works, the maps by Scher and axisMaps, are good
examples of intelligent usage of typographical hi-
erarchy, which makes these maps efficient in the
communication of subjective and imprecise infor-
mation, even with high degree of visual overload.

A more recent research presents a method
for automatic construction of typographic maps
by merging textual information with spatial data
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(Afzal et al., 2012). Given a vector map the al-
gorithm places textual labels in space along the
polylines and polygons in accordance with defined
visual attributes and constrains. Additionally, the
authors describe a method to represent regions as
text by filling its interior and repeating the text as
necessary. Likewise, our approach uses principles
of this technique to align textual labels to a path.

Finally, the work of Cranshaw et al. (2012) is
tightly related to our approach, especially in what
concerns portraying a city using methods to visu-
alize point-based data and their clusters. The au-
thors introduce a method that consists of a clus-
tering model for mapping a city regarding collec-
tive behaviors of its inhabitants and further visu-
alization on the map. This map depicts dynam-
ics, structure and portrayal of a city using clus-
ters, so called Livehoods, of geospatial data from
Foursquare check-ins. Given geospatial social
data generated by hundreds of thousands of peo-
ple the visualization represents distinct areas of the
city regarding activity patterns. The resulting ag-
gregated clusters of check-ins represent so called
mental map of the city, the vision of urban space
from the perspective of its inhabitants. This en-
ables the study of the structure and composition of
a city based on social media its residents generate.

3 Data Description and Design
Requirements

Our dataset consists of points of interest (POIs)
from the greater metropolitan area of Boston,
Massachusetts, USA. POIs contain associated se-
mantic information and are aggregated in mean-
ingful groups (e.g. restaurants, colleges, indus-
try, etc.). More precisely, POIs were tagged
with semantic information retrieved from diverse
web sources (e.g. Foursquare, Upcoming Yahoo,
etc.) (Oliveirinha et al., 2010), and aggregated
in clusters using methods proposed by Alves et
al. (2011). The dataset comprises 751 clusters of
POIs with the following attributes: tag and id of
each cluster, geographic coordinates of their cen-
troids, and relevance of a cluster. Additionally,
each POI in the dataset is characterized by ge-
ographic location (latitude and longitude), name
and id. Ultimately, the data types are categorical
– POI names and cluster tags – and quantitative –
relative relevance of each cluster.

In order to guide the design of our visualization,
we established the following design requirements,

that define the boundaries for the project:

• The visualization should create a digital layer
of urban space.

• It should use a simple and clear visual lan-
guage, establishing a strong relationship be-
tween urban space and POIs.

• In order to reflect geographic nature of data
the information should be visualized on a
map.

• It should be interactive and run in real-time,
supporting the process of data exploration
and high-level information acquisition.

• The interactive application should follow the
so called Visual Information-Seeking Mantra,
introduced by Shneiderman (1996), which
consists of overview first, zoom and filter,
then details-on-demand.

• Finally, the visualization should be easy-to-
understand by a general user with no ana-
lytic background, therefore presenting a good
balance between aesthetics and functionality,
without visual overload of display.

4 Representation of POI Clusters

This section covers the process for determining the
shapes that describe POI clusters. More precisely,
first the concept of vacuum package metaphor is
introduced. Then we proceed with the description
of an algorithm for polygon calculation given a set
of points. Then, we present a method for smooth-
ing the corners of generated polygons. Finally, we
discuss the strategy for using typeface weight as
visual variable and text placing.

4.1 Concept

In order to understand the distribution of POIs in
space and within the corresponding clusters we
plotted them using a dot distribution map (see Fig-
ure 1). In this visualization each POI is depicted
by a point; The category it belongs to is repre-
sented with a color. The observation of this visu-
alization led us to the conclusion that each clus-
ter has its unique and recognizable shape. For
instance, the same happens with the shapes for
countries and continents of the world, to which
diverse meanings and symbolisms are associated.

53



Figure 1: Direct representation of data – names of categories and POIs represented as colored points.
Points of equal color belong to the same cluster.

We found this idea particularly interesting and im-
plemented a method that allows us to character-
ize sets of POIs through their shapes. This ap-
proach allows us to eliminate color from represen-
tation reducing visual overload. Ultimately, due to
amount and diversity of categorical data the use of
color is inefficient.

The shape that characterizes a given set of
points is known as convex hull, i.e. the polygon
that encompasses a set of points. This is, the min-
imal convex set of points containing the entire set.
One of the many algorithms to compute convex
hull was proposed by Andrew (1979), which is
based on the rubber band metaphor. The con-
vex hull can be visualized as a rubber band that
is stretched so that it surrounds all the points and
then released enclosing all the points.

For certain applications the convex hull does not
represent well the boundaries of a set of points.
For instance, a convex hull for a set of points that
form a C letter would have a shape close to ellipse.
In other words, the region that is defined by convex
hull does not represent the region that is formed by
the points.

This problem has already been addressed by
many researches, and is know as computation of
non-convex or concave hull (see e.g. Moreira and
Santos (2007) and Duckham et al. (2008)). One

of the methods to compute shape of a set of points
was introduced by Edelsbrunner et al. (1983), and
is know as two-dimensional alpha-shapes. As
mentioned by Edelsbrunner, an alpha shape can
be imagined as a huge mass of ice-cream con-
taining pieces of chocolate; then using a sphere-
formed ice-cream spoon we carve all the parts of
ice-cream without bumping into chocolate pieces;
if we now straighten all the ”round” faces we will
get an intuitive description of what is called the
alpha-shape. Although, the alpha-shape is a stan-
dardized formal description of a set of points this
method assumes multi-polygon reconstruction of
the geometry, and often produces polygons that
contain holes, which is not desirable in our visual-
ization.

We address this problem by combining the
principles of alpha-shape and vacuum packing
metaphor. This metaphor can approximately be
seen as following: imagine a plastic bag contain-
ing a set of points; then the oxygen is removed cre-
ating vacuum inside the bag; when the bag is com-
pletely shrunk it become tightly fitted to its con-
tent. This metaphor is intuitive description of our
approach. The following section gives a formal
description of the algorithm to compute a shape of
a set of points heterogeneously distributed in geo-
graphic space.
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4.2 Algorithm

This section describes an algorithm for the calcu-
lation of a concave hull based on the vacuum pack-
age metaphor. The calculation of a polygon is an
iterative process with the maximum number of it-
erations defined by an user. The process passes
through the calculation of convex hull, which de-
fines an initial set of edges. Each edge is char-
acterized by starting and ending points in ordered
array, and by stretchiness, which models a behav-
ior of an elastic band. Finally, the shape of each
set of points is calculated independently.

Considering the set of points S to be our input,
the algorithm proceeds as follows:

1. Let L be an initially empty list that will con-
tain the points that define the polygon.

2. Calculate the convex hull, and store the set of
points in L in clock-wise order.

3. For each iteration and for each edge – i.e., for
each pair of consecutive points in L, which
we designate by A and B:

• If the length of the edge is bigger than
predefined minimum length, then con-
tinue to the next step. Otherwise, skip.
• The edge AB is divided by half at

the center, defining an isosceles triangle
4ABC, where A and B are the starting
and ending points in L, respectively, and
C is the central point.
• C is pushed inside the polygon by a

force vector ~f , which is perpendicular
to the edge AB.
• The magnitude of the force ~f varies pro-

portionally to the stretchiness of AB
edge, which is a function of its length,
and the distance of C from its original
location, say M . i.e. shorter edges have
smaller ~f .
• If one of the points, say P , in the set S

is inside the triangle, then the P is ap-
pended to the L in the order AP and
PB, consequently, creating two new
edges.
• The process is repeated until the maxi-

mum number of iterations is reached or
all the edges have their lengths smaller
than defined minimum length.

Determining if a point P is inside the triangle
4ABC is done by calculating cross products of
vectors ~AP× ~AB, ~BP× ~BC, and ~CP× ~CA. If all
the values are negative, then the point is inside the
triangle. Otherwise, the point is outside. Finally,
at a simulation instance there might be two points
inside the triangle. In this case considered only the
one that is closest to the M point – middle point
that divides AB by half.

Figure 2 displays two shapes of clusters that
were calculated by the algorithm given two sets of
points from our dataset. Also, this figure schemat-
ically illustrates the described algorithm at a sim-
ulation instance – the points that compose a poly-
gon are marked with circles, the edges are repre-
sented with black line, and the lines that makeup
the triangles are painted in red. As can be ob-
served in Figure 2, image on the right, even com-
plex shapes are well defined.

Figure 2: Calculated shape of clusters for ”Trad-
ing”, image on the left, and ”Seinfeld” categories,
image on the right. Circles represent points that
compose a hull, with the arrows inside that indi-
cate the order of points.

4.3 Visual Refinement and Label Placing

Having calculated all the polygons we proceed to
smooth their corners, which gives an organic rep-
resentation of a shape. Also, this facilitates the
process of placing textual labels onto polygons.

The problem of corner smoothing can be di-
vided in two parts – round the corners that make
interior angles smaller and greater than 180◦ (for
the purpose of simplicity we label them as S and G
corners, respectively). In order to create a smooth
polygon there should be enough free space allo-
cated to append additional points that compose a
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new polygon. This is done by translating perpen-
dicularly each edge to a certain distance, say d,
placing them outside the original polygon. Then
we proceed by calculating the S corners, simply
connecting two consecutive translated segments
with an arc that is centered at the corner point
and with the radius equal to d. The arc is then
fragmented with small segments, the number of
which is dictated by defined minimum length. The
G corners, on the other hand, are computed us-
ing Bezier equation (Farin et al., 2002). The two
control points have the same location, which is the
point of intersection of the two edges that makeup
the corner. The end points are the middle point
of each of two translated edges. Finally, the curve
is partitioned with small segments. The Figure 3
is a schematic representation of the smoothing of
polygons.

Figure 3: Schematic construction of round cor-
ners.

The second part of visual refinement consists of
placing textual information onto polygons. As was
mentioned earlier, our data consist of two types of
text data – most relevant tag for each cluster, and
names of each individual POI. In order to repre-
sent this data two different strategies were used.
In the first case, the cluster tags were positioned
on center of the polygon being represented using
typeface weights to represent their weights. In the
second case, the names of POIs were placed onto
the polygon and curved along the contour of the
shape.

As mentioned above, we used typographic
weight as a visual variable to represent relevance
of each category of POIs. According to Lupton
(2014), in typography, all typefaces are organized
into families . Within a family typefaces are di-
vided and ordered according their weights (e.g.
regular, bold, etc.). In modern typography there
are families that contain up to nine weights classi-

fied as fallowing – thin, extra light, light, regular,
medium, semi-bold, bold, black and heavy. So,
we used these to encode the relevance of each cat-
egory, by dividing all values in eight ranges and
assigning each range to a typographic weight. Due
to ordered nature of data the typographic weights
were assigned starting with thin up to heavy type-
faces (see Figure 4).

Figure 4: Close-up of an area with categories that
have different relevance encoded with typographic
weight and font size.

For the second type of textual information we
used an approach inspired in typographic maps.
The name of POIs are placed onto polygon and
the words are curved along with the shape. One of
the problems of curved words is the fact that they
visually distort the word when placed on the path
junctions. This is, the words are visually breaking
apart creating discontinuous reading. One of the
solutions to address this problem is to distort the
characters, like in maps by Paula Scher. However,
in digital typography these manipulations are un-
desirable and are considered a bad practice (Lup-
ton, 2014). So, our solution consisted in: draw-
ing the letters perpendicularly to the path they are
placed onto; when a letter appears on a junction
of two segments we use a weighted angle depend-
ing on the percentage of occupied space on each
of segments. In other words, the imaginable rect-
angle that holds a character always keeps its base
corners on top of each segment (see Figure 5). Fi-
nally, the tracking – space between characters – is
increased, when the letters are placed on G cor-
ners, and decreased, when the letters are placed on
S corners. This diminishes the visual discontinu-
ities in reading.

Finally, all the methods were combined and the
result is displayed on Figure 6. As can be observed

56



A
Figure 5: Placing characters onto segment and
segment joint.

the visualization become less cluttered in compar-
ison with dot map representation. The clusters of
POIs are characterized by an organic shape, which
facilitates the placement and continuous reading
of textual information. Text labels, on the other
hand, try to mimic the contour without substantial
visual distortion. Also, it is easy to understand that
this approach is less efficient when small clusters
are considered, due to limited space to display all
the textual information.

5 Application and Limitations

This section presents an application of the de-
scribed techniques combined into one visualiza-
tion model. First, an interactive web-based appli-
cation, which uses the described methods applied
on another dataset with a similar nature of infor-
mation, is discussed. Then, we enumerate the lim-
itations of presented approach.

The interactive web-based application fol-
lows the principles of Visual Seeking Mantra –
overview first, zoom and filter, then details-on-
demand. In the first screen the user can find a gen-
eral view of the map. In this view the visualization
depicts only the shapes of clusters, which gives a
first impression about the data and its distribution
in space. It is important to note that in the second
dataset POIs have multiple associated tags, i.e. a
POI may belong to different categories. Conse-
quently, POI clusters may overlap, which means
that overlapping areas provide multiple services.
For instance the area of restaurants might coin-
cide with the area of shopping. That said, the user
can easily identify these cases in general view (see
Figure 7, image on the left).

Filtering and zoom-and-pan are also important
functionalities of the application. Using the panel
on the left the user can select individual categories
to display and filter the visualization by average
weight of the relevance, by the number of POIs
in cluster, among others. Selecting the categories
also reveals their names and places them as de-

scribed in previous sections, although using only
one typographic weight. To navigate on the map
the user can use zoom-and-pan. The visualiza-
tion dynamically updates details of the shapes and
presents different levels of cluster aggregation ac-
cording to zoom level (see Figure 7, image in the
middle).

Finally, the application provides additional de-
tails on demand. This is done by directly select-
ing clusters on the map. In this case the panel on
the left updates and displays more detailed infor-
mation about the selected cluster (e.g. a list of
POIs in the group, impact of each category the
cluster belongs to, number of POIs). Additionally,
the clusters that share the same category are also
highlighted on the map, such that the distribution
of clusters within similar category is revealed (see
Figure 7, image on the right).

As can be observed in the web-application the
labels are not shown, due to high amount of textual
information, which makes the visualization run
slow in a web browser. Nevertheless, this func-
tionality is implemented in offline visualization.
As it can be observed, there are overlapping areas.
As such, the shapes are painted with transparent
color, in order to highlight highly overlapped areas
on the map. Allowing the user to perceive urban
areas that provide multiple services can be easily
found on the map. Thus, providing higher-level
information that would be difficult to visualize by
other means.

6 Conclusion

In this article, we presented a method to represent
clusters of POIs along with their semantic infor-
mation. This method integrates visual characteri-
zation of a set of points and the methods to repre-
sent textual information. Given clusters of POIs
the presented method creates a visual layer that
characterizes urban space in accordance with the
meanings of places, which derives from the dig-
ital footprints that the inhabitants leave. For this
reason, we presented a novel approach that cal-
culates a concave hull of a set of points. This
method enables the creation of a unique integral
polygon, which is calculated using vacuum pack-
age metaphor. Ultimately, each polygon character-
izes a set of points with a unique organic looking
shape.

Additional textual information is added by plac-
ing names of POIs on a path defined by a poly-
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Figure 6: A zoom-in of downtown area of Boston. The final visualization combines all the presented
methods: shapes of clusters; rounded corners; label placing.

Figure 7: Screenshots of interactive application. General view, image on the left; filter and zoom, middle;
and details-on-demand, image on the right.

gon. In the proposed strategy the characters were
placed perpendicularly to the segment they be-
long, and using a weighted angle when placed on
the corners. Additionally, we introduced a visual
variable to encode the relevance of a category –
the typographic weight. The data variable’s values
are divided in equal ranges, and then each bin is
associated with a typographic weight in the order
from thin to heavy.

Finally, this visualization was implemented as
web-based application and applied on another
dataset. The interactive web application gives an

overview of data at general zoom level. Then the
user can zoom-in and obtain a detailed view of the
visualization. Additionally, using the filter panel
the user can choose individual category and filter
the visualization by different parameters. Finally,
more details, such as cluster impact or the list of
POIs in cluster, are given on demand.
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Abstract

We address the problem of interac-
tively learning perceptually grounded
word meanings in a multimodal dialogue
system. We design a semantic and visual
processing system to support this and il-
lustrate how they can be integrated. We
then focus on comparing the performance
(Precision, Recall, F1, AUC) of three
state-of-the-art attribute classifiers for the
purpose of interactive language ground-
ing (MLKNN, DAP, and SVMs), on the
aPascal-aYahoo datasets. In prior work,
results were presented for object classi-
fication using these methods for attribute
labelling, whereas we focus on their per-
formance for attribute labelling itself. We
find that while these methods can perform
well for some of the attributes (e.g. head,
ears, furry) none of these models has good
performance over the whole attribute set,
and none supports incremental learning.
This leads us to suggest directions for fu-
ture work.

1 Introduction

Identifying, classifying and talking about ob-
jects or events in the surrounding environment
are key capabilities for intelligent, goal-driven
systems that interact with other agents and the
external world (e.g. smart phones, robots, and
other automated systems), as well as for image
search/retrieval systems. To this end, there has
recently been a surge of interest and significant
progress made on a variety of related tasks, in-
cluding generation of Natural Language (NL) de-
scriptions of images, or identifying images based
on NL descriptions (Karpathy and Fei-Fei, 2014;
Bruni et al., 2014; Socher et al., 2014). Another
strand of work has focused on learning to generate

object descriptions and object classification based
on low level concepts/features (such as colour,
shape and material), enabling systems to identify
and describe novel, unseen images (Farhadi et al.,
2009; Silberer and Lapata, 2014; Sun et al., 2013).

Our goal is to build interactive systems that can
learn grounded word meanings relating to their
perceptions of real-world objects – rather than ab-
stract coloured shapes as in some previous work
e.g. (Roy, 2002). For example, we aim to build
multimodal interfaces for Human-Robot Interac-
tion which can learn object descriptions and ref-
erences in interaction with humans. In contrast
to recent work on image description using ‘deep
learning’ methods, this setting means that the sys-
tem must be trainable from little data, composi-
tional, able to handle dialogue, and adaptive – for
instance so that it can learn visual concepts suit-
able for specific tasks/domains, and even new id-
iosyncratic language usage for particular users.

However, most of the existing systems for im-
age description rely on training data of both high
quantity and high quality with no possibility of on-
line error correction. Furthermore, they are unsuit-
able for robots and multimodal systems that need
to continuously, and incrementally learn from
the environment, and may encounter objects they
haven’t seen in training data. These limitations are
likely to be alleviated if systems can learn con-
cepts, as and when needed, from situated dialogue
with humans. Interaction with a human tutor en-
ables systems to take initiative and seek the partic-
ular information they need or lack by e.g. asking
questions with the highest information gain (see
e.g. (Skocaj et al., 2011), and Fig. 1).

For example, a robot could ask questions to
learn the color of a “mug” or to request to be pre-
sented with more “red” things to improve its per-
formance on the concept (see e.g. Figure 1). Fur-
thermore, such systems could allow for meaning
negotiation in the form of clarification interactions
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Dialogue Image Final semantics

S: Is this a green mug?
T: No it’s red
S: Thanks.

 x=o1 : e
p2 : red(x)
p3 : mug(x)



T: What can you see?
S: something red.
What is it?
T: A book.
S: Thanks.


x1=o2 : e
p : book(x1)
p1 : red(x1)
p2 : see(sys, x1)



Figure 1: Example dialogues & resulting semantic representations

with the tutor.
This paper presents initial work in a larger pro-

gramme of research with the aim of developing
dialogue systems that learn (visual) concepts –
word meanings – through situated dialogue with
a human tutor. Specifically, we compare several
existing state-of-the-art classifiers with regard to
their suitability for interactive language grounding
tasks. We compare the performance of MLKNN
(Zhang and Zhou, 2007), DAP (zero-shot learn-
ing (Lampert et al., 2014)), and SVMs (Farhadi et
al., 2010) on the image datasets aPascal (for train-
ing) and aYahoo (testing) – see section 4. To our
knowledge, this paper is the first to compare these
attribute classifiers in terms of their suitability for
interactive language grounding.

Our other contribution is to integrate an incre-
mental semantic grammar suited to dialogue pro-
cessing – DS-TTR1 (Purver et al., 2011; Eshghi et
al., 2012), see section 3 – with visual classifica-
tion algorithms that provide perceptual grounding
for the basic semantic atoms in the representations
produced by the parser through the course of a di-
alogue (see Fig. 1). In effect, the dialogue with the
tutor continuously provides semantic information
about objects in the scene which is then fed to an
online classifier in the form of training instances.
Conversely, the system can utilise the grammar
and its existing knowledge about the world, en-
coded in its classifiers, to make reference to and
formulate questions about the different attributes
of an object identified in the scene.

2 Related work

There has recently been a lot of research into
learning to classify and describe images/objects.

1Downloadable from http://dylan.sourceforge.
net

Some approaches attempt to ground meaning
of words/phrases/sentences in images/objects by
mapping these modalities into the same vector
space (Karpathy and Fei-Fei, 2014; Silberer and
Lapata, 2014; Kiros et al., 2014), or using dis-
tributional semantic models that build distribu-
tional representations with the conjunction of tex-
tual and visual information (Bruni et al., 2014).
Other approaches, such as (Socher et al., 2014),
propose Neural Network models based on Depen-
dency Trees (DT), which project all words in a
sentence into a DT structured representation to ex-
plore parents of each node and correlations be-
tween nodes.

In contrast to these approaches, which do not
support NL dialogues, some approaches are de-
signed based on logical semantic representations
and some of them are incorporated with spoken
dialogue systems (Skocaj et al., 2011; Matuszek
et al., 2012; Kollar et al., 2013). A well-known
logical semantic parser is the Combinatory Cate-
gorial Grammar (CCG) parser, which represents
natural language sentences from human tutors in
the logical forms. The “Logical Semantics with
Perception” (LSP) framework by Kollar et al. (Kr-
ishnamurthy and Kollar, 2013) and the joint lan-
guage/perception model by Matuszek et al. (Ma-
tuszek et al., 2012) are based on a CCG parser
or using a CCG lexicon respectively. Although a
CCG parser could generate similar logical repre-
sentations to the DS-TTR parser/generator we use
here, we believe that DS-TTR would show bet-
ter performance than CCG in terms of handling
the inherent incremental, fragmentary and highly
context-dependent nature of dialogue.

The “Describer” system (Roy, 2002) learns to
generate image descriptions, but it works at the
level of word sequences rather than logical seman-
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tics, and uses only synthetically generated scenes
rather than real images and image processing. Our
approach extends (Dobnik et al., 2012) in integrat-
ing vision and language within a single formal sys-
tem: Type Theory with Records (TTR). This com-
bination will allow complex multi-turn dialogues
for language grounding with deep NL semantics,
including natural correction and clarification sub-
dialogues (e.g. “No this isn’t red, it’s green.”).

2.1 Attribute classification

Regarding attribute-based classification or de-
scription, Farhadi et al. (Farhadi et al., 2009) have
successfully described objects with attributes by
sharing appearance attributes across object cate-
gories. Silberer and Lapata (Silberer and Lapata,
2014) extend Farhadi et al.’s work to predict at-
tributes using L2-loss linear SVMs and to learn the
associations between visual attributes and particu-
lar words using Auto-encoders. Sun et al. (Sun
et al., 2013) also build an attribute-based identi-
fication model based on hierarchical sparse cod-
ing with a K-SVD algorithm, which recognizes
each attribute type using multinomial logistic re-
gression. However, as these models require a large
mass of training data, an increasing amount of re-
search attempts to learn novel objects using ‘one-
shot’ (Li et al., 2006; Krause et al., 2014) or ‘zero-
shot’ learning algorithms (Li et al., 2007; Lampert
et al., 2014). They enable a system to classify un-
seen objects with fewer or no examples by sharing
attributes between known and unknown objects.
Note that these methods ultimately focus on ob-
ject class labels, using attributes as intermediate
representations.

On the other hand, to learn attribute-based ob-
jects through NL interaction, some approaches
learn unknown objects or attributes with online
incremental learning algorithms (Li et al., 2007;
Kankuekul et al., 2012). The “George” system
(Skocaj et al., 2011), which is similar in spirit to
our work, learns object attributes from a human tu-
tor and creates specific questions to request infor-
mation to fill detected knowledge gaps. However,
the George system only learns about 2 shapes and
8 colours. Our goal is to couple attribute classifiers
with much wider coverage to the formal semantics
of a full Natural Language dialogue system.

3 System Architecture

We are developing a system to support an
attribute-based object learning process through
natural, incremental spoken dialogue interaction.
The architecture of the system is shown in Fig. 2.
The system has two main modules: a vision mod-
ule for visual feature extraction and classifica-
tion; and a dialogue system module using DS-
TTR (see below). Visual feature representations
are built based on base features akin to (Farhadi
et al., 2009). We do not yet have a fully inte-
grated dialogue system, so for our experiments
presented below, we assume access to logical se-
mantic representations, that will be output by the
DS-TTR parser/generator as a result of process-
ing dialogues with a human tutor (more on this
below) – and interface these representations with
attribute-based image classifiers. Below we de-
scribe these components individually and then ex-
plain how they interact.

3.1 Attribute-based Classifiers used
In this research, in order to explore the best so-
lution for attribute classification for an interactive
system, we compare several methods which have
previously shown good performance on image-
labelling tasks – a multi-label classification model,
a zero-shot learning model, and a linear SVM:

(a) MLkNN (Zhang and Zhou, 2007) is a su-
pervised multi-label learning model based on the
k-Nearest Neighbour algorithm, which predicts a
label set for unknown instances. It has previously
been used for scene labelling with 5 labels (sunset,
desert, mountains, sea, trees) and reached a Preci-
sion of 0.8;

(b) L2-loss Linear SVM as used by (Farhadi et
al., 2009). We used the published feature extrac-
tion and attribute training code2, though we appear
to have achieved slightly worse AUC results than
achieved in (Farhadi et al., 2009) (see section 4);

(c) Direct Attribute Prediction (DAP) (Lam-
pert et al., 2014), is a kind of zero-shot learn-
ing model, which implements a multi-layer clas-
sifier - the layer of attributes and the layer of la-
bels - which apply the attribute variables in the
attribute layer to decompose the object images in
the label layer. This model allows the use of any
supervised classification models for learning per-
attribute coefficients. Once the image-attribute pa-
rameters are predicted, DAP can explore the class-

2From http://vision.cs.uiuc.edu/attributes/
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Figure 2: Architecture of the simulated teachable system

attribute relations and infer the corresponding ob-
ject classes using a probabilistic model. In this
paper, we reimplement the DAP zero-shot learn-
ing model based on Lampert’s work; but since
we are here concerned only with attribute classi-
fication we only test the first tier of their algo-
rithm for attribute classification. (Note that al-
though both (Farhadi et al., 2009) and (Lampert
et al., 2014) implement a SVM classifier for each
attribute, DAP learns the supervised model with
the linearly combined χ2-kernels rather than the
original visual representations.) Note that the im-
plementation of the DAP model is not identical to
that of (Lampert et al., 2014), so our results are
not directly comparable to that paper. We used the
Libsvm 3.0 library (Chang and Lin, 2011), differ-
ing from the Shogun library in the original imple-
mentation for learning visual classifiers. To more
directly compare the DAP model with other meth-
ods, we moreover generated the visual represen-
tation using the feature extraction algorithms by
(Farhadi et al., 2009) instead of the original meth-
ods.

All models will output attribute-based label sets
for novel unseen images by predicting binary la-
bel vectors. We build visual representations and
binary label vectors as inputs to train new clas-
sifiers for learning attributes, as explained in the
following subsections.

3.1.1 Visual Feature Representation

Following the feature extraction methods pro-
posed by (Farhadi et al., 2009), we extract a fea-
ture representation consisting of the base features
for learning to classify and describe novel objects,
i.e. the colour space for colour attributes, texture
for materials, visual words for object components,
as well as edges for shapes.

Colour descriptors, consisting of L*A*B colour
space values, are extracted for each pixel and then
are quantized to the nearest 128 k-means cen-
tres. These descriptors inside the bounding box
are binned into individual histograms. Edges and
their orientations are detected using a MATLAB
canny edge detector, which contributes to finding
both edges and boundaries of objects within an
image. Detected edges are quantized into 8 un-
signed bins. A texture descriptor is computed for
each pixel and then quantized to the nearest 256
k-means centres. Finally, object visual words are
built in HOG descriptors using 8x8 blocks, a 4-
pixel step size, and quantized into 512 k-means
centres.

The feature extractor in the vision module
presents a feature matrix with dimensions w ×
9751, where w is the number of training instances,
and each training instance has a 9751-dimensional
vector generated by stacking all quantized fea-
tures, as shown in Figure 2.
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3.1.2 Binary Label Vectors
For learning multi-attribute objects, the multi-
label models require a label vector for each train-
ing instance. In the interactive system, an instance
χ and its related label set η ⊆ Y are given by the
feature extractor and DS-TTR parser individually,
where Y is a total collection of attribute-based la-
bels. We suppose

−→
l is the binary label vector for

χ, where its i-th component
−→
l (i)(i ∈ η) will take

the value 1 if i ∈ Y and -1 otherwise. Eventually,
the system builds a binary label matrix with di-
mensions w×n, where w is the number of instances
and n is the total number of labels for all training
instances. Each instance contains a full binary la-
bel vector. The label vectors and feature represen-
tations are used to learn new classifiers once novel
object instances are learned incrementally from in-
teraction.

3.2 Dynamic Syntax (DS)

The DS module is a word-by-word incremental
semantic parser/generator, based around the Dy-
namic Syntax (DS) grammar framework (Cann et
al., 2005) especially suited to the fragmentary and
highly contextual nature of dialogue. In DS, di-
alogue is modelled as the interactive and incre-
mental construction of contextual and semantic
representations (Purver et al., 2011). The con-
textual representations afforded by DS are of the
fine-grained semantic content that is jointly nego-
tiated/agreed upon by the interlocutors, as a re-
sult of processing questions and answers, clarifi-
cation requests, corrections, acceptances, etc (see
Eshghi et al (2015) for an account of how this can
be achieved grammar-internally as a low-level se-
mantic update process). Recent versions of DS
incorporate Type Theory with Records (TTR) as
the logical formalism in which meaning represen-
tations are couched (Purver et al., 2011; Eshghi et
al., 2012), due to its useful properties. Here we
do not introduce DS due to space limitations but
proceed to introducing TTR.

3.3 Type Theory with Records

Type Theory with Records (TTR) is an exten-
sion of standard type theory shown to be use-
ful in semantics and dialogue modelling (Cooper,
2005; Ginzburg, 2012). TTR is particularly well-
suited to our problem here as it allows information
from various modalities, including vision and lan-
guage, to be represented within a single semantic

framework (see e.g. Larsson (2013); Dobnik et al.
(2012) who use it to model the semantics of spatial
language and perceptual classification).

In TTR, logical forms are specified as record
types (RTs), which are sequences of fields of the
form [ l : T ] containing a label l and a type T . RTs
can be witnessed (i.e. judged true) by records of
that type, where a record is a sequence of label-
value pairs [ l = v ]. We say that [ l = v ] is of type
[ l : T ] just in case v is of type T .

R1 :

 l1 : T1
l2=a : T2
l3=p(l2) : T3

 R2 :
[

l1 : T1
l2 : T2′

]
R3 : []

Figure 3: Example TTR record types

Fields can be manifest, i.e. given a singleton
type e.g. [ l : Ta ] where Ta is the type of which
only a is a member; here, we write this using the
syntactic sugar [ l=a : T ]. Fields can also be de-
pendent on fields preceding them (i.e. higher) in
the record type (see Fig. 3).

The standard subtype relation v can be defined
for record types: R1 v R2 if for all fields [ l : T2 ]
in R2, R1 contains [ l : T1 ] where T1 v T2. In Fig-
ure 3, R1 v R2 if T2 v T2′ , and both R1 and R2 are
subtypes of R3. This subtyping relation allows se-
mantic information to be incrementally specified,
i.e. record types can be indefinitely extended with
more information/constraints. For us here, this
is a key feature since it allows the system to en-
code partial knowledge about objects, and for this
knowledge (e.g. object attributes) to be extended
in a principled way, as and when this information
becomes available.

3.4 Integration

Fig. 2 shows how the various parts of the system
interact. At any point in time, the system has ac-
cess to an ontology of (object) types and attributes
encoded as a set of TTR Record Types, whose in-
dividual atomic symbols, such as ‘red’ or ‘mug’
are grounded in the set of classifiers trained so far.

Given a set of individuated objects in a scene,
encoded as a TTR Record (see above), the sys-
tem can utilise its existing ontology to output some
maximal set of Record Types characterising these
objects (see e.g. Fig. 1). Since these representa-
tions are shared by the DS-TTR module, they pro-
vide a direct interface between perceptual classifi-
cation and semantic processing in dialogue: they
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can be used directly at any point to generate utter-
ances, or ask questions about the objects.

On the other hand, the DS-TTR parser incre-
mentally produces Record Types (RT), represent-
ing the meaning jointly established by the tutor
and the system so far. In this domain, this is ulti-
mately one or more type judgements, i.e. that some
scene/image/object is judged to be of a particular
type, e.g. in Fig. 1 that the individuated object, o1
is a red mug. These jointly negotiated type judge-
ments then go on to provide training instances for
the classifiers. In general, the training instances
are of the form, 〈O,T 〉, where O is an image/scene
segment (an object), and T , a record type. T is
then converted automatically to an input format
suitable for specific classifiers; e.g. the dialogues
in Fig. 1 provide the following instances to our
classifiers: 〈o1, {red,mug}〉 and 〈o2, {red, book}〉.

What sets our approach apart from other work
is that these types are constructed/negotiated in-
teractively, and so both the system and the tutor
can contribute to a single representation (see e.g.
second row of Fig. 1).

4 Experiments and Results

4.1 Datasets for Attribute-based classification
In order to compare the different classifiers with
previous work (Farhadi et al., 2009), we perform
our experiments on a benchmark dataset of natu-
ral object-based images with attribute annotations
– the aPascal-aYahoo data set3 – which is intro-
duced by Farhadi et al. The aPascal-aYahoo data
set has two subsets: the Pascal VOC 2008 dataset
and the aYahoo dataset. The Pascal VOC 2008
dataset is created for visual object classifications
and detections. The aPascal data set covers 20
attribute-labelled classes and each class contains
a number of samples, ranging from 150 to 1000.
The aYahoo dataset, as a supplement of the aPas-
cal dataset, contains objects similar to aPascal, but
with different correlations between attributes. The
aYahoo dataset only contains 12 objects classes.
Images in both aPascal and aYahoo sets are anno-
tated with 64 binary attributes, covering shape and
material as well as object components (see table
1). We use the 6340 images selected by (Farhadi
et al., 2009) from the aPascal dataset for training
and use the whole aYahoo dataset with 2644 im-
ages as the test set. As both aPascal and aYahoo
data sets are imbalanced in the number of positive

3http://vision.cs.uiuc.edu/attributes/

instances for each attribute, as shown in table 1,
this might affect the performance of the models on
attribute classification.

4.2 Experiment Setup

We test how well the different classifiers work on
learning object attributes. We implemented sev-
eral classification models – MLkNN, DAP, and
SVMs as described in Section 3.1. Most work
on attribute classification reports the Precision and
Recall only for object classes – which are com-
puted using the attribute labels – but we are di-
rectly interested in the performance of the attribute
classifiers themselves. Thus we report Precision,
Recall, and F1-Score for the attribute labels for
each model. We also show the average scores
across all attributes in table 2.

4.3 Results

We first plot the Precision and Recall for each at-
tribute for the different models, as shown in fig-
ures 4 and 5. We take Precision to be 1 where the
number of True Positives and False Negatives are
both 0 for an attribute (otherwise it would be un-
defined).

Figures 4 - 7 compare the different methods for
each attribute in terms for Precision, Recall, F1,
and AUC (Area Under ROC Curve). The AUC
scores are computed using an open library for
computer vision algorithms – Vlfeat (Vedaldi and
Fulkerson, 2010).

Table 2 shows the average scores for each
method, computed across all of the attributes. The
results show that DAP generally has better perfor-
mance across all of the attributes, although each
method has specific strengths and weaknesses.

5 Discussion

The results presented above show that while the
models sometimes perform quite well on specific
attributes, the performance over all attributes in
general is rather poor. But we note that the shapes
of the plots in the Precision and the Macro-F1 Fig-
ures, 4 and 6, are very similar, showing that the
performance of the algorithms are correlated with
external factors, certainly including the number of
positive training instances, but also how distinc-
tive (easy to detect) an attribute generally is. For
example, the attribute ‘Furry’ with 250 training
instances is performing relatively well using all
three algorithms while other attributes with sim-
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Attribute Label aPascal aYahoo Attribute Label aPascal aYahoo Attribute Label aPascal aYahoo
2D Boxy 207 146 3D Boxy 393 752 Round 39 179
Vert Cyl 195 334 Horiz Cyl 94 286 Occluded 1913 778

Tail 184 529 Head 1737 1157 Ear 1097 1048
Snout 237 708 Nose 995 345 Mouth 930 332
Hair 1095 216 Face 1022 392 Eye 1183 1061
Torso 1538 1024 Hand 811 364 Arm 1080 383
Leg 994 922 Foot/Shoe 604 719 Wing 114 11

Window 304 167 Row Wind 86 224 Wheel 336 64
Door 192 13 Headlight 162 36 Taillight 104 5

Side mirror 150 71 Exhaust 50 41 Handlebars 92 37
Engine 35 71 Text 84 388 Horn 4 145
Rein 32 284 Saddle 20 121 Skin 1396 161
Metal 581 739 Plastic 260 459 Wood 195 167
Cloth 1591 123 Furry 250 996 Glass 180 34

Feather 99 1 Wool 12 15 Clear 32 42
Shiny 432 527 Leather 6 85

Table 1: The Number of Positive instances on each attribute in aPascal-aYahoo Datasets (aPascal for
training set, aYahoo for testing Set, attributes with no testing instances removed)

Figure 4: Precisions on each attribute for each method: MLkNN, DAP and Linear SVM (note that
Precision is defined as 1 when there are in fact no True positives or False positives returned)

Figure 5: Recalls on each attribute for each method (MLkNN, DAP and Linear SVM)

ilar numbers of training instances are performing
far worse.

Since our ultimate goal here is to create a full
dialogue system that can learn concepts (word
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Figure 6: Macro-F1 on each attribute for each method (MLkNN, DAP and Linear SVM)

Figure 7: Area Under ROC curve for each attribute for each method (MLkNN, DAP and Linear SVM)

meanings) from human tutors, these results would
lead us to pick, at least in an initial proof-of-
concept system, attributes that show rapid learn-
ing rates. Presumably this is why prior work on
this problem has often used ‘toy’ images where
real image processing is not required (e.g. (Roy,
2002; Kennington et al., 2015)).

What we would need ultimately are attribute
classifier learning methods which can operate ef-
fectively on small numbers of examples, and
which can improve performance robustly when
new examples are presented, without “unlearning”
previous examples and without needing long re-
training times. The dialogue abilities of the over-
all system will allow correction and clarification
interactions to correct false positives (e.g “it’s not
red it’s green”) and other errors, and the attribute
classification model must allow for such rapid re-
training.

Finally we note that none of these algorithms
are incremental. Incremental learning methods
(Kankuekul et al., 2012; Tsai et al., 2014; Furao
et al., 2007; Zheng et al., 2013) have been devel-
oped to train object classification networks with-
out abandoning previously learned knowledge or
destroying the old trained prototypes. These meth-
ods (such as (Kankuekul et al., 2012)) could en-
able systems to label known/unknown attributes
gradually through NL interaction with human tu-
tors. Incremental learning approaches can also
speed up the object learning/prediction process
and the system responses, rather than taking a long
computational time.

We will explore these approaches in future
work, to learn objects and their perceptual at-
tributes gradually from conversational Human-
Robot interaction.
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Model average Precision average Recall average Macro-F1
MLkNN 0.5186 0.1537 0.2372

DAP 0.3326 0.2276 0.2703
SVMs 0.1676 0.3118 0.2180

Table 2: Average scores across attribute labels for each method, trained on aPascal and tested on aYahoo

6 Conclusion

We are developing a multimodal interface to ex-
plore the effectiveness of situated dialogue with
a human tutor for learning perceptually-grounded
word meanings. The system integrates the seman-
tic/contextual representations from an incremen-
tal semantic parser/generator, DS-TTR, with at-
tribute classification models to evaluate their per-
formance.

We compared the performance (Precision, Re-
call, F1, AUC) of several state-of-the-art attribute
classifiers for the purpose of interactive language
grounding (MLKNN, DAP, and SVMs), on the
aPascal-aYahoo datasets. The results show that
the models can sometimes perform quite well on
specific attributes (e.g. head, ears, torso), but the
performance over all attributes in general is rather
poor. This leads us to either restrict the attributes
actually used in a real system, or to explore other
methods, such as incremental learning.

The immediate future direction our research
will take is in developing and evaluating a fully
implemented system involving classifiers incor-
porated with incremental learning algorithms for
each visual attribute, DS-TTR, and a pro-active di-
alogue manager that formulates the right questions
to gain information and increase accuracy.

We envisage the use of such technology in mul-
timodal systems interacting with humans, such as
robots and smart spaces.
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Abstract

Semantically complex queries which in-
clude attributes of objects and relations
between objects still pose a major chal-
lenge to image retrieval systems. Re-
cent work in computer vision has shown
that a graph-based semantic representation
called a scene graph is an effective repre-
sentation for very detailed image descrip-
tions and for complex queries for retrieval.
In this paper, we show that scene graphs
can be effectively created automatically
from a natural language scene description.
We present a rule-based and a classifier-
based scene graph parser whose output can
be used for image retrieval. We show that
including relations and attributes in the
query graph outperforms a model that only
considers objects and that using the output
of our parsers is almost as effective as us-
ing human-constructed scene graphs (Re-
call@10 of 27.1% vs. 33.4%). Addition-
ally, we demonstrate the general useful-
ness of parsing to scene graphs by showing
that the output can also be used to generate
3D scenes.

1 Introduction

One of the big remaining challenges in image re-
trieval is to be able to search for very specific im-
ages. The continuously growing number of im-
ages that are available on the web gives users ac-
cess to almost any picture they can imagine, but in
order to find these images users have to be able to
express what they are looking for in a detailed and
efficient way. For example, if a user wants to find
an image of a boy wearing a t-shirt with a plane
on it, an image retrieval system has to understand
that the image should contain a boy who is wear-
ing a shirt and that on that shirt is a picture of a
plane.

Figure 1: Actual results using a popular image
search engine (top row) and ideal results (bottom
row) for the query a boy wearing a t-shirt with a
plane on it.

Keyword-based image retrieval systems are
clearly unable to deal with the rich semantics of
such a query (Liu et al., 2007). They might be
able to retrieve images that contain a boy, a t-shirt
and a plane but they are unable to interpret the re-
lationships and attributes of these objects which is
crucial for retrieving the correct images. As shown
in Figure 1, a possible but incorrect combination
of these objects is that a boy is wearing a t-shirt
and playing with a toy plane.

One proposed solution to these issues is the
mapping of image descriptions to multi-modal
embeddings of sentences and images and using
these embeddings to retrieve images (Plummer et
al., 2015; Karpathy et al., 2014; Kiros et al., 2015;
Mao et al., 2015; Chrupala et al., 2015). How-
ever, one problem of these models is that they are
trained on single-sentence captions which are typ-
ically unable to capture the rich content of visual
scenes in their entirety. Further, the coverage of
the description highly depends on the subjectiv-
ity of human perception (Rui et al., 1999). Cer-
tain details such as whether there is a plane on the
boy’s shirt or not might seem irrelevant to the per-
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son who writes the caption, but for another user
this difference might determine whether a result is
useful or not.

Johnson et al. (2015) try to solve these prob-
lems by annotating images with a graph-based se-
mantic representation called a scene graph which
explicitly captures the objects in an image, their
attributes and the relations between objects. They
plausibly argue that paragraph-long image de-
scriptions written in natural language are currently
too complex to be mapped automatically to im-
ages and instead they show that very detailed im-
age descriptions in the form of scene graphs can
be obtained via crowdsourcing. They also show
that they can perform semantic image retrieval on
unannotated images using partial scene graphs.

However, one big shortcoming of their model
is that it requires the user to enter a query in the
form of a scene graph instead of an image descrip-
tion in natural language which is unlikely to find
widespread adoption among potential users. To
address this problem, we propose a new task of
parsing image descriptions to scene graphs which
can then be used as a query for image retrieval.

While our main goal is to show the effective-
ness of parsing image descriptions for image re-
trieval, we believe that scene graphs can be a use-
ful intermediate representation for many applica-
tions that involve text and images. One great ad-
vantage of such an intermediate representation is
the resulting modularity which allows independent
development, improvement and reuse of NLP, vi-
sion and graphics subsystems. For example, we
can reuse a scene graph parser for systems that
generate 2D-scenes (Zitnick et al., 2013) or 3D-
scenes (Chang et al., 2014) which require input in
the form of similar graph-based representations to
which a scene graph can be easily converted.

In this paper, we introduce the task of parsing
image descriptions to scene graphs. We build and
evaluate a rule-based and a classifier-based scene
graph parser which map from dependency syn-
tax representations to scene graphs. We use these
parsers in a pipeline which first parses an image
description to a scene graph and then uses this
scene graph as input to a retrieval system. We
show that such a pipeline outperforms a system
which only considers objects in the description
and we show that the output of both of our parsers
is almost as effective as human-constructed scene
graphs in retrieving images. Lastly, we demon-

strate the more general applicability of our parsers
by generating 3D scenes from their output.

We make our parsers and models available
at http://nlp.stanford.edu/software/scenegraph-
parser.shtml.

2 Task Description

Our overall task is retrieving images from image
descriptions which we split into two sub-tasks:
Parsing the description to scene graphs and retriev-
ing images with scene graphs. In this paper, we
focus exclusively on the first task. For the latter,
we use a reimplementation of the system by John-
son et al. (2015) which we briefly describe in the
next section.

2.1 Image Retrieval System

The image retrieval system by Johnson et al.
(2015) is based on a conditional random field
(CRF) (Lafferty et al., 2001) model which – unlike
the typical CRFs in NLP – is not a chain model
but instead capturing image region proximity. This
model ranks images based on how likely it is that a
given scene graph is grounded to them. The model
first identifies potential object regions in the image
and then computes the most likely assignment of
objects to regions considering the classes of the
objects, their attributes and their relations. The
likelihood of a scene graph being grounded to an
image is then approximated as the likelihood of
the most likely assignment of objects to regions.

2.2 Parsing to Scene Graphs

The task of parsing image descriptions to scene
graphs is defined as following. Given a set of ob-
ject classes C, a set of relation types R, a set of at-
tribute types A, and a sentence S we want to parse
S to a scene graph G = (O,E). O = {o1, ..., on}
is a set of objects mentioned in S and each oi is a
pair (ci, Ai) where ci ∈ C is the class of oi and
Ai ⊆ A are the attributes of oi. E ⊆ O × R × O
is the set of relations between two objects in the
graph. For example, given the sentence S =
“A man is looking at his black watch” we want
to extract the two objects o1 = (man, ∅) and
o2 = (watch, {black}), and the relations e1 =
(o1, look at, o2) and e2 = (o1, have, o2). The sets
C, R and A consist of all the classes and types
which are present in the training data.
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2.3 Data

We reuse a dataset which we collected for a differ-
ent task using Amazon Mechanical Turk (AMT)
in a similar manner as Johnson et al. (2015)
and Plummer et al. (2015). We originally anno-
tated 4,999 images from the intersection of the
YFCC100m (Thomee et al., 2015) and Microsoft
COCO (Lin et al., 2014b) datasets. However, un-
like previous work, we split the process into two
separate passes with the goal of increasing the
number of objects and relations per image.

In the first pass, AMT workers were shown an
image and asked to write a one sentence descrip-
tion of the entire image or any part of it. To get
diverse descriptions, workers were shown the pre-
vious descriptions written by other workers for the
same image and were asked to describe something
about the image which had not been described by
anyone else. We ensured diversity in sentence de-
scriptions by a real-time BLEU score (Papineni et
al., 2002) threshold between a new sentence and
all the previous ones.

In the second pass, workers were presented
again with an image and with one of its sentences.
They were asked to draw bounding boxes around
all the objects in the image which were mentioned
in the sentence and to describe their attributes and
the relations between them. This step was repeated
for each sentence of an image and finally the par-
tial scene graphs are combined to one large scene
graph for each image. While the main purpose of
the two-pass data collection was to increase the
number of objects and relations per image, it also
provides as a byproduct a mapping between sen-
tences and partial scene graphs which gives us a
corpus of sentence-scene graph pairs that we can
use to train a parser.

2.3.1 Preprocessing

The AMT workers were allowed to use any la-
bel for objects, relations and attributes and con-
sequently there is a lot of variation in the data. We
perform several preprocessing steps to canonical-
ize the data. First, we remove leading and trailing
articles from all labels. Then we replace all the
words in the labels with their lemmata and finally
we split all attributes with a conjunction such as
red and green into two individual attributes.

We also follow Johnson et al. (2015) and discard
all objects, relations and attributes whose class or
type appears less than 30 times in the entire dataset

Raw Processed Filtered

Images 4,999 4,999 4,524
Sentences 88,188 88,188 50,448
Sentences per image 17.6 17.6 11.2

Object classes 18,515 15,734 798
Attribute types 7,348 6,442 277
Relation types 9,274 7,507 131

Objects per image 21.2 21.2 14.6
Attributes per image 16.2 16.4 10.7
Relations per image 18.6 18.6 10.3

Attributes per sent. 0.92 0.93 0.93
Relations per sent. 1.06 1.06 0.96

Table 1: Aggregate statistics of the raw, canoni-
calized (processed) and filtered datasets.

for the following two reasons. First and foremost,
computer vision systems require multiple training
examples for each class and type to be able to learn
useful generalizations, and second, rare classes
and types are often a result of AMT workers mak-
ing mistakes or not understanding the task prop-
erly. As we make the assumption that the scene
graph of one sentence is complete, i.e., that it cap-
tures all the information of the sentence, we have
to apply a more aggressive filtering which discards
the entire scene graph of a sentence in case one of
its objects, attributes or relations is discarded due
to the threshold. In case we discard all sentences
of an image, we discard the entire image from our
data. Despite the aggressive filtering, the average
number of objects, relations and attributes per im-
age only drops by 30-45% and we only discard
around 9% of the images (see Table 1).

3 Scene Graph Parsers

We implement two parsers: a rule-based parser
and a classifier-based parser. Both of our parsers
operate on a linguistic representation which we re-
fer to as a semantic graph. We obtain semantic
graphs by parsing the image descriptions to de-
pendency trees followed by several tree transfor-
mations. In this section, we first describe these
tree transformations and then explain how our two
parsers translate the semantic graph to a scene
graph.

3.1 Semantic Graphs

A Universal Dependencies (de Marneffe et al.,
2014) parse is in many ways close to a shallow se-
mantic representation and therefore a good start-
ing point for parsing image descriptions to scene
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ROOT Both of the men are riding their horses

nmod

nsubj

dobj
nmod:poss

ROOT Both of the

man
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riding horse

man’ riding’ horse’

det:qmod
mwe

nsubj dobj

nmod:poss

dobjnsubj

det:qmod

nmod:poss

Figure 2: Dependency tree and final semantic graph of a sentence. men is promoted to be the subject;
men, riding, and horses are duplicated; and their is deleted following coreference resolution.

graphs. Basic dependency trees, however, tend
to follow the linguistic structure of sentences too
closely which requires some post-processing of
the parses to make them more useful for a se-
mantic task. We start with the enhanced depen-
dency representation output by the Stanford Parser
v3.5.2 (Klein and Manning, 2003)1 and then per-
form three additional processing steps to deal with
complex quantificational modifiers, to resolve pro-
nouns and to handle plural nouns.

3.1.1 Quantificational modifiers
Several common expressions with light nouns
such as a lot of or a dozen of semantically act like
quantificational determiners (Simone and Masini,
2014). From a syntactic point of view, however,
these expressions are the head of the following
noun phrase. While one of the principles of the
Universal Dependencies representation is the pri-
macy of content words (de Marneffe et al., 2014),
light nouns are treated like any other noun. To
make our dependency trees better suited for se-
mantic tasks, we change the structure of all light
noun expressions from a manually compiled list.
We make the first word the head of all the other
words in the expression and then make this new
multi-word expression a dependent of the follow-
ing noun phrase. This step guarantees that the se-
mantic graph for both cars and for both of the cars
have similar structures in which the semantically
salient word cars is the head.

3.1.2 Pronoun resolution
Some image descriptions such as “a bed with a
pillow on it” contain personal pronouns. To re-

1We augment the parser’s training data with the Brown
corpus (Marcus et al., 1993) to improve its performance on
image descriptions which are often very different from sen-
tences found in newswire corpora.

cover all the relations between objects in this sen-
tence it is crucial to know that it refers to the ob-
ject a bed and therefore we try to resolve all pro-
nouns. We found in practice that document-level
coreference systems (e.g. Lee et al. (2013)) were
too conservative in resolving pronouns and hence
we implement an intrasential pronoun resolver in-
spired by the first three rules of the Hobbs algo-
rithm (Hobbs, 1978) which we modified to oper-
ate on dependency trees instead of constituency
trees. We evaluate this method using 200 ran-
domly selected image descriptions containing pro-
nouns. Our pronoun resolver has an accuracy of
88.5% which is significantly higher than the accu-
racy of 52.8% achieved by the coreference system
of Lee et al. (2013).

3.1.3 Plural nouns
Plural nouns are known to be a major challenge
in semantics in general (Nouwen, 2015), and also
in our task. One particular theoretical issue is
the collective-distributive ambiguity of sentences
with multiple plural nouns. For example, to obtain
the intended distributive reading of “three men
are wearing jeans” we have to extract three man
objects and three jeans objects and we have to
connect each man object to a different jeans ob-
ject. On the other hand, to get the correct parse
of “three men are carrying a piano” we probably
want to consider the collective reading and extract
only one piano object. A perfect model thus re-
quires a lot of world knowledge. In practice, how-
ever, the distributive reading seems to be far more
common so we only consider this case.

To make the dependency graph more similar
to scene graphs, we copy individual nodes of the
graph according to the value of their numeric mod-
ifier. We limit the number of copies per node to 20
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as our data only contains scene graphs with less
than 20 objects of the same class. In case a plural
noun lacks such a modifier we make exactly one
copy of the node.

Figure 2 shows the original dependency tree and
the final semantic graph for the sentence “Both of
the men are riding their horses”.

3.2 Rule-Based Parser

Our rule-based parser extracts objects, relations
and attributes directly from the semantic graph.
We define in total nine dependency patterns using
Semgrex2 expressions. These patterns capture the
following constructions and phenomena:

• Adjectival modifiers

• Subject-predicate-object constructions and
subject-predicate constructions without an
object

• Copular constructions

• Prepositional phrases

• Possessive constructions

• Passive constructions

• Clausal modifiers of nouns

With the exception of possessives for which
we manually add a have relation, all objects,
relations and attributes are words from the se-
mantic graph. For example, for the semantic
graph in Figure 2, the subject-predicate-object

pattern matches man
nsubj←−−− riding

dobj−−→ horse

and man′ nsubj←−−− riding′ dobj−−→ horse′. From
these matches we extract two man and two
horse objects and add ride relations to the
two man-horse pairs. Further, the poss-

esive pattern matches man
nmod:poss←−−−−−− horse and

man′ nmod:poss←−−−−−− horse′ and we add have rela-
tions to the two man-horse pairs.

3.3 Classifier-Based Parser

Our classifier-based parser consists of two com-
ponents. First, we extract all candidate objects
and attributes, and second we predict relations be-
tween objects and the attributes of all objects.

2http://nlp.stanford.edu/software/tregex.shtml

3.3.1 Object and Attribute Extraction
We use the semantic graph to extract all object
and attribute candidates. In a first step we extract
all nouns, all adjectives and all intransitive verbs
from the semantic graph. As this does not guaran-
tee that the extracted objects and attributes belong
to known object classes or attribute types and as
our image retrieval model can only make use of
known classes and types, we predict for each noun
the most likely object class and for each adjec-
tive and intransitive verb the most likely attribute
type. To predict classes and types, we use an
L2-regularized maximum entropy classifier which
uses the original word, the lemma and the 100-
dimensional GloVe word vector (Pennington et al.,
2014) as features.

3.3.2 Relation Prediction
The last step of the parsing pipeline is to determine
the attributes of each object and the relations be-
tween objects. We consider both of these tasks as a
pairwise classification task. For each pair (x1, x2)
where x1 is an object and x2 is an object or an
attribute we predict the relation y which can be
any relation seen in the training data, or one of
the two special relations IS and NONE which in-
dicate that x2 is an attribute of x1 or no relation
exists, respectively. We noticed that for most pairs
for which a relation exists, x1 and x2 are in the
same constituent, i.e. their lowest common ances-
tor is either one of the two objects or a word in
between them. We therefore consider only pairs
which satisfy this constraint to improve precision
and to limit the number of predictions.

For the predictions, we use again an L2-
regularized maximum entropy classifier with the
following features:

Object features The original word and lemma,
and the predicted class or type of x1 and x2.

Lexicalized features The word and lemma of
each token between x1 and x2. If x1 or x2 ap-
pear more than once in the sentence because they
replace a pronoun, we only consider the words in
between the closest mentions of x1 and x2.

Syntactic features The concatenated labels
(i.e., syntactic relation names) of the edges in the
shortest path from x1 to x2 in the semantic graph.

We only include objects in the scene graph
which have at least one attribute or which are in-
volved in at least one relation. The idea behind
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that is to prevent very abstract nouns such as set-
ting or right to be part of the scene graph which
are typically not part of relations. However, we
observed for around 30% of the sentences in the
development set that the parser did not extract any
relations or attributes from a sentence which re-
sulted in an empty scene graph. In these cases, we
include all candidate objects in the scene graph.

3.3.3 Training
As the scene graph’s objects and attributes are not
aligned to the sentence, we have to align them in
an unsupervised manner. For each sentence, we
extract object and attribute candidates from the
semantic graph. For each object-relation-object
triple or object-attribute pair in the scene graph
we try to align all objects and attributes to a can-
didate by first checking for exact string match of
the word or the lemma, then by looking for can-
didates within an edit distance of two, and finally
by mapping the object or attribute and all the can-
didates to 100-dimensional GloVe word vectors
and picking the candidate with the smallest eu-
clidean distance. To limit the number of false
alignments caused by annotators including objects
in the scene graph that are not present in the corre-
sponding sentence, we also compute the euclidean
distances to all the other words in the sentence and
if the closest match is not in the candidate set we
discard the training example.

We use this data to train both of our classifiers.
For the object and attribute classifier, we only con-
sider the alignments between words in the descrip-
tion and objects or attributes in the graph.

For the relation predictor, we consider the com-
plete object-relation-object and object-is-attribute
triples. All the aligned triples constitute our pos-
itive training examples for a sentence. For all the
object-object and object-attribute pairs without a
relation in a sentence, we generate negative exam-
ples by assigning them a special NONE relation.
We sample from the set of NONE triples to have
the same number of positive and negative training
examples.

4 Experiments

For our experiments, we split the data into train-
ing, development and held-out test sets of size
3,614, 454, and 456 images, respectively. Table 2
shows the aggregated statistics of our training and
test sets. We compare our two parsers against the
following two baselines.

Train Dev Test

Images 3,614 454 456
Sentences 40,315 4,953 5,180
Relation instances 38,617 4,826 4,963
Attribute instances 37,580 4,644 4,588

Table 2: Aggregate statistics of the training, de-
velopment (dev) and test sets.

Nearest neighbor Our first baseline computes a
term-frequency vector for an input sentence and
returns the scene graph of the nearest neighbor in
the training data.

Object only Our second baseline is a parser that
only outputs objects but no attributes or relation-
ships. It uses the first two components of the
classifier-based parser, namely the semantic graph
processor and the object extractor, and then simply
outputs all candidate objects.

We use the downstream performance on the
image retrieval task as our main evaluation met-
ric. We train our reimplementation of the model
by Johnson et al. (2015) on our training set with
human-constructed scene graphs. For each sen-
tence we use the parser’s output as a query and
rank all images in the test set. For evaluation,
we consider the human-constructed scene graph
Gh of the sentence and construct a set of images
I = i1, ..., in such that Gh is a subgraph of the im-
age’s complete scene graph. We compute the rank
of each image in I and compute recall at 5 and 10
based on these ranks3. We also compute the me-
dian rank of the first correct result. We compare
these numbers against an oracle system which uses
the human-constructed scene graphs as queries in-
stead of the scene graphs generated by the parser.

One drawback of evaluating on a downstream
task is that evaluation is typically slower compared
to using an intrinsic metric. We therefore also
compare the parsed scene graphs to the human-
constructed scene graphs. As scene graphs consist
of object instances, attributes, and relations and
are therefore similar to Abstract Meaning Repre-
sentation (AMR) (Banarescu et al., 2013) graphs,
we use Smatch F1 (Cai and Knight, 2013) as an
additional intrinsic metric.

3As in Johnson et al. (2015), we observed that the results
for recall at 1 were very unstable so we only report recall at 5
and 10 which are typically also more relevant for real-world
systems that return multiple results.
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Development set Test set

Smatch R@5 R@10 Med. rank Smatch R@5 R@10 Med. rank

Nearest neighbor 32% 1.2% 2.3% 206 32% 1.1% 2.3% 205
Object only 48% 15.0% 29.3% 20 48% 12.6% 24.8% 25
Rule 43% 16.4% 31.6% 17 44% 13.5% 27.1% 20
Classifier 47% 16.7% 32.9% 16 47% 13.8% 27.1% 20

Oracle - 19.4% 39.8% 13 - 16.6% 33.4% 15

Table 3: Intrinsic (Smatch F1) and extrinsic (recall at 5 and 10, and median rank) performance of our
two baselines, our rule-based and our classifier-based parser.

R@5 R@10 Med. rank

Johnson et al. (2015) 30.3% 47.9% 11
Our implementation 27.6% 45.6% 12

Table 4: Comparison of the results of the original
implementation by Johnson et al. (2015) and our
implementation. Both systems were trained and
tested on the data sets of the original authors.

5 Results and Discussion

Table 3 shows the performance of our baselines
and our two final parsers on the development and
held-out test set.

Oracle results Compared to the results of John-
son et al. (2015), the results of our oracle systems
are significantly worse. To verify the correctness
of our implementation, the original authors pro-
vided us with their training and test set. Table 4
shows that our reimplementation performs almost
as well as their original implementation. We hy-
pothesize that there are two main reasons for the
drop in performance when we train and evaluate
our system on our dataset. First, our dataset is a
lot more diverse and contains many more object
classes and relation and attribute types. Second,
the original authors only use the most common
queries for which there exist at least five results to
retrieve images while we evaluate on all queries.

Effectiveness of Smatch F1 As mentioned in
the previous section, having an intrinsic evalua-
tion metric can reduce the length of development
cycles compared to using only an extrinsic evalua-
tion. We hoped that Smatch F1 would be an appro-
priate metric for our task but our results indicate
that there is no strong correlation between Smatch
F1 and the performance of the downstream task.

Comparison of rule-based and classifier-based
system In terms of image retrieval performance,

there does not seem to be a significant dif-
ference between our rule-based system and our
classifier-based system. On the development set
the classifier-based system slightly outperforms
the rule-based system but on the test set both seem
to work equally well. Nevertheless, their results
differ in some cases. One strength of the classifier-
based system is that it learns that some adjectival
modifiers like several should not be attributes. It
is also able to learn some basic implications such
as the shirt looks dirty implies in the context of an
image that the shirt is dirty. On the other hand, the
rule-based system tends to be more stable in terms
of extracting relations while the classifier-based
system more often only extracts objects from a
sentence.

Comparison to baselines As shown in Table 3,
both of our parsers outperform all our baselines
in terms of recall at 5 and 10, and the median
rank. This difference is particularly significant
compared to the nearest neighbor baseline which
confirms the complexity of our dataset and shows
that it is not sufficient to simply memorize the
training data.

The object only baseline is a lot stronger but still
performs consistently worse than our two parsers.
To understand in what ways our parsers are supe-
rior to the object only baseline, we performed a
qualitative analysis. A comparison of the results
reveals that the image retrieval model is able to
make use of the extracted relations and attributes.
Figure 3 shows the top 5 results of our classifier-
based parser and the object only baseline for the
query “The white plane has one blue stripe and
one red stripe”. While the object only model
seems to be mainly concerned with finding good
matches for the two stripe objects, the output of
our parser successfully captures the relation be-
tween the plane and the stripes and correctly ranks
the two planes with the blue and red stripes as the
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Figure 3: Top 5 results of the object only baseline (top row) and our classifier-based parser (bottom row)
for the query “The white plane has one blue stripe and one red stripe”. The object only system seems
to be mainly concerned with finding images that contain two stripe objects at the expense of finding an
actual plane. Our classifier-based parser also outputs the relation between the stripes and the plane and
the colors of the stripes which helps the image retrieval system to return the correct results.

Figure 4: 3D scenes for the sentences “There is a
wooden desk with a red and green lamp on it” and
“There is a desk with a notepad on it”.

top results.

Error analysis The performance of both of
our parsers comes close to the performance of
the oracle system but nevertheless there still
remains a consistent gap. One of the rea-
sons for the lower performance is that some
human-constructed scene graphs contain informa-
tion which is not present in the description. The
human annotators saw both the description and the
image and could therefore generate scene graphs
with additional information.

Apart from that, we find that many errors oc-
cur with sentences which require some external
knowledge. For example, our parser is not able to
infer that “a woman in black” means that a woman
is wearing black clothes. Likewise it is not able
to infer that “a jockey is wearing a green shirt
and matching helmet” implies that he is wearing
a green helmet.

Other errors occur in some sentences which talk

about textures. For example, our parsers assume
that “a dress with polka dots” implies that there is
a relation between one dress object and multiple
polka dot objects instead of inferring that there is
one dress object with the attribute polka-dotted.

One further source of errors are wrong depen-
dency parses. Both of our parsers heavily rely on
correct dependency parses and while making the
parser’s training data more diverse did improve re-
sults, we still observe some cases where sentences
are parsed incorrectly leading to incorrect scene
graphs.

6 Other Tasks

As mentioned before, one appeal of parsing sen-
tences to an intermediate representation is that we
can also use our parser for other tasks that make
use of similar representations. One of these tasks
is generating 3D scenes from textual descriptions
(Chang et al., 2014). Without performing any fur-
ther modifications, we replaced their parser with
our classifier-based parser and used the resulting
system to generate 3D scenes from several indoor
scene descriptions. Two of these generated scenes
are shown in Figure 4. Our impression is that the
system performs roughly equally well using this
parser compared to the one used in the original
work.
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7 Related Work

Image retrieval Image retrieval is one of the
most active areas in computer vision research.
Very early work mainly focused on retrieving im-
ages based on textual descriptions, while later
work focused more on content-based image re-
trieval systems which perform retrieval directly
based on image features. Rui et al. (1999), Liu
et al. (2007), and Siddiquie et al. (2011) provide
overviews of the developments of this field over
the last twenty years. Most of this work focused
on retrieving images from keywords which are not
able to capture many semantic phenomena as well
as natural language or our scene graph representa-
tion can.

Multi-modal embeddings Recently, multi-
modal embeddings of natural language and
images got a lot of attention (Socher et al., 2014;
Karpathy et al., 2014; Plummer et al., 2015; Kiros
et al., 2015; Mao et al., 2015; Chrupala et al.,
2015). These embeddings can be used to retrieve
images from captions and generating captions
from images. As mentioned in the introduction,
these models are trained on single-sentence image
descriptions which typically cannot capture all
the details of a visual scene. Further, unlike
our modular system, they cannot be used for
other tasks that require an interpretable semantic
representation.

Parsing to graph-based representations Rep-
resenting semantic information with graphs has re-
cently experienced a resurgence caused by the de-
velopment of the Abstract Meaning Representa-
tion (AMR) (Banarescu et al., 2013) which was
followed by several works on parsing natural lan-
guage sentences to AMR (Flanigan et al., 2014;
Wang et al., 2015; Werling et al., 2015). Con-
sidering that AMR graphs are, like dependency
trees, very similar to scene graphs, we could have
also used this representation and transformed it
to scene graphs. However, the performance of
AMR parsers is still not competitive with the per-
formance of dependency parsers which makes de-
pendency trees are more stable starting point.

There also exists some prior work on parsing
scene descriptions to semantic representations. As
mentioned above, Chang et al. (2014) present a
rule-based system to parse natural language de-
scriptions to scene templates, a similar graph-
based semantic representation. Elliott et al. (2014)

parse image descriptions to a dependency gram-
mar representation which they also use for im-
age retrieval. Lin et al. (2014a) also use rules to
transform dependency trees into semantic graphs
which they use for video search. All of this work,
however, only consider a limited set of relations
while our approach can learn an arbitrary number
of relations. Further, they all exclusively use very
specific rule-based systems whereas we also in-
troduced a more general purposed classifier-based
parser.

8 Conclusion

We presented two parsers which can translate im-
age descriptions to scene graphs. We showed that
their output is almost as effective for retrieving im-
ages as human-generated scene graphs and that in-
cluding relations and attributes in queries outper-
forms a model which only considers objects. We
also demonstrated that our parser is well suited for
other tasks which require a semantic representa-
tion of a visual scene.
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Abstract

We introduce the task of visualizing dis-
tributed semantic representations by gen-
erating images from word vectors. Given
the corpus-based vector encoding the word
broccoli, we convert it to a visual repre-
sentation by means of a cross-modal map-
ping function, and then use the mapped
representation to generate an image of
broccoli as “dreamed” by the distributed
model. We propose a baseline dream syn-
thesis method based on averaging pictures
whose visual representations are topologi-
cally close to the mapped vector. Two ex-
periments show that we generate dreams
that generally belong to the the right se-
mantic category, and are sometimes accu-
rate enough for subjects to distinguish the
intended concept from a related one.

1 Introduction

When researchers “visualize” dis-
tributed/distributional semantic models, they
typically present 2D scatterplots illustrating the
distances between a set of word representa-
tions (Van der Maaten and Hinton, 2008). We
propose a much more direct approach to visual-
ization. Given a vector representing a word in a
corpus-derived distributed space, we generate a
picture depicting how the denotatum of the word
looks like, according to the model. Given, say,
the word2vec vector of broccoli, we want to know
how broccoli looks like to word2vec (see Figure 1
for the answer).

Besides the inherent coolness of the task, it
has many potential applications. Current quali-
tative analysis of distributed semantic models is
limited to assessing the relation between words,
e.g., by looking at, or plotting, nearest neighbour
sets, but it lacks methods to inspect the proper-

ties of a specific word directly. Our image syn-
thesis approach will allow researchers to “see”, in
a very literal sense, how a model represents a sin-
gle word. Moreover, in the spirit of the “A pic-
ture is worth a thousand words” adage, the gener-
ated images will allow researchers to quickly eye-
ball the results, getting the gist of what a model
is capturing much faster than from textual neigh-
bour lists. For example, a more “topical” model
might produce pictures depicting the wider scenes
in which objects occur (a ball being dribbled by
soccer players), whereas a model capturing strictly
conceptual aspects might produce narrow views of
the denoted objects (a close-up of the ball). Im-
age synthesis could also be used to explore the ef-
fect of different input corpora on representations:
e.g., given a historical corpus, generate images for
the car word representations induced from early
20th-century vs. 21st-century texts. As a last ex-
ample, Aletras and Stevenson (2013) proposed to
examine the topics of Topic Models by associating
them with images retrieved from the Web. Given
that topics are represented by vectors, we could di-
rectly generate images representing these topics.

In cognitive science, there is a lively debate
on whether abstract words have embodied repre-
sentations, (Barsalou and Wiemer-Hastings, 2005;
Lakoff and Johnson, 1999), an issue that has re-
cently attracted the attention of the distributed se-
mantics community (Hill and Korhonen, 2014;
Kiela et al., 2014; Lazaridou et al., 2015). An in-
triguing application of image synthesis would be
to produce and assess imagery for abstract con-
cepts. Recent work in neuroscience attempts to
generate images of “what people think”, as en-
coded in vector-based representations of fMRI
patterns (Naselaris et al., 2009; Nishimoto et al.,
2011). With our method, we could then directly
compare images produced from corpus-based rep-
resentations to what humans visualize when think-
ing of the same words.
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In the long term, we would like to move be-
yond words, towards generating images depicting
the meaning of phrases (e.g., an angry cat vs. a
cute cat vs. a white cat) and sentences. This would
nicely complement current work on generating
verbal descriptions of images (Karpathy and Fei-
Fei, 2015; Kiros et al., 2014) with the inverse task
of generating images from verbal descriptions.

Generating images from vectorial word rep-
resentations is of course extremely challenging.
However, various relevant strands of research have
reached a level of maturity that makes it a realis-
tic goal to pursue. First, tools such as word2vec
(Mikolov et al., 2013a) and Glove (Pennington et
al., 2014) produce high-quality word representa-
tions, making us confident that we are not trying to
generate visual signals from semantic noise. Sec-
ond, there is very promising recent work on learn-
ing to map between word representations and an
(abstract) image space, for applications such as
image retrieval and annotation (Frome et al., 2013;
Karpathy and Fei-Fei, 2015; Kiros et al., 2014;
Lazaridou et al., 2014; Socher et al., 2014). Fi-
nally, the computer vision community is starting
to explore the task of image generation (Gregor et
al., 2015), typically in an attempt to understand
the inner workings of visual feature extraction al-
gorithms (Zeiler and Fergus, 2014).

The main aim of this paper is to present proof-
of-concept evidence that the task is feasible. To
this end, we rely on state-of-the-art word represen-
tation and cross-modality mapping methods, but
we adopt an image synthesis strategy that could be
seen as an interesting baseline to compare other
approaches against. Briefly, our pipeline works
as follows. Our input is given by pre-computed
word representations (word2vec) and a set of la-
beled images together with their pre-compiled rep-
resentations in a high-level visual feature space
(specifically, we use activations on one of the top
layers (fc7) of a convolutional neural network as
high-level image representations). Given an input
word vector, we use a linear cross-modal function
to map it into visual space, and we retrieve the n
nearest image representations. Finally, we overlay
the actual images corresponding to these nearest
neighbours in order to derive a visualization of the
mapped word, a method we refer to as averaging.
For example, the first image in Figure 1 below is
our visualization of broccoli, obtained by project-
ing the broccoli word vector onto visual space, re-

trieving the 20 nearest images and averaging them.
Importantly, we apply this synthesis method to

words that are not used to train the cross-modal
mapping function, and that do not match the label
of any picture in the image data set. So, for ex-
ample, our system had to map broccoli onto visual
space without having ever been exposed to labeled
broccoli images (zero-shot setting), and it gener-
ated the broccoli image by averaging pictures that
do not depict broccoli.

2 General setup

We refer to the words we generate images for as
dreamed words, and to the corresponding images
as dreams. We refer to the set of words that are
associated to real pictures as seen words. The real
picture set contains approximately 500K images
extracted from ImageNet (Deng et al., 2009) rep-
resenting 5.1K distinct seen words. The dreamed
word set includes 510 concrete, base-level con-
cepts from the semantic norms of McRae et al.
(2005) (we excluded 31 McRae concepts because
they were marked as ambiguous there, or for tech-
nical reasons).

Linguistic and Visual Representations For
all seen and dreamed concepts, we build 300-
dimensional word vectors with the word2vec
toolkit,1 choosing the CBOW method.2 CBOW,
which learns to predict a target word from the
ones surrounding it, produces state-of-the-art re-
sults in many linguistic tasks (Baroni et al., 2014).
Word vectors are induced from a corpus of 2.8
billion words.3 The 500K images are repre-
sented by 4096-dimensional visual vectors, ex-
tracted with the pre-trained convolutional neural
network model of Krizhevsky et al. (2012) through
the Caffe toolkit (Jia et al., 2014).

Cross-modal mapping We use 5.1K training
pairs (wc,vc) = {wc ∈ R300,vc ∈ R4096}, where
wc is the word vector and vc the visual vector for
(seen) concept c, the latter obtained by averaging
all visual representations labeled with the concept
(no dreamed concept is included in the training

1https://code.google.com/p/word2vec/
2Other hyperparameters, adopted without tuning, include

a context window size of 5 words to either side of the target,
setting the sub-sampling option to 1e-05 and estimating the
probability of target words by negative sampling, drawing 10
samples from the noise distribution (Mikolov et al., 2013b).

3Corpus sources: http://wacky.sslmit.unibo.
it, http://www.natcorp.ox.ac.uk
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set, given the zero-shot setup). Following previ-
ous work on cross-modal mapping (Frome et al.,
2013; Lazaridou et al., 2014), we assume a lin-
ear mapping function. To estimate its parameters
M ∈ R300×4096, given word vectors W paired
with visual vectors V, we use L1-penalized least
squares (Lasso) regression:4

M̂ = argmin
M∈R300×4096

‖WM−V‖F + λ‖M‖1

Image synthesis Suppose you have never seen
cougars, but you know they are big cats. You
might reasonably visualize a cougar as resembling
a combination of lions, cheetahs and other fe-
lines. One simple way to simulate this process is
through image averaging. Specifically, given the
word representation wc of a dreamed concept c,
we apply cross-modal mapping M to obtain an
estimate of its visual vector v̂c. Following that,
we search for the top k = 20 nearest images in
4096-dimensional visual space. Finally, the dream
of concept c is obtained by averaging the colors
in each pixel position (x, y) across the 20 images.
These images do not contain the dreamed concept,
and they will typically depict several distinct con-
cepts (e.g., with a fairly accurate mapping M, we
might get the dream of cougar by averaging im-
ages of 5 cheetahs and 15 lions).5

3 Experiment 1: Naming the dream

Task definition and data collection In this ex-
periment we presented a dream, and asked sub-
jects if they thought it was more likely to denote
the correct dreamed word or a confounder ran-
domly picked from the seen word set (we did not
use the “dream” terminology to explain the task
to subjects). Since the confounder is a randomly
picked term, the task is relatively easy. At the
same time, since the confounders are picked from
a set of concrete concepts, just like the dreamed
words, it sometimes happens that the two concepts
are quite related, as illustrated in Figure 1. More-
over, all confounders were used to train the map-
ping function, and their pictures are present in the
averaging pool. These factors could introduce a
bias in favour of them. We tested all 510 McRae

4λ is 10-fold cross-validated on the training data.
5The idea of generating a more abstract depiction of

something by averaging a number of real pictures is popular
in contemporary art (Salavon, 2004) and it has recently been
adopted in computer vision, as a way to visualize large sets of
images of the same concept, e.g., averaging across different
cat breeds (Zhu et al., 2014).

baboon
zebrabroccoli

laurel
tongs
utensil

cottage
gardener

Figure 1: Experiment 1: Example dreams with
correct dreamed word and confounder. Subjects
showed a significant preference for the colored
word (green if right, red if wrong).

words, collecting 20 ratings for each. We ran-
domized word order both across and within trials.
We used the CrowdFlower6 platform to collect the
judgments, limiting participation to subjects from
English-speaking countries who self-declared En-
glish as their native language.

Results Subjects show a consistent preference
for the correct (dreamed) word (median propor-
tion of votes in favor of it: 90%). Prefer-
ence for the correct word is significantly dif-
ferent from chance in 419/510 cases (two-
sided exact binomial tests, corrected for mul-
tiple comparisons with the false discovery rate
method, α = .05). Subjects expressed a sig-
nificant preference for the confounder in only 5
cases (budgie/parakeet, cake/pie, camel/ox, shot-
gun/revolver, squid/octopus).

For the first two dreams in Figure 1, subjects
showed a significant preference for the dreamed
word, despite the fact that the confounder is a re-
lated term. Still, when the two words are closely
related, it is more likely that subjects will be at
random. The figure also shows two interesting ex-
amples in which dreamed word and confounder
are related, and subjects significantly preferred the
latter. The tongs/utensil case is very challenging,
because any tongs picture would also be an utensil
picture (and the dreamed object does not look like
tongs to start with). For zebra/baboon, we conjec-
ture that subjects could make up an animal in the
dream, but one lacking the salient black-and-white
pattern of zebras.

4 Experiment 2: Picking the right dream

Task definition and data collection In this ex-
periment, we matched each dreamed word with
its own dream and a confounder dream gener-
ated from the most similar dreamed term (see
Figure 2 for examples). Word similarity was

6http://www.crowdflower.com
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measured in a space defined by subject-generated
properties describing the concepts of interest (this
method is known to produce high-quality similar-
ity estimates, better than those obtained with text-
based distributional models, see, e.g., Baroni et al.
(2010)). Subjects were asked which of the two im-
ages is more likely to contain the thing denoted by
the word. This is a very challenging task, as in
most cases target and confounder are closely re-
lated concepts, and thus their dreams must have
considerable granularity to allow subjects to make
the correct choice. Again, we used CrowdFlower
to collect 20 votes per item, with the same modal-
ities of Experiment 1.

Results We expected the simple averaging
method to fail completely at the level of accuracy
required by this task. The results, however, sug-
gest at least a trend in the right direction. This
time, the median proportion of votes for the cor-
rect dream is at 60%. In 165/510 cases, there
is a significant preference for the correct dream
(same statistical testing setup as above), and in 57
cases for the confounder. A manual annotation of
higher-level categories of dreamed word and con-
founder (e.g., garment, mammal, etc.) revealed
that the proportion of votes for the correct dream
was much higher in the 100 cases in which the
two items belonged to different categories (80%
vs. 55% for same-category pairs). The top row
of Figure 2 illustrates cases where the pairs be-
long to the same category, and yet subjects still
showed a strong preference for the correct dream.
In the tractor/truck case, both dreams represent
vehicles, but the correct one is evoking the ru-
ral environment a tractor. For swan/dove, we can
make out birds in both dreams, but the swan dream
is clearly of a larger, aquatic bird. Still, the more
common case is the one where, if the two concepts
are closely related, subjects assign random prefer-
ences, as they did for the examples in the second
row.

5 Discussion

Averaging lets common visual properties in the
source images emerge, as discussed in the next
paragraphs in relation to the examples of Figure 3.

Shape The typical position and orientation of
objects in images is an important factor deter-
mining dream quality. For example, weapons of-
ten appear in opposite orientations, which gives
the averaged bayonet dream an improbable X-

tractor swan

budgie cake

Figure 2: Experiment 2: Example dream pairs:
the one on the left was generated from the word
below the pair, the other from a confounder (clock-
wise from top left: truck, dove, pie, parakeet).
Subjects showed significant preference for the
green-framed correct dreams, and were at chance
level in the other cases.

like shape. Other concepts, like umbrella,
whose dream averages circular objects, are not so
strongly affected by the orientation problem.

Context Even when bad object alignment leads
to blurry dreams with unrecognizable concepts,
averaging might highlight a shared context, suf-
ficient to reveal the general category the dreamed
concept belongs to. While both dreams in the 2nd
column of Figure 3 are blurry, we can guess that
the first one is related to water or to the sea, while
the second is related to forest nature (dreams of a
mackerel and bison, respectively).7

Color Visual averaging can differentiate con-
cepts by capturing characteristics that are not typ-
ically verbalized. In black and white, the skirt and
trousers dreams look almost identical (and they
wrongly depict an upper-body garment). What
differentiates the two images is color, red for
skirt black for trousers. Indeed, a Google im-
age search reveals that skirts tend to be color-
ful and trousers dark. The McRae norms list
is colorful as a property of skirts, but not
trousers. We thus conjecture that image synthe-
sis could provide fine-grained perceptual informa-
tion complementing linguistic properties encoded
in classic nearest neighbour lists.

6 Conclusion

We presented a proof-of-concept study taking the
first steps toward generation of novel images from
text-based word vectors. Obviously, the next step
is to use genuine image generation methods in-

7Interestingly, Torralba (2003) used same-object image
averaging to illustrate contextual priming during object de-
tection.
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bison

mackerelumbrella

bayonet

skirt

trousers

SHAPE CONTEXT COLOR

Figure 3: Examples illustrating properties of
dream synthesis by image averaging.

stead of averaging (Gregor et al., 2015; Mahen-
dran and Vedaldi, 2015; Vondrick et al., 2014;
Zeiler and Fergus, 2014).

We would also like to consider alternative eval-
uation methods: for example, as suggested by a
reviewer, asking subjects to label the generated
dreams, and then measuring distance between the
volunteered labels and the ground truth.

In a relatively short-term application perspec-
tive, given the intriguing results on context and
other visual properties we reported, a natural first
step would be to see how such properties change
when different embeddings are used as input.
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Abstract

Demographic attribute inference of social
networking service (SNS) users is a valu-
able application for marketing and for tar-
geting advertisements. Several studies
have examined Twitter-user gender infer-
ence in natural language processing, im-
age recognition, and other research do-
mains. Reportedly, a combined approach
using text data and image data outper-
forms an individual data approach. This
paper presents a proposal of a novel hybrid
approach. A salient benefit of our system
is that features provided from a text classi-
fier and from an image classifier are com-
bined appropriately to infer male or female
gender using logistic regression. The ex-
perimentally obtained results demonstrate
that our approach markedly improves an
existing combination-based method.

1 Introduction

Concomitantly with rapid growth in SNS, con-
sumers increasingly use SNS to exchange and
share their opinions related to products, services,
politics, and other matters. Many companies are
motivated to use SNS data for marketing or ad-
vertisement to satisfy needs for improvements of
their products or services in real time with low
cost. However, in many cases, SNS user informa-
tion such as gender, age or residence is not openly
available, although such information is extremely
important for marketing. To meet that objective,
several studies have been conducted to infer de-
mographic information of anonymous users using
text or image data posted on Twitter, and commu-
nity membership (Rao and Yarowsky, 2010; Ikeda
et al., 2013; Ma et al., 2014; Sakaki et al., 2014).
Sakaki et al. (2014) demonstrated that a hybrid-
based method outperformed other approaches us-
ing individual sources. However we observed

an important issue: each probability score output
from the image classifiers and the text classifier
was simply summed, although the degree of their
respective contributions to the inference is pre-
sumably different.

As described herein, considering that issue, we
propose a novel method with a hybrid approach
using logistic regression. In addition, from ex-
amination of experimentally obtained results, we
show which image contents contribute strongly to
the inference of a Twitter user being male or fe-
male.

2 Related Work

Earlier studies investigated demographic attribute
inference for SNS users based on machine learn-
ing. Text and images posted on SNS, membership
in virtual communities, and combined information
have been used as training data.

Burger et al. (2011) and Liu et al. (2012)
applied text to infer user demographic attributes.
Burger et al. (2011) realized a classifier that dis-
cerns SNS user gender. Liu et al. (2012) estimated
the gender makeup of commuting populations us-
ing text.

Ma et al. (2014) and Ulges et al. (2012)
used images and videos posted on SNS. Ma et
al. (2014) defined 30 sub-categories, which were
combinations of 10 image contents and 3 gen-
der attributes (male, female, and unknown), and
described a system that inferred a user’s gender
by classifying posted images into sub-categories.
Ulges et al. (2012) detected TV viewers’ gender
and age via content-based concept detection.

Ikeda et al. (2013) and Sakaki et al. (2014)
used methods that incorporate information. Ikeda
et al. (2013) proposed a hybrid-based method us-
ing both text and community membership. Sakaki
et al. (2014) proposed a hybrid-based method us-
ing a combination of text and images, which builds
a meta-classifier using the probability score out-
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Figure 1: Overview of our proposed method.

put from text and image classifiers as input. This
study demonstrated that a combination of text and
images boosts the accuracy of a single source.

Since Krizhevsky et al. (2012) won first prize
overwhelmingly at ILSVRC-2012, Convolutional
Neural Networks (CNN) has gained great atten-
tion in the research field of image classifications.
With the rise of efficient GPU computing, CNN
has been used in practical applications. A few re-
ports have described applications of CNN, which
deals with inference of user attributes. Shige-
naka et al. (2015) applied CNN for gender in-
ference, demonstrating that CNN performs much
better than a classifier based on SVM.

3 Proposed Method

Figure 1 presents an overview of our proposed
method. Our method classifies some attributes
(here, genders) of people who posted text and im-
ages. Our method includes three component meth-

ods that are: text-based, image-based, and hybrid-
based.

3.1 Text-Based Method
The text-based method receives text as input and
outputs the male and female probability scores.
We used SVM to classify genders. To retrieve
probability scores, we used logistic regression.
The logistic function converts a distance from a
hyper plane to probability scores of 0.0 - 1.0. As
shown in Equation 1, the sum of the male and
female probability scores is 1. The text-based
method procedure is the following.

Step 1-1 Tokenization is done using Kuro-
moji (http://www.atilika.org), a
Japanese morphological analyzer. Thereby,
the unigram is obtained. Then, the bag-
of-words feature is extracted from the
unigram.

Step 1-2 The SVM receives the bag-of-words fea-
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ture as input. The male probability score is
obtained using SVM. Then, the female prob-
ability score is calculated using Equation 1.

scoremale + scorefemale = 1 (1)

3.2 Image-Based Method

The image-based method classifies the contents of
posted images and estimates the gender of people
who posted them. The image-based method re-
ceives an image as an input and outputs the prob-
ability score of each sub-category. Sub-categories
are defined as combinations of image contents and
user attributes: in this study, genders. Details of
the sub-categories are presented later in section
4.1. We used a CNN model comprising 16 layers
(Simonyan and Zisserman, 2014), which is pre-
trained using the ILSVRC-2012 corpus. Neurons
of the output layer of the pre-trained model are re-
placed with the same numbers of neurons as sub-
categories. Weights of the new output layer are
initialized to random values. Then, the weight of
the pre-trained model is fine-tuned with the train-
ing dataset using backpropagation of error deriva-
tives. Details of the dataset are presented later in
section 4.1.

The image-based method procedures are the
following.

Step 2-1 Probability score of images for sub-
categories is obtained using the CNN model.

Step 2-2 The score of each user is obtained by av-
eraging the probability score of images that
the user posts since many users posted more
than one image.

3.3 Hybrid-Based Method

The hybrid-based method classifies scores related
to text-based and image-based method output and
estimates the gender of people who posted text and
images. We used logistic regression. In step 3-1,
the male probability score is obtained using logis-
tic regression. Then, the female probability score
is calculated using Equation 1 in the same manner
as that presented in step 1-2.

The training process for logistic regression in-
volves two stages. In the first stage, the text-
based and image-based method are trained to ob-
tain training data for the hybrid-based method.
In the second stage, the hybrid-based method is
trained using them.

4 Experiment

We conducted a gender classification on Twitter.

4.1 Experimental Data

Experimental data are of two levels: a tweet level
and an image level. We prepared a huge number of
annotation data as a training corpus using Yahoo
Crowd Sourcing (http://crowdsourcing.
yahoo.co.jp/Yahoo).

Tweet level annotation: Tweet level annotation
process refers to rules proposed by Sakaki et al.
(2014), who defined the tweet level labels as male
and female. Workers annotated the labels using
many sources of potentially discriminative meta-
data, including user preferences, icons, text, and
images.

Image level annotation: The image level anno-
tation process refers to rules proposed by Ma et al.
(2014), who defined image labels as the combina-
tion of the gender of users who had posted images
and the contents that the images are likely to ex-
press. The image labels include two parts. The
first is a gender category: female, male, and un-
known. The former two are used to label images,
for which people can infer the uploader gender.
For images of which the uploader gender is un-
recognizable, we use unknown. The second part
defined in the image label is the category that ex-
presses the classification of contents included in
images. We designate the combination of these
categories as sub-category. Table 1 shows typical
contents of the sub-category.

Finally, we obtained 6000 tweet level annota-
tions and 8162 image level annotations. As shown
in Figure 2, the tweet level annotation data were
split up into three subsets. Subset A was used
for training the text-based method. Subset B was
used for training the hybrid-based method. Subset
C was used for evaluation. Image level annota-
tion data were used for the training-image-based
method.

4.2 Experimental Setup

LIBSVM (Chang and Lin, 2001) was used as the
implementation of SVM. The linear kernel was se-
lected. Then LIBLINEAR (Rong-En et al., 2008)
was used as the implementation of logistic regres-
sion. Cost parameter C was set to 1.0.
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(a) baseball stadium (b) barbecue (c) shaved ice

Gender category
female male unknown

cartoon Romance cartoon Hero cartoon Unisex cartoon
famous people Famous male idol Famous female idol Comedian
food contents Shaved ice Barbecue Sandwich

Contents consumer goods Jewelry Electrical appliances Cellular phone
category memo Colorful memo Black and white memo Short memo

outdoor Amusement park Baseball stadium Landscape
person Girl,woman,baby Boy,man Crowd of people

pet Penguin,small dog Frog,tiger Cat
screenshot Pastel color screen TV game screen Weather news

others Beauty advertisement Transportation Black screen

Table 1: Sub-category composed with combinations of the gender and contents category. This table
shows typical contents of the sub-category obtained using image-level annotation. For example, the
combination of male and outdoor includes a baseball stadium image (a), the combination of male and
food contents includes a barbecue image (b), and the combination of female and food contents includes
the image of a shaved ice (c).

Figure 2: Datasets for training and evaluation.

As comparative methods, we selected the
method presented by Sakaki et al. (2014) using
the combination approach of text and image data
and also the selected text-based and image-based
method using the approach of a single source. In
the experiment, classifiers of Sakaki et al. (2014)
were replaced with the proposed classifiers to
compare the performances of hybrid methods. The
alpha value necessary for the method of Sakaki et
al. (2014) to combine probability scores was set to

0.74 based on preliminary experiments.

5 Experimental Results

Table 2 shows the precision, recall, F -measure,
and accuracy. The accuracy of our proposed
method achieved 80.25 [%], which is 2.95 pt
higher than that of the text-based method, 8.25 pt
higher than that of the image-based method, and
1.35 pt higher than that of the method described
by Sakaki et al. (2014). Especially, the female
F -measure associated with our proposed method
achieved 77.07 [%], which is 5.03 pt higher than
that of the text based method, 13.69 pt higher than
that of the image based method, and 2.0 pt higher
than that of the method described by Sakaki et al.
(2014).

We conducted a binomial test to assess our pro-
posed method and the method described by Sakaki
et al. (2014). Results confirmed that the p value is
0.0031, which indicates that the results obtained
using our method are significantly better than
those obtained using the existing combination-
based method.
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Male Female
Precision Recall F -measure Precision Recall F -measure Accuracy

Text-based method 76.20 86.12 80.88 79.16 66.10 72.04 77.30
Image-based method 70.41 85.97 77.41 75.58 54.58 63.38 72.00
Sakaki et al. (2014) 77.66 86.99 82.06 80.69 68.47 75.07 78.90
Proposed method 80.92 84.48 82.66 79.36 74.91 77.07 80.25

Table 2: Experimental results.

6 Discussion

This section presents a discussion of the effec-
tiveness of the combination of the text-based and
image-based methods. Then the discussion ad-
dresses the difference between the model pro-
posed by Sakaki et al. (2014) and our proposed
method. Finally, the applications of logistic re-
gression weights of the combined sources are dis-
cussed.

Set T I P
A ⋆ ⋆ ⋆

B ⋆ ⋆

C ⋆ ⋆

D ⋆ ⋆

E ⋆

F ⋆

G ⋆

H

Figure 3: Venn diagram: T denotes text-based
method. I denotes image-based method. P denotes
hybrid-based method. “⋆” denotes the set of users
whose genders were inferred correctly using each
method.

Number of users
Set Conventional Proposed Difference
A 1105 1097 -8 ⇓
B 408 412 +4 ⇑
C 62 78 +16 ⇑
D 0 8 +8 ⇑
E 33 29 -4 ⇓
F 1 18 +17 ⇑
G 180 164 -16 ⇓
H 211 194 -17 ⇓

Table 3: Number of users included in each set.
Conventional approach denotes the method of
Sakaki et al. (2014).

6.1 Effectiveness of the Combination
Approach

Figure 3 portrays the relation between the text-,
image-, and hybrid-based methods. Each circle of
the Venn diagram represents a set of users whose
gender was inferred correctly using a method. The
union of A, B, D, and E represents users whose
gender was inferred correctly using the text-based
method. B represents users whose gender was in-
ferred correctly by the text-based and the hybrid-
based method, but was misjudged using the image-
based method.

Table 3 presents the number of users each set
contains. We would like to examine C, D, E, and
F specifically to assess the difference in the per-
formance between the text-based and the hybrid-
based method. C and F include users whose
respective genders were inferred correctly using
the hybrid-based method, but misjudged using the
text-based method. D and E include users whose
respective genders were inferred correctly using
the text-based method, but misjudged using the
hybrid-based method. Here we discuss the re-
sults obtained using the proposed method, which
are shown at 3rd column. Regarding C, D, E,
and F, C includes the maximum number of users,
78 (3.9 [%]), whose respective genders were in-
ferred correctly using the proposed method. For
C, a user’s gender was inferred correctly using
the image-based method. Therefore, it is appar-
ent that our proposed method increased the num-
ber of correct answers considerably by taking in
the correct region of the image-based method. It
is particularly interesting that although the text-
based and image-based methods both misjudged
users (18 users : 0.9 [%]) in F, the proposed
method can infer their genders correctly. How-
ever, D and E include only 37 users (8 + 29 users
: 1.85 [%]) whose gender was misjudged using
our proposed method. Therefore, our proposed
method increased the number of correct inferences
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Figure 4: Logistic regression weights. Character (t) denotes weights with respect to the text-based
method; (i) denotes weights with respect to the image-based method.

Rank Male Absolute weight Female Absolute weight
1st person 2.08 famous people 2.13
2nd outdoor 1.82 food contents 1.51
3rd food contents 1.45 consumer goods 1.42

Table 4: Top three absolute weights of the image content categories.

(59 users : 2.95 [%]) beyond the level of the indi-
vidual text-based method.

6.2 Comparison of the Conventional
Approach

The difference between the proposed method and
that proposed by Sakaki et al. (2014) can be dis-
cussed with reference to Figure 3 and Table 3.
Except for H, which includes users whose gender
was misjudged by all methods, the difference be-
tween our method and the method presented by
Sakaki et al. (2014) in F was the largest (+17
users). Actually, F includes users whose gender
was newly inferred correctly by the hybrid-based
method but whose gender was misjudged using in-
dividual methods. Therefore, our method more
correctly infers a new user’s gender by combining
sources of text and images than the method pre-
sented by Sakaki et al. (2014). We assume that our
method handles the combination appropriately to
infer male or female gender using logistic regres-
sion.

The difference between our method and that

presented by Sakaki et al. (2014) in C was the
second largest (+16 users). Actually, C includes
users whose gender was inferred correctly using
the hybrid-based and the image-based method, but
misjudged using the text-based method. There-
fore, we assumed that our proposed method han-
dled the image source more appropriately than the
method presented by Sakaki et al. (2014).

6.3 Logistic Regression Weights

Figure 4 shows the logistic regression weights.
From this figure, we observed that the weights
for female users were all positive, the weights
for male users were almost all negative. The
weights for unknown were nearly zero, which in-
dicates that the probability scores of text-based
and image-based methods are not competing.

Presumably, the logistic regression weights ob-
tained by training indicate the rate of the contribu-
tion to the inference. Table 4 presents the top three
image content categories according to their abso-
lute weights. The table shows that person, out-
door, and food contents are clues to male gender,
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but famous people, food contents, and consumer
goods imply female gender.

Consequently, through analysis of the logistic
regression weights, we confirmed that the rates
of image contents’ contributions to inference mu-
tually differed. We therefore conclude that the
rate of each image content’s contribution to the
inference is expected to be different for different
genders. Our proposed method performs signifi-
cantly better than the existing combination-based
method.

7 Conclusion

This paper presented a proposal for a novel hy-
brid approach. The salient benefit of our system
is that features provided from a text classifier and
from an image classifier are combined appropri-
ately to detect male or female gender using logis-
tic regression. Experimental results show that our
approach achieved accuracy of 80.25 [%], which
was 1.35 pt higher than the conventional com-
bination approach. In addition, through analy-
sis of logistic regression weights, we confirmed
that the rate of each image content’s contribution
to the inference should be different for different
genders. Person, outdoor, and food contents are
clues to male gender, but famous people, food con-
tents, and consumer goods imply female gender.
We therefore conclude that our proposed method
using weighted combination of text and image
classifiers performs markedly better than existing
combination method.

Our approach is applicable to other attributes
that might be inferred for SNS users, such as age,
career, and residence, which were investigated by
Ikeda et al. (2013) and by Rao and Yarowsky
(2010). Because it is presumed that posted im-
age contents clearly reflect SNS user hobbies and
lifestyles, our approach is suitable for inferring
those attributes as well. As a subject for future
work, we intend to apply our approach to the in-
ference of various SNS user attributes.
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Abstract

In this paper we present a free, open
source platform, that translates in real time
(written) European Portuguese into Por-
tuguese Sign Language, being the signs
produced by an avatar. We discuss basic
needs of such a system in terms of Nat-
ural Language Processing and Animation
Synthesis, and propose an architecture for
it. Moreover, we have selected a set of
existing tools that couple with our free,
open-source philosophy, and implemented
a prototype with them. Several case stud-
ies were conducted. A preliminary evalu-
ation was done and, although the transla-
tion possibilities are still scarce and some
adjustments still need to be done, our plat-
form was already much welcomed by the
deaf community.

1 Introduction

Several computational works dealing with the
translation of sign languages from and into their
spoken counter-parts have been developed in the
last years. For instance, (Barberis et al., 2011)
describes a study targeting the Italian Sign Lan-
guage, (Lima et al., 2012) targets LIBRAS, the
Brazilian Sign Language, and (Zafrulla et al.,
2011) the American Sign Language. Some of the
current research focus on sign language recogni-
tion (as the latter), some in translating text (or
speech) into a sign language (like the previously
mentioned work dedicated to Italian). Some works
aim at recognising words (again, like the latter),
others only letters (such as the work about LI-
BRAS). Only a few systems perform the two-sided
translation, which is the case of the platform im-
plemented by the Microsoft Asia group system
(Chai et al., 2013), and the Virtual Sign Transla-
tor (Escudeiro et al., 2013).

Unfortunately, sign languages are not universal
or a mere mimic of its country’s spoken counter-
part. For instance, Brazilian Sign Language is not
related with the Portuguese one. Therefore, none
or little resources can be re-used when one moves
from one (sign) language to another.

There is no official number for deaf persons in
Portugal, but the 2011 census (Instituto Nacional
de Estatística (INE), 2012) mentions 27,659 deaf
persons, making, however, no distinction in the
level of deafness, and on the respective level of
Portuguese and Portuguese Sign Language (LGP)
literacy. The aforementioned Virtual Sign Trans-
lator targets LGP, as well as the works described
in (Bento, 2103) and (Gameiro et al., 2014). How-
ever, to the best of our knowledge, none of these
works explored how current Natural Language
Processing (NLP) tasks can be applied to help
the translation process of written Portuguese into
LGP, which is one of the focus of this paper. In
addition, we also study the needs of such trans-
lator in terms of Animation Synthesis, and pro-
pose a free, open-source platform, integrating state
of the art technology from NLP and 3D anima-
tion/modelling . Our study was based on LGP
videos from different sources, such as the Spread
the Sign initiative1, and static images of hand con-
figurations presented in an LGP dictionary (Bal-
tazar, 2010). The (only) LGP grammar (Amaral
et al., 1994) was also widely consulted. Neverthe-
less, we often had to recur to the help of an inter-
preter.

Based on this study we have implemented a pro-
totype, and examined several case studies. Fi-
nally, we performed a preliminary evaluation of
our prototype. Although much work still needs to
be done, the feedback from deaf associations was
very positive. Extra details about this work can
be found in (Almeida, 2104) and (Almeida et al.,

1http://www.spreadthesign.com

94



2015). The whole system is freely available2.
This paper is organised as follows: Section 2

describes the proposed architecture, and Section 3
its implementation. In Section 4 we present our
prototype and, in Section 5, a preliminary evalua-
tion. Section 6 surveys related work and Section 7
concludes, pointing directions for future work.

2 Proposed architecture

Figure 1 presents the envisaged general architec-
ture.

Figure 1: Proposed architecture

We followed a gloss-based approach, where
words are associated to their ‘meaning’ through a
dictionary. The order of the glosses is calculated
according with the LGP grammar (structure trans-
fer). Then, glosses are converted into gestures by
retrieving the individual actions that compose it.
In the last and final stage, the animation is syn-
thesised by placing each action in time and space
in a non-linear combination. The current platform
is based on hand-crafted entries/rules, as there is
no large-scale parallel corpus available that would
allow us to follow recent tendencies in Machine
Translation.

In the next sections we detail the three main
components of this platform, namely the NLP, the
Lookup and the Animate components, by focus-
ing on the needs of the translation system and how
these components contribute to it.

2.1 The Natural Language Processing
component

As usual, the first step consists in splitting the in-
put text into sentences. These are tokenised into

2http://web.ist.utl.pt/~ist163556/
pt2lgp

words and punctuation. Then, possible ortho-
graphic errors are corrected. After this step, a ba-
sic approach could directly consult the dictionar-
ies, find the words that are translated into sign lan-
guage, and return the correspondent actions, with-
out further processing. However, other NLP tools
can still contribute to the translation process.

Some words in European Portuguese are signed
in LGP as a sequence of signs, related with the
stem and affixes of the word. Therefore, a stem-
mer can be used to identify the stem and relevant
suffixes (and prefixes), which allows to infer, for
instance, the gender and number of a given word.
Thus, we still might be able to properly translate a
word that was not previously translated into LGP
(or, at least, produce something understandable),
if we are able to find its stem and affixes. To il-
lustrate this, take as example the word ‘coelhinha’
(‘little female rabbit’). If we are able to identify
its stem, ‘coelho’ (rabbit), and the suffix ‘inha’
(meaning, roughly, female (the ‘a’) and small (the
‘inho’)), we can translate that word into LGP by
signing the words ‘female’ + ‘rabbit’ + ‘small’,
in this order (which, in fact, is how it should be
signed).

A Part-of-Speech (POS) tagger can also con-
tribute to the translation process:

• It can couple with the stemmer in the identi-
fication of the different types of affixes (for
instance, in Portuguese, a common noun that
ends in ‘ões’ is probably a plural).

• As there are some morphosyntactic cate-
gories that have a special treatment in LGP, it
is important to find the correspondent words.
For instance, according with (Bento, 2103),
articles are omitted in LGP ((Amaral et al.,
1994) reports doubts in the respect of their
existence), and thus could be ignored when
identified. Also, the Portuguese grammar
(Amaral et al., 1994) refers a temporal line in
the gesturing space with which verbs should
concord with in past, present and future
tenses. Thus, to be able to identify the tense
of a verb can be very important.

• A POS tagger usual feeds further processing,
as for instance named entity recognisers and
syntactic analysers.

A Named Entity Recognizer allows to identify
names of persons. It is usual, among the deaf, to
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name a person with a sign (his/her gestural name),
often with a meaning in accordance to his/her
characteristics. For instance, names of public per-
sonalities, such as the current Portuguese prime
minister, usually have a gestural name. However,
if this name is unknown, fingerspelling the letters
of his/her name is what should be done.

A Syntactic Analyser if fundamental to iden-
tify the syntactic components of the sentence, such
as subject, and object, as LGP is usually Object–
Subject–Verb (OSV), while spoken Portuguese is
predominantly Subject–Verb–Object (SVO). It
does not matter if it is a dependency parser or a
constituents-based one. The only requirement is
that, at the end, it allows structure transfer rules
to be applied to the glosses. Finally, a sentiment
analyser would allow to infer subjective informa-
tion towards entities and the generality of the sen-
tence, so that emotional animation layers and fa-
cial expression reinforcement can be added to the
result.

After all this processing, a bilingual dictio-
nary (glosses) is consulted, so that meaningful se-
quences of words (glosses) are identified (lexical
transfer), and a set of syntactic rules applied, so
that the final order of the set of glosses is identi-
fied.

2.2 Lookup stage
Being given a sequence of glosses, the goal of the
Lookup stage is to obtain a set of actions’ identi-
fiers for the animation.

The difficulty in designing this step is derived
from the fact that many Portuguese words and con-
cepts do not have a one-to-one matching in LGP.
Also, gestures may be composed of several ac-
tions, which in turn, may be compound of several
actions (the gestures subunits). Finally, some con-
texts need to be added to the database in order to
help this step.

2.3 Animate
This stage receives a sequence of actions to be
composed into a fluid animation, along with a set
of hints on how best to do so, for example, if the
gestures are to be fingerspelled or not. The ani-
mation stage is responsible for the procedural syn-
thesis of the animation by blending gestures and
gesture subunits together.

We propose an approach where gestures are
procedurally built and defined from an high-level
description, based on the following parameters

identified in other works (Liddell and Johnson,
1989; Liddell, 2003) as gesture subunits: a) hand
configuration, orientation, placement, and move-
ment, and; b) non manual (facial expressions and
body posture).

The base hand configurations are Sign Lan-
guage (SL) dependent. The parameter definition
for orientation, placement and movement is often
of relative nature. For example, gestures can be
signed ‘fast’, ‘near’, ‘at chest level’, ‘touching the
cheek’ and so on. The definition of speed is depen-
dent on the overall speed of the animation, and the
definition of locations is dependent on the avatar
and its proportions.

2.3.1 Rig
To setup the character, an humanoid mesh with
appropriate topology for animation and real-time
playback is needed. Then, we need to associate it
with the mechanism to make it move, the rig. We
suggest a regular approach with a skinned mesh to
a skeleton and bones.

Bones should be named according to a conven-
tion for symmetry and easy identification in the
code. For the arms and hands, the skeleton can ap-
proximately follow the structure of a human skele-
ton. The rig ideally should have an Inverse Kine-
matics (IK) tree chain defined for both arms, root-
ing in the spine and ending in the hands. All
fingers should also be separate IK chains, allow-
ing for precise posing of contacts. Ideally, the
IK chains should consider weight influence so that
bones closer to the end-effector (hands and finger-
tips) are more affected, and the bones in the spine
and shoulder nearly not so. The rig should also
provide a hook to control the placing of the shoul-
der, and should make use of angle and other con-
straints for the joints, so as to be easier to pose and
harder to place in an inconsistent position.

Finally, the rig should have markers for place-
ment of the hands in the signing space and in com-
mon contact areas in the mesh. These markers en-
sure that gestures can be defined with avatar de-
pendent terms (eg. ‘near’, ‘touching the nose’).

The markers in the signing space can be inferred
automatically using the character’s skeleton mea-
sures (Kennaway, 2002; Hanke, 2004), forming a
virtual 3D grid in front of the character (Figure 2).

The markers in the mesh need to be defined
manually and skinned to the skeleton in a con-
sistent manner with the nearby vertices. Figure
3 shows a sample rig, with key areas in the face
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Figure 2: Virtual 3D marker grid defining the sign-
ing space in front of the character

and body identified by a bone with a position and
orientation in space.

Figure 3: Definition of key contact areas in the rig

2.3.2 Building the gestures
It is now necessary to record (key) the poses in
a good timing to build a gesture. Whichever the
keying methodology, all basic hand poses and fa-
cial expressions should be recorded and can then
be combined given the high level description of
the gesture. The description should specify the
gesture using the mentioned parameters: keyed
hand configurations, placement and orientation us-
ing the spatial marks, and movement also using the
marks and the overall speed of the animation.

The intersections defined by the grid from Fig-
ure 2, in conjunction with marks from Figure 3
define the set of avatar relative locations where the
hands can be placed. Knowing the location where
the hand should be, it can be procedurally placed
with IK, guarantying physiologically possible an-
imation with the help of other constraints.

Figure 4 shows the result of hand placement in
a key area using two distinct avatars with signifi-
cantly different proportions.

While this approach works well for static ges-
tures, several problems appear when introducing
movement. Gestures can change any of its pa-
rameters during the realisation, requiring a blend-
ing from the first definition (of location, orienta-

Figure 4: Avatars using the key areas

tion, configuration. . . ) to the second. The type
of blending is very important for the realism of
the animation. Linear blending between two keys
would result in robotic movements. Linear move-
ment in space from one key location to another
will also result in non realistic motions and even
in serious collision problems (Elliott et al., 2007).
For example, making a movement from an ear to
the other. This is a problem of arcs. Addition-
ally, more movements need to be defined in order
to accommodate other phenomena, such as finger
wiggling and several types of hand waving.

2.3.3 Blending the gestures

Moving to the sentence level, synthesising the fi-
nal fluid animation is now a matter of agreeing the
individual gestures in space, of realistic interpola-
tion of keys in time, and of blending actions with
each other in a non-linear way.

A reasoning module, capable of placing ges-
tures grammatically in the signing space, and mak-
ing use of the temporal line, entity allocation in
space and other phenomena typically observed in
SLs (Liddell, 2003) is needed.

The interpolation between animation keys is
given by a curve that can be modeled to express
different types of motion. The individual actions
for each gesture should be concatenated with each
other and with a ‘rest pose’ at the beginning and
end of the utterance. The animation curves should
then be tweaked, following the principles of ani-
mation.

Counter animation and secondary movement is
also very important for believability and percepti-
bility. For example, when one hand contacts the
other or some part of the head, it is natural to react
to that contact, by tilting the head (or hand) against
the contact and physically receiving the impact.
Besides the acceleration of the dominant hand, the
contact is mainly perceived in how it is received,
being very different in a case of gentle brushing,
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slapping or grasping. This may be the only detail
that allows distinguishing of gestures that other-
wise may convey the same meaning.

Finally, actions need to be layered for express-
ing parallel and overlapping actions. This is the
case for facial animation at the same time as man-
ual signing and of secondary animation, such as
blinking or breathing, to convey believability. The
channels used by some action may be affected by
another action at the same time. Thus, actions
need to be prioritised, taking precedence in the
blending with less important, or ending actions.

3 Implementation

We have chosen to use the Natural Language
ToolKit (NLTK)3 for NLP tasks and Blender4 as
the 3D package for animation.

The NLTK is widely used by the NLP commu-
nity and offers taggers, parsers, and other tools in
several languages, including Portuguese. Thus, it
was chosen for all the tasks concerning NLP.

Blender is an open-source project, which allows
accessing and operating on all the data (such as an-
imation and mesh) via scripting. It offers a Python
API for scripts to interact with the internal data
structures, operators on said data, and with the in-
terface. Moreover, Blender also offers the infras-
tructure to easily share and install addons. There-
fore, the prototype was implemented as an addon,
with all the logic, NLP and access to the rig and
animation data done in Python. The interface is a
part of Blender using the pre-existing widgets, and
the avatar is rendered in real-time using the view-
port renderer.

3.1 The Natural Language Processing step

The modules implemented in our system can be
seen in Figure 5.

Figure 5: NLP pipeline

We also use the concept of “hint”, that is, a tag
that suggests if a word should be signed or spelled.
Three different types of hints are possible: GLOSS
(words that are not numeric quantities and have a

3http://www.nltk.org
4http://www.blender.org

specific gesture associated), FGSPELL (for words
that should be fingerspelled), and NUMERAL (for
numeric quantities). The NLP module tries to
attribute a label to each word (or sequences of
words), which are then used when consulting the
dictionary (‘Lexical Transfer’).

In what concerns the NLP pipeline, we start
with an ‘Error correcting and normalization’ step,
which enforces lowercase and the use of latin char-
acters. Common spelling mistakes should be cor-
rected at this step. Then, the input string is split
into sentences and then into words (tokenization).
As an example, the sentence ‘o joão come a sopa’
(‘João eats a soup’), becomes [’o’, ’joão’, ’come’,
’a’, ’sopa’]. A stemmer identifies suffixes and pre-
fixes. Thus, the word ‘coelhinha’ (as previously
said, ‘little female rabbit’), is understood, by its
suffix (‘inha’), to be a female and small derivation
of the root coelh(o). Therefore, ‘coelhinha’ is con-
verted into [MULHER, COELHO, PEQUENO],
hinted to be all part of the same gloss.

We have used the treebank ‘floresta sintática’
(Afonso et al., 2002) for training our ‘POS-
tagger’. The output of the POS-tagger for the sen-
tence ‘o joão come a sopa’ is now [(’o’, ’art’),
(’joão’, ’prop’), (’come’, ’v-fin’), (’a’, ’prp’),
(’sopa’, ’n’)].

We have used a Named Entity Recognizer to
find proper names of persons. Our system fur-
ther supports a list of portuguese names and pub-
lic personalities names with their matching gestu-
ral name. For these specific entities, the system
uses the known gesture instead of fingerspelling
the name.

The POS-tags and recognised entities also con-
tribute with hints. These hints are then confirmed
(or not) in the next step, the ‘Lexical Transfer’,
where we converted all the words to their corre-
sponding gloss, using the dictionary, where the
word conversions are stored. As an example, the
word ‘sopa’ would lead to [’GLOSS’, [’SOPA’]],
‘joao’ to [’FGSPELL’, [’J’, ’O’, ’A’, ’O’]] and
‘two’ to [’NUMERAL’, [’2’]] (notice that articles
were discarded). Also, we provide the option of
fingerspelling all the unrecognised words.

Finally, in what respects Structure Transfer,
the current implementation only supports ba-
sic re-ordering of sequences of ‘noun - verb -
noun’, in an attempt to convert the SVO order-
ing used in Portuguese to the more common struc-
ture of OSV used in LGP. We have also im-
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plement another type of re-ordering, which re-
gards the switching of adjectives and quantities
to the end of the affected noun. Following
this process, [[’GLOSS’, [’SOPA’]], [’FGSPELL’,
[’J’,’O’,’A’,’O’]], [’GLOSS’, [’COMER-SOPA’]]]
is the final output for the sentence O João come
a sopa, and the input dois coelhos (‘two rab-
bits’) results in [[’GLOSS’, [’COELHO’]], [’NU-
MERAL’, [’2’]].

3.2 The Lookup step
The Lookup step, given a gloss, is done via a
JSON file mimicking a database constituted of a
set of glosses and a set of actions. Action ids are
mapped to blender actions, that are, in turn, refer-
enced by the glosses. One gloss may link to more
than one action, which are assumed to be played
sequentially.

Figure 6 shows that coelho (‘rabbit’) has a one-
to-one mapping, that casa (‘house’) corresponds
to one action and that cidade (‘city’) is a composed
word, formed by casa and a morpheme with no
isolated meaning.

Figure 6: Database design

Knowing that gestures in LGP can be heavily
contextualised, we added to the gloss structure an
array of contexts with associated actions. Figure
7 shows the case of the verb comer (‘to eat’) that
is classified with what is being eaten. When no
context is given by the NLP module, the default is
considered to be the sequence in ‘actions’.

Figure 7: Supporting gloss contextualisation

3.3 The animation step
We start by setting the avatar by rigging and skin-
ning. We chose rigify as a base for the rig, that
needs to be extended with the spatial marks, to be
used when synthesising the animation. The an-
imation is synthesised by directly accessing and

modifying the action and f-curve data. We always
start and end a sentence with the rest pose, and,
for concatenating the actions, we blend from one
to the other in a given amount of frames by using
Blender’s Non Linear Action (NLA) tools that al-
low action layering. Channels that are not used in
the next gesture, are blended with the rest pose in-
stead. Figure 8 illustrates the result for the gloss
sentence ‘SOPA J-O-A-O COME’.

Figure 8: Action layering resulting of a translation

We adjust the number of frames for blending ac-
cording to the hints received. For fingerspelling
mode, we expand the duration of the hand config-
uration (that is originally just one frame) and blend
it with the next fingerspelling in less frames than
when blending between normal gloss actions. We
also expand this duration when entering and leav-
ing the fingerspell.

3.4 The interface

The interface consists of an input text box, a but-
ton to translate, and a 3D view with the signing
avatar, which can be rotated and zoomed, allowing
to see the avatar from different perspectives. Fig-
ure 9 shows the main translation interface (blue).
Additionally, we provide an interface for export-
ing video of the signing (orange) and a short de-
scription of the project (green).

Figure 9: User Interface for the prototype

In what concerns the choice of the avatar, the
character only needs to be imported into Blender
and skinned to a rigify armature. Several char-
acters were tested with success, with examples in
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Figure 10.

Figure 10: Example of some of the supported
avatars

4 Case studies

Parallel to the development of the prototype, we
devised a series of case studies to test the flexibil-
ity of the architecture and technology choices. We
started with posing base hand configurations in a
limited context case, passing then to full words,
their derivations and blending between them. Fi-
nally, we tested the prototype with full sentences.

4.1 Basic gestures
All the 57 different hand configurations for LGP
were manually posed and keyed from references
gathered from (Baltazar, 2010; Amaral et al.,
1994; Ferreira, 1997), and also from the Spread
the Sign project videos. These hand configuration
are composed of 26 hand configurations for letters,
10 for numbers, 13 for named configurations and 8
extra ones matching greek letters. This task posed
no major problem.

4.2 Numbers
Numbers can be used as a quantitative qualifier, as
the isolated number (cardinal), as an ordinal num-
ber, and as a number that is composed of others
(eg. 147). Gestures associated with each number
also vary their forms if we are expressing a quan-
tity, a repetition or a duration, and if we are using
them as an adjective or complement to a noun or
verb.

Reducing the test case to ordinal numbers, the
main difficulty is to express numbers in the order
of the tens and up. Most cases seem to be “fin-
gerspelt”, for example, ‘147’ is signed as ‘1’, fol-
lowed by ‘4’ and ‘7’ with a slight offset in space as
the number grows. Numbers from ‘11’ to ‘19’ can
be signed with a blinking movement of the units’
number. Some numbers, in addition to these sys-
tem, have a totally different gesture as an abbrevi-
ation, as is the example of the number ‘11’.

Doing a set of base hand configurations to start,
proved to be a good choice as it allowed to test the
hand rig and basic methodology. The ten (0 to 9)
hand configurations are shown in Figure 11.

Figure 11: Hand configurations for numbers (0-9)

4.3 Common nouns and adjectives

A couple of words were chosen, such as ‘coelho’
(‘rabbit’), with no serious criteria. Several words
deriving from the stem ‘coelho’ were imple-
mented, such as ‘coelha’ (‘female rabbit’) and
‘coelhinho’ (‘little rabbit’). In the former, the ges-
ture for “female” is performed before the gesture
for “rabbit”. In the latter, the gesture for the noun
is followed with the gesture for the adjective (thus,
‘coelho pequeno’ (‘little rabbit’) and ‘coelhinho’
result in the same translation). Figure 12 illus-
trates both cases.

Figure 12: Gestures for ‘coelha’ and ‘coelhinho’

4.4 Proper Nouns

As previously said, if the person does not have a
gestural name that is known by the system, the let-
ters of his/her name should be fingerspelled. This
morpho-syntactic category posed no major prob-
lem.
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4.5 Verbs
When the use of the verb is plain, with no past
or future participles, the infinitive form is used in
LGP. For instance, for the regular use of the verb
‘to eat’, the hand goes twice to the mouth, closing
from a relaxed form, with palm up. However, this
verb in LGP is highly contextualised with what
is being eaten. The verb should be signed recur-
ring to different hand configurations and expres-
siveness, describing how the thing is being eaten.

4.6 Sentences
After testing isolated words, we proceed to the
full sentence: ‘O João come a sopa’, an already
seen example, often used as a toy example in Por-
tuguese studies. The verb gesture had to be ex-
tended, as for eating soup, it is done as if handling
a spoon (for instance, for eating apples, the verb
is signed as if holding the fruit)5. Considering the
previous mentioned re-ordering from SVO (spoke
Portuguese) to OSV (LGP), Figure 13 shows the
resulting alignments.

Figure 13: Alignment for European Portuguese
and LGP of the sentence ‘John eats the soup’

5 Evaluation

A preliminary evaluation was conducted by col-
lecting informal feedback from the deaf commu-
nities of two Portuguese deaf associations.

5.1 Usefulness
Both associations were asked for comments on the
whole idea behind this work, and if and how such
application would be useful. Both were skeptical
towards the possibility of achieving accurate trans-
lations, or of animating enough vocabulary for a
final product, but the feedback was positive for the
idea of an application that would translate to LGP,
even if just isolated words were considered.

5.2 Translation Quality
The correctness and perceptibility was evaluated
by six adult deaf persons and interpreters. The
avatar was set to play the translations for coelha

5These contextualisations are not evident in the most re-
cent and complete LGP dictionary (Baltazar, 2010).

(‘female rabbit’), casa (‘house’) and coelhinho
(‘small rabbit’). The viewers were asked, indi-
vidually, to say or write in Portuguese what was
being signed, with no previous information about
the possibilities. In the second interaction of the
system, a full sentence was added with limited
variability of the form ‘A eats B’, where the verb
‘to eat’ is signed differently according to ‘B’. All
the gestures were recognised as well as the sen-
tence’s meaning, except for the inflection of the
verb with a ‘soup’ object, that is signed as if han-
dling a spoon. All of the testers recognised cor-
rectly the results, without hesitations, saying that
the signs were all very clear and only lacking fa-
cial reinforcement to be more realistic.

5.3 Adequacy of the Avatar

The feedback from the deaf testers regarding the
avatar looks was also very positive. There were
no negative comments besides the observation that
there is no facial animation. All hearing testers
were also highly engaged with the system, test-
ing multiple words and combinations, frequently
mimicking the avatar.

The interest and attention observed, indicates
that users had no difficulty in engaging with the
avatar and found it either neutral or appealing.
When asked about it, the answers were positive
and the gesture blending and transitions, when no-
ticed, was commented to be very smooth. How-
ever, sometimes the animation was deemed too
slow or too fast. The animation generation should
take play speed in consideration according to the
expertise of the user.

6 Related Work

As ours, several systems also target the mapping
of text (or speech) in one language into the corre-
spondent signed language. Some of these systems
resulted from local efforts of research groups or
from local projects, and are focused in one sin-
gle pair of languages (the spoken and the corre-
spondent sign language); others aggregate the ef-
forts of researchers and companies from differ-
ent countries, and, thus, aim at translating dif-
ferent languages pairs (some using an interlin-
gua approach). For instance, Virtual Sign (Escud-
eiro et al., 2013) is a Portuguese funded project
that focus in the translation between European
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Portuguese and LGP, while eSIGN6 was an EU-
funded project built on a previous project, ViSi-
CAST7, whose aim was to provide information in
sign language, using avatar technology, in the Ger-
man and British sign languages, as well as in Sign
Language of the Netherlands.

Our proposal follows in a traditional transfer
machine translation paradigm of text-to-gloss/-
avatar. Due to the lack of parallel corpora be-
tween European Portuguese and LGP, a data-
driven method, example- and statistical-based ap-
proaches were not an option (see (Morrissey,
2008) for a study on this topic). Approaches such
as the one of VISICAST (and eSIGN) (Elliott et
al., 2008), which rely on formalisms, such as Dis-
course Representation Structures (DRS), used as
intermediate semantic representations, were also
not a solution, as, to the best of our knowl-
edge, there are no free, open-source tools to cal-
culate these structures for the Portuguese lan-
guage. Thus, we focused in a simpler approach,
that could profit from existing open-source tools,
which could be easily used for Portuguese (and for
many other languages).

We should also refer recent work concern-
ing LGP, namely the works described in (Bento,
2103), (Gameiro et al., 2014) and (Escudeiro et
al., 2013). The first focus on the mapping of hu-
man gestures into the ones of an avatar. The sec-
ond targets the teaching of LGP, which the previ-
ously mentioned Virtual Sign also does (Escudeiro
et al., 2014). The third contributes with a bidi-
rectional sign language translator, between writ-
ten portuguese and LGP, although it is not clear
their approach in what respects text to sign lan-
guage translation.

7 Conclusions and future work

We have presented a prototype that couples dif-
ferent NLP modules and animation techniques
to generate a fluid animation of LGP utterances,
given a text input in European Portuguese. We
have further conducted a preliminary evaluation
with the deaf community, which gave us positive
feedback. Although a working product would be
highly desirable and would improve the lives of
many, there is still much to be done before we can
reach that stage.

6http://www.sign-lang.uni-hamburg.de/
esign/

7See, for instance, http://www.visicast.cmp.
uea.ac.uk/Visicast_index.html

As future work we intend to perform a formal
evaluation of our system, so that we can prop-
erly assess its impact. Also, we intend to extend
the existing databases. Particularly inspiring is
ProDeaf8, a translation software for LIBRAS, the
Brasilian Sign Language, that, besides several fea-
tures, allows the crowd to contribute by adding
new word/sign pairs. In our opinion, this is an ex-
cellent way of augmenting the system vocabulary,
although, obviously, filters are needed in this type
of scenarios. In the current version of the system,
words that are not in the dictionary are simply ig-
nored. It could be interesting to have the avatar
fingerspelling them. Nevertheless, the system will
probably have to be extended in other dimensions,
as a broader coverage will lead to finer semantic
distinctions, and a more sophisticated NLP rep-
resentation will be necessary. We will also need
to explore a way of simplifying the information
concerning the contextualisation of a verb. For
example, by storing categories of objects rather
than the objects themselves. Moreover, we intent
to move to the translation from LGP to European
Portuguese. Here, we will follow the current ap-
proaches that take advantage of Kinect in the ges-
ture recognition step.
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Abstract

The context for the work we report here
is the automatic description of spatial rela-
tionships between pairs of objects in im-
ages. We investigate the task of select-
ing prepositions for such spatial relation-
ships. We describe the two datasets of ob-
ject pairs and prepositions we have cre-
ated for English and French, and report
results for predicting prepositions for ob-
ject pairs in both of these languages, us-
ing two methods: (a) an existing approach
which manually fixes the mapping from
geometrical features to prepositions, and
(b) a Naive Bayes classifier trained on the
English and French datasets. For the latter
we use features based on object class la-
bels and geometrical measurements of ob-
ject bounding boxes. We evaluate the au-
tomatically generated prepositions on un-
seen data in terms of accuracy against the
human-selected prepositions.

1 Introduction

Automatic image description is important not just
for assistive technology, but also for applications
such as text-based querying of image databases. A
good image description will, among other things,
refer to the main objects in the image and the rela-
tionships between them. Two of the most impor-
tant types of relationships for image description
are activities (e.g. a child riding a bike), and spa-
tial relationships (e.g. a dog in a car).

The task we investigate is predicting the prepo-
sitions that can be used to describe spatial relation-
ships between pairs of objects in images. This is

an important subtask in image description, but it
is rarely addressed as a subtask in its own right.
If an image description method produces spatial
prepositions it tends to be as a side-effect of the
overall method (Mitchell et al., 2012; Kulkarni et
al., 2013), or else relationships are not between
objects, but e.g. between objects and the ‘scene’
(Yang et al., 2011). An example of preposition
selection as a separate subtask is Elliott & Keller
(2013) where the mapping is rule-based.

Spatial relations also play a role in referring ex-
pression generation (Viethen and Dale, 2008; Gol-
land et al., 2010) where the problem is, however,
often framed as a content selection problem from
known abstract representations of the objects and
scene, and the aim is to enable unique identifica-
tion of the object referred to.

Our main data source is a corpus of images (Ev-
eringham et al., 2010) in which objects have been
annotated with rectangular bounding boxes and
object class labels. For a subset of 1,000 of the
images we also have five human-created descrip-
tions of the whole image (Rashtchian et al., 2010).

We collected additional annotations for the im-
ages listing, for each object pair, a set of preposi-
tions that have been selected by human annotators
as correctly describing the spatial relationship be-
tween the given object pair (Section 2.3). We did
this in separate experiments for both English and
French.

The overall aim is to create models for the map-
ping from image, bounding boxes and labels to
spatial prepositions as indicated in Figure 1. We
compare two approaches to modelling the map-
ping. One is taken from previous work (Elliott and
Keller, 2013) and defines manually constructed
rules to implement the mapping from image ge-
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beside(person(Obj1), person(Obj2));
−→ beside(person(Obj2), dog(Obj3));

in front of(dog(Obj3), person(Obj1))

Figure 1: Image from PASCAL VOC 2008 with annotations and prepositions representing spatial rela-
tionships (objects numbered in descending order of size of area of bounding box).
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Table 1: Object class label frequencies.

ometries to prepositions (Section 3.1). The other
is a Naive Bayes classifier trained on a range of
features to represent object pairs, computed from
image, bounding boxes and labels (Section 3.2).
We report results for English and French, in terms
of two measures of accuracy (Section 5).

2 Data

2.1 VOC’08

The PASCAL VOC 2008 Shared Task Competi-
tion (VOC’08) data consists of 8,776 images and
20,739 objects in 20 object classes (Everingham et
al., 2010). In each image, every object in one of
the 20 VOC’08 object classes is annotated with six
types of information of which we use the follow-
ing three:

1. Class: one of: aeroplane, bird, bicycle, boat,
bottle, bus, car, cat, chair, cow, dining table,
dog, horse, motorbike, person, potted plant,
sheep, sofa, train, tv/monitor.

2. Bounding box: an axis-aligned bounding box
surrounding the extent of the object visible in
the image.

3. Occlusion: a high level of occlusion is
present.

Examples of all six types of annotation can be
seen in Figure 2. We use the object class labels in
predicting prepositions, and for the French exper-
iments we translated them as follows (in the same
order as the English labels above):

l’avion, l’oiseau, le vélo, le bateau, la
bouteille, le bus, la voiture, le chat, la
chaise, la vache, la table, le chien, le
cheval, la moto, la personne, la plante,
le mouton, le canapé, le train, l’écran

2.2 VOC’08 1K
Using Mechanical Turk, Rashtchian et al. (2010)
collected five descriptions each for 1,000 VOC’08
images selected randomly but ensuring even dis-
tribution over the VOC’08 object classes. Turkers
had to have high hit rates and pass a language com-
petence test before creating descriptions, leading
to relatively high quality.

We obtained a set of candidate prepositions
from the VOC’08 1K dataset as follows. We
parsed the 5,000 descriptions with the Stanford
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A main holds two bikes near a beach.
A young man wearing a striped shirt is holding two bicycles.
Man with two bicycles at the beach, looking perplexed.
Red haired man holding two bicycles.
Young redheaded man holding two bicycles near beach.

Figure 2: Image 2008 008320 from PASCAL VOC 2008 with annotations and image descrip-
tions obtained by Rashtchian et al. (2010). (BB = bounding box; image reproduced from
http://lear.inrialpes.fr/RecogWorkshop08/documents/everingham.pdf.)

Parser version 3.5.21 with the PCFG model, ex-
tracted the nmod:prep prepositional modifier rela-
tions, and manually removed the non-spatial ones.
This gave us the following set of 38 prepositions:

VE = { about, above, across, against,
along, alongside, around, at, atop, be-
hind, below, beneath, beside, beyond,
by, close to, far from, in, in front of,
inside, inside of, near, next to, on,
on top of, opposite, outside, outside of,
over, past, through, toward, towards,
under, underneath, up, upon, within }

For the list of French prepositions we started by
compiling the list of possible translations of the
English prepositions, after which we checked the
list against 200 example images which resulted
in a few additions and deletions. The final list
for French has the following 21 prepositions (note
there is no 1-to-1 correspondence with the English
prepositions):

VF = { à côté de, a l’interieur de, a
l’éxterieur de, au dessus de, au niveau
de, autour de, contre, dans, derrière, de-
vant, en dessous de, en face de, en haut
de, en travers de, le long de, loin de, par
delà, parmi, près de, sous, sur }

1http://nlp.stanford.edu/software/lex-parser.shtml

2.3 Human-Selected Spatial Prepositions

We are in the process of extending the VOC’08 an-
notations with human-selected spatial prepositions
associated with pairs of objects in images. So far
we have collected spatial prepositions for object
pairs in images that have exactly two objects anno-
tated (1,020). Annotators were presented with im-
ages from the dataset where in each image presen-
tation the two objects, Obj1 and Obj2, were shown
with their bounding boxes and labels. If there was
more than one object of the same class, then the la-
bels were shown with indices (numbered in order
of decreasing size of bounding box).

2.3.1 English data

Next to the image was shown the template sen-
tence “The Obj1 is the Obj2”, and the list of
possible prepositions extracted from VOC 1K (see
last section). The option ‘NONE’ was also avail-
able in case none of the prepositions was suitable
(but participants were discouraged from using it).

Table 1 shows occurrence counts for the 20 ob-
ject class labels, while the two columns on the left
of Table 2 show how many times each preposition
was selected by the annotators in the English ver-
sion of the experiment. The average number of
prepositions per object pair chosen by the English
annotators was 2.01.

Each pair of objects was presented twice, the
template incorporating the objects once in each or-
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English French
next to 304 in 16 à côté de 274 en haut de 2
beside 211 inside 15 près de 183 parmi 0
near 156 inside of 10 devant 177
close to 149 above 7 contre 161
in front of 141 around 6 derrière 161
behind 129 at 5 sur 117
on 115 past 5 au niveau de 110
on top of 103 towards 5 sous 95
underneath 90 within 5 au dessus de 82
beneath 84 below 4 en face de 79
far from 74 over 4 en dessous de 74
under 68 toward 1 loin de 57
NONE 64 about 0 par delà 42
alongside 56 across 0 le long de 40
by 50 along 0 dans 23
upon 44 outside 0 autour de 21
against 26 outside of 0 en travers de 14
opposite 26 through 0 à l’interieur de 10
beyond 20 up 0 AUCUN 6
atop 18 à l’éxterieur de 3

Table 2: Number of times each preposition was selected by the English and French annotators.

der, “The Obj1 is the Obj2” and “The Obj2 is
the Obj1”.2 Participants were asked to select all

correct prepositions for each pair.

2.3.2 French Data
The experimental design and setup was the same
as for the English. The template sentence for the
French data collection was “Obj1 est Obj2”,
with the determiners included in the labels (see
end of Section 2.2); e.g. “La plante est l’écran”.

Table 1 shows occurrence counts for the 20 ob-
ject class labels, while the two columns on the
right of Table 2 show how many times each prepo-
sition was selected by the annotators in the French
version of the experiment. The average number of
prepositions per object pair chosen by the French
annotators was 1.73.

3 Predicting Prepositions

When looking at a 2-D image, people infer all
kinds of information not present in the pixel grid
on the basis of their practice mapping 2-D infor-
mation to 3-D spaces, and their real-world knowl-
edge about the properties of different types of ob-

2Showing objects in both orders is necessary for non-
reflexive prepositions such as under, in, on, but also allows
for other (unknown) factors that may influence preposition
choice such as respective size of first and second object.

jects. In our research we are interested in the ex-
tent to which prepositions can be predicted with-
out any real-world knowledge, using just features
that can be computed from the image and the ob-
jects’ bounding boxes and class labels.

In this section we look at two methods for map-
ping language and visual image features to prepo-
sitions. Each takes as input an image in which two
objects in the above object classes have been anno-
tated with rectangular bounding boxes and object
class labels, and returns as output preposition(s)
that describe the spatial relationship between the
two objects in the image.

3.1 Rule-based method

The rule-based method we examine is a direct im-
plementation of the eight geometric relations de-
fined in Visual Dependency Grammar (Elliott and
Keller, 2013; Elliott, 2014). An overview is shown
in Figure 3, for details see Elliott (2014, p. 13ff).

In order to implement these rules as a classifier,
we pair each rule with the preposition referenced
in it. In the case of surrounds, we use around in-
stead. Two of the relations are problematic for us
to implement, namely behind and in front of, be-
cause they make use of manual annotations that
in fact encode whether one object is behind or in
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front of the other. We do not have this information
available to us in our annotations.

What we do have is the ‘occluded’ flag (see list
of VOC’08 annotations in Section 2.1 and Fig-
ure 2) which encodes whether the object tagged
as occluded is partially hidden by another object.
The problem is that the occluding object is not
necessarily one of the two objects in the pair un-
der consideration, i.e. the occluded object might
be behind something else entirely. Nevertheless,
the ‘occluded’ flag, in conjunction with bounding
box overlap, gives us an angle on the definition of
in front of (‘the Z-plane relationship is dominant’);
we define the two problematic relations as follows:

Y is tagged ‘occluded’ and the over-
lap between X and Y is more than
50% of the bounding box area of Y.

X is tagged ‘occluded’ and the over-
lap between X and Y is more than
50% of the bounding box area of X.

In pseudocode, and for English, our implementa-
tion looks as follows (a is the centroid angle, P is
the output list of prepositions, and ‘overlap’ is the
area of the overlap between the bounding boxes of
Object 1 and Object 2):

P = {}

if overlap is 100% of Obj2 then
P = P ∪ {around} . Obj1 surrounds Obj2

end if

if overlap > 50% of Obj1 then
P = P ∪ {on} . Obj1 on Obj2

end if

if Obj2 occluded and
overlap > 50% of Obj2 then
P = P ∪ {in front of} . Obj1 in front of Obj2

else if Obj1 occluded and
overlap > 50% of Obj1 then

P = P ∪ {behind} . Obj1 behind Obj2
end if

if 225 < a < 315 then
P = P ∪ {above} . Obj1 above Obj2

else if 45 < a < 135 then
P = P ∪ {below} . Obj1 below Obj2

else if opposite conditions are met then
P = P ∪ {opposite} . Obj1 opposite Obj2

else
P = P ∪ {beside} . Obj1 beside Obj2

end if

return P

This algorithm returns between 1 and 4 preposi-
tions. The counts for multiple outputs are as fol-
lows (no different for English and French):

Figure 3: Overview of the eight geometric rela-
tions defined in VDR, figure copied from Elliott
(2014, p. 13).

|P | Returned in n cases
1 580
2 159
3 247
4 14

For evaluating the rule-based classifier against the
French human-selected prepositions we translated
the eight English prepositions as follows (listed in
the same order as in Figure 3):

sur, autour de, à côté de, en face de,
au dessus de, en dessous de, devant,
derrière

3.2 Naive Bayes Classifier
Our second preposition selection method is a
Naive Bayes Classifier. Below we describe how
we model the prior and likelihood terms, before
describing the whole model. The terms come to-
gether as follows under Naive Bayes:

P (vj |F) ∝ P (vj)P (F|vj) (1)
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Model
ENGLISH FRENCH
AccA(1..n) AccA(1..n)

n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4
vRB 21.2% 28.1% 32.7% 32.8% 30.4% 38.1% 42.1% 42.2%
vOL 34.4% 46.1% 51.2% 53.1% 41.4% 49.2% 57.5% 57.9%
vML 30.9% 46.2% 55.7% 58.4% 25.6% 42.6% 51.7% 52.7%
vNB 51.0% 64.5% 67.4% 68.1% 46.7% 64.2% 72.4% 72.4%

AccSyn
A (1..n) AccSyn

A (1..n)
n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

vRB 31.2% 41.1% 46.5% 46.7% 32.7% 41.8% 45.7% 46.0%
vOL 43.9% 49.0% 55.9% 57.1% 41.8% 50.0% 57.7% 58.1%
vML 35.6% 50.5% 58.7% 60.9% 26.8% 43.3% 52.3% 53.3%
vNB 57.2% 65.6% 69.9% 70.7% 47.5% 64.4% 72.6% 72.9%

Table 3: Accuracy A results for English and French.

where vj ∈ V are the possible prepositions, and F
is the feature vector.

3.2.1 Prior Model
The prior model captures the probabilities of
prepositions given ordered pairs of object labels
Ls, Lo, where the normalised probabilities are ob-
tained through a frequency count on the training
set, using add-one smoothing.

In order to test this model separately, we simply
construe it as a classifier to give us the most likely
preposition vOL:

vOL =
argmax
v ∈ V

P (vj |Ls, Lo) (2)

where vj is a preposition in the set of prepositions
V, and Ls and Lo are the object class labels of the
first and second objects.

3.2.2 Likelihood Model
The likelihood model is based on a set of six geo-
metric features computed from the image size and
bounding boxes:

F1: Area of Obj1 (Bounding Box 1) normal-
ized by Image size.

F2: Area of Obj2 (Bounding Box 2) normal-
ized by Image Size.

F3: Ratio of area of Obj1 to area of Obj2.
F4: Distance between bounding box centroids

normalized by object sizes.
F5: Area of overlap of bounding boxes normal-

ized by the smaller bounding box.
F6: Position of Obj1 relative to Obj2.

F1 to F5 are real-valued features, whereas F6 is a
categorical variable over four values (N, S, E, W).

For each preposition, the probability distributions
for each feature is estimated from the training set.
The distributions for F1 to F4 are modelled with a
Gaussian function, F5 with a clipped polynomial
function, and F6 with a discrete distribution.

For separate evaluation, a maximum likelihood
model, which can also be derived from the Naive
Bayes model described in the next section by
choosing a uniform P (v) function, is given by:

vML =
argmax
v ∈ V

6∏
i=1

P (Fi|vj) (3)

3.2.3 Complete Naive Bayes Model
The Naive Bayes classifier is derived from the
maximum-a-posteriori Bayesian model, with the
assumption that the features are conditionally in-
dependent. A direct application of Bayes’ rule
gives the classifier based on the posterior proba-
bility distribution as follows:

vNB =
argmax
v ∈ V

P (vj |F1, ...F6, Ls, Lo)

=
argmax
v ∈ V

P (vj |Ls, Lo)
6∏

i=1

P (Fi|vj)

(4)

Intuitively, P (vj |Ls, Lo) weights the likelihood
with the prior or state of nature probabilities.

4 Evaluation Measures

We use two methods (AccA and AccB) of calcu-
lating accuracy (the percentage of instances for
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ENGLISH

Preposition
vNB vRB

AccB(1..n) AccSyn
B (1..n) AccB(1..n) AccSyn

B (1..n)
n=1 n=2 n=3 n=4 n=1 n=4 n=1 n=2 n=3 n=4 n=1 n=4

next to 23.0 77.0 89.8 93.1 73.7 94.7
beside 58.3 81.5 85.8 91.9 75.8 96.2 70.1 76.3 78.7 78.7 100 100
near 43.6 55.1 74.4 82.7 44.2 96.8
close to 4.7 14.8 51.7 87.9 16.1 94.0
in front of 29.1 39.7 48.2 52.5 29.1 52.5 11.3 22.0 26.2 26.2 10.6 26.2
behind 31.0 38.0 50.4 73.6 31.0 73.6 8.5 14.0 22.5 24.0 8.5 24.0
on 72.2 83.5 85.2 86.1 80.0 86.1 20.9 55.7 77.4 78.3 35.4 85.2
on top of 10.7 76.7 81.6 82.5 80.6 84.5
underneath 53.3 68.9 84.4 86.7 68.9 90.0
beneath 15.5 73.8 79.8 85.7 15.5 85.7
far from 44.6 62.2 66.2 68.9 44.6 68.9
under 22.1 27.9 82.4 83.8 67.6 83.8
NONE 34.4 53.1 67.2 73.4 34.4 73.4
alongside 0.0 5.4 8.9 12.5 0.0 10.7
by 4.0 8.0 10.0 38.0 72.0 86.0
upon 0.0 4.5 75.0 77.3 81.8 86.4
against 7.7 11.5 19.2 26.9 7.7 26.9
opposite 19.2 34.6 42.3 50.0 19.2 46.2 26.9 26.9 26.9 26.9 26.9 26.9
beyond 15.0 25.0 25.0 30.0 15.0 30.0
around 33.3 33.3 50.0 66.7 33.3 66.7 33.3 50.0 66.7 66.7 33.3 66.7
above 14.3 14.3 14.3 57.1 14.3 57.1 0.0 0.0 0.0 0.0 14.3 14.3
below 0.0 25.0 75.0 75.0 0.0 75.0 25.0 25.0 25.0 25.0 25.0 25.0
Mean 24.3 41.6 57.6 67.4 41.1 71.2 24.5 33.7 40.4 40.7 31.8 46.0

Table 4: English AccB results: AccB(1..n), n ≤ 4; AccSyn
B (1); and AccSyn

B (1..4) for vNB and vRB

models. Shown: all prepositions of frequency 20 and above, in order of frequency. Also included are
less frequent words if they are in the set of eight prepositions produced by the vRB method.

which a correct output is returned). The nota-
tion AccA(1..n) or AccB(1..n) is used to indi-
cate that in this version of the evaluation method at
least one of the top n most likely outputs (preposi-
tions) returned by the model needs to match one of
the human-selected reference prepositions for the
model output to count as correct.

Furthermore, we use the notation AccSyn
A (1..n)

or AccSyn
B (1..n) to indicate that in this version, at

least one of the top n most likely outputs (prepo-
sitions) returned by the model, or one of its near
synonyms, needs to match one of the human-
selected reference prepositions for the model out-
put to count as correct.

The near synonym sets used for English are:
{above, over}, {along, alongside}, {atop, upon,
on, on top of}, {below, beneath}, {beside, by,
next to}, {beyond, past}, {close to, near}, {in,

inside, inside of, within} {outside, outside of},
{toward, towards}, {under, underneath}, plus 11
singleton sets.

For French we used: {a l’interieur de, dans},
{au dessus de, en haut de}, {en dessous de,
sous}, plus 15 singleton sets. This gives us 18 sets
for French, and 22 for English.

For the rule-based selection method we do not
have the ranked outputs needed to compute AccA

and AccB . Interpreting the output set P directly as
ranked would mean preserving the order in which
prepositions are selected by rules which is likely
to be unfair to this method. Instead we randomly
shuffle P and then interpret it as ranked, with the
first in this shuffled list giving the highest ranked
output vRB . To be on the safe side we average
all results over 10 different random shuffles. Note
that from n = 4 upwards, it makes no difference
whether the outputs are truly ranked or not.
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FRENCH

Preposition
vNB vRB

AccB(1..n) AccSyn
B (1..n) AccB(1..n) AccSyn

B (1..n)

n=1 n=2 n=3 n=4 n=1 n=4 n=1 n=2 n=3 n=4 n=1 n=4
à côté de 40.1 65.0 80.7 91.2 40.1 91.2 66.7 72.6 74.1 74.1 65.1 74.1
près de 23.5 49.2 75.4 83.6 23.5 83.6
devant 23.2 38.4 46.9 53.7 23.2 53.7 5.2 13.1 15.8 15.8 6.2 15.8
contre 41.0 63.4 78.3 83.2 41.0 83.2
derrière 16.1 29.8 46.0 70.8 16.1 70.8 4.3 11.2 16.1 16.8 7.1 16.8
sur 53.0 70.9 85.5 88.9 53.0 88.9 27.2 60.7 77.8 77.8 28.1 77.8
au niveau de 28.2 59.1 71.8 78.2 28.2 78.2
sous 78.9 90.5 90.5 92.6 89.5 95.8
au dessus de 19.5 56.1 62.2 69.5 19.5 69.5 24.4 39.2 52.1 52.4 28.2 52.4
en face de 20.3 34.2 48.1 54.4 20.3 54.4 35.4 35.4 35.4 35.4 35.4 35.4
en dessous de 12.2 59.5 70.3 81.1 56.8 81.1 30.1 43.7 48.6 48.6 59.4 100
loin de 38.6 56.1 63.2 66.7 38.6 66.7
par delà 16.7 35.7 40.5 45.2 16.7 45.2
le long de 7.5 20.0 22.5 22.5 7.5 22.5
dans 56.5 78.3 82.6 91.3 56.5 91.3
autour de 28.6 28.6 42.9 42.9 28.6 42.9 24.4 42.3 57.1 57.1 23.6 57.1
en travers de 28.6 42.9 50.0 57.1 28.5 57.1
à l’interieur de 20.0 80.0 90.0 90.0 80.0 100
Mean 30.7 53.2 63.7 70.1 37.1 70.9 27.2 39.8 47.1 47.3 31.6 53.7

Table 5: French AccB results: AccB(1..n), n ≤ 4; AccSyn
B (1); and AccSyn

B (1..4) for vNB and vRB

models. Shown: all prepositions of frequency 10 and above, in order of frequency. Also included are
less frequent words if they are in the set of eight prepositions produced by the vRB method.

Accuracy measure A: AccA(1..n) returns the
proportion of times that at least one of the top
n prepositions returned by a model for an or-
dered object pair is in the set of all human-selected
prepositions for the same object pair. AccA can be
seen as a system-level Precision measure.

Accuracy measure B: AccB(1..n) computes
the mean of preposition-level accuracies. Accu-
racy for each preposition v is the proportion of
times that v is returned as one of the top n prepo-
sitions out of all cases where v is in the human-
selected set of reference prepositions. AccB can
be seen as a preposition-level Recall measure.

5 Results

The current French and English data sets each
comprise 1,000 images/object-pair items, each of
which is labelled with one or more prepositions.
For training purposes, we create a separate train-
ing instance (Objs, Objo, v) for each preposition v
selected by our human annotators for the context
‘The Objs is v the Objo’ (or the French equiv-

alent). The models are trained and tested with
leave-one-out cross-validation.

Table 3 shows English and French AccA and
AccSyn

A results for the rule-based method (vRB),
the prior model (vOL), the likelihood model
(vML), and the Naive Bayes model (vNB). The
main results are the AccA(1) results, because after
all a method needs to select a single preposition in
order to be usable, e.g. in image description.

AccSyn
A (1) gives an idea of how much greater a

proportion of a method’s outputs would be consid-
ered correct by human evaluators.

The remaining measures give various perspec-
tives on the proportion of times a method came
close to getting it right, for four degrees of ‘close’.
E.g. AccSyn

A (1..4) shows what proportion of times
one of the top 4 prepositions generated by a
method, or one of their near synonyms, was in the
reference set.

It is clear that the English results are more af-
fected by synonym effects. E.g. AccA(1..n) for
English is nearly 10 percentage points lower than
for French for all n, whereas this difference all but
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disappears for AccSyn
A (1..n).

Overall, the vNB method always achieves the
best result, as expected. The vML model seems to
be better at English than French, whereas for vOL

it is the other way around.
Generally, once synonyms are taken into ac-

count, the results are strikingly similar for English
and French, with the exception of the VML model
which does worse for French.

Tables 4 and 5 list the AccB(1..n), n ≤ 4 and
AccSyn

A (1..n), n ∈ {1, 4} results for the vNB and
vRB models; values are shown for the most fre-
quent prepositions (in order of frequency) and for
the mean of all preposition-level accuracies. We
are not showing all prepositions partly for reasons
of space, but also because for the low frequency
prepositions, the models tend to underfit or overfit
noticeably.

Note that here too we consider the AccA(1) and
AccSyn

A (1) figures to be the main results. Among
the English prepositions that vNB does well with
(considered under the main AccB(1) measure) are
beside, near, underneath, far from, and results for
on are particularly good; vRB does well for beside.

As for French, vNB does well with à côté de,
contre, sur, loin de, while results for sous are par-
ticularly good. vRB does well for à côté de. Apart
from near, underneath and contre, these are the
same prepositions, semantically, as the English
ones the methods do well with.

6 Conclusion

We have described (i) English and French datasets
in which object pairs are annotated with preposi-
tions that describe their spatial relationship, and
(ii) methods for automatically predicting such
prepositions on the basis of features computed
from image and object geometry (visual informa-
tion) and from object class labels (language infor-
mation).

The main method we tested, a Naive Bayes clas-
sifier which takes both language and vision in-
formation into account, does best in terms of all
evaluation methods we used, and it does better
on English than on French. When evaluated sep-
arately, the prior model which is based on lan-
guage information only, outperforms the likeli-
hood model which is based on visual information
only, in terms of the main evaluation measures
AccA(1) and AccSyn

A (1).
Main results in the region of 50% leave room for

improvement; the fact that these go up to around
70% when the top 4 results are taken into account
indicates that the method gets it nearly right a lot
of the time and that for a smaller set of preposi-
tions, and with more sophisticated machine learn-
ing methods, better results will be obtained.

It seems clear from the results, and intuitively
obvious, that a greater presence of near synonyms
in the data makes for a harder modelling task. We
had a principled reason for using this particular
set of English prepositions: it is the set observed
in the human-authored descriptions we used (see
Section 2.2). In our future work we will also work
with the single best prepositions chosen by anno-
tators to describe spatial relationships. This seems
likely to result in a smaller list of prepositions
overall and an easier modelling task. In order to
get a truer impression of the quality of results we
will also carry out human evaluation.
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