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Abstract 

Choosing the right tokenizer is a non-trivial 

task, especially in the biomedical domain, 

where it poses additional challenges, which if 

not resolved means the propagation of errors 

in successive Natural Language Processing 

analysis pipeline. This paper aims to identify 

these problematic cases and analyze the out-

put that, a representative and widely used set 

of tokenizers, shows on them. This work will 

aid the decision making process of choosing 

the right strategy according to the down-

stream application. In addition, it will help 

developers to create accurate tokenization 

tools or improve the existing ones. A total of 

14 problematic cases were described, show-

ing biomedical samples for each of them. The 

outputs of 12 tokenizers were provided and 

discussed in relation to the level of agreement 

among tools. 

 

1 Introduction 

Tokenization is considered the first step in Natu-

ral Language Processing (henceforth, NLP) and 

it is broadly defined as the segmentation of text 

into primary building blocks for subsequent 

analysis (Webster and Kit, 1992). 

Tokenization may seem simple if we assume 

that all it involves is the recognition of a space as 

a word separator (Baeza-Yates and Ribeiro-Neto, 

2011). However, a closer examination will make 

it clear that a blank space alone is not enough 

even for general English (Jurafsky and Martin, 

2009). Furthermore, choosing the right tokeniza-

tion strategy is a non-trivial task, especially in 

the biomedical domain where it poses additional 

challenges (He and Kayaalp, 2006) which if not 

resolved means the propagation of errors in suc-

cessive NLP analysis pipeline. As a conse-

quence, text mining modules, such as Named 

Entity Recognition, will inevitably suffer in 

terms of effectiveness (Tomanek et al., 2007).  

Tokenization in biomedical literature is partic-

ularly difficult due to the fact that general Eng-

lish differ from biomedical text in vocabulary 

and grammar (Barrett, 2012). In addition, scien-

tific information has a particular structure (Har-

ris, 2002). For example, Campbell and Johnson 

(2001) carried out three experiments to evaluate 

the syntactic dissimilarities between medical dis-

charge summaries and everyday English, show-

ing significant differences in syntactic content 

and complexity. 

Another feature of the biomedical literature is 

related to terminology, which is inconsistently 

spelt and may vary from typographical errors to 

lower case and capitalized medication names 

(Krauthammer and Nenadic, 2004). Furthermore, 

biomedical texts could be ungrammatical (espe-

cially, clinical documents) as well as often in-

clude abbreviations and acronyms.  Biomedical 

terms contain digits, capitalized letters within 

words, Latin and Greek letters, Roman digits, 

measurement units, list and enumerations, tabu-

lar data, hyphens and other special symbols. In 

addition, another complexity is the ambiguity, 

i.e., words and abbreviations that have different 

meanings (homonymy) and concepts described 

in more than one way (synonymy). For these rea-

sons, the identification of terminology in the bi-

omedical literature is one of the most challenging 

research topics in the last few years in NLP and 

biomedical communities and tokenization plays 

an important role in handling them. 

There is no widely accepted tokenization 

method for English text, including biomedical 

documents since tokenization strategies can vary 

depending on language, task goals and other cri-

teria. Previous approaches to biomedical tokeni-

zation lack guidance on how to modify existing 

tokenizers to new domains and how even to se-

lect them. Their idiosyncratic nature, detailed 

above, complicates this selection, modification 

and implementation (Barrett, 2012). Some au-

thors also highlight the clear need for tokeniza-

tion evaluation through the alignment and com-
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parison of the results of different tokenizers 

(Habert et al., 1998). To address this challenge, 

this paper identifies and describes all the prob-

lematic cases that can be found when tokenizing 

a biomedical text. In addition, it includes a list of 

useful tokenizers and a comparison of their out-

puts on biomedical text samples. 

The rest of the paper is organized as follows. 

Firstly, the most relevant related research is out-

lined. Secondly, the tokenizers are listed and 

their outputs are shown. The paper finishes with 

conclusions. 

 

2 Related Work 

Despite its importance, tokenization is often ne-

glected in the literature (Dridan and Oepen, 

2012). Most research has been focused on anno-

tating corpus with token information (Ohta, et 

al., 2002; Tanabe et al., 2005; Verspoor, et al., 

2012) and developing or adapting tokenizers to 

new domains (Tomanek et al., 2007; McClosky 

and Charniak, 2008). However, little attention 

has been paid to the analysis of the problematic 

cases that appear in the tokenization process and 

the different strategies used for the current avail-

able tokenization tools to solve them. 

To the best of our knowledge, for the biomed-

ical domain, there is only one work devoted to a 

comparison of several tokenizers (He and 

Kayaalp, 2006). In this study, He and Kayaalp 

made a first approximation of the challenging 

cases. As authors affirmed, it can be considered 

as a starting point since the limited scope of their 

effort prevented them from developing a more 

complete set of cases. Especially, the instances 

identified for biomedical named entities are in-

sufficient. The study also includes a comparison 

of the output of 13 tokenizers on 78 biomedical 

abstracts from Medline, a corpus of biomedical 

literature compiled by the U.S. National Library 

of Medicine. 

Due to the limitations in the categorization of 

the complex cases and the fact that many tokeni-

zation tools have been developed in recent years, 

this paper complete all these cases, update the 

list of tokenization tools and test them on a set of 

biomedical sentences, outlining the differences 

among tokenization schemes. This means, 

providing a qualitative guideline for the reader 

which aid the decision making process of choos-

ing the right tokenizer. This decision will depend 

mainly on the downstream task. In addition, the 

critical issues identified, allow developers to 

know what should be taken into account when 

adapting or developing tokenization tools. 

 

3 Material and Methods 

3.1 Problematic cases 

We could divide the potential complexities in the 

tokenization process into two major categories: 

those that apply across all domains and those that 

are more likely to be found in biomedical corpo-

ra, where there is a large amount of technical 

vocabulary (Clegg, 2008). All these difficulties, 

together with sentences extracted from the Bio-

Scope corpus (Vincze et al., 2008), in which au-

thors such as Velldal et al. (2012) found prob-

lematic cases where tokenizers fail, are detailed 

below: 

 

Common English complexities 

 

 Hyphenated compound words 

For example: 

 

(1) Normal chest x-ray. 

 

(2) 2-year 2-month old female with pneumonia. 

 

(3) This may occur through the ability of IL-10 

to induce expression of the gene. 

 

 Words with letters and slashes  

Slashes usually indicate alternatives (e.g. differ-

entiation/activation) or measurement units (e.g. 

ng/ml). In addition, they often separate two or 

more entity references (e.g. IL-12/CD34). They 

may also denote the knock-out status of a certain 

gene with respect to an organism (e.g. flt3L-/-

mice) (Tomanek et al., 2007). For example: 

 

(4) The maximal effect is observed at the IL-10 

concentration of 20 U/ml. 

 

(5) These results indicate that within the 

TCR/CD3 signal transduction pathway both 

PKC and calcineurin are required for the ef-

fective activation of the IKK complex and 

NF-kappaB in T lymphocytes. 

 

 Words with letters and apostrophes 

Apostrophes can indicate possessive (e.g. 

years’), words with single quotation (e.g. 

‘syntenic hits’) and names (e.g. O’Neill). Exam-

ples of these might be the following: 
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(6) The false positive rate of our predictor was 

estimated by the method of D'Haeseleer and 

Church 1855 and used to compare it to other 

prediction datasets. 

 

(7) Small, scarred right kidney, below more than 

2 standard deviations in size for patient’s 

age. 

 

 Words with letters and brackets 

There are basically four types of brackets: paren-

theses, square brackets, braces and angle brack-

ets. For instance: 

 

(8) Of these, Diap1 has been most extensively 

characterized; it can block cell death caused 

by the ectopic expression of reaper, hid, and 

grim (reviewed in [26]). 

 

 Abbreviations in capital letters and       

acronyms 

An abbreviation is a shortened form of a word or 

phrase. Usually, but not always, it consists of a 

letter or group of letters taken from the word or 

phrase. It must be taken into account in any to-

kenization process. An example of this may be 

the one shown below: 

 

(9) Mutants in Toll signaling pathway were ob-

tained from Dr. S. Govind: cactE8, cactIIIG, 

and cactD13 mutations in the cact gene on 

Chromosome II. 

 

An acronym is an abbreviation formed from the 

initial components in a phrase or a word. These 

components may be individual letters (as in 

SARS; severe acute respiratory syndrome) or 

parts of words (as in Ameslan; American Sign 

Language). 

 

Abbreviations and acronyms are commonly used 

in biomedical literature. For example, in the 

medical domain, writing favors brevity because 

time pressures often prevent medical specialists 

from describing clinical findings fully and ab-

breviations are a convenient way to shorten the 

sentences (Grange and Bloom, 2000). 

 

Abbreviations and acronyms mainly refer to 

names, but abbreviations of adjectival expres-

sions are often found in the biomedical domain 

(e.g. CD8+ is an abbreviation of CD8-positive). 

For example: 

 

(10) The transcripts were detected in all the 

CD4- CD8-, CD4+ CD8+, CD4+ CD8-

, and CD4- CD8+ cell populations.  

 

 Words with letters and periods 

Words with a period at the end usually indicate 

end of sentence. However, they may merely be 

abbreviations, such as i.e. and e.g. as shown in 

the following example: 

 

(11) Two stop codons of an iORF (i.e. the 

inframe and C-terminal stops) can be 

any combination of canonical stop co-

dons (TAA, TAG, TGA). 

 

 Words with letters and numbers 

For example: 

 

(12) Selenocysteine and pyrrolysine are the 

21st and 22nd amino acids, which are 

genetically encoded by stop codons. 

 

 Words with numbers and one type of 

punctuation 

Some simple examples for numbers are: large 

numbers (e.g. 390,926), fractions (e.g. 1/2), per-

centages (e.g. 50%), decimals (e.g. 0.001) and 

ranges (e.g. 2-5). These punctuation marks are: 

comma, forward slash, percent, period and en 

dash. Good illustrations extracted from the Bio-

Scope corpus are the following: 

 

(13) A total of 26,003 iORF satisfied the 

above criteria.  

 

(14) The patient had prior x-ray on 1/2 

which demonstrated no pneumonia. 

 

(15) Indeed, it has been estimated recently 

that the current yeast and human pro-

tein interaction maps are only 50% and 

10% complete, respectively 18. 

 

(16) The dotted line indicates significance 

level 0.05 after a correction for multi-

ple testing. 

 

(17) E-selectin is induced within 12 h, 

peaks at 46 h, and gradually returns 

to basal level by 24 h.  

 

 Numeration 

It is regarded as the act or process of counting or 

numbering. For instance: 
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(18) 1. Bioactivation of sulphamethoxazole 

(SMX) to chemically-reactive metabo-

lites and subsequent protein conjuga-

tion is thought to be involved in SMX 

hypersensitivity. 

 

 A hypertext markup symbol 

Some of the frequently observed hypertext 

markup symbols are &lt; and &quot; (for the 

double quotation mark). For example: 

 

(19) Bcd mRNA transcripts of &lt; or = 2.6 

kb were selectively expressed in PBL 

and testis of healthy individuals. 

 

 

 A URL 

An example would be the following: 

 

(20) Names of all available Trace Data-

bases were taken from a list of data-

bases at 

http://www.ncbi.nlm.nih.gov/blast/mm

trace.shtml 
 

 

Biomedical English complexities 

 

 A DNA sequence 

For example: 

 

(21) Footprinting analysis revealed that the 

identical sequence CCGAAACTGAAAA 

GG, designated E6, was protected by nucle-

ar extracts from B cells, T cells, or HeLa 

cells. 

 

 Temporal expressions 

For instance: 

 

(22) This was last documented on the Nuclear 

Cystogram dated 1/2/01. 

 

 Chemical substances 

They include several symbols which may (or 

may not) denote word token boundary symbols 

such as parentheses, hyphens and slashes 

(Tomanek et al., 2007). Furthermore, chemical 

substances basically comprehend gene symbols, 

drug names and protein names, each of which 

has certain characteristics as described below. 

 

Gene symbols  

The names can indeed be divided into the follow-

ing three categories (Proux et al., 1998). 

 Names including special characters, i.e. up-

per cases, hyphen, digit, slash or brackets. 

For example, Lam-B1 or M(2)201. 

 Names in lower case and belonging to the 

general English language. For instance, vamp 

or zip. 

 Names using lower case letters only without 

belonging to the language such as zhr or sth. 

 

Drug names  

In general, most drug names include: 

  Particular letters from the chemical formula 

(e.g. Tylenol, which were generated from n-

aceryl-para-aminophenol) as describe 

Gantner et al. (2002). 

 Generic names such as Thalomid. 

 Latin or Greek terminology. 

 Parts or abbreviations of the company’s 

name (e.g. Baycol, (Bayer+colesterol)). 

 Low-frequency letters of the alphabet such 

as x or y (e.g. x-trozine). 

 Acronyms like Tigan (that means this is 

good against nausea). 

 

Protein names 

Protein names can also be partitioned into three 

categories from their structure (Fukuda et al., 

1998): 

 Single words in upper case, numerical fig-

ures, and non-alphabetical letters which are 

mostly derived from gene name (e.g. p53). 

 Compound words with upper case letters, 

numerical letters, and non-alphabetical let-

ters. (e.g. (IL-1)-responsive kinase). 

 Single word with only lower case letters (e.g. 

insulin). 

 

Examples which appear in the BioScope corpus 

are the following: 

 

(23) These results reveal a central role for 

CaMKIV/Gr as a Ca(2+)-regulated activa-

tor of gene transcription in T lymphocytes. 

 

(24) Expression of a highly specific protein in-

hibitor for cyclic AMP-dependent protein 

kinases in interleukin-1 (IL-1)-responsive 

cells blocked IL-1-induced gene transcrip-

tion that was driven by the kappa immuno-

globulin enhancer or the human immunode-

ficiency virus long terminal repeat. 
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3.2 Tokenization strategies 

The tools analyzed were the following: Freeling, 

Genia tagger, Gate Unicode tokenizer (GUT), 

JULIE LAB tokenizer (JLT), LingPipe, 

McClosky-Charniak parser (MCP), MedPost, 

NLTK tokenizer, OpenNLP tokenizer, Penn Bio 

tokenizer, Stanford POS tagger and Xerox 

tokenizer. Table 1 details all these tokenizers 

showing their references and websites.  

These tools were tested on the set of examples 

extracted from the BioScope corpus listed in the 

previous section. Tables 2 to 24 detail the output 

from each tokenizer. Each row of the tables 

shows the list of tokenizers with the same output. 

The numbers of the tools refer to Table 1. In 

bold, decisions in which tokenizers do not match. 

The outputs, for which there is no agreement 

among several tools and, therefore, correspond to 

a single tokenizer, are not shown in this paper 

due to the space limit. However, this information 

can be found in Supplementary Material. 

 

 Common English complexities 

 

 Hyphenated compound words 
 

Table 2: Tokenizers output for sentence (1) 

Tokenizer Output 

1, 2, 3, 6, 8, 9, 

10, 11 

Normalchestx-ray. 

 

 
Table 3: Tokenizers output for sentence (2) 

Tokenizer Output 

1, 2, 6, 8, 9, 

11, 12 

2-year2-montholdfemalewith 
pneumonia. 

3, 4, 5, 7 
2-year2-montholdfemale 
withpneumonia. 

 
Table 4: Tokenizers output for sentence (3) 

Tokenizer Output 

1, 2, 4, 6, 8, 

9, 10, 11, 12 

Thismayoccurthroughtheability

ofIL-10toinduceexpression 
ofthegene. 

5, 7 

Thismayoccurthroughtheability

ofIL-10toinduceexpression 
ofthegene. 

 

 

 Words with letters and slashes  

 
Table 5: Tokenizers output for sentence (4) 

Tokenizer Output 

2, 6, 8, 9, 

11, 12 

Themaximaleffectisobserved 
attheIL-10concentrationof20 
U/ml. 

3, 5, 7 

Themaximaleffectisobserved 
attheIL-10concentrationof 
20U/ml. 

 

Table 1: Overview of the 12 tools reviewed in the current study with their publications and website 
 

 Tool References Website 

1 Freeling (Carreras, 2004; Padró and 

Stanilovsky, 2012) 

http://nlp.lsi.upc.edu/freeling/ 

2 Genia (Kulick et al., 2004; Tsu-

ruoka et al., 2005; Tsuruoka 

and Tsujii, 2005) 

http://www.nactem.ac.uk/tsujii/GENIA/tagger/ 

3 GUT (Cunningham et al., 2002) http://gate.ac.uk/sale/tao/splitch6.html#sec:annie:tokeniser 

4 JLT (Tomanek et al., 2007) http://www.julielab.de/Resources/NLP+Tools.html 

5 LingPipe (Carpenter and Baldwin, 

2011) 

http://alias-i.com/lingpipe/ 

6 MCP (McClosky and Charniak, 

2008; McClosky, 2010) 

http://nlp.stanford.edu/~mcclosky/biomedical.html 

7 MedPost (Smith et al., 2004) ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost/medpost.tar.g

z 

8 NLTK (Bird et al., 2009) http://nltk.org/ 

9 OpenNLP - http://opennlp.apache.org/ 

10 Penn Bio (Jin et al., 2006; McDonald 

and Pereira, 2005; McDonald 

et al., 2004) 

http://www.seas.upenn.edu/~strctlrn/BioTagger/BioTagger.

html 

11 Stanford  (Toutanova et al., 2003) http://nlp.stanford.edu/software/tagger.shtml 

12 Xerox (Beesley and Karttunen, 

2003) 

http://open.xerox.com/Services/fst-nlp-tools/Consume/175 
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1, 4, 10 

Themaximaleffectisobserved 
attheIL-10concentrationof20 
U/ml. 

 
Table 6: Tokenizers output for sentence (5) 

Tokenizer Output 

1, 2, 6, 8, 9, 

11, 12 

Theseresultsindicatethatwithin 
theTCR/CD3signaltransduction 
pathwaybothPKCandcalcineurin 
arerequiredfortheeffectiveactiva

tionoftheIKKcomplexand  
NF-kappaBinTlymphocytes. 

3, 4, 5, 7, 10 

Theseresultsindicatethatwithin 
theTCR/CD3signaltransduction

pathwaybothPKCand 
calcineurinarerequiredforthe 
effectiveactivationoftheIKK 
complexandNF-kappaBinT 
lymphocytes. 

 

 

 Words with letters and apostrophes 

 
Table 7: Tokenizers output for sentence (6) 

Tokenizer Output 

1, 2, 4, 8, 9, 

10, 11, 12 

Thefalsepositiverateofour 
predictorwasestimatedbythe 
methodofD'Haeseleerand 
Church1855andusedtocompare

ittootherpredictiondatasets. 

 

3, 5, 6, 7 

Thefalsepositiverateofour 
predictorwasestimatedbythe 
methodofD'Haeseleerand 
Church1855andusedtocompare

ittootherpredictiondatasets. 

 
Table 8: Tokenizers output for sentence (7) 

Tokenizer Output 

1, 2, 4, 6, 8, 

9, 10, 11, 12 

Small,scarredrightkidney, 
belowmorethan2standard   
deviationsinsizeforpatient's 
age. 

3, 5, 7 

Small,scarredrightkidney, 
belowmorethan2standard   
deviationsinsizeforpatient's 
age. 

 

 

 Words with letters and brackets 

 
Table 9: Tokenizers output for sentence (8) 

Tokenizer Output 

1, 2, 5, 7, 8, 

11, 12 

Ofthese,Diap1hasbeenmost 
extensivelycharacterized;itcan 
blockcelldeathcausedbythe 
ectopicexpressionofreaper,hid 
,andgrim(reviewedin[26] 
). 

 Abbreviations in capital letters and        

acronyms 

 
Table 10: Tokenizers output for sentence (9) 

Tokenizer Output 

4, 6, 8, 11 MutantsinTollsignalingpathway 
wereobtainedfromDr.S. 
Govind:cactE8,cactIIIG,and 
cactD13mutationsinthecact 
geneonChromosomeII. 

2, 5, 7 MutantsinTollsignalingpathway 
wereobtainedfromDr.S. 
Govind:cactE8,cactIIIG,and 
cactD13mutationsinthecact 
geneonChromosomeII. 

 
Table 11: Tokenizers output for sentence (10) 

Tokenizer Output 

2, 6, 8, 9, 12 Thetranscriptsweredetectedinall

theCD4-CD8-,CD4+CD8+ 
,CD4+CD8-,andCD4-CD8+ 
cellpopulations. 

1, 3, 4, 7, 

10, 11 

Thetranscriptsweredetectedinall

theCD4-CD8-,CD4+ 
CD8+,CD4+CD8-,and 
CD4-CD8+cellpopulations. 

 

 

 Words with letters and periods 

 
Table 12: Tokenizers output for sentence (11) 

Tokenizer Output 

1, 6, 11, 12  

TwostopcodonsofaniORF( 

i.e.theinframeandC-terminal 
stops)canbeanycombination 
ofcanonicalstopcodons(TAA 
,TAG,TGA). 

2, 8  

TwostopcodonsofaniORF( 
i.e.theinframeandC-terminal 
stops)canbeanycombination 
ofcanonicalstopcodons(TAA 
,TAG,TGA). 

4, 7 

TwostopcodonsofaniORF( 
i.e.theinframeandC- 
terminalstops)canbeany 
combinationofcanonicalstop 
codons(TAA,TAG,TGA). 

 

 Words with letters and numbers 

 
Table 13: Tokenizers output for sentence (12) 

Tokenizer Output 

1, 2, 4, 5, 6, 

7, 8, 9, 11, 

12 

Selenocysteineandpyrrolysineare 
the21stand22ndaminoacids,

whicharegeneticallyencodedby 
stop codons. 
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 Words with numbers and one type of 

punctuation 
 
Table 14: Tokenizers output for sentence (13) 

Tokenizer Output 

1, 5, 6, 8, 9, 

10, 11, 12 

Atotalof26,003iORFsatisfied 
theabovecriteria.  

2, 3, 4, 7 
Atotalof26,003iORFsatisfied

theabovecriteria.  

 

Table 15: Tokenizers output for sentence (14) 
Tokenizer Output 

1, 2, 6, 8, 9, 

11, 12 

Thepatienthadpriorx-rayon 
1/2whichdemonstratedno  
pneumonia.  

 

4, 5, 7 

Thepatienthadpriorx-ray 
on1/2whichdemonstratedno 
pneumonia.  

3, 10 

Thepatienthadpriorx-rayon 
1/2whichdemonstratedno 
pneumonia.  

 

Table 16: Tokenizers output for sentence (15) 
Tokenizer Output 

3, 4, 5, 6, 7, 

8, 9, 10, 11 

Indeed,ithasbeenestimated 
recentlythatthecurrentyeastand 
humanproteininteractionmaps 
areonly50%and10%   
complete,respectively18.  

 

Table 17: Tokenizers output for sentence (16) 
Tokenizer Output 

1, 2, 4, 5, 6, 

8, 9, 10, 11, 

12 

Thedottedlineindicates      
significancelevel0.05aftera 
correctionformultiple testing.  

3, 7 

Thedottedlineindicates      
significancelevel0.05aftera 
correctionformultiple testing.  

 

Table 18: Tokenizers output for sentence (17) 
Tokenizer Output 

1, 2, 8, 9, 

10, 11, 12 

E-selectinisinducedwithin        
12h,peaksat46h,and   
graduallyreturnstobasallevelby 
24h.  

4, 7 

E-selectinisinducedwithin    
12h,peaksat46h, 
andgraduallyreturnstobasal 
levelby 24h.  

 

 Numeration 

 

Table 19: Tokenizers output for sentence (18) 
Tokenizer Output 

1, 2, 3, 5, 7, 

8, 9, 10, 11, 

12 

1.Bioactivationofsulphamethoxaz

ole(SMX)to            
chemically-reactivemetabolitesand 
subsequentproteinconjugationis 
thoughttobeinvolvedinSMX 
hypersensitivity. 

4, 6 

1.Bioactivationof 
sulphamethoxazole(SMX)to 
chemically-reactivemetabolites 
andsubsequentproteinconjugation

isthoughttobeinvolvedin 
SMXhypersensitivity. 

 

 

 A hypertext markup symbol 

 

Table 20: Tokenizers output for sentence (19) 
Tokenizer Output 

2, 4, 5, 8 

BcdmRNAtranscriptsof&lt; 
or=2.6kbwereselectively  
expressedinPBLandtestisof 
healthyindividuals. 

9, 12 

BcdmRNAtranscriptsof&lt; 
or=2.6kbwereselectively  
expressedinPBLandtestisof 
healthyindividuals. 

3, 7 

BcdmRNAtranscriptsof&lt; 
or=2.6kbwereselectively 
expressedinPBLandtestisof 
healthyindividuals. 

 

 A URL 

 

Table 21: Tokenizers output for sentence (20) 
Tokenizer Output 

2, 6, 8 NamesofallavailableTrace  
Databasesweretakenfromalist 
ofdatabasesathttp://www.ncbi.

nlm.nih.gov/blast/mmtrace.shtml 

3, 5, 7 NamesofallavailableTrace  
Databasesweretakenfromalist 
ofdatabasesathttp://www 
.ncbi.nlm.nih.gov/blast

/mmtrace.shtml 

11, 12 NamesofallavailableTrace  
Databasesweretakenfromalist 
ofdatabasesathttp://www.ncbi. 

nlm.nih.gov/blast/mmtrace.shtml 

 

Biomedical English complexities 

 

 A DNA sequence 

 

Table 22: Tokenizers output for sentence (21) 
Tokenizer Output 
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1, 2, 4, 5, 6, 

7, 8, 9, 11, 

12 

Footprintinganalysisrevealedthat 
theidenticalsequenceCCGAAACT

GAAAAGG,designatedE6, 
wasprotectedbynuclearextracts 
fromBcells,Tcells,orHeLa

cells. 

 

 Temporal expressions 

 

Table 23: Tokenizers output for sentence (22) 
Tokenizer Output 

2, 6, 8, 9, 

11, 12 

Thiswaslastdocumentedonthe

NuclearvCystogramdated1/2/01. 

1, 3, 4, 7, 10 

Thiswaslastdocumentedonthe

NuclearvCystogramdated1/2/0

1. 

 

 Chemical substances 

 

Table 24: Tokenizers output for sentence (23) 
Tokenizer Output 

6, 8 

Theseresultsrevealacentralrole 
forCaMKIV/GrasaCa(2+)  
-regulatedactivatorofgene   
transcriptioninTlymphocytes. 

1, 3, 4, 7 

Theseresultsrevealacentralrole 
forCaMKIV/GrasaCa( 
2+)-regulatedactivatorof 
genetranscriptioninTlymphocytes

. 

 

Table 25: Tokenizers output for sentence (24) 
Tokenizer Output 

1, 2, 6, 8, 11 Expressionofahighlyspecific 
proteininhibitorforcyclicAMP-

dependentproteinkinasesin   
interleukin-1(IL-1)-      
responsivecellsblockedIL-1-

inducedgenetranscriptionthat 
wasdrivenbythekappa     
immunoglobulinenhancerorthe 
humanimmunodeficiencyvirus 
longterminalrepeat. 

 

4 Conclusions 

This paper analyzed the problematic cases that 

can be found when tokenizing a biomedical text. 

In addition, it listed a set of potentially useful 

tokenizers and tested them on biomedical sen-

tences.  

Identifying the complex cases that introduce 

this domain and knowing what types of behavior 

are expected from available tokenizers in each of 

these cases is vital. This will enable researchers 

to be aware of those aspects which are especially 

challenging when developing new tools or adapt-

ing existing ones. In addition, it will aid the pro-

cess of selecting the right tokenizer according to 

the most appropriate tokenization scheme for the 

downstream application. This will facilitate to 

lose the minimum of information. Obviously, 

other factors like technical, usability of function-

al criteria should be taken into account in such 

decision. 

The experiments carried out showed a widely 

variation on the results. This variability was ex-

pected since there is no a single tokenization 

method. Neither of the tools produced identical 

output. Tokenizers pair that coincided in the 

same strategy or scheme in over 75% of cases 

were Genia tagger and NLTK tokenizer as well 

as Stanford POS tagger and NLTK tokenizer.  

Regarding the challenging problems where 

there was more disagreement (less than 35% 

agreement) and, therefore, presented more diffi-

culties for the tokenization tools are, the hyper-

text markup symbol, URLs and chemical sub-

stances. The latter was assumed since biomedical 

terminology is currently one of the most chal-

lenging research topics in NLP. 

Among the cases with more than 80% agree-

ment, it can be found: hyphenated compound 

words, words with letters and numbers, words 

with numbers and one type of punctuation and 

DNA sequences.  
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