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Abstract

Predicting pronouns across languages
from a language with less variation to
one with much more is a hard task that
requires many different types of infor-
mation, such as morpho-syntactic infor-
mation as well as lexical semantics and
coreference. We assumed that continuous
word spaces fed into a multi-layer per-
ceptron enriched with morphological tags
and coreference resolution would be able
to capture many of the linguistic regular-
ities we found. Our results show that the
model captures most of the linguistic gen-
eralisations. Its macro-averaged F-score is
among the top-3 systems submitted to the
DiscoMT shared task reaching 56.5%.

1 Introduction

This paper provides the description for the
classification system, submitted by the Univer-
sity of Malta, to the DiscoMT shared task on
cross-lingual pronoun prediction (Hardmeier et
al., 2015). In this task, we are concerned with find-
ing the correct French translations for the English
third-person subject pronouns it and they. An ex-
ample would be the following, where we need to
predict the pronoun corresponding to the place-
holder ”REPLACE” given in the French sentence.

– And so, if you depend on these sources, you
have to have some way of getting the energy
during those time periods that it’s not avail-
able .

– Et donc, si vous dépendez de ces sources,
vous devez avoir un moyen d’obtenir de
l’énergie pendant ces périodes de temps où
REPLACE n’est pas disponible.

The task is setup in such a way that the system
needs to choose between 9 classes of French pro-
nouns : ce, elle, elles, il, ils, ça, cela, on, and

OTHER in bitexts in which the pronoun aligned to
the English pronouns it and they are substituted by
placeholders 1. The difficulty of this task lies in the
fact that the French translation for a particular En-
glish pronoun is generally inconsistent and depen-
dent on many different factors. By analysing the
linguistic characteristics of this problem, we iden-
tified the factors contributing to the predictability
of the pronouns, as described in Section 2.

The dependencies are modeled by using a prob-
abilistic neural network, motivated by previous
work in the field of Statistical Language Mod-
eling and Statistic Machine Translation. Specifi-
cally, the feature words are treated through a pro-
jection layer to become continuous vectors. This
approach leads to a distributed representation of
the words, that has shown to capture morpho-
syntactic and semantic information (Mikolov et
al., 2013c; Köper et al., 2015). After that, the out-
put of the network is a soft-max layer computing
probabilities of the possible outputs, such as lan-
guage models (Bengio et al., 2003), or translation
models (Son et al., 2012). The input words can
belong to one single language (language model
case (Bengio et al., 2003)), or even two differ-
ent languages (translation model case (Son et al.,
2012)). More importantly, the size of projected
vectors is much smaller than the vocabulary, aim-
ing at a reduction of the data sparseness problem.
We apply the concept in our system, by learning
the probabilities of the pronouns given the word
vectors in the input layer.

In the works mentioned to motivate this struc-
ture, this projection layer is learned together with
the neural network parameters (Schwenk, 2007;
Mikolov et al., 2010; Le et al., 2011). For the task
of cross-lingual pronoun prediction, Hardmeier et
al. (2013) also chose to learn the projection ma-
trices and the neural network weights at the same

1. For more information on the task setup we refer to the
introductory paper of the shared task (Hardmeier et al., 2015)
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time. We chose to train the projection matrix sepa-
rately, and then train the neural network on top of
the learned continuous word vectors (Mikolov et
al., 2013a) to alleviate the training process.

In contrast to English, the source language in
this shared task, every noun in French has a gram-
matical gender. Pronouns agree in gender and
number with their antecedents (or postcedents). As
a consequence, in many cases in which the En-
glish translation contains the pronoun it, we need
to choose between elle or il in French depending
on the gender of the nouns the pronoun is referring
to. In the example above the gender of the noun
énergie is feminine so we choose the pronoun elle.
We included the Stanford Coreference Resolution
system (Lee et al., 2013) in our model for this rea-
son. Moreover, in an effort to compare the effec-
tiveness of the word embeddings and handcrafted
features for capturing morpho-syntactic informa-
tion, we decided to use Morfette (Seddah et al.,
2010) to supply information on gender and num-
ber for each French word explicitly.

2 Linguistic analysis and feature
selection

We explained above that pronouns agree in gen-
der and number with their antecedents. But apart
from gender and number, there are many other fac-
tors at play. For example, there are cases where the
English pronoun they is translated with on. This is
usually the case when the antecedents of the pro-
noun are indefinite or even absent. An example
from the training data is someone can grab your
ear and say what they have to say. It is translated
in French as on peut attraper votre oreille et dire
ce que l’ on a à dire.

The same happens when there is a passive in
English with the pronoun it that is translated in
French with active voice. The phrase It was called
is translated in French with On l’ a appelé.

It can also be translated to il. For example, when
we find a dummy or expletive pronoun in combi-
nation with certain classes of verbs such as pleu-
voir ‘rain’, neiger ‘snow’, but also with the verb
sembler ‘seem’ and être ‘be’ in expressions such
as It is time to translated to Il est temps de.

We could go on explaining the linguistic gen-
eralities that were attested in the training data. In
summary, we concluded that most of the factors
will be captured by including the following fea-
tures :

1. The English pronoun. This will capture the
nature of the English pronoun : is it it or they.

2. Three words in front of and three words af-
ter the English pronoun. This will capture
whether the passive is used, whether we find
one of the verbs that are often found with ex-
pletive pronouns etc.

3. Two words in front of and three words af-
ter the French pronoun. This will capture
whether we find active or passive voice in
French, whether we find one of the verbs that
are often found with expletive pronouns and
so on.

4. Antecedents and postcedents of the French
pronoun. This will capture whether there are
antecedents at all and if they are found how
definite they are. We can also infer the gen-
der of the antecedents to determine whether
to use masculine of feminine forms of pro-
nouns in French.

3 The neural network classifier

3.1 Concept

The neural network structure is described in fig-
ure 1. Overall, it resembles the feed-forward neu-
ral network structure used in the Continuous Space
Translation Model (Son et al., 2012), in which
the input layer contains the English words on the
source side, and the French words on the target
side of the bitext. By using the toolkit learning the
word vectors, known as word2vec (Mikolov et al.,
2013a) in Python (Řehůřek and Sojka, 2010), we
trained two different projection matrices for En-
glish and French correspondingly.

A conventional Multi-Layer Perceptron (MLP)
on top of the distributed representations maps the
input sequences into the pronouns. It is notable
that this task is much simpler than the concept
used in language models and translation models,
in which the output layer needs to be hierachically
organised to deal with the gigantic size of the vo-
cabulary. This pronoun prediction task only needs
to deal with several pronouns of the target lan-
guage. If the feature set is limited to only the target
words (French), the model is almost identical to a
mini language model learning the probabilities of
the long n-grams predicting the pronoun class.

In order to include additional features such as
the antecedents of the pronoun or morphological
tags of the French words, we extend the input lay-
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FIGURE 1 – The overview structure of the neural network classifier. The words are transformed into
500-size vectors with two projection matrices R1 and R2. The size of the hidden layer is 1000, while the
output layer gives probabilities for 9 outputs.

ers with additional vectors. One difficulty of the
corefence resolution is that the co-referring noun
phrases have inconsistent length and might con-
tain a headword and possibly determiners, adjec-
tives or adverbs along with the headword. Our so-
lution was to take only the French words aligned
to the English headwords found by the coreference
locator 2 for the feature. Therefore, the whole an-
tecedent phrase representation is the average of the
French word vectors composing that phrase. That
vector is then concatenated to the total feature vec-
tor. An additional difficulty lies in the fact that
there might be several co-referring expressions for
one pronoun, we therefore averaged the projected
vectors of all co-referring headwords as done in
Hardmeier et al. (2013), but without the probabil-
ity weighting, since the Stanford Coreference Res-
olution system does not provide such probabilities.

Technically, this feature is not fully utilised.
Coreference resolution can only be found on 30%
of the samples. Due to our time and resource limit,
we only managed to investigate the antecedents by
looking backward one sentence. There are samples
whose antecedents are the pronouns of the previ-
ous sentences, rendering the feature useless.

As for the linguistic annotations for French
morphological features, we treated the tags as one-

2. These include referential links within the same sen-
tence.

hot vectors with the size as the total number of
tags. Each tagged word is then converted to a cor-
responding vector, which is then integrated to the
input layer of the MLP (the output of the projec-
tion layer in the figure). A similar approach was
chosen for including the morphological tags of the
antecedents as features, where we took the tag vec-
tors of all words in the head-phrases and concate-
nate the averaged one into the ultimate feature vec-
tor.

3.2 Training

As described in the introduction, we trained the
system using two separate processes :

– Training the word2vec for continuous repre-
sentation of English and French words

– Training the MLP classifier
The first part of the training is performed by fol-
lowing the log-linear model concepts proposed
by Mikolov et al. (2013a). Fundamentally, word
regularities are learnt by using a log-linear classi-
fier to predict a particular word based on its sur-
rounding words (Continuous Bag-Of-Words ap-
proach) or to predict the surrounding words based
on the current words (Skip-gram approach).

The neural network classifier is trained in or-
der to maximize the log-likelihood of the training
data. Backward propagation with Stochastic Gra-
dient Descent optimisation process is performed to
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obtain the model weights.
Notably, training the neural network is more de-

manding than training the word vectors, from a
similar amount of data. Consequently, compared
to the original training scheme used in language
models, we are able to utilise more data for train-
ing the word vectors, thus covering a larger vo-
cabulary than the training data provided as the bi-
text. The difference of the training data for the two
parts, as well the parameter selection will be de-
scribed in the subsequent section.

4 Experiment Setups

4.1 Corpora

The organisers provided us with three different
corpora :

– The TED (IWSLT2014) corpus containing
approximately 179k bi-sentences.

– The News Commentary corpus, with around
180k sentence pairs.

– The Europarl dataset, originally collected
by Koehn (2005) having 2 million sentences.

All three datasets are employed for training the
word vectors. Specifically, the projection ma-
trix for each language is trained from approxi-
mately 100 million words, comprised of 20k size
vocabularies. For training the MLP, we ran experi-
ments with only the in-domain data (TED). For the
final submissions of the task, we include another
system trained with a larger set of data, including
the TED and News Commentary corpora.

4.2 Word2vec training

Regarding architectures, since it is known in
previous research (Mikolov et al., 2013a) that
the Skip-gram architecture is dominating in terms
of modeling the semantics of words, while the
CBOW structure is better at capturing morpho-
syntactic regularities, we experimented with both
architectures to train the projection matrices.

Two important parameters in word2vec are neg-
ative sampling and sub-sampling. Negative sam-
pling alters the objective function, from maximiz-
ing the corpus probability, that is from the con-
ditional probabilities of the context words given
the input words to maximizing directly the qual-
ity of the word representations, related to the joint
probability of the words and the contexts (Mikolov
et al., 2013b; Goldberg and Levy, 2014). ”Neg-
ative Sample” indicates that, for each sample of
word/context, k other samples are drawn ran-

domly assuming they are all negative. The opti-
misation process only concerns the word repre-
sentations, rather than the data likelihood. The k
value used to generate negative samples is 10 in
our setup, which is recommeneded for our corpus
size in previous works (Mikolov et al., 2013b).

Sub-sampling is the act of downsampling the
very frequent words, based on the intuition that
distributional vectors of those words do not change
much throughout the training data, plus they do
not hold useful information. When sub-sampling
was set to 10−5, the performance on the devel-
opment data was considerably reduced so we de-
cided to leave it out for the remainder of the exper-
iments. As we stated before, it is possible that the
frequent words, such as determiners, are necessary
for the task.

Our experiments were conducted to observe the
impact of word vectors serving pronoun transla-
tion, using negative sampling or hierarchical soft-
max (which is the training method used when neg-
ative sampling is disabled). Besides, the context of
each word is chosen as 10 (5 words per side). The
learned vectors have the size of 500, which are 40
times smaller than the vocabularies.

4.3 Neural Network training

As aforementioned, there are three types of fea-
tures fed into the MLP :

– Context words from the source side and tar-
get side of the translation. Their vectors are
treated as the input of the MLP.

– The search for antecedents was performed
by the Stanford Coreference Resolution sys-
tem (Lee et al., 2013). The English words
corresponding to the French placeholder are
found based on the alignments. Afterwards,
coreference resolution is done on the English
side by backtracking one sentence and the
word alignments help us map the English an-
tecedents to the French counterpart. The fea-
ture for the MLP is eventually the averaged
word vectors of all words in the French an-
tecedents.

– The Morfette morphological analyser (Sed-
dah et al., 2010) is used to tag each French
word with morphological labels, indicating
their number and gender properties. We rep-
resent such properties as one-hot vectors,
showing the index of the tag in the tag list,
whose size is 97.
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Due to time limitation, we chose to tune the hy-
per parameters of the network by using the devel-
opment data. The result of this tuning process is
that the activation function is logistic, the train-
ing algorithm is l-bfgs and the hidden layer size
is 1000. The experiments were conducted with the
Scikit-Learn tool kit (Pedregosa et al., 2011).

5 Results

5.1 Architecture and Feature effect

TABLE 1 – Results on development set, in macro-
average F-measure (%). Comparison of features
(English words(E), Coreference(C), French words
(F) and Morphological tags(M)), Skip-gram and
CBOW architectures, trained with Hierarchical
Softmax (HS) and Negative Sampling (NS).

Features word2vec Architecture
Skip-gram CBOW
HS NS HS NS

English words 37.6 32.6 36.0 32.7
E+Coreference 38.2 32.9 38.0 31.9

E+C+C MorpTags 39.2 32.7 36.1 34.7
E+C+C M+French w. 58.4 43.1 58.1 40.6

E+C+C M+F+F M 64.8 49.7 57.2 50.0

The experimental results for feature engineer-
ing and model variations are summerised in Ta-
ble 1. In total, we exploited 5 progressive feature
sets, testing them with two word2vec architectures
(Skip-gram and CBOW), each of which is trained
with two different methods : Hierarchical Softmax
(HS) and Negative Sampling (NS).

Regarding features, the antecedents are shown
to be little informative. We see two main reasons
for this. First, we explained in Section 3 that we
implemented coreference resolution in a subopti-
mal way due to time restrictions. We will show
in the error analysis that the largest part of the
mistakes are due to suboptimal coreference han-
dling. Second, in the setup provided for this shared
task, the words surrounding the placeholder pro-
vide gender and number information already. This
fact will downplay the added value of coreference
resolution. In an ideal setting the context words
would have been normalised. The French words,
as expected, contributed greatly for the classifica-
tion task. They capture many of the linguistic reg-
ularities described in Section 2 and on top of that,
they often provide gender and number information
in the given task setup.

Looking at the difference between the two
training methods for both word2vec architec-
tures, the word vectors trained by negative sam-
pling surprisingly fell behind the ones with hi-
erarchical softmax. With the best feature set
(E+C+C M+F+F M), the HS models outper-
formed the NS ones by nearly 20% relatively.
The reason why NS was effective in previous re-
search is unknown (Goldberg and Levy, 2014), yet
it is possible that the dataset in our experiment is
preferable for HS in terms of size.

Lastly, we want to discuss the difference in
ability of Skip-gram and CBOW models to cap-
ture semantic versus morpho-syntactic regulari-
ties. From Table 1, we can infer that the CBOW
model is able to capture morpho-syntactic regu-
larities, which Skip-gram cannot, which is in line
with previous work (Mikolov et al., 2013a). For
the Skip-gram models (for the better word vec-
tors trained with HS), the addition of the Morfette
tags always led to improvement, especially with
the tags of the surrounding French words. The sce-
nario is reversed for the CBOW models, where
adding the morphological tags decreased the per-
formance of the system (HS). On the other hand,
no matter how well CBOW captures the morpho-
syntactic regularities, it falls short in general as
Skip-gram outperforms it in all settings (HS). In
this task that requires both semantic and morpho-
syntactic information, we are best off with a supe-
rior semantic model (Skip-gram) in combination
with an external tool for morphological analysis.

5.2 Final results on test set

For the final submission on the test set provided
by the shared task organisers, we employed the fi-
nal setting consisting of the best feature set, with
the word vectors trained with Skip-gram architec-
ture and hierarchical softmax optimisation, which
delivered the highest F-measure for the develop-
ment set. Furthermore, we doubled the amount of
training data, by adding the News Commentary
corpus into the training data.

We report results for both fine-grained evalua-
tion (9 classes) and the coarse-grained evaluation
(7 classes) as provided by the official scorer. As
can be seen in the comparative evaluations pro-
vided by the overview paper (Hardmeier et al.,
2015), our system is in the top-three in the fine-
grained evaluation. A closer look at the perfor-
mance per class across systems shows that our sys-
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tem has particular problems keeping cela and ça
apart, with an F-measure as low as 7.1% for cela.
We will argue in the error analysis, that we found
this distinction to be quite arbitrary in the given
data. In the coarse-grained evaluation provided, in
which cela has been merged with ça and on has
been merged with OTHER, we outperform all com-
peting systems.

TABLE 2 – Results on test set with additional
training data, in macro-average F-measure for
both the fine-grained evaluation (9 classes) and
the coarse-grained evaluation (7 classes) (%).

Training data Fine-g. eval. Coarse-g. eval.
TED 56.1 65.8

TED + NC 56.5 65.4

The performance difference between the devel-
opment set and the test set are large. Although we
did not find a clear reason for why this is the case,
we point to the overview paper that shows that the
baseline also performs very differently on the two
sets. They attribute this effect to the test set’s better
coverage of infrequent pronouns.

Adding more training data does not lead to clear
improvements. One reason for that seems to be
that the class distribution of the out-of-domain
data is rather different from the in-domain data.

5.3 Error analysis

We inspected the output of our best system on
the development data in order to find the major
sources of error. We randomly selected about 2/3rd
of the data. We came to the following conclusions :
The model manages to capture the linguistic regu-
larities described in Section 2 rather well. It does
less well on capturing the antecedent and using
this type of information for predicting the French
pronoun. Approximately 50% of the errors made
by our system seemed due to an improper handling
of coreference. We explained that our implemen-
tation of features for coreference was suboptimal,
but improving this component to handle corefer-
ence perfectly is very hard as shown in previous
work (Hardmeier et al., 2013). The coreference
needs to be transferred from the English to the
French sentences and alignment errors are added
to mistakes already present in the original English
coreference chains.
On the bright side of things, we saw that approx-
imately 10% of the errors were in fact perfectly

acceptable. For example, the difference between
ça and cela is merely due to differences is reg-
ister, and we saw individual speakers switching
back and forth between the two in one conversa-
tion. The coarse-grained evaluation proposed con-
flates ça and cela.

6 Conclusions

In this paper, we described a system that ad-
dresses the task of cross-lingual pronoun predic-
tion from English to French. We show that it is a
hard task that requires many different types of in-
formation, such as morpho-syntactic information
as well as semantics of context words and identifi-
cation of antecedents of the French pronoun.

We proposed a model that captures linguistic
generalisation using word embeddings that are fed
into a MLP in addition to morphological analy-
sis and coreference resolution. Although word em-
beddings (CBOW) are known to capture morpho-
syntactic operations quite well, we show that us-
ing a standalone morphological analyser in com-
bination with the semantically stronger version of
the continuous word space models (Skip-gram)
produces the best results (56.5% on the test set).
Coreference resolution showed the least beneficial
in our experiments. This seems due to the subopti-
mal implementation of this type of information in
our model and the gender and number information
contained in the French context words.

The error analysis showed that half of the errors
could be solved with a proper implementation of
coreference resolution, which is however not triv-
ial to do. 10% percent of the errors were in fact
acceptable variations. The coarse-grained evalua-
tion proposed conflates some of these seemingly
equivalent classes and results in a 65.4%, the best
score reported by participating teams. Also, per-
formance numbers should be higher, when based
on human judgements.
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Maximilian Köper, Christian Scheible, and
Sabine Schulte im Walde. 2015. Multilingual
reliability and “semantic” structure of continuous
word spaces. IWCS 2015, page 40.

Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-
Luc Gauvain, and François Yvon. 2011. Structured
output layer neural network language model. In
Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pages
5524–5527. IEEE.

Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. 2013. Deterministic coreference resolu-
tion based on entity-centric, precision-ranked rules.
Computational Linguistics, 39(4) :885–916.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
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