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Preface

The Workshop on Cognitive Aspects of Computational Language Learning (CogACLL)
took place on September 18, 2015 in Lisbon, Portugal, in conjunction with the EMNLP 2015.
The workshop was endorsed by ACL Special Interest Group on Natural Language Learning
(SIGNLL). This is the sixth edition of related workshops first held with ACL 2007, EACL 2009,
2012 and 2014 and as a standalone event in 2013.

The workshop is targeted at anyone interested in the relevance of computational techniques
for understanding first, second and bilingual language acquisition and change or loss in normal
and pathological conditions.

The human ability to acquire and process language has long attracted interest and generated
much debate due to the apparent ease with which such a complex and dynamic system is learnt
and used on the face of ambiguity, noise and uncertainty. This subject raises many questions
ranging from the nature vs. nurture debate of how much needs to be innate and how much
needs to be learned for acquisition to be successful, to the mechanisms involved in this process
(general vs specific) and their representations in the human brain. There are also developmental
issues related to the different stages consistently found during acquisition (e.g. one word vs. two
words) and possible organizations of this knowledge. These have been discussed in the context
of first and second language acquisition and bilingualism, with cross linguistic studies shedding
light on the influence of the language and the environment.

The past decades have seen a massive expansion in the application of statistical and ma-
chine learning methods to natural language processing (NLP). This work has yielded impressive
results in numerous speech and language processing tasks, including e.g. speech recognition,
morphological analysis, parsing, lexical acquisition, semantic interpretation, and dialogue man-
agement. The good results have generally been viewed as engineering achievements. Recently
researchers have begun to investigate the relevance of computational learning methods for re-
search on human language acquisition and change. The use of computational modeling is a
relatively recent trend boosted by advances in machine learning techniques, and the availability
of resources like corpora of child and child-directed sentences, and data from psycholinguistic
tasks by normal and pathological groups. Many of the existing computational models attempt to
study language tasks under cognitively plausible criteria (such as memory and processing limita-
tions that humans face), and to explain the developmental stages observed in the acquisition and
evolution of the language abilities. In doing so, computational modeling provides insight into
the plausible mechanisms involved in human language processes, and inspires the development
of better language models and techniques. These investigations are very important since if com-
putational techniques can be used to improve our understanding of human language acquisition
and change, these will not only benefit cognitive sciences in general but will reflect back to NLP
and place us in a better position to develop useful language models.

We invited submissions on relevant topics, including:

• Computational learning theory and analysis of language learning and organization

• Computational models of first, second and bilingual language acquisition
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• Computational models of language changes in clinical conditions

• Computational models and analysis of factors that influence language acquisition and use
in different age groups and cultures

• Computational models of various aspects of language and their interaction effect in acqui-
sition, processing and change

• Computational models of the evolution of language

• Data resources and tools for investigating computational models of human language pro-
cesses

• Empirical and theoretical comparisons of the learning environment and its impact on lan-
guage processes

• Cognitively oriented Bayesian models of language processes

• Computational methods for acquiring various linguistic information (related to e.g.
speech, morphology, lexicon, syntax, semantics, and discourse) and their relevance to
research on human language acquisition

• Investigations and comparisons of supervised, unsupervised and weakly-supervised meth-
ods for learning (e.g. machine learning, statistical, symbolic, biologically-inspired, active
learning, various hybrid models) from a cognitive perspective.
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Using reading behavior to predict grammatical functions

Maria Barrett and Anders Søgaard
University of Copenhagen

Njalsgade 140
DK-2300 Copenhagen S

{barrett,soegaard}@hum.ku.dk

Abstract

This paper investigates to what extent
grammatical functions of a word can be
predicted from gaze features obtained us-
ing eye-tracking. A recent study showed
that reading behavior can be used to pre-
dict coarse-grained part of speech, but we
go beyond this, and show that gaze fea-
tures can also be used to make more fine-
grained distinctions between grammati-
cal functions, e.g., subjects and objects.
In addition, we show that gaze features
can be used to improve a discriminative
transition-based dependency parser.

1 Introduction

Readers fixate more and longer on open syntac-
tic categories (verbs, nouns, adjectives) than on
closed class items like prepositions and conjunc-
tions (Rayner and Duffy, 1988; Nilsson and Nivre,
2009). Recently, Barrett and Søgaard (2015) pre-
sented evidence that gaze features can be used to
discriminate between most pairs of parts of speech
(POS). Their study uses all the coarse-grained
POS labels proposed by Petrov et al. (2011). This
paper investigates to what extent gaze data can
also be used to predict grammatical functions such
as subjects and objects. We first show that a sim-
ple logistic regression classifier trained on a very
small seed of data using gaze features discrimi-
nates between some pairs of grammatical func-
tions. We show that the same kind of classifier
distinguishes well between the four main gram-
matical functions of nouns, POBJ, DOBJ, NN and
NSUBJ. In §3, we also show how gaze features
can be used to improve dependency parsing. Many
gaze features correlate with word length and word

Texans get resonable car rental insurance
NOUN VERB ADJ NOUN NOUN NOUN
279.2 237.2 300.4 144.0 341.9 447.4

root

nsubj

dobj

amod

nn nn

Figure 1: A dependency structure with average fix-
ation duration per word

frequency (Rayner, 1998) and these could be as
good as gaze features, while being easier to obtain.
We use frequencies from the unlabelled portions
of the English Web Treebank and word length as
baseline in all types of experiments and find that
gaze features to be better predictors for the noun
experiment as well as for improving parsers.

This work is of psycholinguistic interest, but we
show that gaze features may have practical rele-
vance, by demonstrating that they can be used to
improve a dependency parser. Eye-tracking data
becomes more readily available with the emer-
gence of eye trackers in mainstream consumer
products (San Agustin et al., 2010). With the de-
velopment of robust eye-tracking in laptops, it is
easy to imagine digital text providers storing gaze
data, which could then be used as partial annota-
tion of their publications.

Contributions We demonstrate that we can dis-
criminate between some grammatical functions
using gaze features and which features are fit for
the task. We show a practical use for data reflect-
ing human cognitive processing. Finally, we use
gaze features to improve a transition-based de-
pendency parser, comparing also to dependency
parsers augmented with word embeddings.
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2 Eye tracking data

The data comes from (Barrett and Søgaard, 2015)
and is publicly available1. In this experiment 10
native English speakers read 250 syntactically
annotated sentences in English (min. 3 tokens,
max. 120 characters). The sentences were ran-
domly sampled from one of five different, man-
ually annotated corpora from different domains:
Wall Street Journal articles (WSJ), Wall Street
Journal headlines (HDL), emails (MAI), weblogs
(WBL), and Twitter (TWI)2. See Figure 1 for an
example.

Features It is not yet established which eye
movement reading features are fit for the task
of distinguishing grammatical functions of the
words. To explore this, we extracted a broad se-
lection of word- and sentence-based features. The
features are inspired by Salojärvi et al. (2003) who
used a similar exploratory approach. For a full list
of features, see Appendix.

2.1 Learning experiments
In our binary experiments, we use L2-regularized
logistic regression classifiers with the default pa-
rameter setting in SciKit Learn3 and a publicly
available transition-based dependency parser4

trained using structured perceptron (Collins, 2002;
Zhang and Nivre, 2011).
Binary classification We trained logistic regres-
sion models to discriminate between pairs of the
11 most frequent dependency relations where the
sample size is above 100: (AMOD, NN, AUX, PREP,
NSUBJ, ADVMOD, DEP, DET, DOBJ, POBJ, ROOT)
only using gaze features. E.g., we selected all
words annotated as PREP or NSUBJ and trained a
logistic regression model to discriminate between
the two in a five-fold cross validation setup. Our
baseline uses the following features: word length,
position in sentence and word frequency.

Some dependency relations are almost uniquely
associated with one POS, e.g. determiners where

1https://bitbucket.org/lowlands/
release/src

2Wall Street Journal sentences are from OntoNotes 4.0 re-
lease of the English Penn Treebank. catalog.ldc.
upenn.edu/LDC2011T03. Mail and weblog sentences
come from the English Web Treebank. catalog.ldc.
upenn.edu/LDC2012T13. Twitter sentences are from the
work of (Foster et al., 2011)

3http://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html

4https://github.com/andersjo/hanstholm

RANK FEATURE NAME % OF VOTES

0 Next word fixation probability 13.46
1 Fixation probability 11.14
2 n Fixations 9.66
3 Probability to get 2nd fixation 8.90
4 Previous word fixation probability 7.17
5 n Regressions from 5.65
6 First fixation duration on every word 5.45
7 Mean fixation duration per word 5.17
8 Previous fixation duration 4.93
9 Re-read probability 4.65
10 Probability to get 1st fixation 4.53
11 n Long regressions from word 3.77
12 Share of fixated words per sent 3.04
13 n Re-fixations 1.88
14 n Regressions to word 1.76

Table 1: Most predictive features for binary classi-
fication of 11 most frequent dependency relations
using five-fold cross validation.

84.8% of words with the dependency relation DET

are labeled determiners. This means that in some
cases, the grammatical function of a word follows
from its part of speech. In another binary exper-
iment, we therefore focus on nouns to show that
eye movements do make more fine-grained dis-
tinctions between different grammatical functions.
Nouns are mostly four-way ambiguous: 74.6% of
the 946 nouns in the dataset have one of four de-
pendency relations to its head. Nouns with POBJ

relations is 18.9% of all nouns, NSUBJ is 17.0%,
NN is 27.0% and DOBJ is 14.9%. The remaining
25.4% of the nouns are discarded from the noun
experiment since they have 28 different relations
to their head.

Parsing In all experiments we trained our pars-
ing models on four domains and evaluated on the
fifth to avoid over-fitting to the characteristics of a
specific domain. All parameters were tuned on the
WSJ dataset. We did 30 passes over the data and
used the feature model in Zhang and Nivre (2011)
– concatenated with gaze vectors for the first to-
ken on the buffer, the first token in the stack, and
the left sibling of the first token in the stack. We
extend the feature representation of each parser
configuration by 3× 26 features. Our gaze vectors
were normalized using the technique in Turian et
al. (2010) (σ ·E/SD(E)) using a scaling factor of
σ = 0.001. Gaze features such as fixation duration
are known to correlate with word frequency and
word length. To investigate whether word length
and frequency are stronger features than gaze, we
perform an experiment, +FREQ+LEN, where our
baseline and system also use frequencies and word
length as features.

2



d
ob

j
n
n

n
su

b
j

p
ob

j
d
ep

ro
ot

au
x

ad
vm

od
am

od
p
re

p
d
et

dobj

nn

nsubj

pobj

dep

root

aux

advmod

amod

prep

det

41

10 26

-4 29 24

7 20 -1 9

11 24 -12

5 11 9 -3 -4 1

17 -7 1 6 -3 -19

44 -4 1 15 17 6 -23 -1

5 1 10 19 -14 -18 -4 12 -5

-21 -36 6 -42 -12 7 -15 -59 26

0

10

20

30

40

50

60

70

80

90

100

Figure 2: Error reduction over the baseline for bi-
nary classifications of 11 most frequent depen-
dency relations. 5-fold cross validation. Depen-
dency relations associated with nouns in triangle.

3 Results

Predictive features To investigate which gaze
features were more predictive of grammatical
function, we used stability selection (Meinshausen
and Bühlmann, 2010) with logistic regression
classification on binary dependency relation clas-
sifications on the most frequent dependency rela-
tions.

For each pair of dependencies, we perform a
five-fold cross validation and record the informa-
tive features from each run. Table 1 shows the
15 most used features in ranked order with their
proportion of all votes. The features predictive of
grammatical functions are similar to the features
that were found to be predictive of POS (Barrett
and Søgaard, 2015), however, the probability that
a word gets first and second fixation were not im-
portant features for POS classification, whereas
they are contributing to dependency classification.
This could suggest that words with certain gram-
matical functions are consistently more likely or
less likely to get first and second fixation, but
could also be due to a frequent syntactic order in
the sample.

Binary discrimination Error reduction over the
baseline can be seen in Figure 2. The mean accu-
racy using logistic regression on all binary classifi-
cation problems between grammatical functions is
0.722. The frequency-position-word length base-
line is 0.706. In other words, using gaze features
leads to a 5.6% error reduction over the base-
line. The worst performance (where our baseline
outperforms using gaze features) is seen where
one relation is associated with closed class words

RANK FEATURE NAME % OF VOTES

0 Next word fixation probability 20.66
1 Probability to get 2nd fixation 19.83
2 nRegressions from word 14.05
3 Previous word fixation probability 8.68
4 Probability to get 1st fixation 7.44

Table 2: Most predictive features for the binary
classification of four most frequent dependency
relations for nouns using five-fold cross validation.

(DET, PREP, AUX), and where discrimination is
easier.

Noun experiment Error reductions for pairwise
classification of nouns are between -4% and 41%.
See Figure 2. The average accuracy for binary
noun experiments is 0.721. Baseline accuracy is
0.647. For POBJ and DOBJ the baseline was better
than using gaze, but for the other pairs, gaze was
better. When doing stability selection for nouns
with only the four most frequent grammatical
functions, the most important features can be seen
from Figure 2. The most informative feature is the
fixation probability of the next word. Kernel den-
sity of this feature can be seen in Figure 3a, and
it shows two types of behavior: POBJ and DOBJ,
where the next word is less frequently fixated, and
NN and NSUBJ, where the next word is more fre-
quently fixated. Whether the next word is fixated
or not, can be influenced by the word length, as
well as the fixation probability of the current word:
If the word is very short, the next word can be pro-
cessed from a fixation of the current word, and
if the current word is not fixated, the eyes need
to land somewhere in order for the visual span to
cover a satisfactory part of the text. Word length
and fixation probabilities for the nouns are re-
ported in Figure 3c and Figure 3b to show that the
dependency labels have similar densities.

Dependency parsing We also evaluate our gaze
features directly in a supervised dependency
parser. Our baseline performance is relatively low
because of the small training set, but comparable
to performance often seen with low-resource lan-
guages. Evaluation metrics are labeled attachment
scores (LAS) and unlabeled attachment scores
(UAS), i.e. the number of words that get assigned
the correct syntactic head w/o the correct depen-
dency label.

Gaze features lead to consistent improvements
across all five domains. The average error reduc-
tion in LAS is 5.0%, while the average error reduc-

3
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Figure 3: Kernel density plots across four grammatical functions of nouns.

LAS UAS
+FREQ+LEN +FREQ+LEN

BL +SENNA +EIGENW +GAZE BL +GAZE BL +SENNA +EIGENW +GAZE BL +GAZE

HDL 0.539 0.539 0.526 0.541 0.535 0.542 0.583 0.600 0.564 0.589 0.582 0.587
MAI 0.667 0.651 0.668 *0.684 0.678 *0.711 0.715 0.699 0.715 *0.747 0.732 *0.759
TWI 0.532 0.569 0.563 *0.561 0.554 *0.569 0.576 0.626 0.615 *0.602 0.607 *0.621
WBL 0.604 0.629 0.592 *0.638 0.631 *0.655 0.668 0.670 0.666 *0.711 0.709 *0.719
WSJ 0.635 0.635 0.622 *0.650 0.629 0.634 0.672 0.681 0.674 *0.695 0.671 0.677

Average 0.595 0.605 0.594 *0.615 0.605 *0.622 0.643 0.655 0.647 *0.669 0.660 *0.672

Table 3: Dependency parsing results on all five test sets using 200 sentences (four domains) for training
and 50 sentences (one domain) for evaluation. Best results are bold-faced, and significant (p < 0.01)
improvements are asterisked.

tion in UAS is 7.3%. For the +FREQ+LEN exper-
iment, +GAZE also lead to improvements for all
domains, with error reductions of 3.3% for LAS
and 4.7% for UAS.

For comparison we also ran our parser with
SENNA embeddings5 and EIGENWORDS embed-
dings.6 The gaze vectors proved overall more in-
formative.

4 Related work

In addition to Barrett and Søgaard (2015), our
work relates to Matthies and Søgaard (2013), who
study the robustness of a fixation prediction model
across readers, not domains, but our work also re-
lates in spirit to research on using weak supervi-
sion in NLP, e.g., work on using HTML markup to
improve dependency parsers (Spitkovsky, 2013) or
using click-through data to improve POS taggers
(Ganchev et al., 2012).
There have been few studies correlating read-
ing behavior and general dependency syntax in
the literature. Demberg and Keller (2008), hav-
ing parsed the Dundee corpus using MINIPAR,
show that dependency integration cost, roughly
the distance between a word and its head, is pre-

5http://ronan.collobert.com/senna/
6http://www.cis.upenn.edu/˜ungar/

eigenwords/

dictive of reading times for nouns. Our finding
could be a side-effect of this, since NSUBJ, NN

and DOBJ/POBJ typically have very different de-
pendency integration costs, while DOBJ and POBJ

have about the same. Their study thus seems to
support our finding that gaze features can be used
to discriminate between the grammatical func-
tions of nouns. Most other work of this kind fo-
cus on specific phenomena, e.g., Traxler et al.
(2002), who show that subjects find it harder to
process object relative clauses than subject relative
clauses. This paper is related to such work, but our
interest is a broader model of syntactic influences
on reading patterns.

5 Conclusions

We have shown that gaze features can be used
to discriminate between a subset of grammatical
functions, even across domains, using only a small
dataset and explored which features are more use-
ful. Furthermore, we have shown that gaze fea-
tures can be used to improve a state-of-the-art de-
pendency parsing model, even when trained on
small seeds of data, which suggests that parsers
can benefit from data from human processing.
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Appendix: Gaze features

First fixation duration on every word, fixation
probability, mean fixation duration per sentence,
mean fixation duration per word, next fixation du-
ration, next word fixation probability, probability
to get 1st fixation, probability to get 2nd fixation,
previous fixation duration, previous word fixation
probability, re-read probability, reading time per
sentence normalized by word count, share of fix-
ated words per sentence, time percentage spent on
this word out of total sentence reading time, total
fixation duration per word, total regression from
word duration, total duration of regressions to
word, n fixations on word, n fixations per sent nor-
malized by token count, n long regressions from
word, n long regressions per sentence normalized
by token count, n long regressions to word, n re-
fixations on word, n re-fixations per sentence nor-
malized by token count, n regressions from word,
n regressions per sentence normalized by token
count, n regressions to word.
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Abstract
We show that metrics derived from record-
ing gaze while reading, are better prox-
ies for machine translation quality than
automated metrics. With reliable eye-
tracking technologies becoming available
for home computers and mobile devices,
such metrics are readily available even in
the absence of representative held-out hu-
man translations. In other words, reading-
derived MT metrics offer a way of get-
ting cheap, online feedback for MT system
adaptation.

1 Introduction

What’s a good translation? One way of thinking
about this question is in terms of what the trans-
lations can be used for. In the words of Doyon et
al. (1999), “a poor translation may suffice to deter-
mine the general topic of a text, but may not permit
accurate identification of participants or the spe-
cific event.” Text-based tasks can thus be ordered
according to their tolerance of translation errors,
as determined by actual task outcomes, and task
outcome can in turn be used to measure the qual-
ity of translation (Doyon et al., 1999).

Machine translation (MT) evaluation metrics
must be both adequate and practical. Human
task performance, say participants’ ability to ex-
tract information from translations, is perhaps the
most adequate measure of translation quality. Par-
ticipants’ direct judgements of translation qual-
ity may be heavily biased by perceived grammati-
cality and subjective factors, whereas task perfor-
mance directly measures the usefulness of a trans-
lation. Of course different tasks rely on different
aspects of texts, but some texts are written with a
single purpose in mind.

In this paper, we focus on logic puzzles. The
obvious task in logic puzzles is whether readers
can solve the puzzles when given a more or less
erroneous translation of the puzzle. We assume
task performance on logic puzzles is an adequate
measure of translation quality for logic puzzles.

Task-performance is not always a practical mea-
sure, however. Human judgments, whether from
direct judgments or from answering text-related
questions, takes time and requires recruiting and
paying individuals. In this paper, we propose vari-
ous metrics derived from natural reading behavior
as proxies of task-performance. Reading has sev-
eral advantages over other human judgments: It is
fast, is relatively unbiased, and, most importantly,
something that most of us do effortlessly all the
time. Hence, with the development of robust eye
tracking methods for home computers and mobile
devices, this can potentially provide us with large-
scale, on-line evaluation of MT output.

This paper shows that reading-derived metrics
are better proxies of task-performance than the
standard automatic metric BLEU. Note also that
on-line evaluation with BLEU is biased by what
held-out human translations you have available,
whereas reading-derived metrics can be used for
tuning systems to new domains and new text types.

In our experiments, we include simplifications
of logic puzzles and machine translations thereof.
Our experiments show, as a side result, that a
promising approach to optimizing machine trans-
lation for task performance is using text simpli-
fication for pre-processing the source texts. The
intuition is that translation noise is more likely to
make processing harder in more complex texts.
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1.1 Contributions
• We present an experimental eye-tracking

study of 20 participants reading simplifica-
tions and human/machine translations of 80
logic puzzles.1

• This is, to the best of our knowledge, the
first study to correlate reading-derived met-
rics, human judgments and BLEU with task
performance for evaluating MT. We show
that human judgments do not correlate with
task performance. We also show that reading-
derived metrics correlate significantly with
task performance (−.36 < r < −.35), while
BLEU does not.

• Finally, our results suggest that practical MT
can benefit much from incorporating sen-
tence compression or text simplification as a
pre-processing step.

2 Summary of the experiment

In our experiments, we presented participants with
80 different logic puzzles and asked them to solve
and judge the puzzles while their eye movements
were recorded. Each puzzle was edited into five
different versions: the original version in English
(L2), a human simplification thereof (S(·)), a hu-
man translation into Danish (L1) and a machine
translation of the original (M(·)), as well as a ma-
chine translation of the simplification (M(S(·))).
Consequently, we used 400 different stimuli in
our experiments. The participants were 20 native
speakers of Danish with proficiency in English.

We record fixation count, reading speed and
regression proportion (amount of fixations land-
ing on previously read text) from the gaze data.
Increased attention in the form of reading time
and re-reading of previously read text are well-
established indicators of increased cognitive pro-
cessing load, and they correlate with typical read-
ability indicators like word frequency, length and
some complex syntactic structures (Rayner et al.,
2013; Rayner, 1998; Holmqvist et al., 2011). We
study how these measures correlate with MT qual-
ity, as reflected by human judgments and partici-
pants’ task performance.

We thereby assume that the chance of quickly
solving a task decreases when more resources are

1The data will be made available from https://
github.com/coastalcph

Math
A DVD player with a list price of $100 is marked down 30%.
If John gets an employee discount of 20% off the sale price,
how much does John pay for the DVD player?
1: 86.00
2: 77.60
3: 56.00
4: 50.00

Conclude
Erin is twelve years old. For three years, she has been asking
her parents for a dog. Her parents have told her that they
believe a dog would not be happy in an apartment, but they
have given her permission to have a bird. Erin has not yet
decided what kind of bird she would like to have.
Choose the statement that logically follows
1: Erin’s parents like birds better than they like dogs.
2: Erin does not like birds.
3: Erin and her parents live in an apartment.
4: Erin and her parents would like to move.

Evaluate
Blueberries cost more than strawberries.
Blueberries cost less than raspberries.
Raspberries cost more than both strawberries and blueberries.
If the first two statements are true, the third statement is:
1: TRUE
2: FALSE
3: Impossible to determine

Infer
Of all the chores Michael had around the house, it was his
least favorite. Folding the laundry was fine, doing the dishes,
that was all right. But he could not stand hauling the large
bags over to the giant silver canisters. He hated the smell and
the possibility of rats. It was disgusting.
This paragraph best supports the statement that:
1: Michael hates folding the laundry.
2: Michael hates doing the dishes.
3: Michael hates taking out the garbage.
4: Michael hates cleaning his room.

Figure 1: Logic puzzles of four categories. The
stimuli contain 20 of each puzzle category.

required for understanding the task. By keeping
the task constant, we can assess the relative im-
pact of the linguistic quality of the task formula-
tion. We hypothesise that our five text versions
(L1, L2, M(·), S(·), M(S(·))), can be ranked in
terms of processing ease, with greater processing
ease allowing for more efficient task solving.

The experiments are designed to test the fol-
lowing hypothesized partial ordering of the text
versions (summarized in Table 1): text simplifica-
tion (S(·)) eases reading processing relative to sec-
ond language reading processing (L2) while pro-
fessional human translations into L1 eases pro-
cessing more (H1). In addition, machine trans-
lated text (M(·)) is expected to ease the processing
load, but less so than machine translation of sim-
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H1: L1 ≺ S(·) ≺ L2
H2: L1 ≺ M(S(·)) ≺ M(·) ≺ L2

Table 1: Expected relative difficulty of process-
ing. L1 and L2 are human edited texts in the par-
ticipants’ native and non-native language, respec-
tively, S(·) are manually simplified texts, M(·) are
machine translated texts and M(S(·)) are machine
translations of manually simplified texts.

plified text (M(S(·))), although both of these ma-
chine translated versions are still expected to be
more demanding than the professionally translated
original text (L1). Table 1 provides an overview of
the hypotheses and the expected relative difficulty
of processing each text version.

2.1 Summary of the findings
Our experimental findings are summarized as fol-
lows: The data supports the base assumption that
L1 is easier than L2. We only find partial support
for H1; While S(·) tends to be easier to compre-
hend than L2, also leading to improved task per-
formance, S(·) is ranked as easier to process than
L1 as often as the opposite, hypothesised rank-
ing. This indicates that our proficient L2 read-
ers may be benefitting as much from simplifica-
tion as from translation in reasoning tasks. We
also only find partial support for H2: The rela-
tive ordering of the human translations, L1, and
the two machine translated versions, M(S(·)) and
M(·), is supported and we find that the simplifi-
cation improves MT a lot with respect to read-
ing processing. However, participants tended to
perform better with the original L2 logic puzzles
compared to the machine translated versions. In
other words, MT hurts while both manual sim-
plification and translation help even proficient L2
readers. In sum, simplification seems necessary if
L2-to-L1 MT is to ease comprehension, and not
make understanding harder for readers with a cer-
tain L2 command level.

Importantly, we proceed to study the correla-
tion of our eye-tracking measures, human judg-
ments and BLEU (Papineni et al., 2002) with task
performance. There has been considerable work
on how various automatic metrics correlate with
human judgments, as well as on inter-annotator
consistency among humans judging the quality of
translations (Callison-Burch et al., 2008). Vari-
ous metrics have been proposed over the years,

but BLEU (Papineni et al., 2002) remains the de
facto state-of-the-art evaluation metric. Our find-
ings, related to evaluation, are, as already men-
tioned, that (a) human judgments surprisingly do
not correlate with task performance, and that (b)
the reading-derived metrics TIME and FIXATIONS

correlate strongly with task performance, while
BLEU does not. This, in our view, questions the
validity of human judgments and the BLEU metric
and shows that reading-derived MT metrics may
provide a better feedback in system development
and adaptation.

3 Detailed description of the experiment

3.1 Stimuli
In this section, we describe the texts we have used
for stimuli, as well as the experimental design and
our participants.

We selected a set of 80 logic puzzles written in
English, all with multiple-choice answers.2 The
most important selection criterium was that par-
ticipants have to reason about the text and cannot
simply recognize a few entities directly to guess
the answer. The puzzles were of four different cat-
egories, all designed to train logic reasoning and
math skills in an educational context. We chose
20 of each of the four puzzle categories to ensure
a wide variety of reasoning requirements. Figure 1
shows an example question from each category.

The English (L2) questions and multiple choice
answer options were translated into Danish (L1)
by professional translators. The question text was
manually simplified by the lead author (S(·)). Both
of the English versions were machine-translated
into Danish (M(·), M(S(·))).3 This results in the
five versions of the question texts, which were
used for analysis. The multiple-choice answer op-
tions were not simplified or machine translated.
Thus the participants saw either the original En-
glish answers or the human-translated Danish an-
swers, matching the language of the question text.
The average number of words and long words in
each of the five versions are reported in Table 2.

Simplification is not a well-defined task and
is often biased intentionally to fit a target au-
dience or task. To allow for comparison with
parallel simplification corpora, we classified the
applied simplification operations into the follow-
ing set of seven abstract simplification operations

2From LearningExpress (2005).
3Google Translate, accessed on 29/09/2014 23.33 CET.
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# Long words # Words
Variant mean std mean std

L2 9.56 6.67 38.33 19.29
S(·) 8.78 5.90 35.78 17.43
L1 10.22 6.97 38.87 21.28
M(S(·)) 9.70 6.75 35.19 19.07
M(·) 10.35 6.74 36.53 19.04

Table 2: Mean and standard deviation of number
of words and number of words with more than
seven letters per question for all five versions.

Simplification %

Lexical substitution 27.4
Paraphrase 24.2
Deletion 23.1
Information reordering 11.3
Anaphora substitution 7.5
Discourse marker insertion 4.3
Sentence splitting 2.2

Table 3: Simplification operations (SOps). The
total number of applied SOps was 186, the average
number of SOps applied per question was 2.0 (std
1.3).

and present their relative proportion in Table 3:
Sentence splitting. information deletion and in-
formation reordering, discourse marker insertion
(e.g., and, but), anaphora substitution (e.g., Zoe’s
garden vs. the garden), other lexical substitu-
tions (e.g., dogwoods vs. dogwood trees) and para-
phrasing (e.g., all dogwoods vs. all kinds of dog-
wood trees). On average 2.0 simplification opera-
tions was performed per question, while a total of
28.7% of the questions were left unchanged dur-
ing simplification. All simplified questions still
required the reader to understand and reason about
the text. The simplifications were performed with
the multiple answer texts in mind; leaving any in-
formation referenced in the answers intact in the
question, even when deleting it would have sim-
plified the question text.

3.2 Experimental design
The experiment followed a Latin-square design
where each participant completed 40 trials, judg-
ing and solving 40 different puzzles, eight of each
of the five versions.

A trial consisted of three tasks (see Figure 2):

a comprehension task, a solving task and a com-
parison task. Each trial was preceded by a 1.5
second display of a fixation cross. The remain-
der of the trial was self-paced. During the en-
tire trial - i.e., for the duration of the three tasks
- the question text was presented on the top part of
the screen. In the comprehension task, the partici-
pant was asked to rate the comprehensibility of the
question text on a 7-point Likert scale that was pre-
sented at the bottom part of the screen. This score
is called COMPREHENSION, henceforth. This is
our rough equivalent of human judgments of trans-
lation quality. For the solving task, the multiple-
choice answer options was presented in the middle
part of the screen below the question text and the
participant indicated an answer or “don’t know”
option in the bottom part of the screen. The mea-
sure EFFICIENCY, which was also introduced in
Doherty and O’Brien (2014), is the number of cor-
rect answers given for a version, Cv over the time
spent reading and solving the puzzles of that ver-
sion, Sv: E = Cv

Sv
. This score is our benchmarking

metric below.
In the last task, COMPARISON, a different ver-

sion of the same question text was presented be-
low the first question text, always in the same lan-
guage. Participants were asked to assess which
version provided a better basis for solving the task
using a 7-point Likert scale with a neutral mid-
point. The three leftmost options favored the text
at the top of the screen, while the three rightmost
choices favored the text at the lower half of the
screen.

Each participant completed three demo trials
with the experimenter present. Participants were
kept naı̈ve with regards to the machine translation
aspect of the study. They were instructed to solve
the puzzles as quickly and accurately as possible
and to judge COMPREHENSION and COMPARI-
SON quickly. Each session included a 5-10 minute
break with refreshments halfway through. At the
end of the experiment a brief questionnaire was
completed verbally. All participants completed the
entire session in 70–90 minutes.4

3.2.1 Apparatus
The stimuli were presented in black letters in the
typeface Verdana with a letter size of 20 pixels (ca.
.4◦ visual angle) on a light gray background with
100 pixels margins. The eye tracker was a Tobii

4Participants received a voucher for 10 cups of tea/coffee
upon completion.
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One trial

Task 1: read for comprehension Task 2: solve puzzle Task 3: compare to other version

Figure 2: Illustration of one trial. Each trial consists of three individual tasks. The top third of the screen
displays the target text and is fixed for the duration of the entire trial.

X120, recording both eyes with 120hz sampling
rate. We used Tobii Studio standard settings for
fixation detection. The stimuli was presented on a
19” display with a resolution of 1920 x 1080 pix-
els and a viewing distance of ca 65 cm. Here we
focus on the initial reading task and report total
reading time per word (TIME), number of fixations
per word (FIXATIONS) and proportion of regres-
sions (REGRESSIONS). The calculations of the
eyetracking measures are detailed in Section 4.3.

3.2.2 Participants
We recruited participants until we obtained a to-
tal of 20 recordings of acceptable quality. In this
process we discarded two participants due to sam-
pling loss. Another two participants were dis-
missed due to unsuccessful calibration. All par-
ticipants completed a pre-test questionnaire iden-
tifying themselves as native Danish speakers with
at least a limited working proficiency of English.
None of the participants had been diagnosed with
dyslexia, and all had normal or corrected to nor-
mal vision. The 20 participants (4 males) were be-
tween 20 and 34 years old (mean 25.8) and mini-
mum education level was ongoing bachelor’s stud-
ies.

4 Results

The mean values for all metrics and the derived
rankings of the five versions are presented in
Table 4. Significance is computed using Stu-
dent’s paired t-test, comparing each version to
the version with the largest measured value. Ta-
ble 5 presents correlations with task performance

(EFFICIENCY) for each measure. We describe the
correlations, and their proposed interpretation, in
Section 4.4.

4.1 Subjective measures

We elicited subjective evaluations of text com-
prehension and pairwise comparisons of versions’
usefulness for solving the puzzles. Note that par-
ticipants evaluate MT output significantly lower
than human-edited versions.

We treated the pairwise COMPARISON scores as
votes, counting the preference of one version as
equally many positive and negative votes on the
preferred version and the dis-preferred version, re-
spectively. With this setup, we maintain zero as a
neutral evaluation. COMPARISON was only made
within the same language, so the scores should not
be interpreted across languages. Note, however,
how COMPARISON results show a clear ranking
of versions within each language.

4.2 Task performance measures

The task performance is reported as the EFFI-
CIENCY, i.e., correct answers per minute spent
reading and solving puzzles. We observe that the
absolute performance ranges from 48% to 52%
correct answers. This is well above chance level
(27%), and does not differ significantly between
the five versions, reflecting that the between-
puzzles difference in difficulty level, as expected,
is much larger than the between-versions differ-
ence.

EFFICIENCY, however, reveals a clearer rank-
ing. Participants were less efficient solving logic
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VERSION
µ RANKINGSL1 M(S(·)) M(·) S(·) L2

COMPREHENSION 5.58 **4.51 **4.50 5.61 5.46 S(·) ≺ L1 ≺ L2 ≺ M(S(·)) ≺ M(·)
COMPARISON 1.62 **−.54 **−1.07 .43 **−.43 L1 ≺ M(S(·)) ≺ M(·) | S(·) ≺ L2
EFFICIENCY .94 .90 **0.80 1.0 .87 S(·) ≺ L1 ≺ M(S(·)) ≺ L2 ≺ M(·)
TIME .54 .62 .65 .55 .54 L1 ≺ L2 ≺ S(·) ≺ M(S(·)) ≺ M(·)
REGRESSIONS 15.59 16.49 16.78 13.76 14.40 S(·) ≺ L2 ≺ L1 ≺ M(S(·)) ≺ M(·)
REGRESSIONS 17.77 18.46 19.15 15.55 16.55 S(·) ≺ L2 ≺ L1 ≺ M(S(·)) ≺ M(·)

Table 4: Mean values for the five text versions. COMPREHENSION and COMPARISON are Likert scale
scores respectively ranging from 0 to 7 and from−3 to 3, EFFICIENCY is correct answers relative to read-
ing speed, TIME is seconds per word, FIXATIONS is number of fixations per word and REGRESSIONS is
proportion of re-fixations (**: Student’s paired t-test relative to largest mean value p < 0.001)

puzzles when presented with machine translations
of the original puzzles. The machine transla-
tions of the simplified puzzles actually seemingly
eased task performance, compared to using the
English originals, but differences are not statisti-
cally significant. The simplified English puzzles
led to the best task performance.

4.3 Eye-tracking measures

The reading times in seconds per word (TIME)
are averages over reading times while fixating at
the question text located on the upper part of the
screen during the first sub-task of each trial (judg-
ing comprehension). This measure is comparable
to normalized total reading time in related work.
Participants spent most time on the machine trans-
lations, whether of the original texts or the simpli-
fied versions.

The measure FIXATIONS similarly was
recorded on the question part of the text during
the initial comprehension task, normalized by
text length, and averaged over participants and
versions. Again we observe a tendency towards
more fixations on machine translated text, and
fewest on the human translations into Danish.

Finally, we calculated REGRESSIONS during
initial reading as the proportion of fixations from
the furthest word read to a preceding point in the
text. Regressions may indicate confusion and on
average account for 10-15% of fixations during
reading (Rayner, 1998). Again we see more re-
gressions with machine translated text, and fewest
with simplified English puzzles.

4.4 Correlations between measures

We observe the following correlations between
our measures. All correlations with EFFICIENCY

are shown in Table 5. First of all, we found no

Data used r p ≤ .001

COMPREHENSION
all .25 -
M(S(·)) .36 -
M(·) -.27 -

COMPARISON
all .13 -
M(S(·)) .06 -
M(·) .26 -

TIME
all -.35 X
M(S(·)) -.19 -
M(·) -.54 -

FIXATIONS
all -.36 X
M(S(·)) -.26 -
M(·) -.57 -

REGRESSIONS
all -.17 -
M(S(·)) .01 -
M(·) -.33 -

BLEU M(S(·)) -.13 -
M(·) -.17 -

Table 5: Correlations with EFFICIENCY (Pear-
son’s r). BLEU only available on translated text.
Correlation reported on these subsets for compa-
rability.

correlations between subjective measures and eye-
tracking measures nor between subjective mea-
sures and task performance. The two subjec-
tive measures, however, show a strong correlation
(Spearman’s r = .50 p < .001). EFFICIENCY

shows significant negative correlation with both of
the eye-tracking measures TIME (Pearson’s r =
−.35 p < .001 and FIXATIONS (Pearson’s r =
−.36 p < .001), but not REGRESSIONS . Within
the group of eye-tracking measures TIME and
FIXATION exhibit a high correlation (r = 0.94
p < .001). REGRESSIONS is significantly neg-
atively correlated with both of these (Pearson’s
r = −.38 p < .001 and Pearson’s r = −.43
p < .001, respectively).

We obtain BLEU scores (Papineni et al., 2002)
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by using the human-translated Danish text (L1) as
reference for both of the MT outputs, M(·) and
M(S(·)). The overall BLEU score for M(·) version
is .691, which is generally considered very good,
and .670 for M(S(·)). The difference is not sur-
prising, since M(S(·)) inputs a different (simpler)
text to the MT system. On the other hand, given
that our participants tended to be more efficiently
comprehending and solving the logic puzzles us-
ing M(S(·)), this already indicates that BLEU is
not a good metric for talking about the usefulness
of translations of instructional texts such as logic
puzzles.

Our most important finding is that BLEU does
not correlate with EFFICIENCY, while two of our
reading-derived metrics do. In other words, the
normalised reading time and fixation counts are
better measures of task performance, and thereby
of translation quality, than the state-of-the-art met-
ric, BLEU in this context. This is an important
finding since reading-derived metrics are poten-
tially also more useful as they do not depend on
the availability of professional translators.

5 Discussion

Several of our hypotheses were in part falsified.
L2 is solved more efficiently by our participants
than M(·), not the other way around. Also, M(S(·))
is judged as harder to comprehend than S(·) and
consistently ranked so by all metrics. These ob-
servations suggest that MT is not assisting our par-
ticipants despite the fact that L2 ranks lower than
L1 in four out of five comparisons. Our partici-
pants are university students and did not report to
have skipped any questions due to the English text
suggesting generally very good L2 skills.

If we assume that EFFICIENCY – as a mea-
sure of task performance – is a good measure
of translation quality (or usefulness), we see that
the best indicator of translation quality that only
takes the initial reading into account are FIXA-
TIONS and TIME. This indicates that FIXATIONS

and TIME may be better MT benchmarking met-
rics than BLEU.

6 Related work

Eye tracking has been used for MT evaluation in
both post-editing and instruction tasks (Castilho et
al., 2014; Doherty and O’Brien, 2014).

Doherty et al. (2010) also used eye-tracking
measures for evaluating MT output and found

fixation count and gaze time to correlate nega-
tively with binary quality judgments for transla-
tion segments, whereas average fixation duration
and pupil dilation were not found to vary reliably
with the experimental conditions. A notable short-
coming of that study is that the translated segments
in each category were different, making it impos-
sible to rule out that the observed variation in both
text quality and cognitive load was caused in part
by an underlying variation in content complexity.

This shortcoming was alleviated in a recent re-
analysis of previous experiments (Doherty and
O’Brien, 2014; Doherty et al., 2012) which com-
pares the usability of raw machine translation out-
put in different languages and the original, well-
formed English input. In order to test usability,
a plausible task has to be set up. In this study
the authors used an instructional text on how to
complete a sequence of steps using a software ser-
vice, previously unknown to the participants. MT
output was obtained for four different languages
and three to four native speakers worked with each
output. Participants’ subjective assessment of the
usability of the instructions, their performance in
terms of efficiency and the cognitive load they en-
countered as measured from eye movements were
compared across languages. The results of this
study supports the previous finding that fixation
count and total task time depends on whether the
reader worked with the original or MT output, at
least when the quality of the MT output is low.
In addition, goal completion and efficiency (total
task time relative to goal completion) as well as
the number of shifts (between instructions and task
performance area) were shown to co-vary with the
text quality.

Castilho et al. (2014) employed a similar design
to compare the usability of lightly post-edited MT
output to raw MT output and found that also light
post-editing was accompanied by fewer fixations
and lower total fixation time (proportional to total
task time) as well as fewer attentional shifts and
increased efficiency.

In contrast, Stymne et al. (2012) found no sig-
nificant differences in total fixation counts and
overall gaze time (proportional to total task time),
when directly comparing output of different MT
systems with expected quality differences. How-
ever, they showed that both of these two eye-
tracking measures were increased for the parts
of the text containing errors in comparison with

12



error-free passages. In addition, they found gaze
time to vary with specific error types in machine
translated text.

From an application perspective, Specia (2011)
suggested the time-to-edit measure as an objective
and accessible measure of translation quality. In
their study it outperformed subjective quality as-
sessments as annotations for a model for transla-
tion candidate ranking. Their tool was aimed at
optimizing the productivity in post-editing tasks.

Eye tracking can be seen as a similarly objec-
tive metric for fluency estimation (Stymne et al.,
2012). The fact that eye tracking does not rely
on translators makes annotation even more acces-
sible.

Both Doherty and O’Brien (2014) and Castilho
et al. (2014) found subjective comprehensibility,
satisfaction and likelihood to recommend a prod-
uct to be especially sensitive to whether the in-
structional text for the product was raw MT out-
put. This suggests that the lower reliability of sub-
jective evaluations as annotations could be due to
a bias against MT-specific errors. Only Stymne
et al. (2012) report the correlations between eye
movement measures and subjective assessments
and found only moderate correlations.

This work is to the best of our knowledge the
first to study the correlation of reading-derived
MT metrics and task performance. Since we be-
lieve task performance to be a more adequate mea-
sure of translation quality – especially when the
texts are designed with a specific task in mind – we
therefore believe this to be a more adequate study
of the usefulness of reading-derived MT metrics
than previous work.

7 Conclusion

We presented an eye-tracking study of participants
reading original, simplified, and human/machine
translated logic puzzles. Our analysis shows that
the reading-derived metrics TIME and FIXATIONS

obtained from eye-tracking recordings can be used
to assess translation quality. In fact, such met-
rics seem to be much better proxies of task per-
formance, i.e., the practical usefulness of trans-
lations, than the state-of-the-art quality metric,
BLEU.
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Abstract

We examine the ability of several mod-
els of computation and storage to explain
reading time data. Specifically, we demon-
strate on both the Dundee and the MIT
reading time corpora, that fragment gram-
mars, a model that optimizes the trade-
off between computation and storage, is
able to better explain people’s reaction
times than two baseline models which ex-
clusively favor either storage or computa-
tion. Additionally, we make a contribu-
tion by extending an existing incremental
parser to handle more general grammars
and scale well to larger rule and data sets.1

1 Introduction

A basic question for theories of language repre-
sentation, processing, and acquisition is how the
linguistic system balances storage and reuse of
lexical units with productive computation. At
first glance, the question appears simple: words
are stored; phrases and sentences are computed.
However, a closer look quickly invalidates this
picture. Some canonically computed structures,
such as phrases, must be stored, as witnesses
by verbal idioms like leave no stone unturned2

(Nunberg et al., 1994). There is also composi-
tionality at the sub-word level: affixes like ness
in pine-scentedness, are almost always composed
productively, whereas other affixes, e.g., th in
warmth, are nearly always stored together with
stems (O’Donnell, 2015). Facts such as these have

∗indicates equal contribution.
1Our code and data are available at http://

stanford.edu/˜lmthang/earleyx/.
2Meaning: prevent any rock from remaining rightside up.

led to a consensus in the field that storage and
computation are properties that cut across differ-
ent kinds of linguistic units and levels of linguistic
structure (Di Sciullo and Williams, 1987)—giving
rise to hetergeneous lexicon3 theories, in the ter-
minology of Jackendoff (2002b).

Naturally, the question of what is computed
and what is stored has been the focus of intense
empirical and theoretical research across the lan-
guage sciences. On the empirical side, it has
been the subject of many detailed linguistic anal-
yses (e.g., Jackendoff (2002a)) and specific phe-
nomena such as composition versus retrieval in
word or idiom processing have been examined
in many studies in experimental psycholinguistics
(Hay, 2003; O’Donnell, 2015). On the theoretical
side, there have been many proposals in linguistics
regarding the structure and content of the hetero-
geneous lexicon (e.g., Fillmore et al. (1988), Jack-
endoff (2002b)). More recently, there have been a
number of proposal from computational linguis-
tics and natural language processing for how a
learner might infer the correct pattern of compu-
tation and storage in their language (De Marcken,
1996; Bod et al., 2003; Cohn et al., 2010; Post and
Gildea, 2013; O’Donnell, 2015).

However, there remains a gap between de-
tailed, phenomenon-specific studies and broad ar-
chitectural proposals and learning models. Re-
cently, however, a number of methodologies have
emerged which promise to bridge this gap. These
methods make use of broad coverage probabilis-
tic models which can encode representational and
inferential assumptions, but which can also be ap-
plied to make detailed predictions on large psy-
cholinguistic datasets encompassing a wide vari-

3A hetergeneous lexicon contains not only words but also
affixes, stems, and phrasal units such as idioms.
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ety of linguistic phenomena. In the realm of syn-
tax, one recent approach has been to use proba-
bilistic models of sentence structures, paired with
incremental parsing algorithms, to produce precise
quantitative predictions for variables such as read-
ing times (Roark et al., 2009) or eye fixation times
(Demberg and Keller, 2008; Mitchell et al., 2010;
Frank and Bod, 2011; Fossum and Levy, 2012;
van Schijndel and Schuler, 2013). To date, no
models of storage and computation in syntax have
been applied to predict measures of human read-
ing difficulty.

In this work, we employ several of the models
of computation and storage studied by O’Donnell
(2015), to examine human sentence process-
ing. We demonstrate that the fragment grammars
model (O’Donnell et al., 2009; O’Donnell et al.,
2011)—a model that treats the question of what to
store and what to compute productively as a prob-
abilistic inference—better explains human read-
ing difficulty than two “limiting-case” baselines,
MAP adaptor grammars (maximal storage) and
Dirichlet-multinomial PCFG (maximal computa-
tion), in two datasets: the Dundee eye-tracking
corpus (Kennedy and Pynte, 2005) and the MIT
reading time dataset (Bachrach et al., 2009).

2 Goals and Scope of the Paper

Before moving on, we remark on the goals and
scope of the current study. The emergence meth-
ods connecting wide-coverage probabilistic gram-
mars and psycholinguistic data offer great poten-
tial to test theoretical models quantitatively, at
scale, and on a variety of detailed phenomena.
However, studies using these methods also involve
many moving parts, often making their results dif-
ficult to interpret.

To connect probabilistic models of syntactic
computation and storage to reading time or eye fix-
ation data, practioners need to:

1. Preprocess train and test data sets by tok-
enizing words, limiting sentence lengths, and
handling unknown words.

2. Decide on a suitable grammatical formalism:
determine a hypothesis space of stored items
and specify a probability model over that
space.

3. Choose and implement a probabilistic model
to extract grammars from the training set.

4. Pick a test set annotated with reading diffi-
culty information, e.g., eye fixation or read-
ing times.

5. Choose a specific incremental parsing algo-
rithm to generate word-by-word parsing pre-
dictions.

6. Determine the theoretical quantity that will
be used as a predictor, e.g., surprisal or en-
tropy reduction.

7. Choose a suitable linking model to regress
theoretical predictions against human data,
controlling for participant-specific factors
and nuisance variables.

Given this wide array of design decisions, it
is often difficult to compare results across stud-
ies or to determine which theoretical assumptions
are crucial to the performance of models. For the
field to make progress, studies must be replicable
and each of the above factors (and potentially oth-
ers) must be varied systematically in order to iso-
late their specific consequences. We contribute to-
wards this process in three ways.

First, we report results for three models which
differ only in terms of how they address the prob-
lem of what to store and what to compute (see
Section 3). Otherwise, modeling and analysis as-
sumptions are exactly matched. Moreover, the
models represent three “limiting cases” in the
space of storage and computation — store all max-
imal structures, store only minimal structures, and
treat the problem as a probabilistic inference. Al-
though none of the models represents a state-of-
the-art model of syntactic structure, this study
should provide important baselines against which
to compare in future proposals.

Second, to make this study possible, we extend
an existing incremental parser to address two tech-
nical challenges by: (a) handling more general in-
put grammars and (b) scaling better to extremely
large rule sets. This parser can be used with any
model that can be projected to or approximated by
a probabilistic context-free grammar. We make
this parser available to the community for future
research.

Third, and finally, unlike previous studies
which only report results on a single dataset, we
demonstrate consistent findings over two popular
datasets, the Dundee eye-tracking corpus and the
MIT reading times corpus. We make available our
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predicted values for all examined data points to-
gether with our analysis scripts. This should fa-
cilitate the replication of these specific results and
direct numerical comparison with later proposals.

3 Approaches to Computation and
Storage

In this paper we study the ability of three mod-
els to predict reading difficulty as measured
by either eye-fixation or reading times — the
full-parsing model, implemented by Dirichlet-
multinomial probabilistic context-free grammars
(DMPCFG) (Kurihara and Sato, 2006; Johnson et
al., 2007), the full-listing mode, implemented by
maximum a posteriori adaptor grammars (MAG)
(Johnson et al., 2006), and the inference-based
model, implemented by fragment grammars (FG)
(O’Donnell, 2015).

All three models start with the same un-
derlying base system—a context-free grammar
(CFG) specifying the space of possible syntactic
derivations—and the same training data—a cor-
pus of syntactic trees. However, the models dif-
fer in what they store and what they compute. The
full-parsing model can be understood as a fully-
compositional baseline equivalent to a Bayesian
version of the underlying CFG. The full-listing
model, by contrast, stores all full derivations (i.e.,
all derivations down to terminal symbols) and sub-
derivations in the input corpus. These stored
(sub)trees can be thought of as extending the CFG
base component with rules that directly rewrite
nonterminal symbols to sequence of terminals in
a single derivational step.

Finally, the inference-based model treats the
problem of what tree fragments to store, and which
parts of derivations to compute as an inference
in a Bayesian framework, learning to store and
and reuse those subtrees which best explain the
data while taking into account two prior biases
for simplicity. The first bias prefers to explain
the data in terms of a smaller lexicon of stored
tree fragments. The second bias prefers to ac-
count for each input sentence with smaller num-
bers of derivational steps (i.e., fragments). Note
that these two biases compete and thus give rise
to a tradeoff. Storing smaller, more abstract frag-
ments allows the model to represent the input with
a more compact lexicon, at the cost of using a
greater number of rules, on average, in individual
derivations. Storing larger, more concrete frag-

ments allows the model to derive individual sen-
tences using a smaller number of steps, at the cost
of expanding the size of the stored lexicon. The
inference-based model can be thought of as ex-
tending the base CFG with rules, inferred from the
data, that expand larger portions of derivation-tree
structure in single steps, but can also include non-
terminals on their right-hand side (unlike the full-
listing model).

As we mentioned above, none of these models
take into account various kinds of structure—such
as headedness or other category-refinements—that
are known to be necessary to achieve state-of-the-
art syntactic parsing results (Petrov et al., 2006;
Petrov and Klein, 2007). However, the results re-
ported below should be useful for situating and in-
terpreting the performance of future models which
do integrate such structure. In particular, these re-
sults will enable ablation studies which carefully
vary different representational devices.

4 Human Reading Time Prediction

To understand the effect of different approaches to
computation and storage in explaining human re-
action times, we employ the surprisal theory pro-
posed by Hale (2001) and Levy (2008). These
studies introduced surprisal as a predictor of the
difficulty in incremental comprehension of words
in a sentence. Because all of the models described
in the last section can be used to compute sur-
prisal values, they can be used to provide predic-
tions for processing complexity and hence, gain
insights about the use of stored units in the human
sentence processing. The surprisal values for these
different models are dervied by means of a proba-
bilistic, incremental Earley parser (Stolcke, 1995;
Earley, 1968), which we describe below.

4.1 Surprisal Theory

The surprisal theory of incremental language pro-
cessing characterizes the lexical predictability of a
word wt in terms of a surprisal value, the negative
log of the conditional probability of a word given
its preceding context, − log P (wt|w1 . . . wt−1).
Higher surprisal values mean smaller conditional
probabilities, that is, words that are less pre-
dictable are more surprising to the language user
and thus harder to process. Surprisal theory was
first introduced in Hale (2001) and studied more
extensively by Levy (2008). It has also been
shown to have a strong correlation with reading
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time duration in both eye-tracking and self-paced
reading studies (Boston et al., 2008; Demberg and
Keller, 2008; Roark et al., 2009; Frank, 2009; Wu
et al., 2010; Mitchell et al., 2010).

4.2 The Incremental Parser

The computation of surprisal values requires ac-
cess to an incremental parser which can compute
the prefix probabilities associated with a string s
under some grammar—the total probability over
all derivation using the grammar which generate
strings prefixed by s (Stolcke, 1995). The pre-
fix probability is an important concept in compu-
tational linguistics because it enables probabilis-
tic predictions of possible next words (Jelinek and
Lafferty, 1991) via the conditional probabilities
P (wt|w1 . . . wt−1) = P (w1...wt)

P (w1...wt−1)
. It also allows

estimation of incremental costs in a stack decoder
(Bahl et al., 1983). Luong et al. (2013) used pre-
fix probabilities as scaling factors to avoid numer-
ical underflow problems when parsing very long
strings.

We extend the implementation by Levy (2008)
of the probabilistic Earley parser described in Stol-
cke (1995) which computes exact prefix probabil-
ities. Our extension allows the parser (a) to handle
arbitrary CFG rewrite rules and (b) to scale well to
large grammars.4

The implementation of Levy (2008) only ex-
tracts grammars implicit in treebank inputs and
restricts all pre-terminal rules to single-terminal
rewrites. To approximate the incremental predic-
tions of the models in this paper, we require the
ability to process rules that include sequences of
multiple terminal and non-terminal symbols on
their right-hand side. Thus, we extend the im-
plementation to allow efficient processing of such
structures (property a).

With regards to property (b), we note that pars-
ing against the full-listing model (MAG) is pro-
hibitively slow because the approximating gram-
mars for the model contain PCFG rules which ex-
haustively list the mappings from every nontermi-
nal in the input corpus to its terminal substring,
leading to thousands of rules. For example, for the
Brown corpus section of the Penn Treebank (Mar-

4Other recent studies of human reading data have made
use of the parser of Roark (2001). However, this parser inco-
porates many specific design decisions and optimizations—
”baking in” aspects of both the incremental parsing algorithm
and a model of syntactic structure. As such, since it does not
accept arbitrary PCFGs, it is unsuitable for this present study.

cus et al., 1993), we extracted 778K rules for the
MAG model, while the number of rules in the DM-
PCFG and the inference-based (FG) grammars are
75K and 146K respectively. Parsing the MAG is
also memory intensive due to multi-terminal rules
that rewrite to long sequences of terminals, be-
cause, for example, an S node must rewrite to an
entire sentence. Such rules result in an exploding
number of states during parsing as the Earley dot
symbol moves from left to right.

To tackle this issue, we utilize a trie data struc-
ture to efficiently store multi-terminal rules and
quickly identify (a) which rules rewrite to a par-
ticular string and (b) which rules have a particular
prefix.5 These extensions allow our implementa-
tion to incorporate multi-terminal rules in the pre-
diction step of the Earley algorithm, and to effi-
ciently incorporate which of the many rules can
contribute to the prefix probability in the Earley
scanning step.

We believe that our implementation should be
useful to future studies of reading difficulty, allow-
ing efficient computation of prefix probabilities for
any model which can be projected to (or approxi-
mated by) a PCFG—even if that approximation is
very large. publicly available at http://url.

5 Experiments

5.1 Data

Our three models models are trained on the Wall
Street Journal (WSJ) portion of the Penn Treebank
(Marcus et al., 1994). In particular, because we
have access to gold standard trees from this cor-
pus, it is possible to compute the exact maximum a
posteriori full-parsing (DMPCFG) and full-listing
(MAG) models, and output PCFGs corresponding
to these models.6

We evaluate our models on two different cor-
pora: (a) the Dundee corpus (Kennedy and Pynte,
2005) with eye-tracking data on naturally occur-
ring English news text and (b) the MIT corpus
(Bachrach et al., 2009) with self-paced reading
data on hand-constructed narrative text. The for-

5Specifically, terminal symbols are used as keys in our
trie and at each trie node, e.g., corresponding to the key se-
quence a b c, we store two lists of nonterminals: (a) the
complete list – where each non-terminal X corresponds to
a multi-terminal rule X → a b c, and (b) the prefix list –
where each non-terminal X corresponds to a multi-terminal
rule X → a b c . . . d. We also accumulated probabilities for
each non-terminal in these two lists as we traverse the trie.

6Note that for DMPCFG, this PCFG is exact, whereas for
MAG, it represents a truncated approximation.
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mer has been a popular choice in many sentence
processing studies (Demberg and Keller, 2008;
Mitchell et al., 2010; Frank and Bod, 2011; Fos-
sum and Levy, 2012; van Schijndel and Schuler,
2013). The latter corpus, with syntactically com-
plex sentences constructed to appear relatively
natural, is smaller in size and has been used in
work such as Roark et al. (2009) and Wu et al.
(2010). We include both corpora to demonstrate
the reliability of our results.

Detailed statistics of these corpora are given
in Table 1. The last column indicates the num-
ber of data points (i.e., word-specific fixation or
reading times) used in our analyses below. This
dataset was constructed by excluding data points
with zero reading times and removing rare words
(with frequencies less than 5 in the WSJ training
data). We also exclude long sentences (of greater
than 40 words) for parsing efficiency reasons.

sent word subj orig filtered
Dundee 2,370 58,613 10 586,131 228,807
MIT 199 3,540 23 81,420 69,702

Table 1: Summary statistics of reading time cor-
pora – shown are the number of sentences, words,
subjects, data points before (orig) and after filter-
ing (filtered).

5.2 Metrics
Following (Frank and Bod, 2011; Fossum and
Levy, 2012), we present two analyses of the sur-
prisal predictions of our models: (a) a likelihood
evaluation and (b) a psychological measure of the
ability of each model to predict reading difficulty.

For the former, we simply average the negative
surprisal values, i.e., log p(wn|w1 . . . wn−1), of all
words in the test set, computing the average log
likelihood of the data under each model.7 This can
be understood as simply a measure of goodness of
fit of each model on each test data set.

For the latter, we perform a linear mixed-effects
analysis (Baayen et al., 2008) to evaluate how well
the model explains reading times in the test data.
The lme4 package (Bates et al., 2011) is used
to fit our linear mixed-effects models. Following
(Fossum and Levy, 2012), eye fixation and reading
times are log-transformed to produce more nor-
mally distributed data.8 We include the follow-

7Exponentiating this value gives the perplexity score.
8For the Dundee corpus, we use the first-pass reading

time.

ing common predictors as fixed effects for each
word/participant pair: (i) position of the word in
the sentence, (ii) the number of characters in the
word, (iii) whether the previous word was fixated,
(iv) whether the next word was fixated, and (v) the
log of the word unigram probability.9

All fixed effects were centered to reduce
collinearity. We include by-word and by-subject
intercepts as random effects. The base model re-
sults reported below include only these fixed and
random factors. To test the ability of our three
theoretical models of computation and storage to
explain the reading time data, we include surprisal
predictions from each model as an additional fixed
effect. To test the signficance of these results, we
perform nested model comparisons with χ2 tests.

5.3 Results
For the likelihood evaluation, the values in Table 2
demonstrate that the FG model provides the best
fit to the data. The results also indicate a ranking
over the three models, FG ≻ DMPCFG ≻ MAG.

Dundee MIT
DMPCFG -6.82 -6.80

MAG -6.91 -6.95
FG -6.35 -6.35

Table 2: Likelihood Evaluation – the average
negative suprirsal values given by each model
(DMPCFG, MAG, FG) on all words in each cor-
pus (Dundee, MIT).

For the psychological evaluation, we present re-
sults of our nested model comparisons under two
settings: (a) additive in which we independently
add each of the surprisal measures to the base
model and (b) subtractive, in which we take the
full model consisting of all the surprisal measures
and independently remove one surprisal measure
each time.

Results of the additive setting are shown in Ta-
ble 3, demonstrating the same trend as observed
in the likelihood evaluation. In particular, the FG
model yields the best improvement in terms of
model fit as captured by the χ2(1) statistics, indi-
cating that it is more explanatory of reaction times
when added to the base model as compared to the
DMPCFG and the MAG predictions. The ranking

9The unigram probability was estimated from the WSJ
training data, the written text portion of the BNC corpus, and
the Brown corpus. We make use of the SRILM toolkit (Stol-
cke, 2002) for such estimation.

18



is also consistent with the likelihood results: FG
≻ DMPCFG ≻ MAG.

Models Dundee MIT
χ2(1) p χ2(1) p

base+DMPCFG 70.9 < 2.2E-16 38.5 5.59E-10
base+MAG 10.9 9.63E-04 0.1 7.52E-01
base+FG 118.3 < 2.2E-16 62.5 2.63E-15

Table 3: Psychological accuracy, additive tests –
χ2(1) and p values achieved by performing nested
model analysis between the models base+X and
the base model.

For the subtractive setting, results in Table 4
highlight the fact that several models significantly
(p < 0.01) explains variance in fixation times
above and beyond the other surprisal-based pre-
dictors. The FG measure proves to be the most
influential predictor (with χ2(1) = 62.5 for the
Dundee corpus and 42.9 for the MIT corpus). Ad-
ditionally, we observe that DMPCFG does not sig-
nificantly explain more variance over the other
predictors. This, we believe, is partly due to the
presence of the FG model, which captures much
of the same structure as the DMPCFG model.

Models Dundee MIT
χ2(1) p χ2(1) p

full-DMPCFG 4.0 4.65E-02 3.5 6.18E-02
full-MAG 14.3 1.58E-04 23.6 1.21E-06
full-FG 62.5 2.66E-15 42.9 5.88E-11

Table 4: Psychological accuracy, subtractive
test – χ2(1) and p values achieved by performing
nested model analysis between the models full-X
and the full model.

Additionally, we examine the coefficients of the
surprisal predictions of each model. We extracted
coefficients for individual surprisal measures in-
dependently from each of the models base+X. As
shown in the columns Indep in Table 5, all coef-
ficients are positive, implying, sensibly, that the
more surprising a word, the longer time it takes to
process that word.

Moreover, when all surprisal measures appear
together in the same full model (columns Joint),
we observe a consistent trend that the coefficients
for DMPCFG and FG are positive, whereas that of
the MAG is negative.

5.4 Discussion
Our results above indicate that the inference-based
model provides the best account of our test data,

Models Dundee MIT
Indep. Joint Indep. Joint

DMPCFG 5.94E-03 1.95E-03 8.08E-03 3.24E-03
MAG 1.00E-03 -1.41E-03 1.54E-04 -2.82E-03
FG 5.13E-03 5.49E-03 5.88E-03 6.97E-03

Table 5: Mixed-effects coefficients – the Indep.
columns refer to the coefficients learned by the
mixed-effects models base+X (one surprisal mea-
sure per model), whereas the Joint columns refer
to coefficients of all surprisal measures within the
full model.

both in terms of the likelihood it assigns to the test
corpora and in terms of its ability to explain human
fixation times. With respect to the full-parsing
model this result is unsurprising. It is widely
known that the conditional independence assump-
tions of PCFGs make them poor models of syn-
tactic strcutre, and thus—presumably—of human
sentence processing. Other recent work has shown
that reasonable (though not state-of-the-art) pars-
ing results can be achieved using models which re-
lax the conditional independence assumptions of
PCFGs by employing inventories of stored tree-
fragments (i.e., tree-substitution grammars) simi-
lar to the fragment grammars model (De Marcken,
1996; Bod et al., 2003; Cohn et al., 2010; Post and
Gildea, 2013; O’Donnell, 2015).

The comparison with the full-listing model is
more interesting. Not only does the full-listing
model produce the worst performance of the three
models in both corpora and for both evaluations, it
actually produces negative correlations with read-
ing times. We believe this result is indicative of a
simple fact: while it has become clear that there
is lexical storage of many syntactic constructions,
and—in fact—the degree of storage may be con-
siderably more than previously believed (Trem-
blay and Baayen, 2010; Bannard and Matthews,
2008)—syntax is still a domain which is mostly
compositional. The full-listing model overfits,
leading to nonsensical reading time predictions.
In fact, this is likely a logical necessity—the vast
combinatorial power implicit in natural language
syntax means that even for a system with tremen-
dous memory capacity, only a small fraction of po-
tential structures can be stored.

6 Conclusion

In this paper, we have studied the ability of sev-
eral models of computation and storage to explain
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human sentence processing, demonstrating that a
model which treates the problem as a case-by-case
probabilistic inference provides the best fit to read-
ing time datasets, when compared to two “limit-
ing case” models which always compute or always
store. However, as we emphasized in the introduc-
tion we see our contribution as primarily method-
ological. None of the models studied here repre-
sent state-of-the-art proposals for syntactic struc-
ture. Instead, we see these results together with the
tools that we make available to the community, as
providing a springboard for later research that will
isolate exactly which factors, alone or in concert,
best explain human sentence processing.
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Abstract

We aim to demonstrate that agent-based
models can be a useful tool for historical
linguists, by modeling the historical devel-
opment of verbal cluster word order in Ger-
manic languages. Our results show that
the current order in German may have de-
veloped due to increased use of subordi-
nate clauses, while the English order is pre-
dicted to be influenced by the grammatical-
ization of the verb to have. The methodol-
ogy we use makes few assumptions, mak-
ing it broadly applicable to other phenom-
ena of language change.

1 Introduction

Agent-based modeling is a method for simulating
the behaviour of individual agents (i.e. a speaker
of a language) in a larger community of agents (i.e.
all speakers of the language). While agent-based
models have been successfully used as tools in
the field of evolutionary linguistics to study how
linguistic structures may have emerged, they have
not yet spread to the field of historical linguistics,
which is more interested in describing and mod-
eling change in existing natural languages. Both
fields are concerned with changing language mod-
els, although the starting assumptions and context
are different. In historical linguistics there is data
available about structures in earlier and more mod-
ern states of the language, while in evolutionary
linguistics the structures have to emerge from the
implemented mechanisms. Nevertheless, the mech-
anisms described, such as grammaticalization, are
often similar and lend themselves to study using
similar methodology.

In the field of evolutionary linguistics, agent-
based models are used to model language as a com-
plex dynamic system, whose structure depends on
the interactions of its speakers. An early overview

of such work is provided by Steels (1997), who
emphasizes the possibilities of modeling various
aspects of language in this way. Among this work
is a study by Briscoe (1997) on the default word
order of languages, though it assumes a framework
of universal grammar in which learning consists
of setting parameters. Subsequent work included
the application of this method to specific domains
of linguistics, such as the emergence of vowel
systems (De Boer, 2000) and the development of
agent-based models specific to language, such as
the iterated learning model of Kirby and Hurford
(2002). Language change was often only discussed
in terms of the emergence of new structures, and
lacked comparisons to historical data (de Boer
and Zuidema, 2009), or used artificial languages,
as noted by Choudhury et al. (2007), whose own
work is an exception. A few other studies that re-
late to historical linguistics can be found. Daland
et al. (2007) and Van Trijp (2012) model some
apparent idiosyncrasies in inflectional paradigms
of natural languages, Daland et al. (2007) doing
so with a model that includes social structure,
and Van Trijp (2012) using the Fluid Construc-
tion Grammar framework. A further example is
Landsbergen et al. (2010)’s study that models some
mechanisms of language change from the perspec-
tive of cultural evolution. Overall, agent-based lan-
guage studies informed by historical data are not
widespread, and often involve many assumptions
or dependence on a framework. A recent exception
to this is a study by Pijpops and Beuls (2015) on
Dutch regular and irregular verbs.

Our emphasis in this work is on creating an
agent-based model that makes minimal assump-
tions, in order for the presented methodology to
be useful for any theory of language that allows for
functionalism in language change. Our case study,
the historical development of verbal cluster order
in Germanic languages, involves a word order vari-
ation in which multiple constructions are grammat-
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ical. This kind of phenomenon has not been inves-
tigated with an agent-based model before. Besides
syntactic analyses (Evers, 1975), recent work on
verb clusters has also discussed non-syntactic fac-
tors influencing word order, using frequency-based
methods (De Sutter, 2005; Arfs, 2007; Bloem et al.,
2014) and historical data (Coussé, 2008). We fol-
low up on this line of work with our agent-based
model, in which a functional bias induces language
change. Using this model, we will show how the
current orders of verb clusters in modern West-
Germanic languages might have developed and di-
verged from the proto-Germanic cluster orders.

In the next section, we briefly outline the phe-
nomenon of verbal cluster order variation. We then
describe the methodology of the simulation and its
initial state, followed by the results and a discus-
sion of those results

2 Verbal clusters

Many verbal cluster word orders are attested in
different Germanic languages (Wurmbrand, 2006).
We will illustrate this with a Dutch example, a lan-
guage where the ordering of these verbs is rela-
tively free. In two-verb clusters, the finite verb can
be positioned before or after the infinitive:

(1) Ik
I

denk
think

dat
that

ik
I

het
it

heb
have

begrepen.
understood

‘I think that I have understood it’

(2) Ik
I

denk
think

dat
that

ik
I

het
it

begrepen
understood

heb.
have

‘I think that I have understood it’

In the literature, construction 1 is called the 1-2
order (ascending order or red order), and construc-
tion 2 is called the 2-1 order (descending order
or green order). Both orders are grammatical in
Dutch, and express the same meaning, though there
are differences in usage. German and Frisian only
allow order (2) for two-verb clusters, while English
and Scandinavian languages only allow order (1)
1. Despite these differences, all of these languages
evolved from Proto-West-Germanic.

This raises the question of why some of the West
Germanic languages ended up with verbal clusters
in 2-1 order, and others with the 1-2 order. To study
this, we need to select some factors that may have

1English and Scandinavian verb groups are generally not
called verb clusters in the literature because they can be in-
terrupted by nonverbal material, but for the purposes of this
study the distinction is not important.

% 1-2 mod+inf have+PP cop+PP
main 97% 50% 10%
sub 80% 50% 5%

Table 1: Reconstructed proto-Germanic probabili-
ties for the 1-2 order.

influenced the change, and the best place to look
for this is the Dutch language, in which both orders
are possible. Language variation often indicates
language change, with the variation being a state of
transition from one structure to another, in which
both structures can be used. Factors that correlate
with different word order preferences in modern
Dutch may therefore be involved in the change as
well.

The order variation in Dutch has been claimed
to be an instance of language change in progress.
In the 15th century, the 2-1 order was used almost
exclusively. After this, the 1-2 order starts appear-
ing in texts, and becomes increasingly frequent,
moving towards the current state of the language
(Coussé, 2008). This was not the first time the 1-2
order had been attested though, it also appears in
some of the oldest Dutch texts.

3 Methodology

Our simulation consists of a group of agents that
can function as speakers and recipients of verbal
cluster utterances. Each agent has its own instance
of a probabilistic language model that stores and
produces such utterances. We will first describe the
language model and the linguistic features of ver-
bal clusters that it stores, and then we will explain
what happens when the simulation is ran and the
agents interact.

To find linguistic features that may be associated
more with one order than with the other, we rely on
synchronic corpus studies of Dutch, the language
in which both orders are possible. Associations
have been found with a variety of factors, includ-
ing contextual factors such as regional differences
between speakers (Coussé et al., 2008). When cre-
ating a language model for an agent, we are only
interested in factors that may cause a particular
speaker (or agent) to choose a particular word or-
der. A recent study found that verbal cluster order
variation correlates with both constructional fac-
tors (the use of a particular linguistic form) and pro-
cessing factors (such as sentence length) (Bloem
et al., 2014). We will examine only the construc-
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tional factors, because those are likely to be stored
in the lexicon with their own associated word order
preferences. The most important of these are the
main clause / subordinate clause distinction (there
are more 2-1 orders in main clauses), and the type
of auxiliary verb (there are more 2-1 orders when a
copula verb is used in a cluster). These two factors
not only have different order preferences in modern
Dutch, but have also undergone historical changes
that may have triggered our word order change:
subordinate clauses have become more prevalent,
and one type of auxiliary verb, to have, grammat-
icalized during the time period we are interested
in.

We will assume that the two factors, clause type
and auxiliary type, are stored as features, each with
their own word order preferences. This way of stor-
ing features is based on the bidirectional model in
Versloot (2008), though our models learn by inter-
acting rather than iterating.

Table 1 shows all of the possible combinations
of feature values a verbal cluster can have in our
model. Our model assumes two clause types (main
and subordinate) and three different types of auxil-
iary verbs, reflecting the historical sources of verb
clusters:

1. Clause type feature

(a) Main clause context
(b) Subordinate clause context

2. Auxiliary type feature

(a) modal + infinitive: the origin of verb
clusters in Germanic

(b) ‘to have’ + participial main verb (PP):
arose only later in history to extend the
possibilities of expressing temporal and
aspectual features

(c) copula + PP: originally a passive, pred-
icative, construction — not purely verbal,
rather adjectival.

A cluster can have either of two word orders: the
1-2 and the 2-1 order.

The simulation consists of a language agents,
each starting out with n exemplars of verbal clus-
ters, stored in the agent’s language model. An
agent’s language model contains the type of infor-
mation shown in Table 1: for each possible combi-
nation of feature values, exemplars are stored. In
addition to their features they have the property of

being either in the 2-1 or 1-2 order (from which
a percentage can be calculated, as in the table).
The agents’ language models do not contain any
other structures. We did not use an existing frame-
work in order to have as few parameters as possible.
The simulation was implemented in the Python pro-
gramming language.

When the model is run, each run consists of
a ∗ n ∗ i interactions. In an interaction i, a random
agent is picked as the speaker and another random
agent as the recipient. The speaker agent generates
a verbal cluster based on its language model,
and the recipient agent stores it as an exemplar.
When a speaker agent generates a verbal cluster,
it picks the features of a random exemplar from
its language model, and then assigns word order
based on the word order probabilities of both
of its features individually. A 1-2 (ascending)
realization of a modal subordinate clause cluster
may be produced according to the following:

P (asc|x) = P (asc|xsub) + P (asc|xmodinf ) (1)

where x is a set of feature values. P (asc|xsub)
is the probability of a subordinate clause be-
ing in 1-2 order, and P (asc|xmodinf ) for the
modal+infinitive construction type. These proba-
bilities are calculated from the stored frequency of
the features in 1-2 contexts:

P (asc|xsub) =
F (sub, asc)

F (sub)
(2)

So, the probability of a modal subordinate clause
cluster being expressed in the 1-2 order depends
on how many exemplars the agent has stored in
which a subordinate clause cluster was in the 1-
2 order (relative to 2-1), as well as exemplars in
which a modal cluster was in the 1-2 order (rela-
tive to 2-1). Example (3) is an example of a modal
subordinate clause cluster in 1-2 order, though our
language model is more abstract and does not use
actual words, only the features.

(3) Ik
I

denk
think

dat
that

ik
I

het
it

wil
want

horen
hear

‘I think that I want to hear it’

After producing this exemplar, the agent nor-
mally deletes it from its own storage, because we
do not want the relative frequencies of the various
feature values (i.e. the number of copular verbs)
to vary randomly. We are only interested in the
word order. Furthermore, this avoids an endless
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growth of the agents’ language models. Only when
a growth factor applies, this deletion does not hap-
pen. The simulation includes two growth factors
g have and g sub to simulate two relevant histor-
ical changes: the grammaticalization of ‘to have’
as an auxiliary verb, and an increase in the use
of subordinate clauses. When these growth factors
are set to 1, after every a interactions, an exemplar
with the relevant feature is kept where it otherwise
would have been deleted from the language model.
A growth factor of 2 doubles the rate. g have ap-
plies while there are fewer have-clusters than clus-
ters of either of the other types, and g sub while
there are fewer subordinate clause clusters than
main clause clusters.

When an agent is the recipient of a verbal cluster
exemplar, it simply stores it in its language model,
including the word order. So, when example (3) is
perceived, the 1-2 order production probability of
subordinate clause clusters and that of modal clus-
ters will go up (separately) in the language model
of the recipient agent. A critical learning bias is
simulated here: the tendency to decompose an ut-
terance into features and storing information about
the features, rather than storing it as a whole. This
is the only assumption we make about the language
faculty in this model, and it is a functional one. It
simulates the fact that people do not perfectly copy
a language from each other.

We initialize each experiment with 30 agents
(a = 30), and i = 5000 to simulate a long time
course in which simulations will almost always sta-
bilize in the end. With fewer agents, some agents
lose all of their exemplars during the simulation.
Each agent starts with a language model of 73 ex-
emplars (n = 73) that follows frequency patterns
as reconstructed for 6th century Germanic, based
on a comparison of verb cluster frequencies in Old
English, Old High German and Old Frisian texts.
These figures are also summarized in table 1. For
any unattested combination of features and word
order a single exemplar is included to simulate
noise.

4 Results

Figures (a) and (b) show example results of the
agent-based model simulation, with different pa-
rameter settings. The graphs show the results of 50
different simulation runs overlaid, each run being
a possible language. The X-axis represents time
(in number of interactions) and the Y-axis repre-

sents the proportion of 1-2 orders, a value between
0 and 1. The proportions are calculated over all
of the agents in the simulation. When the simula-
tion is ran for long enough, it will always stabilize
into a situation where a language either has only
1-2 or only 2-1 orders, though some feature com-
binations stabilize faster than others. Due to space
constraints, we only show results for subordinate
clause clusters (with any auxiliary type), but the
general patterns are similar for all of the features,
though some change sooner than others. We can
observe that the model correctly predicts both lan-
guages with dominant 1-2 orders such as English,
and dominant 2-1 orders as in German.

However, a model that predicts everything is not
very interesting. We would like to know when a
language in the model becomes English-like or
German-like. We can do this by changing the
growth factors: the rise of subordinate clauses
(g sub) and of to have (g have). Figure (a) shows
simulations in which to have grammaticalizes
faster, while in Figure (b), subordinate clauses
catch on more quickly. A clear difference can be
observed — Figure (a) shows more languages gain-
ing English-like 1-2 orders (35% 1-2, 56% 2-1 and
the rest had not stabilized yet), while Figure (b)
shows more German-like 2-1 orders (92% 2-1, 7%
1-2). Different speeds of grammaticalization of to
have and growth of subordinate clauses result in
different dominant word orders.

5 Discussion

With this study, we hope to have shown that an
agent-based model with just a single learning bias
can be used to gain insight into processes of change
in natural languages, and generate new hypothe-
ses. Specifically, the model makes two predictions:
that to have grammaticalized faster in English, and
that subordinate clauses gained use more quickly in
German. These predictions can be tested using his-
torical corpora of these languages in future work.

In the model, the 2-1 order is supported by sub-
ordinate clauses. Due to verb-second (V2) move-
ment in these languages, the finite verb (the 1) pre-
cedes the other verb in main clauses (the 2). This
1-2 order differentiates main clauses from subor-
dinate clauses, motivating the preservation of a 2-
1 order in the subordinate clauses. Increased use
of subordinate clauses may then have supported
the 2-1 order as the default order. However, if to
have grammaticalizes earlier, the 1-2 order is sup-
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(a) 50 runs with faster growth of have+pp constructions
(g have = 2, g sub = 1)

(b) 50 runs with faster growth of subordinate clauses (g have =
1, g sub = 2)

ported. This new grammatical verb becomes asso-
ciated with the most prevalent word order at the
time, and pushes the language further in the direc-
tion of that word order. In the beginning this is
the 1-2 order, more associated with main clauses
in proto-West-Germanic due to V2 movement, but
later on the 2-1 order is more prevalent, due to its
association with subordinate clauses.

Our model cannot yet account for the current
state of the Dutch language, which first moved to-
wards mainly 2-1 orders like German, and then
shifted towards 1-2 orders again (Coussé, 2008),
a change that is still in progress. There is evidence
that the 1-2 order has become the default order
(Meyer and Weerman, submitted), and this second
change was likely caused by a factor outside the
scope of our model, such as language contact.

Nevertheless, we believe that agent-based mod-
elling can be a useful tool for historical linguists,
particularly those working with frequency-based
explanations. The present work and the study of
Pijpops and Beuls (2015) show that testing of dif-
ferent mechanisms and parameters in a simulation,
informed by historical data, can provide additional
evidence for theories on what may or may not have
been possible in a case of language change, given
the assumptions built into the model. We believe it
is particularly interesting to test how few assump-
tions are necessary to explain the observed histori-
cal data, which previous work has not focused on.

We would like to emphasize that this method
is applicable to other cases of language change
in which the use of structures changed over time.
Any processes of historical change that can be cap-
tured in terms of frequencies and features may be

used as factors to be investigated, and the fact that
the model makes few assumptions also means that
no particular social or cultural phenomena need
to have happened for the model to be applicable.
However, these simplifications also limit the ex-
tend of what can be modeled. In future work, con-
tact phenomena could be simulated by including
non-learning agents, or influxes of agents with dif-
ferent language models. Subsequent work on other
cases of historical change may need to include such
additional assumptions, if they are known to have
been historically relevant.
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Abstract

We present a prototype model, based
on a combination of count-based distri-
butional semantics and prediction-based
neural word embeddings, which learns
about syntactic categories as a function of
(1) writing contextual, phonological, and
lexical-stress-related information to mem-
ory and (2) predicting upcoming context
words based on memorized information.
The system is a first step towards utiliz-
ing recently popular methods from Natu-
ral Language Processing for exploring the
role of prediction in childrens’ acquisition
of syntactic categories.1

1 Introduction

Evidence is mounting that during language pro-
cessing, the brain is predicting upcoming elements
at different levels of granularity (Huettig, 2015).
This could serve at least two purposes: (1) to facil-
itate understanding in dialogue and (2) to acquire
abstract syntactic structure.

With respect to (1), Pickering and Garrod
(2007) review evidence suggesting that people
predict upcoming elements in their interlocutors’
speech streams using the production system. This
is thought to facilitate understanding in dialogue.
One reason to postulate (2) is that length of mem-
ory span for syntactically well-formed sequences
is positively correlated with an individual’s abil-
ity to predict upcoming words (Conway, 2010; see
Huettig, 2015, for further arguments).

We thus have evidence that people predict lin-
guistic elements, and there is reason to suspect that
this could be linked to the acquisition of syntactic

1The work reported here was implemented in the
Theano framework (Bastien et al., 2012; Bergstra
et al., 2010). The code is freely available at:
https://github.com/RobGrimm/prediction based (commit
ID: 6d60222)

structure. Models of prediction in language pro-
cessing should therefore aim to demonstrate the
emergence of such structure as a function of learn-
ing to predict upcoming elements.

Perhaps the most explicit account of such a pro-
cess can be found in the work of Chang et al.
(2006), who use a recurrent neural network in
combination with an event semantics, in order to
generate sentences with unseen bindings between
words and semantic roles – i.e., the types of novel
sentential constructions that could be afforded by
abstract syntactic structure.

It is noteworthy, given this line of work, that
prediction is central to recently popular meth-
ods from Natural Language Processing (NLP)
for obtaining distributional representations of
words (Mikolov et al., 2013; Pennington et al.,
2014). Vector representations (often called word
embeddings) obtained using these methods cluster
closely in terms of semantic and syntactic types –
an achievement due to engineering efforts, with-
out emphasis on psychological constraints. Thus,
if these methods are to be used for modelling as-
pects of human language processing, they should
be modified to reflect such constraints.

Here, we attempt to take a first step into this di-
rection: we modify the skipgram model from the
word2vec family of models (Mikolov et al., 2013)
– which predicts both the left and right context of
a word – to predict only the righ context. Word
counts from the left context form the basis for pre-
diction and are tuned to maximize the likelihood
of correctly predicting words from the right con-
text. Throughout, we measure the organization of
word embeddings in terms of syntactic categories
– and find that embeddings of the same category
cluster more closely after each training stage.

In addition to word frequencies from the left
context, we experiment with phonological infor-
mation and features related to lexical stress as the
basis of predicting words from the right context.
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2 Language Model

The model is trained in two consecutive stages: (1)
for each word in the vocabulary, create a vector
of frequency counts for words from its left con-
text. Concatenate this with phonological and / or
lexical stress features, and project the result into
a joint dimensionality-reduced space. (2) Use the
embeddings obtained in stage 1 to predict words
from the right context, and modify the input em-
beddings via the backpropagation algorithm.

Stage 1 is meant to correspond to a memory
component which tracks backward statistical reg-
ularities, while stage 2 is meant to correspond
to a forward-looking predictive mechanism. On
the NLP side, the model is a combination of
count-based distributional semantics (stage 1) and
prediction-based neural word embeddings (stage
2). While count-based and prediction-based ap-
proaches can produce similar results, provided the
parameters are tweaked in a certain way, (Levy et
al., 2015), it seems intuitively that adding counts is
more like memorizing context, whereas an explic-
itly predictive component is more suited for mod-
elling prediction in language processing.

To the best of our knowledge, there exists no
other work which combines counting and predict-
ing to derive word embeddings, nor work which
attempts to relate this to language acquisition. The
current model, being a result of preliminary ex-
plorations, is only loosely based on possible prin-
ciples of cognitive processing; it may, neverthe-
less, have the potential to move currently success-
ful methods from NLP closer to language acquisi-
tion research.

2.1 Memory Component: Auto Encoder

During the first stage, we use a denoising Auto En-
coder to (a) reduce the dimensionality of the fea-
ture vectors and (b) project concatenated feature
vectors (e.g. contextual and phonological) into a
shared space. As a result, we see some first im-
provements of the vectors’ clustering in terms of
syntactic categories.

An Auto Encoder is a neural network that learns
to transform a given input x(i) into an intermediate
representation h(x(i)) = s(W · x(i) + bv), so that
a faithful reconstruction y(i) = s(W ′ · h(x(i)) +
bh) can be recovered from h(x(i)) (Bengio, 2009),
where s is a non-linear activation function. We
set s(z) = max(0,min(1, z)) and W ′ = W T ,
i.e. we use a truncated linear rectified activation

function and work with tied weights.

The parameters of the network are the weight
matrix W , the visible bias bv and the hidden bias
bh. The Auto Encoder is trained via gradient de-
scent to produce faithful reconstructions of a set
of input vectors {x(1), ...x(n)} by minimizing the
average, across training examples, of the recon-
struction error ||x(i) − y(i)||2.

After training, the latent representation h(x(i))
is often used for some other task. One strategy to
force h(xi)) to retain useful features is to train on a
partially corrupted version x̃(i) of x(i). This is the
idea behind the denoising Auto Encoder (dAE),
where part of the input vector x̃(i) is set to 0.0 with
probability v (the corruption level). The dAE is
then trained to reconstruct the uncorrupted input.

2.2 Predictive Component: Softmax Model

In stage 2, the model learns to predict words from
the embeddings obtained in stage 1. This is done
by maximizing the probability p(c|w; θ) of con-
text word c given target word w, for all pairs of
target and context words (w, c) ∈ D. To obtain
D, we first define an integer t > 0 as the con-
text window. Considering each sentence S from
the training corpus, for each target word wn ∈ S
at position n ≤ length(S), we sample an integer
tn from the uniform distribution {1, ...t}. We then
add the target-context word pairs {(wn, wn+j) :
0 < j ≤ tn, wi ∈ S} to D. Note that we only
sample words from the right context, instead of
from both left and right context. Aside from this
difference, stage 2 is comparable to the word2vec
skipgram model (Mikolov et al., 2013).

Here as there, the probability of a context word
given its target word can be defined as:

p(c|w; θ) =
evc·Tw∗∑

c′∈V e
vc′ ·Tw∗ (1)

where the embedding Tw∗ of target word w is a
row in the embeddings matrix T , vc is a vector
representation for context word c, and V is the vo-
cabulary. (1) is computed by a neural network with
a softmax output layer and weight matrix W , such
that vc is a row in W , and the parameters θ are W
and T . The training objective is the minimization
of the negative sum of log probabilities across all
target word – context word pairs.
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3 Data

3.1 Corpus and Vocabulary

Training data are based on a concatenation of 18
POS-tagged English corpora2 from the CHILDES
database (MacWhinney, 2000). We only consider
utterances from the father and mother, i.e. utter-
ances whose speaker was coded with either FAT
or MOT (child-directed speech, or CDS). The con-
catenated North American and English corpora
contain 1.555.311 and 1.575.548 words of CDS,
respectively (3.130.859 words).

The vocabulary consists of the 2000 most fre-
quent nouns, verbs, adjectives, and closed class
words (words that are tagged as adverbs, commu-
nicators, conjunctions, determiners, infinitival to,
numerals, particles, prepositions, pronouns, quan-
tifiers, auxiliaries, wh-words, or modifiers), with
homophones disambiguated by POS tags. In to-
tal, we end up with 1010 nouns, 522 closed class
words, 302 verbs, and 166 adjectives.

3.2 Phonology and Lexical Stress

For each word from the vocabulary, we con-
struct a phonological feature vector by first ex-
tracting its sequence of phonemes from the
CELEX database (Baayen et al., 1995). Each
phoneme is then placed on a trisyllabic consonant-
vowel-grid, which is transformed into a 114-
dimensional binary vector by concatenating the
phonemes’ vector-representations, as given by Li
and MacWhinney (2002) (empty consonant-vowel
slots are assigned a vector of zeros). Once done
for every word, embeddings of similar-sounding
words tend to be close to one another in the em-
beddings space. Finally, in order to learn more
abstract phonological representations, the feature
vectors are reduced to 30 dimensions, using a dAE
trained for 200 epochs, with a learning rate of 0.1
and a corruption level of 0.1.

For each word, we also extract a lexical stress
component from the CELEX database, which we
transform into a binary vector of length three.
Each index corresponds to one of three possible
syllables, such that a one signifies the presence of
primary stress and a zero indicates its absence.

2UK corpora: Belfast, Manchester. US corpora:
Bates, Bliss, Bloom 1973, Bohannon, Brown, Demetras
– Trevor, Demetras – Working, Feldman, Hall, Kuczaj,
MacWhinney, New England, Suppes, Tardif, Valian, Van-
Kleeck. See the CHILDES manuals for references:
http://childes.psy.cmu.edu/manuals/

3.3 Training Set

Given the vocabulary V , we create the embed-
dings matrix T of size |V | × |V |, where each
row Tw∗ is a word embedding corresponding to a
unique target word w ∈ V and each column T∗c
corresponds to a unique context word c ∈ V . A
cell Twc is then the frequency with which c oc-
curs within a sentence-internal window of t = 3
words to the left of w, across all occurrences of w
in CDS. Rows are normalized to unit interval.

The model is trained in three conditions, with
the rows in T constituting the training set: (1) con-
text: T remains unchanged; (2) context + stress:
each row Tw∗ is concatenated with the lexical
stress feature vector of w; (3) context + phonol-
ogy: each row is concatenated with a phonological
feature vector.

4 Training Procedure and Evaluation

While the task is to predict words, we are inter-
ested in a side effect of the learning process: the
induction of representations whose organization in
vector space reflects syntactic categories. To mea-
sure this, we train a 10-NN classifier on the em-
beddings after each training epoch, with embed-
dings labeled by syntactic category, and we stop
training as soon as the micro F1 score does not in-
crease anymore.3 To avoid premature termination
of training due to fluctuations in F1 scores during
stage 1, we keep track of the epoch E at which we
got the best score A. If scores stay smaller than
or equal to A for 10 epochs, we terminate train-
ing and obtain the dimensionality-reduced embed-
dings for further training in stage 2 from the dAE’s
state at E. In stage 2, as there are no such fluctu-
ations, it is safe to terminate as soon as there is
no increase anymore. This procedure allows for as
many training epochs as are necessary for achiev-
ing the best results – between 22 and 30 in the first
and between 4 and 5 epochs in the second stage.

Performance is compared across stages as well
as to a majority vote baseline (each data point
is assigned the most common class) and a strat-
ified sampling baseline (class labels are assigned
in accordance with the class distribution). The ex-
pected pattern is that performance at each training
stage is both above baseline and significantly bet-

3We track the micro instead of the macro F1 measure be-
cause we think it is important for potential models of lan-
guage acquisition to correctly categorize a majority of words,
even at the expense of minority categories.
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progress category
context context + stress context + phonology

prec. rec. ma. F1 mi. F1 prec. rec. ma. F1 mi. F1 prec. rec. ma. F1 mi. F1

before
stage 1

nouns 89 92

0.746 0.819

88 92

0.751 0.821

72 94

0.566 0.734
verbs 66 92 70 90 67 77
adj. 68 48 68 48 58 4
clos. cl. 82 68 82 70 88 52

after
stage 1

nouns 91 93

0.785 0.847

89 92

0.778 0.840

81 94

0.707 0.804
verbs 73 93 75 91 72 86
adj. 74 54 70 53 70 30
clos. cl. 84 73 83 73 89 66

after
stage 2

nouns 90 96

0.810 0.865

88 96

0.799 0.858

79 97

0.725 0.812
verbs 81 87 81 86 82 83
adj. 76 60 75 54 75 32
clos. cl. 86 77 86 76 90 66

Table 1: Precision and recall (in percent), together with micro and macro F1 scores, based on a 10-NN classifier trained on
the word embeddings at different stages during the training process.

ter than performance at the previous stage. Signif-
icance of differences is computed via approximate
randomization testing (Noreen, 1989),4 a statisti-
cal test suitable for comparing evaluation metrics
such as F-scores (cf. Yeh, 2000).

Results are based on a dAE with 400 hidden
units, trained with a learning rate of 0.01, and a
corruption level of 0.1. The softmax model was
trained with a learning rate of 0.008, with context
words sampled from a sentence-internal window
of t = 3 words to the right. Both models were
optimized via true stochastic gradient descent.

5 Results and Discussion

Table 1 shows precision, recall and F1 scores
based on a 10-NN classifier trained on the word
embeddings at three different points in time: (a)
before training begins, with scores based on the
input embeddings, (b) after stage 1, with embed-
dings projected into a lower-dimensional space,
and (c) after stage 2, with embeddings modified as
a result of predicting words from the right context.
F1 scores at every stage are highly significantly

different (p ≤ 0.001) from both the majority vote
baseline (macro F1 = 0.168, micro F1 = 0.505)
and the stratified sampling baseline (macro F1 =
0.247, micro F1 = 0.354). Across conditions, F1

scores after stage 1 are very significantly differ-
ent (p ≤ 0.01) from scores obtained before stage
1. Scores calculated after stage 2 are still signif-
icantly different (p ≤ 0.05) from scores at the
previous stage in the context and context + stress

4We used an implementation by Vincent Van Asch, avail-
able at: http://www.clips.uantwerpen.be/scripts/art

conditions, although there is no such significant
difference in the context + phonology condition
(but p ≈ 0.07 for the difference between micro
F1 scores). There is no significant difference be-
tween the context and context + stress conditions
at any stage, whereas the within-stage differences
between F1 scores in the context and context +
phonology conditions are all highly significant.

We can make at least three observations. (1)
The model performs as expected, in that there is
a significant increase in performance after every
stage – i.e., the induced word representations clus-
ter more closely in terms of syntactic categories
as training progresses. (2) The phonological com-
ponent does not improve on the context condition,
likely because phonological similarity often con-
flicts with syntactic similarity – most notably with
homophones, but also with words such as the verb
tickle and the noun pickle. (3) The lexical stress
features do not seem to help, as there is no signifi-
cant difference between the context and context +
stress conditions.

6 Conclusions and Future Work

In general, the model demonstrates that it is pos-
sible to augment prediction-based word embed-
dings with a count based component, such that
frequency counts serve as the basis of prediction
and are further refined as a result of predicting
right context. This can serve as a first step to-
wards utilizing prediction-based methods in order
to model childrens’ acquisition of syntactic cate-
gories through a process of (1) tracking backward
statistical regularities by writing to memory and
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(2) tracking forward regularities via prediction
Apart from that, the model can be used to com-

pare the utility of different types of features. It
makes explicit the distinction, identified by Huet-
tig (2015), between cue of prediction (what is used
as the basis of prediction) and content of predic-
tion (what is predicted). Neither of the two possi-
ble cues of prediction we investigated turned out to
be helpful for the induction of syntactic categories.

The initial experiments described in this paper
emphasize different cues of prediction. In the fu-
ture, we plan to also predict different kinds of fea-
tures. Moreover, we plan to replace the psycholog-
ically implausible stage-like organization of the
model with a more incremental architecture.
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Abstract

Starting from the distributional bootstrap-
ping hypothesis, we propose an unsuper-
vised model that selects the most useful
distributional information according to its
salience in the input, incorporating psy-
cholinguistic evidence. With a supervised
Parts-of-Speech tagging experiment, we
provide preliminary results suggesting that
the distributional contexts extracted by our
model yield similar performances as com-
pared to current approaches from the lit-
erature, with a gain in psychological plau-
sibility. We also introduce a more princi-
pled way to evaluate the effectiveness of
distributional contexts in helping learners
to group words in syntactic categories.

1 Introduction and related work

The psycholinguistic research about language ac-
quisition has long been concerned with how
children crack the linguistic input to infer the
underlying structures. In this respect, boot-
strapping (Gillis and Ravid, 2009) has been
an important concept, which generated a num-
ber of hypotheses. After semantic bootstrap-
ping, introduced by Pinker (1984), other propos-
als were put forward, each strengthening one as-
pect as the starting level that informs the others
(syntactic bootstrapping (Gleitman, 1990; Gleit-
man and Gillette, 1995), prosodic bootstrap-
ping (Christophe et al., 2008), distributional boot-
strapping (Maratsos and Chalkley, 1980; Mintz,
2003)). This debate is tightly interwoven with
the more general controversy between a na-
tivist (Chomsky, 1965) and an emergentist ac-
count (Bates and MacWhinney, 1987; MacWhin-
ney, 1998; Tomasello, 2000): our work was set
up to explore the possibility of learning useful lin-
guistic information from the Primary Linguistic

Data (PLD), only using general-purpose learning
mechanisms. Thus, we look at language acqui-
sition from an emergentist perspective, exploring
the fruitfulness of the distributional bootstrapping
hypothesis.

Starting with Cartwright and Brent (1997), a
variety of models for Parts-of-Speech (PoS) in-
duction has been proposed (Clark, 2000; Mintz
et al., 2002; Mintz, 2003; Parisien et al., 2008;
Leibbrandt, 2009; Chrupała and Alishahi, 2010;
St. Clair et al., 2010), showing that PLD are rich
enough in distributional cues to provide the child
with enough information to group words accord-
ing to their syntactic category. Among such mod-
els, two major approaches can be identified: i) a
frame-based one which starts by selecting the rel-
evant cues and then evaluate how these help cat-
egorization, and ii) a probabilistic approach that
considers all possible contexts in a left and right
window whose size is set in advance, and deter-
mines the best category for each word based on
a probabilistic match between the context of each
new word and the previously encountered contexts
for all words. While the first approach has been
more concerned with finding the right cues or the
most useful type of context (Monaghan and Chris-
tiansen, 2004), usually by focusing on certain dis-
tributional patterns and assessing their effective-
ness in inducing lexical categories, the second
one has tackled the problem from a more global
perspective, inducing categories – not necessarily
syntactic – and evaluating them using other lin-
guistic tasks (Frank et al., 2008).

The first approach has been more influential in
the acquisition literature, and is the topic of ac-
tive behavioral research with both adults (Reeder
et al., 2013; Mintz et al., 2014) and infants (Zhang
et al., 2015). The second approach has been more
distinctive of the computational psycholinguistic
literature, but has been largely neglected by the
acquisition literature. In this short paper, we try
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to suggest that the approach and the methods used
in the second stream of research can be applied to
the first, not only to induce plausible categories,
but also a set of cues, without focusing on a spe-
cific kind of distributional pattern which is set in
advance using linguistic knowledge. In this re-
spect, we will review some of the major problems
of the frame-based approach before suggesting a
first way of tackling them.

In his seminal paper, Mintz (2003) suggested
that the 45 most frequent A x B frames, defined
as two words flanking a variable slot, are a plau-
sible and accurate type of information – see also
Wang and Mintz (2007) for an incremental model.
This hypothesis was further tested on French by
Chemla et al. (2009) with good success; how-
ever, its cross-linguistic validity was challenged
by Erkelens (2009) for Dutch and Stumper et
al. (2011) for German1. More recently, the fre-
quent frames hypothesis was challenged by St.
Clair et al. (2010), who proposed to use flexible
frames, i.e. left and right bi-grams defined through
the 45 most frequent words in a corpus, that can
be combined on the fly to provide tri-gram level
information – but see Mintz et al. (2014).

The main problem we see in both frequent and
flexible frames, is the arbitrariness in deciding
which contexts are important (Leibbrandt, 2009).
While frequency drives the decision, what makes
A x B (or A x + x B) frames so special that the
child commits to them to infer lexical categories?

Moreover, restricting to token frequency can
lead to retain contexts that do not help categoriza-
tion, since they only occur with one word (like the
frequent frame have X look), which in turn causes
the model to not scale well to unseen data. Where
the goal is explicitly to deal with reduced compu-
tational capacities, such behavior is far from desir-
able since it stores information that does not help
to group words in more abstract categories.

A further problem of frequent frames, at least
with English, is a strong verb bias: such cues pro-
vide information about a greater number of verbs,
while the PLD typically contain many more nouns
than verbs. This bias is a by-product of the defini-
tion of frames as fully lexical contexts: the short-
est sentence from which a frame can be derived
consists of three words, where the medial slot is
usually taken up by a verb.

1However, better results were obtained with frames de-
fined at the morpheme level, rather than at the word
level (Wang et al., 2011).

At the same time, flexible frames suffer from
other problems. Behavioral evidence suggests
that children and adults store longer sequences as
units (Bannard and Matthews, 2008; Arnon and
Clark, 2011)2, and arbitrarily excluding them does
not seem a good strategy. Moreover, they were
evaluated using a feed-forward neural network that
was trained and tested on the same data (St. Clair
et al., 2010). Since the utility of a set of distribu-
tional contexts cannot be restricted to its accuracy,
the extent to which it scales to new, unseen words
also needs to be taken into account.

Some of these problems have been addressed
by Leibbrandt (2009), although his models are not
incremental and rely heavily on arbitrary thresh-
olds to remove very infrequent elements: while
some sort of threshold seems to be unavoidable in
a fully unsupervised model, a multitude of thresh-
olds make it arbitrary and difficult to evaluate.

We will now introduce our model and then dis-
cuss the experiment that was set up to assess its
effectiveness. We finally highlight the limitations
of this work, sketch some ways to improve on it
and draw the conclusions.

2 Model

We propose a model as a solution to the prob-
lems we highlighted in the previous section: it is
entirely data-driven (reducing arbitrariness in the
choice of the relevant dimensions) and more con-
sistent with psycholinguistic evidence.

Three different pieces of information concern-
ing a distributional context can be useful to the
task at hand: i) its token frequency, i.e. how many
times it occurs in the input; ii) its type frequency,
i.e. the number of different words it occurs with;
iii) the strength to which a context is predicted by
a word, averaging across all the words it occurs
with. Since it is hard to think to frequency with-
out a comparison threshold, we divide token and
type frequencies of a context by the average token
and type frequencies across all contexts stored in
memory at each sentence in the input.

These pieces of information can be combined in
the following way:

score = token F · type f · p (1)

where each context is represented by a score re-
sulting from the product of three pieces of infor-

2Although, see Baayen et al (2011) for an account in
which n-grams effects are explained in a different way.
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mation, defined as follows:

token F =
log2(count(ci))

avg(log2(count(c))
(2)

type f =
log2(‖Wci‖)

avg(log2(‖Wc‖)) (3)

p =
1

‖Wci‖
‖Wci‖∑
j=1

log2(count(wj , ci))
log2(count(wj))

(4)

In these formulas, ci represents a distributional
cue, Wci is the set of words the cue occurs with;
wj represents a word and count(wj , ci) the num-
ber of times a cue occurs with a specific word.

Raw counts are transformed with a base-2 log-
arithm to account for the fact that, as frequency
grows, the contribution of every new occurrence
to the total frequency is less and less impor-
tant (Keuleers et al., 2010). Moreover, since the
goal of this model is to discover structure, we as-
sume that an item is only considered when it oc-
curs more than once (items whose log is 0 are
not considered). The formula in (4) closely re-
semble an average conditional probability – which
children are likely to use to infer structure in lan-
guage (Saffran et al., 1996) –, but differs from it
since counts are again log-transformed for consis-
tency with (2) and (3).

Salience can be thought of as the importance
that a context might play in grouping words into
categories, and the score we propose serves the
purpose of selecting the most salient contexts. In
this work, any context whose score is > 1 is con-
sidered to be salient, since 1 is the theoretical up-
per boundary of the p term, that can be increased
or decreased by the following terms.

The formula in (1) is plugged into an incremen-
tal model that computes averages for token and
type frequencies at every sentence s, and updates
scores for contexts encountered in s. Contexts are
harvested in a 2-word left/right window, looking
at 2 bi-grams (A x; x B) and 3 tri-grams (A B x,
A x B and x A B). A window cannot exceed a sen-
tence boundary. At sentence initial and final po-
sitions, two dummy words were inserted, since
sentence boundary information has been shown to
be a useful distributional cue (Freudenthal et al.,
2006; Freudenthal et al., 2008).

3 Experiment

3.1 Data
The experiment was carried out on the Aran sec-
tion of the Manchester corpus (Theakston et al.,
2001) from the CHILDES database (MacWhin-
ney, 2000). In order to evaluate our model on un-
seen data, we divided the corpus chronologically
in two sections: the first is used to select the distri-
butional cues, the second for the evaluation phase.

We only considered sentences uttered by the
mother, obtaining a corpus of 35K sentences. Our
section for context selection (selection set hence-
forth) contains roughly 20K sentences, the sec-
tion for the evaluation phase 15K. The corpus was
not lemmatized. We removed false starts, ono-
matopoeia and other words based on their MOR
PoS tags 3.

3.2 Setup
Different models - where each term from (1) is
knocked out separately to assess its importance -
were run on the selection set using only bi-grams,
only tri-grams or both as contexts. The salient
contexts at the end of this process were used as
features in a supervised PoS experiment over types
(not tokens) to evaluate their usefulness. As one
reviewer pointed out, this evaluation is problem-
atic for a number of reasons (Frank et al., 2008):
however, we decided to use such approach because
it is easy to interpret and provide a first indication
about the potential effectiveness of the selected
cues, serving as a first proof of concept.

In the selection set, only surface forms are
considered4. We used the TiMBL package for
memory-based learning (Daelemans et al., 2009),
selecting the IB1 algorithm (Aha et al., 1991),
weighted overlap as a distance metric with no fea-
ture weighting, and 1 nearest neighbor. In order to
perform the experiment, the second part of the cor-
pus was divided into a training and a test set (10K
and 5K sentences, respectively), and two vector
spaces were constructed, containing information
about ho many times a word occurred with each
cue.

The salient contexts harvested on the selection
set were used as columns and the words occur-

3This is the list of MOR tags that were removed: neo, on,
chi, wplay, meta, fam, sing, L2, none. Words without a tag
were also removed, like errors, marked by a 0 before the tag,
as in 0aux.

4Dog and dogs are two different types, the modal can and
the noun can are not.
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Model # contexts Useless Missed words (%) Hits Acc.
frequent frames 45 3 (6.7%) 83.7 290 .83
flexible frames 90 0 16.6 1405 .66

p · token F

2grams bound 75 0 10.2 1559 .671
3grams bound 348 13 (3.7%) 37.3 1073 .681

all bound 490 11 (2.2%) 3.8 1669 .664
p · type f

2grams bound 21 0 19.5 1377 .674
3grams bound 42 0 56.7 788 .756

all bound 97 0 8.7 1611 .679
p · token F · type f

2grams bound 211 0 2.6 1624 .641
3grams bound 659 7 (1%) 25.5 1249 .653

all bound 964 8 (0.8%) 1.2 1562 .609

Table 1: Evaluation of several sets of distributional cues, with baselines at the top and our models grouped
according to the information included. Column 2 shows the number of salient contexts; column 3 shows
how many of them could not be used for categorization. Column 4 provides the percentage of words
from the training set (total = 3191) that could not be categorized by the contexts. Columns 5 and 6 raw
number of hits (test set = 2600 words) and accuracy on supervised PoS tagging.

ring with at least one such context as rows. Words
that never occurred with any of the salient con-
texts were not categorized. In the training and test
sections, homographs were disambiguated when
they were tagged differently: thus, the list of tar-
get words may well include dog noun, dogs noun,
can verb and can noun.

Performances were evaluated on a tag-set con-
sisting of 5 categories: nouns (including pro-
nouns), verbs (including auxiliaries), adjectives,
adverbs and function words, since we were mainly
interested in content words, which make up the
productive part of the lexicon. Performance is
evaluated along 5 aspects: i) the number of salient
contexts; ii) the percentage of salient contexts that
could not be used in the training section, either be-
cause they were absent or because they only oc-
curred with one word; iii) the proportion of words
that were missed on the training set; iv) number of
hits on the PoS-tagging experiment, and v) accu-
racy.

3.3 Results and discussion

Table 1 shows performances of all models on the
five dimensions we introduced in (§3.2). Best
scores on each dimensions are highlighted in bold.
Intuitively, a model is good when it (i) selects a
limited set of contexts, reducing the dimensional-
ity of the vector space in which similar words are
searched; (ii) minimizes the number of selected

contexts that do not scale to new data; (iii) en-
sures high coverage on new data; (iv) allows to
correctly categorize a high number of words; and
(v) achieves a high accuracy, resulting in a reliable
categorization.

While frequent frames achieve the highest accu-
racy, they also have the worst coverage and low-
est number of hits. Plus, it is interesting that 3
contexts out of 45 are useless for categorization.
When we turn to flexible frames, we see that they
scale perfectly and achieve rather good accuracy,
but do not ensure wide coverage and many hits.

A first global trend involves accuracy, which is
inversely correlated with the number of selected
contexts (Pearson r = -0.68), suggesting that distri-
butional information is noisy and it is vital to focus
on certain cues and discard the majority of them5

to achieve reliable categorization. Finally, conflat-
ing bi-grams and tri-grams - which is closer to the
psycholinguistic evidence we have - does not harm
the model.

Turning to model-specific features6, p·token F
results in a rather large set of contexts, some of
them being useless. Coverage is generally high, as
the number of hits. When all three terms are in-

5A further analysis, not reported, was conducted by re-
taining all contexts and showed that both accuracy and num-
ber of hits were worse than most of the models evaluated here.

6The token F · type f models performed much worse
than the others, thus results are not reported.
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cluded, we still have large sets of contexts, few of
which don’t scale to new data. Coverage is high as
the raw number of hits, but each model here is less
accurate than its twin models. The reason for this
behavior could be that type f strongly correlates
with token F (the first cannot exceed the latter),
and when they are both considered their contri-
bution is inflated, resulting in more contexts and
noise.

The p · type f models result in the smallest set
of contexts, with perfect scalability and high accu-
racy. The downsides pertain coverage, and number
of hits. Overall, no model performs high across
all dimensions. However, the model combining p
and type f displays parsimony, scalability, cov-
erage and accuracy, although it is not the best on
any dimension (it is also similar to flexible frames,
but with better coverage, hits and accuracy). As
we noted earlier, token F and type f are strongly
positively correlated: this result suggests that the
latter can be more useful to categories induction,
since high type frequency ensures that a cue is sys-
tematic. We also evaluated contexts’ token fre-
quencies because of the well-attested frequency
effects in language acquisition (Bybee, 1995), but
the results suggest its effect in category formation
can be better accounted for by contexts’ type fre-
quency. Nevertheless, further evidence is needed
to confirm this hypothesis.

4 Limitations and future work

As one reviewer pointed out, this approach should
be extended to be fully incremental and categorize
tokens instead of types and evaluated with exter-
nal linguistic task (see §3.2). However, unlike the
probabilistic approach to category induction (§1),
the focus of this paper was on the cues rather that
on the categories: our goal was to show that it is
possible to explicitly select the most informative
distributional cues that infants are likely to rely
on using a principled metric that does not simply
rely on token frequency and predetermined distri-
butional patterns. At the same time, if the pre-
sented model is indeed relevant can be only deter-
mined by directly evaluating categories of tokens
induced in an unsupervised way on several linguis-
tic task and looking at the time-course of learning,
which was not discussed here.

A further limitation of the current work is that
it arbitrarily focuses on words, neglecting mor-
phological information, which is crucial in lan-

guages such as German, Turkish, Finnish and
alike. A full model for distributional bootstrap-
ping should automatically decide which are the
relevant cues to categories, with no a priori re-
strictions on which units to focus on – see Ham-
merström and Borin (2011) for a review on un-
supervised learning of morphology. This work
only suggests a first way of moving away from
pre-defined distributional patterns, since it can be
equally applied to morphemes but it needs a pre-
segmented input. A possible solution would be
that of combining segmentation and category for-
mation, looking at which cues are given more im-
portance by the model and how useful they are to
grouping words. Again, this falls outside of the
scope of this paper and will be addressed in the
future.

Finally, our model can be degraded in a vari-
ety of ways to introduce more plausible cognitive
constraints in the form of free parameters that can
reproduce attention and memory limitations. Such
degraded versions would constitute a further and
more informative test for this model, but are left
for future work.

5 Conclusions

While no strong conclusion can be drawn without
more data from typologically different languages,
we think the goal of the paper was matched: we
showed that the limitations of current frame-based
approaches to distributional bootstrapping can be
tackled with a simple model that incorporates
evidence from psycholinguistic experiments and
takes the number of different words a cues occurs
with into account to decide whether the cue is in-
formative. Furthermore, we showed that a model
should be evaluated on different levels, since it is
hard to achieve globally good performances.

The work by Mintz (2003) was crucial in show-
ing that the PLD were rich enough to support an
emergentist account of language learning. How-
ever, we contend that it is better to evaluate a pro-
cess and its output, rather than a pre-selected set
of cues, since it will more likely shed light on how
certain cues but not others become important. It
appears clear that focusing on fewer contexts is
better: the central issue in a frame-based account
of distributional bootstrapping should be to devise
a model that identifies which cues give the best in-
formation.
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Abstract

Experiments on the emergence of a shared
language in a population of agents usu-
ally rely on the control of the complex-
ity by the experimenter. In this article we
show how agents provided with the au-
totelic principle, a system by which agents
can regulate their own development, pro-
gressively develop an emerging language
evolving from one word to multi-word
utterances, increasing its discriminative
power.

1 Introduction

The evolution of communication has been a topic
in artificial life since early 90s (Werner, 1991;
Ackley and Littman, 1994). Short after that, a
group of Alife researchers started to focus on the
origins and emergence of human language-like
communication systems through experiments with
populations of artificial agents (Smith et al., 2003;
Steels, 2003; Wagner et al., 2003). This line of
research has shed light on the emergence of spa-
tial terms and categories (Spranger, 2013), case
systems (van Trijp, 2012), quantifiers (Pauw and
Hilferty, 2012) or syntax (Kirby, 1999; Steels and
Casademont, 2015). However, the success of these
experiments usually relies on the control of com-
plexity by the experimenter.

In order to let the agents manage complexity
themselves it is necessary to provide them with
a mechanism to regulate complexity in an au-
tonomous way. Research in AI and robotics has
explored systems that allow embodied agents to
develop themselves in open-ended environments
by means of error reduction (Andry et al., 2001),
reinforcement learning (Huang and Weng, 2002),
prediction (Marshall et al., 2004) or curios-
ity (Oudeyer et al., 2007; Kaplan and Oudeyer,
2007). This mechanisms are highly inspired by

psychological studies on the role of motivation
(Hull, 1943; Skinner, 1953; White, 1959; Graham,
1996). Motivation can be defined as “to be moved
to do something” (Ryan and Deci, 2000) and it is
commonly divided in extrinsic motivation, when
an activity is done to attain some separable out-
come, and intrinsic motivation, when an activity
is done for its inherent satisfactions.

This paper investigates the role of intrinsic mo-
tivation in language emergence. It presents an
agent-based experiment where a population of ar-
tificial agents has to develop a language to refer to
objects in a complex environment. In addition to
mechanisms to invent and adopt words and syn-
tactic patterns, agents are provided with an opera-
tional version of the Flow theory (Csikszentmiha-
lyi, 1990) that enables them to self-regulate their
development.

2 Flow Theory

The model of intrinsic motivation in a population
of artificial agents used in this experiment is based
on the Flow theory developed by the psychologist
Csikszentmihalyi (1990). He studied what moves
people to be deeply involved in a complex activ-
ity that does not present a direct reward. He called
these activities autotelic, as the motivational driv-
ing force (telos) comes from the individual herself
(auto).

Csikszentmihalyi states that in an autotelic ac-
tivity there is a relation between challenge, how
difficult a particular task is, and skill, the abilities
a person requires to face that particular task. As
a consequence of this relation, a person involved
in an autotelic activity can experience three men-
tal states: boredom, when the challenge is too low
for the skills this person has, flow, when there is a
balance between challenge and skills, and anxiety,
when the challenge is too high for the available
skills. The flow state produces an intense enjoy-
ment in a person involved in an autotelic activ-
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ity. The flow state is not static but in continuous
movement, since the balance between challenge
and skills creates the ideal conditions to develop
skills. As a consequence this person becomes self-
motivated, as she tries to stay in the flow state to
experience this strong form of enjoyment.

3 Autotelic Principle

The autotelic principle is an operational version
of the flow theory that provides agents with a
system to self-regulate their development (Steels,
2004). It was first designed for developmental
robotics (Steels, 2005) but it has also been used
to study language emergence (Steels and Wellens,
2007). This principle proposes the balancing be-
tween challenge and skills as the motivational
driving force in agents. Agents are therefore pro-
vided with mechanisms to set their own challenges
and evaluate their performance to determine their
emotional state. Depending on their emotional
state, agents autonomously decide to increase their
challenge (boredom), decrease it (anxiety) or con-
tinue with the current challenge to keep develop-
ing their skills (flow).

Challenges are defined as a specific configura-
tion of a set of parameters. For example, param-
eters can be the number of objects or the num-
ber of properties of an object that agents can re-
fer to. Challenges are formally represented as
< pi,1, ..., pi,n > in a multi-dimensional param-
eter space P , where pi,j corresponds to the con-
figuration of the parameter j in the challenge i.
Steels found advantageous to initialize the system
with the lowest challenge configuration and grow
in a bottom-up manner. There are no studies on
the effect of a higher challenge configuration ini-
tialization in agents, but it will probably result in a
slower development of skills.

Agents can estimate their skills by measuring
their performance. Performance is measured tak-
ing into account an overall estimation of the inter-
action (if they have succeed or failed) and specific
performance measures for each component used.
Components are subsystems of the agent that are
responsible for specific tasks, such as selecting a
topic, conceptualise it into a meaning predicate
or formulate an utterance given a meaning pred-
icate. For example, in a communicative challenge
the conceptual component has a performance mea-
sure of how well the resulting conceptualisation
discriminates the topic or the language component

a measure that evaluates if it could formulate an
utterance covering the conceptualisation.

Agents also keep track of how confident they
are to succeed on the challenge they have posed to
themselves. The confidence in a challenge is re-
lated to the skills agents require to deal with that
challenge. In a challenge where agents have to
come up with names for objects, the development
of a lexicon increases its communicative success
and the confidence in being able to cope with the
challenge.

Agents are constantly alternating between the
operational and the shake-up phases. The oper-
ational phase takes place when the challenge pa-
rameters are fixed. The agent explores this con-
figuration and tries to develop its skills to reach a
certain level of performance. The shake-up phase
occurs when the performance and confidence mea-
sures are stable. Agents employ this measures to
determine how the challenge parameters should be
adjusted. If the performance and confidence mea-
sures are low, agents perceive that they are in an
anxious state and decrease the challenge param-
eters. Alternatively, when both performance and
confidence measures are high, agents enter a bore-
dom state and increase the challenge parameters.

4 Experiment configuration

The aim of this experiment is to show how a pop-
ulation of artificial agents provided with the au-
totelic principle develop a shared language with-
out any control on the complexity by the exper-
imenter. Agents play a language game, which
consist in situated communicative interactions be-
tween two agents of a population (Steels, 2012).
These agents are randomly selected from a popu-
lation of ten agents. One of them assumes the role
of speaker and the other the role of hearer.

4.1 World

In the experiment, agents share a world, which
consist of ten different scenes. Each scene is com-
posed of two objects and a spacial relation be-
tween them, such as close, far or left of. Objects
are characterised by three feature-value pairs: pro-
totype (e.g.: chair, box, table), color (e.g.: green,
blue, purple) and shape (e.g.: round, hexagonal,
square). Objects and scenes are unique, but a par-
ticular feature-value can be shared by two or more
objects. In an interaction speaker and hearer share
the same context, which consist of a randomly se-
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lected scene from the world.

4.2 Language game

The specific language game that agents play is
called multi-word guessing game. The speaker se-
lects a topic form the context of the interaction,
based on his current communicative challenge. It
conceptualises this concept into a meaning pred-
icate and uses its language component to formu-
late an utterance which is transmitted as text to the
hearer. The hearer tries to comprehend the utter-
ance and construct hypotheses about the topic. If
the hearer has only one hypothesis, it points to the
interpreted topic. If the hypothesis corresponds
to the topic, the speaker gives positive feedback
and the interaction ends. On the other hand, if the
hypothesis does not correspond to it, the speaker
gives negative feedback to the hearer and points to
the intended topic. When the hearer has multiple
hypotheses, it signs to the speaker that it could not
identify the topic. The speaker then gives feed-
back by pointing to the intended topic. The inter-
action is a success only when the hearer has one
hypothesis about the topic that corresponds with
the topic selected by the speaker. In all other cases,
the result of the interaction is a failure.

4.3 Challenges

Agents refer to one or two objects in the scene,
and minimally express the prototype of the ob-
ject(s). Apart from the prototype, agents can refer
to one or more properties of objects or to the re-
lation between them. The challenge configuration
is therefore based on two parameters: the number
of properties agents refer to and if the relation is
expressed or not. Challenges have a confidence
value between 0.0 and 1.0, initialised at 0.0. After
each interaction, speaker and hearer update their
confidence value with a score obtained computing
the average between the result of the interaction
(success or failure) and the performance evalua-
tion of the components used by the agent. The
update score has a low value (between 0.008 and
-0.032) to provide agents enough time to develop
the skills necessary to cope with the challenge.

The challenge level one (refer only to proto-
types of objects) is set as the initial challenge.
In the experiment agents can adjust the challenge
configuration up to level four: refer to up to two
objects expressing three of their properties or to
relations between objects.

Challenge Level Properties Relation
1 0 0
2 1 0
3 2 0
4 3 0

2 1

Table 1: Challenge levels.

4.4 Mechanisms
Agents are equipped with conceptualisation and
interpretation mechanisms to map between the
world model and meaning predicates that refer
to it. For example, a blue table is conceptu-
alised into (blue(x), table(x)). Agents start with-
out any form-meaning mappings (also called con-
structions). This mappings will emerge during in-
teractions by using three mechanisms: diagnos-
tics, repairs and alignment.

Diagnostics are a set of processes by which
agents can identify problems during formulation
(when agents go from a meaning predicate to an
utterance) and comprehension (when agents re-
construct the meaning predicate from an input ut-
terance). In the experiment agents can identify un-
known meanings, unknown words, unsolved word
orders and referent problems.

Repairs are strategies used by agents to solve
diagnosed problems. For example, an unknown
meaning can be solved by the speaker with a repair
that creates a new word for that meaning, or an un-
known word can be solved by the hearer with a re-
pair that uses the feedback of the speaker to iden-
tify which meaning corresponds to that word. No-
tice that the later is only possible when the hearer
can unambiguously deduce the meaning of the un-
known word. Unsolved word orders and referent
problems appear when agents start to build multi-
word utterances. This problem can be solved
by creating grammatical constructions that intro-
duce constraints on how properties and prototypes
are ordered when formulating and comprehending
multi-word utterances.

There is a competition of form-meaning map-
pings (both lexical and grammatical) during the
emergence of a shared language. This competi-
tion occurs either when multiple forms refer to the
same meaning or when one word can express sev-
eral meanings. Each mapping has a score between
0.0 and 1.0 and is initialised at 0.5. Alignment is
a mechanism that guides the choice of which con-
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structions agents use based on the score of their
constructions. The scores of the mappings used
by the speaker and hearer are updated after each
interaction. When a form-meaning mapping gets
a score of 0.0 is deleted from the construction in-
ventory of the agent. The alignment used in this
experiment follows the dynamics of lateral inhibi-
tion (De Vylder and Tuyls, 2006).

When there is communicative success, both
speaker and hearer align, which means that they
increase the scores of the mappings used by
0.1 and decrease its competitors by 0.1. Note
that the mapping competitors for the speaker are
those constructions that express the same mean-
ing, while mapping competitors for the hearer are
those that contain the same form. When there is
communicative failure, the alignment differs for
speaker and hearer. If the speaker has formulated
one word utterance, it decreases the score of the
construction used by 0.1. The hearer aligns only
when the intended topic by the speaker is among
its hypotheses. It increases the score of the con-
structions used by 0.1 and decreases the score of
its form competitors by 0.1. In all other cases
agents are not able to identify what caused the
communicative failure and do not align.

5 Experimental results

The results of ten experimental runs for a popula-
tion of ten agents equipped with the autotelic prin-
ciple are shown in Figure 1.
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Figure 1: This graph shows communicative suc-
cess (left y-axis) and the average confidence on
challenge level (right y-axis) in a population of 10
agents equipped with the autotelic principle.

Agents start with an empty construction inven-
tory and with the challenge of emerging a shared
language for prototypes. They develop it rapidly,
increasing their confidence on the first challenge

up to its maximum value around interaction 2000.
Note that the communication success starts to drop
before the average confidence value in the popu-
lation has come to its maximum. This is due to
the fact that some agents have already reached the
highest confidence score and therefore they have
moved to the next challenge.

Communicative success and the speed at which
agents gain confidence decreases at this point, as
agents begin to refer also to the color and shape
of objects. Agents have to agree now on form-
meaning mappings to refer to color and shape
and grammatical constructions to manage refer-
ence problems in multi-word utterances. Commu-
nicative success and confidence in challenge lev-
els two and three grow steadily until they reach
its maximum value around interaction 5500. The
population has reached the maximum level of con-
fidence for the first three challenge levels and start
to address challenges of level four. The commu-
nicative success slightly diminishes at this point
due to the fact that agents have to agree on how to
refer to relations. By interaction 9000 all agents
have reached the maximum confidence for each
challenge.

There are differences on the percentage of com-
municate success that agents are able to reach for
each challenge level. These differences are due to
the fact that some topic descriptions are ambigu-
ous. The discriminative power of an utterance in-
creases when agents refer to more properties of
objects or the relation between them. This ac-
counts for the differences observed on Figure 1,
where agents reach a higher percentage of com-
municative success once they have agreed on how
to refer to properties and relations.

The results obtained show that a population
of agents equipped with the autotelic principle
manage to autonomously increase the complex-
ity of a shared language through recurrent inter-
actions. Agents succeed in progressively develop
their communicative skills when trying to stay in a
state of flow. As a result, agents reach a higher
communicative success in their interactions, as
they can successfully refer to more informative
topic descriptions which are less ambiguous.
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Abstract

In this paper, a particular algorithm for
lexical acquisition – taken as a problem
of learning the mapping from words to
meanings – is evaluated. The algorithm
in Siskind (1996) is adapted to handle
more complex input data, including data
of Brazilian Portuguese. In particular, the
input data in the present study covers a
broader grammatical knowledge, showing
both polysemy and higher inflectional and
agreement morphology. Results indicate
that these properties create difficulties to
the learner and that more substantial de-
velopments to the algorithm are needed in
order to increase its cross-linguistic capa-
bilities.

1 Introduction

Computational modeling, as an empirical ap-
proach to theoretical problems, has the benefit
of demanding clear and exhaustive specification
of the problem under consideration (Pearl, 2010;
Yang, 2011). In this paper, we consider a com-
putational model of lexical acquisition by a child
learning her native language. Lexical acquisition
is taken here as a problem of learning the map-
ping from words to meanings based on a cross-
situational strategy. Simply put, cross-situational
lexical learning is the strategy by which word-
to-meaning mappings are learned by assigning to
a given word the meanings which are consistent
across the situations where the word is heard. One
computational modeling of this strategy is pro-
vided in Siskind (1996).

We present an implementation of Siskind’s al-
gorithm, which is part of a broader computational
model of first language acquisition presented in
Faria (2013). It is evaluated against informa-
tionally and morphologically more complex in-
put data, including data of Brazilian Portuguese.

As shown below, both aspects have an impact on
the learner’s performance. Consequently, a bet-
ter understanding of them is necessary in order
to progress towards learning models with wider
grammatical and languages coverage.

The reader is referred to Siskind’s (1996) argu-
ments on the empirical plausibility of the model
and for it being an approximation to the em-
pirical problem of lexical acquisition through
cross-situational learning which is taken in the
psycholinguistic literature as a plausible learn-
ing strategy (Pinker, 1989; Fisher et al., 1994).
Nonetheless, as stressed by Siskind, it is not
claimed that the child employs the particular
heuristics presented here. The main goal, instead,
is to provide a proof of existence for an algorithm
that solves approximations to the problem.

2 Lexical acquisition in the model

The lexical acquisition procedure presented in this
paper is part of a broader first language acquisi-
tion model (Faria, 2013) which aims to simulate
the acquisition of word to meaning mappings as
well as syntactic knowledge. The model was also
aimed at dealing with Brazilian Portuguese (BP)
input data as well as with some issues of word
order which were evaluated through an artificial
corpus built with English vocabulary but display-
ing a strictly head-final order. Given its charac-
teristics, the model can be included among some-
what similar studies found in the literature, such
as Berwick (1985), Gaylard (1995), and Villavi-
cencio (2002), among others.

The procedure is based on Siskind’s (1996)
heuristics, adapted in order to meet the goals of the
modeling. One goal is to account for a greater va-
riety of grammatical phenomena.1 A second goal

1In Siskind’s (1996) study, functional elements, such as
articles, have no semantic-conceptual content, being acquired
as lexical items that do not contribute to the meaning of sen-
tences. This is a simplification not assumed in the model pre-
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is to account for a greater variety of languages
which, in the present study, consists in extend-
ing learning to Brazilian Portuguese, a language
which, for being of a different family (as com-
pared to English), shows properties that pose dif-
ficulties to the original learning heuristics, as is
shown in what follows.

2.1 Summary of Siskind’s (1996) simulation

Siskind presents an algorithm consisting of a se-
ries of ordered heuristics. The heuristics were
conceived to guarantee an efficient and success-
ful learning under different conditions, that is, in
the presence of noise (utterances paired with in-
correct meanings), “referential uncertainty” (utter-
ances paired with more than one partially correct
meaning) and homonymy. The corpus used in the
simulations was based on a simple context free
grammar which randomly generated only simple
declarative sentences, pre-segmented and without
adjectives and other adjuncts.

Functional words, such as determiners, were as-
sumed not to contribute meaning to sentences. The
MLU of sentences varied from 4.99 to 6.29 and
all sentences had between 2 and 30 words and
no more than 30 conceptual symbols. Simula-
tions evaluated different parameterizations for (i)
the size of the vocabulary (1000 to 10,000), (ii)
the degree of referential uncertainty (i.e., the num-
ber of meanings paired with an utterance), (iii) the
noise rate (0 to 20%), (iv) the number of concep-
tual symbols (250 to 2,000), and (v) the mean rate
of homonymy in the corpus (between 1 and 2).

Results showed that the parameters (ii) and (iv)
seem not to affect the convergence of the learning
process. Therefore, the apparent complexity of the
discourse context and that the potentially infinite
number of concepts we may entertain seem to be
efficiently handled by a cross-situational learning
strategy. All other parameters had an impact in the
learning curve, but the rate of homonymy was cru-
cial: while 10,000 words were sufficient for con-
vergence given a rate of 1 (i.e., no homonymy),
900,000 words were necessary for convergence
given a rate of 2. Learning is slow for the first
25 words and increases until most of the vocabu-
lary is learned. In late stages, words can be learned
even with one exposition.

Finally, Siskind emphasizes limitations of the
algorithm. First, it assumes strict homonymy, that

sented here.

is, words may have completely distinct meanings,
but not partially distinct. Thus, polysemy may
pose difficulties to the author’s heuristics. The
semantic-conceptual representation is simplified,
not only for leaving aside the semantic content of
functional words, but also as a consequence of a
restricted grammatical coverage.

2.2 Lexical processing

In this model, lexical recognition and acquisition
are part of the same process. At any given mo-
ment, the recognition of an utterance consists in
obtaining the cross product of the sense sets of
its words – Siskind names each combination as
a “possible sense assignment” (PSA) – and, once
the set of PSAs is obtained, identifying the PSA
that is both consistent with the utterance (i.e., all
words contribute to its meaning) and, in the case
that more than one PSA is consistent, has the high-
est confidence factor (explained later).

2.3 The input data

The input data in this study is different from
Siskind’s (1996). First, it better reflects the dis-
tribution of types of utterances found in child
directed data (Hoff-Ginsberg, 1986; Cameron-
Faulkner et al., 2003). Second, by assumption, it
more appropriately reflects the nature of the data
that a child is exposed to.

2.3.1 Distribution

Hoff-Ginsberg (1986) studies the effects of func-
tional and structural properties in the speech of
mothers on the syntactic development of their chil-
dren. Part of the author’s findings is presented be-
low, summarized in Table 1.

Measure M
Measures of syntactic complexity

MLU 4.47
VP/utterance .95
NP/utternace 1.60
Auxiliaries/VP .29
Words/NP 1.33

Frequencies of sentence forms (% of all utterances)
Declaratives 25
Yes/no questions 15
Wh- questions 17
Imperatives 8
Interjections 17

Table 1: Structural Properties of Mothers’ Speech in Hoff-
Ginsberg (1986).
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Cameron-Faulkner et al. (2003) provide a
slightly more detailed description of these struc-
tural properties, as shown in Table 2. Fragments
are utterances with one or more words, the lat-
ter consisting of NPs (43%), VPs (23%), PPs
(10%) and other (24%). Complex constructions
are sentences with sentential complements, as in
“I think it’s going to rain”, and subordinate adver-
bial clauses introduced by because, if and when.

Type Mean proportion Tokens
Fragments .20 (.13–.32) 3351

One word .07
Multi-word .14

Questions .32 (.20–.42) 5455
Wh- .16
Yes/no .15

Imperatives .09 (.05–.14) 1597
Copulas .15 (.08–.20) 2502
Subject–predicate .18 (.14–.26) 2970

Transitives .10
Intransitives .03
Other .05

Complex .06 (.03–.09) 1028

Table 2: Survey of Child Directed Speech in Cameron-
Faulkner et al. (2003).

By collapsing their findings, we arrived at the
frequencies shown in Table 3, used in the genera-
tion of the input data for the model. Frequencies in
the interior of each type are not controlled, that is,
subtypes have random frequencies. With respect
to similar models in the literature, the grammati-
cal coverage is larger, although far from covering
the full grammatical knowledge of a speaker.

Type H-G Cetal. This study
Fragments – .20 .20
Questions .32 .31 .32

Wh- .17 .16
Yes/no .15 .15

Imperatives .08 .09 .09
Declaratives .25 .39 .39
Total 1.00

Table 3: Types and frequencies of utterance types assumed
in the present simulation. “H-G” stands for Hoff-Ginsberg
(1986) and “Cetal." for Cameron-Faulkner et al. (2003).

2.3.2 Linguistic properties

This model embodies a richer diversity of word
classes and utterance types. For a detailed view
of these, I refer the reader to Faria (2013, p.154-
155). A direct consequence is that polysemy in

the input is higher. As one example, since inchoa-
tive uses of verbs are included in the input, it will
have the learner dealing with potentially one ex-
tra (non-causative) sense for each verb of change
of state. The verb “break”, for instance, may ap-
pear in “John broke the car” and “The car broke”,
utterances which by assumption differ in terms of
causativity. Thus, one of the goals of this model-
ing is to evaluate the learner’s performance given
more polysemy in the input.

2.4 The learning procedure
In the end of this section, an illustration of the
functioning of the heuristics is provided. We re-
fer the reader to Siskind (1996) for a lengthy dis-
cussion about the reasoning behind each heuris-
tic. In what follows, the heuristics assumed are
presented and the main adaptations to the origi-
nal highlighted. As in the original procedure, for
learning to be possible the lexicon LEX is orga-
nized in three tables:

1. Table N, which maps a sense to its
necessary conceptual symbols;

2. Table P, which maps a sense to its
possible conceptual symbols;

3. Table D, which maps each sense
to its possible conceptual expres-
sions.

Word symbols may have more than one sense,
one for each of its meanings in cases of
homonymy or polysemy. The following set of
heuristics (rules 1 to 5) is applied to each of the
PSAs generated for a given utterance, as explained
in the previous section.

Rule 1. Ignore a PSA when (i) at least
one symbol from the meaning of the ut-
terance is absent from all P(w), and (ii)
not all N(w) contribute to the meaning
of the utterance.

Rule 2. For each word w of the utter-
ance, remove from P(w) any symbol not
included in the utterance meaning.

Rule 3. For each word w of the ut-
terance, add to N(w) any conceptual
symbol exclusively in P(w) (thus, absent
from the P set of the remaining words).

Rule 4. For each word w in the utter-
ance, remove from P(w) any conceptual
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symbol that appears only once in the ut-
terance meaning and is included in the
N(w′) for some other word w′ of the ut-
terance.

Rule 5. For each word w in the utter-
ance, if w converged for its conceptual
symbol set, that is, N(w) = P(w), remove
from D(w) any expression that does not
involve the conceptual symbols in N(w);
if the word has not yet converged, re-
move from D(w) any expression that in-
cludes a symbol not in P(w).

The original “Rule 1” in Siskind (1996, p.57)
was conceived to deal with referential uncertainty.
However, in the present study this parameter is not
evaluated. Thus, the original rule being irrelevant,
an alternative rule is conceived to deal with the
possibility that the words of a sentence may never
contribute the whole meaning of an utterance. In
the present study, this is a consequence of includ-
ing conceptual symbols for the utterance type, for
instance, DECL for declarative sentences, which
have no morphological realization in languages
like English and Brazilian Portuguese. The orig-
inal Rule 1 would discard relevant PSAs because
at some point the symbol DECL would be absent
from all P(w) (the set P for a word w), that is, at
some point there would be no word in any utter-
ance which could possibly contribute DECL.

Siskind proposes a sixth heuristic that is put
aside here. Its task is to check if there is at
least one combination of the subexpression for the
words in the utterance that matches exactly the ut-
terance meaning. Since in this study, words in
a given utterance may not contribute all the con-
ceptual symbols present in the utterance meaning,
this rule would cause problems to the learner. Al-
though acknowledging that a different version of
this rule may still be useful, the learning procedure
in the present study has only the five rules shown
above.

Three situations may arise, after an utterance
is processed: (i) the algorithm converges to an
unique consistent PSA; (ii) it converges to a set
of consistent PSAs; and (iii) no PSA is found to
be consistent with the utterance meaning. In the
first case, the confidence factors for the senses in-
volved are incremented. In the second, the algo-
rithm first identifies the PSA with the highest cur-
rent confidence factor and then update the confi-
dence factor of the senses involved. In the last

case, the algorithm determines the least number
of words to be updated in their P and D sets. If it
identifies some, the utterance is processed again.
Otherwise, the utterance is discarded. As we can
see, the confidence factor is a simple measure that
allows the learner to converge to more consistent
senses while gradually eliminating incorrect lexi-
cal entries.

2.5 An illustration

Let us assume that at some given stage, the learner
shows the following partial non-converged lexi-
con:

N P
John {John} John, ball
took {CAUSE} CAUSE, WANT, BECOME,

take, PAST
the {} WANT, arm, DEF
ball {ball} ball, take

Now, suppose that the learner is presented with
the input “John took the ball”, paired with the
meaning:

(1) DECL(PAST(CAUSE(John,

BECOME(DEF(ball), take))))

Since the N(the) is empty, the sole PSA for this
input sentence (which includes John, CAUSE and
ball) would be discarded given Rule 1. The al-
gorithm then determines the minimum number of
words to be updated in the lexicon, in this case,
only the word the:

N P
John {John} John, ball
took {CAUSE} CAUSE, WANT, BECOME,

take, PAST
the {} WANT, arm, DEF, DECL,

PAST, CAUSE, John, BE-
COME, ball, take

ball {ball} ball, arm

Given the new lexicon and assuming the same
input, Rule 1 would not filter out its PSA. Now,
another inference becomes possible, captured by
Rule 2: since the utterance meaning does not con-
tain the symbols WANT and arm, they can be ex-
cluded from the P sets of the relevant lexical items.
After this, a comparison between the P sets of the
words is possible: exclusive symbols in the P sets
of the words can be copied to their respective N
sets, a task carried on by Rule 3. The updated lex-
icon shows the following configuration:
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N P
John {John} John, ball
took {CAUSE} CAUSE, BECOME, take, PAST
the {DEF} DEF, DECL, PAST, CAUSE,

John, BECOME, ball, take
ball {ball} ball

The fourth heuristic compares the necessary
symbol sets of the utterance words. In the exam-
ple, it will detect that ball and John appear (each)
only once in the utterance meaning and that both
are, respectively, in N(ball) and N(John). Thus,
the conceptual symbol ball can be removed from
P(john) and P(the), as shown below:

N P
John {John} John
took {CAUSE} CAUSE, BECOME, take, PAST
the {DEF} DEF, DECL, PAST, CAUSE,

BECOME, take
ball {ball} ball

Some more input is necessary for a complete
convergence. Suppose, now, that the learner
receives the utterance “The kids” paired with
DEF(kids). By applying Rules 1 to 4, the follow-
ing updated lexicon would be obtained (the entry
for kids is omitted):

N P
John {John} John
took {CAUSE} CAUSE, BECOME, take, PAST
the {DEF} DEF
ball {ball} ball

Note that the has totally converged. If exposed
again to the utterance (1), Rules 1 to 4 would take
the learner to the final partial state below:

N P
John {John} John
took {PAST, CAUSE,

BECOME, take}
PAST, CAUSE,
BECOME, take

the {DEF} DEF
ball {ball} ball

The learner is ready for what Siskind (1996)
calls “stage two”: once the relevant conceptual
symbols were discovered, a structured meaning
is calculated for words that have more than one
conceptual symbol. In the present model, instead,
each sense starts with all possible valid subexpres-
sions extracted from the utterance meaning as its
D set. During the learning process, Rule 5 will re-
move all expressions that lack the necessary con-
ceptual symbols of a sense. At the end of this pro-
cess, only one subexpression should remain. This
approach is simpler than the original calculations
although it is not clear which one can be consid-
ered more plausible.

3 Simulations

Simulations were conducted for five corpora. Gen-
eration was controlled for the MLUw of each cor-
pus (Parker and Brorson, 2005, for details) and for
the distribution of types of utterances, as explained
before.

3.1 Corpora

Table 4 summarizes the characteristics of the cor-
pora used in the simulations. The MLUw measure
takes the mean number of words instead of mor-
phemes. The two measures are argued to be almost
perfectly correlated (Parker and Brorson, 2005).

Corpora Utter. Words MLUw Lex.
Development 985 3065 3.11 52
“Head-final” 2071 10347 5.00 56
English 40863 245111 6.00 91
BP I 100000 575449 5.75 133
BP II 100000 577349 5.77 464

Table 4: Corpora used in the simulation.

Each corpus in the table above was conceived
with a specific purpose. The “development” cor-
pus was manually built in order to make learning
easier and faster, such that the overall functioning
of the model could be observed given a very favor-
able input. The vocabulary was smaller, as well as
its MLUw, utterances were ordered from the sim-
plest to the most complex and were also ordered to
provide strong contrasts, making heuristics more
effective.

The other corpora were all generated automati-
cally. The “head-final” corpus also has a small vo-
cabulary and had the intent of increasing the diffi-
culty in the lexical acquisition task by eliminating
the artificial simplicity and ordering of data of the
development corpus. Finally, the English, the BP
I and the BP II corpora, being much larger than
the first two, had the goal of imposing a more sub-
stantial challenge to the learner. Given the richer
morphology of Brazilian Portuguese, BP I and II
corpora show the largest vocabularies and number
of utterances, in order to ensure a sufficient expo-
sition to all lexical items of BP.

3.2 General results

In this study, convergence means – as in
Siskind (1996) – to acquire at least one meaning
by word for 95% of the lexical items. For the de-
velopment corpus, the learner fully converged to
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the target lexicon, without false positives. Conver-
gence was also almost complete for the head-final
corpus, but the learner’s performance starts to fall
down for the larger corpora. For these, the learner
was successful in acquiring functional words in
general (determiners, prepositions, etc.), nouns,
adjectives, adverbs, copulas, auxiliaries and verbs
in the imperative form. It also showed some suc-
cess in acquiring passive verbs. However, in gen-
eral, its performance was very poor for verbs ei-
ther by converging to false positives or not con-
verging at all. False positives were deviant cases
where the meaning was partially correct, but not
exactly. More specific details for each corpus and
its respective simulation are provided in next sub-
section. Table 5 summarizes the learner’s perfor-
mance.

Target Acquired
Corpus Lex. Lex. False Conv.
Development 52 52 0 100%
Head-final 56 54 0 96,4%
English 91 87 11 95,6%
BP I 133 70 2 52,63%
BP II 464 183 1 39,43%

Table 5: Summary of lexical acquisition for each corpus.

3.3 Specific results
As expected, the development corpus made it easy
for the learner to converge. It consisted of 197
utterances which were iterated five times. Given
the relative simplicity of the utterances (MLUw of
3.11), these iterations were meant to simulate mul-
tiple expositions to the same utterances while ar-
tificially excluding more complex utterances that
could slower the learning process by creating too
many concurrent senses for each word. Instead,
this corpus favors higher contrasts between words
thus leading to faster learning. The first iteration
had a pre-specified order, starting with simple NP
fragments, followed by NP with adjuncts, and fi-
nally clauses and yes/no questions. Consequently,
almost all the target lexical items were acquired in
the first iteration, the remainder being acquired in
the second, as Figure 1 shows.

The head-final corpus is a small English corpus
to which a strict head-final ordering was imposed.
Although this property is not relevant for lexical
acquisition, this corpus had the goal of remov-
ing the artificial restrictions of the development
corpus. Thus, the behavior of the learner could
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Figure 1: Lexical acquisition for the development corpus.

be evaluated given a slightly more complex in-
put (which also included Wh- questions). Results,
shown in Figure 2, show that in fact the learner
is able to converge in the face of random exposi-
tion to data. Because of its small size, the corpus
was insufficient for the learner to converge for all
words.
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Figure 2: Lexical acquisition for the head-final corpus.

Starting with the English corpus, simulations
tried to evaluate the performance of the learner
given larger corpora with bigger vocabularies. The
number of distinct verb stems was kept small with
only two for each verb class (intransitive, unerga-
tive, etc.).

As Figure 3 shows, the learner converged al-
most fully, although it showed an interesting ten-
dency of including definiteness as part of verb
senses and excluding them from proper nouns.
However, by inspecting the final lexical entries, it
seemed possible that this tendency is temporarily

50



0
20

40
60

80
10

0
12

0
14

0

No. of utterances (thousands)

0 10 20 30 40

0
20

40
60

80
10

0
12

0
14

0

No. of utterances (thousands)

0 10 20 30 40

0
20

40
60

80
10

0
12

0
14

0

No. of utterances (thousands)

0 10 20 30 40

Lexical items

Detected
Convergent
Convergent senses

Figure 3: Lexical acquisition for the English corpus.

and could be overcome with more input data, as it
did for some items. Related to this issue, we also
see a strong tendency in this simulation for a high
number of senses conjectured and converged to by
the learner, as compared to other simulations. This
is discussed in the next section.

The learner’s performance drops drastically
when exposed to Brazilian Portuguese data. The
BP I corpus was also controlled for the number of
verb stems, 1, by class of verbs. However, given
the possible inflected verb forms of Brazilian Por-
tuguese, the final vocabulary of BP I contained 42
more items when compared to the English corpus.
As we can see in Figure 4, although the learner re-
ceived more than twice the number of input utter-
ances available in the English corpus, it acquired
less words, consisting mostly of functional items,
nouns, verbs in the imperative and passive forms,
adjectives and adverbs. For almost all of the other
inflected forms, the learner could not converge.

In the final simulation, with the BP II corpus,
the learner followed the same tendency, with even
lower proportional results (Figure 5). In this cor-
pus, differently, there were more verb stems – up
to 8 – per verb class.

3.4 Discussion

It was mentioned above a strong tendency, by
the learner, of conjecturing and converging to a
higher number of senses in the simulation for En-
glish. This is, in part, a direct consequence of
the higher number of contexts in which the same
word form appears with subtle meaning differ-
ences in English. However, for another part, the
learner had a tendency of converging to senses
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Figure 4: Lexical acquisition for the BP I corpus.
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Figure 5: Lexical acquisition for the BP II corpus.

close to but divergent from the target ones. For
instance, the learner had a tendency of converging
to verb senses which included the definiteness fea-
ture, thus, showing at least two alternative senses
for the same entry, one for definite and another for
non-definite contexts. Sometimes it also included
another sense along with these, now without the
definiteness feature, thus closer to the target. This
is a curious tendency and it is not yet clear whether
it is temporarily and could be overcome by more
data or if it may result from some inconsistency in
the input data.

Apart from that, two main reasons seem to be
involved in the learner’s performances, in particu-
lar, for the lower performances for BP I and BP
II corpora. First, it is possible that the learner
could converge for Brazilian Portuguese if more
data were available, given the sensitiveness of the
heuristics to homonymy. As mentioned before, the
polysemic nature of the input data in this model
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makes it likely that a corpus of up to a million
words could be necessary for convergence. Un-
fortunately, technical issues prevented the learner
to be exposed to such amounts of data. Thus, this
can be taken as a first explanation for the learner’s
low performance for the BP corpora.

A second factor relates to morphological prop-
erties of the input language. Siskind’s (1996)
heuristics were only evaluated against English
data, for which the present learner was also sim-
ilarly successful. Thus, it is likely that the richer
morphology of BP is causing problems to the
heuristics as it leads to higher sparsity of data. It
turns out that words show much lower frequencies
in the BP corpora, when compared to the English
corpora, as we can see in Figures 6 and 7.

As we see, there is a significant difference be-
tween frequencies for English and Brazilian Por-
tuguese. Although they all lie below 10%, for BP
the majority of the frequencies are close to zero.
Consequently, occurrences of the correspondent
lexical items will be dispersed through the corpus,
probably distant from each other in terms of the
number of utterances between them. This fact will
not only make learning slower for these words, but
will also lead the “garbage collection” procedure
to discard non-convergent senses for these words
before they have the chance to converge.

Conceived by Siskind both to discard wrong
sense assignments caused by referential uncer-
tainty and to keep the number of PSAs as low as
possible (thus, increasing efficiency), the garbage
collection, in cycles of 500 utterances, removes all
“non-frozen” senses, that is, non-convergent ones
or convergent ones that were not used successfully
a predefined number of times. It is a way of having
the learner “forgetting” unproductive senses. The
problem is that for the BP data, given its sparse-
ness, unfrequent words are reset again and again.

For this reason, in the simulations another strat-
egy for garbage collection was also evaluated: in-
stead of a cycle of 500 utterances, it assumed a
cycle of 50 expositions to a given word. If a sense
did not converge during the cycle, it was then dis-
carded. However, this change did not have the de-
sired effect. This indicates that, along with other
adjustments, such simple garbage collection rou-
tines are not adequate. It is important to have in
mind, nonetheless, that this model does not de-
compose words into morphemes. And this could
be a way of overcoming the learning difficulty,

since word stems would have higher frequencies
and its affixes would fall into the category of func-
tional words, for which the learner shows much
better performance.

4 Conclusions

The study presented above had the goal of con-
tributing to the understanding of lexical acqui-
sition by children, by imposing conditions that,
by assumption, can be considered as closer ap-
proximations to the ultimate complexities of the
data available to the learner. As a consequence,
Siskind’s (1996) algorithm had to be adapted to
be able to handle such input data. Two main as-
pects of the input are different. Informationally,
more conceptual symbols are involved both to ac-
count for the meaning of functional words and to
types of utterances. As a consequence, polysemy
is added to the data. Morphologically, the input
data shows higher sparsity – that is, words occur
less frequently – caused by the various verb in-
flections and agreement morphology of Brazilian
Portuguese.

Results indicate that both changes impose diffi-
culties to the learning heuristics, although it is an
open question whether the learner could overcome
the challenge posed by polysemy if exposed to
much more data. Nevertheless, sparseness seems
to be more crucial to the learner’s performance and
it may demand a change in the “garbage collec-
tion” conceived in Siskind (1996). Another pos-
sibility, is to have the model being capable of de-
composing words into stems and affixes, what by
hypothesis could eliminate the problem of spar-
sity both by guaranteeing frequent expositions to
the stems and by assigning affixes to the category
of functional words for which the learner in the
present study showed satisfactory performance.

Still, there are some more open issues to con-
sider. First, although this study claims to be evalu-
ating Siskind’s (1996) heuristics, it is important to
also guarantee that the implementation is at least
equivalent to the original.2 Therefore, a future

2In a recent work by Yu & Siskind (2013), the authors in-
vestigate a distinct approach, based on probabilistic methods,
for learning “representations for word meanings from short
clips paired with sentences”. Given its perceptual grounding
(on video clips), it covers only a toy grammar for some spa-
cial relations and interactions. That particular study and the
present one can be seen as complementary: as far as the prob-
abilistic approach is able to model the cross-situational learn-
ing strategy successfully, studies like the present one provide
knowledge about the kind of robustness the learner must have
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Figure 6: Word frequencies for the head-final and the English corpora.
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Figure 7: Word frequencies for the BP I and BP II corpora.

goal is to fully replicate Siskind’s results, for all
parameters (vocabulary size, rate of homonymy,
etc.) involved. Such replication will not only add
support to the results presented but will also make
it possible to evaluate the same parameters for the
kind of input data assumed here.

Apart from that, it is important to face the chal-
lenge of dealing with omitted words in utterances,
such as argument omission (subject, object, etc.)
and ellipsis phenomena. The present algorithm is
a step in that direction as it is able to handle con-
ceptual symbols – for instance, for utterance type
– that lack morphological realization both in En-
glish and in Brazilian Portuguese. But the changes
made to the original algorithm are probably not
sufficient and have to be improved.

In somewhat the opposite direction, agreement
morphology in languages cause the input to have
two or more morphemes that share the same in-
formation. Thus, how is the algorithm to han-
dle such cases? Certainly, it will have to allow
some constrained meaning overlapping between
morphemes in an utterance. However, the actual

in order to succeed in the face of distinct languages and more
realistic grammars.

nature of the constraints needed in this case is still
not clear. Adding Brazilian Portuguese to this sim-
ulation is a small but important step towards cross-
linguistic coverage in this regard. Given that BP is
from the family of Romance languages, being able
to deal well with it makes it likely that the model
will also be able to handle other languages of this
family. Of course, it is important to keep adding
languages from other families, specially those that
show greater differences from English and BP.

Finally, although this model may be taken as
reasonably plausible as a psychological model, it
demands empirical support for the nature of the
semantic-conceptual representation, as well as the
learning heuristics, properties of the processor,
etc. For all of these, it is necessary to state their
empirical predictions and find ways of assessing
them experimentally.
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Abstract

This study investigates the use of syllables
and phone(me)s in computational models
of segmentation in early language acqui-
sition. We results of experiments with
both syllables and phonemes as the ba-
sic unit using a standard state-of-the-art
segmentation model. We evaluate the
model output based on both word- and
morpheme-segmented gold standards on
child-directed speech corpora from two ty-
pologically different languages. Our re-
sults do not indicate a clear advantage for
one unit or the other. We argue that the
computational advantage for the syllable
suggested in earlier research may be an ar-
tifact of the particular language and/or seg-
mentation strategy used in these studies.

1 Introduction

Segmentation is a prevalent problem in language
processing. We process linguistic input as a com-
bination of linguistic units such as words. How-
ever, spoken language does not include reliable
cues to word boundaries that are found in many
writing systems. The hearer needs to extract
words, or lexical units, from a continuous stream
of sounds using the information available in the in-
put signal as well as his/her/its (implicit) linguis-
tic knowledge. This makes segmentation a partic-
ularly challenging task for the early learners, since
they need to discover the lexical units in the input
without a lexicon and without much insight into
the workings of the input language. The question
of how early learners may accomplish this task has
been an active area of research.

The problem have been studied extensively,
through both psycholinguistic experiments and
computational modeling. Experimental studies are
mainly focused on particular cues that could help

adults or children to solve the segmentation prob-
lem. Just to name a few, these cues include pre-
dictability statistics (Saffran, Aslin, and Newport,
1996), lexical stress (Cutler and Butterfield, 1992;
Jusczyk, Houston, and Newsome, 1999), phono-
tactics (Jusczyk, Cutler, and Redanz, 1993), al-
lophonic differences (Jusczyk, Hohne, and Bau-
man, 1999), vowel harmony (Kampen et al., 2008;
Suomi, McQueen, and Cutler, 1997) and coartic-
ulation (E. K. Johnson and Jusczyk, 2001). Com-
putational models offer a complementary method
to the psycholinguistic experiments. There have
been an increasing number of computational mod-
els of segmentation in the literature, particularly
within the last two decades (just to exemplify a
few, Elman, 1990, Aslin, 1993, Cairns et al.,
1994, Christiansen, Allen, and Seidenberg, 1998,
Fleck, 2008, Brent and Cartwright, 1996, Brent,
1999, Venkataraman, 2001, Xanthos, 2004, Gold-
water, Griffiths, and M. Johnson, 2009, M. John-
son and Goldwater, 2009, Monaghan and Chris-
tiansen, 2010, Çöltekin and Nerbonne, 2014).

In this paper, we investigate a recurring issue
in the segmentation literature: the use of syllable
or phoneme as the basic input unit in computa-
tional models of segmentation.1 Most psycholin-
guistic research is based on syllable as the basic
unit. The likely reason behind this choice is the
early research pointing to syllable as a salient per-
ceptual unit for adults (Cutler, Mehler, et al., 1986;
Mehler et al., 1981; Savin and Bever, 1970), and
infants (Eimas, 1999). However, these findings do
not necessarily mean that infants are not sensitive
to, and do not use, sub-syllabic units in speech seg-
mentation. Although it is known that infants do
not form adult-like phonetic categories until late

1Since the corpora used in majority of the computational
studies of segmentation lack phonetic variation, the input unit
in these models are effectively phonemes. We acknowledge
that the input to the children exhibit phonetic variation, but
this is not directly relevant to our results since the same applies
to both units we compare.
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in the first year in life (Kuhl, 2004), they are sen-
sitive to sub-syllabic changes in the input (Jusczyk
and Derrah, 1987; Werker and Tees, 1984). Be-
sides potential constraints due to young age, a log-
ical reason for early learners not to have adult-like
phonetic categories is the fact that learning these
categories is largely mediated by their use in dis-
tinguishing lexical units from each other. For the
purposes of segmentation, what really matters is
not that infants are capable of classifying relevant
phonetic segments into adult-like categories, but
being able to detect the differences (and similar-
ities) between such segments. Furthermore, it is
also unrealistic to expect infants, who did not form
phonetic categories, to perceive syllables categori-
cally. Hence, whether the syllable or the phoneme
is an earlier or better perceptual unit is still open to
debate, and reality seems to be more complex than
choosing one over the other (Dumay and Content,
2012; Foss and Swinney, 1973; Healy and Cutting,
1976; Morais and Kolinsky, 1994; Pallier, 1997).

A few exceptions aside (Gambell and Yang,
2006; Lignos and Yang, 2010; Phillips and Pearl,
2014; Swingley, 2005), most of the computational
models in the literature take phonetic segments as
the basic unit. For some of the models, the sylla-
ble is a natural choice as the basic unit because they
are based on information associated with syllables
rather than sub-syllabic units. For example both
lexical stress (Gambell and Yang, 2006; Swingley,
2005), and vowel harmony (Ketrez, 2013) operates
at the level of syllable. Even when such informa-
tion, e.g., lexical stress, is used in phoneme-based
models (e.g., by Christiansen, Allen, and Seiden-
berg, 1998, Çöltekin, 2011), the lexical stress is
marked on all phonemes that span the stressed syl-
lables, effectively informing the model about the
syllable boundaries. For other models, the choice
of basic unit does not alter the computations in-
volved. However, the performance of the model
may be affected by the choice of the basic unit.

Assuming syllables are the basic units, and eval-
uating the models based on gold-standard segmen-
tation of words eases the learning task in general.
However, syllabification of the input is not neces-
sarily straightforward. In fluent speech, words are
not uttered in isolation, hence, perceived syllables
are likely to straddle lexical unit boundaries. For
example the utterance [ɡɛt ɪt] will be syllabified
as [ɡɛt.ɪt] if the word boundaries are given. How-
ever, the likely syllabification will be [ɡɛ.tɪt] when

we do not assume word boundaries. Another prob-
lem with assuming that the syllable is an indivis-
ible unit for lexical segmentation comes from the
fact that some morphemes that learners eventually
learn to extract out of continuous speech and use
it productively are sub-syllabic. Hence, not only
that the syllable is not the only unit of perception
in early language acquisition, but it is also not nec-
essarily the best basic unit for segmenting natural
speech since some lexical unit boundaries may be
syllable-internal.

This study contrasts the use of phoneme and syl-
lable as the basic units in speech segmentation. To
this end, we use a simple state-of-the-art segmenta-
tion model, and run a set of simulations on two ty-
pologically different languages, English and Turk-
ish. We evaluate the results based on word- and
morpheme-segmented gold standards.

The next section describes the model and the
data used in this study, Section 3 presents results
from a series of computational simulations, we dis-
cuss the results in Section 4 and conclude in Sec-
tion 5.

2 Method and the data
2.1 Data
For the experiments reported in this paper, we use
corpora of child-directed speech from English and
Turkish. Both corpora used parts of the CHILDES
(MacWhinney and Snow, 1985).

For English, we use the de facto standard cor-
pus collected by Bernstein Ratner (1987) and pro-
cessed by Brent (1999). The age range of children
in our English data (the BR corpus) is between
0;6 and 0;11.29. Unlike earlier studies, we do
not make use of phonemic transcriptions by Brent
(1999) in our main experiments. Instead, we con-
vert the orthographic transcriptions to transcrip-
tions based on Carnegie Mellon University pro-
nouncing dictionary (version 7b, Carnegie Mellon
University, 2014). The main motivation for using
an alternative (but more conventional) transcrip-
tion has been to be able to apply the standard syl-
labification methods. The new transcription also
avoids some of the arbitrary choices in phonemic
transcriptions of Brent (1999).

Turkish child-directed corpus was formed by
taking all child-directed utterances from the Aksu
corpus (Slobin, 1982). The Aksu corpus contains
53 files (one for each recording session) with 33
target children between ages 2;0–4;4. Although
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English Turkish

Utterances 9 790 10 206
MLU (word) 3.41 4.66
MLU (morph) 3.89 6.14
MLU (syl.) 4.00 7.86
MLU (phon.) 10.81 18.40

Word tokens 33 377 36 789
Word types 1 380 4 808
Word TTR 0.041 35 0.130 69

Morph tokens 38 081 62 612
Morph types 1 024 1 802
Morph TTR 0.026 89 0.037 89

Syllable tokens 39 150 80 178
Syllable types 1 165 1 044
Syllable TTR 0.029 76 0.013 02

Phone tokens 105 801 187 738
Phone types 37 29
Phone TTR 0.000 35 0.000 16

Table 1: General statistics about the corpora
used. Besides type and token counts of each unit,
type/token ratio (TTR) and mean length utterance
(MLU) measured in different units are given.

the age range is not similar to the BR corpus, this
corpus is currently the best option available for
Turkish. We order the files by the age of the target
child, and take all child-directed utterances. Sim-
ilar to Brent (1999), onomatopoeia, interjections
and disfluencies are removed. Turkish corpus was
not converted to a phonetic/phonemic transcription
as Turkish orthography follows the standard pro-
nunciation rather closely (this practice is common
in the literature, e.g., Göksel and Kerslake, 2005;
Ketrez, 2013).

Table 1 presents some basic statistics about the
corpora used. Although our corpora are similar in
number of utterances, there are important differ-
ences due to differences between languages, and
potentially due to the age of the target children.

2.1.1 Gold-standard syllabification and
morpheme segmentation

Both corpora are syllabified and marked for mor-
pheme boundaries for some of the experiments
reported below. Most of the earlier studies rely
on dictionaries or human judgments in syllabifi-
cation of English. Since we do not only syllab-
ify words, but also utterances, we do not use a
dictionary-based method. For English, we use a
freely available syllabification software that im-

plements a few additional sub-regularities over
the maximum-onset principle. English morpheme
segmentation is done manually (Gorman, 2013).
The morpheme boundaries are determined for each
word type, and the same morpheme segmentation
is used for all tokens of the same word. For syllab-
ification and morpheme segmentation of Turkish,
we use another set of freely available tools (Çöl-
tekin, 2010, 2014).

Some statistics regarding morpheme-segmented
and syllabified corpora are given in Table 1. Ad-
ditionally, we note that the ratios of multi-syllabic
word tokens are 16% and 56% in our English and
Turkish input, respectively.

2.2 Evaluation

As with other models of language acquisition,
evaluating models of segmentation is non-trivial.
Not only we do not know our target, the early child
lexicon, well, but it is also likely to differ substan-
tially based on age, language and even the individ-
ual child. Furthermore, the linguistic units used
by linguists may not necessarily match the units
in a typical human lexicon. For the lack of a bet-
ter method, we evaluate our model based on gold-
standard word and morpheme segmentations. We
acknowledge that early learners’ lexicon is likely to
contain multi-word units. To avoid arbitrary and
corpus dependent decisions, however, we do not
quantitatively evaluate the model’s output based on
a selection of multi-word expressions.

As in earlier studies, we report three types of F1-
scores (or F-scores). Boundary F-score (BF), mea-
sures the success of the model in finding bound-
aries. Word, or token, F-score requires both
boundaries of a word to be found. Hence, discov-
ering only one of the boundaries of a word does not
indicate success for this measure. Lexicon, or type,
F-score similar to token scores, however, the com-
parisons are done over the word types the model
proposed and word types in the gold standard. F-
score is the harmonic mean of precision and recall,
and these three types of F-scores (also precision
and recall) have conventional measures of success
reported in the field (see e.g., Goldwater, Griffiths,
and M. Johnson, 2009, for precise defintions).

Besides F-scores, we present oversegmentation
(EO) and undersegmentation (EU) rates with the
following definitions.
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EO =
FP

FP + TN
EU =

FN
FN + TP

where TP, FP, FN and TN stands for true pos-
itive, false positives, false negatives and true
negatives, respectively. The error rates defined
above are related to boundary precision and
recall. Especially, the undersegmentation rate
is equal to 1 − recall. The difference between
the information conveyed by EO and boundary
precision is more subtle. Unlike precision which
measures the rate of the correct decisions over
all boundary decisions made by the model, EO
ranges over the word-internal positions in the
gold-standard segmentation. For example, if
the model admits one correct and one incorrect
boundary, the precision will be 0.5. However,
the EO depends on the number of word-internal
positions in the gold standard. The smaller the
number of potential false positives, the higher the
EO will be for the same number oversegmentation
errors. As a result, the error measures defined
above give a more direct indication of how much
room is left for improvement.

Similar to the earlier literature, we do not split
our data as test and training set since we are using
an unsupervised learning method.

2.3 The segmentation model
For the experiments reported below, we implement
and use a well-known segmentation model.2 The
model assigns probabilities to possible segmenta-
tions as described in Equations 1 and 2.

P(s) =

n∏
i=1

P(wi) (1)

P(w) =

{
(1 − α)f(w) if w is known
α

∏m
j=1 f(aj) if w is unknown

(2)

where s is a sequence of phonemes (e.g., an ut-
terance or a corpus), wi is the ith word in the se-
quence, aj is the jth basic unit in the word, f(wi)

and f(aj) are the relative frequencies of word wi

or basic unit ai respectively, n is the number of
words in the utterance, m is the length of the word

2The source code of the implementation, the data files and
utilities used in preprocessing the data are publicly available
at http://doi.org/10.5281/zenodo.27433.

model BF WF LF

Brent, 1999 82.3 68.2 52.4
Venkataraman, 2001 82.1 68.3 55.7
Goldwater, Griffiths, and M. Johnson (2009) 85.2 72.3 59.1
Blanchard, Heinz, and Golinkoff (2010) 81.9 66.1 56.3

Current model (incremental) 83.4 71.6 55.3
Current model (final) 86.6 76.3 70.7

Table 2: Performance scores of the present model
in comparison to some of the models in the litera-
ture that are tested on the BR corpus.
in input units, and 0 ≤ α ≤ 1 is the only pa-
rameter of the model. The parameter α can be
interpreted as the probability of admitting novel
lexical items, and it also affects how eager or the
conservative the model is in inserting boundaries.
In the simulations reported in this paper, we fix α

at 0.5, and adopt an incremental learning method
where learner processes the input utterance by ut-
terance. Each utterance is segmented using the
current model parameters (phoneme and word fre-
quencies), and parameters are updated based on the
segmented utterance before proceeding to the next.

One way to view this model is as an instance
of minimum description length (MDL) principle
(Rissanen, 1978). (Creutz and Lagus, 2007; Gold-
smith, 2001; Marcken, 1996; Rissanen, 1978).
Equation 1 imposes a preference for short utter-
ances (in number of words). Assuming each word
is represented by an index or pointer in the lexi-
con, this leads to a preference towards a represen-
tation that minimizes the corpus length. Let alone,
this preference would result in no segmentation,
and corpus size would be equal to the number of
utterance types. Despite small corpus representa-
tion, this would lead to a large lexicon containing
all the utterance types. The second part of Equa-
tion 2, on the other hand, imposes a preference
for short words and, since shorter strings result in
fewer word types, a shorter lexicon. In its limit-
ing case, this preference would result in a lexicon
containing the basic units. Resulting in a large cor-
pus representation despite a very small lexicon. As
a result, learning for this model is about finding
a compromise (hopefully the best) between these
two extremes.

The model as described above can also be seen
as a generative model. At each step, the model ei-
ther decides to produce a novel word with prob-
ability α, or pick a word from the lexicon with
probability 1 − α. The probability of words from
the lexicon is proportional to their empirical prob-
ability (relative frequency with which they are ob-
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served). If the model decides to generate a novel
word, it produces a series of basic units. Choice of
basic units is, again, proportional to their probabil-
ity of occurrence (for completeness, one needs to
either introduce a special end-of-word unit which
terminates the sequence) With this description, the
model is similar to the model suggested by Brent
(1999), Venkataraman (2001, although he does not
formulate his model as a generative model), and
the unigram model of Goldwater, Griffiths, and M.
Johnson (2009).

For simplicity, we use a fixed α and we do not
consider word context (e.g., word bigrams). De-
spite these simplifications, the performance of the
present model is competitive with the state-of-the-
art models in the literature. To enable a rough
comparison, we provide the performance scores
of some of the similar models evaluated on the
same corpus, together with result obtained using
the present model in Table 2. Unlike the rest of
the experiments reported in this paper, to increase
the comparability of the results with the earlier lit-
erature, the result presented here are obtained us-
ing the phonemic transcription of the original BR
corpus (the version transcribed by Brent, 1999).
The row marked ‘incremental’ reflects the scores
obtained by evaluating the segmentations on the
whole corpus during a single pass. Although it
is the common method of evaluating the incre-
mental models in the literature, this leads to an
unfair disadvantage when the model is compared
with a batch model which would have already
made many passes over the complete corpus at the
time of evaluation. The row marked ‘final’ in Ta-
ble 2 reports the final evaluation metrics obtained
while they were calculated for each 1 000-utterance
block. Hence, the ‘final’ results are obtained from
a more ‘learned state’ of the model, providing a
better comparison with batch models. In the rest of
this paper, we present only the ‘incremental’ ver-
sion of the performance score.

Although the results in Table 2 indicate that the
model is comparable to (and better than on some
counts) the state of the art, we note that our aim in
this work is not to introduce another segmentation
model, but compare two basic units using a model
that shares many features with the earlier state-of-
the-art models.

BF WF LF EO EU

En (words) 89.1 77.6 55.1 3.2 0.0
En (uttr.) 71.9 56.7 42.4 5.8 19.3
Tr (words) 54.5 17.4 5.8 25.8 0.0
Tr (uttr.) 48.6 16.0 3.4 27.5 11.0

Table 3: Scores of ‘syllable as word’ baseline.
3 Experiments and results

3.1 ‘Syllable as word’ baseline
For languages like (child-directed) English where
most words are mono-syllabic, a potentially de-
ceiving aspect of using syllable as the basic unit
for segmentation is that the learner may learn sin-
gle input units, syllables, as words. Hence, an
interesting baseline can be obtained by segment-
ing at every syllable boundary. We segment both
corpora trivially at syllable boundaries, and evalu-
ate against the gold-standard word segmentation of
these corpora. To approximate a possible syllabi-
fication when word boundaries are not given, we
also preset results where syllabification algorithm
is applied without marking the word boundaries.
The evaluation results for both languages are pre-
sented in Table 3.

Not surprisingly, when syllabification is done
at word boundaries, the model recovers all word
boundaries, hence EU is 0 for both languages. The
oversegmentation errors in this setting is the up-
per bound for EO when syllables are used as the
basic unit. The F-scores of the syllable baseline
on the BR corpus, where the words are predomi-
nantly monosyllabic, is similar to the state-of-the-
art models presented in Table 2, while the numbers
are substantially lower for Turkish.

To contrast with this ‘syllable as word’ base-
line, it is also instructive to consider a ‘phoneme
as word’ strategy. If one would segment at ev-
ery phoneme, the error rates go up to 62.1% and
89.7 % for English and Turkish respectively. This
results in 0.4 % and 0.04% lexical F-scores for En-
glish and Turkish. Clearly, the models consider-
ing syllable as the basic unit starts with a great ad-
vantage for English. While helpful, the results for
Turkish is far from what we observe for English.

As expected, when syllabification is done with-
out word boundaries, error rates increase for both
languages. Undersegmentations are caused by syl-
lables straddling the word boundaries, and over-
segmentations increase because of increased num-
ber of word-internal syllable boundaries. How-
ever, the effect is not as drastic as the differences
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BF WF LF EO EU

En (phon) 80.9 68.2 51.0 5.7 20.3
En (syl/w) 48.5 29.4 23.5 0.01 67.9
En (syl/u) 55.5 36.1 25.0 0.2 61.3

Tr (phon) 65.7 42.1 29.0 9.4 24.3
Tr (syl/w) 69.8 50.7 39.1 2.6 38.5
Tr (syl/u) 68.5 49.6 38.2 2.8 39.3

Table 4: Segmentation scores using phonemes and
syllables.
between the two languages in the same setting.

3.2 Syllables vs. phonemes
Table 4 presents segmentation performance of
models that use phonemes or syllables as basic in-
put units. We present results for syllabification
with and without restricting syllable boundaries at
word boundaries. We first note that the phonemic
transcription we use seems to be harder to seg-
ment than the transcription by Brent (1999). The
F-scores presented on the first row of Table 4 are all
lower than the corresponding F-scores in Table 2.

For English, we observe an overall decrease in
performance scores when the basic units are syl-
lables. Despite the fact that model makes very
few oversegmentation errors, the undersegmenta-
tion rate is even worse than a process that inserts
boundaries at random. Given the overall conserva-
tive segmentation tendency of the model, this is not
surprising. Surprisingly, however, when the syl-
labification is done based on whole utterances, the
model seems to perform better. The decrease in
EU seems to result in an improvement in all con-
ventional F-scores.

The phoneme-based segmentation scores for
Turkish is lower than English. This is in-line
with earlier studies that compared English with
other languages. As in English, the EO decreases,
and the EU increases when syllables (rather than
phonemes) are used as the basic units. However,
unlike English, the effect of this is positive on all
F-score measures. The surprising positive effect
of syllabification of full utterances does not persist
on the Turkish corpus. The utterance-based syllab-
ification causes an increase on both EU and EO,
resulting in a slight drop in all F-scores.

Although the overall performance/error scores
presented are informative, the pattern of learn-
ing for the model is also important. To show
how learning proceeds for both models, we plot
over- and under-segmentation rates progressively
for both languages, both for phoneme and syllable

as basic units in Figure 1. As the description of the
model in Section 2.3 indicate, all models start with
a preference of undersegmentation. In the process,
the EO increases, and EU decreases. In general,
the models learn quickly. After a short initial pe-
riod of the increase in EO and decrease in EU, the
changes are rather small.

With syllables, the decrease in EU is very small,
particularly for English. We observe a quicker
drop of errors for phoneme-based models in gen-
eral, and the expected trend of higher EU lower
EO of the syllable-based model in comparison to
phoneme based models holds in all settings. With
respect to the differences between the languages,
the undersegmentation curves for phoneme-based
models are very similar, leading to similar error
rates at the end of the learning. However, for Turk-
ish we observe a higher rate of oversegmentation
errors. The peak in EO for the phoneme-based seg-
mentation just before the 1 000th utterance for En-
glish seems to be due to the particular ordering of
the BR corpus. Multiple experiments with shuf-
fling the sentences produce similar curves without
abrupt changes.

3.3 Words vs. morphemes
Next, we use the same input described in Sec-
tion 3.2, but evaluate on the morpheme-segmented
gold standard corpora. The scores are presented in
Table 5. Compared to the scores based on word
segmentation in Table 4, we observe a slight in-
crease in the performance scores in segmenting the
BR corpus, since fewer of the model’s segmen-
tations are now marked as oversegmentation er-
rors. The undersegmentation, on the other hand,
increases slightly. The positive effect of reduced
oversegmentation errors are more pronounced for
Turkish. However, segmentation performance for
Turkish with phonemes as the basic unit is still
much lower than English. For both languages, the
performance with syllables as basic unit is lower
when tested against morpheme-segmented gold
standard. Most of the morphemes being formed
by sub-syllabic units, this is the expected result for
English. However, syllabification does not help the
model to find morphemes for Turkish either.

4 General discussion

Our main motivation in this study has been to
gain further insight into usefulness of syllables or
phonemes as the basic input units. We presented
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Figure 1: Oversegmentation (left) and undersegmentation (right) rate plotted incrementally during learn-
ing. Note that the y-axis ranges are not the same.

BF WF LF EO EU

En (phon) 82.7 70.5 51.3 2.6 25.2
En (syl/w) 47.7 24.1 20.8 0.1 68.6
En (syl/u) 54.6 30.4 22.5 0.1 62.4

Tr (phon) 68.4 44.1 33.6 3.6 43.4
Tr (syl/w) 55.3 25.4 21.9 0.6 61.2
Tr (syl/u) 56.1 27.4 23.3 0.7 60.3

Table 5: Segmentation scores using phonemes
and syllables with morph-segmentation as gold-
standard segmentation.
results from experiments from two typologically
different languages and two different settings for
the gold-standard, one considering written words
as the lexical units as in earlier studies, and the
other with morphemes as lexical units.

Unlike earlier studies (e.g., Gambell and Yang,
2006; Phillips and Pearl, 2014), our results do
not suggest a direct indication of the usefulness
of the syllable (or the phoneme) as the basic in-
put representation for segmentation. The syllable-
based model performs worse than phoneme-based
model on English, while it improves the segmen-
tation performance on our Turkish corpus. For
both languages, the invariant trend is that syllable-
based models make fewer oversegmentation mis-
takes with the cost of higher undersegmentation
rate. For English, where the words are rather short,
the undersegmentation is severe, and syllable-
based segmentation causes F-scores to drop drasti-
cally. For Turkish, since the average word length is

much larger (see Table 1), the undersegmentation
is less severe, and we see increase in the F-scores
for segmentation.

The low oversegmentation is expected from the
syllable-based models, simply because the models
are restricted to insert boundaries in fewer loca-
tions. As the ‘syllable as word’ baseline results
presented in Table 3 suggests, most of these loca-
tions are true word boundaries. If we allow a more
eager segmentation strategy (through a different
model, or different parameter settings), syllable-
based models are expected to yield good segmenta-
tion scores for English. The success of the most ea-
ger segmentation strategy ‘syllable as word’ base-
line is a clear example of this case. If such an
eager strategy is constrained in the right direc-
tion, it is not surprising that one can get really
good segmentation performance from a syllable-
based segmentation model. This, probably, is also
the reason for high segmentation scores of stress-
based segmentation strategy presented by Gam-
bell and Yang (2006). Since their model is re-
stricted to insert word boundaries only at sylla-
ble boundaries and include some linguistically-
informed constraints, the high segmentation F-
socre is expected as the ‘syllable as word’ baseline
already achieves a boundary F-score of 89% (Ta-
ble 3).

Besides the fact that syllables constrain the loca-
tions that one can insert boundaries, the success of
syllable-based models are also related to some of
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the fine details of the model definition. As an ex-
ample, consider the boundary decision involving a
known word w consisting of basic units a1 . . . ak,
and an adjacent unknown string s. With the model
defined in Equations 1 and 2, the decision to insert
a boundary between w and s in string ws (or sw)
requires

(1 − α)P(w)αP(s) > αP(a1) . . . P(ak)P(s)

(1 − α)P(w) > P(a1) . . . P(ak)

In this setting, the probability of inserting a bound-
ary decreases with the length of the known word.
Since syllables reduce the lengths of lexical units,
the model becomes more conservative.3 This par-
tially explains the low scores we obtain using syl-
lable as the basic unit. A potential reason for the
model to segment more eagerly (hence better) is
high lexical word probabilities. Probably, this is
part of the explanation for the better segmentation
performance reported by Phillips and Pearl (2014)
for syllable-based models only with bigram word
probabilities. The probabilities of (real) words
conditioned on the previous word will be higher
if the words tend to cooccur. Hence, the model
tends to segment more eagerly around the frequent
bigrams, counteracting the conservative segmen-
tation tendency introduced by using syllable as the
basic unit.

Unlike our results on English, syllable-based
model improves word segmentation of Turkish.
Contrary to our expectations, however, the scores
go down when evaluated on morpheme-segmented
gold standard. There are at least three reasons
for expecting the results to be even better with
the syllable-based models when evaluated on the
morpheme-based gold standard. First, on av-
erage, Turkish words are formed by longer se-
quences of morphemes. Second, Turkish mor-
phemes are syllabic, our Turkish corpora does not
contain any morpheme boundaries that are not syl-
lable boundaries. Third, similar to the English
function words, frequent affixes are more frequent
than frequent roots/stems. Hence they should be
more likely to be picked as lexical units. How-
ever, for both languages, syllable based model per-
forms worse when evaluated against morpheme-
based gold standard. Looking closer to the errors

3Also note the model’s unintuitive preference for low-
probability basic unit sequences as known lexical units. If
word length is fixed, right side of the inequality will be higher
if the probabilities of the basic units forming the word are
higher.

suggests that the syllable-based models exhibit a
similar behavior on morpheme-based gold stan-
dard as the English syllable-based model evaluated
on word-based gold standard. The model is pre-
cise, but misses many of the boundaries.

Besides missing the morphemes that may be
formed by sub-syllabic sequences, another po-
tential problem with the syllable-based mod-
els when evaluated against morpheme segmented
gold-standard is that the syllables perceived from
fluent speech may straddle word boundaries. As a
result, we expect worse segmentation scores if the
syllabification does not consider word boundaries
as absolute syllable boundaries. However, the re-
sults are surprising for English, at least. It seems
syllabification of complete utterances causes a
decrease in undersegmentation errors. Despite
a small increase in oversegmentation errors, the
overall effect of this on the F-scores reported in
Table 4 is positive. The reason for this seems to
be the change in the syllable distribution resulting
in smaller syllable probabilities on average, and
hence, more eager segmentation. In general, it
seems both problems mentioned above regarding
syllable-based models do not cause serious diffi-
culties. However, in general, we did not find a clear
computational benefit of one unit or the other as the
basic unit for both languages.

5 Conclusions

In this paper, we compared the effects of syllables
or phonemes as the basic unit for segmentation us-
ing child-directed speech corpora from two typo-
logically different languages. The simulations re-
ported in this paper do not favor one unit over an-
other. In different settings, the success of models
based on syllables or phonemes seems to differ.
A reasonable explanation for these differences is
the relative lengths of lexical and basic units, and
their distributions. In other words, the differences
observed are likely to be an artifact of the model-
ing practice. This is not necessarily a disadvan-
tage if the model in question matches the way hu-
mans perform the task. Otherwise, the conclusions
that may be drawn from these models regarding
whether syllable or phoneme is a better choice as
the basic unit for early segmentation may be mis-
leading.

In this paper, we investigated the behavior of
a single family of models. It would be interest-
ing to observe the difference between syllables and
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phonemes in other modeling approaches, such as
the ones that use local cues, possibly using more
distributed representations for the basic units. Al-
though our aim here was to contrast these two po-
tential basic units, it is likely that humans make use
of multiple units at different levels. Hence, another
interesting question for the future work is whether
these units play complementary roles in segmenta-
tion.

References
Richard N. Aslin 1993. Segmentation of fluent speech

into words: Learning models and the role of maternal
input. In Developmental Neurocognition: Speech and
Face Processing in the First Year of Life. Ed. by B. De
Boysson-Bardies et al. Kluwer Academic Publishers
pp. 305–315.

Nan Bernstein Ratner 1987. The phonology of parent-
child speech. In Children’s language. Ed. by K. Nel-
son and A. van Kleeck. Vol. 6. Hillsdale, NJ: Erlbaum
pp. 159–174.

Daniel Blanchard, Jeffrey Heinz, and Roberta Golinkoff
2010. Modeling the contribution of phonotactic cues
to the problem of word segmentation. Journal of
Child Language 37(Special Issue 03):487–511.

Michael R. Brent 1999. An Efficient, Probabilistically
Sound Algorithm for Segmentation and Word Dis-
covery. Machine Learning 34(1-3):71–105.

Michael R. Brent and Timothy A. Cartwright 1996. Dis-
tributional regularity and phonotactic constraints are
useful for segmentation. Cognition 61(1-2):93–125.

Paul Cairns et al. 1994. Modelling the acquisition of
lexical segmentation. In Proceedings of the 26th
Child Language Research Forum. University of
Chicago Press.

Carnegie Mellon University 2014. CMU pronouncing
dictionary version 7b. url: http://www.speech.
cs . cmu . edu / cgi - bin / cmudict (visited on
04/01/2015).

Morten H. Christiansen, Joseph Allen, and Mark S. Sei-
denberg 1998. Learning to Segment Speech Using
Multiple Cues: A Connectionist Model. Language
and Cognitive Processes 13(2):221–268.

Çağrı Çöltekin 2010. A freely available morphological
analyzer for Turkish. In Proceedings of the 7th In-
ternational Conference on Language Resources and
Evaluation (LREC 2010). Valetta, Malta pages 820–
827.

Çağrı Çöltekin 2011. Catching Words in a Stream of
Speech: Computational simulations of segmenting
transcribed child-directed speech. PhD thesis. Uni-
versity of Groningen.

Çağrı Çöltekin 2014. A set of open source tools for
Turkish natural language processing. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC-2014). Reykjavik,

Iceland: European Language Resources Association
(ELRA).

Çağrı Çöltekin and John Nerbonne 2014. An explicit
statistical model of learning lexical segmentation us-
ing multiple cues. In Proceedings of EACL 2014
Workshop on Cognitive Aspects of Computational
Language Learning.

Mathias Creutz and Krista Lagus 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Trans. Speech Lang. Process. 4(1):3.

Anne Cutler and Sally Butterfield 1992. Rhythmic
cues to speech segmentation: Evidence from juncture
misperception. Journal of Memory and Language
31(2):218–236.

Anne Cutler, Jacques Mehler, et al. 1986. The syllable’s
differing role in the segmentation of French and En-
glish. Journal of Memory and Language 25(4):385–
400.

Nicolas Dumay and Alain Content 2012. Searching for
syllabic coding units in speech perception. Journal of
Memory and Language 66(4):680–694.

Peter D. Eimas 1999. Segmental and syllabic repre-
sentations in the perception of speech by young in-
fants. The Journal of the Acoustical Society of Amer-
ica 105(3):1901–1911.

Jeffrey L. Elman 1990. Finding structure in time. Cog-
nitive Science 14:179–211.

Margaret M. Fleck 2008. Lexicalized phonotactic word
segmentation. In Proceedings of the Annual Meet-
ing of the Association of Computational Linguistics
(ACL-08) pages 130–138.

Donald J. Foss and David A. Swinney 1973. On the psy-
chological reality of the phoneme: Perception, identi-
fication, and consciousness. Journal of Verbal Learn-
ing and Verbal Behavior 12(3):246–257.

Timothy Gambell and Charles Yang 2006. Word
segmentation: Quick but not dirty. Unpublished
manuscript.

Aslı Göksel and Celia Kerslake 2005. Turkish: A Com-
prehensive Grammar. London: Routledge.

John Goldsmith 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics 27(2):153–198.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson 2009. A Bayesian framework for word seg-
mentation: Exploring the effects of context. Cogni-
tion 112(1):21–54.

Kyle Gorman 2013. syllabify.py: Automated English
syllabification.

Alice F. Healy and James E. Cutting 1976. Units of
speech perception: Phoneme and syllable. Journal of
Verbal Learning and Verbal Behavior 15(1):73–83.

Elizabeth K. Johnson and Peter W. Jusczyk 2001. Word
segmentation by 8-month-olds: When speech cues
count more than statistics. Journal of Memory and
Language 44(4):548–567.

Mark Johnson and Sharon Goldwater 2009. Improv-
ing nonparameteric Bayesian inference: experiments

63



on unsupervised word segmentation with adaptor
grammars. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics pages 317–325.

Peter W. Jusczyk, Anne Cutler, and Nancy J. Redanz
1993. Infants’ preference for the predominant stress
patterns of English words. Child Development
64(3):675–687.

Peter W. Jusczyk and Carolyn Derrah 1987. Represen-
tation of speech sounds by young infants. Develop-
mental Psychology 23(5):648–654.

Peter W. Jusczyk, Elizabeth A. Hohne, and Angela Bau-
man 1999. Infants’ sensitivity to allophonic cues for
word segmentation. Perception and Psychophysics
61(8):1465–1476.

Peter W. Jusczyk, Derek M. Houston, and Mary New-
some 1999. The Beginnings of Word Segmentation
in English-Learning Infants. Cognitive Psychology
39:159–207.

Anja van Kampen et al. 2008. Metrical and statistical
cues for word segmentation: The use of vowel har-
mony and word stress as cues to word boundaries
by 6- and 9-month-old Turkish learners. In Language
Acquisition and Development: Proceedings of GALA
2007. Ed. by Anna Gavarro and M. Joao Freitas pages
313–324.

F. Nihan Ketrez 2013. Harmonic cues for speech seg-
mentation: a cross-linguistic corpus study on child-
directed speech. Journal of Child Language 41:1–23.

Patricia K. Kuhl 2004. Early language acquisition:
cracking the speech code. Nature Reviews Neuro-
science 5(11):831–843.

Constantine Lignos and Charles Yang 2010. Reces-
sion segmentation: simpler online word segmenta-
tion using limited resources. In Proceedings of the
fourteenth conference on computational natural lan-
guage learning pages 88–97.

Brian MacWhinney and Catherine Snow 1985. The
child language data exchange system. Journal of
Child Language 12(2):271–269.

Carl de Marcken 1996. Linguistic structure as compo-
sition and perturbation. In Proceedings of the 34th
annual meeting on Association for Computational
Linguistics. Santa Cruz, California: Association for
Computational Linguistics pages 335–341.

Jacques Mehler et al. 1981. The syllable’s role in speech
segmentation. Journal of Verbal Learning and Ver-
bal Behavior 20(3):298–305.

Padraic Monaghan and Morten H. Christiansen 2010.
Words in puddles of sound: modelling psycholin-
guistic effects in speech segmentation. Journal of
Child Language 37(Special Issue 03):545–564.

José Morais and Régine Kolinsky 1994. Perception and
awareness in phonological processing: the case of the
phoneme. Cognition 50(1–3):287–297.

Christophe Pallier 1997. Phonemes and Syllables in
Speech Perception: size of the attentional focus in

French. In Proceedings of Eurospeech ’97. Vol. 4
pages 2159–2162.

Lawrence Phillips and Lisa Pearl 2014. Bayesian infer-
ence as a viable cross-linguistic word segmentation
strategy: It’s all about what’s useful. In Proceedings
of the 36th Annual Conference of the Cognitive Sci-
ence Society. Quebec City, CA: Cognitive Science
Society pages 2775–2780.

Jorma Rissanen 1978. Modeling by shortest data de-
scription. Automatica 14(5):465–471.

Jenny R. Saffran, Richard N. Aslin, and Elissa L. New-
port 1996. Statistical learning by 8-month old infants.
Science 274(5294):1926–1928.

H.B. Savin and Thomas G. Bever 1970. The nonpercep-
tual reality of the phoneme. Journal of Verbal Learn-
ing and Verbal Behavior 9(3):295–302.

Dan I. Slobin 1982. Universal and particular in the ac-
quisition of language. In Language acquisition: the
state of the art. Ed. by Eric Wanner and Lila R. Gleit-
man. Cambridge University Press. Chap. 5 pp. 128–
170.

Kari Suomi, James M. McQueen, and Anne Cut-
ler 1997. Vowel Harmony and Speech Segmenta-
tion in Finnish. Journal of Memory and Language
36(3):422–444.

Daniel Swingley 2005. Statistical clustering and the
contents of the infant vocabulary. Cognitive Psychol-
ogy 50(1):86–132.

Anand Venkataraman 2001. A statistical model for
word discovery in transcribed speech. Computa-
tional Linguistics 27(3):351–372.

Janet F. Werker and Richard C. Tees 1984. Cross-
language speech perception: Evidence for perceptual
reorganization during the first year of life. Infant Be-
havior and Development 7(1):49–63.

Aris Xanthos 2004. An incremental implementation of
the utterance-boundary approach to speech segmen-
tation. In Proceedings of Computational Linguistics
in the Netherlands (CLIN) 2003 pages 171–180.

64



Proceedings of the Sixth Workshop on Cognitive Aspects of Computational Language Learning, pages 65–73,
Lisbon, Portugal, 18 September 2015. c©2015 Association for Computational Linguistics.

Estimating Grammeme Redundancy by Measuring Their Importance 
for Syntactic Parser Performance 

 Aleksandrs Berdicevskis 
UiT The Arctic University of Norway 

Department of Language and Linguistics 
aleksandrs.berdicevskis@uit.no 

 

  
 

Abstract 

Redundancy is an important psycholinguistic 
concept which is often used for explanations 
of language change, but is notoriously diffi-
cult to operationalize and measure. Assuming 
that the reconstruction of a syntactic structure 
by a parser can be used as a rough model of 
the understanding of a sentence by a human 
hearer, I propose a method for estimating re-
dundancy. The key idea is to compare per-
formances of a parser on a given treebank be-
fore and after artificially removing all infor-
mation about a certain grammeme from the 
morphological annotation. The change in per-
formance can be used as an estimate for the 
redundancy of the grammeme. I perform an 
experiment, applying MaltParser to an Old 
Church Slavonic treebank to estimate gram-
meme redundancy in Proto-Slavic. The re-
sults show that those Old Church Slavonic 
grammemes within the case, number and 
tense categories that were estimated as most 
redundant are those that disappeared in mod-
ern Russian. Moreover, redundancy estimates 
serve as a good predictor of case grammeme 
frequencies in modern Russian. The small 
sizes of the samples do not allow to make de-
finitive conclusions for number and tense. 

1 Introduction 

Explanations of historical language change often 
involve the concept of redundancy, especially 
grammatical (morphological) redundancy. 

One important example is a family of recent 
theories about linguistic complexity (Sampson et 
al., 2009), including those known under the la-
bels “sociolinguistic typology” (Trudgill, 2011) 
and “Linguistic Niche Hypothesis” (Lupyan and 
Dale, 2010). The key idea behind these theories 
is that certain sociocultural factors, such as large 
population size or a large share of adult learners 
in the population can facilitate morphological 
simplification, i.e. increase the likelihood that the 
language will lose some morphological features, 

which are often described as “complex” and “re-
dundant”. 

It is, however, often difficult to determine (and 
provide empirical evidence in favour of the cho-
sen decision) whether a certain feature is indeed 
redundant, or to what extent it is redundant and 
to what extent it is functional. Some conclusions 
can be drawn from indirect evidence, e.g. typo-
logical (cf. Dahl’s (2004) notion of cross-
linguistically dispensable phenomena). For mod-
ern languages, redundancy can be studied and 
measured by means of psycholinguistic experi-
ments (e.g. Caballero and Kapatsinski, 2014), but 
this approach is not applicable to older language 
stages and extinct languages.  

I propose a computational method to estimate 
the functionality (and, conversely, redundancy) 
of a grammeme (that is, a value of a grammati-
cal/morphological category) that can potentially 
work for any language for which written sources 
are available or can be collected. 

I describe the philosophy behind the proposed 
method and its relevance to cognitive aspects of 
language evolution in section 2. Section 3 pro-
vides the necessary background for a particular 
instance of language change that will be used as 
a case study. Section 4 describes how the exper-
iment was performed, section 5 provides the re-
sults. Section 6 discusses possible interpretations 
of the results, and section 7 concludes. 

2 Using parsers to measure morpholog-
ical redundancy 

In the most general terms, morphological redun-
dancy can be described as follows: if a message 
contains certain morphological markers that are 
not necessary to understand the message fully 
and correctly, then these markers can be consid-
ered (at least to some extent) redundant. 

The problem with operationalizing this intui-
tion is that it is unclear how to model under-
standing (that is, the reconstruction of the seman-
tic structure) of a message by human beings. 
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In the method I propose, syntactic structure is 
taken as a proxy for semantic structure, and a 
reconstruction of syntactic structure by an auto-
matic parser is taken as a model of how a human 
hearer understands the meaning. 

The assumption that these processes have 
enough in common to make the model adequate 
is bold, but not unwarranted. It is generally 
agreed that a correct interpretation of syntactic 
structure is necessary to understand the meaning 
of a message, and that humans use morphologi-
cal cues to reconstruct syntactic structure. 
Parsers, obviously, do the latter, too. Crucially, 
the model does not require the assumption that 
parsers necessarily process the information in 
exactly the same way as humans. It is enough 
that they, using the same input, can approximate 
the output (i.e. syntactic structures) well enough, 
and modern parsers usually can. Furthermore, 
parsers also rely heavily on the morphological 
information, not unlike humans. 

The key idea is then to take a morphologically 
tagged treebank of a language in question and 
parse it with an efficient parser, artificially re-
moving morphological features (either gram-
memes or categories) one by one. Changes in the 
parser’s performance caused by the removal of a 
feature can serve as a measure of its redundancy. 
In other words, if the removal of a feature causes 
a significant decrease in parsing accuracy, the 
feature can be considered important for extract-
ing syntactic information and thus functional. If, 
however, the decrease is small (or absent), the 
feature can be considered redundant. 

Obviously, it is not necessary that this ap-
proach will provide an exact and comprehensive 
measure of morphological redundancy; there are 
numerous potential sources of noise and errors. 
We can, however, expect that at least some real 
redundancy will be captured. The method can 
then be applied to make rough estimates and thus 
be useful, for instance, in large-scale typological 
studies, or in language change studies, or any 
studies aiming at understanding why languages 
need (or do not need) redundancy. Understand-
ing that, in turn, will help to reveal the cognitive 
biases that influence language learning. 

It has been shown by means of computational 
modelling and laboratory experiments that strong 
biases which affect the course of language 
change can stem from weak individual cognitive 
biases, amplified by iterated learning over gener-
ations (Kirby et al., 2007; Reali and Griffiths, 
2009; Smith and Wonnacott, 2010) and commu-
nication within populations (Fay and Ellison, 

2013). Thus, if it is shown that there is a dia-
chronic bias towards eliminating redundant 
grammemes, it will be possible to hypothesize 
that this bias stems from individual speakers' 
preference to avoid overloading their speech with 
excessive complexity. 

Importantly for diachronic studies, the method 
can be applied to extinct languages, provided that 
large enough treebanks exist.  

In the following sections, I will exemplify the 
method by applying it to a particular case of lan-
guage change (Proto-Slavic —> Contemporary 
Standard Russian). I also use the case study to 
test whether the resulting redundancy estimates 
are plausible. Following a common assumption 
that more redundant grammemes are in general 
more likely to be lost (Kiparsky 1982: 88–99, see 
also references above), and that Russian has been 
under considerable pressure to shed excessive 
complexity (see section 3), I make the prediction 
that the grammemes that did disappear were on 
average more redundant than those that were 
kept, and that the “remove-and-reparse” method 
should be able to capture the difference. 

In order to be explicit about the assumptions 
behind the current study and its limitations I 
want to highlight that the study attempts to test 
two independent hypotheses at once: first, that 
redundant grammemes are more likely to disap-
pear or become less frequent; second, that pars-
ing is an adequate model of human language per-
ception, since what is redundant for a parser is 
redundant for a human as well. This can be prob-
lematic, since we do not really know whether 
either of these hypotheses is true. 

Let us look at the experiment from the follow-
ing perspective: if it turns out that there is a 
strong correlation between importance of the 
grammeme for parser performance and gram-
meme survivability, then this fact has to be ex-
plained. A plausible explanation which fits well 
with the existing linguistic theories would be the 
one outlined above in the form of the two hy-
potheses: under certain sociocultural conditions 
speakers tend to abandon redundant grammemes; 
grammemes that are not important for the parser 
are redundant. If there is no correlation, however, 
this absence would not tell us whether both hy-
potheses are false or only one of them (and 
which one) is. 

In addition to the main prediction, I make a 
secondary one: assuming that more redundant 
grammemes will tend to become less frequent, 
and more functional grammemes will tend to 
become more frequent, we can expect that the 
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functionality of grammemes in Proto-Slavic 
should serve as a good predictor of their frequen-
cy in modern Russian. I will test this prediction 
as well, though the possibilities for this test of-
fered by the current study are limited. In addi-
tion, the prediction itself relies on stronger as-
sumptions (redundancy is not necessarily the 
only, nor even the most important predictor of 
frequency). 

3 From Proto-Slavic to Russian 

In this section, I briefly describe the relevant 
morphological changes that occurred in the peri-
od from Proto-Slavic (alias Common Slavic, a 
reconstructed protolanguage that existed approx. 
from the 5th to 9th centuries AD) to Contempo-
rary Standard Russian (CSR). Old Church Sla-
vonic is used as a proxy for Proto-Slavic (see 
section 4.1). 

CSR has been chosen for the pilot study for 
the following reasons. First, Russian is the larg-
est Slavic language with a total of about 166 mil-
lion speakers (Lewis et al., 2015). Second, its 
contact with other languages has been quite in-
tense. Bentz and Winter (2013) use 42% as an 
estimate for the ratio of L2 speakers to the num-
ber of all speakers of CSR (their absolute esti-
mate is 110 million). According to the linguistic 
complexity theories cited in section 1, these fac-
tors make pressure towards simplification 
stronger, i.e. redundant morphological features 
are more likely to be lost. 

Russian has not lost any Proto-Slavic morpho-
logical category completely, though many have 
been very significantly restructured. Some 
grammemes, however, did disappear. 

Proto-Slavic had seven nominal cases: nomi-
native, accusative, genitive, dative, instrumental, 
locative and vocative. Russian has preserved the 
former six, but lost the vocative and is now using 
the nominative in its place. It should be noted 
that some scholars do not consider the vocative a 
real case (Andersen, 2012: 139–143). In addi-
tion, the vocative was relatively infrequent, and 
often coincided with the nominative already in 
Proto-Slavic. Still, there is a clear distinction be-
tween Proto-Slavic (where a separate obligatory 
vocative form existed) and CSR (where there is 
no such form). The fact that CSR developed sev-
eral novel marginal cases, including the so-called 
“new vocative”, does not affect the general pic-
ture in any relevant way. 

Proto-Slavic had three numbers: singular, dual 
and plural, of which the dual is not present in 

CSR: the plural is used instead (the dual, howev-
er, left visible traces in the morphosyntax of the 
numerals and the formation of plural forms). 

Proto-Slavic had five basic verbal tenses: pre-
sent (also called non-past), aorist, imperfect, per-
fect and pluperfect.1 The perfect and pluperfect 
were analytical forms, consisting of resp. present 
and imperfect2 forms of an auxiliary (‘be’) and a 
so-called resultative participle. Later, the aorist, 
imperfect and pluperfect went out of use, while 
the former perfect gradually lost the auxiliary 
verb. As a result, in CSR the only means to ex-
press indicative past tense is the former resulta-
tive, which has lost most of its participial fea-
tures and is treated on a par with other finite 
forms. In the current study, I will consider four 
morphologically distinct tenses: present, aorist, 
imperfect and resultative. The label “resultative” 
will cover all uses of the resultative participle, 
both in the perfect and pluperfect, both with and 
without an auxiliary. Non-indicative verbal 
forms (except for the resultative) will be ignored 
(i.e. the present and past tense of participles, im-
peratives, infinitives and subjunctive). To sum 
up: we will focus on the four tenses listed above, 
of which two (aorist and imperfect) disappeared, 
replaced by the resultative. 

Finally, a Proto-Slavic verbal grammeme 
called supine also disappeared, but it will ignored 
in the current study, partly since its frequency in 
Old Church Slavonic is very low, partly since it 
is not entirely clear what grammatical category it 
belongs to. 

4 Materials and methods 

4.1 Language data 

The oldest Slavic manuscripts were written in 
Old Church Slavonic (OCS), a literary language 
based on a South Slavic dialect of late Proto-
Slavic. OCS is not a direct precursor of CSR (nor 
of any other modern Slavic language), but it is 
the best available proxy for Proto-Slavic, and is 
commonly used in this role. 

4.2 Treebank and parser 

I extracted OCS data from the Tromsø Old Rus-
sian and OCS Treebank,3 limiting myself to one 
document, the Codex Marianus, which has been 
thoroughly proofread and submitted to compre-

                                                 
1 The verb ‘be’ also has a separate synthetic future tense, 
which is ignored here. 
2 Sometimes also aorist or perfect.  
3 https://nestor.uit.no/ 
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hensive consistency checks (Berdicevskis and 
Eckhoff, 2015). The Codex Marianus is dated to 
the beginning of the 11th century. The TOROT 
file contains 6350 annotated sentences. 

The TOROT is a dependency treebank with 
morphological and syntactic annotation in the 
PROIEL scheme (Haug, 2010, Haug et al., 
2009). For the purposes of the experiment, I con-
verted the native PROIEL format to the CONLL 
format (see Table 1). 

For the parsing experimens I used MaltParser 
(Nivre et al., 2007), version 1.8.1.4 The Codex 
Marianus was split into a training set (first 80% 
of sentences) and a test set (last 20% of sentenc-
es). The parser was optimized on the training set 
using MaltOptimizer (Ballesteros and Nivre, 
2012), version 1.0.3. 5  Optimization had been 
performed before any grammemes were merged 
or any morphological information was deleted 
(see section 4.3).  

Parsing the TOROT with MaltParser faces 
several difficulties. First, the PROIEL scheme 
uses secondary dependencies – for external sub-
jects in control and raising structures, and also to 
indicate shared arguments and predicate identity. 
Since MaltParser cannot handle secondary de-
pendencies, all this information was omitted. 
Second, the PROIEL scheme also systematically 
uses empty verb and conjunction nodes to ac-
count for ellipsis, gapping and asyndetic coordi-
nation. Since MaltParser cannot insert empty 
nodes, they were explicitly marked in both the 
training and test sets (with form and lemma hav-
ing the value empty; part-of-speech marked as 
resp. verb or conjunction, and morphological 
features having the value INFLn ‘non-inflecting’, 
see Table 1, token 14). 

The LAS (labelled attachment score) for pars-
ing the test set was 0.783. Parsing took place be-
fore merging grammemes, but after removing 
person and gender information from verbs (see 
section 4.3). 

4.3  Merging grammemes 

When linguists say that a grammeme disap-
peared, they usually mean that the grammeme 
merged with another one, or that another gram-
meme expanded its functions, replacing the one 
that disappeared. As described in section 3, dis-
appearances that occurred in the (pre)history of 
Russian were actually mergers: vocative > nomi-

                                                 
4 http://www.maltparser.org/ 
5 http://nil.fdi.ucm.es/maltoptimizer/index.html 

native; dual > plural; aorist and imperfect > re-
sultative. 

I will illustrate how I model grammeme mer-
gers using the example of the number category. 
The category has three values: singular, plural, 
and dual, their absolute frequencies in the Codex 
Marianus are resp. 28004, 10321 and 942. Every 
grammeme is consecutively merged with the 
other grammemes in the same category. When, 
for instance, the s>p merger takes place, the 
string NUMBs in the FEATURE column  (see 
Table 1) is replaced with NUMBp (see below 
about the number of occurrences that are re-
placed). After that, the original values are re-
stored, and s>d merger follows: NUMBs is being 
replaced with NUMBd. Later, p>s, p>d, d>s and 
d>p mergers take place in the same way. 

After every merger, the Codex Marianus is 
split into the same training and test sets, and 
parsed anew, using the same optimization set-
tings. The difference between the original LAS 
and the resulting LAS (delta) shows how strong-
ly the merger affected parser performance. For 
every grammeme, the sum of deltas for all its 
mergers (for s, that would be the sum of deltas 
for the mergers s>p, s>d) is taken as a measure 
of its functionality, or non-redundancy. The 
higher this number is, the more important the 
grammeme is for parser, and the less redundant it 
is. 

The frequency of grammemes can vary great-
ly, as the number category illustrates. It can be 
expected that if we always merge all the occur-
rences of every grammeme, then the deltas will 
tend to be higher for more frequent grammemes, 
because the larger number of occurrences is af-
fected. On the one hand, frequency is an im-
portant objective property of any linguistic item, 
and it is legitimate to take it into account when 
estimating redundancy and functionality. On the 
other hand, very high frequencies can skew the 
results, making the functionality estimate a mere 
correlate of frequency, which is undesirable. In 
order to test whether redundancy/functionality is 
a useful measure, we need to disentangle it from 
potential confounding factors. To address this 
issue, the experiment was run in two conditions. 

In condition 1, all occurrences of every gram-
meme are merged (that is, the s>d merger results 
in 28946 NUMBd strings and 0 NUMBs strings, 
while the d>s merger results in 28946 NUMBs 
strings and 0 NUMBd strings). It is reasonable to 
expect that this condition will have a bias for 
more frequent grammemes: they will get higher 
functionality scores. 
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1 2 3 4 5 6 7 8 
1 i 

and 
i C C- INFLn 10 aux 

2 aŝe 
if 

aŝe G G- INFLn 10 adv 

3 kʺto 
anyone 

kʺto P Px NUMBs|GENDq|CASEn 4 sub 

4 poimetʺ 
forces 

pojati V V- NUMBs|TENSp|MOODi|VOICa 2 pred 

5 tja 
you 

tja P Pp PERS2|NUMBs|GENDq|CASEa 4 obj 

6 po 
by 

po R R- INFLn 4 adv 

7 silě 
force 

sila N Nb NUMBs|GENDf|CASEd 6 obl 

8 popʹriŝe 
mile 

popʹriŝe N Nb NUMBs|GENDn|CASEa 14 adv 

9 edino 
one 

edino M Ma NUMBs|GENDn|CASEa 8 atr 

10 idi 
go 

iti V V- PERS2|NUMBs|TENSp|MOODm|VOICa 0 pred 

11 sʺ 
with 

sʺ R R- INFLn 10 obl 

12 nimʹ 
him 

i P Pp PERS3|NUMBs|GENDm|CASEi 11 obl 

13 dʹvě 
two 

dʺva M Ma NUMBd|GENDn|CASEa 10 adv 

14 empty 
(go) 

empty V V- INFLn 4 xobj 
 

Table 1. Example sentence (Matthew 5:41, 'If anyone forces you to go one mile, go with them two 
miles') from the Codex Marianus in the PROIEL scheme and CONLL format. OCS words are translit-
erated using the ISO 9 system (with some simplifications). Columns: 1 = token ID; 2 = form; 3 = 
lemma; 4 = coarse-grained POS tag; 5 = fine-grained POS tag; 6 = features; 7 = head; 8 = dependency 
relation. For the reader's convenience, an English gloss is added under every form (in italics). Note the 
absence of the PERS3 feature for token 4. While it had originally been there, it was removed in order 
to facilitate the mergers of indicative and participial forms (see main text). It is, however, kept for 
those verb forms which will not be affected by any mergers (e.g. token 10, which is in the imperative).  

In condition 2, the number of merged occur-
rences is constant for all grammemes in the cate-
gory, and equal to the frequency of the least fre-
quent grammeme. For number, that would be 
dual with its frequency of 942. Here, the s>d 
merger results in 1884 NUMBd strings (942 orig-
inal + 942 merged) and 27062 NUMBs strings 
(28004 original - 942 merged), while the d>s 
merger results in 28946 NUMBs strings (28004 
original + 942 merged) and 0 NUMBd strings 
(942 original - 942 merged). This condition can 
potentially create a bias for less frequent gram-
memes: while the absolute number of the affect-
ed occurrences is always the same, their share in 
the total occurrences of the grammeme that is 
being merged can be very different. The d>s 
merger, for instance, empties the dual grammeme 

fully, while the s>d merger removes only a small 
share of the singular occurrences. This potential 
bias can, however, be expected to be weaker than 
the reverse bias in condition 1, and the results 
can then be expected to be more reliable. 

The occurrences to be merged are selected 
randomly. Since the resulting change in parser 
performance may depend on the sample of se-
lected occurrences, the process is repeated 10 
times on 10 random samples, and the average of 
10 functionalities is taken as the final measure. 

Note that in both conditions, mergers always 
affect two grammemes: the source (i.e. the one 
that is being merged) and the target one. Howev-
er, I consider only the former effect and ignore 
the latter: for instance, the change of LAS after 
s>d merger is added to the functionality of s, but 
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not of d. Technically, it is possible to take into 
account the respective delta when calculating the 
functionality of d, too, but it is not quite clear 
whether this is theoretically justified. The ra-
tionale behind adding the delta to the functionali-
ty of s is that s has been (partially) removed, and 
we are investigating how this removal affected 
the possibility to restore syntactic information. 
No instances of the target value, however, have 
been removed, and while the grammeme has 
been somewhat changed by its expansion, it is 
not clear how to interpret this change. Besides, I 
assume that the influence of the expansion of the 
target grammeme is small (compared to that of 
the removal of the source one) and ignore it in 
the current study. 

Case is processed in exactly the same way as 
number (each case is consecutively merged with 
the six others), but tense represents an additional 
substantial problem. Remember that the present, 
imperfect and aorist are typical finite forms, 
which means that they have the features person, 
number, tense, mood (the value is always indica-
tive) and voice, while the resultative is a partici-
ple (the mood6 value is always participle), and 
does not have the feature person, but does have 
the features gender, case and strength.7 By the 
OCS period, however, the resultative has already 
lost most of its original participial properties, and 
case is always nominative, while strength is al-
ways strong. The problem is that when we 
merge, for instance, the present with the resulta-
tive, we have a feature mismatch: the present has 
one extra feature (person) that the resultative 
never has, but lacks the three other features 
(gender, case, strength); in addition, the mood 
feature is different. Obviously, the merger in the 
other direction faces the inverse obstacle. 

I solve this problem in the following way. 
Since there is no means to reconstruct infor-
mation about person when merging resultative to 
the three indicative tenses and no means to re-
construct information about gender when merg-
ing in the other direction, I remove person and 
gender features from all relevant verbal forms. 
This is done prior to any other operations. The 

                                                 
6 The mood category in the PROIEL scheme for OCS has 
broader coverage than the traditional mood category. It has 
the grammemes indicative, imperative, subjunctive, infini-
tive, participle, gerund and supine (i.e. covers both mood 
and finiteness). 
7 Strength here refers to the distinction between long and 
short forms of Slavic adjectives and participles, remotely 
similar to the Germanic distinction between weak and 
strong adjectives. 

initial LAS (0.783) is calculated after this re-
moval. Without it, LAS would have been 0.785. 
When a resultative > {present | aorist | imper-
fect} merger occurs, information about case and 
strength is removed, and mood is changed from 
p to i. When a merger in the other direction oc-
curs, information about case and strength is add-
ed (resp. n and s), and mood is changed from i to 
p. While these changes are pretty artificial, they 
do ensure that we perform a full merger that af-
fects all relevant properties of a grammeme, and 
not only changes its label. 

5 Results 

Results of the experiment for both conditions 
are presented in Table 2. Grammemes within 
each category are first sorted in descending order 
by their functionality in the condition 2 (which is 
supposed to be a more reliable measure), then by 
their functionality in condition 1. 

Zero values for vocative in columns 3 and 4 
do not mean that merging vocative with other 
cases never affects the parser performance at all, 
but that the changes are negligibly small, repre-
sented as 0 after rounding to three decimal plac-
es. Negative functionality values (for number 
grammemes) mean that merging this grammeme 
with others on average leads to increase of the 
LAS, not decrease. These results can be inter-
preted in the same way as positive and zero val-
ues: lower functionality (which in this case 
means larger increase in parsing accuracy) im-
plies higher redundancy (so high that its removal 
facilitates the restoration of the syntactic struc-
ture instead of inhibiting it). 

Absolute frequencies of every grammeme are 
provided for OCS (the Codex Marianus) and 
CSR. The CSR frequencies were calculated us-
ing the manually disambiguated part (≈6 million 
words) of the Russian National Corpus8 (RNC). 
While it is known that ranking the CSR gram-
memes by frequency may sometimes provide 
different results depending on the chosen corpus 
(Kopotev 2008), the general picture can be as-
sumed to be adequate and stable, since the RNC 
is a relatively large and well-balanced corpus. 

6 Discussion 

As can be seen, in both conditions the vocative 
gets identified as the most redundant case. This 
fits nicely with the fact that CSR lost it, while 
preserving the other six cases.  

                                                 
8 http://ruscorpora.ru/ 
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Category Grammeme Functionality 
(condition 1) 

Functionality 
(condition 2) 

Frequency 
(OCS) 

Frequency 
(CSR) 

CASE n 0.039 0.009 9812 1026131 
 g 0.017 0.008 4470 731435 
 a 0.017 0.006 7657 539768 
 d 0.006 0.004 3694 180131 
 l 0.008 0.001 1671 265701 
 i 0.005 0.001 1050 271531 
 v 0 0 400 0 
NUMBER s -0.004 0 28004 2861455 
 p -0.004 -0.001 10321 886420 
 d -0.002 -0.002 942 0 
TENSE s 0.009 0.009 199 458820 
 p 0.009 0.001 4452 231946 
 a 0.007 0.001 3772 0 
 i 0.003 0.001 1121 0 
Table 2. Results of the merging experiment for the two conditions. 

Moreover, most modern Indo-European lan-
guages have lost the original Proto-Indo-
European vocative. Most Slavic languages, how-
ever, have retained it. Outliers here are Bulgarian 
and Macedonian, which have lost all the cases 
but the vocative. These two Slavic languages, 
however, are exceptional in many respects (pos-
sibly due to the influence of the Balkan Spra-
chbund). 

Importantly, the functionality ranking of cases 
does not seem to be a mere reflection of their 
frequency ranking in OCS. In condition 1, the 
genitive and the accusative9 have the same func-
tionality (while the accusative is noticeably more 
frequent), and the dative is less functional than 
the locative, while being more frequent). In con-
dition 2, the genitive is more functional than the 
accusative, despite lower frequency. 

As regards the second prediction, functionality 
scores do turn out to be a good predictor for CSR 
frequency. Pearson correlation coefficients10 are 
0.96 (p < 0.001) in condition 1, and 0.92 (p = 
0.004) in condition 2. Importantly, in both condi-
tions functionality is a better predictor than plain 
OCS frequency. The Pearson coefficient for the 
OCS and CSR frequencies is 0.86 (p = 0.012). 

                                                 
9 Both in OCS and CSR the accusative case of some ani-
mate nouns is identical to the genitive. In the TOROT, these 
genitive-accusatives are annotated as genitives. For con-
sistency's sake, I coded them as genitives when calculating 
the CSR frequencies as well. 
10 It can be questioned whether it is legitimate to use Pear-
son product-moment correlation, or a non-parametric meth-
od like Spearman rank correlation should be preferred. Giv-
en that the data are on the interval scale and that they an-
swer the Shapiro-Wilk normality criterion, I opt for Pear-
son. 

Absolute differences between the functionality 
of cases are larger in condition 1, which can 
probably be explained by a frequency effect. 

For number, the situation is different. In con-
dition 2, the singular gets the highest functionali-
ty score and the dual the lowest, which again fits 
with the historical development of the Slavic 
languages: all except Slovene and Sorbian have 
lost the dual form (the same holds for most other 
Indo-European languages). In condition 1, how-
ever, the results are opposite: the dual is the most 
functional grammeme, while the singular and the 
plural are the most redundant ones. 

Functionality is a poor predictor for CSR fre-
quency in condition 1 (r = -0.73, p = 0.471). It is 
better correlated (though still insignificant) in 
condition 2 (r = 0.98, p = 0.14), but loses out to 
OCS frequency (r = 1, p = 0.026). The extremely 
small sample size, however, makes the Pearson 
test unreliable. 

Within the tense category, the resultative is at 
the most functional end of the scale, while the 
aorist and the imperfective are at the least func-
tional end in both conditions. The absolute val-
ues, however, differ, as does the position of the 
present: in condition 1, it has the same value as 
the resultative (slightly higher than the aorist), 
whereas in condition 2, its functionality is equal 
to that of the aorist and the imperfect. Important-
ly, the least frequent tense (the resultative) gets 
the highest functionality score in both conditions. 

For tense, OCS frequency is the worst predic-
tor of CSR frequency (r = -0.39, p = 0.611). 
Functionality has larger coefficients and smaller 
p-values, though they do not reach significance 
(in condition 1 r = -0.74, p = 0.259; in condi-
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tion 2 r = -0.87, p = 0.132). Again, small sample 
size prevents any definitive conclusions. 

It is not quite clear why the present scores so 
low in the condition 2: it is frequent enough, it 
has survived in all Slavic languages, and can be 
expected to be quite functional. It can be a con-
sequence of the complicated corrections that 
were performed to compensate for the morpho-
logical mismatch between participle and indica-
tive (see section 4.3). 

It is remarkable that the two tenses that get the 
lowest scores in both conditions are those that 
have disappeared in CSR: the aorist and the im-
perfect. They have not survived in other Slavic 
languages either, with the exception of Bulgari-
an, Macedonian and partly Bosnian-Serbo-
Croatian, where its use is restricted to certain 
genres and dialects (Dahl 2000: 101). The de-
cline of the imperfect usually happens before the 
decline of the aorist in Slavic languages (includ-
ing the East Slavic group, to which the CSR be-
longs), and, remarkably, the imperfect gets lower 
functionality score in condition 1. 

The difference between the scores of the most 
and the least functional grammemes is largest for 
case and lowest for number in both conditions. 
This fits with the functionality values of the cat-
egories themselves measured in a separate exper-
iment, where the changes of LAS were measured 
after deleting all information about a particular 
category (for instance, removing all strings 
NUMBs, NUMBd and NUMBp from the FEA-
TURE column). Case turned out to be the most 
functional category (0.030), which is unsurpris-
ing, given that cases are typically assumed to 
mark the syntactic role of an argument in a sen-
tence, and hence can be expected to be crucial 
for the reconstruction of the syntactic structure. 
Tense got second place (0.014) and all other cat-
egories scored noticeably lower, from 0.004 to 0 
(for number the value is 0.003). This difference 
can account for the contradictory results that the 
two conditions return for number: given that the 
total functionality of the category (from parser’s 
perspective) is relatively small, the proposed 
method can be less sensitive to real performance 
changes caused by mergers and more vulnerable 
to random fluctuations. 

7 Conclusion 

While the results vary across categories and con-
ditions, the general trend is quite clear: gram-
memes that did disappear in the course of lan-
guage history tend to get lowest functionality 

scores in the present case study, in other words, 
the main prediction holds. If we follow the as-
sumption that the most redundant morphological 
features tend to disappear first, especially under 
conditions that facilitate morphological simplifi-
cation (see section 1), then the results confirm 
the validity of the proposed method. 

The secondary prediction holds for case 
grammemes, where functionality allows to make 
better predictions about the frequencies that the 
grammemes will have after almost a thousand 
years than plain frequency. It does not hold for 
number and tense, but small sample sizes (i.e. the 
number of grammemes within a given category) 
can be the reason. 

The fact that the functionality scores for case 
correlated with the CSR frequencies suggests 
that the method can predict grammeme develop-
ment, at least in some cases. It seems to be able 
to capture the “functional potential” of a gram-
meme, which can influence its frequency in the 
future: the lower it is, the more likely the fre-
quency is to decrease. However, given the small 
differences in correlation coefficients, the small 
number of datapoints and the problematic situa-
tion with number and tense, the support for this 
hypothesis at the moment is rather weak. 

It is not quite clear which of the two condi-
tions gives better predictions. It is possible that 
the best way to calculate functionality is to com-
bine the results of both conditions in some way. 
The method should be tested on larger language 
samples in order to solve this and other potential 
issues and find its strengths and limitations. One 
immediate development of this study would be to 
take into account all modern Slavic languages to 
find out how likely a given Proto-Slavic gram-
meme (or category) was to disappear or to stay. 
Intermediate language stages (Old Russian, Old 
Bulgarian etc.) can, of course, also be consid-
ered. Given that some amount of noise (for in-
stance, peculiarities of a specific treebank, spe-
cific document or a chosen parser) will always 
affect the performance of the method, larger lan-
guage samples can also lead to more stable and 
more interpretable results. 

Looking from another perspective, this study 
is an attempt to model how human speakers pro-
cess linguistic information and which features 
are least informative for them. While the pro-
cessing itself is not expected to be entirely iso-
morphic to what happens in a human mind (and 
the model in general is somewhat of a black box, 
unless we use a fully deterministic parser), the 
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output gives us some information about human 
cognition and existing learning and usage biases. 

The method can be applied not only to lan-
guage change or older stages of language, but 
also to modern languages, and the results can be 
tested against existing psycholinguistic or typo-
logical evidence about redundancy. 

Obviously, it is necessary to test how robust 
the results are with respect to the choice of the 
parser, annotation scheme, merging procedures 
and languages. 

The results can have some practical value, too, 
as they provide information about which features 
are most and least useful for parsers. 
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Abstract

Meaning conveyance is bottlenecked by
the linguistic conventions shared among
interlocutors. One possibility to convey
non-conventionalized meaning is to em-
ploy known expressions in such a way that
the intended meaning can be abduced from
them. This, in turn, can give rise to ambi-
guity. We investigate this process with a
focus on its use for semantic coordination
and show it to be conducive to fast agree-
ment on novel meaning under a mutual ex-
pectation to exploit semantic structure. We
argue this to be a motivation for the cross-
linguistic pervasiveness of systematic am-
biguity.

1 Introduction

Semantic heterogeneity is an inherent aspect of
human communication. Nevertheless, success-
ful communication relies on mutual intelligibil-
ity. That is, an expression’s meaning has to be as-
sumed to be jointly known, or at least be abducible
provided other information. Here, the latter com-
munication strategy is addressed. In particular, we
focus on the repurposing of an expression to con-
vey novel meaning, derived from the expression’s
conventional meaning and the context it appears
in.1 As a consequence, single forms may come to
be associated with multiple meanings.

We argue such repurposing motivated ambigu-
ity to be driven by two main forces: the predictive
power of semantic structure and potential for con-
founding. On the one hand, using the same expres-
sion to convey similar yet non-identical meanings
in different contexts allows for the interpretation

1In the following, context is construed broadly as any
source of information beyond an expression’s literal mean-
ing. It is understood as a condensed prior of the association
strength with which an interpretation comes to mind (Franke,
2009).

of one in terms of the other, modulo context. On
the other hand, if the contexts these meanings ap-
pear in are either too similar, or too dissimilar, the
intended interpretation may fail, leading to subop-
timal communication.

Ambiguity in cooperative communication has
been argued to be motivated by effort and cost
minimization. Santana (2014) shows that ambi-
guity is evolutionarily advantageous when disam-
biguating contexts are available and cost is asso-
ciated with a larger vocabulary size. In a similar
spirit, Piantadosi et al. (2012) argue ambiguity to
enable a reuse of forms that are easy to produce
and comprehend (for example, shorter, phonotac-
tically unmarked, expressions). Thus, according
to this view, ambiguity’s advantage mainly lies in
effort reduction in production while safeguarding
comprehension through contextual information.

More generally, the argument is that if context is
(at least partially) shared, informative, and cheap,
less information needs to be carried by signals.
Following Piantadosi et al. this can readily be
illustrated by comparing the amount of informa-
tion required to disambiguate a meaning t ∈ T
with and without context K using Shannon en-
tropy (Shannon, 1948). If K is informative about
T , then H(T ) > H(T |K). That is, context can
alleviate the need for distinct forms for distinct
meanings. However, this ignores the subtler is-
sue of how the information of K relates to that
of T . In structured domains not all elements are
equal: similarity can introduce noise to mean-
ing discriminability or, conversely, emphasize the
contrast between dissimilar meanings. Crucially,
there are many alternatives ranging from ineffi-
cient to efficient contextual exploitation. In turn,
this depends on the meaning-form associations
of a language and their relation to the contexts
they appear in. Other things being equal, an
ambiguous language that colexicalizes contextu-
ally distinguishable meanings will be more effi-
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cient, compression-wise, than one that colexical-
izes contextually indistinguishable ones.

The tacit prediction of past research is that lan-
guages maximize the utility of ambiguity when
colexicalizing meanings that appear in contexts
as distinct as necessary to avoid misunderstand-
ing. Thus, if compression and ease of transmis-
sion are ambiguity’s main driving force, it is not
expected for related meanings to be expressed by
a single form, as this could make them more prone
to be confused. In the following, we argue that
ambiguity also has motivations at the semantics-
pragmatics interface, where interlocutors may ex-
ploit semantic structure to coordinate on novel
meaning.

2 Regularities in semantic structure and
their relation to context

Assessing the relation between novel meaning,
conventional meaning, and the contexts they ap-
pear in, presents many difficulties. We begin by
considering already conventionalized ambiguous
expressions as a proxy for form coexistence of dis-
tinct meanings. We do this to support two claims.
First, that (at least) some cases of ambiguity in
natural language are motivated by semantic relat-
edness (Apresjan, 1974; Nunberg, 1979; Puste-
jovsky, 1995).2 Second, that context and seman-
tic relatedness interact. An in-depth discussion of
either claim is outside the scope of the present con-
tribution. However, albeit often presupposed and
of certain intuitive appeal, it should be stressed
that neither is innocuous.

Semantic relatedness. First evidence for se-
mantic regularities in ambiguity comes from the
wide range of genealogically unrelated languages
that colexify the same meaning pairs. For instance,
the CLiCS corpus (List et al., 2014) lists 297 En-
glish noun pairs whose meaning is expressed by
a single form in at least 10 languages from three
or more language families. For example, 106 lan-
guages from 40 families express ‘flesh’ and ‘meat’
by a single form. Such cross-linguistic regulari-
ties are not expected should an expression’s form
be ambiguity’s main driving force. On a more
general level, a number of systematic meaning al-
ternations, such as producer-product, as in Rem-
brandt, or material-artifact, as in glass, have also

2A more differentiated classification of ambiguity is not
required for the present purpose. Thus, we purposefully avoid
referring to polysemy, metonomy, or metaphor explicitly.

been attested across multiple languages (Srini-
vasan and Rabagliati, 2015), although with no-
tably less cross-linguistic coverage.

Furthermore, a body of experimental evidence
suggests that the processing of forms that conflate
related meanings is distinct from that of unrelated
ones (for an overview see Simpson (1984) and Ed-
dington and Tokowicz (2015)). More specifically,
semantic relatedness is generally judged as facil-
itatory for semantic access in comparison to both
monosemous and homonymous expressions.

The experiments of Rodd et al. (2012) on the
acquisition of novel meaning through the use of
forms already associated with conventional mean-
ing are of particular relevance for the claim that
reuse of semantic material is conducive to agree-
ment on non-conventionalized meaning. Their re-
sults suggest that non-conventionalized meanings
are recalled better if they are related to the con-
ventional meaning of a known expression. Sim-
ilarly, in lexical decision tasks, subjects exhib-
ited increased performance for novel ambiguous
words with related meanings but not for unrelated
ones. More generally, Srinivasan and Snedeker
(2011) show that four-year olds generalize seman-
tic alternations of ambiguous expressions to novel
monosemous forms that lexicalize a meaning par-
ticipating in such alternations. In other words, hu-
man interlocutors appear to expect semantic rela-
tions to be exploited and generalize known alter-
nations.

Context, disambiguation, and prediction.
Contextual information not only has a facilitatory
effect on the interpretation of ambiguous expres-
sions (Frazier and Rayner, 1990; Klepousniotou
and Baum, 2007). It can furthermore be employed
to predict the number of distinct meanings a
form has (Hoffman et al., 2013). In particular,
distributional semantic models have been shown
to provide well-performing context-dependent
vectorial representations for the meanings of am-
biguous expressions by clustering an expression’s
co-occurrence counts. Using such methodology,
Reisinger and Mooney (2010) found a negative
correlation between the variance of cluster sim-
ilarities and that of human sense annotations:
The more similar co-occurrence clusters of an
ambiguous form were, the less human raters
agreed on their distinct meanings, suggesting
an inverse relationship between distributional
similarity and semantic discriminability. Boleda
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et al. (2012) show how distributional models can
be used to predict regular meaning alternations
for novel words. Here, the similarity of a form’s
co-occurrence vector to the centroid of two alter-
nation’s representations is used to assess whether
the form participates in the alternation. As above,
this research provides some support to the idea
that natural languages do not solely maximize
contextual contrast between meanings but that
there are regularities between semantic relations
and context, reflected in regular colexification
patterns.

3 Improving coordination

Taken together, the preceding survey provides in-
direct evidence for the claim that semantic relat-
edness plays a role for (at least some types of)
ambiguity, as well as for an interplay between in-
terpretation, context, and meaning-multiplicity. In
the following, we show that a joint expectation to
exploit semantic relations and context leads to im-
proved coordination on novel meaning.

We assume the information provided by con-
text to be shared and noiseless, i.e. interlocutors
have access to the same contextual information.3

Furthermore, we restrict our analysis to coopera-
tive communication. As a consequence, context is
taken to be informative about a speaker’s intended
meaning. The set of meanings compatible with
a context ki, the support of the meaning distribu-
tion conditioned on ki, is denoted by K?

i , K?
i

..=
{t|p(t|ki) > 0}. As we are interested in novel use
of conventionalized expressions, a fixed message
inventory M is considered, where p(t|m, ki) = 1
for exactly one m ∈ M provided that t ∈ K?

i .
That is, the messages in M are already conven-
tionally associated with some meanings, guaran-
teeing communicative success for those meanings.
I(m) is the conventional interpretation of a mes-
sage, I(m) ..= arg maxt p(t|m, K).4

So far, when communicating about conven-
tional meaning, interlocutors need not make use
of contextual information. Things are different,
however, when conveying novel meaning. In such
cases, the best a receiver can do is to guess in-

3This assumption is made mainly for expository conve-
nience. As shown by Juba et al. (2011), ambiguity also pro-
vides an efficient solution for uncertainty about the degree to
which the contextual prior of interlocutors matches.

4The conventional interpretation of a message is, gener-
ally speaking, independent of a particular context ki as long
as I(m) ∈ K?

i .

tended t based on the contextual information pro-
vided; p(t|m, ki) ∝ p(t|ki) if I(m) 6∈ K?

i . That
is, if a message’s conventional meaning is ruled
out, the best a literal receiver can do is to inter-
pret based on the contextually conditioned mean-
ing distribution. We refer to this communicative
strategy as Sl.

Languages that enable strategies akin to Sl are
at the stage at which Santana (2014) and Pianta-
dosi et al. (2012) predict ambiguity to be advan-
tageous: whenever T can be partitioned to allow
a message to be associated with two contextually
disjoint meanings. However, this sidesteps the ad
hoc interpretation of such ‘surprise’ messages in
a conventionally incongruent context, as well as
the regularities surveyed above. Particularly, it’s
unclear how meaning can come to be associated
with disjoint contexts and whether there are ways
to improve this process beyond best guesses.

Under the assumption that there are regularities
interlocutors may exploit them to coordinate. The
conventional meaning associated with a message
can be repurposed in such a way that, in unison
with context, a receiver can abduce the intended
non-conventional meaning. In accord with the pre-
ceding discussion, we assume two factors to play
a key role in this process: the relation between the
conventionalized and non-conventionalized mean-
ings, as well the information context provides
about them. The former indicates the ease to pre-
dict or derive one meaning from the other. The lat-
ter is a factor for potential equivocation. We call
this strategy Sm.

The above can be summarized as follows:
Given a context ki, a meaning to convey t, and
a message m, if I(m) ∈ K?

i and I(m) = t, then

p(t|m, ki) = 1 (1)

If I(m) 6∈ K?
i , then

p(t|m, ki) ∝ w1p(t|R(I(m), t))+w2p(t|ki) (2)

where R(x, y) stands for a relation between x and
y, and w1 and w2 are weights, w1 + w2 = 1.
The weights control how much import relations
have for the non-conventionalized interpretation
of a message based on its conventional meaning.
Sl corresponds to w1 = 0 and Sm to w1 > 0. Cru-
cially, for a message m, and all meanings t and t′

compatible with context k, if p(t|R(I(m), t)) ≥
p(t′|R(I(m), t′)) > p(t|k), then coordination on
t improves for any value of w1 greater than zero.
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Thus, Sm can aid coordination on non-
conventionalized meaning if (i) there is a relation
that appropriately captures the structure of T , and
(ii) interlocutors have a mutual expectation to ex-
ploit this relation in both production and compre-
hension. Put differently, Sm has an advantage over
Sl in cases where the relation is more informa-
tive about the intended meaning than the mean-
ing distribution conditioned on the context. In all
other cases performance depends on the value of
the weights and the information provided by con-
text.

3.1 Coordination without prior expectation
of a particular relation

Prima facie, the above hinges not only on a mu-
tual expectation to use semantic relations to guide
coordination, but on the mutual expectation to ex-
ploit a particular relation. To see whether coordi-
nation improves without this assumption we com-
pare the performance of Sl and Sm in adaptive
two-player Lewisian signaling games.

A Lewisian signaling game (Lewis, 1969),
〈T, M, A, p∗, uS , uR〉, consists of a set of mean-
ings T , signals M , and acts A. p∗ is a proba-
bility distribution over T , and uS and uR are the
sender’s and receiver’s respective utility functions.
In cooperative signaling sender and receiver have
a joint payoff. Thus, a single utility function u
can be considered, u : T ×M × A → R. Mean-
ings are assumed to be equiprobable, p∗(t) = 1

|T | ,
and for each ti there is exactly one aj such that
u(ti, m, aj) = 1 if i = j. Otherwise, the players
receive no payoff. Note as well that a receiver’s
correct interpretation of a sender’s intended mean-
ing is the sole factor influencing the game’s out-
come. In this sense, meaning-signal associations
are arbitrary.

A game iteration begins with a stochastically
determined meaning for the sender to convey. To
this end, the sender sends a signal. Upon recep-
tion of the signal, the receiver selects an act, which
in turn determines the players’ payoff. Before in-
teracting, sender and receiver have no, or only a
partial set of conventions to draw from. Thus, the
players’ task is to establish a meaning-signal map-
ping that maximizes their expected utility, i.e. to
establish an efficient communication system. To
this end, we adopt a common choice for learn-
ing in signaling games; Roth-Erev reinforcement
learning (RL) (Roth and Erev, 1995). RL pro-

vides a good fit to the behavior of human subjects
in comparable tasks (Roth and Erev, 1995; Erev
and Roth, 1998; Bruner et al., 2014), is a well-
understood learning mechanism, and has conve-
nient convergence properties (Beggs, 2005; Cat-
teeuw and Manderick, 2014). Furthermore, given
its simplicity, RL presupposes little sophistication
from players.

As with other reinforcement learning algo-
rithms, successful actions in a state of affairs in-
crease a player’s propensity for the same action
given the same state. More specifically, a player’s
actions are informed by her accumulated rewards.
These are values associated with state-action pairs
and represent the success of an action in a given
state. In signaling games, states are meanings for
the sender and signals for the receiver, and their
respective actions are signals and acts. Given a
state p, a player will select an action q with a prob-
ability proportional to its accumulated rewards,
p(q|p) = ar(p,q)∑

q∈Q ar(p,q) . After a game iteration,
the accumulated rewards of selected state-action
pairs are updated by the players’ payoff. As a con-
sequence, a successful meaning-signal-act triple
〈ti, mj , ak〉makes a sender more propense to send
mj given ti in future interactions. Analogously,
the receiver is more propense to select ak given
mj . In this way, players (ideally) learn to commu-
nicate efficiently through iterated interactions.

We expand this setup by adding structure to the
set of meanings, a set of contexts, as well as two
types of players corresponding to Sl and Sm. To
add structure, T is modeled as a n-dimensional
grid of natural numbers, T = [o, r]n. The relations
in T are given by the Manhattan distance between
two elements; R(x, y) ..=

∑n
i=1 |xi − yi|. For ex-

ample, R((1, 1), (3, 4)) = 5. These choices were
made to accommodate the simple learning and se-
lection mechanisms of the players. In particular Sl

receivers proceed by best guesses and only learn
through positive feedback. If T were large or con-
tinuous it could take a prohibitive amount of time
until the first successful action is performed.

The set of contexts K corresponds to all convex
subsets of T . That is, if x and y are elements of a
context, then either R(x, y) = 1 or there is a third
element z in the context such that R(x, y) = 1 and
R(y, z) = 1. Consequently, the information about
meaning conveyed by a context can be represented
by the points it contains. The more elements a con-
text has, the less informative it is. Two extremes
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in K are its singletons and the set containing all
points in T . The former are contexts where only
one meaning is probable and thusly jointly known
to be the intended meaning, p(t|k) = 1 if t ∈ k
and |k| = 1. The latter context is not informative
about meaning, p(t|k) = p(t) if T = k. More
generally, this means that p(t|k) = 1

|k| if t ∈ k
and 0 otherwise.

In contrast to classic signaling games, a game
iteration now beings with both a meaning to con-
vey, as well as with the determination of a context.
While the meaning is a sender’s private informa-
tion, the context is public and shared across all
players. In line with the preceding discussion the
only restriction we impose is that sampled t has to
be an element of sampled k. That is, context never
rules out a speaker’s intended meaning.

In what follows, we compare the performance
of two types of players; Sl and Sm. Both receivers
act in accordance to (1) to interpret convention-
alized meaning, and (2) for non-conventionalized
meaning. They differ in that Sl is given by w1 =
0, whereas Sm corresponds to any value of w1

greater than zero. The same applies to Sl and Sm

senders, mutatis mutandis.

3.2 Simulations

We compare the iterations needed for Sl and Sm

players to achieve reasonably efficient communi-
cation by means of signals already associated with
conventional meaning. Their task is to employ
these signals to convey novel meaning. Crucially,
players employing Sm begin the game with no
bias towards a particular relation to exploit. This
means that, while exploration for Sl involves only
coordinating on new form-meaning associations,
Sm players additionally explore different potential
relations.

On the one hand, we expect that once a suit-
able relation, i.e. one that holds pairwise between
all conventionalized and novel meanings, is found,
coordination is faster. On the other hand, con-
sidering multiple relations, or settling on a rela-
tion that does not hold between all pairs, may lead
to suboptimal communication and prolong explo-
ration. (Recall that the degree to which relations
affect players’ choices is controlled by the value
of w1.) Furthermore, it is clear that once a new
convention for the (now) ambiguous signals is es-
tablished, high values of w1 will interfere with –
rather than aid – coordination.

1 2 3 4
1

2

3

4

Figure 1: Exemplary instance of an iteration in
[1, 4]2. Shapes correspond to meanings. Dia-
monds are conventionalized and squares are not.
Filled out squares are meanings for which play-
ers need to establish conventions. The dashed line
encloses contextually probable points in this par-
ticular iteration.

We compare the effect of different weight val-
ues in 100 games of 2000 iterations per value. As
mentioned above, w1 = 0 corresponds to Sl. For
Sm we consider values for w2 ∈ [.8, .98]. The
set of meanings T is [1, 4]2, yielding 16 potential
meanings to choose from, as well as seven distinct
relations. Each game is initialized with three ran-
domly sampled meanings taken to be convention-
alized and three novel meanings to coordinate on.

The players’ performance depends on how
many iterations they require to reach an expected
utility greater than 0.66 for the latter set of mean-
ings. This corresponds to a better performance
than the best suboptimal pooling equilibrium in a
signaling game with three meanings, signals, and
acts (ignoring the added listener-uncertainty about
which three meanings could possibly be intended
in the present setup). Reaching this threshold in-
dicates substantial learning as this task is complex
for unsophisticated agents. In principle, any el-
ement in T could be the intended meaning and
learning with RL is slow until at least some suc-
cessful interactions have transpired. In the worst
case, the probability of guessing the right meaning
for a receiver using Sl is 1

15 . Figure 1 illustrates an
exemplary instance of a single game iteration.

To make the exploitation of relations viable, we
ensure that at least one value of the Manhattan dis-
tance holds between conventionalized and novel
elements. For instance, if points (1, 3), (2, 1) and
(4, 3) are conventionalized, and (3, 3), (3, 2) and
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w2 mean SD Cohen’s d
0.95 792 294 3.34
0.90 1238 286 1.34
0.85 1474 289 0.26
0.80 1569 324 -0.08

Table 1: Iterations needed to reach an expected
utility greater than 0.66. Cohen’s d indicates the
difference to the mean of w2 = 1; 1533 (SD =
140).

w2 mean SD Cohen’s d
0.95 0.70 0.047 0.49
0.90 0.64 0.054 1.88
0.85 0.60 0.051 2.69
0.80 0.56 0.061 3.19

Table 2: Expected utility after 2000 iterations. Co-
hen’s d indicates the difference to the mean of
w2 = 1; 0.73 (SD = 0.04).

(2, 4) are novel meanings to convey, then a dis-
tance of 3 allows for their pairwise association. In
general, multiple relations hold between conven-
tionalized and novel elements, allowing for more
than one relation to be considered. As a conse-
quence, an advantage of Sm over Sl is not certain.

Results & evaluation. In the following, two re-
sults are reported. First, the mean of the itera-
tions both types of signalers needed to reach an
expected utility greater than 0.66. Second, their
mean expected utility after 2000 iterations, indi-
cating long term effects of different w1-values.

Detailed excerpts of the results, showcasing
general trends and the effect size between values
of w2 = 1 (Sl) and w2 < 1 (Sm), are shown in Ta-
bles 1 and 2, for iterations required and expected
utility after 2000 iterations, respectively. Figures
2 and 3 depict plots for all weight values. In the
former figure points below the horizontal uninter-
rupted line show values for which Sm performed
better than Sl. In the latter figure points above this
line indicate better performance.

Generally, our expectations were met. The
higher w1, the less efficient a communicative sys-
tem was after a game’s conclusion. However, even
with respect to expected utility after 2000 itera-
tions, the mean of Sm players was higher than
that of Sl players for low w1-values. For instance,
players with w1 = 0.02 reached a mean of 0.76
(SD = 0.023), which is significantly higher than

Figure 2: Mean of iterations needed to reach an
expected utility greater than 0.66 with 95% confi-
dence intervals. The horizontal uninterrupted line
indicates the mean of w2 = 1; 1533 [1505, 1561].

Figure 3: Mean of expected utility after 2000 it-
erations with 95% confidence intervals. The hor-
izontal uninterrupted line indicates the mean of
w2 = 1; 0.73 [0.717, 0.735].

that of w1 = 0 (Cohen’s d = −1.11). Crucially,
these results show that prior agreement on a single
relation is not necessary to uphold the advantage
of exploiting semantic relations over best guesses.
This is evinced by the range of values that reached
the imposed threshold in significantly less itera-
tions than Sl.

In this setup low values of w1 performed best
with respect to learning speed, as well as longer
term communicative efficiency. This adds to our
previous assumption in that low yet positively val-
ued w1 improves early exploration without inter-
fering with exploitation. Put differently, a slight
bias towards relation exploitation is useful both in
short and long term, whereas a major reliance on
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this mechanism can have negative effects in the
long run, at least when multiple relations are vi-
able candidates.

Overall, even when multiple relations are avail-
able, Sm can nevertheless be conducive to fast
agreement on novel meaning. This, however,
comes at a cost when weights are static. After im-
proving the search for novel meaning, high values
of w1 interfere with further interactions. This is
due to the present setup allowing for the “right” re-
lation to hold between more than one of the mean-
ings to convey. As a consequence, Sl generally
fared better over time.

4 General discussion

To recapitulate, we argued that repurposing ex-
pressions in novel contexts improves coordination
when interlocutors exploit semantic regularities.
Moreover, our simulations show this advantage to
hold without prior agreement on a particular as
well. The generality of the latter result, however,
is constrained by the setup considered. On the one
hand, only a small set of meanings and relations
was used. Furthermore, simplifying assumptions
were made to model context and its relation to
meaning. On the other hand, human agents are
able to learn and reason about their interlocutors in
more sophisticated ways than our agents, and draw
from more information sources. Thus, while its re-
lation to natural language structure and reasoning
is tentative, on a more general level the present
analysis applies to systems where coder and en-
coder share an expectation to repurpose informa-
tion through regular means.

Returning to natural language, our argument
partially resembles Grice’s modified Occam’s ra-
zor: “senses should not be multiplied beyond ne-
cessity” (Grice, 1978). In a nutshell, Grice argues
that, should it be predictable that a speaker would
use a particular expression to convey something
in a given context, then there is no need to as-
sume this to be a separate meaning of the expres-
sion. Without dwelling on the issue whether the
meanings considered here constitute novel mean-
ings in their own right – as done so far – the cru-
cial point is that exploiting relations enables pre-
dictable interpretation-multiplicity. In this sense,
players using Sm can be seen as learning to pre-
dict and convey meaning based on the structure of
semantic space.

Having a way to predict interpretations, in

turn, was shown to lead to faster coordination on
non-conventionalized meaning. Furthermore, the
longer term comparisons between Sl and Sm sug-
gest that, should the information provided by rela-
tions be insufficient to tease apart meaning alter-
nations throughout varying contexts, interlocutors
perform best when their choices are only weakly
influenced by them. This aligns well with re-
cent research on learning through generalization
(O’Connor, forthcoming). O’Connor’s results add
strength to the claim that generalization speeds up
learning whilst paying a cost in precision. Com-
municatively efficient meaning alternations need
to be frequent, and the participating meanings dis-
criminable by the contexts they appear in. In the
long run, when potential for confounding exists
and high precision is required, interlocutors fare
better when coining a new signal for a novel mean-
ing or by drawing from additional information to
reduce communicative uncertainty.

We see two main venues for future research.
First, there is a need for further analysis involving
differently sized and structured meaning spaces,
different relations, the addition of noise to the in-
formation provided by context, as well as an anal-
ysis of population dynamics in larger agent com-
munities.5 Second, our general proposal requires
empirical validation. Here, one possibility is to
test its performance on corpus data to predict un-
witnessed meaning alternations in a similar spirit
to the work of Reisinger and Mooney (2010) and
Boleda et al. (2012) surveyed above.

A further issue left undiscussed is that of the
cost of ambiguity. In the current proposal cost
implicitly came into play as equivocation poten-
tial when multiple relations are available for ex-
ploitation. Other sources of cost may relate to
lexical storage, as assumed by Santana (2014), or
processing cost. In particular the latter requires
a more detailed treatment. Past experiments sug-
gest ambiguous words with related meanings to
be processed faster than monosemous or homony-
mous words (Rodd et al., 2002; Klepousniotou
and Baum, 2007), as well as finer-grained dis-
tinctions within their class (Klepousniotou et al.,
2008). These aspects relate to issues of lexical
storage, lexical representation and lexical access,

5As noted by an anonymous reviewer, the simplicity of
Lewisian signaling games may have to be abandoned to fully
explore and expand this proposal. A potentially suitable al-
ternative is given by the language game paradigm as laid out
in, for example, Steels (2012).
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neither of which were addressed here.
Our overall proposal is based on relations of

unspecified nature. To conclude this discussion,
we submit that one possibility to model seman-
tic relatedness in a more concrete but framework-
independent way is to equate it to transforma-
tional complexity between representations, given
by the Kolmogorov complexity of one representa-
tion conditioned on the other (Chater and Hahn,
1997). Informally, K(x|y) is a complexity mea-
sure given by the shortest program that takes y as
input and returns x. Kolmogorov complexity is
well-understood and widely applicable. Chiefly,
it is independent of the representations required
for particular applications and provides a good fit
for human similarity judgments (see Hahn et al.
(2003) for details). Lastly, it addresses the prob-
lems of metric-based similarity relations raised by
Tversky (1977), who shows that neither triangle
inequality nor symmetry need hold for human sim-
ilarity judgments. The same is true of transfor-
mational complexity, as it is compatible with both
symmetric and asymmetric relations.

5 Conclusion

Conveying and comprehending novel meaning re-
lies on the interlocutors’ mutual reasoning about
what is contextually relevant. Among others,
meaning can be expressed by composing conven-
tionalized forms, coining new expressions, or by
exploiting semantic relations by scaffolding on
conventionalized meaning. The present investi-
gation focused on the latter as a communication
strategy for fast coordination. We showed that, if
a specific relation is mutually expected to be ex-
ploited, this mechanism provides a robust solution
for reliable and fast coordination. However, when
multiple relations are likely candidates, repurpos-
ing comes at a risk of lower precision. As a con-
sequence, its advantage depends on the relations
available, their regularity across semantic space,
previous successful exploitation thereof, and the
contexts in which the relevant meanings appear in.

Our analysis draws its main motivation from
the cross-linguistic pervasiveness of ambiguous
expressions that lexicalize related meanings. In
a sense, it is not surprising that certain meaning
clusters exhibit systematic alternations. Without
risk for confounding, they provide a safe and effi-
cient expansion of a language’s expressive range.
In other words, relation exploitation provides a

partial solution to lexical bottlenecks. Learning
and predicting alternations is not only important
for our understanding of human communication,
but also to overcome analogous bottlenecks faced
by computational systems (Navigli, 2009).

More generally, we argued that natural language
ambiguity is motivated by more than form-based
considerations. When members of a linguistic
community are biased towards regularities, repur-
posing conventionalized material provides an effi-
cient means to convey novel meaning.
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Abstract

Children’s overextension errors in word
usage can yield insights into the underly-
ing representation of meaning. We simu-
late overextension patterns in the domain
of color with two word-learning models,
and look at the contribution of three pos-
sible factors: perceptual properties of the
colors, typological prevalence of certain
color groupings into categories (as a proxy
for cognitive naturalness), and color term
frequency. We find that the perceptual fea-
tures provide the strongest predictors of
the error pattern observed during develop-
ment, and can effectively rule out color
term frequency as an explanation. Typo-
logical prevalence is shown to correlate
strongly with the perceptual dimensions of
color, and hence provides no effect over
and above the perceptual dimensions.

1 Overextensions in word learning

When learning their language, children often
overextend a word by erroneously using it to re-
fer to concepts similar to its actual meaning – e.g.,
a child learning English might refer to all round
things as ball. We can learn much about the mech-
anisms and representations the child uses to ar-
rive at an adult level of understanding by explor-
ing whether the proposed mechanisms lead to ob-
served patterns of such errors over the course of
development.

Several factors have been named as potential in-
fluences on early overextensions in word mean-
ing acquisition, including underspecification of
semantic representations (Clark, 1973), as well
as word frequency (mostly invoked as a zero-
hypothesis to be rejected; Gülzow and Gagarina
(2007), Goodman et al. (2008)).

Another possible factor is conceptual prior bi-
ases. Bowerman (1993) suggests that some se-

mantic features (or values of features) may be cog-
nitively more readily available than others, and ar-
gues that (crosslinguistic) semantic typology can
shed light on the degree of cognitive naturalness
of features in a domain. This idea was further ar-
ticulated by Gentner and Bowerman (2009), who
proposed the Typological Prevalence Hypothesis.
This proposal states that the more frequently lan-
guages make a certain semantic grouping – i.e.,
collect together a certain set of situational mean-
ings under a single term – the more likely this is
a cognitively natural grouping. The reasoning is
that if some conceptual categorization comes natu-
rally, languages are more likely to develop linguis-
tic categorization systems that follow these biases.
Gentner and Bowerman (2009) further argue that,
other things being equal, linguistic terms referring
to such cognitively more natural groupings will be
acquired more readily by children than terms in a
language that do not follow the typical conceptual
category boundaries.

The Typological Prevalence Hypothesis ex-
plains the error pattern Gentner and Bowerman
(2009) observed in the acquisition of Dutch topo-
logical spatial markers. Whereas English uses the
preposition on for all sorts of conceptual relations
of support between a figure object and a ground
object, Dutch distinguishes op ‘surface support’,
aan ‘tenuous support’, and om ‘surrounding (sup-
port)’. Gentner and Bowerman (2009) found ex-
perimentally that Dutch children overgeneralize
op to situations where adults would use aan or om,
but not vice versa. Gentner and Bowerman (2009)
note that it is crosslinguistically very common to
have a term like op that reflects a semantic group-
ing of various surface support relations, whereas
terms such as aan that denote ‘tenuous support’
are typologically rare. They suggest that this pat-
tern reflects a difference in cognitive naturalness
(surface support being the more prototypical case
of support than tenuous support), which in turn
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makes aan harder to acquire than op.
Beekhuizen et al. (2014) operationalized the Ty-

pological Prevalence Hypothesis within a word-
learning model by creating a semantic representa-
tion for topological situations that used the words
themselves from across a number of languages as
the features for representing spatial relations. In
such a representation, commonalities and differ-
ences in the way languages carve up the space of
topological relations is reflected in the way the
terms within each language group together vari-
ous situations. This approach yields a semantic
representation that can capture crosslinguistic nat-
uralness of the underlying spatial relations, with-
out the need for explicit identification of appropri-
ate semantic features. Situations that, within many
languages, are expressed with the same word are
closer in this semantic space than those that are
more often labelled by different terms within a
language. Beekhuizen et al. (2014) simulated the
above experimental results on Dutch children by
using this semantic space within a computational
model for learning Dutch prepositions, whose de-
velopmental trajectory displayed the same trends
as children.

Here we extend the method of Beekhuizen et
al. (2014) to the acquisition of color terms, an-
other domain in which children are known to make
overextension errors. Color terms form an inter-
esting test of the Typological Prevalence Hypoth-
esis, because we know reasonably well what the
perceptual dimensions of color are, and can test
if there is any effect of typological prevalence on
top of this. Specifically, we ask if crosslinguistic
consistency provides a good basis for the repre-
sentation of color in word learning, and if such a
semantic representation adds information beyond
the perceptual properties of color.1

Note that other work, such as Regier et al.
(2007) among others, has reasoned from the per-
ceptual features of color as well as general consid-
erations concerning category structure to propose
an explanation for the observed tendencies across

1For the latter question, the hypothesis is that a color c
may be at the same perceptual distance to c′ as it is to c′′, but
for some other reason, languages categorize c and c′ with the
same term more often than c and c′′. There could be various
reasons for this difference, such as a preference for certain
category structures, or communicative pressures concerning
disambiguation. We do not investigate here what those fac-
tors might be, but rather explore whether the typologically-
derived semantic space provides information in addition to
the perceptual features.

color lexicons. Instead, we explore whether the
typological tendencies among color lexicons re-
flect semantic information relevant to word learn-
ing, and especially whether that information goes
beyond that provided by perceptual features. We
refer to the typologically-based semantic represen-
tation as ‘conceptual’ features (in contrast to per-
ceptual ones) because they refer to the way color
concepts are (preferably) structured in the lexicons
of the various languages.2

Thus, here we explore three potential influences
on the error patterns observed in learning of color
terms: perceptual factors, conceptual factors, and
word frequency effects. We also take the op-
portunity to strengthen the evaluation method of
Beekhuizen et al. (2014) by here using a quantita-
tive measure of model deviation from the observed
pattern of word use in order to arrive at more com-
plete insights into the role of these factors.

2 Data on the acquisition of color terms

Across languages, children overextend certain
color terms at the cost of others, and there has
been a long tradition of research into this domain
(Bateman, 1915; Istomina, 1960; Harkness, 1973;
Bartlett, 1978; Davies et al., 1994; Davies et al.,
1998; Roberson et al., 2004). The case used for
our current study is Bateman (1915), who studied
591 English-speaking children in the age range 6-
11. Eight color chips of the ‘best’ examples3 of
the colors BLACK, BLUE, BROWN, GREEN, OR-
ANGE, PURPLE, RED, YELLOW were presented
to the subjects, who were then asked to name the
color.4 We use Bateman’s elicitation data in the
initial application of our approach to this domain
because, despite being a century old, it remains the
most comprehensive published error data on color
terms.

Bateman found that BLACK, WHITE, RED and

2A reviewer noted that ‘conceptual’ may be an inaccu-
rate term, since factors beyond strictly the conceptual bi-
ases of language users might influence color lexicons and
their crosslinguistic similarities and differences. In adopt-
ing the Typological Prevalence Hypothesis as a working hy-
pothesis, we consider that crosslinguistic patterns reflect cog-
nitively natural conceptual groupings, while acknowledging
that other factors need to be investigated as well.

3“Each color was of the purest tone and strongest satura-
tion obtainable”, p. 476.

4We adopt the convention of denoting the stimuli with
small capitals and the words with italics. The responses con-
tain all eleven English basic color terms (Berlin and Kay,
1969): black, white, red, yellow, green, blue, orange, purple,
pink, brown and grey.
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BLUE were learned (nearly) error-free (≤ 2% er-
roneous responses at age 6), but YELLOW (7% at
age 6), GREEN (6% at age 6), ORANGE (6% at
age 6), and especially PURPLE (11% at age 6) dis-
played errors. For YELLOW, the term orange is the
most frequent error. For ORANGE various errors
are found (yellow, red, blue, purple, brown, pink).
GREEN displays mostly errors in which blue is
used. For PURPLE, blue is the most frequent erro-
neous term. Whereas the errors for YELLOW and
GREEN have disappeared at age 7, the errors for
ORANGE and PURPLE are somewhat more persis-
tent, and are found until age 11 and 9 respectively.

In summary, this data yields the following five
phenomena that must be explained:
• BLACK, WHITE, BLUE, and RED display

hardly any errors;
• GREEN and YELLOW display some errors at

age 6 but none afterwards;
• ORANGE displays (somewhat haphazard)

persistent errors;
• PURPLE displays persistent errors, mostly

blue;
• However, purple is not overextended to

BLUE.
While previous accounts of the error patterns have
mainly focused on perceptual closeness of the var-
ious colors (Bartlett, 1978; Pitchford and Mullen,
2003), this cannot be the full explanation: If
the overextension of blue to PURPLE stimuli was
solely due to color similarity, we would expect
(contrary to observation) that purple would also
be incorrectly overextended to BLUE stimuli.

Here, we explore three potential factors that
might lead to the observed pattern of color
errors: perceptual features of color, concep-
tual/typological prevalence factors, and/or fre-
quency of the color terms.

3 Operationalizing the Three Factors

We simulate the acquisition of color terms by
training a word-learning model on a generated in-
put stream, in which each input item pairs a se-
mantic representation s ∈ S of a color, with a
color term t ∈ T used to refer to it. S is drawn
from the 330 chips of the Munsell color chart, and
T contains the eleven basic color terms that com-
prised the responses in Bateman (1915). We ex-
plore the impact of perceptual and/or conceptual
(typological) factors by varying the representation
of s, using one or both of the feature sets described

in Sections 3.1 and 3.2.5 The role of frequency of
t is examined by varying the way the input items
are generated, as in Section 3.3.

3.1 Perceptual features

As the perceptual dimensions, we use the CIELab
color space. The CIELab space describes all col-
ors visible to the human eye, and consists of three
dimensions, lightness (L∗), a red-green scale (a∗)
and a yellow-blue scale (b∗). Importantly, the Eu-
clidean distance between any pair of coordinates
in CIELab is thought to directly reflect the per-
ceptual similarity between colors. Since color
perception is thought to be adultlike before age
two (Pitchford and Mullen, 2003), we can assume
these perceptual features to be stable over devel-
opment.

3.2 Conceptual features

The conceptual dimensions reflect the crosslin-
guistic biases in categorizing the color space. To
capture these, we use the World Color Survey data
of Kay et al. (2009), which contains elicitations for
each of the 330 chips of the Munsell color chart,
for 110 typologically diverse languages, with on
average 24 participants per language. From this
data, we extract an n-dimensional conceptual
space by using the first n dimensions of a Princi-
pal Component Analysis (PCA, Hotelling (1933))
over the elicited color terms for a number of color
stimuli following the method of Beekhuizen et al.
(2014), as described below.

The elicitations for each language give us a
count matrix C containing a set of color stimuli S
on the rows, and a set of color terms T in that lan-
guage on the columns. Every cell is filled with the
count of participant responses to stimulus s that
use color term t. Matrix C captures the way that
the language carves up the space of color: stim-
uli s and s′ are treated similarly in the language
to the extent that the labels used to express them
are similar, reflected in rows s and s′ of C. As we
want to know how often stimuli are co-categorized
across languages, the procedure of Levinson et
al. (2003) is adapted: for every language l, an
|S| × |S| distance matrix Dl containing the Eu-
clidean distances between all pairs of situations is
extracted. By summing the distance matrices for
all languages, we arrive at a distance matrix Dall

5The values for the 330 chips on the two feature sets are
available from the first author upon request.
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whose elements dij are the summed distances be-
tween si and sj across all languages. A PCA was
applied to Dall, from which we use the 4 compo-
nents with an Eigenvalue ≥ 1 (Kaiser’s rule) as
our conceptual space to represent color semantics.

3.3 The role of frequency

In the input generation procedure, a pair of a color
term t ∈ T and a stimulus s ∈ S is sampled from
the distribution P (t, s) = P (s|t)P (t). The likeli-
hood P (s|t) is the relative frequency of a specific
color chip given a term (as given by the data for
English of Berlin and Kay (1969)):

P (s|t) =
n(t, s)∑

s′∈s

n(t, s′)
(1)

where P (s|t) = 0 for s not included in the elicita-
tion data.

To explore the role of term frequency in color
errors, we base the prior probability P (t) on the
relative frequency of t among the 11 primary color
terms in the Manchester corpus of child-directed
speech (Theakston et al., 2001). We then compare
this to holding frequency constant, i.e. with P (t)
a uniform distribution over T .

4 The Experimental Approach

4.1 The learning models

We model word-learning as a categorization prob-
lem by considering the 11 color terms as the “cat-
egories” to be learned over the various color se-
mantics (the representations of the color chips)
each is associated with in the input. Extending
Beekhuizen et al. (2014), we try two different
categorization models: a Gaussian Naı̈ve Bayes
learner (GNB, as in their work), and a Generalized
Context Model (GCM, Nosofsky (1987)), for two
reasons. First, if the same effects are found with
multiple models, the effect is more robust, and not
an effect of the model per se. Second, GCM is
an exemplar-based categorization model that has
been shown to simulate human categorization be-
havior well.

In the GNB approach, for a given amount of in-
put data of color-semantics/color-term pairs, the
model estimates Gaussian distributions over each
of the perceptual and/or conceptual feature dimen-
sions. The model is then presented with each of
Bateman’s 8 color stimuli as the test phase, and it

outputs the color term with the Maximal A Poste-
riori probability as the predicted category for each
color.

In the GCM model, the probability of categoriz-
ing a color stimulus si with category J (response
RJ , a color term) is given as the summed similar-
ity η between si and all instances of category J
(all colors referred to by the color term), divided
by the summed similarity between si and all ex-
emplars (colors) in the data set.

P (RJ |si) =

bJ
∑

j∈CJ

ηij∑
K

(bK
∑

k∈CK

ηik)
(2)

where b is the category bias, here set to uniform
for categories. ηij is given by:

ηij = e−dδij (3)

where δ is the decay function, here set to 1 (ex-
ponential). For d we use the Euclidean distance
between the coordinate vectors of i and j.

4.2 Experimental set-up

Each model is trained on successively larger
amounts of data, in blocks of 10 input pairs. Ev-
ery 10 input items, the model is presented with
the 8 colors of Bateman (1915) and predicts the
most likely category label from the set of 11 color
terms. As Bateman does not give values in a color
space for his stimuli, we assume that the focal
colors, as described by Berlin and Kay (1969),
were used.6 For each of the 12 parameter set-
tings (features = {perc, conc, perc&conc}×
frequency = {relative, uniform}×model =
{GCM, GNB}), we run 30 simulations of 1000 input
items each, each of which yields 100 test points.

4.3 Evaluating the model predictions

Assessing the accuracy of the model in simulating
the observed error data requires us to align the pre-
dictions P at the 100 test moments of the model
with Bateman’s observed data O in the 5 age bins
(6-, 7-, 8-, 9-, and 10-to-11-year-olds). We repre-
sent O as a 5×8 matrix in which each element oij

is the distribution of responses over the children
at age bin i to color stimulus j (where j is one of
the 8 stimulus colors). The matrix P contains the

6If multiple tokens were named as focal in the data of
Berlin and Kay (1969), we set coordinates of a test item to
the mean of each coordinate for all focal instances of that
category.
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models responses under a given parameter setting;
it is a 100 × 8 matrix in which each element pkj

is the distribution of responses over the 30 simula-
tions at test point i to color stimulus j. For exam-
ple, pkj for j the RED stimulus might look like:

pkj = [ red : 0.8, orange : 0.1, purple : 0.1, ... ]

indicating that of the 30 simulations at test point
k, 24 predicted red, 3 orange, and 3 purple, to
the stimulus j=RED (and 0 responses for all other
color terms). To recap, each row of O and P is
a vector of 8 elements, each of which is a dis-
tribution over the 11 color terms that comprises
the responses of the children/model at that age/test
point, respectively, to the 8 color stimuli.

To determine the degree to which the predic-
tions of the model given in P mimic the error
data in O, we need to map each row i of O (the
responses for that age bin) to some row k in P ,
such that each oi+1 maps to a higher k than oi.
(This constraint ensures that older age bins map
to later test points of the model.) To find this map-
ping between observed and predicted data, we find
the series of 5 (possibly discontiguous) rows in P
that minimize the average distance between those
5 rows and the 5 rows of O.

To compare rows oi and pk, we find (and aver-
age) the distance d between each paired distribu-
tion (e.g., RED in oi and RED in pk):7

∆(oi, pk) =
∑

s∈Stest

d(os
i , p

s
k)× 1

|Stest| (4)

where Stest is the set of 8 test colors. Using
∆(oi, pk), we compare all oi and pk (subject to
the ordering constraint on k) and find the series of
5 pki’s with the lowest distance to the oi’s they are
mapped to.

Now we can calculate the overall error of the
model’s predictions P with respect to the observed
data O as:

error(O,P ) =


∑

i∈[1...5],ki

∆(oi, pki)

5

 (5)

where the indices ki are given by the mapping that
minimizes the error, as explained above.

7The experiments reported below use Euclidean distance
for d, but the pattern of results is the same under cosine or
Canberra distance.

5 Results and discussion

5.1 Global fit and effect of parameters
In order to study the effect of the various param-
eters (features = {perc, conc, perc&conc}×
freq = {relative, uniform} × model =
{GCM, GNB}), we enter the error for the output
for each setting into a two-way ANOVA. As we
can see in Table 1, there are two main effects: the
features and the model. A post-hoc test (Tukey
HSD) shows that for the features variable, the
difference between perc and conc (p < 0.001)
as well as between perc&conc and conc (p <
0.001) are statistically significant, but not the dif-
ference between perc&conc and perc (n.s.). For
the model parameter, we observe a slightly better
fit for GCM than for GNB. For the freq parame-
ter, there is no difference between relative and
uniform.

The analysis shows that the perceptual features
perform better than the conceptual features, and
adding the conceptual features to the perceptual
ones gives no improvement. It seems that percep-
tual features play an important role in explaining
the overextensions and lack thereof in the develop-
ment of color terminology, but that the conceptual
features explain little on top of this.

The lack of an effect of the conceptual fea-
tures is unexpected, given that Beekhuizen et al.
(2014) found that using their typological concep-
tual space explained the errors in the acquisition
of Dutch spatial relation terms. One could ar-
gue that the domain of color is conceptually sim-
pler than space (pertaining to properties of enti-
ties rather than relations between them, cf. Gen-
tner (1982)), which is supported by the finding of
Majid et al. (2015) that, at least among Germanic
languages, space lexicons vary more crosslinguis-
tically than color lexicons. However, the fact that
children acquire color terms relatively late (com-
pared to spatial terms) goes against this analysis,
but then again, the late acquisition of color may
also be due to other factors (e.g., the difficulty of
disentangling color from other properties, cf. Soja
(1994)). Understanding the lack of an effect of the
conceptual features here ultimately requires us to
analyze the crosslinguistic data further, which we
plan to do in future work.

We also found no significant effect of the fre-
quency manipulation, suggesting that the observed
errors are not influenced by the varying frequen-
cies of color terms. This is surprising because
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parameter F p parameter setting mean error

perc&conc µ = 0.015
features F (2) = 2790.070 p = 0.000 perc µ = 0.020

conc µ = 0.354

frequency F (1) = 0.026 p = 0.887
relative µ = 0.130
uniform µ = 0.130

model F (1) = 11.208 p = 0.044
GCM µ = 0.120
GNB µ = 0.139

Table 1: Results of the ANOVA; see Section 5.1 for post-hoc analyses.

Beekhuizen et al. (2014) found that an interaction
of frequency and typological factors contributed to
the errors they modeled. Moreover, frequency has
been shown to correlate with acquisition of color
terms (Yurovsky et al., 2015), albeit for younger
children than the ones in the Bateman data.

This suggests that a possible explanation for the
lack of both frequency and typological prevalence
effects is that the error data we are modeling are
from older children (ages 6–11). Perhaps effects
of frequency and/or conceptual factors (on the ba-
sis of typological prevalence) are only found in
younger children. It may be that, by age 6, the
young language user has organized her semantic
space in accordance with her native language, thus
no longer displaying effects of typological preva-
lence. In the future we will need to look at ear-
lier error data to explore whether the factors in-
volved vary in their importance during the devel-
opment of a vocabulary: frequency and conceptual
biases may have certain effects early on, but fac-
tors pertaining to perceptual dimensions leading to
the overextension of category boundaries may be
more persistent.

5.2 Findings per color

Here we look at the results of the model per test
color, considering the role of the different feature
spaces, perc and conc, and of the different fre-
quency settings, uniform and relative, used for
calculating the prior probability of the color terms.
In addition to looking at the overall error of the
model’s predictions (Table 2), we also look at the
actual responses in some of the interesting cases.
Even though the frequency setting made no dif-
ference overall in the amount of error, we show
results for both settings, since it affects the pattern
of responses for some individual colors. All these
results use the GCM model, since it performed

slightly (but statistically significantly) better than
the GNB model.

Recall that the first two observed error patterns
to be explained (see Section 2) are that there are
no overextensions for BLACK, WHITE, RED, and
BLUE, and few, non-persistent overextensions for
YELLOW and GREEN. Regarding these color stim-
uli, we find that the model provides a good fit un-
der all settings for features and frequency. In
all cases, the error is caused by underestimation
of the model of the few overextensions that are
there, that is: the model predicts no overextensions
for these six stimuli, whereas there are some.

The next two phenomena concern the persistent
errors for ORANGE and PURPLE, where other color
terms are overextended by even older children to
these stimuli. For these two stimuli, the model fit
is slightly worse than for the other colors when
using the perc features, but the setting of conc
features alone worsens the fit with a dramatic in-
crease in the model error.

For ORANGE, the model behaves similarly as
with the previous 6: it predicts no overextensions
(for perc&conc and perc) or a complete overex-
tension of red (for conc). As such, we cannot ex-
plain the observed overextension pattern for OR-
ANGE well at this point. However, we can exclude
term frequency as an explanation: under both set-
tings for frequency, the model has the same fit
with the observed pattern.

The results for PURPLE, the other color with
persistent overextensions, display a number of
noteworthy effects. Here, in addition to the model
error in Table 2, we also show figures with the
proportion of responses to PURPLE over time, for
both the child data and for the model under several
interesting settings; see Figure 1.

First, the model under all settings does pre-
dict overextensions of other color terms to PUR-
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BLACK BLUE GREEN ORANGE PURPLE RED WHITE YELLOW

perc&conc, uniform 0.000 0.005 0.013 0.029 0.024 0.003 0.000 0.011
perc, uniform 0.000 0.005 0.013 0.029 0.026 0.003 0.000 0.011
conc, uniform 0.000 0.019 0.030 1.000 0.854 0.003 0.000 0.011
perc&conc, relative 0.000 0.005 0.013 0.029 0.036 0.003 0.000 0.011
perc, relative 0.000 0.005 0.013 0.029 0.015 0.003 0.000 0.011
conc, relative 0.000 0.028 0.013 1.000 0.852 0.003 0.000 0.011

Table 2: Mean error per stimulus, in the GCM model.

PLE. Focussing on the settings with a good fit
(perc&conc and perc), we find that the term
blue is in all cases persistently overextended to
PURPLE. However, the various settings do pro-
vide different overextension patterns, as can be
seen in Figure 1. The setting with the closest fit
(error = 0.014) is pred, relative (Fig. 1d):
here we see a pattern most similar to that found
in child data (Fig. 1a). From the fact that the
model error for this setting is about twice as low
as the settings with uniform frequency and with
conceptual dimensions we can infer two things.
First, we do find a frequency effect: blue being
more frequent than black in child-directed speech
explains why there are more overtextensions of
black given the setting perc, uniform (Fig. 1c)
than given perc, relative. Second, the concep-
tual dimensions hurt the prediction of the overex-
tension pattern. Including the conceptual dimen-
sions correctly predicts blue to be the most fre-
quent overextension, but underestimates the total
amount of errors (Fig. 1b).

The final phenomenon concerns the asymme-
try in overextensions between PURPLE and BLUE.
Whereas blue is overextended to the PURPLE stim-
ulus, purple is not overextended to BLUE. We can
rule out the frequency difference between blue and
purple as an explanation, despite that purple is
much less frequent: Under both frequency set-
tings, purple is not overextended to BLUE. Given
that the conceptual features do not help the model
fit, it is likely that the source of the asymmetry is
to be found in the perceptual feature space.

Looking more closely at the color stimuli and
the perceptual feature space, we can identify that
the reason for the observed asymmetry is the lo-
cation of the focal colors within each color cate-
gory. As Figure 2 shows, the BLUE and PURPLE

categories form a sphere in the three perceptual
dimensions. The focal exemplars of each cate-
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Figure 2: Positions of the various BLUE and PUR-
PLE exemplars in the CIELab space.

gory, however, are located at different values for
L∗, the luminance dimension. Focal PURPLE is
darker than focal BLUE, and hence closer (on the
dimensions a∗ and b∗) to BLUE exemplars with a
lower luminance. Focal BLUE is more luminant,
and hence further away from PURPLE exemplars
with the same luminance.

On the assumption that Bateman’s test items
were focal exemplars of the categories, this means
that the lack of overextension of purple to BLUE

can be attributed to the lay-out of the perceptual
dimensions, and to the position that the focal ex-
emplars have in that space. Thus, the model’s re-
sults suggest a new explanation for the asymmetry
in overextensions that goes beyond simple percep-
tual closeness and frequency of color terms.

5.3 The role of the conceptual features

If the conceptual dimensions have little additional
predictive power over the perceptual ones, two
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Figure 1: Observed and predicted responses to PURPLE over time.

L∗ a∗ b∗

PCA1 −0.01 0.80∗ −0.01
PCA2 −0.97∗∗∗ 0.40 −0.08
PCA3 0.16 −0.03 −0.88∗∗

PCA4 0.60 −0.86∗ 0.70

Table 3: Correlation matrix for the four used PCA
components and the three perceptual dimensions.
Stars indicate level of significance of the correla-
tion (* = p < .05, ** = p < .01, *** = p < .001).

scenarios are possible. The conceptual dimen-
sions may correlate with the perceptual ones, or
they may be independent from them. In the for-
mer case, it means that the crosslinguistic com-
monalities in structuring the domain of color mir-
ror the perceptual biases. This would mean that
adding the conceptual dimensions can be expected
to have no explanatory effect on top of the percep-
tual dimensions. In the latter scenario, it means
that there are other biases causing the commonali-
ties in the crosslinguistic data, but that these biases
do not affect language acquisition. This scenario
would imply a negative assessment of the Typo-

logical Prevalence Hypothesis.
As we can see in Table 3, the former scenario of

correlated features seems closer to the truth than
the latter. The luminance dimension L∗ displays
an almost perfect negative correlation with com-
ponent 2 of the PCA, whereas the red-green scale
a∗ has a strong positive correlation with compo-
nent 1 and a strong negative one with component
4. The yellow-blue scale, finally, has a strong neg-
ative correlation with component 3. That is: all
four features of our conc space (i.e., those PCA
components with Eigenvalues greater than 1) have
correlating perceptual dimensions. This means
that they can be seen as symptoms of these dimen-
sions and that the category structure of color terms
across languages depends to a large extent on the
perceptual dimensions of color.

What this means is that using crosslinguistic
data does lay bare an important part of the concep-
tual structure of the domain. If we did not know
of the perceptual properties of color, a Principal
Component Analysis on the basis of crosslinguis-
tic data would provide us with an insight in all
three dimensions of the perceptual space.

One concern remains, however. Even though
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the perceptual feature space by itself constitutes a
good predictor of the error terms, the use of only
conceptual dimensions does not explain as much
of the error pattern.

6 Conclusion

In this paper, we looked at overextensions in the
acquisition of the meaning of color terms. For this
initial study, we focused on the English data of
Bateman (1915) – the most comprehensive pub-
lished error data on color terms – in which we
identified five phenomena that characterize the
pattern of children’s errors, and that must be ex-
plained by a theory of word meaning acquisition.
We considered three factors that might play a role
in this domain: (1) the identified perceptual di-
mensions relating to the various exemplars of the
color terms; (2) the effect of typological preva-
lence (i.e., the more frequently a certain grouping
of color exemplars is crosslinguistically, the more
cognitively natural it is thought to be, and hence
the more readily/robustly acquirable, Gentner and
Bowerman (2009)); and (3) the frequency of color
terms.

We used an extension of the modeling approach
taken in Beekhuizen et al. (2014). In that work, the
effects of typological prevalence and frequency
were studied in the domain of spatial relations. In
this paper, we applied the same technique to the
crosslinguistic elicitation data of the World Color
Survey (Kay et al., 2009) to arrive at a set of fea-
tures (the ‘conceptual’ space) reflecting typologi-
cal frequency of semantic groupings. We consid-
ered in addition the possible impact of a perceptual
representation of color.

We find several notable effects within our set-
up. First, the perceptual influence provides the
best explanation of the errors: Including the per-
ceptual features gives the model a very good fit
with the developmental overextension pattern for
all five phenomena observed in the Bateman data,
and adding either or both of the conceptual (ty-
pological) features and the frequency information
does not improve the fit. This last finding is reveal-
ing, as it means that the overextensions cannot be
ascribed to the frequencies of the color terms.

We argued that the reason the conceptual fea-
tures do not improve the model fit is that the per-
ceptual and conceptual spaces are strongly corre-
lated. This suggests that the typological preva-
lence patterns in the crosslinguistic data follow

the perceptual dimensions. However, the model fit
is actually worse when only using the conceptual
features, an issue that we must explore further.

Furthermore, it may be that the conceptual fea-
tures do help for the acquisition of color words
in other languages. The lack of an effect of the
conceptual space on top of the perceptual features
may also be due to the (older) age of the children
in the data. Overextension patterns in younger
children may display effects of the conceptual di-
mensions, as well as frequency. We are currently
planning to extend this research to a variety of er-
ror data sets, both in English and other languages,
to see if similar results are found and to further
evaluate the role of the various perceptual, typo-
logical, and frequency factors.

Another issue we plan to work on is the fact
that the model performs ‘too well’: It predicts no
overextensions for 6 out of the 8 color stimuli, de-
spite children displaying a few errors on 4 of these
colors. Using our typologically-derived semantic
space within a fuller model of word learning, such
as that of Fazly et al. (2010) or Nematzadeh et al.
(2012), rather than using a simple categorization
model as we do here, might further our insight into
potential sources of overextensions.

Given our general methodological approach, re-
viewers noted other interesting possibilities and
suggested that alternative design choices are pos-
sible as well for the dimensionality reduction tech-
nique, the alignment method between predicted
model data and observed experimental data, and
the statistical evaluation procedure. We plan to
follow up on these suggestions in future research,
in addition to the exploration of a wider set of
crosslinguistic error patterns, the consideration of
earlier developmental stages, and the use of a more
realistic word-learning model.
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Abstract

Infant-directed speech (IDS) is thought to
play a key role in determining infant lan-
guage acquisition. It is thus important
to describe how computational models of
infant language acquisition behave when
given an input of IDS, as compared to
adult-directed speech (ADS). In this paper,
we explore how an acoustic motif discov-
ery algorithm fares when presented with
speech from both registers. Results show
small but significant differences in perfor-
mance, with lower recall and lower cluster
collocation in IDS than ADS, but a higher
cluster purity in IDS. Overall, these re-
sults are inconsistent with a view suggest-
ing that IDS is acoustically clearer than
ADS in a way that systematically facili-
tates lexical recognition. Similarities and
differences with human infants’ word seg-
mentation are discussed.

1 Introduction

The ability to learn words from continuous speech
is a crucial skill in language acquisition, since
only about 7% of words occur in isolation, and
thus infants must be able to segment, i.e. pull out
words from running speech. It has been proposed
that infant-directed-speech (IDS), the particular
register that parents use when addressing their
infant, could facilitate word segmentation when
compared to adult-directed-speech (ADS) (Singh
et al., 2009; Thiessen et al., 2005). Even though
a number of acoustic and linguistic studies have
documented systematic differences between these
registers (Cristia, 2013; Fernald and Morikawa,
1993), there is little computational work assessing
how precisely word segmentation performance is
affected by these differences. The present report
takes one step in this direction.

1.1 Computational model of word
segmentation

We model infant word learning using MODIS
(Catanese et al., 2013), a computational system
which attempts to discover spoken terms from the
raw speech signal. We think that this system is
cognitively plausible for several reasons. First,
the algorithm does not rely on labeled or pre-
segmented data. Instead, it takes as input spectral
features and looks for repetitions inside of a short
signal buffer (which thus resembles a short-term
memory). When the first repetition is found, two
acoustic stretches that are judged to be matched
are stored together as a cluster (represented as a
kind of average of the acoustic items it contains)
inside the library. Clusters can be thought of as
‘lexical entries’ in the context of this project and
the library as its long-term memory. It then con-
tinues parsing the speech looking for matches with
respect to the clusters in the long-term memory as
well as other close repetitions in the buffer. If a
match to an existing cluster is found, the cluster
model is updated, in order for it to also contain
information about the latest token.

Given its general features, this algorithm ap-
pears to be a reasonable approximation of word
segmentation strategies used by a naı̈ve learner (a
learner who has not yet extracted abstract phone-
mic categories). It is very likely that infants begin
to segment words before they have learned their
language’s phoneme inventory since, in certain sit-
uations, infants as young as 4 months of age can
recognize words in fluent speech (Johnson et al.,
2014), but there is little evidence that infants this
young have converged upon their native phonemes
(Tsuji and Cristia, 2014). Moreover, since young
infants can more easily recognize word tokens that
are similar acoustically, than tokens which are dis-
similar (Bortfeld et al., 2005; Singh et al., 2012), it
follows that an acoustic motif discovery algorithm
is not an unreasonable first approach.
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It is also very plausible that the patterns infants
discover in running speech will be constrained
to a short-term memory window, although we
do not know of evidence directly addressing this
(most work has investigated the limits of long-
term memory, e.g. (Houston and Jusczyk, 2003),
rather than how close in time two subsequent rep-
etitions must occur to be detectable). Finally, we
know that infants can store repeated words in some
form of long-term memory because this is pre-
cisely the type of design that typical word seg-
mentation studies have, whereby the child is fa-
miliarized with a word repeated and later tested
with novel instances of those wordforms.

1.2 Influencing factors and general
predictions

Properties of IDS Predictions for
compared to ADS word learning

Not tested in this paper
prosodic boundaries easier IDS>ADS
clearer referential situation IDS>ADS
simpler vocabulary IDS>ADS
more attention grabbing IDS>ADS

Tested in this paper
acoustically more variable IDS<ADS
more repetitions IDS>ADS
more bursty IDS>ADS

Table 1: Differences between IDS and ADS and
potential effects for word learning.

IDS is characterized by an array of proper-
ties (Cristia, 2013, see Table 1), some of which
could facilitate or hinder word segmentation. IDS
has been reported to contain shorter utterances
and clearer prosodic boundaries than ADS. To
test this would require a learner that extracts and
uses prosodic cues from the speech signal, which
is not the case in the current implementation of
MODIS (see also the Conclusions). The same
would also be true for referential and contextual
cues. The effect of vocabulary is neutralized in our
experiment, because the corpus used contained the
same keywords in both registers, and only these
keywords were considered for the evaluation of
word learning. Regarding attention, since MODIS
works by finding acoustic matches in the speech
signal, it does not have a cognitive component that
models the attention process.

Therefore, none of first 4 differences in Table

1 are tested here. Instead, our corpus and com-
putational model allows us to look at differences
in performance related to three other properties of
IDS: acoustic variability, repetitions, and bursti-
ness.

First and foremost, mounting evidence suggests
that sounds and words are more variable in IDS
than ADS. For instance, Martin and colleagues
have documented that phonemic categories are
significantly harder to classify in IDS than in ADS
(Martin et al., 2015). This may be due to an in-
crease in variability, which has been documented
in several studies (Cristia and Seidl, 2014; Kuhl et
al., 1997; McMurray et al., 2013). If the acoustic
implementation of phonemes is more variable in
IDS than ADS, it is possible that other linguistic
levels that build on sounds, such as words, might
also be significantly different across the registers.

To our knowledge, there is only one mod-
elling study that partially investigated this ques-
tion, although it was not a model of word learn-
ing, but rather of phoneme learning. Kirchhoff
and Schimmel (2005) trained a speech recognizer
with human-segmented and labeled tokens of three
minimally different target words (sheep, shoe and
shop) drawn either from IDS or ADS, and tested
the performance on a new set of IDS and ADS to-
kens. Results revealed a lower performance over-
all in the IDS-trained classifier, but a smaller gen-
eralization cost (i.e., the loss in performance in
switching from IDS to ADS was smaller than vice
versa). These results are consistent with the idea
that words are more variable in IDS, and suggest
that there could be learnability differences across
the two registers. It remains to be seen whether
such effects would also emerge in a model of
word learning in which there is no explicit human-
obtained segmentation and labels.

It is to be expected that acoustic variability
could be problematic to learners who find word-
forms using acoustic pattern matching, leading
them to posit too many or too few types (e.g., the
word dog is so variable that the learner posits two
different types, dog1 and dog2; or confuses them
with similar words such that dog and dock are
clustered together). Laboratory work in infancy
demonstrates that early on infants have difficulty
matching wordforms that are acoustically variable
(Bortfeld et al., 2005; Singh et al., 2012), as if
infants create separate lexical entries for e.g., the
word dog spoken by two different speakers. This
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is precisely what occurs with word segmentation
models that operate on the basis of acoustic motif
discovery, and thus we predict that our the model
would perform more poorly in IDS than ADS, be-
cause of its greater variability.

The second property of IDS that we address is
repetition. It has been reported that IDS is more
repetitive than ADS (Daland, 2013). We suspect
repetition is perceptually relevant to infants be-
cause most word segmentation experiments use
very repetitive stimuli, and this feature has even
been found to draw infants’ attention (McRoberts
et al., 2009). Some repetition is necessary for our
model learner, as this is a condition for incorpo-
rating an item into the lexicon (words that are not
repeated cannot be found). However, once the sec-
ond token of the same type is detected, it is unclear
whether any benefit is derived from additional rep-
etitions. MODIS will decide whether a pattern en-
countered matches one in the lexicon, by compar-
ing the new pattern to an average or prototype of
all the other patterns in that cluster. Hence, it is
possible that additional tokens of the same type
will simply compound the negative effects of in-
creased segmental variation.

A third property of IDS that we address is
burstiness, which characterizes the likelihood of
a word to re-appear in the same conversation once
it has been used. Thus, registers where one tends
to stay longer on a given topic will be more
bursty - for instance, news reports are more bursty
than spontaneous phone conversations. Daland
has hypothesized that burstiness should be higher
in IDS than ADS (Daland, 2013), although we
know of no systematic investigation of IDS cor-
pora or the effects of burstiness on infant per-
ception. Nonetheless, it is certain that bursti-
ness should improve the word segmentation per-
formance of our learner, since having a higher pro-
portion of repetitions of the same word inside the
short memory buffer would translate into a higher
chance of detecting that word.

2 Methods

2.1 Corpus
2.1.1 Speakers
The twenty speakers in this study were ten moth-
ers of 4-month-olds (M = 0;4.35, range: 0;3.95
-0;4.99) and ten mothers of 11-month-olds (M
= 0;11.40, range: 0;11.120;12.01). The moth-
ers were the child’s primary caregiver, and native

speakers of American English from a small Mid-
western city. Infants were healthy full-terms with
typical development and no known personal or fa-
milial history of hearing or language impairments,
according to parental report.

2.1.2 Recording and human coding
procedure

Full details on the corpus can be found
on: https://sites.google.com/
site/acrsta/Home/nsf_allophones_
corpora. The key information for the present
purposes is the following:

Speakers were provided with a set of objects
and photos, each labeled with a target word. They
were told that we were interested in how parents
talk to their children about objects. The words
containing the vowels did not constitute minimal
pairs, so as not to make the parents overly con-
scious of the contrasts under study. The IDS por-
tion was always carried out first, and during it,
the caregiver and child were left alone. When the
mother had finished going through all items, an ex-
perimenter returned accompanied by a confederate
adult. The mother then repeated the task with the
confederate.

The 20 speakers included in the present work
are a subset of 36 mothers whose speech (exclud-
ing sections with overlapping noise or speech) had
been analyzed in previous work (Cristia and Seidl,
2014). In that study, only one vowel per target
word was coded and analyzed. A subset of care-
givers was used for the present purposes because
their speech had also been coded to investigate
whether IDS and ADS differed to similar extents
in the weak and strong vowels of bisyllabic and
trochaic target word (Wang et al., 2015). This
meant that we had access to the temporal location
of both strong and weak vowels in some of the tar-
get words.

For the current study, since only the first two
vowels of some words were coded in the corpus,
we will use a proxy for words, which we call a
target segment. It is defined as being the stretch
of speech between the beginning of the first vowel
and the end of the second vowel of a coded word.
This definition is illustrated in Figure 1. We then
kept the target segments appearing in both speech
registers and collapsed all composed words classes
into the class containing the first word only (e.g.
picnic basket → picnic, peekaboo book → peek-
aboo), since the coded vowels actually belong to
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Figure 1: Example of target segment. The waveform and associated annotation of the utterance “Then
we have a teaspoon” is illustrated. The annotation codes the position of the two vowels of the word
“teaspoon”. Below the vowel annotation we illustrate the target segment considered, defined as the
stretch of speech between the beginning of the first vowel and the end of the second vowel of a given
word. For comparison, the entire word is represented above the waveform.

the first word (e.g. picnic, peekaboo), not to the
second one (e.g. basket, book). Composed words
whose first word contained only one vowel were
kept in their own separate class (e.g. tea-kettle,
best-in-show). This gave us a total of 2298 target
segments, 1300 in IDS and 998 in ADS. A com-
plete list of the target segments is presented in Ap-
pendix A. Note that this coding was used only for
evaluation purposes, as there is no training phase
for the algorithm.

As can be seen in the example in Figure 1,
the target segment only partially covers an actual
word. We have estimated this coverage to be be-
tween 80-90%, in the case of words starting with
a consonant-vowel (CV) sequence and ending in
a vowel (e.g. bamboo, pesto) and around 50%, in
the case of 4-syllable words (e.g. dictionary, tapi-
oca). Since most of the target segments, both in
terms of number of types and number of tokens,
belong to the words starting with a CV sequence
and ending with a vowel-consonant sequence (e.g.
bacon, picnic), we could conclude that the major-
ity of our target segments cover at least 2/3 of the
actual word.

2.1.3 Corpus characteristics

In previous analyses comparing IDS and ADS on
this subset of the corpus, pitch was found to be
higher (particularly in stressed vowels) in IDS and
there was also a trend for more peripherality in
IDS, but no stable differences in vowel duration
were seen (Wang et al., 2015). Also, an analysis
of the whole corpus has shown greater variabil-
ity in acoustic characteristics of stressed vowels in
IDS than ADS (weak vowels had not been marked
or analyzed) (Cristia and Seidl, 2014). Thus, the
corpus represents well the prosodic and segmental

characteristics of IDS alluded to in the introduc-
tion.

For the purposes of the present project, we fur-
ther investigated potential differences in repeti-
tion. As expected, parents produced more repeti-
tions of the target segments in IDS than ADS (sig-
nificant according to a Wilcoxon’s test, V (19) =
187, p = 0.001; mean for IDS = 3.358 repetitions
per target segment, SD = 1.358; mean for ADS =
2.147, SD = 0.564).

Besides computing a measure of repetition, we
have also attempted to measure differences in
burstiness between IDS and ADS. Burstiness was
defined as the reciprocal of the average distance
(in seconds) between the end of the nth occurrence
of a target segment and the beginning of the n+1th

occurrence of the same word, provided that these
two occurrences are not separated by another tar-
get segment. It was computed on a per-speaker ba-
sis and only for target segments appearing at least
twice, in both the IDS and ADS recordings of the
same speaker. About 4.618 seconds elapsed be-
tween two consecutive repetitions in ADS, com-
pared to 7.371 in IDS. This meant that the average
burst rate was 0.292 (SD = 0.186) in ADS, and
0.15 (SD = 0.065) in ADS. Thus, contrary to our
expectations, a higher burstiness was obtained for
ADS than for IDS.1

1We checked whether the difference in burstiness could
be explained by the speech rate difference between the two
registers. In order estimate speech rate, we calculated the
average duration of the target words, all of which were bi-
syllables and occurred in both registers.The average duration
was .311 s (SD = .042) in ADS and .362 (SD = .068) in
IDS, in line with the view that IDS is slower than ADS.The
speech rate difference (14%) does not seem to fully explain
the difference seen in the burstiness between the two registers
(48%). Nonetheless, this measure does not take into account
pauses, which are likely to be considerably longer in IDS.
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We have seen that the three IDS characteristics
that might affect the performance of the model
point in different directions. We lay out our pre-
dictions once our evaluation metrics have been in-
troduced.

2.2 Algorithm
We used the open-source spoken term discovery
system called MODIS (Catanese et al., 2013). Is it
based on the seed discovery principle: it searches
for matches of a short audio segment, referred to as
the seed, in a larger segment, called a buffer. The
search is performed by using a segmental variant
of the dynamic time warping (DTW) algorithm.
Once a match is found (decision taken based on a
similarity threshold between the two speech seg-
ments), the seed will be extended and the match
performed using the longer seed. This process will
continue as long as the dis-similarity between the
segments stays under the set threshold. When this
threshold is reached, the term candidate is checked
as to whether is complies with a minimum length
requirement and stored in the motif library. An ab-
straction of the matched segments is stored in the
library, represented by their median model. Next,
this library of terms is compared against any new
seed and only if no match is found in the library
will the DTW search explained earlier take place.
The match against the library terms employs also
a self similarity matrix check. After the entire data
set is searched, a post-processing of the obtained
terms is performed in order to merge all overlap-
ping segments into one single term.

The algorithm has several important parame-
ters that must be set: the seed size, the minimum
stretch of speech matched against the buffer, the
minimum term size the algorithm will find, the
buffer size in which the seed is searched and the
similarity threshold, εDTW . Since the latter pa-
rameter influences the level of similarity between
the members of the same term class, we have var-
ied it in our experiment, while keeping the rest of
the parameters constant. The seed length was set
to 0.25 s, while the buffer length was set to 90 s, in
order to model infants’ short-term memory. The
minimum term size considered was 0.5 s so as to
be able to contain the majority of the target seg-
ments.

The variation of the similarity threshold can be
seen as follows: When this parameter is low, even

We return to the potential limitations of our implementation
of burstiness in the discussion.

small deviances of similarity are rejected, repre-
senting a ‘conservative’ approach. When it is high,
even large dissimilarities are accepted, represent-
ing a ‘lax’ approach. Based on previous infant
word segmentation research, it appears that young
children are conservative early on (Singh et al.,
2012) – but how conservative? There is no prin-
cipled way to set this parameter, as any decision
we make would likely not have a clear basis in re-
search. However, in order to restrain the search
range of εDTW values on which we will perform
our analysis, we ran MODIS on the combined
ADS-IDS recordings of one speaker and we de-
cided to take an interval of [2.0, 4.0]. The mini-
mum value was the lowest threshold that returned
any term classes, while the maximum value was
the threshold value that gave a saturation point for
the evaluation metrics measured.

We use as input features for the spoken term dis-
covery system Mel frequency cepstral coefficients,
a standard spectral representation used in speech
applications. We compute the first 12 cepstral co-
efficients and the energy in a 20 ms window, every
10 ms, along with their delta (difference) and dou-
ble delta (acceleration) coefficients.

2.3 Evaluation

As noted in the Introduction, our conceptual goal
is to compare performance of this segmentation
algorithm between IDS and ADS. We have also
drawn several specific predictions. In this section,
we explain how these predictions map onto the de-
pendent variables used for the evaluation.

Since the corpus has not been exhaustively
coded, we did not penalize the algorithm for clus-
ters that do not include any target segments. In-
deed, there may be other words that are repeated
in the corpus (e.g., ‘baby’ or ‘mommy’) which
have not been coded, so clusters could have been
formed around these other words. Instead, we in-
spect only clusters that include at least one token
of a target segment.

Given that word edges for target segments are
not marked (only vowels), we consider a cluster
to include a given token if one of the acoustic
stretches included in that cluster covers the region
between the beginning of the first vowel of the
word and the end of the second vowel of that to-
ken. We derive a measure of recall as the number
of tokens that appear in any given cluster divided
by the total number of coded tokens. It is possible
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that the higher repetition found in IDS will lead
to higher coverage in this register as compared
to ADS. At the same time, the opposite outcome
could be expected if one would take into account
the higher burstiness found in ADS. Thus, a clear
prediction cannot be made.

As mentioned, there are target segments whose
vowels were not coded because they overlap with
speech or noise or were not produced with the in-
tended vowel, nonetheless, it is possible for the
algorithm to recognize matches for such uncoded
words. Therefore, it would be unfair to penal-
ize clusters that include target segments as well
as stretches of speech other than the target seg-
ments that have not been coded by humans. How-
ever, when one cluster contains tokens from two
or more different target segments, this will be pe-
nalized by our second dependent measure, namely
cluster purity. It is defined as being the number of
different target segments contained in a cluster, di-
vided by the number of target segment classes. On
the basis of our arguments above, we cannot make
any clear prediction regarding how IDS and ADS
will differ for this measure.

Third, we derive a measure that describes the
amount of fragmentation of the found motif clus-
ters. It is defined as being the percentage of
clusters into which a particular target segment is
found, out of the total number of clusters where
target segments have been found. We will report
the results in terms of collocation, defined as be-
ing equal to 1 - the amount of fragmentation. We
expect IDS, with its greater variability, to yield a
lower collocation.

3 Results

Analysis scripts and primary data and results files
are available for download from https://osf.
io/y7kfw/.

When no target segment is found by the algo-
rithm for the speech of one caregiver, this results
in missing data, as no recall, purity, or collocation
can be calculated in these conditions. Therefore,
we excluded from inspection all settings of the
similarity threshold that resulted in missing data
prior to carrying out statistical analyses. Data was
included for settings 2.9-4 (at .1 intervals).

In general terms, we observed that performance
is very good in terms of collocation and purity
(above .6 for all individual speakers and for both
registers), with performance for both of these de-

creasing and becoming more variable at the indi-
vidual level as εDTW is set to laxer criteria. In
contrast, recall performance is overall lower and
more variable, with coverage increasing as laxer
criteria are used.

Turning now to our key question, we calculated
the difference in performance in IDS and ADS, for
each measure and for each speaker. We tested for
significant differences across the two registers in
two ways: (1) keeping each εDTW value separate,
and (2) collapsing across all εDTW values.

To evaluate for significance in the separate case,
given that many such tests would have to be car-
ried out (there are 12 levels for the similarity
threshold in each evaluation measure), we wanted
to control for repeated testing to avoid alpha risk
inflation. Therefore, we used a step-down permu-
tation resampling test (N = 10,000) and estimated
the p-value for an observed t-statistic (from a one-
sample t-test) through the rank of that p-value
within the distribution of values for that statistic
found under the null hypothesis.2

For the analyses collapsing across this thresh-
old, we took the median across all threshold val-
ues within each caregiver, and used a Wilcoxon
one-sample test to assess whether this average
difference score was significantly different from
zero for each evaluation dimension separately.
We decided to employ the median followed by a
Wilcoxon’s non-parametric test based on the sum
of the signed ranks because there was not clear ev-
idence that such difference scores were normally
distributed (the distributions were kurtotic with
some outliers).

Both analyses revealed that there were some

2In the general permutation procedure, a distribution of
a test statistic under the null hypothesis can be generated as
follows: the sign of a random number and selection of in-
dividual difference scores is flipped (such that what used to
indicate higher performance in IDS than ADS becomes the
opposite) and the appropriate statistic (in this case, the t from
a one-sample t-test, following usual practice van der Laan
et al. (2004)) is calculated. The procedure is repeated many
times, to generate a distribution of p-values under the null hy-
pothesis. The adjusted p-value is then estimated as the rank
of the absolute of the statistic in question against the distribu-
tion of absolute values found when the null hypothesis is true.
The step-down version of the permutation procedure involves
two changes. First, flipping the difference scores is done for
all observations associated with the same individual together,
which preserves the correlational structure of the data. Sec-
ond, the distribution under the null is calculated once with all
the data, and then repeated removing the strand of data (in our
case, all the data associated with a given threshold parameter
value) whose adjusted p-value is significant. The procedure
stops when the adjusted value exceeds alpha.
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Figure 2: Performance (top panels; IDS in gray and ADS in black) and difference (IDS-ADS, bottom
panels) for each of the three evaluation dimensions as a function of the εDTW threshold. Each point
in the top panel represents a mother’s score, separately for IDS (gray circles) and ADS (black crosses).
The difference scores in the bottom represent the average difference and 95% confidence intervals across
parents. Stars represent cases where the difference is significant at the p < .05 level, corrected for
multiple comparison using a step-down permutation resampling test across parents.

significant differences across the registers for all
the evaluation metrics computed. As shown in
Figure 2, two of the εDTW values (both in the
“conservative” region) lead to significantly higher
performance in ADS than in IDS in terms of re-
call. This was replicated in our second analysis
(based on the median across all εDTW ): V(19)
= 9, p=.016, 95% confidence interval (-0.087;-
0.019), pseudo-median -0.050. As for purity, there
was a trend for better performance in IDS than
ADS that was significant for one εDTW value,
closer to the liberal end of our threshold contin-
uum. This advantage was replicated when look-
ing at median values: V(19) = 55, p = .006, 95%
confidence interval (.005;0.027), pseudo-median
0.016. As for collocation, performance was signif-
icantly better in ADS than IDS mostly in the same
conservative region as with recall, a result repli-
cated in the Wilcoxon’s t-test on median difference
scores: V(19) = 1, p=.003, 95% confidence inter-
val (-.012;-0.006), pseudo-median -0.010.

Next, we had wondered whether greater repeti-
tion and burstiness would lead to better recall. The

overall pattern of results appears to indicate this is
not the case because although IDS has more rep-
etitions, it has lower recall – although this could
possibly relate to burstiness. As a first approach,
we calculated Spearman correlations across speak-
ers between recall performance (averaged across
all parameters) and number of repetitions, on the
one hand, or rate of burstiness, on the other, within
each register separately.

As for repetitions, the estimate was moderate
and positive in both registers, albeit significant for
IDS r(18) = .549, p = .014, but only marginally in
ADS r(18) = .430, p = .060. Thus, there appears
to be some relationship between recall and repeti-
tion, but the greater number of repetitions in IDS
over ADS is not sufficient for there to be a boost
in recall in IDS over ADS overall.

Regarding burstiness, estimates were low, non-
significant and surprisingly negative: IDS r(18) =
-.159, p =.501; ADS r(18) = -.299, p =.199). The
negative correlation would indicate that the higher
burstiness is, the lower the recall – we return to
this issue in the discussion.
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4 Discussion

The first conclusion that must be drawn from the
results of running our naı̈ve learning algorithm on
these data is that the difference in performance
with IDS and ADS materials is subtle: Collapsing
across threshold parameter values, it only amounts
to absolute differences of between 1 and 5%.
Nonetheless, these differences are there, since they
surface in all three evaluation metrics, both when
we use a multiple comparisons correction proce-
dure, and when we average across all reasonable
settings of the similarity threshold.

We had stated several predictions based on pre-
vious work. We had no clear expectation regard-
ing recall, since the two factors that might affect
it, repetition and burstiness, seemed to favour dif-
ferent registers. Overall, we observed an ADS
advantage of about 5%, concentrated in the con-
servative regions of the similarity parameter. As
for the relationship between repetition and recall,
we found that while our IDS was more repetitious
than the ADS, recall was lower for the former than
the latter. However, the correlations in individ-
ual variation within each register were positive.
This pattern of results partially supports our in-
tuition: More repetition helps unsupervised mo-
tif discovery. However, the data go beyond our
hunch in that differences in repetitiousness do not
account for register differences. Regarding bursti-
ness, we failed to confirm the prediction that IDS
was more bursty, and we further found a negative
non-significant correlation with recall. This may
indicate that our corpus, elicited in a task where
speakers did not have much lexical choice, was not
ideal to measure burstiness differences. Addition-
ally, the precise implementation we used may have
confounded tempo differences, and an alternative
burstiness definition, in terms of number of inter-
vening words, could be more appropriate.

Turning to the second evaluation metric, purity,
we also had no specific hypothesis, however, we
found an overall advantage for IDS, with signifi-
cant results for only one parameter value (located
towards the liberal end of our continuum) as well
as in analysis over median scores. Overall, perfor-
mance with IDS was about 1.6% higher than that
for ADS in this metric, this effect being mainly
located in the more liberal region of the similarity
threshold. This indicates that, at least for those pa-
rameter values, clusters tend to straddle over lex-
ical categories slightly more in ADS than IDS,

or, put differently, that it is more often the case
that two targets are classified into a single motif
in ADS than IDS. This is unexpected but interest-
ing, because the target words studied in the present
corpus were not necessarily very similar to one an-
other (see Appendix A).

Finally, as we expected, target segments were
more often split into multiple clusters (reflected
in a lower collocation score) in IDS than ADS.
This corroborates our suspicion that the acous-
tic implementation of words is more variable in
IDS, which also explains why differences are par-
ticularly clear for conservative parameter values.
Nonetheless, the difference across registers was
small, only about 1%.

We provided results for all the values of the sim-
ilarity threshold because we believe it can yield
some insight into infants’ performance at different
points of development, since younger infants (7.5-
month-olds) have been found to be more conser-
vative than older ones (9-12 months of age, (Singh
et al., 2012)). Our computational model suggests
that, if they behave like our model learner, younger
infants should both fail to recognize words across
diverse instantiations (cf. our recall results) and
postulate too many lexical entries (cf. our collo-
cation results). In other words, our computational
model predicts that signal-related effects of reg-
ister on word segmentation performance will be
greatest, with an IDS disadvantage, for younger
rather than older infants. It is possible that our pu-
rity results suggest that the IDS disadvantage be
reversed in these older ages, who are supposedly
more liberal in their acoustic matching. Extant in-
fant work showing IDS advantages has looked at
7- and 8-month-olds (Singh et al., 2009; Thiessen
et al., 2005), so future work should test these spe-
cific predictions in even younger infants.

Together with (Kirchhoff and Schimmel, 2005),
which relied on hand-segmented words, the
present results are relevant to the interpretation
of infant performance in word segmentation tasks
which compare IDS and ADS. Specifically, since
neither classification of segmented words, nor mo-
tif discovery, are overall more successful in IDS
than ADS, then it follows that infants’ improved
segmentation performance for IDS is not due to
words being physically (or segmentally) easier to
find or classify in IDS than ADS. Instead, there
must be something else in the spoken signal that
boosts infant performance in IDS. This other fac-
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tor may be attention/arousal: Perhaps infants at-
tend more to IDS stimuli (which is clear in pref-
erential studies (Dunst et al., 2012)). Alterna-
tively, infant performance may reflect a more com-
plex cognitive bias, for instance if they apply dif-
ferent learning strategies when prompted by IDS
(as proposed in the Natural Pedagogy framework
(Csibra and Gergely, 2009)). Similar explanations
have been put forward to explain improved perfor-
mance for boosts in word-meaning mapping tasks
in IDS over ADS (Graf Estes and Hurley, 2013).

There are many open questions that need to be
revisited in other research, such as to what extent
motif discovery reflects meaningful features of the
algorithm that real infant utilize during word seg-
mentation in the lab and in the world, the integra-
tion of multimodal information, or the extent to
which specific predictions made from MODIS ver-
sus competing models are born out by infant data.

5 Conclusions

In this paper, we focused mainly on one docu-
mented difference between IDS and ADS, namely
phonetic variability, and considered two lexical
parameters, repetition and burstiness. We found
that performance was affected by register, with an
overall trend for lower performance in IDS than
ADS when three metrics was considered. The
impact of register was greatest when our model
learner, which relies on acoustic matching, was
conservative. We believe this result suggests that
register differences relate to the differences in pho-
netic variability that have been separately docu-
mented, although additional analyses (for instance
using regressions to explore individual variation)
are needed to confirm this hypothesis. Further-
more, it would be important to repeat these anal-
yses with other corpora, particularly those gath-
ered at home, which may vary more naturally
along other dimensions we also intended to ex-
plore, such as repetition and burstiness.

Additionally, other models are needed to gain
a more holistic understanding of how register
features affect learners’ performance, since we
only explored effects of a few IDS characteris-
tics, and others remain unexplored (see Table 1).
For example, IDS contains shorter utterances (Al-
bin and Echols, 1996; Aslin et al., 1996) and is
produced with more exaggerated prosodic edge
marking than ADS (Fernald and Mazzie, 1991;
Kondaurova and Bergeson, 2011). If there are

shorter utterances in IDS it means that more words
will occur at utterance edges which are, as men-
tioned above, also marked with increased acous-
tic salience in IDS. These utterance edges have
been shown to be hot-spots for word segmentation
(Seidl and Johnson, 2006), so much so that even
infants as young as 4 months are able to find words
at utterance edges using this strategy (Johnson et
al., 2014). Recent work on speech-based spoken-
term discovery has shown that the integration of
prosodic boundary information in such a system
improves segmentation performance (Ludusan et
al., 2014). Since this was found in corpora con-
taining ADS, we would like to explore whether
the prosodic structure would give a boost in per-
formance when IDS is given as input to MODIS,
compared to when ADS is employed.
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Appendix A. List of target words: baboon,
bacon, bamboo, basil, bassinet, beetle, Benji,
best-in-show, dancer, dancing, daycare, decker,
dictionary, disney, pansy, paper, pedal, peekaboo,
pegboard, pencil, pendant, pepsi, pesto, picnic,
piglet, shopping, tambourine, tapioca, tassel, tea-
kettle, teaspoon, teddy and tender.
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Abstract

We address the question whether children
can acquire mature use of higher-level
grammatical choices from the linguistic
input, given only general prior knowledge
and learning biases. We do so on the ba-
sis of a case study with the dative alterna-
tion in English, building on a study by de
Marneffe et al. (2012) who model the pro-
duction of the dative alternation by seven
young children, using data from the Child
Language Data Exchange System corpus.
Using mixed-effects logistic modelling on
the aggregated data of these children, De
Marneffe et al. report that the children’s
choices can be predicted both by their own
utterances and by child-directed speech.
Here we bring the computational model-
ing down to the individual child, using
memory-based learning and incremental
learning curve studies. We observe that
for all children, their dative choices are
best predicted by a model trained on child-
directed speech. Yet, models trained on
two individual children for which suffi-
cient data is available are about as accu-
rate. Furthermore, models trained on the
dative alternations of these children pro-
vide approximations of dative alternations
in caregiver speech that are about as ac-
curate as training and testing on caregiver
data only.

1 Introduction

The production of language is the result of a great
number of choices made by the individual speaker,
where each choice may be affected by various
factors that, according to a large body of work,
range from simple word frequencies to subtle se-
mantic factors. For instance, which variant of

the dative alternation speakers produce has been
shown in a corpus study to be partially affected
by the animacy and givenness of the recipient and
theme (Bresnan et al., 2007). An inanimate recip-
ient tends to co-occur with a prepositional dative
construction (“bring more jobs and more federal
spending to their little area”).

Somehow and at some point in language ac-
quisition, children learn these preferences, but it
takes several years before children approximate
adult language use. Monitoring and modeling
this process of development may shed light on
the inner workings of language learning in gen-
eral, but to keep experiments under control, most
studies, including the one presented here, zoom
in on a representative but specific phenomenon.
The dative alternation has been the topic of sev-
eral studies in which computational models are
trained on naturalistic data (Perfors et al., 2010;
Parisien and Stevenson, 2010; Villavicencio et
al., 2013; Conwell et al., 2011), such as of-
fered by the Child Language Data Exchange Sys-
tem (CHILDES) (MacWhinney, 2000), a publicly
available database of children’s speech produced
in a natural environment. These approaches ad-
dress what is conventionally known as “Baker’s
paradox” (Baker, 1979; Pinker, 1989), which can
be phrased as the question how children learn not
to generalize a syntactic alternation to cases that
block alternation, such as the verb ’donate’, which
only allows the prepositional dative construction.

In contrast, the present contribution continues a
line of research introduced by de Marneffe et al.
(2012), who formulate three research questions:
(1) do children show sensitivity to linguistic prob-
ability in their own syntactic choices, and if so, (2)
are those probabilities driven by the same factors
that affect adult production? And finally, (3) do
children assign the same weight to various factors
as their caretakers? If so, then this may support
the hypothesis that from early on children are sen-
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sitive to (complex) variable distributional patterns.
At the highest theoretical level, the present

study addresses the question whether children can
acquire mature use of higher-level grammatical
choices from the linguistic input, given only gen-
eral prior knowledge and learning biases—or is a
rich system of domain-specific abstract linguistic
knowledge required from the outset? See, for ex-
ample, Ambridge and Lieven (2015; Pine et al.
(2013; Yang (2013; Conwell et al. (2011; Perfors
et al. (2010), for a recent sample of the debate.

The present study addresses this question by ap-
plying a well-developed exemplar-based machine
learning model incrementally to children’s linguis-
tic experiences, represented by samples of child
and caregiver productions from the CHILDES cor-
pora (MacWhinney, 2000), gathered for the prior
study of de Marneffe et al. (2012). In terms
of computational theory, the model used in the
present study is one of the class of mathemati-
cal kernel methods from Machine Learning theory,
which encompass classical learning models such
as exemplar theory (Jäkel et al., 2009; Nosofsky,
1986).

More generally, we compare the predictions of
an exemplar-based machine learning method to
choices made by individual human subjects as a
direct test of the model’s cognitive plausibility for
learning. Following Jäkel et al. (2009) we use the
tools-to-theories heuristic of Gigerenzer (1991) in
that we see our model as a mathematically and
computationally simple and transparent emulation
of the complex individual subject. What we em-
ulate is the subject trying to model the data he or
she observes as examples stored in memory (Jäkel
et al., 2009).

2 The dative construction in English

Syntactic alternations such as the genitive, da-
tive, or locative alternation in English are choices
that speakers have in generating different syntactic
forms that carry approximately the same meaning.
Monitoring speakers and observing which partic-
ular choices they make in which context allows us
to explore the predictive components in this con-
text from which we can guess which choice is go-
ing to be made.

The English dative alternation, the focus of this
contribution, refers to the choice between a prepo-
sitional dative construction (NP PP) as in “I gave
the duck to my Mommy”, where the NP is the

theme and the PP contains the recipient, and a dou-
ble object construction (NP NP) as in “I gave my
Mommy the duck”, where the first NP is the recip-
ient and the second NP is the theme. A robust find-
ing accross studies is that inanimate, indefinite,
nominal, or longer arguments tend to be placed in
the final complement position of the dative con-
struction, while animate, definite, pronominal, or
shorter arguments are placed next to the verb, pre-
ceding the other complement (de Marneffe et al.,
2012). This means, for instance, that if a recipi-
ent of the dative construction is pronominal, such
as me, it will tend to occur immediately after the
verb, triggering a double object dative.

The dative construction is frequently used by
children as well as their caregivers in child-
directed speech (Campbell and Tomasello, 2001);
this makes it a suitable focus for the computational
modeling of syntactic alternations in child produc-
tion.

While de Marneffe et al. (2012) use mixed-
effects logistic regression to model dative alterna-
tion in children’s speech, Theijssen (2012) com-
pares regression-based and memory-based learn-
ing accounts of the dative alternation choice in
adults. Theijssen’s dataset consisted of 11,784
adult constructions of both types extracted from
the British National Corpus (Burnard, 2000),
7,757 of which occur in transcribed spoken utter-
ances, and 4,027 in written sentences. Her mixed-
effects logistic regression approach uses automat-
ically extracted higher-level determinants: ani-
macy, definiteness, givenness, pronominality, and
person of the recipient, and definiteness, given-
ness, and pronominality of the theme. Alterna-
tively, Theijssen applied a memory-based learning
classifier (Daelemans and Van den Bosch, 2005)
which we also apply in this study. The memory-
based approach she used included lexical informa-
tion only: the identity (stem) of the verb, the recip-
ient, and the theme.

Theijssen reports that MBL classifies unseen
cases about as accurately (93.1% correct) into the
two dative choices as regression analysis does,
which attains a fit of 93.5%, while MBL does so
without the higher-level features. According to
Theijssen, the main factors for the success of the
simple MBL approach are the strong licensing of
one or the other dative construction by particular
verbs, and the significant effect of length differ-
ence between recipient and theme. Both aspects of
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the input can be learned directly from from lexical
input, while they remain hidden in the higher-level
features. In this study we keep the available fea-
tures identical to the earlier approach introduced
by de Marneffe et al. (2012) in order to stay close
to this particular study, which focused on datives
with two verbs only (give and show).

3 Modeling learning curves of individual
children

3.1 Memory-based learning

Memory-based learning is a computational ap-
proach to solving natural language processing
problems. The approach is based on the com-
bination of a memory component and a process-
ing component. Learning happens by storing at-
tested examples of the problem in memory. New
unseen examples of the same problem are solved
through similarity-based reasoning on the basis
of the stored examples (Daelemans and Van den
Bosch, 2005). In other words, memory-based
learning offers a computational implementation of
example-based or exemplar-based language pro-
cessing.

Van den Bosch and Daelemans (2013) argue
that from a cognitive perspective the approach is
attractive as a model for human language pro-
cessing because it does not make any assumptions
about the way abstractions are shaped, nor does it
make any a priori distinction between regular and
exceptional exemplars, allowing it to explain fluid-
ity of linguistic categories, and both regularization
and irregularization in processing.

As a software tool for our experiments we use
TiMBL1 (Daelemans et al., 2010). In all our ex-
periments we use the default setting of this imple-
mentation, which is based on the IB1 algorithm
(Aha et al., 1991) and which adds an information-
theoretic feature weighting metric. When the
memory-based learning algorithm is asked to pre-
dict the class of an unseen test exemplar, it com-
pares it to all training exemplars in memory, and
constructs a ranking of the k nearest (or most sim-
ilar) neighbors. The class that the algorithm pre-
dicts for the new exemplar is the majority class
found among the k nearest neighbors.

To compute the similarity between an unseen
test exemplar and a single training exemplar, the

1TiMBL, Tilburg Memory-Based Learner, is an open-
source toolkit available from http://ilk.uvt.nl/
timbl. We used version 6.4.5.

Overlap similarity function is used, weighted by
gain ratio (Daelemans et al., 2010), expressed in
Equation 1:

∆(X,Y ) =
n∑

i=1

wi δ(xi, yi) (1)

where:

δ(xi, yi) =

{
0 if xi = yi

1 if xi 6= yi
(2)

and wi represents the gain-ratio weight of fea-
ture i:

wi =
H(C)−∑

v∈Vi
P (v)×H(C|v)

si(i)
(3)

Where C is the set of class labels, H(C) =
−∑

c∈C P (c) log2 P (c) is the entropy of the class
labels, Vi is the set of values for feature i, and
H(C|v) is the conditional entropy of the subset
of the training examples that have value v on fea-
ture i. The probabilities are estimated from rela-
tive frequencies in the training set. Finally, si(i) is
the so-called split info, or the entropy of the val-
ues, of feature i (Quinlan, 1993):

si(i) = −
∑
v∈Vi

P (v) log2 P (v) (4)

The gain ratio weighting assigns higher weights
to features that are more predictive with respect
to the class. It is more robust than the simpler
information gain metric, which overestimates the
importance of features with many values (such as
lexical features); the split info, the entropy of the
values, acts as a penalty for a feature with many
values. One effect of this weighting in the simi-
larity function is that mismatches on features with
a large gain ratio cause memory exemplars to be
more distant than when the mismatch is on fea-
tures with a small gain ratio. On the other hand,
the gain ratio weight of a feature may be so promi-
nent that it promotes a memory exemplar with a
matching value on that feature to the top-ranking
k nearest neighbors, despite the fact that other less
important features carry non-matching values.

Memory-based learning can be likened to local
regression or locally-weighted learning (Atkeson
et al., 1997). It has similar issues with feature
collinearity (gain ratio weights are computed sep-
arately for each feature; redundancy is not taken
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into account), but by limiting its decision to lo-
cal evidence found close to the test exemplar, the
algorithm is sensitive to subtle co-occurences of
matching features in the k nearest neighbors.

The default version of TiMBL, used in this
study, sets the number of neighbors to k = 1,
which implies that an unseen test vector is com-
pared to all training exemplars, and the dative
choice label of the single most similar training ex-
emplar is taken as the prediction of the test exem-
plar.

4 Experimental setup

4.1 Data collection

We used the same data as de Marneffe et al.
(2012), which were extracted from the CHILDES
database (MacWhinney, 2000). De Marneffe et al.
focused on seven children: Abe, Adam, Naomi,
Nina, Sarah, Shem, and Trevor, based on the
amount of data available for them compared to
other children, in terms of both their total number
of utterances and the number of utterances con-
taining one of the variants of the dative alternation.
The utterances were taken from the children’s pro-
duction between the ages of 2–5 years. The data
yielded a sufficient number of utterances to inves-
tigate two verbs in depth, give and show, which
are the only ones considered in this study. On
top of this filtering, De Marneffe et al. selected
only dative constructions following the “verb NP
NP” (double object) construction or “verb NP PP”
(prepositional dative) construction.

For all seven children, conversations with care-
givers were included as well. Table 1 lists the basic
statistics of available child and child-directed ut-
terances with dative alternations, and the age range
of the individual children (in days). For two chil-
dren, Adam and Nina, we have more than one hun-
dred dative attestations in their own speech. For
both children we also have more than one hun-
dred datives in the speech directed to them by their
caregivers; for a third child, Shem, we also have
over a hundred caregiver utterances containing da-
tives.

Following the encoding of the data by De Marn-
effe et al. in their computational modeling experi-
ment with mixed-effects logistic regression, all at-
testations of both dative constructions in their ut-
terance context are converted to feature vectors.
Each vector (examplar) is metadated with the ex-
act day of attestation, and labeled with the dative

# Datives in Age (days)
Child child data cds First Last
Abe 74 0 924 1,803
Adam 221 207 824 1,897
Naomi 21 0 767 1,733
Nina 146 443 747 1,193
Sarah 19 0 1,178 1,841
Shem 15 138 875 1,130
Trevor 33 0 757 1,452

Table 1: Basic statistics for the seven children used
in the study: numbers of utterances and age range
in days (cds = child-directed speech).

choice made by the child (i.e. a binary choice
between the double object construction and the
prepositional dative). Each vector is composed
of fourteen feature values; the fourteen underlying
features are listed in Table 2.

The Theme and Recipient length features are
manually corrected due to the fact that in the orig-
inal data used by De Marneffe et al. some recip-
ients and themes mistakenly included other mate-
rial such as adverbials.

The third column of Table 3 lists the gain ratio
weights for each feature (cf. Equation 3). These
weights seem to suggest four groups of features:

1. Theme pronoun status and Recipient pronoun
status are by far the most predictive features.
Theme pronoun status has a weight about 2.5
times higher than that of Recipient pronoun
status, and over three times higher than the
third highest weight;

2. There is a second-tier group of informative
features with a gain ratio of about 0.07−0.08:
Prime, Theme, Recipient, Recipient given-
ness levels, Theme corrected lenght, and Re-
cipient corrected length;

3. A third-tier group of features has weights in
the range of 0.02 − 0.05: Theme givenness
levels, Theme animacy, and Recipient toy an-
imacy;

4. A fourth-tier group has near-zero weights,
carrying hardly any predictive information:
Verb, Recipient animacy, and Theme toy ani-
macy.

Perhaps somewhat surprisingly, the identity of
the verb (give or show) is virtually unrelated to the
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Name Description Gain ratio
Prime The type of nearest previous occurrence of a dative con-

struction, if any, within the 10 preceding lines. Three val-
ues are distinguished: 0 = none, NP = double NP-dative
(“give me a hug”); PP = to-dative (“give it to me”)

0.076

Verb “give” or “show”; the two most frequent dative verbs col-
lected in the childrens’s speech

0.006

Theme that which shown or given (“a hug” in “give me a hug”;
“it” in “give it to me”)

0.079

Recipient to whom or which the theme is shown or given (“me” in
“give me a hug” and “give it to me”)

0.079

Theme givenness levels either ‘given’: the referent of the theme was mentioned in
the preceding ten lines or was denoted by a first or second
person pronoun, “me”, “us”, or “you”; or ‘new’: not given

0.038

Recipient givenness levels coded in the the same way as Theme givenness levels 0.086
Theme animacy 1 = the theme refers to a human or animal; 0 = other 0.022
Recipient animacy coded in the same way as Theme animacy 0.005
Theme toy animacy explicitly encodes toy themes as animate: 1 = the theme

refers to a human or animal or toy; 0 = not animate
0.000

Recipient toy animacy coded in the same way as Theme toy animacy 0.051
Theme pronoun status ‘pronoun’ = the theme is a definite pronoun (“it”, “them”)

or a demonstrative pronoun (“this”, “dis”, “those”, etc);
‘lexical’ = not pronoun

0.276

Recipient pronoun status coded in the same way as Theme pronoun status 0.113
Theme corrected lenght length of the theme in orthographic words 0.071
Recipient corrected length length of the recipient in orthographic words 0.086

Table 2: The fourteen features used in the study, along with their gain ratio based on a concatenation of
all children’s data.

dative choice. In other words, the identity of the
verb does not license one of the dative construc-
tions.2 The high weights for the pronoun status
features imply that the likelihood of being a near-
est neighbor is large when it has the same values
on either of these features as the test exemplar.
Yet, the weights of the other features, especially
those in the second-tier group, are large enough to
outweigh a mismatch on the pronoun features.

4.2 Learning curve evaluation

Our experiments are run per individual child, in an
iterative experiment that tracks the child on a day-
by-day basis and computes a learning curve. Fig-
ure 1 illustrates how the iterative learning curve
experiment takes its first steps. At each point of
the curve, all dative choices attested so far consti-
tute the training set, while all new dative choices
attested in the single next day on which datives are
observed constitute the test set. Hence, the first

2This may be different for other verbs than give or show.

training set is the first day on which the child gen-
erated one or more dative constructions; the first
test set is derived from the next day the child pro-
duced datives. In the second step, the test set of
the first step is added to the training data, and the
next test set consists of all datives produced by the
child on a next day.

At each step the incrementally learning
memory-based classifier adds the new examples
to memory, after which it classifies the new test
set, which may only contain one or a handful of
attestations. All single predictions per day are
recorded as a sequence of predictions and whether
these predictions were correct or incorrect. At
each point of the curve a correctness score can
be produced that aggregates over all predictions
so far. At the end of the curve we achieve an
aggregate score over all predictions.

The desired outcome of a learning curve exper-
iment is obviously a metric expressing the success
of predicting the right choices. In order for indi-
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Figure 1: Visualisation of the first steps of a learn-
ing curve experiment. In the first step, the training
material contains all dative attestations observed
in the first day of attestations, and the test material
contains all dative attestations found in the next
day with datives. In the second, step, the latter
material is added to the training set, and the third
day of attestations is now the test set.

vidual experimental outcomes to be comparable,
they should not be based on different skews in the
distribution between the two dative choices. Ac-
curacy (the percentage of correct predictions) will
not do, as it is biased to the majority class. When
a child would choose one dative construction in
90% of the cases, a classifier trained on that child
would easily score 90% accurate predictions by
only guessing the majority outcome, while a clas-
sifier that is able to attain 80% correct predictions
for a child that chooses between the two alterna-
tions in a 50%–50% distribution is intrinsically
more successful and interesting.

To eliminate the effect that class skew may have
on our evaluation metric we evaluate our classifier
predictions in the learning curve experiments with
the area under the curve (AUC) metric (Fawcett,
2004). The AUC metric computes, per class, the
surface under a curve or a point classifier in the
two-dimensional receiver operation characteristic
(ROC) space, where the one dimension is the true
positive rate (or recall) of predicting the class,
and the other dimension is the false positive rate
of mispredicting the class. Figure 2 displays the
AUC score of the outcome of a classifier (a point
classifier as it produces a single score rather than
a curve) on a class, depicted by the large dot; the
AUC score is the area of the gray surface.

We compute the AUC score of both dative

false positive rate
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Figure 2: Illustration of the area under the curve
(AUC) in the true positive rate–false positive rate
space of the outcome of a point classifier (large
dot).

choices, and take the micro-average of the two
AUC scores; i.e. each score is weighted by the rel-
ative proportion of occurrence of its choice. The
resulting number is a score between 0.5 and 1.0
that is insensitive to the skew between the two da-
tive choices in a particular child’s data, where 0.5
means baseline performance (random or majority
guessing), and 1.0 means perfect prediction.

5 Results

As an illustration of the measurements taken dur-
ing learning curve experiments, Figure 3 displays
the curves for Adam and Nina, the children with
most observations. Starting at 100% AUC score,
the curves of both children initially drop consider-
ably, and then rise to a score that appears to stabi-
lize, at least for Adam for whom data is available
into his fifth year. Later points in the curve are
based on more training data.

At the end of each curve, the aggregated score
can be measured, which in the best case would be a
good approximation of the stabilized score we saw
with Adam. Table 3 lists the aggregated score at
the end of the curve for all seven children. Adam’s
dative choices can be predicted at an AUC score
of 0.80, while Nina’s choices are predicted with
an AUC score of 0.71. For all other children the
available data is insufficient to arrive at any above-
chance performance.

To arrive at a sufficient amount of data per child
we can add the data from all other children to all
points of the learning curve, mixing the child’s
own data with substantially more data from other
children. The fourth column of Table 3 shows that
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Figure 3: Individual learning curves for Adam and
Nina, in terms of AUC scores on predicted dative
alternation choices, trained on their own earlier
data.

this leads to above-chance performance of 0.7 or
higher for all children except for Naomi (0.52).
However, Adam’s score is slightly lower after this
mix (0.77 versus 0.80 on Adam’s own data).

As De Marneffe et al.’s study suggests, it makes
sense to predict the children’s dative choices from
child-directed speech, which represents one of
the major sources of language input a child re-
ceives. To avoid any effects of alignment (such as
the child repeating the caregiver), we constructed
training sets for all children that exclude the utter-
ances of their own caregivers. The fifth column
of Table 3 lists the AUC scores obtained with this
experiment. This leads to improved scores for all
children, except for Adam; the score of 0.80 based
on his own data is not surpassed.

Finally, the sixth column of Table 3 displays
the scores at the end of the learning curve when
all available data is used as additional data dur-
ing all points of the curve, including all child-
directed speech from other children and all other
children’s data. Surprisingly the advantage of hav-
ing the maximal amount of training data is not vis-
ible in the scores, which are mostly lower, except
for Adam (stable at 0.80) and Nina, the other child
for which sufficient data was available (0.79).

Overall, the individual scores for all children
range between 0.79 and 0.88, which could be con-
sidered accurate. For comparison, De Marneffe
et al report a C score of 0.89 by their aggregate
model. The C score (Harrell, 2001) is typically
used for measuring the fit of regression models,
and is to regression what AUC is to classification.
It should be noted, though, that their C score is a

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 800  1000  1200  1400  1600  1800  2000

%
 c

o
rr

e
c
t

age (days)

Adam
Nina

Figure 4: AUC scores on predicting dative al-
ternation choices in child-directed speech from
other children, based on increasing amounts of
data from Adam and Nina.

fit, i.e. a test on the training data, whereas we test
un unseen data only.3 If memory-based learning
is applied to classify its training data, its score is
trivally 100%, as it memorizes all training exem-
plars.4

It is also possible to reverse the roles in the
training and testing regimen, and test the predic-
tive value of children’s datives on caregiver da-
tives. This experiment would show how well an
child’s speech approximates that of adults. Fig-
ure 4 displays learning curves (AUC scores) when
training on increasing amounts of datives pro-
duced by Adam and Nina, tested on the caregiver
speech of other children. The score starts out low,
then increases, peaks (with both children) and then
slowly decreases in the case of Adam.

To put the outcomes of these two learning
curves in perspective, Table 4 compares their ag-
gregrate score against a control experiment. The
second column of Table 4 lists the end points of
the aggregrate learning curves displayed in Fig-
ure 4. In the control experiment, the child-directed
speech of Adam and Nina was used, respectively,
as training data; the two trained models were again

3After reporting on the C score, de Marneffe et al. (2012)
note that they do not know whether their model overfits. They
then introduce a new experiment on two new children and
datives with three verbs: give, show, and a new verb bring,
and split the data into a 90% training set and 10% test set.
On all three verbs they report a classification accuracy (not
AUC, unfortunately) on the test set of 91.2% against a major-
ity baseline of 68.4%. On the new verb bring the accuracy is
72.9%.

4Classification accuracy when testing on the training set
may be lower than 100% when identical training exemplars
exist with different dative choice labels.
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Table 3: Aggregated AUC scores of MBL at the end of the learning curves of the seven children, training
on four different selections of material. Best performances are printed in bold.

Training on
Child # Datives (CDS) Child only + Other children CDS other children All
Abe 74 0.50 0.84 0.87 0.86
Adam 221 (207) 0.80 0.77 0.80 0.80
Naomi 21 0.50 0.52 0.81 0.58
Nina 146 (443) 0.71 0.74 0.76 0.79
Sarah 19 0.50 0.83 0.88 0.83
Shem 15 (138) 0.50 0.74 0.88 0.74
Trevor 33 0.50 0.72 0.86 0.73

tested on the collective set of datives in other chil-
dren’s child-directed speech.

# Datives Train child, Train and
Child (CDS) test CDS test CDS
Adam 221 (207) 0.76 0.84
Nina 146 (443) 0.85 0.86

Table 4: Comparison of AUC scores when testing
on CDS data from other children, trained either
on the child’s datives or on the child’s caregiver’s
datives.

Training on Adam’s datives, of which we have
a higher number (221) than of Nina (146), we see
at the end of the learning curve that datives in
the child-directed speech of other children are pre-
dicted less accurately (0.76) than when training on
Nina’s datives (0.85). As the third column shows,
the different caregiver input directed at the two
children, when used as training data, does not dif-
fer notably in the approximation of child-directed
speech directed at other children; more interest-
ingly, we see that the AUC yielded by training
on Nina’s data (0.85) is about as high as train-
ing and testing on child-directed speech data (0.84
and 0.86). In other words, Nina’s output is slightly
harder to predict than Adam’s (cf. Table 3), but it
approximates adult caregiver output better.

6 Discussion

In this contribution we explored the notion of
building a predictive computational, exemplar-
based model for individual children. Despite the
fact that we were only able to work with a lim-
ited number of children for which sufficient data
was available, we believe we have delivered a
proof of concept: we can model individual learn-

ing curves, and when sufficient data is available,
the results indicate that models trained on this data
have competing generalization performance to ag-
gregate models trained on data from multiple indi-
viduals.

What is more, our results indicate that training
on other children does not produce the best pre-
dictive models. Training on child-directed speech,
however, does lead to the overall best general-
ization performances. This partially confirms De
Marneffe et al.’s conclusions. Although we used
the same data, we cannot directly compare to this
work because, as noted before, De Marneffe et al.
fit their models on the training data, whereas we
test on unseen data not included in training.

We estimated to what extent the data from the
children for which we had sufficient data, Adam
and Nina, could be used as training data to pre-
dict caregiver datives. The comparisons produce
slightly different results. Comparing Tables 3
and 4, we observe that Nina’s dative choices are
harder to predict than Adam’s, but they approxi-
mate adult caregiver dative choices better. A com-
parative study of Nina’s and Adam’s productions
may explain this difference, but goes beyond the
scope of this paper. We restrict ourselves to noting
that we observe more varied predictors in Nina’s
output than in Adam’s, that she uses significantly
more pronouns, and that the variance in the length
of the themes used by Nina is significantly greater
than Adam’s.

Overall, both Adam’s and Nina’s datives can be
said to approximate and predict caregiver datives
about as accurately as adult data does.
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7 Conclusion

Our case study shows that the computational mod-
elling of a language acquisition phenomenon at
the level of the individual is possible. The re-
sults indicate that models trained on individual
data have competing generalization performance
to aggregate models trained on data from multi-
ple individuals. For two children, sufficient data
was available to show that training a memory-
based model on their own data produced about as
accurate predictions as training on child-directed
speech, which de Marneffe et al. (2012) had shown
before, but with data aggregated over children.

We argue that memory-based learning is a suit-
able method for this type of micro-modelling. It
can work with very small amounts of training data,
and it can learn incrementally. In contrast, most
non-local regression methods and supervised ma-
chine learning methods require complete retrain-
ing when training data changes (e.g. when new
examples come in). Furthermore, as an imple-
mentation of exemplar-based reasoning it offers a
computational, objectively testable, reproducible,
and arguably cognitively plausible (Van den Bosch
and Daelemans, 2013) exemplar-based account of
language acquisition and processing (Jäkel et al.,
2009).

This proof-of-concept case study suggests sev-
eral strands of future work. First, different syntac-
tic alternations could be studied in the same way
based on the same data, such as the genitive al-
ternation in English. Second, our present study
copied the features of de Marneffe et al. (2012),
but there is some evidence from studies on adult
data that the dative alternation can also be pre-
dicted with memory-based learning on lexical sur-
face features (words) only (Theijssen, 2012). It
would be interesting to repeat this study only with
the Theme and Recipient surface lexical features.

As a more general goal, we hope to arrive at
a new framework for modeling language produc-
tion processes in which we can address existing
research questions at the individual level, so that
we can start to address the contrast between idi-
olectal data and aggregated data—an issue that has
so far been largely theoretical and has been rarely
addressed empirically (Louwerse, 2004; Mollin,
2009; Stoop and Van den Bosch, 2014).
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