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Abstract

This article proposes a syntactic parsing
strategy based on a dependency grammar
containing both formal rules and a com-
pression technique that reduces the com-
plexity of those rules. Compression pars-
ing is mainly driven by the single-head
constraint of Dependency Grammar, and
can be seen as an alternative method to
the well-known constructive strategy. The
compression algorithm simplifies the in-
put sentence by progressively removing
from it the dependent tokens as soon as
binary syntactic dependencies are recog-
nized. The performance of our system was
compared to a deterministic parser based
on supervised learning: MaltParser. Both
systems were applied on several test sets
of sentences in Spanish and Portuguese,
from a variety of different domains and
genres. Results showed that our pars-
ing method keeps a similar performance
through related languages and different
domains, while MaltParser, as most super-
vised methods, turns out to be very depen-
dent on the text domain used to train the
system.

1 Introduction

For large scale applications in Information Extrac-
tion (IE), syntactic parsing should be robust, fast,
and relatively accurate. Moreover, for specific IE
applications such as semantic relation extraction,
the output of parsing should be simple, easy to
handle by the IE systems, and close to the seman-
tic relationships to be extracted. For multilingual
purposes, it is important to develop parsing tech-
niques easily adapted to several languages. And
finally, in order to be easily integrated in several
NLP applications and tasks, the parsers should be

applied on different text domains and genres with
similar accuracy.

There are two well known approaches that
could be considered as good approximations to the
ideal system filling all these parsing properties:
both deterministic dependency parsing (Nivre,
2004) and partial parsing using rule-based finite-
state techniques (Abney, 1996). However, these
two parsing approaches have still some problems.

Recent work on deterministic dependency pars-
ing (called ‘transition based’) relies on supervised
techniques requiring fully analyzed training cor-
pora. Given that supervised techniques tend to
have loss of precision when applied on texts of do-
mains and genres different to those used for train-
ing (Rimell et al., 2009; Gildea, 2001), they need
too much manual effort to create, adapt, or modify
the training corpus to the target domain.

Speed is not actually a problem for finite-state
techniques, which can parse large text corpora in a
very efficient way. However, as they rely on com-
plex rule-based notations, their main drawback is
the difficulty to adapt such a rule system to dif-
ferent languages. Moreover, as most finite-state
parsers are based on constituency grammars, their
syntactic output cannot be easily integrated into IE
applications. Unlike phrase constituents, depen-
dencies are seen as simple and flat syntactic repre-
sentations, very close to semantic relations which
are the extraction target of many IE systems.

Many finite-state parsers are based on the con-
structive strategy (Grefenstette, 1996; Abney,
1996; Ait-Mokhtar and Chanod, 1997). In con-
structive parsing, an input sentence is manipulated
by transducers that progressively transform the
input with additional symbols encoding syntac-
tic constituents or dependency relations (Oflazer,
2003). These transducers are pattern rules ar-
ranged in cascades: the output of a transducer
is the input of the next one, which contains new
rules adapted to the symbols added to the input.
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So, parsing consists in transforming a basic input
string into a more complex one by incrementally
adding new symbols, bracket delimiters, labels, or
special markers. This strategy incrementally con-
structs the linguistic representation within the in-
put string, by making use of rules organized at dif-
ferent levels of complexity.

In this article, we propose a new (rule-based)
finite-state parsing strategy based on dependen-
cies, which minimizes the complexity of rules by
using a technique we call compression. Compres-
sion parsing is driven by the ”single-head” con-
straint of Dependency Grammar, and can be seen
as an alternative method to the constructive strat-
egy. It simplifies the input string by progressively
removing the dependent tokens as binary syntac-
tic dependencies are recognized. At the end of the
compression process, if all the dependencies in the
sentence were recognized, the input string should
contain just one token representing the main head
(i.e., the root) of the sentence. This strategy was
inspired by the Right and Left Reduce transitions
used in deterministic dependency parsing. The
input sentence is assumed to be tagged and dis-
ambiguated with a Part-Of-Speech (PoS) tagger.
Moreover, the cost of manually creating rules can
also be reduced by providing a suitable rule nota-
tion for linguists.

As in Ait-Mokhtar and Chanod (1997), we hold
that the ordering of rules/transducers is in itself a
genuine linguistic task, which must preserve the
basic principle of doing the easiest task first (Ab-
ney, 1996). If rules (and so the grammar) are
written following this principle, it is possible to
use finite-state automata to deal with embedding
structures and long-distance dependencies. Note
that this is a deterministic parsing strategy, since
it cannot produce ambiguous structures. The use
of grammars in recent dependency parsers is al-
most non-existent. Our work propose to incor-
porate more linguistic knowledge into the parsing
systems via light-weight grammars.

Finally, a system based on the compression
strategy was implemented and released under
General Public License. In addition, we de-
fined a high level grammar language to define
dependency-based rules and developed a gram-
mar compiler to generate compression parsers in
several languages (Gamallo and González, 2011).
The performance of this system was compared to
MaltParser (Nivre et al., 2007b), a deterministic

parser based on supervised learning. Both systems
were applied on several test sets of sentences of
different domains and genres, in Spanish and Por-
tuguese. One of the main motivations of the evalu-
ation is to test whether the two systems are reliable
to parse sentences of different domains and gen-
res. It is generally accepted that supervised classi-
fiers require some type of domain adaptation when
both the training and test data sets belong to dif-
ferent domains. In particular, the accuracy of sta-
tistical parsers degrades when they are applied to
different genres and domains (Rimell et al., 2009;
Gildea, 2001). Results showed that our system
keeps a similar performance through related lan-
guages and different domains, while MaltParser,
as most supervised methods, is very dependent on
the text domain used to train the system.

The remainder of this article is organized as fol-
lows. Section 2 introduces different approaches on
both dependency and FST parsing. Then, Section
3 is focused on the description of our compres-
sion strategy. Next, Section 4 provides a general
view of the implemented system. Then Section
5 reports the diverse experiments performed over
the Portuguese and Spanish data sets. And finally,
some conclusions are addressed in Section 6.

2 Related Work

Our strategy is based on both dependencies and
FST parsing.

2.1 Dependency-based Syntactic Parsing

Following Nivre (2005), there are two tradi-
tions in dependency parsing: grammar-driven and
data-driven parsing. Within each tradition, it is
also possible to distinguish between two differ-
ent approaches: non-deterministic and determin-
istic parsing. In the latest years, many works on
dependency parsing have been developed within
the approach to data-driven deterministic parsing,
which is also known as transition-based parsing,
in opposition to grammar-driven parsers. Other
data-driven strategies are non-deterministic such
as graph-based dependency parsing (McDonald
and Pereira, 2006; Carreras, 2007; Martins et al.,
2010) .

Transition parsing consists in inducing statis-
tical models in combination with a determinis-
tic strategy based on shift-reduce parsing (Nivre,
2004; Yamada and Matsumoto, 2003; Gómez-
Rodrı́guez and Fernández-González, 2012). In
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Nivre et al. (2004), the parsing strategy uses the
arc-eager algorithm. In Gómez-Rodrı́guez et al.
(2014), this algorithm is simplified by just using
two transitions on undirected dependencies (the
head-dependent information is erased), so as to
avoid error propagation.

As we will show later, the main problem of the
supervised learning strategies arises when the test
sentences belong to linguistic domains very dif-
ferent from those found in the training corpus. We
will show later the negative effect on system per-
formance when the test and training data sets does
not belong to the same domain and genre. As
hand labeling data in new domains is a costly en-
terprise, the domain adaptation problem is a fun-
damental challenge in machine learning applica-
tions. Note that many NLP annotated resources
are based on text from the news domain (in most
cases, the Wall Street Journal), which is a poor
match to other domains such as biomedical texts,
electronic mails, transcription of meetings, admin-
istrative language, etc. (Daumé-III and Marcu,
2007; Daumé-III, 2006).

2.2 Finite-State Parsing Techniques

Finite-state technology has attractive properties
for syntactic parsing, such as conceptual simplic-
ity, flexibility, and efficiency in terms of space and
time. It allows to build robust and deterministic
parsers. Most finite-state based parsing strategies
use cascades of transducers and are known as con-
structive parsers.

Parsing based on cascades of finite-state trans-
ducers can be viewed as a sort of string trans-
formation. Finite-state transducers introduce pro-
gressively markings and labels within the input
text. Transducers are arranged in cascades (or
layers), where the subsequent transducer takes
the output of the previous one as input. After
a certain number of cascades, the initial input
(which is a tagged sentence) is transformed into
a structured text enriched with syntactic marks,
such as chunk boundaries, labels for heads, spe-
cial markers for functions or for relations between
heads, etc. This strategy, known as constructive,
progressively constructs the linguistic representa-
tion within the input string, by making use of
rules/transducers organized at different levels (or
layers) of complexity.

Most of finite state strategies aim to construct,
not dependency graphs, but phrase based struc-

tures (Ait-Mokhtar et al., 2002; Ciravegna and
Lavelli, 2002; Kokkinakis and Kokkinakis, 1999;
Ait-Mokhtar and Chanod, 1997; Abney, 1996;
Joshi, 1996; Grefenstette, 1996). In general, the
construction of these structures is performed with
three main cascades/layer of rules: chunking, head
recognition, and attachment. The first layers of
rules transform the tagged input into sequences of
symbols representing basic chunks. Then, further
rules take those chunks as input to add new sym-
bols marking the heads of each chunk and, finally,
new rules are applied on the output of the previous
ones to annotate the identified heads with labels of
syntactic functions (attachment).

The number of finite-state approaches focused
on constructive dependency parsing is much
smaller. We can merely cite the work by Oflazer
(2003), where the input string is progressively
enriched by additional symbols encoding depen-
dency relations between words.

The finite-state strategy often relies on one fun-
damental property: easy-first parsing. Easy-first
parsing means that the simplest tasks must be done
first, leaving the harder decisions for the last steps
of the parsing process. Parsing proceeds by grow-
ing islands of certainty (Abney, 1996; Eisner and
Smith, 2010; Goldberg and Elhadad, 2010; Tratz
and Hovy, 2011; Versley, 2014).

Finite-state parsers are the fastest systems
among those achieving linear time complexity. So,
they are scalable as the input text increases in size
and are easily integrated into IE applications ex-
ploring the Web as corpus.

3 A Compression Parsing Strategy

We propose yet another FST based method, very
similar to the constructive approaches, but by
making use of a similar strategy to the shift-reduce
algorithm as in incremental parsing. We call it
compression parsing. It consists of a set of trans-
ducers/rules that compress the input sequence of
tokens by progressively removing the dependent
tokens as soon as dependencies are recognized.
So, at each application of a rule, the systems re-
duce the input and make it easier to find new de-
pendencies in further rule applications. In partic-
ular, short dependencies are recognized first and,
as a consequence, the input is simplified so as to
make lighter the recognition of long distance de-
pendencies. This is inspired by the easy-first strat-
egy.
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The input of our parsing method is a sequence
of disambiguated tagged tokens, where each to-
ken is associated with two pieces of information:
a PoS tag representing the basic morpho-syntactic
category of the token (NOUN, VERB, PRP, etc.)
and a feature structure containing other relevant
information of the token: morphological informa-
tion (number, tense, person, etc.), lemma, token
string, token position, etc. Tagged tokens are the
elementary objects of the parsing process, while
rules, which are implemented as finite state trans-
ducers, operates on tagged tokens. More precisely,
rules successively identify dependencies between
tokens, remove the dependents (if required) from
the input sequence, and update (if required) the
feature structures of the heads.

3.1 Description of rules

A rule is a tuple < P, Arc,△, Reduce >, where:

• P is a pattern of tagged tokens, defined as
a regular expression, whose general form is
αXβY γ. X and Y are non-empty strings
representing two tagged tokens, considered
as the core elements of the pattern; while α,
β, and γ represent the left, middle, and right
contexts, respectively, of the core elements;
they may be empty.

• Arc is the action that creates a dependency
link between the core elements (X and Y ),
when a subsequence of the tagged input is
matched by the pattern; two types of arcs are
distinguished: Left Arc adds a dependency
link between X and Y , being X the depen-
dent and Y the head; Right Arc creates a
dependency link between X and Y , being X
the head and Y the dependent. This action
also assigns a label (subject, modifier, ad-
junct, etc) to the dependency.

• △ is a set of operations (Agreement, Add,
Correction, Inherit, etc.) that are applied
on the feature structure of the core elements;
they can be used to perform very different ac-
tions: verifying if the two core elements (i.e.,
head-dependent) share a set of feature-values,
adding new feature-values to the head, modi-
fying some values of the head, correcting PoS
tags, allowing the head to inherit selected val-
ues from the dependent, etc. Add and Inherit
can be seen as constructive operations.

• Reduce is the action that removes the depen-
dent from the input string; this action can be
suspended if the dependent token is likely to
be the head in other dependencies that has not
been recognized yet. So, the dependent will
not be reduced until all its potential depen-
dent tokens have been recognized.

Compressing rules, not only reduce the com-
plexity of the search space (or input) of the re-
maining rules to be applied, but also construct rel-
evant information (by adding linguistic features)
for the application of those rules. In particular,
it may store in the head relevant information of
the removed dependent (Inherit operation), it per-
mits to generate new attributes or modify values
from existing attributes (Add operation), and also
it can correct odd tagged PoS tags (Correction)
(Garcia and Gamallo, 2010). In sum, the main
contribution of our work is to define compressing
rules as the integration of two parsing techniques:
both transition-based and constructive parsing. On
the one hand, the rules reduce the search space
by removing the dependent tokens and, on the
other hand, they can add relevant information to
the head tokens by making use of operations such
as Add or Inherit. Rules compresses the input se-
quence of tokens so as to make it easier the identi-
fication of more distant dependencies.

The Inherit operation is one of the most inno-
vative contributions of our rule system. It allows
transferring linguistic features to heads before re-
moving the dependent tokens from the search
space. This can be considered as one of the main
contributions of our dependency-based strategy.
In combination with Add operation, Inherit is use-
ful to transfer relevant information from auxiliary,
light, or modal verbs to their main verbs. It can
also be used to model coordination by transfering
categorial information from the coordinated struc-
tures to the coordinator, so as to make it possible
subject-verb agreements. For instance, in the sen-
tence ‘Paul and Mary are eating’, the Inherit op-
eration allows the coordinator ‘and’ to inherit the
nominal category of their parts and, by means of
the Add operation, we can assign it the plural num-
ber. In addition, Inherit can also be used to transfer
relevant morphological information (third person,
plural, present tense) to the root verb ‘eat’ from
the auxiliar ‘are’. This way, there is grammatical
agreement between ‘(are) eating’ (3rd person and
plural) and its subject ‘Paul and Mary’. As far as

110



we know, no dependency grammar/parser has pro-
posed this solution to the dependency-based anal-
ysis of verbal periphrases and coordinations.

3.2 Rule Ordering: Easy First
As was mentioned above, the ordering of rules in
a FST parser is a genuine linguistic task. Rules
are ordered in such a way that the easiest tasks,
for instance short dependencies, are performed
first. As in (Eisner and Smith, 2010; Goldberg
and Elhadad, 2010; Tratz and Hovy, 2011; Vers-
ley, 2014), we assume that correct parsers exhibit
a short-dependency preference: a word’s depen-
dents tend to be close to it in the string. The fact of
identifying first easy syntactic structures, such as
those ruled by modifiers and specifiers, allows us
to easily find later distant links, for instance those
relating verbs with subordinate conjunctions. Let
us take the expression: ‘if the former president of
USA says ...’. There is here a long distance de-
pendency between the verb ‘says’ and the condi-
tional conjunction ‘if’. In most sentences, both
words are not adjacent since a great variety of to-
kens can be interposed. However, in a compres-
sion approach, we can guess that dependency by
making use of a very simple pattern consisting in
a subordinate conjunction (type:S) appearing im-
mediately to the left of a verb (last rule T6 below in
1). We just need the following sequence of trans-
ductions/rules1:

T1: PRP← PRP NOUN

T2: NOUN← ADJ NOUN

T3: NOUN← DT NOUN

T4: NOUN← NOUN PRP

T5: VERB← NOUN VERB

T6: VERB← CONJ<type:S> VERB
(1)

In Figure 1, we show the application of the six
rules on the input expression, as well as the effect
of the Reduce transition at each level (for the sake
of simplicity, label assignment is not taken into ac-
count).

Each rule processes the input from left to right
repeatedly as long as new dependencies satisfying
the pattern are found. Rules are checked top-down
following the rank imposed by the linguist. When

1To simplify, rule notation is focused on just the final Re-
duce operation

T6: if says

T5: if president says

T4: if president of says

T3: if the president of says

T2: if the former president of says

T1: if the former president of USA says

Figure 1: The six levels of analysis of ‘if the for-
mer president of USA says...’

the parser reaches the last rule of the ranked list,
if at least one dependency has been identified, the
parser starts again from the beginning until no new
dependency is found. So, the parser works itera-
tively until no change is made.

4 The Implementation

4.1 The Modules

Our compression parsing strategy has been in-
serted into a more generic natural language archi-
tecture, which consists of the following modules:

A set of PoS tagging adapters that modify
the output of two PoS taggers, namely FreeLing
(Padró and Stanilovsky, 2012) and Tree-Tagger
(Schimd, 1995), so as to generate an unified PoS
tagged format. The result of this process is the in-
put of compression parsers. A set of grammars
written with a specific grammar notation. The
grammar formalism was described in (Gamallo
and González, 2011). A grammar compiler, writ-
ten in Ruby, that takes a particular grammar as in-
put and generates a compression parser, written in
Perl. An a set of multilingual parsers, generated
by the compiler from various grammars.

The whole system, called DepPattern, is re-
leased under the GNU General Public License
(GPL). 2. Five parsers were generated for the fol-
lowing languages: Spanish, Portuguese, English,
French, and Galician. The parsers are robust and
very efficient: they are able to parse about 3,000

2http://gramatica.usc.es/pln/tools/
deppattern.html
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words per second on a processor Core 2 Quad, 2.8
Ggz. The system can be run on any GNU/Linux
distribution. DepPattern was used for several web-
based IE applications, namely Open Information
Extraction from Wikipedia (Gamallo et al., 2012),
extraction of semantic relations with distant super-
vision (Garcia and Gamallo, 2011), and extraction
of bilingual terminologies from comparable cor-
pora (Gamallo and Pichel, 2008). It has also been
integrated into commercial tools, e.g. Linguakit3

and Avalingua4.

4.2 Multilingual Parsing

The parsers were developed for five languages:
Spanish, Portuguese, Galician, French, and En-
glish. However, we have just written two small,
and not very different, grammars:

Romance Grammar A grammar with 96 rules
that are all applied to four Latin languages,
namely, Spanish, French, Galician, and Por-
tuguese.

English Grammar A grammar with 104 rules for
English.

The cost of writing these two grammars is quite
low. They are small and almost identical, since
they share most rules except a reduced group of
them which is specific for English. The strategy
we followed to write grammars is based on two
methodological principles: to start with rules with
high coverage, and to start with rules shared by as
many languages as possible

The objective is to find a trade-off between high
performance and low effort, i.e. we look for ef-
ficiency. Most DepPattern rules of our gram-
mars satisfy these two principles, giving rise to
broad-coverage parsers. The quality of the French
grammar is not good enough since this Latin lan-
guage is quite different from Spanish, Portuguese,
and Galician. There are important rules specific
for French which have not been integrated in the
shared grammar, for instance rules for dealing
with partitives. Besides, we have not defined non-
projective rules since, in general, they have low
coverage and are language-dependent. Finally, the
grammars also contain lexicalized rules for prepo-
sitions, modal verbs, quantifiers, etc. However, as
the sets of lexical units are declared in external

3https://linguakit.com/
4http://cilenis.com/en/avalingua/

configuration files, the grammars are not required
to be modified.

5 Experiments

Our objective is to compare the performance of
our FST-based strategy with that of a transition-
based system. For this purpose, we compare Dep-
Pattern with MaltParser5 (Nivre et al., 2007b),
one of the top performing systems in the CoNLL
shared tasks on multilingual dependency parsing
in 2006 and 2007 (Hall and Nilsson, 2006; Nivre
et al., 2007a). Experiments were performed on
two languages: Portuguese and Spanish. The rea-
son of making experiments on only two languages
is the very high cost required to adapt the outputs
of our system to the test data set.

5.1 Training and Test Corpora

The experiments were performed by making use
of two dependency treebanks: Spanish Ancora
2.0 (Recasens and Martı́, 2010) and Portuguese
Bosque 8.0 (Afonso et al., 2002), also used by par-
ticipants at the CoNLL 2006 shared task. In order
to have a similar experimental setup for the two
languages, each corpus was divided in a training
part containing 115, 000 words and a test set with
100, 000 words. The two training corpora were
only used to build the statiscal model of Malt-
Parser. DepPattern, which is a grammar-based
system, does not require any training corpus.

5.1.1 MaltParser’s Optimization
We used MaltParser 1.7.1, equipped with nine dif-
ferent transition-based parsing algorithms. To se-
lect the best algorithm running in linear time (5 out
9: Nivre eager, Nivre standard, Stack proj, pla-
nar, and 2-planar), we validated the target algo-
rithms on the Portuguese test data set. The best
performance was achieved by 2planar (Gómez-
Rodrı́guez and Nivre, 2010), based on arc-eager
algorithm, even if the difference among the five
tested algorithms was not statistically significant.
So, the 2planar strategy was chosen to be com-
pared with DepPattern.

All experiments were performed using a classi-
fier based on support vector machines, as imple-
mented in the LIBSVM package (Chang and Lin,
2001). Finally, we have reused the PoS tags and
feature representation that produced the best re-
sults on Portuguese and Spanish for the MaltParser

5htpp://www.maltparser.org/
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system at CoNLL shared task.

5.1.2 Test data sets
The two main data sets are the following:

bosque-test More than 3,000 sentences with
100M tokens taken from the Portuguese tree-
bank.

ancora-test More than 3,000 sentences with
100M tokens taken from the Spanish tree-
bank.

In order to compare MaltParser with Dep-
Pattern, we must address three problems when
preparing the test data set:

• The tagsets and feature structures required by
DepPattern are not the same as those avail-
able in the treebanks to train MaltParser.

• Each treebank was annotated following dif-
ferent criteria regarding some linguistic phe-
nomena. Besides, there are also differences
of criteria between DepPattern and some de-
pendency solutions found in the treebanks.

• MaltParser can take advantage of the fact that
both training and test sets belong to the same
domain.

DepPattern requires as input PoS tagged text
with the format provided by Tree-Tagger or FreeL-
ing. Ancora 2.0 was annotated with FreeLing
tags, but it is not the case of Bosque 8.0. In or-
der to permit DepPattern to have the same en-
try as MaltParser for the Portuguese corpus, the
PoS tags and features of Bosque 8.0 were con-
verted into FreeLing-based PoS tags. Note that
this PoS tag conversion allows us to apply Malt-
Parser, in combination with FreeLing, to raw text.
First, the PoS tags and feature representation of the
two training sets were transformed into the FreeL-
ing format. Then, the best MaltParser configura-
tion was trained on these two sets and, finally, it
was applied on text previously tagged with FreeL-
ing. The results obtained were very similar (even
slightly better) to those obtained with the PoS tags
and features of the original treebanks. Conversion
scripts are freely available.6

However, the main problem to evaluate DepPat-
tern and to compare it with other systems is to

6http://gramatica.usc.es/˜gamallo/
resources/depcorpus-test.tgz

minimize the noise derived from the choice of dif-
ferent linguistic criteria. In particular, we found in
DepPattern grammars several linguistic decisions
to define dependencies that are very different from
those found in the exploited treebanks. For in-
stance:

• All clause arguments (including the subject)
are dependent on lexicalized verbs, and not
on light or auxiliary verbs.

• All members of a coordination are dependent
on the conjunction and not on the first coor-
dinated member.

DepPattern grammars follow these two crite-
ria. Bosque 8.0 follows neither of the two, and
Ancora 2.0 just follows the first one. So, there
are three different dependency criteria for dealing
with these two linguistic phenomena, which have
large coverage. In addition, there are many other
conflicts to be considered: DepPattern analyzes
the Portuguese possesive expressions in a differ-
ent way as the treebank annotators: in ‘a sua mul-
her’ (his wife), ‘sua’ is dependent of ‘mulher’ and
‘a’ of ‘sua’. However, in the Portuguese treebank,
‘a’ and ‘sua’ both depend of ‘mulher’. There are
also different decisions for the internal dependen-
cies of periphrastic verbal expressions: e.g. ‘tiene
que ir’ (have to go). Particle ‘que’ (to) can be ei-
ther dependent of ‘tiene’ or of ‘ir’. All these dif-
ferences are a serious drawback for comparing our
grammar-based parser against a corpus-driven sys-
tem. To solve the problem, we adapted our generic
Romance Grammar to each treebank. As a result,
we generated both a Portuguese parser adapted to
Bosque and a Spanish parser adapted to Ancora.
Another solution would have been to create con-
versor scripts to automatically modify the tree-
banks. However, as the algorithms required are not
trivial, in particular for complex phenomena such
as coordination, this strategy was not considered.

The third problem is related to the content sim-
ilarity between the training and the test corpora,
which could benefit the data-driven system. Apart
from the two data sets extracted from the tree-
banks, we also built a small gold standard, called
open-test, by manually analyzing sentences ex-
tracted from different sources. The description of
this new test data set is the following:

open-test 42 Portuguese sentences with about 1K
words taken from different sources with a
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Precision Recall F-score
ancora-test (es) 84.6 79.7 82
bosque-test (pt) 84.1 79.2 81.6
open-test (pt) 86.2 76.6 81.1

Table 1: Evaluation of DepPattern (unlabeled de-
pendencies)

variety of genres and domains: Wikipedia
(scientific domain and encyclopedic genre),
a Portuguese novel by Machado Assis (lit-
erature genre), documents of the European
Commission (economy domain).

Both bosque-test and ancora-test consist of sen-
tences belonging to the same journalist genre as
those found in the training corpus. By con-
trast, open-test consists of miscellaneous sen-
tences whose content is distributed through differ-
ent genres and domains. So it can be considered
as an open-content test set. The dataset is freely
available7

5.2 Evaluation

To evaluate the performance of the two systems, it
is necessary to take into account that DepPattern
produces partial parses. This system assigns the
dependency relation ‘0’ (or Root) to all unattached
tokens. So, it is relevant to make use of preci-
sion and recall, instead of accuracy, to measure the
performance of the DepPattern parsers. For Malt-
Parser, precision and recall are the same: these val-
ues correspond to the unlabeled attachment score
(UAS).

Furthermore, as the dependency labels of Dep-
Pattern are very different from those found in the
two treebanks, the evaluation was restricted to un-
labeled dependencies. Parser evaluation is con-
ducted by comparing the dependencies guessed by
the system with manually revised dependencies.
Given these two data sets, precision and recall are
defined as in (Lin, 1998). As ‘0’ values, associated
to unattached tokens, are considered as not found
dependencies, they are relevant to measure recall
in DepPattern. Punctuation marks are ignored in
our evaluation.

Tables 1 and 2 show the results obtained with
DepPattern and MaltParser, respectively, when ap-
plied on the different testing sets. The results ob-
tained by MaltParser represent in fact the UAS

7http://gramatica.usc.es/˜gamallo/
resources/depcorpus-test.tgz

Precision Recall F-score
ancora-test (es) 85 85 85
bosque-test (pt) 88.2 88.2 88.2
open-test (pt) 81.3 81.3 81.3

Table 2: Evaluation of MaltParser (unlabeled de-
pendencies)

of the system, since precision and recall are the
same. MaltParser outperforms DepPattern on both
bosque-test and ancora-test.

The scores we obtained using MaltParser fol-
low the same tendency (even if they are not iden-
tical) of those obtained at the CoNLL 2006 shared
task, where the system achieved 91% accuracy on
Portuguese and 85 on Spanish (for unlabeled at-
tachment scores). In our experiments, MaltParser
obtained 88.2% and 85, respectively. The differ-
ences between the Portuguese scores at CoNLL
and those obtained in our experiment could derive
from small changes in the optimization procedure,
and from the size of the training corpus. Notice
that the performance of MaltParser is quite differ-
ent across our three data sets: 88.2% (bosque) 85
(ancora), and 81.3 (open). By contrast, DepPattern
achieves similar results in all the tests.

In the content-open test, we observe that
whereas MaltParser gets down from 88.2 accuracy
to 81.3, DepPattern keeps a similar score in the
three datasets. It seems that the change of do-
main affects the performance of the data-driven
system. By contrast, the grammar-based parser
keeps a similar performance across domains and
genres. It seems to be also most stable across
different languages: it achieves similar results in
Spanish and Portuguese because, on the one hand,
these languages are very close and, on the other,
DepPattern only use those grammar rules shared
by the two languages. However, it is not easy to
explain why MaltParser behaves in a very differ-
ent way on two languages which are very similar
in terms of grammar.

Finally, we also verified whether the two sys-
tems are complementary. This was made by mea-
suring the statistical correlation between the re-
sults obtained by the two types of parsers. For
this purpose, we analysed the Pearson correlation
between the parses resulting from both DepPat-
ter and MaltParser, in order to verify if they tend
to make the same correct decisions. The Pear-
son coefficient obtained was low, namely 0.14,
with only 69% of shared correct decisions. This
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means that the two systems are complementary
since many of the correct dependencies they guess
are not the same. In sum, they are good in differ-
ent ways. This insight essentially encourages to
the pursuit of hybrid approaches and parser com-
binations, since both strategies seem to be com-
plementary and should work together to produce
more efficient results.

6 Conclusions

The work described in the article can be seen as a
contribution to improve old parsing strategies in-
troduced at the end of the twentieth century, when
most efficient techniques were based on rules/FST
and constructive approaches. In particular, we de-
scribed a grammar-driven parser based on FST,
called compression parsing, which takes into ac-
count some elements from deterministic and incre-
mental dependency parsing, namely Arc and Re-
duce transitions. This compression method, im-
plemented in DepPattern, was compared with a
data-driven, transition-based system: MaltParser.

The cost and effort of developing compression
parsers for several languages is not very high,
since they can achieve reasonable performance us-
ing just very simple, multilingual, and general-
purpose grammars. In this article, we have also
introduced a simple methodology to write multi-
lingual and general-purpose grammars.

In future work, it would be interesting to com-
pare a variety of grammar-driven systems by mea-
suring, not only their performance, but also the
complexity of the underlying grammar: number
of rules, size (in bytes) of the source files, etc.
It should also be important to quantify and com-
pare the cost and effort of both writing grammars
and building treebanks. Moreover, to comple-
ment quantitative evaluation, it will be necessary
to define objective protocols to compare parsers
on the basis on qualitative evaluation (Lloberes et
al., 2014).

Finally, we claim that FST-based parsing tech-
niques simulate how we solve problems quickly,
by taking first easy decisions which, in turn, make
it easier to solve further complex tasks. How-
ever, these parsing techniques are far from simu-
lating two other interesting cognitive operations:
first, how grammars are learnt and, second, how
sentences are processed. Data-driven approaches
can be seen as a good approximation to the way
humans learn grammars, while incremental left-

to-right parsing can be seen as a simulation of
how humans process and understand input sen-
tences. Here, a question arises: would it be pos-
sible to define a method taking advantage of all
those parsing strategies? In other words, could be
it possible to model a strategy that learns gram-
mar rules from data, orders them as cascades of
progressively more complex transducers, and ap-
plies them to sentences in an incremental way? A
method provided with these three ‘human prop-
erties’ would be closer to the canonical systems
in Artificial Intelligence, since the main objective
would be, not only to produce parse trees, but also
to simulate how humans understand sentences.
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Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL ’10, pages 1492–1501, Stroudsburg, PA,
USA.
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Edgar González. 2014. Partes. test suite for pars-
ing evaluation. Procesamiento del Lenguaje Natu-
ral, 53:87–94.
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