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Abstract

The CKY algorithm is an important com-
ponent in many natural language parsers.
We propose a novel type of constraint for
context-free parsing called independence
constraints. Based on the concept of in-
dependence between words, we show how
these constraints can be used to reduce the
work done in the CKY algorithm. We
demonstrate a classifier which can be used
to identify boundaries between indepen-
dent words in a sentence using only sur-
face features, and show that it can be used
to speed up a CKY parser. We investigate
the trade-off between speed and accuracy,
and indicate directions for improvement.

1 Introduction

The CKY algorithm is an O
(|G|n3

)
dynamic pro-

gramming algorithm for finding all of the possi-
ble derivations of a sentence in a context-free lan-
guage. Its complexity depends on both the sen-
tence length n and the size of the grammar |G|.
Methods for improving parsing accuracy typically
increase the size of the grammar (Klein and Man-
ning, 2003; Petrov and Klein, 2007) or even the
exponent of n (Eisner and Satta, 1999). More
powerful “deep” grammar formalisms multiply
the computational complexity even more (Banga-
lore and Joshi, 1999).

A common technique for speeding up such
parsers is coarse-to-fine parsing, where input
is first parsed using a much simpler (and thus
smaller) grammar, and the content of the chart
is then used to constrain the search over the fi-
nal grammar (Torisawa et al., 2000; Charniak and
Johnson, 2005; Petrov and Klein, 2007). Even
with a much smaller grammar, the CKY algorithm
may be expensive—Roark et al. (2012) report that
the initial CKY step in the Berkeley Parser takes
half of the total parse time.

S

NP

DT

0 This 1

VP

VB

is 2

NP

DT

an 3

NN

example 4

.

. 5

Figure 1: In this tree ‘This’ and ‘is’ are indepen-
dent, while ‘is’ and ‘an’ are not.

Other techniques can be used to prune cells
in the chart. Roark et al. (2012) use a finite-
state model to label words that do/don’t begin/end
spans, and skip cells that don’t satisfy the labels.
Bodenstab et al. (2011) directly apply a clas-
sifier to each cell to decide how many spans to
keep. Both approaches reduce the work done by
the parser while preserving accuracy.

We propose a novel type of top-down constraint
for a CFG parser that we call independence con-
straints, described in Section 2. In Section 3 we
show how the CKY algorithm can be easily modi-
fied to accommodate these constraints, and in Sec-
tion 4 we describe a classifier which can provide
the constraints to a parser. We integrate the con-
straints into the Stanford Parser CKY implemen-
tation and show the results in Section 5.

2 Independence Constraints

We propose a concept we call independence.
Given a sentence s = w1w2 . . . wn and a context-
free derivation (parse tree) t of s, words wi and
wi+1 are independent if every node in t that dom-
inates both wi and wi+1 also dominates w1 and
wn. Furthermore, if wi and wi+1 are independent,
then ∀j, k s.t. j ≤ i and k > i, wj and wk are
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independent. Less formally, if the children of the
top node of a parse tree were split into separate
subtrees, two words are independent if they would
end up in different subtrees.

An example is shown in Figure 1. Here, ‘This’
and ‘is’ are independent, as are ‘example’ and ‘.’.
The independent spans are (‘This’), (‘is’, ‘an’, ‘ex-
ample’), and (‘.’), with boundaries 1 and 4. The in-
dependent spans and independent span boundaries
can be derived straightforwardly from the defini-
tion of independent words: the locations between
consecutive words which are independent are the
independent span boundaries, and the independent
spans are simply the spans in between consecutive
boundaries.

3 Modifying The CKY Algorithm With
Independence Constraints

Conceptually, if a CKY parser knows the locations
of the independent span boundaries for a sentence,
it can perform the normal CKY algorithm for each
independent span separately, and simply join the
spans at the top of the tree to finish the parse,
thereby avoiding work which would otherwise be
done while still obtaining the desired 1-best parse.
Two issues make the task more complicated than
this.

The first complication is that if we assume that
the independent boundaries will be identified au-
tomatically, we must allow for errors. If a loca-
tion which is not an independent span boundary is
given as one, the parser will make an error it would
not have otherwise. On the other hand, if a loca-
tion which is an independent span boundary is not
marked as such, the parser may account for this at
the cost of not achieving the minimum computa-
tion possible. By allowing for this second type of
error, the algorithm is made more robust, and al-
lows the independent boundary identification step
to prioritize precision over recall to lessen negative
impact on the parser’s accuracy.

The second issue is caused by the binarization
of the context-free grammar used in the CKY al-
gorithm. Because the CKY algorithm requires a
binary grammar, any rules in the original gram-
mar that have more than two symbols on the right-
hand side must be converted into a sequence of bi-
nary rules. The extra rules created in this process
are called incomplete1 rules. The topmost span in

1E.g., if a rule A → BCD becomes @BC → BC and
A → @BCD, then the former is incomplete and the latter is

Figure 2: Example of a CKY chart with indepen-
dence constraints. In the gray cells the modified
algorithm will only loop over incomplete rules.

particular will usually need to be constructed in
several steps, applying multiple incomplete rules
before creating a complete span. If the grammar
rules are always binarized from the left (right),
then only cells on the left (right) edge of the chart
can affect the top span; however, the grammar
used in our parser is binarized “head-outward”
(Klein and Manning, 2003), which means that po-
tentially any cell in the chart can be used to create
the top span.

The combination of these two issues means that
in order to correctly parse a sentence when an in-
dependent span boundary is missing from the in-
put the modified CKY algorithm must process in-
complete rules even at positions in the chart that
cross a boundary. Thus in the modified algorithm,
cells which do not cross an independent bound-
ary are processed normally, and in cells which do
cross a boundary the algorithm will avoid loop-
ing over complete binary rules.2 Figure 2 shows
an example CKY chart where boundary-crossing
cells are colored gray.

3.1 How much work can we expect to save?

The core of the CKY algorithm is shown in Al-
gorithm 1. For our purposes, we can consider the
amount of work done in the CKY algorithm to be
the number of binary edges visited in the inner
loop (lines 4-10). For each cell the algorithm it-
erates over the binary rules in the grammar, calcu-
lating the probability of the left-hand-side at each
split point. The number of these binary edges is

complete.
2While boundary-crossing cells depend on non-crossing

cells, the reverse is not the case; thus the non-crossing cells
can all be processed before the crossing cells, or the cells can
be looped over in the regular order, with a check inside the
loop. While this may have implications for e.g. paralleliza-
tion, we do not explore this idea further here.
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1 for 1 ≤ i ≤ n do
2 Ti,i+1 ← {A|A→ a ∈ G ∧ wi = a}
3 end
4 for 2 ≤ j ≤ n do
5 for 1 ≤ i ≤ n− j + 1 do
6 for i < k < i + j do
7 Ti,i+j ← {A|A→ BC ∈

G ∧B ∈ Ti,k ∧ C ∈ Tk,i+j}
8 end
9 end

10 end
Algorithm 1: The CKY algorithm. Ti,j is the
cell corresponding to words wi . . . wj−1.

|G|
[
n3

6
− n

6

]
(1)

The amount of work saved depends on the num-
ber and locations of the independent span bound-
aries, as well as the proportion of complete rules
in the grammar, denoted |Gcomp|

|G| . We can consider
two idealized scenarios: a) one boundary at n

K ,
and b) K − 1 boundaries at n

K , 2n
K , . . . , (K−1)n

K ,
where K is an integer 1 < K < n.

For the first case, the ratio of work saved ap-
proaches

|Gcomp|
|G|

[
3
K
− 3

K2

]
(2)

as n grows. This limit converges quickly for
n ≥ 10. If we approximate |Gcomp|/|G| as 0.5
(for the grammar used by the parser in Section 5, it
is ≈ .54), then for K = 2, 3, 4, . . . , the values are
3
8 , 1

3 , 3
32 , . . . Intuitively, for one boundary, the best

location is exactly in the center of the sentence,
and the upper limit on how much work is saved is
about 37%.

For the case of K−1 boundaries equally spaced,
the ratio is

|Gcomp|
|G|

K2 − 1
K2

(3)

The values for K = 2, 3, 4, . . . are 3
8 , 4

9 , 15
32 , . . .

Clearly, the smaller pieces a sentence can be di-
vided into the less work the parser will do; how-
ever, realistically most sentences will not have a
large number of independent spans, and they will
not be equal in length. We might take K = 3 as
best-case estimate, giving us about 44%. Thus we
can guess that a parser will be able to save around

Local Features
tk−1 tk
tk−2, tk−1 tk, tk+1

tk−3, tk−2, tk−1 tk, tk+1, tk+2

Global Features
tli 1 ≤ i < k − 1
tli, t

l
i+1 1 ≤ i < k − 2

tli, t
l
i+1, t

l
i+2 1 ≤ i < k − 3

tli k ≤ i < n− 1
tli, t

l
i+1 k ≤ i < n− 2

tli, t
l
i+1, t

l
i+2 k ≤ i < n− 3

Table 1: Feature templates. k is the boundary po-
sition, tk is the k th POS tag (level 0), and tli is the
i th POS tag in the l-level POS tag sequence.

35-45% of the work it does in the CKY algorithm
loop by using independence constraints.

The derivations of Equations 1-3 are shown in
Appendix A.

4 Classifying Independent Span
Boundaries

In order to use independence constraints in a
parser, we need to be able to identify boundaries
between independent words in a sentence using
only surface features (words and part-of-speech
tags). We created a binary classifier which, given a
POS-tagged sentence and a position between two
words, decides whether those two words are inde-
pendent or not. Our classifier currently uses only
POS tags as features. We used opal (Yoshinaga
and Kitsuregawa, 2010), a tool for fast online clas-
sification, to train and test the models, training
on sentences from Penn Treebank section 02-21
and testing on section 22. We set opal to use the
passive-aggressive perceptron update, and output
probabilities in order to use a threshold to trade
off precision and recall.

4.1 Features

We use only part-of-speech tags to create features
for the classifier (adding lexical or other features
is left to future work). The property of indepen-
dence between two words is inherently global, as
it can be affected by structure arbitrarily far away.
Thus we have both local and global features. The
global features are furthermore distinguished by
POS level, explained in detail in the next section.
The specific feature templates are shown in Ta-
ble 1.
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Features #feats Acc Prec Rec F1 F0.5 TP FP FN TN
p 37001 93.71 80.73 70.49 75.27 78.45 3679 878 1540 32320
P0 33167 87.16 51.69 83.98 63.99 55.99 4383 4097 836 29101
p,P0 70168 95.21 87.38 75.65 81.09 84.75 3948 570 1271 32628
p,P1 37055 94.81 78.38 85.38 81.73 79.69 4456 1229 763 31969
p,P2 39336 95.34 84.25 80.76 82.47 83.53 4215 788 1004 32410
p,P3 46861 95.04 89.47 71.95 79.76 85.31 3755 442 1464 32756
p,P0,P1 70222 95.48 88.95 76.16 82.06 86.06 3975 494 1244 32704
p,P0,P2 72503 95.09 88.28 73.60 80.27 84.89 3841 510 1378 32688
p,P0,P3 80028 94.84 88.81 70.99 78.91 84.56 3705 467 1514 32731
p,P1,P2 39390 95.27 80.99 85.21 83.04 81.80 4447 1044 772 32154
p,P1,P3

∗ 41553 95.44 89.05 75.74 81.86 86.03 3953 486 1266 32712
p,P0,P1,P2,P3 82417 95.35 86.89 77.49 81.92 84.83 4044 610 1175 32588

Table 2: Results of classifier using different combinations of features. (∗Final feature configuration.)

Lvl0 Lvl1 Lvl2 Lvl3 Lvl0 Lvl1 Lvl2 Lvl3
NN N N N CD X X #
NNP N N N -LRB- X X B
NNPS N N N -RRB- X X B
NNS N N N DT X X D
PRP N N N PDT X X D
VB V V V PRP$ X X D
VBD V V V WP$ X X D
VBG V V V JJ X X J
VBN V V V JJR X X J
VBP V V V JJS X X J
VBZ V V V -RQ- X X Q
, X , , -LQ- X X Q
. X . . RB X X R
: X : : RBR X X R
CC X C C RBS X X R
IN X I I EX X X X
RP X I I FW X X X
TO X T T LS X X X
WDT X W W MD X X X
WP X W W POS X X X
WRB X W W SYM X X X
# X X # UH X X X
$ X X #

Table 3: For each POS level, the original tag is
replaced with the corresponding value.

4.2 POS Level

In previous unpublished work on a similar task, we
found that heuristically transforming the POS tag
sequence to create additional features can be ben-
eficial. We refer to these transformations as POS
levels. In this classifier we implemented three lev-
els, in addition to the original POS tags as level
0.

We show all levels in Table 3. Each level spec-
ifies a value by which each level 0 tag is replaced
during the transformation. The motivation behind
each transformation is roughly as follows: level 1
is meant to capture clause nuclei; level 2 is further
intended to show boundaries between clauses; and
level 3 expands almost all the way back to the orig-
inal tags, but with some distinctions erased, mostly
to reduce the number of features.

4.3 Which Features Are Useful?

In order to find the best configuration of features
for the classifier, and to evaluate the proposed POS
levels, we tested the classifier using several differ-
ent combinations. Selected results are shown in
Table 2. In the "Features" column, p denotes the
local features, and Pl denotes the global features
from POS level l.

There are several things worth noting in these
results. First, neither local nor global features are
sufficient alone; it appears that local features pro-
mote precision, while global features promote re-
call. Second, examining the cases where global
features are limited to a single POS level, it is ap-
parent that each POS level has a different effect on
precision and recall, thus confirming that the clas-
sifier is able to extract different signals from the
different POS levels, as intended. Finally, combin-
ing all POS levels together actually reduces accu-
racy, possibly because the features are highly cor-
related (although see the discussion of the kernel
classifier).

4.4 Results

To avoid degrading the accuracy of the parser as
much as possible, we selected the feature config-
uration based on F0.5 score, a measure which fa-
vors precision over recall. We chose p, P1, P3 over
p, P0, P1 because the former had a slight edge in
precision and fewer features.

More detailed results are shown in Table 4. We
used a threshold on the score output by the classi-
fier to reverse some of the classifier’s decisions in a
post-process step. Although it doesn’t improve on
the classifier in accuracy, the precision thresh-
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Features Threshold Acc Prec Rec F1 F0.5 TP FP FN TN
p,P1,P3 default 95.44 89.05 75.74 81.86 86.03 3953 486 1266 32712
p,P1,P3 precision 94.99 91.65 69.44 79.01 86.14 3624 330 1595 32868
p,P1,P3 max precision 92.10 95.80 43.74 60.06 77.38 2283 100 2936 33098
p,P1,P3 recall 94.28 73.82 89.65 80.97 76.53 4679 1659 540 31539

Table 4: Results of linear classifier using different score thresholds.

Features Threshold Acc Prec Rec F1 F0.5 TP FP FN TN
p,P0,P1,P2,P3 default 97.47 92.17 88.91 90.51 91.50 4640 394 579 32804
p,P0,P1,P2,P3 precision 97.27 92.95 86.43 89.58 91.57 4511 342 708 32856
p,P0,P1,P2,P3 max precision 96.57 94.22 79.63 86.31 90.89 4156 255 1063 32943
p,P0,P1,P2,P3 recall 97.15 88.16 91.32 89.71 88.78 4766 640 453 32558

Table 5: Results of polynomial classifier using different score thresholds.

old did slightly improve in F0.5.

4.5 Efficiency of the Classifier

The efficiency of the classifier is as important as
the accuracy—it doesn’t matter how much time
is saved during parsing if it takes even longer to
run the classifier. opal takes less than half a sec-
ond to run on the instances from section 22; how-
ever, the instances are created by a Python script,
which is not very optimized. This script takes
about 100 seconds to run on the machine described
in Section 5.1. While this time is already less than
the time saved in the parser (see Section 5.2), it
could be significantly reduced by re-implementing
in Java or even C++. Thus the potential gains of-
fered by this approach are not just theoretical.

4.6 Polynomial Kernel

For comparison with the linear classifier, we
trained another classifier using a polynomial ker-
nel (with degree 3) with all the features. The re-
sults are shown in Table 5. The polynomial ker-
nel improves over the linear classifier in accu-
racy by 2%, in precision by 3 points, and in re-
call by just over 13 points. This suggests that
there is a large potential for improving the linear
classifier by adding conjunctive features. Alterna-
tively, there are methods for effectively lineariz-
ing a kernel-based classifier, e.g. (Kudo and Mat-
sumoto, 2003; Isozaki and Kazawa, 2002). Cur-
rently, the polynomial classifier takes over 2 hours
to run on section 22 (training the model took al-
most 4 days).

5 Parsing With Independence
Constraints

In order to demonstrate use of the independent
constraints in a parser, we modified the CKY
parser included in the Stanford Parser distribu-
tion to accept independent span boundaries as con-
straints and to use the modified CKY algorithm
described above. Our modifications are:

• after reading in the grammar, index the in-
complete binary rules

• read in the file containing the boundaries out-
put by the classifier from the previous section

• for each CKY cell, if the cell spans a bound-
ary then loop over just the incomplete binary
rules

• if at the end of the CKY loop a parse was not
successful, then loop again over just the cells
which span a boundary and process all of the
binary rules

• output the total number of times entering the
inner loop as well as the number of times the
parser failed

5.1 Experimental Setup
We used the modified Stanford Parser described
above, with an unlexicalized grammar3 extracted
from the WSJ sections 02-21, and evaluated its
performance on section 22 using output from the
classifier as constraints. For the baseline, the

3The grammar was extracted using the Stanford
Parser with command-line options -acl03pcfg
-noRebinarization -compactGrammar 1
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Parser Time (s) Speedup # Binary Edges F1 Parse Failures
baseline 1558 - 1.75×1010 (100%) 85.85 0
linear 1283 (+100) 1.21× (1.12×) 1.08×1010 (62%) 83.71 (-2.14) 15
poly 1106 (+2h) 1.41× (.19×) 9.74×1009 (56%) 84.85 (-1.00) 6
oracle 1016 1.53× 8.47×1009 (48%) 86.71 (+0.86) 4

Table 6: Results of parsing with independence constraints. Results for both linear and polynomial clas-
sifiers are shown, as well as for the gold independent span boundaries. The times in parentheses are the
classifier run times.

parser was given null constraints. The accuracies
and times shown are those reported by the Stan-
ford Parser.

All experiments were run on a DELL Precision
690, with 8 cores and 32G of RAM. Unless other-
wise noted multiple processes were run in parallel,
and times reported were not averaged over multi-
ple runs. Since we saw significant variation of up
to 10%, the times should be taken with a grain of
salt. The computation done in the CKY algorithm
is measured in the number of binary edges visited
in the inner loop. A binary edge is a tuple of a span
(begin & end), a binary rule A→ BC, and a split
point (the position where B and C meet).

5.2 Results

The results of running the parser on section 22 us-
ing the linear classifier from Section 4.4 are shown
in Table 6. The table shows the total time taken,
the total times entering the inner loop, the F1 and
difference from the baseline, and the number of
times the parse failed using the constraints. The
parser with independence constraints saves 38%
of the computation inside the CKY loop over the
baseline, corresponding to about 20% reduction
in total parse time (12% if the running time of
the classifier is included), at the cost of a 2-point
drop in F-score. Detailed results of further exper-
iments with various thresholds on sentence length
and classifier score are shown in Appendix B.

5.3 Polynomial Kernel

A difference of 2 F1 score is not small, but on the
other hand it is about by how much the unlexi-
calized Stanford Parser trails the Collins parser,
for example. However, as shown above in Sec-
tion 4.6, there is room to improve the linear classi-
fier through conjunctive features. As an indication
of an upper bound of the achievable performance,
we tried using the output of the kernel classifier
in the parser as above, while acknowledging that
at present the time needed to produce the classifier

Parser Time (s) Speedup F1
baseline 1538 85.54
linear 1106 1.39× 83.55 (-1.99)

(+100) (1.28×)
poly 1040 1.48× 84.57 (-0.97)

Table 7: Results of parsing WSJ section 23.

output dwarfs the time needed to actually parse the
test data.

The results of running the parser on section 22
with the polynomial classifier output are shown
with the previous results in Table 6. With the
more accurate classifier, the parser is able to re-
duce the necessary computation even further, by
44%, while losing less accuracy.

5.4 Gold Independent Span Boundaries
For another comparison, we tested the parser using
the gold independent span boundaries. The results
for section 22 are shown in Table 6. The number
of binary edges visited is cut in half, and parsing
accuracy is improved by almost 1 point. It is inter-
esting to note that the parser was unable to parse 4
sentences with the gold constraints (the grammar
only allowed a parse that violated the gold bound-
aries).

5.5 WSJ Section 23
To compare with previous work on parsing using
the Penn Treebank, we show the time and accuracy
for parsing section 23, using both linear and ker-
nel classifier output along with the baseline parser
in Table 7. The times reported are the average
of three runs each. Because there was significant
variation in parse time when multiple processes
were run in parallel, for these results only one pro-
cess was run at a time. The results parallel those
shown on the development data.

As a point of comparison, Roark et al. (2012)
reported speedups of 1.6-2x with no loss of ac-
curacy. These results are not directly comparable
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due to differences in parser (their parsers use beam
search variants of CKY and coarse-to-fine prun-
ing) and grammar (they used the Berkeley latent
variable grammar and a lexicalized grammar).

6 Related Work

There are several strains of research related to
adding constraints to the CKY chart. (Roark et
al., 2012) describes an approach using finite-state
taggers to decide whether each word in a sentence
begins or ends a multiword constituent and has a
unary span or not. They show that their tagger is
able to achieve very high precision, reducing parse
time without negatively affecting accuracy.

(Bodenstab et al., 2011) proposes a classifier
which directly decides for each cell in the chart
how many constituents should be created. Their
parser uses beam search with a FOM and a beam
for each chart cell.

Like these approaches, our method uses a clas-
sifier to avoid doing work in certain chart cells.
While not completely orthogonal, we believe our
independence constraints are complementary. A
single decision by our classifier closes a large
swath of cells based on the global structure, while
their methods make local decision using local in-
formation. The high accuracy of their classifiers
shows the necessity of improving our model.

(Yarmohammadi et al., 2014) proposes a con-
cept of ‘hedge’ parsing, where only spans below
a certain length are allowed, and show how this
reduces the computation done by the CKY al-
gorithm. Their system does not create spans of
length larger than the threshold and thus doesn’t
follow the original treebank annotation, while our
approach is able to return the original gold parse
tree, provided that the classifier does not output
a false positive. Their approach of segmenting a
sentence before parsing is essentially the same as
ours, but they segment based on a maximum span
length and their classifier is based on a finite-state
sequence model.

There is some previous research using clause
boundaries to constrain dependency parsers (Ohno
et al., 2006; Husain et al., 2011; Kim and Lee,
2004). This is more linguistically motivated than
our constraints; indeed, the approaches appear to
rely on processing specific to each language. It
is difficult to compare with these results directly;
however, although only (Ohno et al., 2006) re-
ported parse times, all three papers reported im-

proved accuracy.

7 Conclusions

We have proposed a property of independence be-
tween words in a sentence, and shown how to use
this property to create top-down constraints which
can be used to reduce the computation done by
the CKY algorithm. We demonstrated two classi-
fiers for identifying boundaries between indepen-
dent words given a sentence with only surface fea-
tures, a linear classifier which is fast but less ac-
curate, and a classifier with a polynomial kernel
which is much more accurate but very slow. We
then showed a significant improvement in speed
over a strong baseline CKY parser by using the
output of these classifiers to create top-down con-
straints at the cost of some accuracy.

Although the loss of accuracy when using the
linear classifier is currently uncomfortably large,
there are several possible avenues for improve-
ment. The performance of the kernel classifier
indicates that there is room for improvement by
manually adding conjunctive features to the linear
classifier or using a method to automatically lin-
earize the model. Features based on words as well
as POS tags may also be beneficial. Changing the
model itself to, e.g., a sequence model might also
help. However, the current approach has several
weaknesses which should be addressed by future
research.

First, the top-down nature of the independence
constraints does not make a natural fit with the
bottom-up CKY algorithm. In particular, the pres-
ence of incomplete rules in the grammar combined
with the bottom-up search means that the parser
still ends up doing some computation to create
spans which violate the constraints, even though
it is prevented from completing such a span.

Second, the pipelined nature of the classifier
means that it only has access to POS tags and
in particular is not able to make use of informa-
tion generated as the parser processes lower-level
spans. Tighter integration of the classifier into the
parser may be beneficial to both.

Third, the current classifier combines instances
from different syntactic structures into a single
model. It is possible that training multiple mod-
els on different types of sentences would result in
a better classifier.
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Appendix A. Derivation of equations in
section 3.1

The amount of computation done in lines 4-10 of
Algorithm 1 can be calculated as follows:

n∑
j=2

n−j+1∑
i=1

i+j−1∑
k=i+1

|G|

=|G|
n∑

j=2
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6
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6
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This is the number of binary edges evaluated
by the CKY algorithm. Using independence con-
straints, the algorithm avoids doing any computa-
tion for complete edges in spans which violate the
constraints. The work saved is thus the number
of complete binary edges in the entire chart mi-
nus the number of complete edges that are actually
processed in cells that satisfy the constraints. For
a single independent boundary at n

K , we get:
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The proportion of work saved relative to the
original algorithm is then

|Gcomp| 3K2−3K
6K3 n3

|G|( 1
6
n3 − 1

6
n)

which depends on n as well as K; however, we
can approximate this as the limit as n goes to in-
finity:

lim
n→∞
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Similarly, the work saved with K evenly-spaced
boundaries is
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and the proportion of the original work saved is
approximately

lim
n→∞
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Appendix B. Detailed parse results

We experimented with a post-processing step to
adjust the recall and precision of the classifier, as
well as adding a threshold on the minimum length
of a sentence to apply constraints to in the parser
(on the hypothesis that longer sentences are likely
to gain a proportionally larger advantage). We
show the detailed results from the parser in Table
8, using both the linear and polynomial classifiers.
Sentences shorter than MinSentLenwere parsed
without constraints.

The results are largely as expected. Sentences
less than 20 words do not affect the results much.
The recall threshold predictably results in a
large loss in classifier precision and thus parsing
accuracy. We note the results in boldface: with a
high precision threshold, the polynomial classifier
is able to reduce the computation in the CKY loop
by 42% while losing less than half a point in F1
score.
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Classifier MinSentLen Constraints Time (s) # Edges F1 Parse Failures
- - baseline 1558 1.75×1010 (100%) 85.85 0
linear 0 default 1283 1.08×1010 (62%) 83.71 (-2.14) 15
linear 0 precision 1143 1.13×1010 (65%) 84.05 (-1.80) 7
linear 0 max precision 1384 1.42×1010 (81%) 85.55 (-0.30) 2
linear 0 recall 1024 7.80×1009 (45%) 78.74 (-7.11) 136
linear 20 default 1126 1.12×1010 (64%) 84.17 (-1.68) 9
linear 20 precision 1313 1.16×1010 (66%) 84.43 (-1.42) 4
linear 20 max precision 1338 1.44×1010 (82%) 85.59 (-0.26) 2
linear 20 recall 1121 8.24×1009 (47%) 80.38 (-5.47) 103
linear 30 default 1312 1.28×1010 (73%) 84.82 (-1.03) 3
linear 30 precision 1279 1.31×1010 (75%) 85.01 (-0.84) 1
linear 30 max precision 1485 1.53×1010 (87%) 85.63 (-0.22) 1
linear 30 recall 1140 1.02×1010 (58%) 82.79 (-3.06) 57
linear 40 default 1476 1.51×1010 (86%) 85.56 (-0.29) 1
linear 40 precision 1390 1.52×1010 (87%) 85.59 (-0.26) 0
linear 40 max precision 1513 1.65×1010 (94%) 85.75 (-0.10) 0
linear 40 recall 1403 1.33×1010 (76%) 84.65 (-1.20) 14
poly 0 default 1106 9.74×1009 (56%) 84.85 (-1.00) 6
poly 0 precision 1118 9.84×1009 (56%) 85.12 (-0.73) 4
poly 0 max precision 1137 1.02×1010 (58%) 85.42 (-0.43) 2
poly 0 recall 1050 9.25×1009 (53%) 84.05 (-1.80) 33
poly 20 default 1070 1.02×1010 (58%) 85.08 (-0.77) 5
poly 20 precision 1172 1.03×1010 (59%) 85.25 (-0.60) 3
poly 20 max precision 1092 1.06×1010 (61%) 85.41 (-0.44) 2
poly 20 recall 1088 9.68×1009 (55%) 84.75 (-1.10) 7
poly 30 default 1222 1.20×1010 (69%) 85.57 (-0.28) 1
poly 30 precision 1267 1.20×1010 (69%) 85.62 (-0.23) 1
poly 30 max precision 1238 1.23×1010 (70%) 85.65 (-0.20) 1
poly 30 recall 1238 1.16×1010 (66%) 85.44 (-0.41) 2
poly 40 default 1465 1.49×1010 (85%) 85.72 (-0.13) 0
poly 40 precision 1353 1.49×1010 (85%) 85.75 (-0.10) 0
poly 40 max precision 1570 1.50×1010 (86%) 85.78 (-0.07) 0
poly 40 recall 1489 1.47×1010 (84%) 85.69 (-0.16) 1

Table 8: Results from parsing section 22 using constraints from both linear and polynomial classifiers,
varying minimum sentence length and classifier probability threshold.
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