
Proceedings of the 14th International Conference on Parsing Technologies, pages 92–96,
Bilbao, Spain; July 22–24, 2015. c©2015 Association for Computational Linguistics

Maximising spanning subtree scores for parsing tree approximations of
semantic dependency digraphs

Natalie Schluter
Center for Language Technology

University of Copenhagen
natschluter@hum.ku.dk

Abstract

We present a method for finding the best
tree approximation parse of a dependency
digraph for a given sentence, with respect
to a dataset of semantic digraphs as a com-
putationally efficient and accurate alterna-
tive to DAG parsing. We present a training
algorithm that learns the spanning subtree
parses with the highest scores with respect
to the data, and consider the output of this
algorithm a description of the best tree
approximations for digraphs of sentences
from similar data. With the results from
this approach, we acquire some important
insights on the limits of solely data-driven
tree approximation approaches to seman-
tic dependency DAG parsing, and their
rule-based, pre-processed tree approxima-
tion counterparts.

1 Introduction

In semantic dependency parsing, the aim is to
recover sentence-internal predicate argument re-
lationships; structurally speaking, given a sen-
tence, the objective is to recover the possibly dis-
connected digraph (which represents the semantic
structure of the sentence). The sparsity of digraph
representations of some semantic dependency di-
graph datasets (i.e., the fact that the number of
edges is linear in the number of vertices), as well
as the well-performing first attempts at such tree
approximations from Schluter et al. (2014), Agić
and Koller (2014), and Agić et al. (2015) sug-
gest that tree approximations for digraph seman-
tic dependency structures are a relevant avenue to
the development if not the sidestepping of some
computationally harder models of directed acyclic

graph (DAG) and digraph decoding (McDonald
and Pereira, 2006; Martins and Almeida, 2014).

In this paper, we present a simple adaptation
of the passive-aggressive perceptron training algo-
rithm used in (Crammer et al., 2006; Björkelund et
al., 2009) to the task of finding the parameters that
describe the highest scoring tree approximations
of semantic dependency digraphs, given a training
corpus. The key change in the algorithm is to it-
eratively minimise the error in precision between
output spanning subtrees and corresponding train-
ing digraph instances, allowing therefore the algo-
rithm to choose best spanning subtree approxima-
tions with respect to the dataset, rather than form-
ing tree approximations as a pre-processing step
to training as was done by Schluter et al. (2014),
Agić and Koller (2014), and Agić et al. (2015).

Because we directly adapt the software used by
(Björkelund et al., 2009), without increasing any
computational complexity, the approach also ben-
efits from a syntactic parsing algorithm optimised
both practically and theoretically for efficiency,
robustness, and accuracy. Supposing these natu-
ral tree patterns exist in the data, the approach in-
tuitively is very attractive, since it lets natural pat-
terns of the data dictate tree approximations, rather
than depending on either the previous knowledge
of parser behaviour or anecdotal linguistic knowl-
edge. Moreover, the approach promises some in-
sight into the nature of the patterns inherent in
the semantic digraph data, reflecting, namely, the
question of the existence of unique most likely
sub-tree structures in the data and why rule-based
pre-processing tree approximations work so well
for semantic digraph dependency parsing.

92

2 Previous work and motivation

In the context of the SemEval task 8 on Broad
Coverage Semantic Dependency Parsing, Schluter
et al. (2014) and Agić and Koller (2014) introduce
a tree approximation definition for the semantic
dependency parsing task, including a number of
different approaches. Both present similar prun-
ing pre-processing steps as a potential approach.
Additionally, Schluter et al. (2014) present a pack-
ing pre-processing step as a further approach. We
discuss the approaches presented in (Schluter et
al., 2014), because we adopt the parts of their pre-
processing which do not remove any edges. Their
approaches also outperformed that of (Agić and
Koller, 2014) in the SemEval task.

In (Schluter et al., 2014), all digraphs were first
transformed into rooted DAGs (that is, with a sin-
gle root, from which all nodes are reachable), fol-
lowing which the authors experimented with creat-
ing the tree approximations for each of the training
set digraphs individually as follows.

In their first approach, (Schluter et al., 2014)
consider underlying undirected cycles of digraphs
and pruned these digraphs by removing from the
cycle the longest edge from the node with the
fewest predecessors (lowest depth) in the digraph.
In their second approach, they attempt to store
almost all digraph information into the graph,
by packing parallel path information, structurally
corresponding to long-distance dependency re-
entrancies, into a single complex edge label; these
removed edges can then recovered as a post-
processing step, by “expanding” the complex edge
label. However, not all parallel path sets between
two nodes include a path of length 1 edge; for
these, an heuristic approach was taken whereby
only the edge of shortest span from among all of
the last edges of these paths was retained.

The result from both these approaches were
trees that were used as tree approximations to
training set digraphs, individually. The packing
approach suffered from complex edge labels with
low frequency in the training set, and which could
not always be resolved fully in post-processing at
test-time; as a result, this approach had relatively
stable precision and recall (with respect to each
other), but with lower precision than the pruning
approach, which achieved high precision, but low
recall. Upon carrying out this research, we posited
that the lower recall of the pruning approach was
caused by not accounting for the tree approxima-

tions with respect to the entire dataset, rather only
with respect to a structural heuristic on individual
digraphs of the training set.

The motivation for this work is therefore an at-
tempt to attain similar precision to the pruning ap-
proach in (Schluter et al., 2014), with similar re-
call to the same authors’ packing approach, by
only pruning edges, but leaving it to the parser
to determine, given the training data, which edges
should be pruned. The sparsity of the graphs in all
three datasets (Cf. Section 4) as well as the dispar-
ity in precision and recall between the approaches
in (Schluter et al., 2014) (Cf. Section 5) suggests
that there is room for improvement in tree approx-
imation approaches to semantic dependency pars-
ing for these particular datasets.

Further improvements to the pre-processing ap-
proach to tree approximation parsing of semantic
digraphs has been obtained by Agić et al. (2015).
This approach was guided by both the ideas of
pruning and packing: they first present a study
on the types of re-entrancies displayed by the di-
graph data, to discover that many of them are
predictable. Such re-entrancy information needs
not be packed into other labels as it is done by
(Schluter et al., 2014), as this pruning is nearly
100% reversible. These observations provide fur-
ther insight into the performance of the approach
presented here, given its behaviour as well as
the dataset used. Indeed, persistent non-tree-like
structures in the training data will inhibit training
algorithms from aggressively deciding on a best
tree-like substructure (Cf. Section 5).

The (non-ensemble approach) state of the art on
the datasets we experiment on is achieved using a
second-order model with approximate digraph de-
coding via alternate directions dual decomposition
(Martins and Almeida, 2014; Martins et al., 2011).

3 Finding the best maximum spanning
subtree approximation

As an approximate approach to finding the best
scoring semantic dependency parse digraph given
a training corpus of such digraphs, we present an
approach to finding the best scoring semantic de-
pendency spanning subtree parse, given a training
corpus of semantic dependency digraphs. That is,
we adopt a second-order approach to the problem
of finding the best semantic dependency parse di-
graph. Our original objective was to find

D∗ = arg max
D∈D(x)

φD(w, x,D),

93

where w is a weight vector, D is a dependency di-
graph and x is the input sentence. The best depen-
dency digraph is the output according to a scoring
function φD—a sum over sub-factors representing
some second-order description of the dependency
structure. The parameter w is obtained by some
algorithm that minimises the error defined by a
distance function between digraph parse D′i and
training digraph Di.

Our aim here is to approximate D∗ by a tree
T ∗, so our objective now concerns possible trees
T ∈ T ; we want to find the tree that maximises
the scoring function φT for trees,

T ∗ = arg max
T∈T (x)

φT (w, x, T),

where φT is composed of second-order factors de-
scribing (and, practically speaking, coincides pre-
cisely with the scoring function φ from (Carreras,
2007)). However, we obtain the parameter w by
training on a dataset of dependency digraphs and
carefully minimising the error between these two
very different types of structures, since a tree can
never contain more than |x| − 1 edges and there is
therefore a risk of non-convergence if the wrong
error measure is chosen.

We directly adapt the mate parser (Bohnet,
2010) for this modified task. To do this, we simply
adjust the unregularised passive-aggressive per-
ceptron algorithm implementation used in train-
ing by the parser, the averaged-perceptron version
of which was presented first in (Carreras, 2007),
in three key ways. First, edge features are taken
from entire digraphs, rather than just trees. These
features, unlike in (Martins and Almeida, 2014),
do not account for multiple heads in digraphs, be-
cause we need to use the scoring function on trees
rather than digraphs. Secondly, the error is min-
imised between the original graphs and the max-
imum spanning subtree implied by w. In doing
so, the algorithm finds weight vectors that min-
imise the error of the tree approximation of the
graph. Finally, we changed the error function
from (1−recall) in the original version of the mate
parser to (1−precision) to avoid punishing trees
for not being digraphs in the updates, and thereby
prevent non-convergence.

Algorithm 1 shows the adaptation, where an in-
stance is a pair (xj , Dj) of xj , a sentence, and Dj ,
a dependency digraph. The algorithm begins by
initialising the weight vector w to the zero vec-
tor. It then extracts the features from the train-

ing set, Z : {(xj , Dj)}Nj=1 and stores them on the
hard disk, after which training is carried out using
the passive-aggressive algorithm. Iteratively, it (1)
reads in the features and calculates possible edge
weights, (2) decodes using the second order ex-
tension of the Eisner algorithm for projective de-
pendency trees (Eisner, 1996) presented in (Car-
reras, 2007), and then (3) tries to find a higher
scoring non-projective tree by exchanging edges
out of the output from (2) using the edge weights
in (1). Details for the original algorithm can be
found (Bohnet, 2010); however, note that in Algo-
rithm 1, T̂ is a dependency tree and Dj is a depen-
dency digraph. Also, error is measured in terms of
precision (for Lines 13 and 14).

Algorithm 1 Training (Z)
// whereZ = {(xj , yj)}Nj=1 is the digraph training
data
1: w ← 0
2: for j ← 1 toN do
3: extract-and-store-features(xj)
4: end for
5: for i← 1 to I do
6: // where I is the number of iterations
7: for j ← 1 toN do
8: k ← (i− 1) ∗N + j
9: γ ← I ×N − k + 2 // passive-aggressive weight
10: A←read-features-and-calc-arrays(j,w)
11: T̂ ←predict-projective-parse-tree(A)
12: T̂ ←non-projective-approx(T̂ , A)
13: e← ∆(T̂ , Dj) // the error
14: w ← update(e, γ)
15: end for
16: end for

4 The graphs and their tree-likeness

Organisers for the SemEval task 8 on Broad
Coverage Semantic Dependency Parsing (SDP)
(Oepen et al., 2014) proposed three different an-
notations for evaluation of the task, resulting in
the three semantically annotated datasets, over the
same text—that is, the Wall Street Journal section
of the English Penn Treebank. As in the original
task, we refer to the datasets as

DM: a transformation of Flickinger et al. (2012)’s
DeepBank by Miyao et al. (2014)’s system.

PAS: the predicate-argument structures of the WSJ
portion of the HPSG treebank.

PCEDT: the tectogrammatical layer of annotations
from the Prague Czech-English Dependency Bank
(Hajič et al., 2012).

Graph sparsity and treewidth. We note that
the average number of edges of a spanning subtree
for training set graphs is 22.93. On the other hand,
after the aforementioned pre-processing, the aver-
age number of edges in the DM-annotated tree-
bank is 23.77, PAS-annotated treebank is 24.32,

94

and for PCEDT it is 23.33. By removing edges
from digraphs to make spanning subtrees, we thus
lose at most 5.7% edges, showing the general spar-
sity of digraphs in these datasets and further show-
ing the relevance of the tree approximation ap-
proach. Agić et al. (2015) calculate the average
treewidth of the underlying undirected graphs of
SDP digraphs, to be 1.3 for DM, 1.71 for PAS,
and 1.45, for PCEDT, indicating that DAG pars-
ing algorithms heavily based on the more efficient
tree parsing algorithms are a promising avenue for
further research.

4.1 Pre-processing the graph data

In general, the digraphs amongst three datasets are
disconnected. In order for the solution of finding a
most likely tree approximation to make any sense,
therefore, we transformed digraphs similarly to
the approach taken in (Schluter et al., 2014): (1)
a dummy root node is placed to the left of the in-
put, (2) the top node is connected (as a child) to
the dummy root node, (3) the node of highest de-
gree (=indegree + outdegree) for non-singleton
remaining weakly connected components is at-
tached as a child of the dummy root node, and
(4) all singleton weakly connected components are
connected a child of the node to the left.

In most digraphs of of the three datasets, there
is not any existing spanning subtree. Therefore,
we carry out flow reversal for rooted DAG con-
struction as a further pre-processing step. As in
(Schluter et al., 2014), we created rooted DAGs
during a breadth-first search of the digraph, re-
versing the direction of edges when necessary, and
marking the label of reversed edges (for reversibil-
ity of the transformation). So, our label sets for
the three datasets may at most double, which ad-
mittedly increases (by a factor of 2) instance size
and therefore running time.

5 Experiments and error analysis
For our experiments, we used precisely the same
data split as in SemEval 2014’s task 8 and the
original mate parser default parameters for the
modified version, with the exception that we in-
creased the number of iterations to 15. The re-
sults are given in Table 1. Compared with the pre-
processing tree approximations from (Schluter et
al., 2014), the subgraph score maximisation ap-
proach performs quite poorly. The approach suc-
cessfully closes the gap between precision and re-
call, when compared to the pruning approach in

(Schluter et al., 2014), but both precision and re-
call are relatively low.

data LP LR LF UP UR UF
pack DM 84.8 84.0 84.4 86.8 86.0 86.4

PAS 87.7 88.4 88.0 89.1 89.8 89.4
PCEDT 71.2 68.6 69.9 84.8 81.8 83.2

prune DM 87.2 80.2 83.6 89.2 82.0 85.4
PAS 91.3 81.3 86.0 92.6 82.5 87.3
PCEDT 72.8 62.8 67.4 88.2 76.1 81.7

this DM 67.2 69.7 68.4 69.8 72.4 71.1
paper PAS 83.1 77.5 80.2 86.4 80.7 83.6

PCEDT 62.3 58.5 60.4 79.0 74.3 76.6

Table 1: Precision, recall and f-score over the
three datasets (pack and prune results are from
(Schluter et al., 2014)) .

An analysis of the pre-processing (Schluter et
al., 2014; Agić and Koller, 2014; Agić et al., 2015)
versus statistical (this paper) approaches may pro-
vide some insight as to why. Especially Agić et
al. (2015) show that many non-tree-like structures
of the SDP data are predictable; that is, we can
turn them into trees by consistently pruning edges
and “understand” that they are in fact more com-
plex than trees, without encoding this information
into the resulting pruned tree in any way. In a
post-processing step, these edges are simply re-
introduced using some rules. These are edges for
which it would be difficult for the passive aggres-
sive algorithm that we employ to choose between,
since there are virtually no structures that require
only a subset of them. As a result, making a strict
rule about what tree structures should be predicted
as a pre-processing step results in better tree ap-
proximations than the purely data-driven approach
presented here.

6 Concluding remarks
We have presented an approach to semantic de-
pendency parsing that takes advantage of and sub-
tly adapts an efficient and highly optimised syn-
tactic dependency tree parsing system to the job
of finding best tree approximations of digraphs.
Intuitively, the approach is attractive, because it
requires the data to choose digraph approxima-
tions, rather than using any anecdotal linguistic
knowledge to hard-code a pre-processor to build
the approximations before training. However,
the approach fails to outperform rule-based pre-
processing for tree approximations, seemingly be-
cause there is often no clear statistical preference
among various subtrees of DAGs in the SDP data.
The performance of a combination of the data-
driven and rule-based preprocessing methods re-
mains a viable open question.

95

References
Željko Agić and Alexander Koller. 2014. Pots-

dam: Semantic dependency parsing by bidirectional
graph-tree transformations and syntactic parsing. In
Proc of Semeval, Dublin, Ireland.

Željko Agić, Alexander Koller, and Stephan Oepen.
2015. Semantic dependency graph parsing using
tree approximations. In Proc of IWCS, London, UK.

Anders Björkelund, Love Hafdell, and Pierre Nugues.
2009. Multilingual semantic role labeling. In
CoNLL.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of COLING, pages 89–97.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proc. of
CoNLL Shared Task Session of EMNLP-CoNLL,
pages 957–961, Prague, Czech Republic.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. JMLR, 7:551–585.

Jason Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Pro-
ceedings of COLING-96, pages 340–345, Copen-
hagen, Denmark.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deep-bank. a dynamically annotated treebank of the
wall street journal. In Proc. of TLT, pages 85–96,
Lisbon, Portugal.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, ..., and Zdeněk
Žaborkrtský. 2012. Announcing prague czech-
english dependency treebank 2.0. In Proc. of LREC,
pages 3153–3160, Istanbul, Turkey.

André F. T. Martins and Mariana S. C. Almeida. 2014.
Priberam: A turbo semantic parser with second or-
der features. In Proc of SemEval, Dublin, Ireland.

André Martins, Noah A. Smith, M. A. T. Figueiredo,
and P. M. Q. Aguiar. 2011. Dual decomposition
with many overlapping components. In Proceedings
of EMNLP.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proc. of EACL, pages 81–88.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proc. of SemEval.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proc. of SemEval, pages 63–71, Dublin, Ireland.

Natalie Schluter, Anders Søgaard, Jakob Elming, Dirk
Hovy, Barbara Plank, Hector Martinez Alonso, An-
ders Johanssen, and Sigrid Klerke. 2014. Copen-
hagen: Tree approximations of semantic parsing
problems. In Proceedings of SemEval, Dublin, Ire-
land.

96

