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Preface

Welcome to the 14th International Conference on Parsing Technologies (IWPT 2015), in the beautiful
city of Bilbao! The conference is the 14th in the series of biennial meetings on parsing technologies
organised by SIGPARSE, the Special Interest Group on Natural Language Parsing of the Association for
Computational Linguistics (ACL). This year, IWPT is co-located with the 6th Workshop on Statistical
Parsing of Morphologically Rich Languages (SPMRL 2015).

IWPT 2015 received 26 submissions (18 long and 8 short). All papers were reviewed by four members
of the programme committee (see the following pages), and finally ten long and five short papers were
accepted for presentation. The conference has two invited talks, by Slav Petrov (Google) and Mirella
Lapata (University of Edinburgh). There are three social events: a visit to local bars for drinks and
pintxos, a guided visit of the world famous Guggenheim museum, and the conference dinner at the
renowned Etxanobe restaurant. The SPMRL workshop is interleaved with IWPT on Thursday 23rd July,
starting after the morning coffee break.

We are indebted to the reviewers, for in-depth and constructive feedback, to all authors, for their
collaboration in preparing camera-ready manuscrips, and to Murhaf Fares (University of Oslo) for
assistance in compiling the proceedings. We would like to thank the conference sponsors (the University
of the Basque Country, and the Government of the Basque Country) for their generous financial support.
On behalf of the local arrangements committee we wish you a pleasant stay in Bilbao, and we hope you
enjoy the conference.

John Carroll (General Chair),
Koldo Gojenola (Organizing Chair), and
Stephan Oepen (Programme Chair)
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ix



Thursday, July 23

9:20–9:50 Non-Deterministic Oracles for Unrestricted Non-Projective Transition-Based De-
pendency Parsing
Anders Björkelund and Joakim Nivre

9:50–10:10 Enhancing the Inside-Outside Recursive Neural Network Reranker for Dependency
Parsing
Phong Le

10:10–10:30 Maximising Spanning Subtree Scores for Parsing Tree Approximations of Semantic
Dependency Digraphs
Natalie Schluter

Friday, July 24

Large-scale Semantic Parsing as Graph Matching
Mirella Lapata

11:00–11:30 CKY Parsing with Independence Constraints
Joseph Irwin and Yuji Matsumoto

11:30–12:00 Dependency Parsing with Compression Rules
Pablo Gamallo

12:00–12:30 Stacking or Supertagging for Dependency Parsing – What’s the Difference?
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Abstract

This paper presents a successful approach
for domain adaptation of a dependency
parser via self-training. We improve
parsing accuracy for out-of-domain texts
with a self-training approach that uses
confidence-based methods to select ad-
ditional training samples. We compare
two confidence-based methods: The first
method uses the parse score of the em-
ployed parser to measure the confidence
into a parse tree. The second method cal-
culates the score differences between the
best tree and alternative trees. With these
methods, we were able to improve the la-
beled accuracy score by 1.6 percentage
points on texts from a chemical domain
and by 0.6 on average on texts of three
web domains. Our improvements on the
chemical texts of 1.5% UAS is substan-
tially higher than improvements reported
in previous work of 0.5% UAS. For the
three web domains, no positive results for
self-training have been reported before.

1 Introduction

Semi-supervised techniques gain popularity since
they allow the exploitation of unlabeled data and
avoid the high costs for labeling new data, cf.
(Sarkar, 2001; Steedman et al., 2003; McClosky et
al., 2006a; Koo et al., 2008; Søgaard and Rishøj,
2010; Petrov and McDonald, 2012; Chen et al.,
2013). For domain adaptation, semi-supervised
techniques have been applied successfully, cf.
(Reichart and Rappoport, 2007; Petrov and Mc-
Donald, 2012; Pekar et al., 2014). Self-training is
one of these appealing techniques which improves
parsing accuracy by using a parser’s own annota-
tions. In a self-training iteration, a base model is
first trained on annotated corpora, the base model

is then used to annotate unlabeled data, finally
a self-trained model is trained on both manually
and automatically annotated data. This procedure
might be repeated several times.

Self-training has been successfully used for in-
stance in constituency parsing for in-domain and
out-of-domain parsing (McClosky et al., 2006a;
McClosky et al., 2006b; Reichart and Rappoport,
2007; Sagae, 2010). McClosky et al. (2006a) used
self-training for constituency parsing. In their ap-
proaches, self-training was most effective when
the parser is retrained on the combination of the
initial training set and the large unlabeled dataset
generated by both the generative parser and the
reranker. This leads to many subsequent appli-
cations on domain adaptation via self-training for
constituency parsing (McClosky et al., 2006b; Re-
ichart and Rappoport, 2007; Sagae, 2010; Petrov
and McDonald, 2012), while for dependency pars-
ing, self-training was only effective in few cases.
The question why it does not work equally well
for dependency parsing is still a question that has
not been satisfactorily answered. The paper tries
to shed some light on the question under which
circumstances and why self-training is applicable.
More precisely, this paper makes the following
contributions:

1. We present an effective confidence-based
self-training approach.

2. We compare two confidence-based methods
to select training sentences for self-training.

3. We apply our approaches on three web do-
mains as well as on a chemical domain and
we successfully improved the parsing perfor-
mances for all tested domains.

The remainder of this paper is organized as fol-
lows: In Section 2, we give an overview of related
work. In Section 3, we introduce two approaches
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to self-training and apply those on parsing of out-
of-domain data. In Section 4, we describe the
data and the experimental set-up. In Section 5, we
present and discuss the results. Section 6 presents
our conclusions.

2 Related Work

Charniak (1997) applied self-training to PCFG
parsing, but this first attempt to self-training for
parsing failed.

Steedman et al. (2002) implemented self-
training and evaluated it using several different
settings. They parsed 30 sentences per iteration
while the training data contained 10K sentences.
Experiments with multiple iterations showed mod-
erate improvements only which is caused probably
by the small number of additional sentences used
for self-training.

McClosky et al. (2006a) reported strong re-
sults with an improvement of 1.1 F -score us-
ing the Charniak-parser, cf. (Charniak and John-
son, 2005). McClosky et al. (2006b) applied the
method later on out-of-domain texts which show
good accuracy gains too.

Reichart and Rappoport (2007) showed that
self-training can improve the performance of a
constituency parser without a reranker when a
small training set is used.

Sagae (2010) investigated the contribution of
the reranker for a constituency parser. The re-
sults suggest that constituency parsers without a
reranker can achieve significant improvements,
but the results are still higher when a reranker is
used.

In the SANCL 2012 shared task self-training
was used by most of the constituency-based sys-
tems, cf. (Petrov and McDonald, 2012), which in-
cludes the top ranked system, this indicates that
self-training is already an established technique to
improve the accuracy of constituency parsing on
out-of-domain data, cf. (Le Roux et al., 2012).
However, none of the dependency-based systems
used self-training in the SANCL 2012 shared task.

One of the few successful approaches to self-
training for dependency parsing was introduced by
Chen et al. (2008). Chen et al. (2008) improved
the unlabeled attachment score about one percent-
age point for Chinese. Chen et al. (2008) added
parsed sentences that have a high ratio of depen-
dency edges that span only a short distance, i.e.,
the head and dependent are close together. The

rationale for this procedure is the observation that
short dependency edges show a higher accuracy
than longer edges.

Kawahara and Uchimoto (2008) used a sepa-
rately trained binary classifier to select reliable
sentences as additional training data. Their ap-
proach improved the unlabeled accuracy of texts
from a chemical domain by about 0.5%.

Goutam and Ambati (2011) applied a multi-
iteration self-training approach on Hindi to im-
prove parsing accuracy within the training domain.
In each iteration, they add 1,000 additional sen-
tences to a small initial training set of 2,972 sen-
tences, the additional sentences were selected due
to their parse scores. They improved upon the
baseline by up to 0.7% and 0.4% for labeled and
unlabeled attachment scores after 23 self-training
iterations.

Plank (2011) applied self-training with single
and multiple iterations for parsing of Dutch us-
ing the Alpino parser (Malouf and Noord, 2004),
which was modified to produce dependency trees.
She found self-training produces only a slight im-
provement in some cases but worsened when more
unlabeled data was added.

Plank and Søgaard (2013) used self-training in
conjunction with dependency triplets statistics and
the similarity-based sentence selection for Italian
out-of-domain parsing. They found that the effect
of self-training is unstable and does not lead to an
improvement.

Cerisara (2014) and Björkelund et al. (2014)
applied self-training to dependency parsing on
nine languages. Cerisara (2014) could only re-
port negative results when they apply the self-
training approach for dependency parsing. Simi-
larly, Björkelund et al. (2014) could observe only
on Swedish a positive effect.

For our approaches, confidence-based methods
have been shown to be crucial such as by Dredze
et al. (2008) and Crammer et al. (2009). These
methods provide estimations on the quality of the
predictions.

Mejer and Crammer (2012) used confidence-
based methods to measure the prediction quality
of a dependency parser. The confidence scores
generated by these methods are correlated with the
prediction accuracy of the dependency parser, i.e.
higher confidence is correlated with high accuracy
scores.
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Figure 1: The graph shows the outcome of an experiment on the development set when the sentences
were sorted due to the confidence score and the accuracy of the top n percent is computed. The y-axis
shows the accuracy and the x-axis the percentage of the number of sentences that were considered. Each
curve represents a selection method.

3 Self-training

The hypotheses for our experiments is that the se-
lection of high-quality dependency trees is a cru-
cial precondition for the successful application of
self-training to dependency parsing. Therefore,
we explore two confidence-based methods to se-
lect such dependency trees from newly parsed sen-
tences. Our self-training approach consists of the
following steps:

1. A parser is trained on the source domain
training set in order to generate a base model.

2. We analyze a large number of unlabeled sen-
tences from a target domain with the base
model.

3. We build a new training set consisting of the
source domain corpus and parsed sentences
that have a high confidence score.

4. We retrain the parser on the new training set
in order to produce a self-trained model.

5. Finally, we use the self-trained model to
parse the target domain test set.

We test two methods to gain confidence scores
for a dependency tree. The first method uses

the parse scores, which is based on the observa-
tion that a higher parse score is correlated with a
higher parsing quality. The second method uses
the method of Mejer and Crammer (2012) to com-
pute the Delta score. Mejer and Crammer (2012)
compute a confidence score for each edge. The al-
gorithm attaches each edge to an alternative head.
The Delta is the score difference between the orig-
inal dependency tree and the tree with the changed
edge. This method provides a per-edge confidence
score. Note that the scores are real numbers and
might be greater than 1. We changed the Delta-
approach in two aspects from that of Mejer and
Crammer (2012). The new parse tree contains a
node that has either a different head or might have
a different edge label or both since we use labeled
dependency trees in contrast to Mejer and Cram-
mer (2012). To obtain a single score for a tree,
we use the averaged score of all score differences
gained for each edge by the ‘Delta’-method.

We use the Mate tools1 to implement our self-
training approach. The Mate tools contain a
part-of-speech (pos) tagger, morphological tag-
ger, lemmatizer, graph-based parser and an arc-
standard transition-based parser. The arc-standard
transition-based parser has the option to use a
graph-based model to rescore the beam. The

1https://code.google.com/p/mate-tools/
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Figure 2: The root mean square-error (fr) of development set after ranked by adjusted parse scores with
different values of d.

parser has further the option to use a joint tag-
ger and parser. The joint system is able to gain
a higher accuracy for both part-of-speech tagging
and parsing compared to a pipeline system.

We use the arc-standard transition-based parser
which employs beam search and a graph-based
rescoring model. This parser computes a score
for each dependency tree by summing up the
scores for each transition and dividing the score by
the total number of transitions, due to the swap-
operation (used for non-projective parsing), the
number of transitions can vary, cf. (Kahane et al.,
1998; Nivre, 2007).

Our second confidence-based method requires
the computation of the score differences between
the best tree and alternative trees. To compute the
smallest difference (Delta), we modified the parser
to derive the parse trees that contains the highest
scoring alternative that replaces a given edge with
an alternative one. This means either that the de-
pendent is attached to another node or the edge
label is changed, or both the dependent is attached
to another node and the edge is relabeled. More
precisely, during the parsing for alternative trees,
beam candidates that contain the specified labeled
edge will be removed from the beam at the end of
each transition. Let Scorebest be the score of the
best tree, Scorei be the score of the alternative tree
for the ith labeled edge and L be the length of the
sentence, the Delta (ScoreDelta) for a parse tree is
then calculated as follows:

ScoreDelta =

L∑
i=1
|Scorebest − Scorei|

L
(1)

To obtain high-accuracy dependency trees is
crucial for our self-training approaches, thus we
first assess the performance of the confidence-
based methods on the development set for the se-
lection of high-quality dependency trees. We rank
the parsed sentences by their confidence scores in
a descending order. Figure 1 shows the accuracy
scores when selecting 10-100% of sentences with
an increment of 10%. The Delta method shows the
best performance for detecting high-quality parse
trees, we observed that when inspecting 10% of
sentences, the accuracy score difference between
the Delta method and the average score of the en-
tire set is nearly 14%. The method using the parse
score does not show such a high accuracy differ-
ence. The accuracy of the 10% top ranked sen-
tences are lower.

We observed that despite that the parse score is
the averaged value of a sequence of transitions of
a parse, long sentences generally exhibit a higher
score. Thus, short sentences tend to be ranked in
the bottom, even if they might have a higher accu-
racy than longer sentences. To reduce the depen-
dency of the score on the sentence length and to
maximize the correlation of the score and the ac-
curacy, we adjust the scores for each parse tree by

4



train test dev
CoNLL09 Weblogs Newsgroups Reviews Weblogs

Sentences 39,279 2,141 1,195 1,906 2,150
Tokens 958,167 40,733 20,651 28,086 42,144

Table 1: The size of the source domain training set and target domain test datasets for web domain
evaluation.

Weblogs Newsgroups Reviews
Sentences 513,687 512,000 512,000
Tokens 9,882,352 9,373,212 7,622,891

Table 2: The size of unlabeled datasets for web domain evaluation.

subtracting from them a constant d multiplied by
the sentence length (L). The new parse scores are
calculated as follow:

Scoreadjusted = Scoreoriginal − L× d (2)

To obtain the constant d, we apply the defined
equation to all sentences of the development set
and rank the sentences due to their adjusted scores
in a descending order. The value of d is selected
to minimize the root mean square-error (fr) of the
ranked sentences. Similar to Mejer and Crammer
(2012) we compute the fr by:

fr =
√∑

i

ni(ci − ai)2/(
∑

i

ni) (3)

We use 100 bins to divide the accuracy into
ranges of one percent, parse scores in the range
of [ (i−1)×3

100 , i×3
100 ] are assigned to the ith bin2. Let

ni be the number of sentences in ith bin, ci is de-
fined as estimated accuracy of the bin calculated
by i−0.5

100 and ai is the actual accuracy of the bin.
We calculate fr by iterating stepwise over d from
0 to 0.05 with an increment of 0.005. Figure 2
shows the fr for the adjusted parse scores with dif-
ferent values of d. The lowest fr is achieved when
d = 0.015, this reduce the fr from 0.15 to 0.06
when compare to the parse score method without
adjustment (d = 0). In contrast to the fr = 0.06
calculated when d is set to 0.015, the unranked
sentences have a fr of 0.38, which is six times
larger than that of the adjusted one. The reduc-
tion on fr achieved by our adjustment indicates

2We observed that parse scores computed by the parser
are positive numbers and generally in the range of [0,3].

train test unlabeled
Sentences 18,577 195 256,000
Tokens 446,573 5,001 6,848,072

Table 3: The size of datasets for chemical domain
evaluation.

that the adjusted parse scores have a higher corre-
lation to the accuracy when compare to the ones
without the adjustment.

Figure 1 shows the performance of the adjusted
parse scores for finding high accuracy parse trees
in relation to the original parse score and the
Delta-based method. The adjusted parse score-
based method performs significantly better than
that of the original score with a performance simi-
lar to the Delta method. The method based on the
parse scores is faster as we do not need to apply
the parser to find alternatives for each edge of a
dependency tree.

4 Experimental Set-up

We apply the approaches on three web domains
and chemical texts. Section 4.1 describes the
datasets that we use in our experiments. Section
4.2 explains the parser and Section 4.3 the evalua-
tion methods.

4.1 Datasets

Web Domain. Our experiments are evaluated on
three web domains provided by Ontonotes v5.03

and the SANCL 2012 datasets. We use these
datasets since sufficient unlabeled datasets that
are required for self-training are provided by the
SANCL 2012 shared task. We use the last 20%

3https://catalog.ldc.upenn.edu/LDC2013T19
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Figure 3: The effect of our self-training approaches on the weblogs development set.

of the weblogs section of the OntoNotes v5.0 cor-
pus. Exact 50% of the selected sentences is used
with SANCL Newsgroups and Reviews test data
as test sets while the second half is used as a de-
velopment set. We converted the datasets with the
LTH constituent-to-dependency conversion tool,
cf. (Johansson and Nugues, 2007). For the source
domain training data, we use the CoNLL 2009
training dataset, cf. (Hajič et al., 2009). Table
1 shows the details for the training, development
and test set. We use 500k of the SANCL unlabeled
data for each domain after we pre-processed them
by removing sentences that are longer than 500 to-
kens or containing non-English words which re-
duced the size of the datasets by 2%. Table 2
shows details about the amount of unlabeled texts.

Chemical Domain. To compare with previous
work, we apply the approach on texts from the
chemical domain that were prepared for the do-
main adaptation track of the CoNLL 2007 shared
task, cf. (Nivre et al., 2007). Table 3 shows the
details about the amount of available sentences for
training, development and test set. The source data
sets of the chemical domain are smaller than the
ones for web domains. The training set has about
half of the size. Thus we use only 250k unlabeled
sentences from the chemical domain which share
the same ratio of training set size to unlabeled data
set size compared to the web domain data sets. To
keep the same scale for training and unlabeled sets
allows us easily adapt the best setting from web
domain experiments.

4.2 Dependency Parser

We use the Mate transition-based dependency
parser with default settings in our experiments, cf.
Bohnet et al. (2013). For tagging, we use predicted
pos tags to carry out the experiments as we believe
that this is a more realistic scenario. The parser’s
internal tagger is used to supply the pos tags for
both unlabeled sets and test datasets. In order to
compare with previous work, we evaluate the ap-
proaches additionally on gold pos tags for texts of
the chemical domain as gold tags were used by
previous work.

The baselines are generated by training the
parser on the source domain and testing the parser
on the described target domain test sets.

4.3 Evaluation Method

For the evaluation of the parser’s accuracy, we
report labeled attachment scores (LAS). We in-
cluded all punctuation marks in the evaluation.

For significance testing, we use the script pro-
vided by the CoNLL 2007 shared task which is
Dan Bikel’s randomized parsing evaluation com-
parator with the default settings of 10,000 iter-
ations. The statistically significant results are
marked due to their p-values, (*) p-value<0.05,
(**) p-value<0.01.

5 Results and Discussion

Random Selection-based Self-training. As a
baseline experiment, we apply self-training on
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PPOS GPOS
LAS UAS LAS UAS

Parse Score 80.8* 83.62* 83.44** 85.74**
Delta 81.1* 83.71* 83.58** 85.8**
Baseline 79.68 82.5 81.96 84.28
Kawahara (Self-trained) - - - 84.12
Kawahara (Baseline) - - - 83.58
Sagae (Co-training) - - 81.06 83.42

Table 5: The results of the adjusted parse score-based and the Delta-based self-training approaches
on the chemical test set compared with the best-reported self-training gain (Kawahara and Uchimoto,
2008) and the best results of CoNLL 2007 shared task, cf. Sagae and Tsujii (2007). (PPOS: results
based on predicted pos tags, GPOS: results based on gold pos tags, Self-trained: results of self-training
experiments, Co-trained: results of co-training experiments.)

PS Delta Baseline
Weblogs 79.80** 79.68** 78.99
Newsgroups 75.88** 75.87* 75.3
Reviews 75.43* 75.6** 75.07
Average 77.03 77.05 76.45

Table 4: The effect of the adjusted parse score-
based (PS) and the Delta-based self-training ap-
proaches on weblogs, newsgroups and reviews test
sets.

randomly selected sentences that we add to the
training set. Figure 3 shows an overview of the
results. We obtain an improvement of 0.24%
which is not statistically significant. This finding
is in line with related work when applying non-
confidence-based self-training approaches to de-
pendency parsing, cf. (Cerisara, 2014; Björkelund
et al., 2014).

Parse Score-based Self-training. For the parse
score-based method, we add between 50k to 300k
parsed sentences from the weblogs dataset that
have been sorted by their parse scores in descend-
ing order. Figure 3 illustrates that the accuracy in-
crease when more parsed sentences are included
into the training set, we obtain the largest improve-
ment of 0.66% when we add 250k sentences, after
that the accuracy starts to decrease.

Delta-based self-training. For our Delta-based
approach, we select additional training data with
the Delta method. We train the parser by adding
between 50k to 300k sentences from the target do-
main. We gain the largest improvement when we
add 250k sentences to the training set, which im-
proves the baseline by 0.73% (cf. Figure 3). We
observe that the accuracy starts to decrease when

we add 50k to 100k sentences. Our error analy-
sis shows that these parse trees are mainly short
sentences consisting of only three words. These
sentences contribute probably no additional infor-
mation that the parser can exploit.

Evaluating on Test Sets. We adapt our best
settings of 250k additional sentences for both ap-
proaches and apply them to the web test sets
(weblogs, newsgroups and reviews). As illus-
trated in Table 4, all results produced by both ap-
proaches are statistically significant improvements
compared to the baseline. Our approach achieves
the largest improvement of 0.81% with the parse
score-based method on weblogs. For the Delta-
based method, we gain the largest improvement
of 0.69% on weblogs. Both approaches achieve
similar improvements on newsgroups (0.57% and
0.58% for Delta and parse score-based methods,
respectively). The Delta method performs bet-
ter on reviews with an improvement of 0.53% vs.
0.36%. Both approaches improve on average by
0.6% on the three web domains.

We further evaluate our best settings on chemi-
cal texts provided by the CoNLL 2007 shared task.
We adapt the best settings of the web domains and
apply both confidence-based approaches to the
chemical domain. For the constant d, we use 0.015
and we use 125k additional training data out of
the 250k from the unlabeled data of the chemical
domain. We evaluate our confidence-based meth-
ods on both predicted and gold pos tags. After re-
training, both confidence-based methods achieve
significant improvements in all experiments. Ta-
ble 5 shows the results for the texts of the chem-
ical domain. When we use predicted pos tags,
the Delta-based method gains an improvement of
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1.42% while the parse score-based approach gains
1.12%. For the experiments based on gold tags,
we achieve a larger improvements of 1.62% for the
Delta-based and 1.48% for the parse score-based
methods.

Table 5 compares our results with that of Kawa-
hara and Uchimoto (2008). We added also the re-
sults of Sagae and Tsujii (2007) but those are not
directly comparable since they were gained with
co-training. Sagae and Tsujii (2007) gained addi-
tional training data by parsing the unlabeled data
with two parsers and then they select those sen-
tence where the parsers agree.

Kawahara and Uchimoto (2008) reported pos-
itive results for self-training. They use a sepa-
rate trained binary classifier to select additional
training data. Kawahara and Uchimoto (2008) did
evaluations only on gold pos tags. Our baseline
is higher than Kawahara and Uchimoto (2008)’s
self-training result, starting from this strong base-
line, we could improve by 1.62% LAS and 1.52%
UAS which is an error reduction of 9.6% on the
UAS (cf. Table 5). The largest improvement of
1.52% compared to that of Kawahara and Uchi-
moto (2008) (0.54% UAS) is substantially larger.
We obtained the result by a simple method and we
do not need a separately trained classifier.

The confidence scores have shown to be crucial
for the successful application of self-training for
dependency parsing. In contrast to constituency
parsing, self-training for dependency parsing does
not work or at least not well without this addi-
tional confidence-based selection step. The ques-
tion about a possible reason for the different be-
havior of self-training in dependency parsing and
in constituency parsing remains open and only
speculative answers could be given. We plan to
investigate this further in the future.

6 Conclusions

In this paper, we introduced two novel confidence-
based self-training approaches to domain adap-
tation for dependency parsing. We compared
a self-training approach that uses random selec-
tion and two confidence-based approaches. While
the random selection-based self-training method
did not improve the accuracy which is in line
with previously published negative results, the two
confidence-based methods were able to gain statis-
tically significant improvements and show a rela-
tive high accuracy gain.

The two confidence-based approaches achieve
statistically significant improvements on all four
test domains which are weblogs, newsgroups, re-
views and the chemical domain. In the web do-
mains, we gain up to 0.8 percentage points and on
average both approaches improve the accuracy by
0.6%. In the chemical domain, the Delta-based
and the parse score-based approaches gain 1.42%
and 1.12% respectively when using predicted pos
tags. When we use gold pos tags, both approaches
achieved a larger improvement of 1.62% with the
Delta method and 1.48% with the parse score
method. In total, our approaches achieve signifi-
cantly better accuracy for all four domains.

We conclude from the experiments that self-
training based on confidence is worth applying in a
domain adaptation scenario and that a confidence-
based self-training approach seems to be crucial
for the successful application of self-training in
dependency parsing. This paper underlines the
finding that the preselection of parse trees is prob-
ably a precondition that self-training becomes ef-
fective in the case of dependency parsing and to
reach a significant accuracy gain.

Acknowledgments

We would like to thank John Barnden for discus-
sions and comments as well as the anonymous re-
viewers for their helpful reviews.

References
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Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pages 915–
932.

Joakim Nivre. 2007. Incremental non-projective
dependency parsing. In Proceedings of Human
Language Technologies: The Annual Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL HLT), pages
396–403.

Viktor Pekar, Juntao Yu, Mohab El-karef, and Bernd
Bohnet. 2014. Exploring options for fast domain
adaptation of dependency parsers. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 54–
65, Dublin, Ireland, August. Dublin City University.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL), volume 59.

9



Barbara Plank and Anders Søgaard. 2013. Experi-
ments in newswire-to-law adaptation of graph-based
dependency parsers. In Evaluation of Natural Lan-
guage and Speech Tools for Italian, pages 70–76.
Springer Berlin Heidelberg.

Barbara Plank. 2011. Domain Adaptation for Parsing.
Ph.D. thesis, University of Groningen.

Roi Reichart and Ari Rappoport. 2007. Self-training
for enhancement and domain adaptation of statistical
parsers trained on small datasets. In ACL, volume 7,
pages 616–623.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with LR models and
parser ensembles. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pages 1044–
1050.

Kenji Sagae. 2010. Self-training without reranking for
parser domain adaptation and its impact on seman-
tic role labeling. In Proceedings of the 2010 Work-
shop on Domain Adaptation for Natural Language
Processing, pages 37–44. Association for Computa-
tional Linguistics.

Anoop Sarkar. 2001. Applying co-training methods
to statistical parsing. In Proceedings of the Second
Meeting of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL),
pages 175–182.

Anders Søgaard and Christian Rishøj. 2010. Semi-
supervised dependency parsing using generalized
tri-training. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics,
COLING ’10, pages 1065–1073, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Mark Steedman, Steven Baker, Jeremiah Crim,
Stephen Clark, Julia Hockenmaier, Rebecca Hwa,
Miles Osborne, Paul Ruhlen, and Anoop Sarkar.
2002. Semi-supervised training for statistical pars-
ing.

Mark Steedman, Rebecca Hwa, Miles Osborne, and
Anoop Sarkar. 2003. Corrected co-training for sta-
tistical parsers. In Proceedings of the International
Conference on Machine Learning (ICML), pages
95–102.

10



Proceedings of the 14th International Conference on Parsing Technologies, pages 11–19,
Bilbao, Spain; July 22–24, 2015. c©2015 Association for Computational Linguistics

Combining Active Learning and Partial Annotation
for Domain Adaptation of a Japanese Dependency Parser

Daniel Flannery∗
Vitei Inc.

Kankoboko-cho 79 Shimogyo-ku,
Kyoto, Japan

danielflannery@gmail.com

Shinsuke Mori
ACCMS, Kyoto University

Yoshida Honmachi, Sakyo-ku,
Kyoto, Japan

forest@i.kyoto-u.ac.jp

Abstract

The machine learning-based approaches
that dominate natural language processing
research require massive amounts of la-
beled training data. Active learning has
the potential to substantially reduce the
human effort needed to prepare this data
by allowing annotators to focus on only
the most informative training examples.
This paper shows that active learning can
be used for domain adaptation of depen-
dency parsers, not just in single-domain
settings. We also show that entropy-based
query selection strategies can be combined
with partial annotation to annotate infor-
mative examples in the new domain with-
out annotating full sentences. Simulations
are common in work on active learning,
but we measured the actual time needed
for manual annotation of data to better
frame the results obtained in our simula-
tions. We evaluate query strategies based
on both full and partial annotation in sev-
eral domains, and find that they reduce the
amount of in-domain training data needed
for domain adaptation by up to 75% com-
pared to random selection. We found
that partial annotation delivers better in-
domain performance for the same amount
of human effort than full annotation.

1 Introduction

Active learning is a promising approach for do-
main adaptation because it offers a way to reduce
the amount of data needed to train classifiers, min-
imizing the amount of difficult in-domain annota-
tion. This type of annotation requires annotators to
have both domain knowledge plus familiarity with

*This work was done when the first author was at Kyoto
University.

annotation standards. There has been much recent
work on active learning for a variety of natural lan-
guage processing tasks (Olsson, 2009), but most of
it is concerned only with the single-domain case.
Additionally, work on active learning commonly
reports results for simulations only because of the
high cost of annotation work.

We use active learning to perform domain adap-
tation for a Japanese dependency parsing task, and
measure the actual time required for manual anno-
tation of training data to better frame the results of
our experiments. This kind of evaluation is crucial
for assessing the effectiveness of active learning in
practice.

Previous work on active learning for structured
prediction tasks like parsing (Hwa, 2004) often
assumes that the training data must be fully an-
notated. But recent work on dependency parsing
(Spreyer et al., 2010; Flannery et al., 2011) has
shown that models trained from partially anno-
tated data (where only part of the tree structure is
annotated) can achieve competitive performance.
However, deciding which portion of the tree struc-
ture to annotate remains a difficult problem.

2 Related Work

Most previous work on active learning for parsing
(Hwa, 2004; Sassano and Kurohashi, 2010) stud-
ies the single-domain case, where the initial la-
beled data set and the pool of unlabeled data share
the same domain. An important difference from
previous work is that we focus on domain adapta-
tion, so we assume that the initial labeled data and
annotation pool come from different domains.

Previous work on active learning for parsing
(Tang et al., 2002; Hwa, 2004) has focused on se-
lecting sentences to be fully annotated. Sassano
and Kurohashi (2010) showed that smaller units
like phrases (bunsetsu) could also be used in an ac-
tive learning scenario for a Japanese dependency
parser. Their work included results for partially
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i 1 2 3 4 5 6 7 8 9

an
no

ta
tio

n wi 政府 は 投資 に つなが る と 歓迎 し
Eng. Gov. subj. investment to leads ending that welcomes do
ti noun part. noun part. verb infl. part. noun verb

di full 2 8 4 5 6 7 8 9 NULL
di part. 8

fe
at

ur
es

F1 6
F2 は 歓迎
F3 part. noun
F4 NULL, NULL,政府 つなが,る,と
F5 投資,に,つなが し , NULL, NULL
F6 NULL, NULL, noun verb, infl., part.
F7 noun, part., verb verb, NULL, NULL

The second word, the case markerは (subj.), has two grammatically possible heads: the verbs つなが
(leads) and歓迎 (welcomes). In the partial annotation framework, only this word needs to be annotated.

Table 1: An example of full annotation (di full) and partial annotation (di part.) for a sentence. Features
for the dependency between the case markerは (subj.) and the verb歓迎 (welcomes) are also shown.

annotated sentences, but did not use entropy-based
query strategies (Tang et al., 2002; Hwa, 2004) de-
signed for selecting whole sentences because of
the difficulty of applying them. We use an even
smaller unit, words, and show how entropy-based
measures can be successfully applied to their se-
lection.

Mirroshandel and Nasr (2011) also investigated
selection of units smaller than sentences for a
graph-based parser in the single-domain setting.
Their query strategy used an entropy-based mea-
sure calculated from n-best lists, which are com-
putationally expensive and require modification of
the parser’s edge scoring function to produce. In
contrast, our query strategy is a simpler one that
does not require n-best lists.

All of the work discussed here reports results for
simulations only. This is common practice in ac-
tive learning research because large-scale annota-
tion is prohibitively expensive. Some recent work
on active learning has started to include more re-
alistic measures of the actual costs of annotation
(Settles et al., 2008). In this paper, we measure the
time needed to manually annotate sentences with
dependencies to better understand the costs of ac-
tive learning for dependency parsing.

3 MST Parsing

Currently, the two major types of data-driven de-
pendency parsers are shift-reduce parsers (Nivre
et al., 2006) and graph-based parsers (McDon-
ald et al., 2005). Shift-reduce parsers perform
parsing deterministically (so their time complex-
ity can be as fast as linear in the size of the input).
Graph-based dependency parsers treat parsing as

the search for a directed maximum spanning tree
(MST). We adopt the latter type in this paper be-
cause its accuracy is slightly higher especially for
long sentences (McDonald and Nivre, 2011).

3.1 Partial Annotation
Our goal is to reduce the total cost of preparing
data for domain adaptation. We do this by combin-
ing partial annotation with active learning. Partial
annotation refers to an annotation method where
only some dependencies in a sentence are anno-
tated with their heads. The standard method in
which all words must be annotated with heads is
called full annotation. Table 1 shows an example
of both types of annotation for a sentence.

Full sentences are the default unit of annotation
in full annotation, even though the parser is trained
from and operates on smaller units such as words
or chunks. The motivation for partial annotation
is to match the unit of annotation with the small-
est unit that the parser uses for training. In the
extreme case this is as small as a single depen-
dency between two words. This fine-grained anno-
tation unit is a natural fit for active learning, where
we seek to find training examples with the great-
est training value. However, fine-grained units are
cognitively more difficult for a human annotator
because less context is available. Thus, we must
balance the granularity of annotations against the
difficulty of processing them.

3.2 Pointwise MST Parsing
To enable the use of partial annotation in active
learning, we use a pointwise MST parser (Flan-
nery et al., 2011) that predicts each word’s head
independently. It uses only simple features based
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on surface forms and part-of-speech (POS) tags
of words, and first-order features between pairs of
head and dependent words. Higher-order features
that refer to chains of two or more dependencies,
like the ones used in the second-order MST intro-
duced by McDonald and Pereira (2006), are not
used. These restrictions make it easier to train on
partially annotated sentences without sacrificing
accuracy. Flannery et al. (2011) reported that both
this parser and McDonald and Pereira (2006)’s
second-order MST parser achieved just under 97%
accuracy on a Japanese dependency parsing task.
The assumption that written Japanese is head-final
and that dependencies only go from left to right
may be one reason why there is less of a perfor-
mance gap between these two approaches than in
other languages. They also reported that the train-
ing time of their parser is fifteen times faster than
the second-order MST parser, making it easier to
use with active learning.

The following features, both individually and
as combination features, are used in the pointwise
parser that we adopt.

F1: The distance j − i between a dependent word
wi and its candidate head wj .

F2: The surface forms wi and wj .

F3: The parts-of-speech of wi and wj .

F4: The surface forms of up to three words to the
left of wi and wj .

F5: The surface forms of up to three words to the
right of wi and wj .

F6: The parts-of-speech of the words selected for
F4.

F7: The parts-of-speech of the words selected for
F5.

Table 1 shows the values of these features for
a partially annotated example sentence where one
word, the case markerは (subj.), has been anno-
tated with its head, the verb歓迎 (welcomes). Par-
tial annotation allows annotators to ignore trivial
dependencies that are assumed to have little train-
ing value.

4 Partial Annotation as a Query Strategy

In this section we give some background on active
learning and outline the query strategies that we
use to identify informative training examples.

oracle
(human

annotator)

pool of
unlabeled

data

machine
learning
model

labeled
training

data

train model

make query

Figure 1: The pool-based active learning cycle.

4.1 Pool-Based Active Learning
We use the pool-based approach to active learn-
ing (Lewis and Gale, 1994), because it is a natural
fit for domain adaptation. In this framework, we
have both initial training data DL (corresponding
to labeled source domain corpora) and a large pool
of unlabeled data DU (corresponding to unlabeled
target domain text) from which to choose training
examples. While labeling domain-specific text is
difficult, it is usually relatively easy to acquire (for
example, from the web).

In each iteration the entire pool is evaluated se-
quentially and its members are ranked by their es-
timated training value as determined by some cri-
terion, called the query strategy. The top instances
are typically selected greedily. The basic flow
of pool-based active learning is Figure 1 and de-
scribed below.

1. Use a base learner B to train a classifier C
from the labeled training set DL.

2. Apply C to the unlabeled data set DU and
select I , the n most informative training ex-
amples.

3. Make a query to the oracle for the correct la-
bels of training instances in I .

4. Move training instances in I from DU to DL.

5. Train a new classifier C ′ by applying B to
DL.

6. Repeat steps 2 to 5 until some stopping con-
dition is fulfilled.

The stopping condition for terminating active
learning depends on the application. It may be
convenient to stop after a classifier C ′ with a given
level of accuracy is reached or a fixed amount
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of data has been labeled. In a realistic domain
adaptation scenario we are usually concerned with
achieving a reasonable level of in-domain perfor-
mance while keeping down annotation costs, so
these kinds of simple termination criteria are suf-
ficient.

4.2 Tree Entropy

Hwa (2004) proposed an active learning query
strategy called tree entropy for selecting sentences
to be fully annotated. Choosing a parse tree v for
a sentence from the set of possible parse trees V is
treated as assigning a value to the random variable
V . The entropy of V ,

H(V ) = −
∑
v∈V

p(v) log2(p(v)), (1)

is equivalent to the expected number of bits needed
to encode the distribution of possible parse trees.
Here, p(v) is the probability of assigning a single
parse tree V = v using a given parsing model.
Distributions close to uniform have higher en-
tropy, corresponding to higher uncertainty of the
model. Longer sentences will have more parse
trees in V and thus a larger value of H(V ). To
compare sentences of varying lengths we normal-
ize H(V ) by the log of the number of parse trees
in V .

Hn(V ) =
H(V )

log2(|V|) (2)

4.3 1-Stage Selection

To use tree entropy as a strategy for partial anno-
tation, we propose to change the unit of selection
to words as follows. Consider a word wi in an in-
put sentence w = 〈w1, w2, . . . , wn〉, tagged with
POS tags t = 〈t1, t2, . . . , tn〉 by a tagger. We
will model the distribution of its possible heads, or
head entropy. Let wj be a single head word for wi,
where j > i and wj 6= wi

1. Then we can redefine
v as a choice of position j and V as the set of legal
values for j. Thus p(v) becomes the probability
of choosing the word at position j as the head of
the one at position i. The parser we use (Flannery
et al., 2011) calculates p(v) = p(j|i) as follows.
The feature vector φ = 〈φ1, φ2, . . . , φm〉 consists
of real values calculated from features on pairs

1We assume that Japanese is a head-final language, and
that each head wj is located to the right of its dependent wi

in the sentence.

(i, j) along with their contexts w and t, with cor-
responding weights given by the parameter vector
θ = 〈θ1, θ2, . . . , θm〉.

p(j|w, t, i,θ) =
exp (θ · φ(i, j))∑

j′∈J exp (θ · φ(i, j′))
(3)

The simplest way to combine this query strategy
with partial annotation is to calculate the head en-
tropy for each word appearing in a sentence in the
annotation pool, and then choose individual words
with the highest head entropy for annotation. We
call this query strategy 1-stage.

4.4 2-Stage Selection
We expect 1-stage to perform well at identifying
words with high training value. However, in re-
ality it is difficult to annotate heads for individ-
ual words without considering the overall sentence
structure, so annotators must consider other de-
pendencies. 1-stage does not realistically model
annotation costs.

To address this problem, we propose a novel
strategy called 2-stage which more accurately re-
flects the annotation process. It balances the
ability to select fine-grained units for annotation
against the difficultly of annotating them.

Words to annotate with heads are chosen in two
steps. First, the entropy of each sentence in the
pool is calculated by summing the head entropy of
its words, and sentences are ranked from highest
to lowest summed head entropy. Next, the sen-
tence with the highest head entropy is chosen and
the words it contains are ranked in decreasing or-
der by their head entropy. A fixed proportion r
of the highest-entropy words are then annotated.
This value balances annotation granularity against
annotation difficulty. A value of r = 1.0 is the
standard full annotation case where all words are
annotated with heads, which we refer to as 2-stage
full. A value of r = 0.33 means that the top 33%
of the highest-entropy words in the sentence will
be annotated, so we call this strategy 2-stage par-
tial2. In Section 5, we report results for these two
values, though several were tried.

5 Evaluation

To evaluate the query strategies, we measured the
reduction in target domain annotations needed to

2We chose this value because it had good results in pre-
liminary experiments where we tried values in the range from
0.1 to 1.0.
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ID source sentences words avg. length dependencies
EHJ-train Dictionary examples 11,700 147,964 12.6 136,264

po
ol

NKN-train Newspaper articles 9,023 263,425 29.2 254,402
JNL-train Journal abstracts 322 12,263 38.1 11,941
NPT-train NTCIR patents 450 18,378 40.8 17,928

te
st

NKN-test Newspaper articles 1,002 29,037 29.0 28,035
JNL-test Journal abstracts 32 1,116 34.9 1,084
NPT-test NTCIR patents 50 2,275 45.5 2,225

Table 2: Sizes of corpora.

reach a certain level of in-domain accuracy. For
the 2-stage strategy, we also measured how many
dependencies a real annotator could annotate in a
given time using partial and full annotation. Mea-
suring the actual annotation time is important be-
cause our goal of active learning is to reduce the
amount of human effort needed to prepare labeled
training data for domain adaptation.

We used a corpus of example Japanese sen-
tences from a dictionary as source domain train-
ing data (Mori et al., 2014). This data was used as
to train the initial model in each experiment. We
also collected Japanese text from three target do-
mains: newspapers3, journal article abstracts, and
patents (Goto et al., 2011). For each domain, there
is a large annotation pool of potential training ex-
amples and a smaller test set. See Table 2 for the
details. Domain adaptation is needed in each case,
because sentence length and vocabulary differs for
each. Words in each sentence were manually seg-
mented and assigned POS automatically with the
tagger KyTea. This step can be done automatically
because KyTea’s F-measure score for word seg-
mentation and POS tagging is about 98% (Neubig
et al., 2011). Words were then manually annotated
with their heads.

5.1 Number of Annotations

We first investigate how much strategies reduce
the number of in-domain dependencies needed for
domain adaptation. Because real annotation is
costly and not strictly necessary to measure this
reduction, we simulate active learning by selecting
the gold standard dependency labels from the an-
notation pool. In practice, we are also concerned
with the time needed for a human to annotate
dependencies, which we examine in Section 5.3.
Thus, good performance in this first experiment is

3The newspaper is similar to the Wall Street Journal and
focuses on economics.
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Figure 2: Newspaper (NKN) domain learning
curves.

a necessary but not sufficient condition for an ef-
fective strategy. Because we assume that Japanese
is a head-final language and heads always occur
to the right of their dependents, for all strategies
the last word in each sentence skipped. For 1-
stage and 2-stage, we also skipped the second-to-
last word in each sentence.

In addition to the 1-stage and 2-stage meth-
ods, we also tested two simple baselines. The
strategy random simply selects words randomly
from the pool. The length strategy simply
chooses words with the longest possible depen-
dency length4. This strategy reflects our intuition
that long-distance dependencies are more difficult
and thus more informative.

We use the dictionary example sentences (see
Table 2) as the initial training set and performed
thirty iterations of active learning. In each itera-
tion, we select a batch of one hundred target do-
main dependency annotations, retrain the model,
and then measure its in-domain accuracy.

4This is the same as selecting dependencies with the
largest number of potential heads because we do not refer to
the gold dependencies until after words have been selected.
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Figure 2 shows the results for the newspaper
domain. The accuracy of the random strategy in-
creases slowly and peaks at just over 90.5%. For
the first ten iterations the length strategy delivers
an improvement over random, but performs essen-
tially the same after that. This is probably be-
cause newspaper sentences are on average longer
than dictionary examples (see Table 2), so at first
words with the potential for longer dependencies
are slightly more informative. However, this strat-
egy is focused only on the training data and does
not reflect the continuous updates of the model,
and it soon begins to falter.

The 2-stage partial strategy dominates all other
methods, though 1-stage reaches the same level
after thirty-five iterations. Its peak accuracy is
slightly higher than 91%, and it outperforms the
best accuracy achieved by random after just sev-
enteen iterations. In contrast, 2-stage full performs
consistently worse than the partial annotation ver-
sion, with behavior similar to length. While the 1-
stage strategy always outperforms the random one,
it lags behind 2-stage partial.

5.2 Annotation Pool Size

From Table 2, we can see that the size of the an-
notation pool for the newspaper domain is ten to
twenty times as large as the ones for the other do-
mains. The total number of dependencies selected
is 3k, which is only 1.2% of the newspaper pool.
Because the 2-stage strategy chooses some depen-
dencies with lower entropy over competing ones
with higher entropy from other sentences in the
pool, we expect its accuracy to suffer when a much
larger fraction of the pool is selected.

To investigate this effect, we created a smaller
pool from NKN-train that is closer in size to the
ones from the other domains. We used the first
12,165 dependencies for this smaller pool. The re-
sults are shown in Figure 3. It can be seen that
2-stage partial’s lead over the 1-stage strategy has
been eliminated. After seventeen rounds of an-
notation the 1-stage strategy begins to outperform
the 2-stage strategy. The 2-stage partial strategy
still dominates the 2-stage full strategy. This con-
firms our intuition that the relative performance of
strategies is influenced by the size of the annota-
tion pool. In general we expect the number of in-
formative dependencies to increase as the pool size
increases. Comparing these results with the results
for the newspaper domain in Figure 2, we see that
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Figure 3: Newspaper (NKN) domain accuracy
with a small annotation pool.

the 1-stage strategy is robust to changes in the pool
size, but the 2-stage partial can outperform it for a
very large pool.

5.3 Time Required for Annotation

Simulation experiments are still common when
using active learning because the cost of annota-
tion is very high. However, recently there is in-
creased interest in measuring the true costs of an-
notation work when doing active learning (Settles
et al., 2008). For a more realistic evaluation of
active learning for parsing, we also measured an-
notation time for the 2-stage strategy. We trained
a model on EHJ-train plus NKN-train and used
this model and the 2-stage strategy to select de-
pendencies to be annotated by a human annota-
tor. The pool is 747 blog sentences5 from the Bal-
anced Corpus of Contemporary Written Japanese
(Maekawa, 2008). We selected 2k dependencies
in a single iteration so the annotator did not need
to wait while the model was retrained after each
batch of annotations. While real annotation times
are not constant, this simplification is justified be-
cause we expect the annotation strategy (partial or
full) to have a larger effect on the overall annota-
tion speed than the dependencies that are selected.

A single annotator performed annotations for
one hour each using the 2-stage strategy with both
partial annotation and full annotation, alternating
strategies every fifteen minutes. Sentences with
more than forty words were not presented to the
annotator. Table 3 shows the total number of de-
pendencies annotated after each time period. After

5This data was taken from the Yahoo! Blog (OY) subcor-
pus.
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Figure 4: Estimated annotation time for the news-
paper (NKN) domain.

method 0.25 [h] 0.5 [h] 0.75 [h] 1.0 [h]
partial 226 458 710 1056
full 141 402 756 1018

Table 3: Annotation times for 2-stage methods.

the first fifteen minutes, the annotator completed
226 annotations compared with 141 for full anno-
tation, an increase of about 60%. However, as time
progresses the difference becomes smaller, and af-
ter one hour the number of annotations was almost
identical for both strategies.

From Table 3, we can see that the annotation
speed reaches a maximum of about 350 anno-
tations per fifteen minutes in the full annotation
case, or 1.4k dependencies per hour. We expected
more annotations to be completed when full anno-
tation was used, because sentences have many triv-
ial dependencies. However, the annotator reported
that it was frustrating to check the annotation stan-
dard and how it handled subtle linguistic phenom-
ena. Most of this work can be skipped when using
partial annotation because the annotator was al-
lowed to delete the estimated heads, so the annota-
tion speeds ended up being almost identical. This
result shows the importance of accurately model-
ing the annotation costs in active learning.

For both methods, the average speed is around
1k dependencies per hour. We used these speeds
to estimate the rate of annotation for the experi-
ments from Section 5.1. While this is not entirely
realistic because speeds are likely to vary across
domains, it is sufficient for comparing the relative
performance of strategies in the same domain. The
results are shown in Figure 4. We can see that ac-
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Figure 5: Journal (JNL) domain learning curves.
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Figure 6: Patent (NPT) domain learning curves.

curacy improves faster for partial than it does for
full, and the difference becomes pronounced after
about half an hour of annotation work. In sum-
mary, partial annotation is more efficient and thus
delivers a greater return on investment than full an-
notation for the proposed query strategy.

5.4 Results for Additional Domains

We also tested the proposed method in two addi-
tional domains. See Table 2 for the details of these
corpora. Figure 5 and Figure 6 show results for the
journal and patent domains, respectively. In these
domains, 2-stage partial failed to outperform the
1-stage strategy. However, it still performed better
than the 2-stage full strategy. As discussed in Sec-
tion 5.2, the performance of the proposed method
suffers when a large portion of the dependencies
in the pool are selected. Here, the 3k dependen-
cies that are selected are a much larger fraction of
the pool – specifically, 16.7% for the patent do-
main and 25.1% for the journal domain. As in the
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Figure 7: Estimated annotation time for the jour-
nal (JNL) domain.

domain random full partial
NKN 3,000 – 1,300
JNL 3,000 1,800 900
NPT 2,700 – 1,500

Table 4: Reduction in in-domain data.

newspaper domain, in the patent domain the per-
formance of 2-stage with full annotation is better
than random for the first few iterations but soon
becomes similar. This is not true in the journal do-
main, where this strategy consistently beats ran-
dom. The length strategy edges out random for a
few iterations in both domains, but ultimately their
performance is similar.

Table 4 shows the number of annotations
needed for the highest accuracy by the random
baseline in the second column, while the next two
show the number of annotations needed for the
full and partial versions of 2-stage to outperform
it. Thus, smaller numbers are better. Compared
to the random strategy, 2-stage full had mixed re-
sults. In the journal abstract domain (JNL), it out-
performed the random baseline while using only
60% of the amount of labeled data. However, it
failed to outperform random selection in the other
two domains. In contrast, 2-stage partial consis-
tently outperforms random with only 45% to 55%
of the labeled data. In terms of target domain data
that must be prepared, it is clear that 2-stage par-
tial offers large savings compared to random. It
also does so more consistently and with less data
than 2-stage full.

We also plotted the results for these domains
in terms of estimated annotation time as we did
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Figure 8: Estimated annotation time for the patent
(NPT) domain.

in Section 5.3. Figure 7 shows the results for the
journal domain and Figure 8 shows the results for
the patent domain. As before, 2-stage full is more
efficient than 2-stage partial. In these domains,
partial dominates full after about one hour of an-
notation work. The gap between them is largest
for the patent domain and smallest for the journal
domain.

6 Conclusions

We combined partial annotation with active learn-
ing to adapt a Japanese dependency parser to new
domains, and showed that active learning is not
limited to single-domain settings. We showed that
an entropy-based query strategy can successfully
identify units smaller than sentences, and that par-
tial annotation can be successfully applied to ac-
tive learning of structured prediction tasks like
parsing. This strategy reduced the amount of in-
domain training data needed for domain adapta-
tion by up to 75%. We also investigated how the
overall size of the annotation pool affects the per-
formance of the query strategy, and found that the
proposed method performs best for large annota-
tion pools.

To more accurately frame our results, we mea-
sured the actual annotation time required by a hu-
man annotator to prepare labeled data using differ-
ent strategies. Using these results to estimate an-
notation times for earlier experiments, we showed
that for the proposed method partial annotation is
more efficient in terms of in-domain performance
obtained per unit of annotation time than full an-
notation.
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Abstract

Wide-coverage resources for lexicalized
grammars have been obtained by convert-
ing the existing treebanks into collections
of derivations. Additional annotations to
the source treebank can be used to im-
prove these derivations. A treebank anno-
tation called the NTT treebank was used
for this paper to improve a CCGbank for
Japanese. The source treebank of the
CCGbank itself is created by automati-
cally converting chunk-dependencies, but
the CCGbank contains errors caused by
noisier phrase structures and a lack of lin-
guistic information, which is difficult to
represent in chunk-dependency. The NTT
treebank provides cleaner trees and func-
tional and semantic information, e.g., co-
ordinations and predicate-argument struc-
tures. The effect of the improvement pro-
cess is empirically evaluated in terms of
the changes in the dependency relations
extracted from the resulting derivations.

1 Introduction

Wide-coverage resources for lexicalized gram-
mars have been created by converting the exist-
ing treebanks into collections of derivations for
the target grammars (Miyao and Tsujii, 2008;
Hockenmaier and Steedman, 2007; Hockenmaier,
2006). However, the source corpora, such as the
Penn Treebank (Marcus et al., 1993), often lack
the necessary linguistic information for construct-
ing these derivations, and this can create noise
in the resulting derivations. Therefore, comple-
mentary annotations to the source treebank, e.g.,
NP bracketing and semantic roles, have been used
used to improve the derivations (Honnibal et al.,
2010; Vadas and Curran, 2008).

It is especially important to reduce the amount
of noise in the derivations in the CCGbank for

Japanese (Uematsu et al., 2015). Since the
source treebank itself was created by converting
the chunk-dependency, it potentially includes even
more errors in the phrase structures and other
types of information such as the functional tags.
For instance, the chunk-dependency is often insuf-
ficient for correctly deciding on the phrase struc-
ture of coordinated NPs with modifiers. Since the
dependencies do not encode the left boundary of
each NP (Asahara, 2013), a manual annotation is
needed for the precise structure. In fact, it essen-
tially lacks any linguistic information which is dif-
ficult to represent in the chunk-dependency, e.g.,
the coordinated arguments.

The NTT treebank (Tanaka and Nagata, 2013)
was used to improve the Japanese CCGbank for
this paper. Basically the treebank is a manually
corrected version of the source treebank used to
create the CCGbank, but we treat the treebank as
a collection of additional annotations to the source
treebank. We specifically use its cleaner phrase
structures to correct the phrase structure errors and
its functional tags to properly deal with the coor-
dinations in the derivations. Moreover, we use the
annotations of causer roles in causative construc-
tions in the NTT treebank, which are not available
in the original syntactic resources, to recognize the
arguments in the derivations. We show how the
functional and semantic annotations on the tree-
bank will be used for improving the CCGbank.

The improvement process together with the
conversion in our previous work (Uematsu et al.,
2015) can be regarded as a framework for obtain-
ing a Japanese treebank and a derivation bank at
a lower cost. That is, we can obtain a clean tree-
bank containing rich linguistic information by 1)
translating the existing syntactic resources, e.g.,
the chunk-dependency annotation, to a treebank,
2) manually correcting the phrase structures, and
3) using the cleaner treebank as a base for addi-
tional annotations. The treebank and the related
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X/Y : f Y : a → X : fa (>)
Y : a X\Y : a → X : fa (<)
X/Y : f Y/Z : g → X/Z : λx.f(gx) (> B)
Y\Z : g X\Y : f → X\Z : λx.f(gx) (< B)

Figure 1: Combinatory rules in Japanese CCG-
bank.

resources are hopefully applicable to other gram-
mar formalisms.

2 CCGbank for Japanese

2.1 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a lex-
icalized grammar formalism that is widely ac-
cepted in the NLP fields (Steedman, 2001). We
briefly introduce its basic elements below.

A CCG grammar has two elements: categories
for expressing the syntactic characteristic of the
words and phrases and combinatory rules for com-
bining the categories. There are two types of cat-
egories, ground and complex. Ground categories
include S and NP, and complex categories are ei-
ther X/Y or X\Y, where X and Y are the cate-
gories. Category X/Y means that it becomes a
category X when it is combined with another cat-
egory Y to its right, and X\Y means it takes on
a category Y to its left. For example, categories
S\NP and S/NP\NP represent an English intran-
sitive verb and a transitive one, respectively.

Combinatory rules (Fig. 1) are applied to the
categories to form categories for larger phrases.
For example, a subject NP and intransitive verb
S\NP are combined to form a sentence S by ap-
plying the backward application rule (< in Fig. 1).
Figure 2 shows a CCG analysis of a simple
Japanese sentence, which is called a derivation.

2.2 CCG-based syntactic theory for Japanese

We briefly describe Bekki’s theoretical work on
Japanese syntax (Bekki, 2010), which is the basis
of the analysis in the Japanese CCGbank (Fig. 2).
Based on CCG, his theory provides a compre-
hensive description for a variety of morphological
and syntactic constructions, such as agglutination,
scrambling, and long-distance dependencies.

There are three types of ground categories in his
theory: S for sentences, NP for noun and postpo-
sition phrases, and CONJ for conjunctions. Cate-
gories S and NP have the syntactic features of form
and case, respectively. Table 1 itemizes the values
of these syntactic features.

Cat. Feature Value Interpretation
NP case ga nominative

o accusative
ni dative
to comitative, complementizer, etc.
nc none

S form stem stem
base base
neg imperfect or negative
cont continuative
vo s causative

Table 1: Features for Japanese syntax in (Uematsu
et al., 2015).

Predicative words, such as verbs and adjectives,
are represented as S\NPga, S\NPni\NPga, etc.,
depending on their mandatory arguments. For ex-
ample, S\NPga is for intransitive verbs and for ad-
jectives, and S\NPga\NPo represents a transitive
verb. Postpositions that work as argument markers
include NPga\NPnc NPni\NPnc, etc. For exam-
ple, “が NOM ga” is represented as NPga\NPnc
as it takes on the left NP to form a nominative NP.
Postpositions can be used to form modifier phrases
to verbal and adjective phrases. For example, “に
ni” is S/S\NP if it takes on the left NP to form a
temporal or a locative modifier.

The treatment of auxiliary verbs differs here
from the English CCG. In Japanese, auxiliary
verbs follow right after the main verb and ex-
press the semantic information, such as the tense
and modality. For example, a verb “選ば/choose-
NEG” and auxiliaries “なかっ/not-CONT” and
“た/PAST-BASE” form a VP “選ばなかった”,
which means “did not choose”. Auxiliary verbs
are expressed as the category S\S, and the cate-
gory is combined with a main verb via the func-
tion composition rule (<B in Fig. 1), as shown in
Fig. 2.

Bekki’s theory treats the coordination in a simi-
lar way as in (Steedman, 2001). There is a special
rule for coordination Φ, with the restriction that X
must be in a form of T/(T\$), e.g., NPnc/NPnc
and S/NP\(S/NP).

X1 . . . CONJ Xm → X (Φ) (1)

2.3 Japanese CCGbank
We proposed an algorithm in our previous work
(Uematsu et al., 2015) to convert the existing
chunk-dependency resources into CCG deriva-
tions for Japanese sentences. We refer to the col-
lection of derivations obtained using this method
as the original CCGbank for Japanese. Two steps
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Figure 2: CCG derivation for Japanese sentence “The teacher chose the textbook.”

are needed to complete the conversion. First,
we integrates chunk-dependencies from the Kyoto
corpus (Kurohashi and Nagao, 2003) and a type
of semantic role annotations from the NAIST cor-
pus (Iida et al., 2007) to create tree structures with
predicate argument structures (PASs). The trees
are then translated into CCG derivations. 94% of
the sentences in the source corpus were considered
to be successfully converted into derivations. The
lexicon extracted from the CCGbank has a lexi-
cal coverage of 99.4% and a sentential coverage
of 87.0% on unseen text.

One of the obstacles in the conversion is often
insufficient information for recovering the phrase
structures. Several heuristic rules were used to
complement for this lack, but we must make man-
ual annotations, especially for the types of infor-
mation that are difficult to represent in the chunk-
dependency, e.g., coordinated arguments. The
conversion errors due to the lack o information re-
sulted in erroneous substructures in the trees and
derivations and this leads to noises in the obtained
grammar.

As a result, the grammar of the CCGbank is
simplified for some constructions, specifically the
coordinations. It treats the NP coordinations as
noun-noun modifications. VP and ADJP coordi-
nations are implicitly handled as a type of contin-
uous clauses. By incorporating additional annota-
tions into the derivation, our new procedure iden-
tifies the NP coordination and improves the sub-
structure. On the other hand, we kept the VP coor-
dinations as a type of continuous clauses, because
it is difficult to distinguish between the VP coordi-
nation and other types of continuous clauses based
only on the shallow semantic information.

3 NTT treebank

The phrase structures and supplementary infor-
mation in NTT treebank (NTB) are annotated to
news-wire text (Tanaka and Nagata, 2013). As
supplementary annotations, the treebank contains
functional tags and predicate argument structures.

Grammatical role for mandatory argument
-SBJ Subjective case
-OBJ Objective case
-OB2 Indirect object case

-COORD Coordination
-APPOS Apposition

Table 2: Function tags in NTT treebank.

Noun

環境
environment

Noun

人口
populationPostP

や
PARALLEL

NP-‐COORD

NP

Figure 3: NP coordination in NTT treebank.

Table 2 lists some function tag examples that are
annotated to the tree nodes. SBJ and OBJ rep-
resent the grammatical roles of phrases, and CO-
ORD shows the annotated node and sibling node
are coordinated (Fig. 3). Predicate argument struc-
tures are presented as relations between the pred-
icate words and their argument phrases, which
is similar to the annotation style of PropBank
(Palmer et al., 2005) (Fig. 5).

The treebank is created by manually correcting
and updating the base annotation, which is actu-
ally the source treebank used to build the original
Japanese CCGbank. It is based on the dependency
between chunks or bunsetsu of the Kyoto corpus
(Kurohashi and Nagao, 2003), but manual annota-
tion made the treebank cleaner and richer. In ad-
dition to fixing the apparent errors such as the tok-
enization errors and erroneous POS tags, the man-
ual annotation includes modifying the subtrees for
specific constructions (e.g., coordinated phrases),
a clause with a formal noun, and a PP with a com-
pound postposition. Moreover, PAS annotations
for specific voices, such as causatives and benefi-
cials were added to the treebank.

Compound postposition is a type of multi-word
expressions in which a combination of postposi-
tions, verbs, and auxiliaries works as one post-
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Figure 4: Subtrees with compound postposition “
に対して” before (left) and after manual annota-
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Noun

先生
teacher

PostP

は
TOPIC

PP

Verb

調べ
inquire-‐NEG

AUX

させ
cause-‐CONT

VP AUX

た
PAST-‐BASE

VP

Noun

学生
student

PostP

に
DAT

PP

VP

S

ARG-‐ga

CAUSER

Figure 5: Causative sentence “The teacher has the
student inquire” and PAS annotated for “調べ in-
quire”. The dotted arc labeled with ARG-ga de-
notes that the agent of “inquire” is “the student”

position. For example, a compound postposi-
tion ” に/DAT/ni 対し/confront-CONT/taishi て
/aux-CONT/te” typically functions similarly to the
postposition “に/DAT/ni”. Fig. 4 shows the sub-
trees before and after the update. Since the struc-
ture on the left is the same as the structure for
a continuous clause, it is difficult to distinguish
compound postpositions and VPs. After the man-
ual annotation, the compound postpositions are
marked with “PCOMP” tags and have a specific
structure, as shown on the right in Fig. 4

The PAS annotation on the base treebank, which
is obtained by converting the word-to-word anno-
tation of the NAIST corpus (Iida et al., 2007), was
also manually corrected and populated. An im-
portant addition to the PAS is the annotation of
causative and beneficial constructions. The orig-
inal treebank (and the NAIST corpus) also identi-
fies causative constructions, but there are very few
annotations for the causer role, which typically oc-
curs with the case marker “が/ga” or its topicalized
form. Fig. 5 shows an example of the annotation
of a causative construction with a causer role.

4 Related work

The corpus-based acquisition of wide-coverage
CCG resources has been very successful for En-
glish (Hockenmaier and Steedman, 2007). Their
method converts the Penn Treebank (Marcus et
al., 1993) into CCGbank, which is a collection
of CCG derivations, and extracts a wide-coverage
lexicon from the derivations. The CCGbank is also
used to train a robust CCG parser (Clark and Cur-
ran, 2007).

Complementary resources on the Penn Tree-
bank are used to improved the derivations because
the treebank does not contain some of the linguis-
tic information necessary for a CCG derivation.
Boxwell and White (2008) augmented the English
CCGbank with the semantic roles in PropBank
(Palmer et al., 2005). Honnibal et al. (2010) inte-
grated several types of additional annotations such
as PropBank and NP structure annotation (Vadas
and Curran, 2007), to improve the CCGbank. Our
work basically follows these methods, but we have
to deal with noises in the treebank that are caused
by the dependency-to-tree conversion errors.

Our previous work (Uematsu et al., 2015) ex-
tended the method used for the English CCGbank,
and obtained wide-coverage CCG resources for
Japanese. A treebank is created in this method
by converting chunk-based annotation resources.
The treebank is then converted into a CCGbank
for Japanese, which can be used to obtain wide-
coverage lexicon and parsers for Japanese CCG.

Other than the one mentioned above, there are
several other studies on Japanese deep parsing.
The theoretical work by Gunji (1987) describes
Japanese phenomenon based HPSG. Komagata
(1999) proposed a CCG-based theory and imple-
mentation, but the focus is not on processing real
world texts. JACY (Siegel and Bender, 2002) is a
type of hand-crafted Japanese grammar based on
HPSG that can compute a detailed semantic repre-
sentation. One of our future goals is to obtain CCG
resources that allow for a more precise and de-
tailed description by incorporating additional an-
notations into CCGbank.

5 Incorporating additional annotation
into CCGbank

We describe the two steps needed to incorporate
the annotations of the NTT treebank (NTB) into
the Japanese CCGbank. First, we reconstruct the
CCGbank according to the clean phrase structure
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Figure 6: Substructure for argument PPs with
compound postpositions.

X CONJ → Xconj (Coord1)

Xconj X → X (Coord2)

Figure 7: Special rules for coordination.

in the treebank, and then, change the substruc-
tures of the CCG derivations based on the func-
tional tags and predicate-argument annotations of
the treebank.

5.1 Reconstruction of CCGbank
As stated in Section 3, the trees in NTB are a man-
ually corrected version of those used in (Uematsu
et al., 2015). The reconstruction of the Japanese
CCGbank is basically done by following the con-
version rules used in (Uematsu et al., 2015). A
drastic change of the conversion rules is not nec-
essary because most of the changes in NTB are
error corrections. However, we have to add a con-
version rule for a compound postposition in order
to handle the structure change illustrated in Sec. 3.

The treatment of compound postpositions is not
explicitly described in (Bekki, 2010), so we de-
fined two types of structures for these compounds.
As with a normal postposition, a compound post-
position either works as an argument marker or
forms an adjunct PP. Fig. 6 shows the defined
substructure for an argument PP using the com-
pounds. The structure for case markers (left in the
figure) is designed so that the node for the com-
pound postposition (right child of the top node in
the figure) is assigned the category for argument
marker (NPni\NPnc in the example).

We added a conversion rule that first detects a
PP with a compound postposition by searching
for a node with a PP label whose right daugh-
ter is PCOMP, and then, checks whether the node
is identified as an argument by the original con-
version rules, and finally assigns categories to
the nodes in the PP according to the substructure

shown in Fig. 6 if the node is found to be an argu-
ment.

5.2 Incorporation of the additional
annotation to CCGbank

The process to incorporate complementary lin-
guistic information into the CCGbank follows
(Honnibal et al., 2010), but we have to deal with
constructions that are specific to Japanese. We de-
scribe how to improve the treatment of the coor-
dination as an example of handling functional tag
annotations, and present how to identify the causer
roles by processing the semantic annotations. Fi-
nally, we check the consistency of the changes.

5.2.1 Coordination
We added a new syntactic feature conj and two
special rules that are presented in Fig. 7 to the
grammar to deal with the argument coordination
in derivations. The new feature indicates whether
the phrase includes a conjunction. The new rules
are the result of adapting the coordination rule (Φ)
into binary-branching of the CCGbank. Similar
rules were used to deal with the coordinations in
the English CCGbank (Hockenmaier and Steed-
man, 2007).

We replace the analyses of the coordinations
with ones incorporated with the special rules by
the following process. First, a noun phrase includ-
ing a coordination is detected by a subtree where
an top NP node contains an NP node with a CO-
ORD tag as its left child, and the NP node with
the COORD tag has a punctuation or parallel par-
ticle as its right child (the left tree in Fig. 8). The
categories corresponding to the top node (a basic
category NP in the example) are then checked to
see if the condition for Φ is satisfied. If satisfied,
the rule combining the left and right daughters is
changed to Coord2. For the example in the fig-
ure, the category for “食料 / food” will be NP, and
that of the left daughter will be NPconj after the
change. The rule to form the left daughter is also
replaced by Coord1, so the category for the con-
junction changes to CONJ.

5.2.2 Causer argument
The grammar for the original CCGbank can han-
dle causer arguments as well as other types of ar-
guments. An example analysis of a causative sen-
tence is shown in Fig. 9. The semantic represen-
tation is omitted in this figure, but the causative
verb “調べ / inquire” has a causer argument in its
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Figure 8: Subtree involving coordination (left) and new analysis for phrase (right).
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Figure 9: CCG derivation for Japanese sentence “The teacher has the student inquire.”

Train. Devel. Test
sentence 6,800 800 2,400
tokens 178,732 24,159 64,824

Table 3: Statistics of input linguistic resources

predicate-argument structure, and the causer ar-
gument is co-indexed with the NPga. We rean-
alyzed the causative constructions in the original
CCGbank based on the annotation instances of the
causers added in the NTB.

First, we describe the changes to the argu-
ment phrases in the causative constructions. In
Japanese, an argument to a verb is typically fol-
lowed by a case marker particle (“が / ga / NOM”,
“に / ni / DAT”, etc.) or a binding particle (“は
/ wa / TOPIC”, “も / mo ”). Phrases headed by
a binding particle are used when an argument is
topicalized and the case for the topicalized argu-
ment must be estimated. On the other hand, a
phrase with a case marker or a binding particle can
be used as a modifier to a verb. Therefore, prop-
erly distinguishing the arguments and modifiers is
important for building derivations. Moreover, a
causative is a construction involving case alterna-
tions (see Fig. 5), so the surface and deep cases of
each argument must be decided according to the
PAS annotations.

Concretely speaking, we changed the substruc-
ture for a causative in the following process. A
candidate for a causer argument is detected as a
phrase headed by a case marker or binding particle

that is combined with a VP headed by a causative
verb in the treebank. For example, the PP “先生
は / teacher-TOPIC” in Fig. 5 satisfies these con-
ditions. Next, the argument / adjunct distinction of
the phrase is updated by simply checking the new
PAS annotations of NTB. If the phrase is found to
be a causer argument, the category for the phrase is
changed to NPga because the surface case of the
causer is always ga. The category for the VP is
also changed to the one with the added argument.
Fig. 9 shows an example of the change in causative
constructions. The category for the PP “先生は /
teacher-TOPIC” changes from a modifier S/S to
an argument NPga. We transfer the changes to the
descendant nodes and obtain the new derivation,
as shown on the right in the figure.

5.2.3 Consistency check
Finally, we check to see if the modified parts in a
derivation are consistent with each other. This is
done by applying the combinatory rule assigned to
the each branching in the derivation in a top-down
order. We discard the modifications to a derivation
if they are found to be inconsistent.

6 Evaluation

We actually applied the improvement process
to the Japanese CCGbank to evaluate it. The
Japanese CCGbank we used was the version in
December 2014. We used the preliminary ver-
sion for the NTT treebank (NTB) that contained
10,000 trees with functional tags and PAS annota-
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Figure 10: Causative construction with causer argument (left) and its reanalysis (right).

Training Development Test
Annot. Changed Annot. Changed Annot. Changed

Causative 195 – 20 – 80 –
Causer 34 22 3 3 15 10

NP Coord 2,632 2,148 323 259 826 652

Table 4: Statistics of annotated and reanalyzed instances

tions. We divided the 10,000 sentences into three
sets: training, development, and test. Table 3 clas-
sifies the statistics of the sets. Since the orig-
inal CCGbank consists of approximately 38,400
derivations, out experiments were performed on
only 26% of the derivations.

6.1 Evaluation of the derivation changes

Table 4 lists the numbers of annotation instances
and the number of the changes made in each set.
We also measured the similarity between the orig-
inal CCGbank and the new ones following (Hon-
nibal et al., 2010). In other words, we used the dif-
ference in dependencies as the difference metrics,
where a dependency is defined as a 4-tuple: a head
of a functor, a functor category, an argument slot,
and a head of an argument. Table 5 lists the per-
centages of the labeled and unlabeled dependen-
cies left unchanged after the reanalysis processes.
A labeled dependency is marked as unchanged if
the four elements match a tuple in the original. An
unlabeled dependency is correct if the heads of the
functor and the argument appear together in the
original.

We see from Table 5 that the most influential
change was the correction of the phrase struc-
tures, which includes the changes for the com-
pound postpositions. On the other hand, the effect
of the causer arguments was fairly limited partly
because there are only a small number of annota-
tion instances for the causers.

In order to evaluate the quality of the changes,
we randomly sampled fifty derivations from those

Corpus L.Deps U.Deps Cat
+ Correction 81.3 86.7 85.9
+ Causer 81.0 86.6 85.7
+ NP Coord 77.9 84.1 83.2

Table 5: Rate of dependencies and categories left
unchanged in development set.

Num. Type of change
32 Change in subcategorization
19 From modifier to argument
18 Change to CONJ
11 From modifying noun NP/NP to NP

8 From S/S\NP to NP/NP\NP

Table 6: Most frequent changes in lexical cate-
gories.

that underwent the reanalysis, and manually inves-
tigated the samples. We first checked the changes
in lexical categories and category dependencies,
and then referred to the derivations for the cause.

6.1.1 Changes in lexical categories
The lexical categories for 135 tokens in the fifty
sentences changed after the reanalysis1. Table 6
classifies the most frequent types of category
changes.

The most and second-most frequent types are
related to the adjunct versus argument decisions.
Due to the corrected PASs and the additional
causer annotations in the NTB, some postposition
phrases previously marked as adjuncts are now
arguments in the new analysis, and vice versa.

1We excluded tokens with different word boundaries after
the reconstruction from the number.
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In the example shown in Fig. 10, the PP “先生
は / teacher-TOPIC” is changed to an argument.
This has the category for “調べ / inquire-CONT”
change from S\NPni to S\NPni\NPga, and the
category for “は / TOPIC” shifted from S/S\NPnc
to NPga\NPnc The former belongs to the most
frequent type and the latter belongs to the second.
These types of changes are also caused by correc-
tions in the morphological information, e.g., POS
tags. For example, a PP headed by a postposition
“と” turned into an argument by fixing the erro-
neous POS “conjunctive particle” into the correct
“case marker particle” one.

The third and fourth ones are due to the intro-
duction of noun coordinations. For these types,
the conjunctions previously treated as NP/NP\NP
etc. improved to CONJ (see Fig. 11). The fourth
type also resulted from corrections in the internal
structures of the NPs.

We marked each of the changes in the lexical
category as “good”, “bad” (for deletion of obvious
arguments etc.), and “cannot decide” (for cases
where categories are not correct before or after the
change). We found that 79% of the changes (107
categories) were judged as good.

6.1.2 Changes in dependencies

Next, we investigated the difference in depen-
dency relations. For the fifty sampled derivations,
the dependencies were extracted from the orig-
inal CCGbank and our resulting CCGbank, and
the two sets of dependencies were then manually
compared. We focused on the dependency rela-
tions that were not shared by the two sets. In
other words, we examined 348 dependency tuples
unique to the original CCGbank, and 337 tuples
that were only extracted from our resulting CCG-
bank. Tables 7 and 8 list the most frequent causes
of the changes in category dependency counted in
the original CCGbank and ours.

In both sets, over 90 relations only differ in the
word boundaries to their counterparts. This is due

Original Results
Good 207 196
Bad 34 34
Other 14 15
Total 255 245

Table 9: Judgment on unshared dependencies in
original and resulting CCGbank.

CCGbank # Cat. Sent. cov.
Original 606 78.1
+ Correction 690 76.6
+ Causer 702 75.4
+ Coord. 693 75.2

Table 10: No. of category types and sentential
coverage of lexicon extracted from each CCGbank
version.

to the correction of the word boundary given by
the NTB, and suggests that the rate of the virtually
unchanged relations is larger than those listed in
Table 5.

The second most frequent causes in both sets is
related to the change between the adjuncts and ar-
guments described in Sec. 6.1.1. If a PP changed
from an adjunct to an argument like in the exam-
ple shown in Fig. 10, the category for the post-
position (“は / TOPIC” in the figure) turns into
NPga\NPnc from S/S\NPnc. This resulted in a
deletion of the relations that the old category had
with the left noun (“先生 / teacher” in the figure)
and the main verb (“調べ / inquire ”), and the ad-
dition of a relation between the new category and
the left noun. The change between the adjuncts
and arguments also affected the subcategorization
of the predicatives, and this is counted as a change
in the subcategorization (fifth in both Tables 7 and
8)

As in Sec. 6.1.1, we also marked each of the
unshared dependencies as “good”, “bad”, or “can-
not decide”. We excluded the relations changed by
the correction in the word boundary. Note that any
dependency in the original CCGbank is marked as
“good” when its deletion or change is desirable for
improving the derivation. Table 9 lists the number
of relations for each of the marks. More than 80%
of the changes in dependency are considered to be
desirable in both sets.

6.2 Evaluation of the obtained resources

6.2.1 Lexical categories
Table 10 lists the number of category types in the
CCGbank and the coverage of the lexicon on the

27



Num. Type of change
93 Change in word boundary
49 From verb modifier to argument
26 From modifying noun NP/NP to NP
22 Head change in argument NP
11 Change in subcategorization
11 From noun modifier to S\NPga\NP

Table 7: Most frequent types of change in cate-
gory dependency (counted in original CCGbank)

Num. Type of change
92 Change in word boundary
47 From verb modifier to argument
22 Head change in argument NP
19 Dependency for coordinated arguments
16 Change in subcategorization

Table 8: Most frequent types of change in cat-
egory dependency (counted in resulting CCG-
bank)

Development Test
LP LR UP UR LP LR UP UR

Original 84.54 81.02 90.78 87.00 85.00 81.03 91.15 86.90
+ Correction 85.05 82.24 91.33 88.32 85.24 81.44 91.99 87.89
+ Causer 84.84 82.13 91.34 88.41 84.87 81.22 91.83 87.88
+ Coord. 82.71 79.78 89.39 86.22 82.60 78.71 89.81 85.59

Table 11: Parsing accuracy

unseen text for each CCGbank version. We mea-
sured the coverage in the same way as in (Uematsu
et al., 2015), that is, we obtained improved CCG
derivations for the test set by applying our method
to the original CCGbank, and used them as the
“gold-standard”. The lexical coverage was around
98.8% for all the versions. The sentential cover-
age indicates the number of sentences in which all
the words were assigned gold-standard categories.

After applying the change to the derivations, the
numbers of category types increased and the cov-
erage dropped 2-3%. This is due to the distinctions
we added to the grammar, such as the compound
postpositions versus the continuous clauses.

6.2.2 Parsing accuracy
We trained a statistical parser on different versions
of the augmented CCGbank, and tested on the un-
seen text. Table 11 itemizes the performance of the
parsers trained on each version of the CCGbank.
The parser we used is the same one as that used in
our previous work (Uematsu et al., 2015), and no
tuning was performed. The evaluation measures
were the recall and precision over the category de-
pendency. As we stated above, the size of the NTB
used in this experiment was 26% of the original
CCGbank, so the numbers are not directly compa-
rable to the results using the original. Note that the
table suggests how hard it is to recover the struc-
tures in each CCGbank, rather than how good the
CCGbank is, because each line represents a dif-
ferent gold standard. A possible explanation for
the slight improvement in the performance after
correcting the trees is that the manual correction

increased the consistency in the structures.

7 Conclusion

A method for improving the Japanese CCGbank
by integrating CCG derivations and additional an-
notations to the source treebank was presented
in this paper. For the Japanese CCGbank, the
source treebank itself is a result of converting
chunk-dependencies, and the treebank potentially
includes more errors in the phrase structures and
other types of information such as functional tags.
Moreover, it essentially lacks linguistic informa-
tion which is difficult to represent in the chunk-
dependency, e.g., coordinated arguments.

We showed how functional and semantic anno-
tations on the treebank can be used for improve-
ment of the Japanese CCGbank by incorporating
annotations of the NTT treebank, especially those
for coordinations and causer roles. The process
first reconstructs the CCGbank by using cleaner
trees from the NTT treebank and the original tree-
to-derivation conversion. The new derivations are
then modified according to the functional tags and
PAS information of the NTT treebank.

The empirical evaluation on the dependency re-
lations shows that the improving process changed
23% of the dependencies extracted from the orig-
inal CCGbank. A manual investigation of the
changes suggests that approximately 80% of the
changes are desirable and that the resulting deriva-
tions are more accurate in recognizing arguments
and coordinations.
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Abstract

We propose to use Graph Rewriting
for parsing syntactic dependencies. We
present a system of rewriting rules dedi-
cated to French and we evaluate it by pars-
ing the SEQUOIA corpus.

1 Introduction

The most popular frameworks (TAG, CG, LFG,
HPSG) for symbolic parsing are based on the
notion of grammar. They defined a set of ini-
tial structures (often strongly linked to a lexicon)
and a set of rules to express how initial struc-
tures can combine into larger ones. In this set-
ting, parsing consists in searching for a syntac-
tic structure predicted by the grammar for an in-
put sentence. Among drawbacks of these meth-
ods, there is the fact that they may be inefficient
when large-coverage grammar are considered (the
search space grows very quickly for large sen-
tences) and that they are not easy to use in con-
texts where robust parsing is needed (grammars
describe set of correct sentences but do not give
structures to sentences that are not completely
covered by the grammar). Another problem with
grammar-based parsing is that it is a difficult task
to maintain the global consistency of the grammar.
Moreover, development of large coverage gram-
mar is known to be a time-consuming task.

On the other side, statistical methods build lan-
guage models with learning algorithm applied to
large annotated corpora. With respect to sym-
bolic methods, it is easier to build robust parser
with these methods and it is also easier to adapt
a method to a new kind of corpus or to a new
natural language. The main drawbacks are that
good results are obtained only if large and well-
annotated corpora are available. It is also dif-
ficult to improve a system: learning provides a
language model which is essentially a black box

which cannot be read by a human; external mech-
anism must be used if someone want to include
linguistic knowledge in the system.

In this paper we propose a symbolic method
which is defined in a Graph Rewriting (GR) frame-
work. The output format is dependency syntax
of natural language sentences. We propose to de-
scribe the parsing process as a sequence of atomic
transformations starting from a list of lexical units
(a tokenized sentence) to a dependency tree1 built
on the same lexical units. Each atomic transforma-
tion is described by a handcrafted rule. Then, in-
stead of defining a grammar that describes the set
of well-formed structures, we define rules which
describe linguistic contexts in which a dependency
relation can appear.

The rule system input is made of lemmatized
and POS-tagged sentences. For the experiments in
this paper, we use the SEQUOIA corpus (Candito
and Seddah, 2012) (version 6.02) as the gold stan-
dard. We experiment our system in two settings:
on gold POS-tagged text (taken from SEQUOIA

data) and on POS-tagging given by the MElt tag-
ger (Denis and Sagot, 2012).

We use the general framework of GR where
each transformation is given by two parts: first,
the conditions that control when the transforma-
tion may apply (the pattern) and second, a descrip-
tion of the way the structure should be modified.

In the system we proposed, the input format is a
tokenized sentence where each lexical unit is given
a lemma and a POS-tag; the output format is a de-
pendency structure; hence, both input and output
structure can be represented as trees. Neverthe-
less, we use GR to describe our rules. At a first
sight, it may be surprising to use such a formalism
to manipulate only trees. But, the first thing to no-
tice is that matching algorithms used in GR are di-
rect generalization of matching algorithm that can

1The output may a partial dependency trees.
2
https://gforge.inria.fr/projects/sequoiabank/
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be used in tree transformation: it means that, if
all structures and patterns happen to be trees, the
pattern matching in the GR setting will be as effi-
cient as the pattern matching in the tree rewriting
setting. A second benefit of GR is that it becomes
possible to express more information in the inter-
mediate structures. In the rule system, we use two
kinds of relation to express linear order between
lexical entities: the relation SUC links the heads
of two partial dependency structures; the relation
INIT_SUC links two successive lexical unit of the
sentence, even if they have also been integrated
in partial dependency structures. Structures with
these two kinds of relations are graphs and cannot
be represented as trees.

In a comparison with other works from the lit-
erature, we left out data-driven approaches which
are far from our proposal. In (Foth et al., 2000),
(Debusmann et al., 2004), weighted rules are used
to described valid dependency structures and the
parsing is expressed as a constraints resolution
problem. (Covington, 2000) and (Nivre, 2003)
propose rule-based processes to produce depen-
dency structures but they are presented as kind of
shift-reduce algorithm where word are treated one
by one following the reading order, rules describ-
ing how each word can be link to the current state.
Each rule only tells that a dependency from a word
to another word is acceptable.

More close to our work is the proposal
of (Oflazer, 2003) which defines a set of rules
that are used iteratively until a fixpoint is reached
and the rules application do not necessarily fol-
low the reading order of the sentence. However,
in (Oflazer, 2003) rules are encoded as regular ex-
pressions and are less flexible than a GR rule can
be. To our knowledge, our proposal is the first use
of the Graph Rewriting framework for symbolic
dependency parsing.

In Section 2, we describe more precisely the GR
framework used in the paper. In Section 3, the
GR system considered is detailed. We finally give
experimental results in Section 4.

2 Graph Rewriting

Unfortunately, there is no canonical formal GR
definition. In this experiment, we use the GR def-
inition which is implemented in the GREW soft-
ware3. Rules are defined by two parts: a pattern
and a set of commands. GREW was used for in-

3
http://grew.loria.fr
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Figure 1: An example of application for the rule
subject_noun

stance in (Bonfante et al., 2011) to build a seman-
tic annotation of a French Treebank.

The reader can refer to the GREW documenta-
tion for a complete description of the GR frame-
work and of the syntax of the rules with GREW.
We give here a simple example of rule and of its
application; more elaborated rules are shown in
the next section. The code below is a simplified
version of a rule for the subject relation.

1 rule subject_noun {
2 match {
3 S [cat=N|PRO];
4 V [cat=V, m=ind|subj];
5 e1:S -[SUC]-> V;
6 P []; e2:P -[SUC]-> S;
7 }
8 without { V -[suj]-> * }
9 without { S [lemma="que"|"dont"] }

10 commands {
11 del_edge e1;
12 del_edge e2;
13 add_edge V -[suj]-> S;
14 add_edge P -[SUC]-> V;
15 }
16 }

Different parts of rule are as follows. One
match part (lines 2 to 7) describes the subgraph
that must be found: here, the subgraph contains
3 nodes S, V and P linked by two relations SUC
(lines 5 and 6). Any number of without parts
describe negative application patterns; if any of
these negative patterns is found, the rule applica-
tion is blocked. For instance (line 8), if there is al-
ready a suj dependency starting from V, the rule
does not apply (it prevents from putting two sub-
jects for the same verb). Finally, a commands
part describes how the graph is transformed by the
rule application, in the example: add a suj re-
lation from the V node to the S node and update
the SUC relations (the verb is now the successor
of the P node). On a very simple sentence Jean
mange une pomme. (John eats an apple.), the two
dependency structures of Figure 1 show respec-
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tively the structure before (with identifiaction of
matched nodes S, V and P) and after the rule ap-
plication. With GREW, it is also possible to mod-
ify feature structures in the commands part: add
a new feature, modify or remove an existing fea-
ture. The rule above uses some lexical information
in the second without part. As some rules make
a strong usage of lexical information, it is possible
to parametrize rules by external lexicons with the
lex_rule keyword. For instance, in the rule be-
low, a relation obj in added (line 18) only if the
verb lemma (line 7) is one on the lemmas given
in the lexical file verb_with_obj_noun.lp
(line 3). This file contains a list of more than 3,000
French transitive verbs.

1 lex_rule verb_object_noun
2 ( feature $lemma;
3 file "verb_with_obj_noun.lp"
4 ) {
5 match {
6 OBJ [cat=N|PRO];
7 V [cat=V, lemma=$lemma, m=ind|subj];
8 POST [];
9 e1: V -[SUC]-> OBJ;

10 e2: OBJ -[SUC]-> POST;
11 V -[suj]-> *
12 }
13 without ...
14 without ...
15 commands {
16 del_edge e1;
17 del_edge e2;
18 add_edge V -[obj]-> OBJ;
19 add_edge V -[SUC]-> POST;
20 }
21 }

When the number of rules increases, some con-
straint should be put on the order in which the
rules can be used. In this respect, a last feature,
which is essential in the GREW usage, is the orga-
nization of rules into subsets called modules. The
whole rewriting process is controlled by a total or-
der on modules that are applied one after another;
inside a module, no ordering is given and any rule
may be apply anywhere in the graph.

Moreover in a general GR setting, the process
may be non-confluent. Even if a total ordering is
provided between modules, an arbitrary number of
structures can be produced inside a module. In this
work, we restrict ourself to deterministic GR, this
means that we focus on the set of dependency re-
lation that can be produced in a deterministic way.
We can imagine many cases where non-confluent
rewriting system can be used: for instance, PP-
attachment is known to be a task that cannot be
decided only with syntactic information. We leave
as future work the development of non-confluent
system and the problem of ranking in case of non-
deterministic process.

3 FRDEP-PARSE: a System of Graph
Rewriting Rules for Dependency
Parsing

3.1 Input and Output Formats
FRDEP-PARSE takes a French sentence annotated
with POS-tags and lemmas as input and returns a
dependency syntax annotation for the same sen-
tence as output. Let us describe the input and the
output more precisely.

The input sentence is a sequence of tokens.
Each token is equipped with a set of features:

• phon: the phonological form of the token;

• lemma: the lemma of the token;

• pos: the value of which is one of the 28 tags
defined in the annotation guide of the French
TreeBank4;

• position: an integer indicating the posi-
tion of the token in the sequence (this fea-
ture is used to express linear order between
tokens).

At the beginning of the process, the 28 POS-
tags are interpreted in terms of 13 grammatical
categories (feature cat) and some other features.
For instance, the 6 POS-tags V, VINF, VIMP, VS,
VPP, VPR are all interpreted by feature cat=V
and a m feature recording the mood (respectively
indicative, infinitive, imperative, subjunctive, past
participle and present participle).

Initially, the only relations between tokens are
SUC relations of immediate succession between
adjacent tokens.

The parsing output is the sentence annotated
with syntactic dependencies according to the
tagset used in SEQUOIA. The annotation may be
partial. Figure 2 shows an example of syntactic
annotation obtained with FRDEP-PARSE.

3.2 A CKY Basic Architecture
The basic form for the rewriting rules of FRDEP-
PARSE aims at the implementation of a CKY-like
algorithm in the dependency syntax framework.
The dependency tree of a sentence is built bottom-
up step by step. When two partial trees T1 and T2

have their terminal yields which are adjacent, a de-
pendency may be added between the roots w1 and
w2 of the two trees.

4
http://alpage.inria.fr/statgram/frdep/

Publications/FTB-GuideDepSurface.pdf
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Figure 2: A non-projective result of syntactic annotation with FRDEP-PARSE.

To express adjacency between two yields, SUC
is used with a larger meaning: if there is a SUC
relation from a token w1 to a token w2, it means
that w1 and w2 are roots of intermediate depen-
dency trees, the yield of the first tree immediately
preceding the yield of the second tree.

(Eisner, 1996) already proposed a CKY-like al-
gorithm for parsing with dependencies, but he dif-
fers from our proposal on two points: he uses a sta-
tistical approach and to link two dependency trees,
he takes only their roots into account and ignores
information coming from deeper nodes.

The use of GREW for implementing the CKY
algorithm in a strict manner has no point, but the
Graph Rewriting approach allows to enrich the al-
gorithm in various directions. One of them is to
add internal and external constraints on the T1 and
T2 trees.

Here is an example of constraints introduced by
a rule of FRDEP-PARSE.

1 lex_rule verb_right-modif_adv
2 (feature $lem; file "quant_adv.lp") {
3 match {
4 %positive constraint on T1
5 V [cat=V];
6
7 %positive constraints on T2
8 ADV[cat=ADV];
9 POST [ ];

10 e1: ADV -[SUC]-> POST
11
12 % adjacency between T1 and T2
13 e2: V -[SUC]-> ADV
14 }
15
16 % negative constraints on T1
17 without { ADV[pos=ADVWH] }
18
19 %negative constraints on T2
20 without { POST[cat=V,m=pastp] }
21 without {
22 ADV[lemma=$lem];
23 POST[cat=P,lemma="de"]
24 }
25
26 commands{
27 del_edge e1;
28 del_edge e2;
29 add_edge V -[mod]-> ADV;
30 add_edge V -[SUC]-> POST
31 }
32 }

The rule above is a lexical rule in which the pa-
rameter $lem represents the lemma of an adverb
coming from the quant_adv.lp file gathering

adverbs of quantity. It says that any adverb ADV,
the yield of which immediately follows the yield
of a verb V, is a modifier of the verb V. It includes
three negative constraints:

• An internal constraint: ADV must be different
from an interrogative adverb. For instance,
in the sentence Pierre demande combien ça
coûte (Pierre asks how much it is), combien is
not a modifier of demande but a complement
of coûte.

• An external constraint: POST that immedi-
ately follows ADV is not a past participle be-
cause in this case, ADV depends on the past
participle POST. For instance, in the sen-
tence Pierre a beaucoup travaillé (Pierre has
worked a lot), beaucoup is not a modifier of
the auxiliary a but of the past participle tra-
vaillé.

• A mixed constraint: ADV is not an adverb
of quantity followed with the preposition de.
For instance, in the sentence Pierre connaît
beaucoup de personnes (Pierre knows a lot
of persons), beaucoup is not a modifier of
connaît but of personnes at the opposite to
the sentence Pierre travaille beaucoup la nuit
(Pierre works a lot in the night).

The following example highlights the expres-
sivity of the graph rewriting approach, which al-
lows the representation of constraints on deep lev-
els in the T1 and T2 trees .

1 lex_rule impers_verb_obj_de_inf
2 (feature $lem;
3 file "il_verb_with_obj_de_inf.lp"){
4 match {
5 %positive constraints on T1
6 V[cat=V,lemma=$lem];
7 IL[phon="il"|"Il"];
8 V -[suj]-> IL;
9

10 %positive constraints on T2
11 PREP[cat=P,lemma="de"];
12 OBJP[cat=V,m=inf];
13 PREP -[obj.p]-> OBJP;
14 POST[];
15 e1: PREP -[SUC]-> POST;
16
17 % adjacency between T1 and T2
18 e2: V -[SUC]-> PREP;
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19 }
20
21 % negative constraints on T1
22 without{SE[pos=CLR]; V -> SE}
23
24 commands{
25 del_edge e1;
26 del_edge e2;
27 add_edge V -[obj]-> PREP;
28 add_edge V -[SUC]-> POST
29 }
30 }

The rule above realizes the direct object of an
impersonal verb, when this object is an infinitive
introduced with the preposition de. The rule is lex-
ical because it verifies that the verb is able to enter
such a construction. The parameter of the rule is
the lemma $lem of the verb.

A positive constraint on T1 says that the verb
V must have a subject il and a positive constraint
on T2 says that the tree is made of PREP de, a
preposition introducing an infinitive OBJP.

Such constraints cannot be expressed with the
classical CKY algorithm in a constituency ap-
proach, where constraints are limited to the exter-
nal constituents of partial syntactic trees.

3.3 Non Projective and Disambiguation
Rules

If all rules of FRDEP-PARSE had the form de-
scribed above, the dependency structure resulting
from their application would be projective. There-
fore, we should be not able to represent some phe-
nomena from the French grammar, which are es-
sentially non-projective, and are present in the SE-
QUOIA corpus.

In FRDEP-PARSE, non-projectivity is intro-
duced in two ways:

• in iterative modules, some rules link partial
dependency trees with non-projective depen-
dencies;

• specific rules are added in final modules with
the aim of moving dependencies from pro-
visional positions with provisional labels in
order to obtain non-projective dependencies
with definitive labels.

There are other final modules used for disam-
biguation. Indeed, at some intermediate steps of
the parsing process, there is no sufficient informa-
tion for deciding between several dependency la-
bels. We could divide the search path into several
paths. The repetition of such choice points would
entail the time explosion of the parsing process. In

this situation, we keep a unique search path by la-
belling the concerned dependencies with disjunc-
tion of elementary functions. At the end of pars-
ing, the ambiguity is solved with specific rules us-
ing the information accumulated during the pars-
ing process.

The following rule illustrates both functions:
label disambiguation and expression of non-
projectivity. It applies to Sentence [ann-
odis.er_00026] from the SEQUOIA corpus, more
specifically to the part le ruban qui en marque
symboliquement l’entrée (the ribbon, which sym-
bolically marks the entry of it). Figure 1 shows the
syntactic annotation produced by FRDEP-PARSE.
The clitic pronoun en represents a complement of
entrée. It is modelled with a dependency dep
crossing the object dependency mod.rel from
the noun ruban to the verb marque. The rule pro-
ducing non-projectivity is the following:

1 lex_rule obj_dep_en
2 (feature $lem ;
3 file "verb_with_obj_deobj.lp") {
4 match{
5 CLIT[pos=CLO, phon="en"];
6 V[cat=V];
7 iobj_rel: V -[DE_OBJ-OBJ]-> CLIT
8 OBJ[cat=N];
9 V -[obj]-> OBJ

10 }
11 without { V [lemma=$lem] }
12 commands {
13 del_edge iobj_rel;
14 add_edge OBJ -[dep]-> CLIT
15 }
16 }

Initially, CLIT en depends on the verb V, which
it cliticizes in an ambiguous relation de_obj (in-
direct object introduced with the preposition de)
or obj (direct object). When the verb V has found
a direct object OBJ, the source of the dependency
for CLIT en is transferred from the verb to the ob-
ject and its label becomes dep.

The lexicalization of the rule concerns the neg-
ative constraint. It aims at verifying that V is not a
verb simultaneously taking a direct object and an
indirect object introduced with de. In this case, en
would be the de_obj complement of the verb V.

3.4 Modules for Controlling the Parsing
Process

If we put all rewriting rules of FRDEP-PARSE in
a unique bag with the same priority, the system is
untractable because of the ambiguity, which will
entail an time explosion of the parsing process.
But GREW offers the possibility of grouping rules
by modules and ordering the modules.

We use this possibility for controlling the pars-
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Figure 3: The annotation of a sentence after running the initial modules and at the end of parsing.

ing process. The rewriting rules model particular
grammatical rules of the language (French in our
case) and they are grouped by modules according
to their linguistic proximity. We distinguish three
classes of modules with respect to their position
in the parsing process: initial modules, iterative
modules and final modules.

3.4.1 Initial modules
Initial modules are carried out at the beginning of
parsing. They have two different functions. Some
modules, which are related to the specific annota-
tion format, are used to prepare the actual syntactic
annotation.

Other modules have a linguistic function: they
realize close dependencies to verbs, nouns, adjec-
tives and adverbs. They realize them with a great
determinism, and thus they can be very well fore-
seen. They link verbs with their auxiliaries and
clitics, nouns with their determiner and left adjec-
tives. Finally, they make specific adverbs modi-
fiers of verbs, adjectives or other adverbs.

Figure 3 shows an example of annotation step
produced with FRDEP-PARSE on a part of Sen-
tence [frwiki_50.1000_00854] from the SEQUOIA

corpus. The first annotation is produced by the
application of the initial modules. The module
verb_aux realizes the dependencies aux.tps
and aux.pass of the respective verbs pu and re-
tracés. The module noun_dep realizes the depen-
dencies det and mod for the noun F but also the
dependency det for the noun versements.

3.4.2 Iterative modules
Iterative modules realize arguments of verbs, ad-
jectives, nouns and adverbs, as well as their mod-
ifiers that can be put more or less far from them.
They are called iterative because they can be re-

peated several times, which is made necessary by
the CKY form of the syntactic composition in-
duced by the form of rules and the recursivity of
the syntactic composition for natural languages.

In the bottom part of Figure 3, the suj, obj
and mod.rel dependencies of the second anno-
tation are realized by iterative modules. In par-
ticular, the subject module is used twice: first, it
realizes the subject qui of pu; second, it realizes
the subject versements of avoisineraient. With a
CKY strategy, both dependencies cannot be real-
ized in the same application of the module sub-
ject because versements must be composed with
the relative clause that modifies it, before being
composed with the verb avoisineraient.

There is a specific coord module, which is ded-
icated to coordination. It is also iterative be-
cause coordination may be performed at more or
less deep levels of syntax: word, noun phrase,
clause. . .

3.4.3 Final modules
Final modules are carried out at the end of parsing.
There are three classes of final modules.

In the order of their execution, the first class
includes modules that realize disambiguation
and transformation of projective trees into non-
projective trees (see Subsection 3.3).

Then, a second class includes modules that aim
at closing the dependency structure of the sen-
tence in two ways: adding default dependencies
between non-connected partial trees and removing
relations that are not syntactic dependencies but
that were used by FRDEP-PARSE in intermediate
steps.

Finally, a last class of modules transforms the
annotation in a format conform to the annota-
tion scheme of SEQUOIA. The reason is that our
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linguistic choices of annotation differ from those
made for annotating SEQUOIA on some points.

First, we aim at simplifying the system of
rewriting rules with a more uniform representation
of dependencies. For instance, all contractions be-
tween a preposition and a determiner (for instance
à le is contracted in au) are decomposed, so that
rules related to determiners or prepositions can ap-
ply to these cases in the same way as in the stan-
dard cases.

Second, for some phenomena, there are good
arguments for two different interpretations and we
have made another choice than SEQUOIA. For in-
stance, we consider that the head of a coordination
is the conjunction of coordination. The main argu-
ment is that it allows the modifiers or arguments
of a coordination to be distinguished from those
of the first conjunct, which is not possible if we
choose the head of the first conjunct as the head of
the coordination.

3.5 Relaxing the CKY strategy
The goal of grouping rewriting rules by modules
and ordering these ones, is the efficiency of pars-
ing. The challenge is to keep accuracy at the same
time. For this, we can play with two factors:

• the delimitation of modules (between two ex-
tremes, all rules in one module and one sepa-
rate module for each rule),

• the order between modules, taking into ac-
count that iterative modules can be repeated
as many times as needed,

If we constrain all iterative rules to respect the
form described in Subsection 3.2, which induces a
CKY strategy of parsing, we cannot obtain some
needed dependency structures: for most iterative
modules, the constraints imposed by the French
grammar are contradictory.

Let us take again Example 1 to illustrate
this contradiction. The first dependency obj
from coupé to ruban must be realized after the
dependency mod.rel, which entails the or-
der head_verb_obj / head_noun_modrel be-
tween the corresponding modules. At the op-
posite, the second dependency obj from mar-
que to entrée must be realized before the de-
pendency mod.rel, which entails the order
head_noun_modrel / head_verb_obj .

The contradiction cannot be solved by iteration
of the module head_verb_obj because both de-

pendencies will be realized at the first pass through
the module.

We choose to relax the CKY strategy, which
allows to link two partial dependency trees only
by their roots. From empirical considerations, we
propose new rules in the following form: if the
yield of a partial dependency tree T1 immediately
precedes the yield of another partial dependency
tree T2, the rule tries to realize a dependency be-
tween the rightmost token wr1 of the T1 yield with
the root of T2.

This new kind of rules aims at implementing
a strategy of parsing that gives priority to clos-
est dependencies, contrary to the rules implement-
ing a CKY-like strategy aiming at linking heads
of dependency trees. We call the first rules close
linking rules and the second ones head linking
rules. The corresponding modules are respec-
tively called close linking modules and head link-
ing modules.

As for the head linking rules, the adjacency be-
tween T1 and T2 in a close linking rule is ex-
pressed with a SUC relation between their roots r1

and r2. The difference is that an INIT_SUC rela-
tion expresses the immediate succession between
wr1 and the left border wl2 of the T2 yield. The
token wl2 is linked to r2 by an explicit chain of de-
pendencies, which may reduce to the empty chain.
The rule introduces a dependency from wr1 to r2.

Let us illustrate this new kind of rules with Ex-
ample 1. Using only head linking rules, we ob-
tain the annotation shown on Figure 4. We fail
to link the word ruban with the head marque of
the relative clause because the concerned module
head_noun_modrel, the function of which is to
realize mod.rel dependencies, comes after the
module head_verb_obj realizing the dependency
obj from coupé to ruban.

To solve the problem, we introduce the follow-
ing close linking rule:

1 rule close-noun_modrel_verb {
2 match {
3 % positive constraints on T1
4 PRE [];
5 N [cat=N|PRO];
6
7 % positive constraints on T2
8 PROREL [pos=PROREL];
9 V [cat=V, m=ind|subj];

10 POST [];
11 V -> PROREL;
12 e2: V -[SUC]-> POST;
13
14 %adjacency between T1 and T2
15 e1: PRE -[SUC]-> V;
16
17 % N rightmost token in T1 yield
18 N -[INIT_SUC]-> PROREL
19 }
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Figure 4: The annotation of the phrase from Figure 1 with the CKY strategy

20
21 % PROREL leftmost token in T2 yield
22 without {
23 DEP []; V -> DEP;
24 DEP.position < PROREL.position
25 }
26 without { V -> N}
27
28 commands {
29 del_edge e1;
30 del_edge e2;
31 add_edge N -[mod.rel]-> V;
32 add_edge PRE -[SUC]-> POST;
33 }
34 }

The rule links a noun N with the head verb V of
a relative clause in a mod.rel dependency, ex-
pressing the modification of the noun by the rela-
tive clause.

The token PRE is a node of T1, without any spe-
cific features. N is also a node of T1 but the re-
lationship between PRE and T1 is not specified.
Some constraints will be added further to make
PRE the root of T1 and N the rightmost token of
its yield. The tree T2 is made of the verb V gov-
erning a relative pronoun PROREL.

Any rule from an initial or iterative module pre-
serves the following property for the SUC relation:
the two tokens linked by the relation are roots and
they have adjacent yields. This entails that PRE
and V are roots of respectively T1 and T2 and their
yields are adjacent.

As the initial and iterative modules preserve
projectivity, the negative constraints express that
PROREL is the leftmost token wl2 of the T2 yield.

Since the relation INIT_SUC expresses the ad-
jacency of two tokens, therefore PROREL is the
immediate successor of N. As PROREL is the left-
most token of the T2 yield and the T1 yield im-
mediately precedes the T2 yield, it entails that the
rightmost token wr1 of the T1 yield is N.

The rewriting commands link the head V of the
relative clause with its antecedent N in a mod.rel
relation and they update the SUC relations.

As the experimental results shows it in the
next section, both head linking and close link-
ing strategies capture most configurations of syn-

tactic dependencies but they fail to parse such
phrases as the following one extracted from [fr-
wiki_50.1000_00464]: des listings de comptes de
la chambre de compensation luxembourgeoise. If
we ignore agreement constraints, the head link-
ing strategy leads to binding of the adjective lux-
embourgeoise with the head listings of the depen-
dency tree of des listings de comptes de la cham-
bre de compensation. With the close linking strat-
egy, binding is realized with the closest leaf com-
pensation. Both solutions are wrong because lux-
embourgeoise is a modifier of chambre. We need
a more flexible strategy to cover all different cases
of linking between two partial dependency trees.

4 Experimental results

The gold standard data used for evaluation is SE-
QUOIA version 6.0, which contains 3,099 French
sentences taken from various sources (newspa-
per, medical texts, Europarl and Wikipedia). The
full corpus was divided in two homogeneous sub-
corpora (DEV-SEQUOIA and TEST-SEQUOIA) of
the same size. We used the DEV-SEQUOIA cor-
pus to develop and to improve the rule system; the
final evaluation reported below being done on the
other part TEST-SEQUOIA.

The input of our rule-based system FRDEP-
PARSE are sentences which are tokenized, lemma-
tized and tagged with the refined system of 28 pos
labels defined in (Candito et al., 2011). In order
to evaluate the FRDEP-PARSE rule system alone,
we have made a first experiment (called GOLD-
POS) where the input data are taken from the gold
corpus: we consider the tokenization, lemmatiza-
tion and enriched POS of SEQUOIA version 6.0
as input. The second experiment tries to evaluate
our proposal in a more realistic setting where no
gold tagging is available. In this second case, we
first use a French tagger to build the input of out
system from the raw test. Our tests are based on
MElt (Denis and Sagot, 2012), so we call this sec-
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ond experiment MELT-POS.
In SEQUOIA, there is no clear rules in the anno-

tation guide which explain how punctuation sign
should be linked to the rest of the sentence; hence,
the punctuation is not annotated in a consistent
way. Here, we report scores on the Corpus TEST-
SEQUOIA without taking into account the relation
punctuation; nevertheless, comma used as a co-
ordination in enumeration are annotated with re-
lation coord and dep.coord and so there are
included in the evaluation. In this context, the
LAS (Labelled Attachment Score) corresponds to
what is usually called the recall (i.e. the propor-
tion of relations in the reference corpus which are
correctly predicted by the system). The objective
of FRDEP-PARSE is not to build complete depen-
dency parse and when it is not sensible to com-
pute a relation with a deterministic rewrite rule,
only partial dependency structures are returned
and some lexical units are left unattached. This
explain why the precision (i.e. the proportion of
relations predicted by the system which are cor-
rect) is much higher than the recall.

LAS(recall) prec. F-measure
GOLD 80.61% 89.21% 84.69%
MELT 76.04% 85.96% 80.69%

Figure 5: Experimental results

The TEST-SEQUOIA corpus contains 1,550 sen-
tences and 33,662 lexical units. This corpus is
parsed in 51.9 seconds (with a 2.4GHz Intel Core
i7) and 32,035 relations are produced; this corre-
sponds to a mean of 617 relations produced per
second.

We provide below some comparison with other
dependency parsers evaluated on French.

The talismane parser (Urieli, 2013) is a statis-
tical parsed where some rules based on linguistic
knowledge can be used to guide the parser. For
the same reason we gave above about punctuation,
Talismane is evaluated on the set of dependencies
different from the punctuation. On a corpus sim-
ilar to the one we used, the LAS (labelled attach-
ment score) ranges from 86% to 88%.

In (Villemonte De La Clergerie, 2014), some
experiments on the SEQUOIA corpus are also re-
ported. Again, results are given without taking
into account the punctuation. Different combina-
tion of parsers are tested on different sub-corpora;
the LAS scores obtained range from 83.53% to

88.94%.
The scores we obtain with FRDEP-PARSE are

significantly lower than the two other systems but
we still consider them as very encouraging. In-
deed, the FRDEP-PARSE system was written in
a few weeks and is the first attempt to write of a
set of graph rewriting rules for dependency pars-
ing. Moreover, we make two very strong restric-
tions on our system: we consider only determin-
istic application of rules and we do not use any
statistical information. Relaxing these restrictions
is far from being an easy task. If we consider non-
deterministic uses of Graph Rewriting in the gen-
eral setting, we will necessarily have to deal with
exponential number of solutions. It will be needed
to use statistical information to guide the graph
rewriting process and to avoid exponential explo-
sion. This challenge is part of the future work to
do in this area.

5 Conclusion

In this paper, we have presented a first attempt
to build a dependency parser in the framework of
Graph Rewriting. Despite severe restrictions on
the rule system, we obtain a LAS-score of 80%
if the POS-tagging is taken from the Gold stan-
dard corpus and 76% if we use MElt as the POS-
tagger. These results are lower than state-of-the-
art approaches based on combination of statisti-
cal and symbolic dependency parsing but we think
that there are many possible ways of improvement
from this first attempt; for instance, using non-
deterministic graph rewriting rules together with
a selection system based on statistical information
taken from a parsed corpus is one of the future plan
for improving our system.
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Abstract

In this paper we gauge the utility of
general-purpose, open-domain semantic
parsing for textual entailment recognition
by combining graph-structured meaning
representations with semantic technolo-
gies and formal reasoning tools. Our ap-
proach achieves high precision, and in two
case studies we show that when reasoning
over n-best analyses from the parser the
performance of our system reaches state-
of-the-art for rule-based textual entailment
systems.

1 Background and Motivation

There is a growing interest in recent years
in general-purpose semantic parsing into graph-
based meaning representations, which provide
greater expressive power than tree-based struc-
tures. Recent efforts in this spirit include, for
example, Abstract Meaning Representation (Ba-
narescu et al., 2013), and Semantic Dependency
Parsing (SDP) (Oepen et al., 2014; Oepen et al.,
2015). Simultaneously, in the Semantic Web com-
munity, a range of generic semantic technolo-
gies for storing and processing graph-structured
data has been made available, but these have not
been much used for natural language process-
ing tasks. We propose a flexible, generic frame-
work for precision-oriented Textual Entailment
(TE) recognition that combines semantic parsing,
graph-based representations of sentence meaning,
and semantic technologies.

During the decade since the TE task was de-
fined, (logical) inference-based approaches have
made some important contributions to the field.
Systems such as Bos and Markert (2006) and Tatu
and Moldovan (2006) employ automated proof
search over logical representations of the input
sentences. Other systems, such as Bar-Haim et

al. (2007), apply transformational rules to linguis-
tic representations of the sentence pairs, and deter-
mine entailment through graph subsumption. Be-
cause inference-based systems are vulnerable to
incomplete knowledge in the rule set and errors
in the mapping from natural language sentences
to logical forms or linguistics representations, and
because the definition of the TE task encourages
a more relaxed, non-logical notion of entailment,
the majority of TE systems have used more robust
approaches, however. Our work supports a notion
of logical inference for TE by reasoning with for-
mal rules over graph-structured meaning represen-
tations, while achieving results that are compara-
ble with robust approaches.

We use a freely available, grammar-driven se-
mantic parser and a well-defined reduction of un-
derspecified logical-form meaning representations
into variable-free semantic graphs called Elemen-
tary Dependency Structures (EDS) (Oepen and
Lønning, 2006). We capitalize on a pre-existing
storage and search infrastructure for EDSs using
generic semantic technologies. For entailment
classification, we create inference rules that enrich
the EDS graphs, apply the rules with a generic rea-
soner, and use graph alignment as a decision tool.

To test our generic setup, we perform two
case studies where we replicate well-performing
TE systems, one from the Parser Evaluation us-
ing Textual Entailments (PETE) task (Yuret et
al., 2010), and one from SemEval 2014 Task 1
(Marelli et al., 2014). The best published results
for the PETE task, Lien (2014), were obtained
through heuristic rules that align meaning repre-
sentations based on structural similarity. Lien and
Kouylekov (2014) extend the same basic approach
for SemEval 2014 by including lexical relations
and negation handling. We recast the handwrit-
ten heuristic rules from these systems as formal
Semantic Web Rule Language (SWRL) rules, and
run them with a generic reasoning tool over EDS
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meaning representations. The PETE contribution
of Lien (2014) experimented with using n-best
analyses from the parser to boost TE recall, and we
can easily include n-best reasoning in our setup.

In Sections 2 and 3, we outline our approach
and describe the semantic parsing setup and se-
mantic technologies we employ. Sections 4 and 5
detail our replication of the two TE shared tasks.
Finally, in Section 6, we sum up our effort and
point to directions for future work.

2 General-purpose Semantic Parsing

General-purpose, open-domain semantic parsing
systems that output logical-form meaning rep-
resentations are freely available today, but have
not yet been widely used in TE systems. For
our replication of the PETE and SemEval tasks,
we use the English Resource Grammar (ERG)
(Flickinger, 2000), a broad-coverage HPSG-based
parser. The ERG has been continuously devel-
oped since around 1993, and today will typi-
cally allow parsing of 90-95% of the sentences
in naturally occuring running texts of various do-
mains and genres at average parse times of a
couple of seconds per sentence. The ERG in-
cludes a Maximum Entropy parse ranking model
that is trained on some 50,000 mixed-domain sen-
tences; the parser applies exact inference, i.e.,
constructs a complete parse forest and facilitates
extraction of n-best lists of analyses in globally
optimal rank order. In our experiments, we use
the ERG in its 1212 release version, together
with its standard PET parser (Callmeier, 2002),
and off-the-shelf models and settings. The ERG
outputs underspecified meaning representations in
the Minimal Recursion Semantics (MRS) frame-
work (Copestake et al., 2005). The MRS logical-
form meaning representations can be converted
to EDSs, which are variable-free semantic de-
pendency graphs. Kouylekov and Oepen (2014)
recently showed that the Resource Description
Framework (RDF) is suitable for representing var-
ious types of semantic graphs, and demonstrated
how to embed EDS meaning representations in
RDF. We opt for EDS over MRS because its
variable-free form integrates more naturally with
RDF technologies, while still retaining the seman-
tic information essential to entailment recognition.

In the EDS example in Figure 1, each line de-
picts a graph node (each corresponding to one el-
ementary predication in the original MRS), with

node identifiers prefixed to the node labels (sep-
arated by the colon), and a set of outgoing
arcs (role-argument pairs) enclosed in parenthe-
ses. The semantic arguments to the relation rep-
resentend by the node are directed arcs to other
nodes in the EDS graph. For instance, the node
for would v modal is connected to the node
for and c through an arc labeled ARG1. The
node labeled and c in turn has outgoing arcs
to wake v up and fret v about. The two
pron nodes do not have outgoing arcs, they
are connected to the structure through incoming
arcs from the verb nodes. Finally, each of the
pronoun q nodes is connected to a pron node
through a BV (“bound variable”) arc. A graphical
visualization of the same graph is shown in Figure
3 (ignoring nodes and arcs shown in green there,
which are added by our entailment processor).

There are two notable examples of logic-based
TE systems that have used the ERG parser and
MRS meaning representations: Wotzlaw and
Coote (2013) present a TE system which com-
bines the results of deep and shallow linguis-
tic analyses into scope-resolved MRS representa-
tions. The MRS expressions are translated into
another, semantically equivalent first-order logic
format, which, enriched with background knowl-
edge, is used for the actual inference. The system
of Bergmair (2010) also uses MRS as an interme-
diate format in constructing meaning representa-
tions. Input sentences are parsed with the ERG,
and the resulting MRSs are translated into logi-
cal formulae that can be prosessed by an infer-
ence engine. In contrast to these prior applica-
tions of generic semantic parsing using the ERG
to the TE task, our work simplifies the scopally
underspecified logical forms of MRS into more
compact graph-structured representations of core
predicate–argument relations, and we define TE-
specialized notions of inference over these seman-
tic graphs.

3 Semantic Technologies and Textual
Entailment

Kouylekov and Oepen (2014) map different types
of meaning representations, including the EDSs
used in our work, to RDF graphs, stored in off-
the-shelf RDF triple stores, and searched using
SPARQL queries. In our work, we build a TE sys-
tem that utilizes their infrastructure as a basis for
reasoning over EDS graphs.

41



{e3

x5:pron
1:pronoun q(BV x5)

e3: would v modal(ARG1 e13)
e11: wake v up(ARG1 x5)
e13: and c(L-INDEX e11, R-INDEX e15, L-HNDL e11, R-HNDL e15)
e15: fret v about(ARG1 x5, ARG2 x16)
x16:pron

2:pronoun q(BV x16)
}

Figure 1: EDS for He would wake up [...] and fret about it. (PETE id 5019).

Textual Entailment was defined by Dagan et al.
(2006) as the task of recognizing whether, given
two text fragments, the meaning of one text entails
the meaning of the other text. The text fragments
are conventionally referred to as the text T and the
hypothesis H, respectively. The notion of “entail-
ment” used in TE is informal and based at least in
part on general human knowledge of language and
the world.

Our textual entailment system uses graph align-
ment over EDS structures as the basis for entail-
ment decisions. We extend the approach by en-
riching the graphs in a forward-chaining spirit us-
ing SWRL rules, and the Jena reasoner1. After the
reasoning step, the actual alignment is performed
with a SPARQL query that tries to match the hy-
pothesis graph to the text graph. Along with a clas-
sification decision, the system outputs a “proof”
by listing every SWRL rule that was used in the
reasoning. In a sense, we are following the clas-
sical reasoning approach of trying to infer the hy-
pothesis from the text.

3.1 SWRL

Our subsumption approach to entailment recogni-
tion requires some rewriting of the EDS graphs
produced by the ERG parser. For example, the
EDS graph in Figure 1 needs to be rewritten so
that dependencies are propagated into the coordi-
nate structure, which will facilitate the subsump-
tion of subgraphs. We use SWRL, a semantic web
standard for reasoning over ontologies2, to encode
rewriting rules for EDS graphs. The graph struc-
tures are enriched with a set of forward-chaining
SWRL rules, and, thus, our graph-rewriting ap-
proach can be seen as a form of forward-chaining

1https://jena.apache.org/
2http://www.w3.org/Submission/SWRL/

inference.
The system uses two sets of SWRL rules, one

for the text and one for the hypothesis graph. The
function of these rules is to further normalize and
to add information to both graphs in order to make
matching possible. We adapt the rule sets for dif-
ferent data sets to accomodate variation in entail-
ment phenomena. The rule sets contain five types
of rules:

• abstraction rules

• predicate simplification rules

• structural rules

• lexical relation rules

• polarity marking rules

Abstraction Rules We employ a number of ab-
straction rules to allow matching of indefinite and
personal pronouns in the H graph to NPs in the
T graph. To be able to match the indefinite pro-
noun somebody to the personal pronoun he in e.g.
He has a point he wants to make [...] ⇒ Some-
body wants to make a point (PETE id 1026), the
rules label both pronouns with the same abstrac-
tion label, i.e., they add an additional rdf:type
property to these nodes, which can be used in sub-
sequent testing for node equivalence.

Our rules also abstract over certain quantifiers.
In the data sets we have examined, the text and hy-
pothesis sentence of an entailment pair often have
quantifier variations that are clearly not relevant
for recognizing the entailment relationship (e.g.,
A woman is cleaning a shrimp ⇒ The woman
is cleaning a shrimp, SemEval id 3364). We
group these quantifiers into candidate equivalence
classes using rules of the form:
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[(?a eds:predicate " a q") ->
(?a rdf:type eds:equiv quant)]

[(?a eds:predicate " the q") ->
(?a rdf:type eds:equiv quant)]

These rules state that if a node ?a is la-
beled with a certain quantifier predicate ( a q or
the q, in this specific example), then the node
?a is of type equiv quant. This fact is added
to the EDS graph, which allows matching of the
node with other nodes that have the same type.

Simplified Predicates ERG lexical predicate
symbols conjoin information about the lemma,
part-of-speech, and sense of the wordform. To in-
crease the robustness of the matching, we add a
simplified predicate symbol which contains only
the lemma and part-of-speech. This makes match-
ing possible in cases where the ERG has given
different predicate symbol interpretations of the
same word in text and hypothesis. For instance,
trade v in and trade v 1 are associated

with different usages of the verb trade, and for our
purposes can be simplified to trade v.

Structural Rules Certain rules enrich the graph
structure without adding new meaning content
to the graph. By adding arcs to certain con-
structions in the text graph, we make matching
possible for cases where the hypothesis graph
contains a substructure of the text construction.
For instance, to make matching possible for the
text He would wake up [...] and fret about it
and the hypothesis He would wake up (PETE id
5019), we need to draw additional arcs from the
node would v modal to its indirect arguments
wake v up and fret v about, i.e., the argu-

ments of the conjunction node and c. This is
done by applying the rules in Figure 2. The first
two rules label all modal verb nodes as having
type modal verb, and coordinating nodes as be-
ing of type coordination. The third rule states
that if a node is of type modal verb, and it has
an ARG1 arc to a node of type coordination,
then we add ARG1 arcs to each of the argument
nodes of the coordination. When applied to the
EDS in Figure 1, the rules yield the structure
shown in Figure 3, where the new arcs are marked
in green.

Additional rules for lexical relations and polar-
ity marking are described in Sections 3.3 and 3.4,
respectively.

Figure 3: Additional ARG1 arcs (in green) have
been added to directly connect the modal verb
(node e3) to its subarguments (nodes e11 and
e15).

Removing Graph Components To make
matching possible, we also need an additional set
of rules that remove certain predicates, nodes, and
arcs from the hypothesis before the subsumption
algorithm is applied. For instance, the sentences
A boy is playing and There is a boy playing have
the same meaning content, but receive different
analyses from the ERG, where the existential
assertion, including its tense and aspect, is reified
as a separate relation. Removing the subgraph
corresponding to there is makes matching pos-
sible. Removing graph components is not part
of the general SWRL specification, but it is an
extension to the rule language provided by the
Jena reasoner. To ensure that the bulk of our
entailment rules remain SWRL compatible, we
keep the removal rules separated.

3.2 Subsumption Algorithm

Our reasoning-based system (RBS) processes an
entailment pair using an algorithm that has the fol-
lowing steps:

• The text T and hypothesis H are analyzed
with the ERG parser.

• The EDSs for T and H are converted into
RDF triples.

• H is enriched using the SWRL rules and
converted into a SPARQL query queryh in
which the query statements are the conjunc-
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[modal verb type: (?a eds:predicate ?p), regex(?p, "ˆ.+modal$")
-> (?a rdf:type eds:modal verb)]

[coordination type: (?a eds:predicate ?p), regex(?p, "ˆ.+ c ?.*$")
-> (?a rdf:type eds:coordination)]

[(?a rdf:type eds:modal verb), (?b rdf:type eds:coordination),
(?a eds:arg1 ?b), (?b eds:l-index ?c), (?b eds:r-index ?d)
-> (?a eds:arg1 ?c), (?a eds:arg1 ?d)]

Figure 2: SWRL rule for making explicit (inserting) arcs from a modal verb to its indirect arguments

_1:_a_q[BV x6]
x6:_man_n_1[]
e3:_walk_v_1[ARG1 x6]

select x1 x2 x3 where{
x1 eds:predicate "_a_q" .
x2 eds:predicate "_man_n_1" .
x3 eds:predicate "_walk_v_1" .
x1 eds:BV x2 .
x3 eds:ARG1 x2
}

Figure 4: Converting an EDS structure into a
SPARQL query

tion of all of the triples in the RDF represen-
tation of H.

• The RDF triples of T and the SWRL rules
for expanding T are given as the input to the
reasoner.

• If the queryh is matched into the inferred
model for T, the entailment relation is as-
signed to the pair.

The algorithm defines textual entailment as a
subsumption problem. T entails H if the (en-
riched) RDF graph that represents T contains the
entire graph of H.

Converting H into a SPARQL query allows us
to use the standard RDF technology to perform
the graph subsumption. In Figure 4, we see an
example of how the EDS for the sentence A man
walks is converted into a SPARQL query. Us-
ing SPARQL automatically computes (and makes
available) the correspondence between the predi-
cations of T and H.

Using the RDF reasoner allows us to under-
stand the reason H was subsumed by T as the Jena

reasoner outputs a verbose log on each inference
step taken to obtain a specific triple in the inferred
model. In the log output example below, the pred-
ication x5 was recognized to be an indefinite pro-
noun because it has the predicate person, and is
the target of a BV (bound variable) relation from a
predication with the predicate some q:

Added statement
[x5, indef pronoun, "true"]

Used rule
[Rule someone-body is indef pron
concluded
(x5 indef pronoun ’true’)

<-
Fact (x5 predicate ’person’)
Fact ( 1 predicate ’ some q’)
Fact ( 1 bv x5)]

3.3 Lexical Relations

In our reasoning-based system we have integrated
lexical entailment rules extracted from Word-
Net (Fellbaum, 1998) as proposed in Lien and
Kouylekov (2014). For each predication in T we
dynamically create SWRL rules that expand the
RDF graph of T by adding new predications for
words that are synonyms or hypernyms of the orig-
inal predication. For example, for the predication
assistant n we expand the T graph with the

predications worker n and person n. Figure
5 shows a simplified version of these rules.

The creation of these rules is done once be-
fore the start of the inference. The system queries
WordNet for rules that can be used until no rules
can be added. If the SWRL rules add predicates
after the reasoning step that can be expanded us-
ing rules deducted from WordNet then these rules
are added to the reasoner and the reasoning is re-
strarted. We used this strategy as we were not able
to encode the entire WordNet database as rules in
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[to-sense-rule: (x eds:predicate "_assistant_n_1")
-> (x eds:wordnet "assistant_n_1") ]

[hypernym-rule: (x eds:wordnet "assistant_n_1")
-> (x eds:wordnet "worker_n_1")]

[hypernym-rule: (x eds:wordnet "worker_n_1")
-> (x eds:wordnet "person_n_1")]

[to-predicate-rule: (x eds:wordnet "person_n_1")
-> (x eds:predicate "_person_n_1")]

Figure 5: Automatically generated WordNet rules.

the Jena reasoner.

3.4 Contradiction
The SemEval 2014 task uses a three-way classifi-
cation of the entailment pairs. Systems were re-
quired to assign to each pair one of the three cate-
gories ENTAILMENT, CONTRADICTION, or NEU-
TRAL. To handle three-way classification, we have
developed a special rule-based contradiction mod-
ule. Although the SemEval data display various
contradiction phenomena, we focus on negation,
which is the most frequent contradiction indicator.

For classification of pairs where event negation
or instance negation in one of the sentences cre-
ates contradiction, we combine polarity marking
of nodes with graph matching. The nodes that are
in the immediate scope of the negation are marked
as negative, and all other nodes as positive. For in-
stance, in the most simple case of event negation,
the predicate neg negates some event node via an
ARG1 arc (e.g., not singing). The following rule
marks both the node of the neg predicate, and the
event node as negative:

[(?a eds:predicate "neg"),
(?a eds:arg1 ?b) ->
(?a eds:polarity "negative"),
(?b eds:polarity "negative")]

In the parallell case for simple instance negation
(e.g., no woman), the node of the no q predicate
and its “bound variable”, the instance node, are
both labeled as negative:

[(?q eds:predicate " no q"),
(?q eds:bv ?a) ->
(?q eds:polarity "negative"),
(?a eds:polarity "negative")]

Since both events and instances can be complex
linguistic constructions, our rule set contains rules
that handle negation of e.g., compounds, nom-
inalizations, coordination, and nesting of verbs.
Broadly speaking, these rules are similar in spirit
to the “MRS crawling” process defined by Packard
et al. (2014) for the task of negation scope resolu-
tion.

In the classification process, we run the sys-
tem twice on each entailment pair: in the first run
the polarity markings are ignored, and in the sec-
ond run they are considered. If the system finds
a subsumption of H in the T graph without po-
larity markings, but no subsumption with polarity
markings, then the pair is classified as CONTRA-
DICTION.

Polarity marking allows us to use the same
structures for both entailment and contradiction
testing. Our polarity marking approach is paral-
lell to how negation is represented in AMR3.

3.5 N-best Matching
The ERG parser can output a ranked list of candi-
date analyses for a sentence. We extended our sys-
tem with n-best matching to facilitate entailment
recognition when the top-ranked analysis does not
correspond to the perceived meaning of the sen-
tence, i.e., to reduce the impact of errors in parse
ranking. Such errors include prepositional phrase
attachments, noun compounds, coordinate struc-
tures, and other interpretation variants. For exam-
ple in the sentence:

who invented the light bulb?
3https://github.com/amrisi/

amr-guidelines/blob/master/amr.md#
negation
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the parser creates two valid (in principle, if not
equally likely) analyses based on the semantic in-
terpretation of the word light as 1) an adjective; 2)
part of a noun–noun compound. If the same phrase
occurs in T and H, but their contexts are different,
the top-ranked analyses from the parser ranker for
T and H may contain different interpretations of
the phrase. Our default assumption is that such
misalignment is the cause of many unwarranted
mismatches between the T and H graphs.

For each entailment pair i (pairi) we iterate
over all analyses of T and H. If the n-th analy-
sis of T entails the k-th analysis of H we assign
the ENTAILMENT relation to the entailment pair.
This definition is valid as each analysis of T and H
corresponds to a valid interpretation.

To determine the number of analyses for T and
H we need to consider 4 we have employed an op-
timization strategy. We have gradually increased
the number of considered analyses of T and H, and
measured the system performance on the training
set. The best n-m combination, where n are the
analyses considered for T and m are the analyses
considered for H, is used on the test set.

4 First Case Study: PETE

In our first case study, we recast the Lien (2014)
heuristic for the PETE shared task data as SWRL
rules. The objective of the PETE task was to pro-
pose an alternative method for parser evaluation:
instead of comparing parser output to gold anno-
tated treebank data, parsers can be evaluated in-
directly by examining how well the parser output
supports the task of entailment recognition. The
data provided for the task was constructed so that
syntactic analysis of the sentence pairs would be
sufficient to determine whether the text entails the
hypothesis. The PETE development and test sets
contain 66 and 301 sentence pairs, respectively.
Characteristically, the hypothesis sentence of the
positive entailment pairs is shorter that the text
sentence, and is a substructure of the text, fre-
quently with some minor changes (e.g., active-to-
passive conversion, a noun phrase in the text is re-
placed by a underspecified pronoun in the hypoth-
esis). In the negative entailment pairs the hypothe-
sis usually contains elements from the text that are
structured differently and thus give the hypothesis
a different meaning from the text.

4The ERG can return all the possible grammatical analy-
ses up to a user-supplied maximum rank n.

The best scoring system in the shared task was
the Cambridge system (Rimell and Clark, 2010),
with an accuracy of 72.4%.

Table 1 presents our 1-best and 10-best results
on the PETE test data, and compares them to the
results reported by Lien (2014), and the shared
task winner Rimell and Clark (2010). Our RBS
system outperforms the system developed by Lien
(2014), establishing a new state-of-the-art. The
two systems have close results on both single anal-
ysis input and n-best. This demonstrates that our
system correctly implements the approach pro-
posed in Lien (2014).

The main advantage of our system is the high
precision. The PETE data focus on entailments
that can be recognized using structural analy-
sis alone (allowing for the substitution of noun
phrases with generalized pronouns), which fits
nicely with our strict graph subsumption algorithm
over meaning representations. When we exam-
ine the system’s output for the PETE development
data, we see that two-thirds of the true positives in
the ENTAILMENT category concern sentence pairs
where H is a substructure of T. In these cases,
enriching the RDF graphs with arcs connecting
predicates to their indirect arguments, and allow-
ing noun phrases to match generalized pronouns,
is sufficient for entailment recognition. In the re-
maining one-third of the true positives, there are
syntactic differences from T to H, but the ERG
abstracts from these differences and assigns the
same analysis to both (the relevant substring of)
T and H. For instance, the T noun phrase steamed,
whole-wheat grains and the H sentence Grains are
steamed (PETE id 3081.N) receive the same EDS
analysis, with grains as the passive ARG2 of the
verb steam. In another example below (PETE id
2004), the relative pronoun which is ignored at
the level of ERG semantics, which instead directly
identifies the stream as the ARG2 of the seeing
event:

[...] the stream which he had seen [...].
⇒ Someone had seen the stream.

In the cases where our system fails to recognize
the entailment relationship, it is often the case that
one of the sentences is assigned an incorrect analy-
sis from the ERG parser. An incorrect assignment
of an argument role, or an incorrect attachment of
a prepositional phrase prevents our strict subsump-
tion algorithm from classifying the relationship as
entailment.
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RBS RBS n-best Lien Lien n-best Rimell & Clark
Accuracy 72.1 77.1 70.7 76.4 72.4
Precision 89.0 81.1 88.6 81.4 79.6
Recall 52.6 72.7 50.0 70.5 62.8
F-Measure 66.1 76.6 63.9 75.5 70.2

Table 1: Performance of our reasoning-based system on the PETE test data.

The influence of imperfect parse ranking on the
system performance can be alleviated by running
it on n-best parser outputs. Considering multi-
ple analyses of T and H from the ERG parser in-
creases the performance of our system by adding
a significant boost to the recall without damaging
the precision. Using 1-best analyses for T and H,
our system has a performance compatible with the
previously best performing system on the PETE
task.

5 Second Case Study: SemEval 2014
Task 1

RBS RBS n-best UIO-Lien Illinois-LH
77.4 80.4 77.1 84.6

Table 2: Comparison of accuracy of RBS on the
SemEval test data.

Precision Recall F-Measure
Contradiction 95.9 66.1 78.3
Entailment 95.6 52.4 67.7

Table 3: Precision, recall and F-measure of RBS
n-best on the SemEval test data.

In our second case study, we revisit our contri-
bution to the SemEval 2014 task 1. The focus of
this task was evaluation of compositional distribu-
tional semantic models through entailment deci-
sion (and semantic relatedness) on sentence pairs,
in order to remedy the lack of benchmarks for
such models. The 10,000 sentence pair data set re-
leased for the task (50% training, 50% test) reflects
this goal by targeting phenomena that composi-
tional distributional semantic models are meant
to account for, e.g., lexical variation phenomena
such as contextual synonymy, active-passive and
other syntactic alternation, negation, and opera-
tor scope. The data do not require encyclope-
dic knowledge about instances of concepts, only

generic semantic knowledge about general con-
cept categories. Unlike in the PETE data set, the
text and hypothesis sentences are usually similar
in length, and either paraphrase or contradict each
other, or are more or less unrelated in meaning.

In the entailment subtask, systems were re-
quired to assign one of the categories ENTAIL-
MENT, CONTRADICTION, or NEUTRAL to each
sentence pair. The best scoring system was the
Illinois-LH system (Lai and Hockenmaier, 2014),
with an accuracy of 84.6%.

Table 2 presents our 1-best and 10-best re-
sults on the SemEval test data, and compares
them to the results for the UIO-Lien system (Lien
and Kouylekov, 2014) and the shared task winner
Illinois-LH.

The results obtained on the SemEval data set are
encouraging. As with the PETE data set we have
improved over the results we achieved with the
UIO-Lien system. This demonstrates the adapt-
ability of our approach to new data sets. When
we participated in the SemEval task with the UIO-
Lien system, we did not submit a run using the n-
best analyses from the ERG parser, so we are not
able to make a comparison for n-best results. Our
current n-best RBS system obtains a high accuracy
which makes it the 6th ranked system on the Se-
mEval data. With this result it is the top ranked
unsupervised rule based system.

It is worth noticing that our system achieves
a similar result as another task participant, Best-
gen (2014), which employs a similarity-based al-
gorithm and latents semantic analysis to recognize
entailment. Our advantage versus such approaches
is that we are able to create a reasoning chain that
motivates the system decision instead of present-
ing a simple similarity number. Still in the future
development of our system we can investigate the
possibility of using probabilistic rules to guide our
reasoner.

Similar to the PETE dataset results our system
obtained a high precision (more than 95.0% pre-
cision on both ENTAILMENT and CONTRADIC-
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TION), maintaining a decent recall as shown in Ta-
ble 3.

The SemEval data display more variation in en-
tailment phenomena than the PETE data, and re-
quire the use of external knowledge sources. We
use WordNet to generate lexical inference rules.
This allows us to capture the same types of “syn-
tactic” entailments as in the PETE data, aug-
mented with synonymy and hypernymy relations
between predicates in T and H, as examplified by
the following entailment pair (SemEval id 4176):

An eggplant is being sliced by a woman
⇒ A woman is cutting a vegetable

We did not focus on capturing entailment phe-
nomena that were aimed specifically at evaluation
of compositional distributional semantic models,
and that require contextual information or equat-
ing structurally diverse phrases. In many cases,
it would require formulating specific rules that
would do little to improve the coverage of our sys-
tem.

The system’s high precision on ENTAILMENT

shows that the graph subsumption of semantic
structures is a reliable indicator of the entailment
relation. To further improve recall, the system
must incorporate more sources of knowledge and
semantic variation.

6 Conclusions and Future Work

In this paper we have described an approach to TE
which leans heavily on generic semantic parsing
technologies, combining the off-the-shelf ERG
parser with formats and tools developed for the
Semantic Web and a custom-built notion of in-
ference over graph-structured meaning represen-
tations. We have replicated our two previous TE
shared task contributions, and using n-best anal-
yses reached state-of-the-art for rule-based TE
systems. These results demonstrate the utility
of general-purpose, off-the-shelf semantic parsing
systems for textual entailment, in particular when
reasoning over ranked n-best lists can be applied
to compensate for parse ranking limitations. Our
system architecture rests on a comparatively small
number of reasonably generic rules, i.e., there is
very little task-specific engineering and tuning in
our approach (as a large part of the work in done
in the parser). Our 95 percent precision results
demonstrate that subsumption of semantic repre-
sentations is a strong indication for textual entail-

ment. Our work contributes to moving the TE field
towards logical reasoning.

One of the main strength of the system is its ver-
satility. We reduce the amount of task-specific en-
gineering by using generic off-the-shelf tools.

Future Work Our approach is useful for
precision-critical applications like information re-
trieval and particularly Question Answering. In
future work we plan to combine it with a shallow
information retrieval approach and use its evalua-
tion power to pick the correct answer. The system
also provides a detailed account of the reasoning
behind each entailment decision. This strength can
be used in an answer presentation module which
motivates why the system has chosen a particular
answer.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, page 178 – 186, Sofia, Bulgaria, August.

Roy Bar-Haim, Ido Dagan, Iddo Greental, and Eyal
Shnarch. 2007. Semantic inference and the lexical-
syntactic level. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), pages 871–
876.

Richard Bergmair. 2010. Monte Carlo Semantics: Ro-
bust Inference and Logical Pattern Processing with
Natural Language Text. Ph.D. thesis, University of
Cambridge.

Yves Bestgen. 2014. CECL: a new baseline and a
noncompositional approach for the sick benchmark.
In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), pages 1–
8, Dublin, Ireland, August. Association for Compu-
tational Linguistics and Dublin City University.

Johan Bos and Katja Markert. 2006. When logical
inference helps determining textual entailment (and
when it doesn’t). In Bernardo Magnini and Ido Da-
gan, editors, The Second PASCAL Recognising Tex-
tual Entailment Challenge. Proceedings of the Chal-
lenges Workshop, pages 98–103, Venice, Italy.

Ulrich Callmeier. 2002. Preprocessing and encod-
ing techniques in PET. In Stephan Oepen, Daniel
Flickinger, J. Tsujii, and Hans Uszkoreit, editors,
Collaborative Language Engineering. A Case Study
in Efficient Grammar-based Processing, page 127 –
140. CSLI Publications, Stanford, CA.

48



Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal Recursion Semantics.
An introduction. Research on Language and Com-
putation, 3(4):281 – 332.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Joaquin Quiñonero-Candela, Ido Da-
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editors, Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, volume 3944
of Lecture Notes in Computer Science, page 177 –
190. Springer Berlin Heidelberg.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering, 6 (1):15 – 28.

Milen Kouylekov and Stephan Oepen. 2014. RDF
Triple Stores and a Custom SPARQL Front-End for
Indexing and Searching (Very) Large Semantic Net-
works. In COLING 2014, 25th International Con-
ference on Computational Linguistics, Proceedings
of the Conference System Demonstrations, August
23-29, 2014, Dublin, Ireland, pages 90–94.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH: A
denotational and distributional approach to seman-
tics. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014), pages
329–334, Dublin, Ireland, August. Association for
Computational Linguistics and Dublin City Univer-
sity.

Elisabeth Lien and Milen Kouylekov. 2014. UIO-
Lien: Entailment recognition using minimal recur-
sion semantics. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 699–703, Dublin, Ireland, August. As-
sociation for Computational Linguistics and Dublin
City University.

Elisabeth Lien. 2014. Using minimal recursion seman-
tics for entailment recognition. In Proceedings of
the Student Research Workshop at the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 76–84, Gothen-
burg, Sweden, April. Association for Computational
Linguistics.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014),
pages 1–8, Dublin, Ireland, August. Association for
Computational Linguistics and Dublin City Univer-
sity.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the 5th International Conference on Lan-
guage Resources and Evaluation, page 1250 – 1255,
Genoa, Italy.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
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Abstract

In this paper we propose a framework for
procedural text understanding. Procedural
texts are relatively clear without modality
nor dependence on viewpoints, etc. and
have many potential applications in arti-
ficial intelligence. Thus they are suitable
as the first target of natural language un-
derstanding. As our framework we ex-
tend parsing technologies to connect im-
portant concepts in a text. Our frame-
work first tokenizes the input text, a se-
quence of sentences, then recognizes im-
portant concepts like named entity recog-
nition, and finally connect them like a sen-
tence parser but dealing all the concepts in
the text at once. We tested our framework
on cooking recipe texts annotated with a
directed acyclic graph as their meaning.
We present experimental results and eval-
uate our framework.

1 Introduction

Among many sorts of texts in natural languages,
procedural texts are clear and related to the real
world. Thus they are suitable for the first target
of natural language understanding (NLU). A pro-
cedural text is a sequence of sentences describing
instructions to create an object or to change an ob-
ject into a certain state. If a computer understands
procedural texts, there are potentially tremendous
applications: an intelligent search engine for how-
to texts (Wang et al., 2008), more intelligent com-
puter vision (Ramanathan et al., 2013), a work
help system teaching the operator what to do the
next (Hashimoto et al., 2008), etc.

The general natural language processing (NLP)
tries to solve the understanding problem by a long

*This work was done when the first author was at Kyoto
University.

series of sub-problems: word identification, part-
of-speech tagging, parsing, semantic analysis, and
so on. Contrary to this design, in this paper,
we propose a concise framework of NLU focus-
ing on procedural texts. There have been a few
attempts at procedural text understanding. Mo-
mouchi (1980) tried to convert various procedu-
ral texts into so-called PT-chart on the background
of automatic programming. Hamada et al. (2000)
proposed a method for interpreting cooking in-
struction texts (recipes) to schedule two or more
recipes. Although their definition of understand-
ing was not clear and their approach was based
on domain specific heuristic rules, these pioneer
works inspired us to tackle a major problem of
NLP, text understanding.

As the meaning representation of a procedural
text we adopt a flow graph. Its vertices are im-
portant concepts consisting of word sequences de-
noting materials, tools, actions, etc. And its arcs
denote relationships among them. It has a special
vertex, root, corresponding to the final product.
The problem which we try to solve in this paper
is to convert a procedural text into the appropriate
flow graph. The input of our NLU system is the
entire text, but not a single sentence.

Our framework first segments sentences into
words (word segmentation; abbreviated to WS
hereafter). This process is only needed for some
languages without clear word boundary. Then we
identify concepts in the texts and classify them
into some categories (concept identification; ab-
breviated to CI hereafter). And finally we connect
them with labeled arcs. For the first process, WS,
we adapt an existing tool to the target domain and
achieve an enough high accuracy. The second pro-
cess, CI, can be solved by the named entity recog-
nition (NER) technique given an annotated corpus
(training data). The major difference is the defi-
nition of named entities (NE). Contrary to many
other NERs we propose a method that does not
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require part-of-speech (POS) tags. This makes
our text understanding framework simple. For
the final process we extend a graph-based pars-
ing method to deal with the entire text, a sequence
of sentences, at once. The difference from sen-
tence parsing is that the vertices are concepts but
not words and there are words not covered by any
concept functioning as clues for the structure.

As a representative of procedural texts, we se-
lected cooking recipes, because there are many
available resources not only in the NLP area but
in the computer vision (CV) area. For exam-
ple, the TACoS dataset (Regneri et al., 2013), is
a collection of short videos recording fundamen-
tal actions in cooking with descriptions written by
Amazon Mechanical Turk. Another example, the
KUSK dataset (Hashimoto et al., 2014), contains
40 videos recording entire executions (20 recipes
by two persons). The recipes in the KUSK dataset
are taken from the r-FG corpus (Mori et al., 2014),
in which each recipe text is annotated with its
“meaning.”

We tested our framework on recipe texts man-
ually annotated with word boundary information,
concepts, and a flow graph. We compare a naive
application of an MST dependency parser and our
extension for flow graph estimation. We also mea-
sure the accuracy at each step with the gold input
assuming the perfect preceding steps. Finally we
evaluate the full automatic process of building a
flow graph from a raw text. Our result can be a
solid baseline for future improvement in the pro-
cedural text understanding problem.

2 Related Work

Some attempts at procedural text understand-
ing were proposed in the early 80’s (Momouchi,
1980). Then Hamada et al. (2000) proposed tree-
based representation of cooking instruction texts
(recipes) from the application point of view. These
approaches used rule-based methods, but they,
along with the current success of the machine
learning approach, inspired us to conceive that the
procedural text understanding can be a tractable
problem for the current NLP.

In our framework the procedural text under-
standing problem is decomposed into three pro-
cesses. The first process is the well-known WS.
There have been many researches reporting high
accuracies in various languages based on the
corpus-based approach (Merialdo, 1994; Neubig

et al., 2011, inter alia). The second one is CI,
which can be solved in the same way of NER
(Chinchor, 1998) with a different definition of
named entities. The accuracy of the general NER
is less than WS but is more than 90% when a large
annotated corpus is available (Sang and Meulder,
2003, inter alia). So we can say that CI can also
be solved given an annotated corpus. The only
open question is how many examples are required
to achieve a practically high accuracy. This pa-
per gives a solution to this. The third one is our
original text parsing, which outputs a flow graph
taking a text and the concepts in it as the in-
put. To solve this problem, we follow the idea
of the graph-based dependency parsing (McDon-
ald et al., 2006; McDonald et al., 2005). Depen-
dency parsing attempts to connect all the words
in an input sentence with labeled arcs to form a
rooted tree. In our method, the units are concepts
instead of words and the input is an entire text
(a sequence of sentences), not a single sentence.
The words not forming concepts (mainly function
words), are only referred to as features to estimate
the flow graph. We also add another module to
form a directed acyclic graph (DAG).

From the NLP viewpoint, the major problems
we are solving are 1) dependency parsing (Buch-
holz and Marsi, 2006) among concepts only, 2)
predicate-argument structure analysis (Taira et al.,
2010; Yoshino et al., 2013), 3) semantic pars-
ing (Wong and Mooney, 2007; Zettlemoyer and
Collins, 2005), and 4) coreference, anaphora, and
ellipsis resolution (Nielsen, 2004; Fernández et
al., 2004). For dependency parsing we resolve the
target of modifiers such as quantities, durations,
timing clauses. For predicate-argument structure
analysis, we figure out which action is applied to
what object with what tools, even if it is stated
in passive form or just by a past participle. For
semantic parsing we resolve the relationships be-
tween concepts. For coreference, anaphora, and
ellipsis resolution, our DAG constructor links an
action to another action that takes the result of the
former action or an abstract expression to a con-
crete intermediate product. Our method solves
these problems focusing on important notions at
once.

The understanding of procedural texts may al-
low a more sophisticated combination of NLP an
CV. Recently there have been some attempts at
aligning videos and natural language descriptions
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1. 両手鍋Tで油Fを熱Acする。
( In a Dutch ovenT, heatAc oilF. )
セロリFと緑玉ねぎFとニンニクFを加えAc る。
( AddAc celeryF, green onionsF, and garlicF. )
１分ほどD 炒めAc る。
( CookAc for about 1 minuteD. )

2.ブイヨンFと水FとマカロニFと胡椒Fを加えAc

て 、パスタFが 柔らかSf くなAf るまで煮Ac る。
( AddAc brothF, the waterF, macaroniF, and pepperF,
and simmerAc until the pastaF isAf tenderSf . )

3. 刻AcんだセージFをまぶAcす。
( SprinkleAc the snippedAc sageF. )

Figure 1: Examples of a procedural text and its flow graph.

(Naim et al., 2014; Rohrbach et al., 2013). In
these researches, the NLP part is very naive. They
just identify the nouns in the text and apply a
sequence-based alignment tool. Now the machine
translation community is shifting to the tree-based
approach to capture structural differences in two
languages. The flow graph representation enables
grounding of tuples consisting of an action and its
target objects, and also absorbs the difference in
the execution order of a procedural text and the
video recording its execution.

Although NLU is the major scientific problem
of AI, procedural text understanding is important
from the viewpoint of applications as well. For
cooking recipes for example, on which we test our
framework in this paper, we can realize a more in-
telligent search engine, summarization, or a help
system (Wang et al., 2008; Yamakata et al., 2013;
Hashimoto et al., 2008).

3 Recipe Flow Graph Corpus

As a test bed of the text parsing problem, we
adopt the recipe flow graph corpus (r-FG corpus)
(Mori et al., 2014). To our best knowledge, this
is the only corpus annotated with flow graphs that
matches with our requirements. In addition cook-
ing recipes are representative procedural texts de-
scribing very familiar activities of our daily life,
and its meaning representation has various appli-
cations. Our framework is, however, not limited to
this corpus.

3.1 r-FG Corpus

The r-FG corpus contains randomly crawled
recipes in Japanese from a famous Internet recipe

#recipes #sentences #NEs #words
200 1,303 7,268 25,446

Table 1: Corpus statistics.

site.1 The specification of the corpus is shown in
Table 1. The text part of a recipe consists of a se-
quence of steps and the steps have some sentences.
All the concepts (entities and actions) appearing
in the sentences are identified and annotated with
a concept tag.2 The text part is annotated with a
rooted DAG representing its meaning as shown in
Figure 1.

3.2 Vertices

Each vertex of a flow graph corresponds to a con-
cept represented by a word sequence in the text
and a concept type such as food, tool, action. Ta-
ble 2 lists the concept types along with the aver-
age number of occurrences per recipe. There is
one special vertex, root, corresponding to the final
dish. In the Figure 1 example, the node of “splin-
kle” is the root.

3.3 Arcs

An arc between two vertices indicates that they
have a certain relationship. An arc has a label de-
noting its relationship type. Table 3 lists the arc
types with their average frequencies per recipe.
The most interesting relationships may be coref-
erences and null-instantiated arguments. In Fig-

1http://cookpad.com (accessed on 2015 May 19)
2In the original r-FG paper (Mori et al., 2014), they call

the concepts “recipe named entities.” In this paper we use the
term “concept” to refer to them, because the recipe named
entities contain verb phrases.
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Concept tag Meaning Freq.
F Food 11.87
T Tool 3.83
D Duration 0.67
Q Quantity 0.79
Ac Action by the chef 13.83
Af Action by foods 2.04
Sf State of foods 3.02
St State of tools 0.30
Total – 36.34

Table 2: Concept tags with frequencies per recipe.

Arc label Meaning Freq.
Agent Action agent 2.15
Targ Action target 15.67
Dest Action destination 7.22
F-comp Food complement 0.65
T-comp Tool complement 1.32
F-eq Food equality 3.15
F-part-of Food part-of 2.37
F-set Food set 0.15
T-eq Tool equality 0.44
T-part-of Tool part-of 0.39
A-eq Action equality 0.53
V-tm Head of a clause for timing 1.06
other-mod Other relationships 3.54
Total – 38.62

Table 3: Arc labels with frequencies per recipe.

ure 1 for example, “macaroni” is equal to “pasta.”
According to the world knowledge, macaroni is
a sort of pasta, but in this recipe they are identi-
cal. An example of a null-instantiated argument is
the relationship between “heat” and “add.” Celery
etc. should be added not to the initial cold Dutch
oven without oil but to the hot Dutch oven with oil,
which is the implicit result of the action “heat.”

4 Overview of Procedural Text
Understanding

Our framework of procedural text understanding
consists of the following three processes combined
in the cascaded manner.

1. Word segmentation (WS)

2. Concept identification (CI)

3. Flow graph estimation

The input of WS is a raw sentence and the out-
put is a word sequence. For example the WS takes

the first sentence in Figure 1 without any tag as the
input as follows:

両手鍋で油を熱する。

Then WS outputs the following word sequence
separated by whitespace as the output.

両手鍋で油を熱する。

The input of CI is the word sequence, the output
of WS, and it identifies concepts, which are spans
of words without overlap annotated with its type
sequences. For the above example, the CI outputs
three concepts as follows:

両手鍋Fで油Fを熱Acする。

This part is similar to NER. Contrary to a nor-
mal NER, however, our method does not require
POS tag for the words in the input. Thus we do not
need to adapt a POS tagger to the target domain.
For English or other languages with obvious word
boundary, we can start from CI.

Now we have a text consisting of some sen-
tences with concepts identified. An example is the
left hand side of Figure 1. This is the input of the
flow graph estimation step and the output is a flow
graph as show on the right hand side of Figure 1
for example.

In the traditional NLP approach, many sub-
problems proceed after NER. Syntactic parsing
clarifies the intra-sentential relationships among
NEs, then anaphora/coreference resolution figures
out their inter-sentential relationships. Contrary,
we process the entire text at once. In the subse-
quent section, we describe the above three process
in detail.

5 Word Segmentation

Some languages such as Japanese or Chinese, have
no obvious word boundary like whitespace in En-
glish. The first step of our framework is WS. For
many European languages this process is almost
obvious and instead of WS we only need to de-
compose some special words like “isn’t” to “is” +
“not” in English or “du” to “de” + “le” in French.

For WS we adopt the pointwise method (Neu-
big et al., 2011) because of its flexibility for lan-
guage resource addition.3 This characteristics is
suitable especially for domain adaptation. Below
we explain pointwise WS briefly and our method
to improve its accuracy for user generated recipes.

3An implementation and the default model for the gen-
eral domain are available from http://www.phontron.
com/kytea/ (accessed on 2015 May 19).
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Type Feature setting
Character xi−2, xi−1, xi, xi+1, xi+2, xi+3,
n-gram xi−2xi−1, xi−1xi, xixi+1, xi+1xi+2, xi+2xi+3,

xi−2xi−1xi, xi−1xixi+1, xixi+1xi+2, xi+1xi+2xi+3

Character c(xi−2), c(xi−1), c(xi), c(xi+1), c(xi+2), c(xi+3),
type c(xi−2)c(xi−1), c(xi−1)c(xi), c(xi)c(xi+1), c(xi+1)c(xi+2), c(xi+2)c(xi+3),
n-gram c(xi−2)c(xi−1)c(xi), c(xi−1)c(xi)c(xi+1) c(xi)c(xi+1)c(xi+2), c(xi+1)c(xi+2)c(xi+3)
Dictionary d(xi−2xi−1xixi+1), d(xi−1xixi+1xi+2), d(xixi+1xi+2xi+3)

L(· · ·xi−2xi−1xi), R(xi+1xi+2xi+3 · · · )
Table 4: Features for word segmentation. The fuction c(·) maps a character into one of six character
types: symbol, alphabet, arabic, number hiragana, katakana, and kanji. The fuction d(·) returns whether
the string is in the dictionary or not. And the functions L(·) and R(·) return whether substrings of any
length on the left hand side or right hand side match with a dictionary entry.

5.1 Pointwise Method
The pointwise method formulate WS as a binary
classification problem, estimating boundary tags
bI−1

1 . Tag bi = 1 indicates that a word bound-
ary exists between characters xi and xi+1, while
bi = 0 indicates that a word boundary does not
exist. This classification problem can be solved
by tools in the standard machine learning toolbox
such as support vector machines (SVMs).

The features are character n-grams surround-
ing the decision point i, which are substrings
of xi−2xi−1xixi+1xi+2xi+3, character type n-
grams, and whether character n-grams matches an
entry in the dictionary or not. Table 4 lists the fea-
tures.

As we can see, the pointwise WS does not refer
to the other decisions, thus we can train it from a
partially segmented sentences, in which only some
points between characters are annotated with word
boundary information.

5.2 Domain Adaptation
As the WS adaptation to recipes, we convert the r-
FG corpus into partially segmented sentences fol-
lowing (Mori and Neubig, 2014). In the corpus
only r-NEs are segmented into words. That is to
say, only both edges of the r-NEs and the inside of
the r-NEs are annotated with word boundary infor-
mation. If the r-NE in focus isホットドッグ com-
posed of two words, then the partially segmented
sentences are

ex.) 各|ホ-ッ-ト|ド-ッ-グ|に チ リ 、…,

ex.) |ホ-ッ-ト|ド-ッ-グ|を ア ル ミ…,

where the symbols “|,” “-,” and “ ” mean word
boundary, no word boundary, and no information,

Type Feature setting
Word wi−2, wi−1, wi, wi+1, wi+2,
n-gram wi−2wi−1, wi−1wi, wiwi+1, wi+1wi+2,

wi−2wi−1wi, wi−1wiwi+1, wiwi+1wi+2

Table 5: Features for concept identification.

respectively. Then we use the partially annotated
sentences which we obtained in this way as an ad-
ditional language resource to train the model.

6 Concept Identification

The second step is the concept identification. The
concept in the text parsing problem is a span of
words without overlap annotated with its type.
Thus the concept identification (CI) can be solved
in the same manner as the named entity recog-
nition (NER). NER is a sequence labeling prob-
lem and many solutions have been proposed so far
(Borthwick, 1999; Sang and Meulder, 2003, inter
alia).

The standard NER method is based on linear
chain conditional random fields (CRFs). In this
paper we use an NER which allows a partially an-
notated corpus as a training data as well as a nor-
mal fully annotated corpus (Mori et al., 2012).4 In
the training step this NER estimates the parame-
ters of a classifier based on logistic regression (Fan
et al., 2008) from sentences fully (or partially)
annotated with NEs (concepts). The features are
word n-grams surrounding the word in the focus
wi, Table 5 lists the features.

4CRFs are also trainable from a partially annotated corpus
(Tsuboi et al., 2008). Recently Sasada et al. (2015) have pro-
posed a hybrid method and reported a higher accuracy than
CRFs. We may use it for further improvement.
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At run-time, given a word sequence, the classi-
fier enumerates all possible BIO2 tags ti for each
word wi with their probabilities as follows:

PLR(ti|w−, wi, w
+),

where w− and w+ are the word sequences pre-
ceding it and following it, respectively. Then this
NER searches for the tag sequence of the high-
est probability satisfying the tag sequence con-
straints.5

7 Parsing an Entire Text

The final step is to build a flow graph. The input is
a text whose sentences are segmented into words
and all the concepts are identified. We call this
part a text parsing. As we mentioned in Section
1, text parsing deals with various language phe-
nomena at once, such as dependency, predicate-
argument structure, and anaphora/coreference.

For text parsing we extend an MST parser (Mc-
Donald et al., 2005). Since the flow graph is a la-
beled DAG, we add some labeled arcs to the MST.
Below we explain the processes one by one.

7.1 Spanning Tree Estimation
We first build a labeled spanning tree covering all
the concepts (vertices) of the input text. Let V be a
set of vertices and G be a set of possible spanning
trees on V . We assume that there exists a score
function s(u, v, l) which represents the likelihood
of making a labeled arc from u to v with label l.
Then the maximum spanning tree (MST) can be
found as follows:

Ĝ = argmax
G∈G

∑
(u,v,l)∈G

s(u, v, l).

We solve this problem using the Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967). We define the score function
s(u, v, l) as a probability6:

s(u, v, l) =
exp{Θ · f(u, v, l)}∑

(x,r)∈(V \{u})×L

exp{Θ · f(u, x, r)}
.

Here L is the arc label set (See Table 3), Θ is
a vector of weight parameters and f(u, v, l) is a

5For example, the tag sequence F-I T-I is invalid.
6This is the probability of a directed arc with label l from

a fixed vertex u, but not a probability over all the directed
arcs. We have tried the latter scoring function but the result
was worse than the former scoring function which we report
in this paper.

1: G←Maximum spanning tree of V .
2: A← Sequence of arcs that can be added to G

without violating the acyclic condition.
3: Sort A in the descending order of the value of

the score function s.
4: n← 1
5: for (u, v) ∈ A do
6: if G ∪ {(u, v)} is acyclic and p(n) <

s(u, v) then
7: G← G ∪ {(u, v)}
8: n← n + 1
9: end if

10: end for
11: return G

Figure 2: Algorithm of DAG estimation

function that maps a labeled arc into a feature vec-
tor. The score function s(u, v, l) computes the
probability of making a labeled arc from u to v
with label l referring to their word sequences, con-
cept tags, surrounding words in the original recipe
text, and label l. A detailed description is given in
Subsection 7.3.

We use a log-linear model (Berger et al., 1996)
in order to train the weight parameters Θ. Let
{(Vt, ut, vt, lt)}Tt=1 denote a set of T training in-
stances, where Vt is a set of the vertices and
(ut, vt, lt) is a gold standard arc with label l in the
t-th training instance. Given these training exam-
ples, weight parameters are estimated so that they
maximize the following likelihood:

T∑
t=1

log
exp(Θ · f(ut, vt, lt)∑

(x,r)∈(Vt\{ut})×L

exp(Θ · f(ut, x, r))
−1

2
‖Θ‖2.

Because our flow graph is not a tree but a DAG,
there can be more than one arcs outgoing from
a single vertex. In other words it may contain
two arcs, (u, v, l) and (u, v′, l′), which share the
same start vertex u. In these cases, we add both
(V, u, v, l) and (V, u, v′, l′) to the training data.

7.2 Arc Addition
Given the labeled MST G, we add some labeled

arcs to form a flow graph of a labeled DAG with a
root. Our algorithm for adding arcs is described in
Figure 2.

The most important point is to choose the best
arcs one by one among those which do not cre-
ate cycles and add them to the MST. In Figure 2
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s(v, w, l) is the same score function used in the
MST estimation and p(n) is a function that gives
a penalty when the n-th additional arc is added to
G. Thus the arc of the highest s is added if the s
value is larger than the penalty p(n).

We adopt an exponentially increasing function
as the penalty function p(n) with parameters λ and
ξ as follows7:

p(n) =
ξ

λe−λn
.

The denominator on the right-hand side is an expo-
nential distribution with parameter λ. The numer-
ator ξ is a scale parameter. At the training step we
first estimate λ which minimizes the square error
between the training-data distribution of the num-
ber of arcs added to the tree and the exponential
distribution. Then we choose ξ which maximizes
the F-measure on the held-out data, a small portion
of training data, as we do in the deleted interpola-
tion method (Jelinek, 1985).

7.3 Features

The feature function outputs a high dimensional
feature vector that represents a characteristic of a
labeled arc (u, v, l).

We extract features from labeled arcs (u, v, l)
by two processes: first we extract features from the
arc and input recipe text and then we concatenate
the label l to each feature we extract. First the
following features are extracted from the input arc
(u, v) and the recipe text:

F1: The number of concepts existing between u
and v with sign, which is +1 if u is left to v
and -1 otherwise,

F2: Whether u and v are in the same sentence,

F3: Whether u and v are in the same step,

F4: Word sequences, pronunciation and concept
tags of each u and v,8

F5: Three preceding words and three following
words for both u and v,

F6: concept tag of u ∧ concept tag of v,
7The reason is that, in small training data, the relation-

ship between the number of additional arcs and the number
of the flow graph matched with an exponentially decreasing
function well.

8The pronunciations are automatically estimated based on
the method described in (Mori and Neubig, 2011).

Method Precision Recall F-measure
Baseline 65.1 61.5 63.2
Proposed 73.5 69.1 71.2

Table 6: Accuracies of the baseline and proposed
methods.

F7: concept tag of u ∧ concept tag of v ∧whether
u and v are in the same sentence,

F8: concept tag of u ∧ concept tag of v ∧whether
Ac exists between u and v ∧ whether a func-
tion word exists between u and v,

F9: concept tag of u ∧ concept tag of v ∧ function
words between u and v.

Here the symbol ∧ indicates the combination of
individual features.

Next we simply concatenate the label l with
each feature to construct feature vectors of labeled
arcs. For example, we extracts a feature “concept
tag of u ∧ concept tag of v.” Then, this type of
feature becomes “l ∧ concept tag of u ∧ concept
tag of v.” by concatenating the label l. The same
concatenation of a label is done on the other fea-
tures.

So-called higher order features which refer to
the neighboring vertices in the DAG are common
in work on dependency parsing (McDonald et al.,
2006; Koo and Collins, 2010), but we do not use
these kinds of features because we only have 200
recipes annotated with DAGs9. This number is
much smaller than roughly 40,000 sentences of the
Wall Street Journal which are commonly used to
train dependency parsers (Marcus et al., 1994).

8 Evaluation

We evaluated our framework on the r-FG corpus
described in Table 1. We executed 10-fold cross
validation for more reliable results.

DAG estimation accuracy is measured by the
F-measure of labeled arcs, which is the harmonic
mean of precision and recall. Let Nsys, Nref , and
Nint be the number of the estimated arcs, the gold
standard arcs, and their intersection, respectively.
Then precision = Nint/Nsys, recall = Nint/Nref ,
and F-measure = 2Nint/(Nref + Nsys).

9Mori et al. (2014) state that it took about one our to an-
notate one recipe with word boundaries, concept tags, and a
flow graph. It is much more coslty than syntactic annotation.
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Task Input F-meas.
WS Raw texts 98.6
CI Gold WS results 90.7
Flow graph estimaiton Gold WS/CI results 72.1
WS + CI + flow graph estimaiton Raw texts 51.6

Table 7: F-measure of each task and the overall task.

8.1 Flow Graph Estimation
As the first evaluation, we compared the simple
application of the MST parser and our extension.
We assumed the gold WS and CI results.

8.1.1 Settings of Flow Graph Estimation
We compared two methods in the following way.
Baseline A naive method for the text parsing is a

simple application of MST parser (McDon-
ald et al., 2005) to a concept sequence input.
An MST parser takes a sequence of words an-
notated with POSs and outputs a labeled tree
connecting all the words. Thus our baseline
for flow graph estimation takes a sequence of
concepts (pairs of a word sequence and a con-
cept type) as the input. The output of an MST
parser is a tree, but not a DAG. So we add
our arc addition module for a fair compari-
son. As the implementation, we modified a
Japanese dependency parser (Flannery et al.,
2012) that uses the logistic regression as the
scoring function.

Proposed This combines the spanning tree es-
timation (Subsection 7.1) and the arc addi-
tion (Subsection 7.2) in the cascaded manner.
Different from the Baseline, this method re-
ferred to words not included in concepts such
as function words as the features .

Table 6 shows the accuracies of the baseline
method and our MST extension. We can see that
there is a significant difference in accuracy be-
tween Baseline and Proposed. The major differ-
ence between these two methods is whether or not
they refer to the words not covered by the con-
cepts in the original texts, such as in F5 for ex-
ample. These words are mainly function words.
Therefore we can say that the function words are,
as we know intuitively, important for the relation-
ships among the concepts.

8.2 Text Parsing on a Raw Text
We also executed the text parsing taking a raw text
as the input. For this problem, we combine WS,

CI, and flow graph estimation (Proposed) in the
cascaded manner.

The performance measurement is F-measure.
Different from the first experiment, the unit is a
triplet (〈ws, cs〉, 〈we, ce〉, l). Here, ws and cs are
the word sequence of the out-going vertex of the
arc and its concept type, respectively. we and ce

are those of its in-coming vertex. And l is its label.
A triplet is correct if and only if all these elements
match with those of an arc in the manually anno-
tated data.

8.2.1 Settings of Word Segmentation and
Concept Identification

We built an automatic word segmenter and an au-
tomatic concept identifier in the following way.

WS: The word segmenter (see Section 5) is
trained on the following corpora.

1. Balanced Corpus of Contemporary
Written Japanese (Maekawa, 2008)
containing fully segmented 53,899
sentences from newspaper articles,
books, magazines, whitepapers, Web
logs, and Web QAs.

2. The partially segmented sentences de-
rived from 208 recipes in the r-FG cor-
pus and additional 208 recipes anno-
tated with concept types. In the exper-
iment, we excluded the test part in 10-
fold cross validation. Thus we built 10
models in total.

3. Partially annotated 1,651 sentences
crawled from another recipe Web site10.

CI: The concept identifier (see Section 6) is
trained on the corpus 2. used in the WS train-
ing in the same way. Thus we built 10 models
in total for 10-fold cross validation11.

10http://park.ajinomoto.co.jp/ accessed on
2014/May/21.

11We made this concept identifier with the model
trained on 416 recipes publicly available from
http://plata.ar.media.kyoto-u.ac.jp/
data/recipe/home-e.html.
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8.2.2 Results
Table 7 shows the accuracies of WS, CI, and flow
graph estimation on the gold results of the preced-
ing task and that of the combination of three tasks
starting from a raw text to a flow graph.

As we see in the table, the flow graph estimation
task is the most difficult and has a large room for
improvement. The accuracy of WS without adap-
tation was about 95% and our adaptation tech-
nique raised it to about 99% which is as high as
in the general domain case. The accuracy of CI,
trained on less than 3,000 sentences, is as high as
the general NER whose accuracy is about 90% by
a model trained on about 10,000 sentences. This is
still lower than WS accuracy, so the concept iden-
tifier is also a target of improvement.

From Table 7, the accuracy of the cascade com-
bination of three tasks (WS + CI + flow graph
estimation) is 51.6. This value is lower than the
simple multiplication result that assumes the inde-
pendence among the tasks 57.2 = (0.9861.27 ×
0.907)2 × 0.721× 100, where 1.27 is the average
word length of the concepts. This indicates that
it is worth trying to investigate joint methods for
WS, CI, and flow graph estimation.

9 Conclusion

In this paper, we proposed a framework of pro-
cedural text understanding consisting of the three
processes. The first process is the well-known
word identification. The second one is concept
identification, which can be solved in the same
way of named entity recognition with different
definition of named entities. The third one is our
original text parsing, which estimates a flow graph
taking a text and the concepts in it as the input.

We tested our framework on recipe texts man-
ually annotated with a flow graph. The results
showed that our method outperforms a naive ap-
plication of an MST dependency parser. Thus we
can say that the simple application of dependency
parsing to flow graph estimation does not work
well, and that it is important to focus on not only
concepts but also words surrounding them. Finally
we evaluated the full automatic process of build-
ing a flow graph from a raw text. Our result can
be a solid baseline for future improvement in the
procedural text understanding problem.

Our method is applicable to various procedural
texts allowing us to realize more intelligent search
engine for how-to texts, more sophisticated sym-

bol grounding by combining NLP and CV, etc.
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Abstract

Parsers have evolved significantly in the
last decades, but currently big and accu-
rate improvements are needed to enhance
their performance. ParTes, a test suite in
Spanish and Catalan for parsing evalua-
tion, aims to contribute to this situation by
pointing to the main factors that can deci-
sively improve the parser performance.

1 Introduction

Parsing has been a very active area, so that parsers
have progressed significantly over the recent years
(Klein and Manning, 2003; Collins and Koo,
2005; Nivre et al., 2006; Ballesteros and Nivre,
2012; Bohnet and Nivre, 2012; Ballesteros and
Carreras, 2015). However, nowadays significant
improvement in parser performance needs extra
effort.

A deeper and detailed analysis of the parsers
performance can provide the keys to exceed the
current accuracy. Tests suites are a linguistic re-
source which makes it possible this kind of anal-
ysis and which can contribute to highlight the key
issues to improve decisively the Natural Language
Processing (NLP) tools (Flickinger et al., 1987;
EAGLES, 1994; Lehmann et al., 1996).

This paper presents ParTes 15.02, a test suite of
syntactic phenomena for parsing evaluation. This
resource contains an exhaustive and representa-
tive set of structure and word order phenomena
for Spanish and Catalan languages (Lloberes et al.,
2014). The new version adds a development data
set and a test data set.

The rest of the paper describes the main con-
tributions in test suite development (Section 2).
Section 3 shows the characteristics and the spec-
ifications of ParTes. The results of an evalua-
tion task of the FreeLing Dependency Grammars
(FDGs) with verb subcategorization information

Features HP EAGLES TSNLP
Domain general specific general

Goal parsing grammar NLP software
checkers

Languages English English English, German,
French

Annotation minimal minimal robust

Content syntax taxonomy (extra-)linguistic
of errors

Table 1: HP, EAGLES & TSNLP features

added (Lloberes et al., 2010) using ParTes are dis-
cussed in Section 4. Finally, the main conclusions
and future work are exposed (Section 5).

2 Test suite development

The main aim of qualitative studies is to offer em-
pirical evidence about the richness and precision
of the data, in comparison with quantitative stud-
ies which provide a view of the actual spectrum
(McEnery and Wilson, 1996). For this reason,
qualitative analysis are deep and detail-oriented,
while quantitative analysis focus on statistically
informative data. In the qualitative approach, rep-
resentativeness of the studied phenomena focuses
on exhaustiveness rather than frequency, which is
the base of the quantitative approach. Both ap-
proaches are not exclusive because they contribute
to build a global interpretation.

While corpora are a large databases of the
most frequent linguistic utterances (McEnery and
Wilson, 1996), test suites are controlled and ex-
haustive databases of linguistic utterances classi-
fied by linguistic features. These collections of
cases are internally organized and richly annotated
(Lehmann et al., 1996). Controlledness, exhaus-
tiveness and detailedness properties allow these
databases to provide qualitatively analyzed data.

They were developed in parallel with the NLP
technologies. The more sophisticated the software
became, the more complex the test suites evolved
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to be (Lehmann et al., 1996). From a collec-
tion of interesting examples, they transformed into
deeply structured and richly annotated databases
(Table 1), such as the HP test suite (Flickinger et
al., 1987), the test suite developed by one of the
groups of EAGLES (EAGLES, 1994), the TSNLP
(Lehmann et al., 1996) and the corpus of un-
bounded depdendencies (Rimell et al., 2009).

Concerning the languages of this study, a test
suite for Spanish was developed by Marimon et
al. (2007). The goal of this test suite is to assess
the development of a Spanish Head-Driven Phrase
Structure Grammar and it offers grammatical and
agrammatical test cases.

3 The ParTes test suite

This test suite is a hierarchically structured and
richly annotated set of of syntactic phenomena for
qualitative parsing evaluation available in Spanish
(ParTesEs) and Catalan (ParTesCa) and freely dis-
tributed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License.1

The new release of ParTes (15.02) consists in
the improvement of the linguistic data sets. Ini-
tially, ParTes included a test data module formed
by sentences illustrating the syntactic phenomena
of the test suite (Lloberes et al., 2014). The cur-
rent version incorporates a set of linguistic data
for development purposes that extends the capabil-
ities of the test suite by allowing the parser devel-
opment monitoring and a second iteration of the
evaluation task.

This resource has been created following the
main contributions in test suite design (Flickinger
et al., 1987; EAGLES, 1994; Lehmann et al.,
1996). The main feature shared with the existent
test suites is the control over the data, which makes
it possible to work as a qualitative evaluation tool.
Furthermore, ParTes adds the concepts of com-
plexity of the resource organization, exhaustive-
ness of the phenomena descriptions and represen-
tativity of the phenomena included.

ParTes is a test suite of syntactic phenomena
annotated with syntactic and meta-linguistic infor-
mation. The content has been hierarchically struc-
tured by means of syntactic features and over two
major syntactic concepts (Figures 1 and 2): struc-
ture and word order.

It provides an exhaustive description of the syn-
tactic phenomena, offering a detailed view of their

1http://grial.uab.es/recursos.php

<level name="intrachunk">
<constituent name="nounphrase">

<hierarchy name="child">
<realization id="0037"

name="prepositionalphrase"
class="noun" subclass="prepobj"
link="n-s" freq="0.084357"
parent_devel="recurso"
child_devel="para"
parent_test="libro"
child_test="para"
devel="Es un recurso para los
alumnos"
test="Los alumnos tienen un
libro para la lectura"/>

</hierarchy>
</constituent>

</level>

Figure 1: Structure in ParTes. Example of the
PP-attachment in the noun phrase

features and their behavior. A selection of the rep-
resentative phenomena has been performed, which
allowed to delimit the number of cases preserving
the control over the data.

The test suite has been semi-automatically gen-
erated, extracting automatically data from com-
putational resources when available. Otherwise,
written linguistic resources have been used to
populate manually the resource. Its architecture
makes it possible to extend the test suite to new
languages, although the current version is avail-
able in two languages.

3.1 Test suite specifications

The current version contains a total of 161 syntac-
tic phenomena in ParTesEs (99 relate to syntactic
structure and 62 to word order) and a total of 145
syntactic phenomena in ParTesCa (99 concern to
syntactic structure and 46 to word order).

The structure phenomena have been manually
collected from descriptive grammars (Bosque and
Demonte, 1999; Solà et al., 2002) and represented
following the criteria of the FDGs (Lloberes et al.,
2010). The selection of phenomena has been val-
idated by the dependency links frequency of the
AnCora Corpus (Taulé et al., 2008).

As Figure 1 shows, the first level of the hier-
archy determines the level of the syntactic phe-
nomenon (inside a chunk or between a marker and
the subordinate verb). The second level expresses
the phrase or the clause involved in the syntactic
phenomenon (constituent) and the third level de-
scribes the position (head or child) in the hierar-
chy. Finally, a set of syntactic features describes
the type of constituent observed (realization).

Specifically, the syntactic features of the real-
ization concern to the grammatical category, the
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<class name="subj#V">
<schema name="subj#V">

<realization id="0104"
func="subj#v"
cat="pron#v"
parent="perdre"
children="tot"
constr="passive-pron"
sbjtype="full"
freq="0.001875"
idsensem="45074#45239#48770"
test="Tot s’ha perdut"/>

</schema>
</class>

Figure 2: Word order in ParTes. Example of
pronominal passive with particle ’se’

phrase or the clause that defines the structure
phenomenon (name), its syntactic specifications
(class, subclass), the arch between the parent and
the child (link), the occurrence frequency of the
link (freq) in the AnCora Corpus. Additionally,
every phenomenon is identified with a numeric id.

For every syntactic structure phenomenon, two
linguistic examples have been manually defined,
one of them to be used for development purposes
(devel) and the other one for testing purposes
(test). The lemmas of the parent and the child
of the exemplified phenomenon are also provided
(parent devel, parent test, child devel, child test).

Word order in ParTes is semi-automatically
built from the most frequent argument structure
frames of the SenSem Corpus (Fernández and
Vàzquez, 2014).

The hierarchy about the word order is structured
firstly by the number and the type of arguments of
the word order schema (class), as Figure 2 illus-
trates. Every class is defined by a set of schemas
about the number of arguments and their order.
The most concrete level (realization) describes the
properties of the schema.

These properties refer to the syntactic function
(func)2 and the grammatical category (cat) of ev-
ery argument of the schema. Furthermore, the type
of construction (constr) where the schema occurs
in and the type of subject (sbjtype) are provided.
The occurrence frequency of the schema in the
SenSem Corpus is associated (freq). In addition,
a numeric id is assigned to every schema and a
link to SenSem Corpus sentences with the same
schema is created (idsensem).

Every schema recorded is exemplified with a
sentence for testing purposes (test). For every test

2Tagset: adjt - adjunct; attr - attribute; dobj - direct ob-
ject; iobj - indirect object; pobj - prepositional object; pred -
predicative; subj - subject.

sentence, the lemmas of the parent and the chil-
dren corresponding to the head of the arguments
of the schema are added.

3.2 Description of the data sets

The development and the test data are built over
the manually defined linguistic examples of the
syntactic phenomena of ParTes.

The sentences have been automatically anno-
tated by using the FDGs, so that a complete de-
pendency analysis of the whole sentence is of-
fered. The output has been reviewed manually by
two annotators: a native in Spanish responsible for
the annotation of ParTesEs and a native in Catalan
who annotated the ParTesCa. A second manual re-
vision has been performed: the Catalan annotator
reviewed the ParTesEs annotated and the Spanish
annotator reviewed the ParTesCa annotated guar-
anteeing the agreement between the annotations in
both languages and preserving the quality of the
annotation according to the criteria.

Up to the current version, the number of sen-
tences referring to the syntactic structure are: 95
sentences in the ParTesEs development data set,
99 sentences in the ParTesEs test data set, 98 sen-
tences in the ParTesCa development data set and
99 sentences in the ParTesCa test data set. The
data sets are distributed in plain text format and in
the CoNLL annotation format (Nivre et al., 2007).

4 Evaluation task

In order to test the usability of ParTes for parsing
evaluation, it has been applied as a gold standard
in an evaluation task of the FDGs. Particularly, the
capabilities of the test suite have been tested for
explaining the performance of FDG as regards the
argument recognition since it still remains to be
solved successfully (Carroll et al., 1998; Zeman,
2002; Mirroshandel et al., 2013).

The FDGs are the core part of the rule-
based FreeLing Dependency Parser (Padró and
Stanilovsky, 2012). They provide a deep and com-
plete syntactic analysis in the form of dependen-
cies. The grammars are a set of manually-defined
rules that comple the structure of the tree (linking
rules) and assign a syntactic function to every link
of the tree (labelling rules) by means of a system
of priorities and a set of conditions.

Two FDGs versions for both languages have
been evaluated: a version without verb subcatego-
rization classes (Bare) and a version with verb sub-
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ParTesEs ParTesCa
Metric Bare Subcat Bare Subcat
LAS 77.57 79.66 79.41 81.80
UAS 88.21 88.21 88.24 88.24
LA 78.90 81.94 80.88 83.64

Table 2: Label Accuracy of FDG on ParTes

categorization classes (Subcat) extracted from the
verbal frames of the SenSem Corpus (Fernández
and Vàzquez, 2014). The system analysis built for
every version of the grammars is compared to the
ParTes analysis using the evaluation metrics of the
CoNLL-X Shared Task (Nivre et al., 2007).3

According to the accuracy results (Table 2), the
evaluation with ParTes shows that FDGs perfor-
mance is medium-accuracy (near or above 80%
in LAS). Both versions of the grammar in both
languages perform in high-accuracy in terms of
attachment (UAS), whereas they obtain medium
accuracy on syntactic function labelling (LA).
ParTes data highlight that the Subcat grammar
scores better than the Bare grammar in LA, which
is directly related to the addition of subcategoriza-
tion classes, as stated in the following discussion.

A detailed observation reveals that ParTes sen-
tences related to subcategorization are performed
better in precision by Subcat rather than Bare
(Table 3). Furthermore, the test data allows to
show that subcategorization has more impact in
the recognition of the majority of arguments (dobj,
pobj, pred) and the subject (subj) than in the ad-
juncts (adjt) because the precision scores incre-
ment is higher. Subcategorization do not have
an effect on the attribute (attr) because it can be
solved lexically. The indirect objects (iobj) corre-
spond to cases of dative clitic, which are solved by
morphological information.

The integration of subcategorization informa-
tion bounds the rules to the verbs included in
the classes. Consequently, some cases may be
not captured if the verb is not expected by the
subcategorization classes as it happens in the
prepositional object (pobj). For example, the
prepositional argument of the sentence ‘Ha creido
en sı́ mismo’ (‘He has believed in himself’) should

3Labeled Attachment Score (LAS): the percentage of to-
kens with correct head and syntactic function label; Unla-
beled Attachment Score (UAS): the percentage of tokens with
correct head; Label Accuracy (LA): the percentage of tokens
with correct syntactic function label; Precision (P): the ratio
between the system correct tokens and the system tokens; Re-
call (R): the ratio between the system correct tokens and the
gold standard tokens.

ParTesEs ParTesCa
Tag # Bare Subcat # Bare Subcat
adjt 39 53.85 65.96 30 60.00 61.90
attr 28 88.89 83.87 20 90.00 78.26
dobj 39 65.31 73.81 42 74.51 86.96
iobj 7 100.00 100.00 3 100.00 75.00
pobj 11 23.68 37.50 13 45.83 60.00
pred 2 25.00 100.00 2 22.22 100.00
subj 51 93.02 93.02 43 87.88 90.62

Table 3: Precision scores of FDG on ParTes

ParTesEs ParTesCa
Tag # Bare Subcat # Bare Subcat
adjt 39 35.90 79.49 30 50.00 86.67
attr 28 85.71 92.86 20 90.00 90.00
dobj 39 82.05 79.49 42 90.48 95.24
iobj 7 28.57 28.57 3 66.67 100.00
pobj 11 81.82 54.55 13 84.62 69.23
pred 2 50.00 50.00 2 100.00 50.00
subj 51 78.43 78.43 43 67.44 67.44

Table 4: Recall scores of FDG on ParTes

be labelled as pobj, but the adjt tag is assigned be-
cause the verb ‘creer’ is not in any of the prepo-
sitional argument classes of the grammar. How-
ever, in the majority of types of arguments and the
adjuncts the recall is maintained or increased (Ta-
ble 4).

5 Conclusions

The new version of the ParTes test suite for parsing
evaluation has been presented. The main features
and the data sets have been described. In addition,
the results of an evaluation task of the FDGs with
ParTes data have been exposed.

The characteristics of the test suite made it pos-
sible to analyze in detail the causes of the perfor-
mance improvement on the argument recognition
of the FDGs including subcategorization informa-
tion. Therefore, these results show that ParTes is
an appropriate resource for parsing evaluation.

Currently, ParTes is extended to English follow-
ing the methodology explained in this paper. In
the upcoming releases, test and development sen-
tences belonging to the word order will be incor-
porated in the ParTes data sets. Furthermore, we
are exploring a systematic methodology to gen-
erate agrammatical variants of the existent sen-
tences.
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rani. Empúries.
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Abstract

Coordinate structures pose difficulties in
dependency parsers. In this paper, we pro-
pose a set of parsing rules specifically de-
signed to handle coordination, which are
intended to be used in combination with
Eisner and Satta’s dependency rules. The
new rules are compatible with existing
similarity-based approaches to coordina-
tion structure analysis, and thus the syn-
tactic and semantic similarity of conjuncts
can be incorporated to the parse scoring
function. Although we are yet to imple-
ment such a scoring function, we analyzed
the time complexity of the proposed rules
as well as their coverage of the Penn Tree-
bank converted to the Stanford basic de-
pendencies.

1 Introduction

Even for state-of-the-art dependency parsers, the
recovery of dependencies involving coordinate
structures remains difficult. According to Nivre
et al. (2010), the accuracy in parsing the construc-
tion known as right node raising, which includes
a coordinate structure such as “president and chief
executive of the company,” is less than fifty per-
cent.

Apart from dependency parsers, there are meth-
ods specialized for coordination structure analy-
sis, which attempt to identify coordinate structures
from the similarity of conjuncts (Kurohashi and
Nagao, 1994; Hara and Shimbo, 2007; Hara et al.,
2009).

Our final goal is to improve the accuracy of
parsing sentences containing coordination, by tak-
ing advantage of the above methodologies. In
the same vein, Hanamoto et al. (2012) used dual
decomposition to combine an HPSG parser with
Hara et al.’s (2009) model.

In this paper, we take a different approach: we
augment Eisner and Satta’s (1999) parsing rules
for normal dependencies, with a new set of rules
to specifically handle coordinations. This design
reflects the fact that Eisner and Satta’s “split-head”
(Johnson, 2007) rules construct dependency trees
on the left and the right of a word independently,
and thus the entire span of conjuncts cannot be
captured during the course of construction.

Using the Penn Treebank (PTB) (Marcus et al.,
1993) after converting the structures to Stanford
basic dependency representation (de Marneffe and
Manning, 2008), we verified that the proposed
rules cover 94% of the sentences involving coor-
dinations. Moreover, about half the failure of the
remaining sentences was caused by unusually an-
notated structures, rather than a weakness in the
proposed rules.

2 Dependency structure for coordination

In the Stanford basic dependencies, coordination
is represented as a dependency structure in which
the first conjunct is the head of the dependency1,
with the second and subsequent conjuncts being
the dependents of the first. Commas and coordi-
nate conjunctions (such as “and”, “or”) separating
conjuncts are also the dependents of the first con-
junct, with labels punct and cc, respectively.

Florida , Illinois and Pennsylvania
NNP , NNP CC NNP

conj
cc

conj
punct

Although not explicitly stated in the Stanford man-
ual, in the converted PTB corpus, the first conjunct

1The Stanford dependencies manual (de Marneffe and
Manning, 2008) merely states that the first conjunct is nor-
mally the head, but we take this rule as definitive in this paper.
The error analysis of our method based on this assumption is
given in Section 5.
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is, in most cases, also the head of extra punctua-
tions (e.g., a comma in front of “and” in “A, B, and
C”), or parentheses (e.g., “he says” in “A, B and,
he says, C”) that occur inside coordinate structure.

3 The Eisner-Satta algorithm

In this section, we briefly review the grammar
rules used in the Eisner-Satta algorithm (1999),
which our proposed rules are designed to augment.
For details about the algorithm, see the original pa-
per, as well as (Koo and Collins, 2010; Johnson,
2007).

The Eisner-Satta algorithm builds a parse tree
in a bottom-up manner using the following four
rules, each of which yields a span of different type
shown next to the respective rule.

INCOMPLETELEFT
i k

→
i j j +1 k

(1)

INCOMPLETERIGHT
i k

→
i j j +1 k

(2)

CCOMPLETELEFT
i k

→
i j j k

(3)

COMPLETERIGHT
i k

→
i j j k

(4)

In these rules, i, j, and k indicate word indices.
Symbol ` is also used for an index later. Let w(i)
denote the ith word in a sentence. Each word
w(i) is initially associated with COMPLETELEFT

i i
and COMPLETERIGHT

i i
. A root node

is added as the leftmost node of a sentence, with
only COMPLETERIGHT.

4 Parsing rules for coordination

We augment Eisner and Satta’s split-head depen-
dency parsing rules with a set of additional rules
that are tailored for similarity evaluation of con-
juncts. Split-head rules lead to an efficient O(n3)
parsing algorithm for a sentence of length n, but
the way in which a parse tree is built does not al-
low evaluation of conjunct similarity as done in
Hara et al. (2009).

When a structure “A and B” is parsed with the
Eisner-Satta algorithm, rule (2) is used for creat-
ing a dependency arc (with label conj ) between
conjuncts A and B. At that moment, the avail-
able spans are COMPLETERIGHT whose head is
A, and COMPLETELEFT whose head is B. How-
ever, these spans do not correspond to the entire

spans of the respective conjuncts. See the figure
below for illustration.

to split into three sectors and to sell its subsidiary

AUX PREP
POBJ

NUM

cc
conj

AUX
DOBJ

POSS

Therefore, we introduce new constituents specifi-
cally for coordination, which group both sides of
the head of conjuncts, as in:

to split into three sectors and to sell its subsidiary

AUX PREP
POBJ

NUM

cc
conj

AUX
DOBJ

POSS

4.1 Punctuations and conjunctions

Let q, r, and s signify word indices whose val-
ues are restricted by the position of punctuations
or conjunctions2.

We first group COMPLETELEFT and COMPLE-
TERIGHT for a punctuation or a conjunction as
a single constituent. We call the resulting con-
stituents PUNCTMARK (or PM for short) and CC-
MARK (CM), respectively.

Rule (5) can be applied only if w(q), the word at
index q, is a commas or a semicolons, and rule (6)
only if w(q) is a coordinate conjunctions, such as
“and,” “or,” “and/or,” “&,” “but,” “plus,” and “yet.”

q q q

PM −→
q q q q

O(p)(5)

q q q

CM −→
q q q q

O(p)(6)

As shown next to the rules, the time needed to ap-
ply them is O(p), where p (� n) is the number
of coordinate conjunctions and punctuations in a
sentence; i.e., the values q can potentially take on.

4.2 Rules for cascading conjuncts

In Hara et al. (2009), the plausibility score of a
coordinate structure is defined in terms of the sim-
ilarity between the head conjunct and each of the
remaining conjuncts. In the Stanford basic depen-
dencies, the head of a coordinate structure is the
first conjunct by default. Thus, to enable compu-
tation similar to Hara et al., the end position of the
first conjunct must be maintained throughout the

2Depending on the rules, indices q, r, s may not represent
the exact position of punctuations or conjunctions, but their
previous or succeeding positions.
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construction of dependency relations for a coordi-
nate structure. This leads to an additional index
associated with constituents, but in most cases, it
is constrained by the position of punctuations and
conjunctions.

Let us introduce constituent CONJ (or C for
short) to represent a conjunct. The first rule for
CONJ simply groups the left and right dependents
for a conjunct, as follows.

C

i j kk
−→

i j k
O(n3)(7)

As we explain shortly, CONJ is also used to rep-
resent a partially-built coordinate structure. The
index k inside the span is used for maintaining the
end of the first (head) conjunct, such that the sim-
ilarity between the first and the subsequent con-
juncts can be computed. However, in the above
rule, the end position of the span is equal to the
end of the conjunct; thus, k appears twice on the
left-hand side (lhs) of the rule.

Rules (8)–(9) below deal with a series of
conjuncts separated by PUNCTMARK, e.g., “A,
B, C, . . . ” The new constituent, PUNCTIN-
COMPLETE (PI), represents the sequence CONJ

PUNCTMARK.

i j q r

PI −→ C

i j q r−1

PM

r r r

punct

O(n2 p2)(8)

i j q s

C −→ PI

i j q r

C

r +1 k s s

conj

O(n3 p3)(9)

In these rules, q, the index for the end of the first
conjunct3 is inherited by their lhs, as mentioned
earlier. With q at our disposal, we can compute
the score for the derivation by (9), by taking into
account the similarity between the first conjunct
on the span (i,q) with head j, and the subsequent
conjunct on (r +1,s) with head k.

The following two rules terminate a coordi-
nate structure, when CCMARK and the last CONJ
are encountered. We introduce new constituents

3Note that in rules (8)–(11), the index for the end of the
first conjunct is denoted by q, meaning that it can take only
O(p) different values. This opposes rule (7) in which it was
denoted by k, whose range is O(n). This change owes to
the fact that the end of the first conjunct is constrained by
rules (8) or (10), which require the first CONJ to be followed
by a PUNCTMARK or CCMARK; thus the end index for the
first conjunct has only O(p) possibilities.

CCINCOMPLETE (CI) and COMPLETE (CL).

i j q r

CI −→ C

i j q r−1

CM

r r r

cc

O(n2 p2)(10)

i j `

CL −→ CI

i j q r

C

r +1 k ` `

conj

O(n4 p2)(11)

4.3 Interfacing complete coordination with
outer parse trees

Rules (12)–(13) connect a completed coordination
COMPLETE to the structures made with the stan-
dard Eisner-Satta rules.

i `
−→

i j j +1 k `

CL
O(n4)(12)

i `
−→ CL

i j k k +1 `
O(n4)(13)

We also need rules to handle the case where
COMPLETE takes a modifier.

i j `
−→ CL

i j k k +1 `
O(n4)(14)

i j `

CL −→
i j k k `

O(n4)(15)

The lhs of rule (14) has a new constituent, which
can be regarded as a concatenation of COM-
PLETELEFT and INCOMPLETERIGHT in Eisner
and Satta’s rules. Notice also that although the lhs
of rule (15) is represented by COMPLETE, it sim-
ply means a constituent having both left and right
dependents, and loses the meaning of a coordina-
tion as a whole.

Furthermore, to deal with recursive coordina-
tions, such as “(A & B) & C,” we allow COM-
PLETE to be CONJ again.4

C

i j k k
−→ CL

i j k
(16)

PUNCTINCOMPLETE is also allowed to be
CONJ, to tolerate patterns like “, and” (note the
comma preceding “and”).

C

i j q r
−→ PI

i j q r
(17)

4The computational complexity for unary rules is not
shown, as it is assumed that their right-hand side is expanded
and binarized before application of these rules, in which case
the complexity is the same as those of the expanded rules.
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There are also cases in which COMPLETE de-
pends upon another COMPLETE, which occurs
with a construct such as “(V1 & V2)(N1 & N2),”
where Vi and Ni represent verbs and their objects
(nouns), respectively.

i j `
−→

i

CL

j k `
O(n4)(18)

CL

i j `
−→ CL

i j k j k +1 `
O(n4)(19)

Here, we used the “hook trick” (Eisner and Satta,
1999; Huang et al., 2005) to reduce the incurred
time complexity from O(n5) to O(n4).

4.4 Time complexity

If we neglect the number p of punctuations and
conjunctions in a sentence, parsing a sentence of
length n requires O(n4) time, which is the same as
that of Hara et al.’s (2009) coordination analysis
method. For a sentence not containing coordinate
conjunctions, the run time is O(n3).

4.5 A note on spuriousity

Rule (17) causes spurious ambiguity when there
are exactly two conjuncts and a comma precedes
a coordinate conjunction; e.g., “A, and B.” In this
case, the dependency between A and the comma
can be made with not only rule (17), but also with
the standard Eisner-Satta rules. Rule (16) also
causes spuriousity in a similar situation. However,
these spuriousities can be easily removed by im-
posing restrictions on rules (7) and (16), such that
they are not applicable if w(k) is a comma or semi-
colon. In the experiment in the next section, these
restrictions are used.

5 Coverage of coordination rules

5.1 Experimental setup

We converted the WSJ part of PTB into Stanford
basic dependencies5, and verified the coverage of
the proposed rules. Of the 43,948 sentences in
WSJ sections 2–23, dependency arcs labeled conj,
which indicate the presence of coordination, were
contained in 40%, or 17,695 sentences.

Dependency structure for coordinations can
also be derived with the standard Eisner-Satta
rules, but we are only interested in the coverage

5we used the Stanford parser (converter) v. 3.5.2, with
-basic and -conllx options to generate gold dependencies.

Count Type Description

7 R multi-word cc
5 R non-projective dependency
5 A multiple conj arcs following cc
4 A head of punct is not the first conjunct
3 A conj on the left side of the head
1 R conjs not separated by cc or punct
1 R parenthesis (arc labeled parataxis)

Table 1: Causes of non-derivable dependencies
in WSJ Section 22. We classified these into two
types: Error type A is due to errors/inconsistencies
in the gold annotation, and type R can be attributed
to the deficiency for the proposed rules.

of the proposed rules in WSJ. Hence we treated
conj -labeled arcs as only derivable with the pro-
posed rules, but not with Eisner-Satta. We thus
essentially made Eisner and Satta’s rules to fail
to derive dependencies on all the sentences con-
taining conj -dependencies, and evaluated the cov-
erage of the proposed rules over these sentences.
Except for this constraint on conj, we ignored all
the dependency labels.

5.2 Result

Of the 17,695 sentences containing conj -labeled
dependencies in WSJ sections 2–23, the proposed
rules were able to derive correct dependencies for
94%, or 16,659 sentences.

Table 1 lists the types of failures of our pars-
ing rules and their frequencies in WSJ section 22.
About half of the failures were due to inconsisten-
cies or errors in the gold annotations.

6 Conclusion

In this paper, we have proposed a set of depen-
dency parsing rules specifically designed to han-
dle coordination, to be used in combination with
Eisner and Satta’s rules. The new rules enable the
parse scoring function to incorporate the syntac-
tic and semantic similarity of conjuncts. While
we are yet to implement such a scoring function,
we analyzed the time complexity of the proposed
rules and their coverage in the Penn Treebank.
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Abstract

We introduce interpolation of trained
MSTParser models as a resource combi-
nation method for multi-source delexical-
ized parser transfer. We present both an
unweighted method, as well as a variant
in which each source model is weighted
by the similarity of the source language
to the target language. Evaluation on the
HamleDT treebank collection shows that
the weighted model interpolation performs
comparably to weighted parse tree combi-
nation method, while being computation-
ally much less demanding.

1 Introduction

The task of delexicalized dependency parser trans-
fer (or delex transfer for short) is to train a parser
on a treebank for a source language (src), us-
ing only non-lexical features, most notably part-
of-speech (POS) tags, and to apply that parser to
POS-tagged sentences of a target language (tgt)
to obtain dependency parse trees. Delex transfer
yields worse results than a supervised lexicalized
parser trained on the tgt language treebank. How-
ever, for languages with no treebanks available, it
may be useful to obtain at least a lower-quality
parse tree for tasks such as information retrieval.

Usually, multiple src treebanks are available,
and it is non-trivial to select the best one for a
given tgt language. Therefore, information from
some or all src treebanks is usually combined to-
gether. The standard ways are to train a parser
on the concatenation of all src treebanks, or to
train a separate parser on each src treebank and
to combine the parse trees produced by the parsers
using a maximum spanning tree algorithm. The
tree combination method typically performs bet-
ter; it can also be easily extended by weighting
the src parser predictions by similarity of the src

language to the tgt language, which can further
improve its results.

In this work, we present a novel method for src
information combination, based on interpolation
of trained parser models. Our approach was mo-
tivated by an intuition that the more fine-grained
information provided by the src edge scores could
be of benefit, probably serving as src parser con-
fidence. Moreover, model interpolation is signif-
icantly less computationally demanding at infer-
ence than the parse tree combination method, as
instead of running a set of separate src parsers,
only one parser is run.

2 Related Work

Delex transfer was conceived by Zeman and
Resnik (2008), who also introduced two important
preprocessing steps – mapping treebank-specific
POS tagsets to a common set using Interset (Ze-
man, 2008), and harmonizing treebank annotation
styles into a common style, which later led to the
HamleDT harmonized treebank collection (Zeman
et al., 2012).

McDonald et al. (2011) applied delex transfer
in a setting with multiple src treebanks available,
finding that the problem of selecting the best src
treebank without access to a tgt language treebank
for evaluation is non-trivial, and proposed the tree-
bank concatenation method as a solution. Søgaard
and Wulff (2012) introduced weighting into the
method, using a POS n-gram model trained on a
tgt POS-tagged corpus to weight src sentences in
a weighted perceptron learning scenario (Caval-
lanti et al., 2010); due to its large computational
complexity, we only compare to the unweighted
variant in our paper.

The parse tree combination method was intro-
duced by Sagae and Lavie (2006) for a super-
vised monolingual setting, optionally weighting
each src parser with a weight based on its accu-
racy. In (Rosa and Žabokrtský, 2015), we ported
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the method to a crosslingual setting by combining
delex parsers for different languages, weighted by
src-tgt language similarity; we largely build upon
that work in this paper.

Other possibilities of estimating src-tgt lan-
guage similarity for delex transfer include employ-
ment of WALS (Dryer and Haspelmath, 2013),
focusing e.g. on genealogy distance and word-
order features, as done by Naseem et al. (2012)
and Täckström et al. (2013), among others.

We are not aware of any prior work on interpo-
lating dependency parser models. However, there
is work on interpolating trained phrase-structure
parsers, both in a monolingual setting for domain
adaptation by McClosky et al. (2010), as well as
in a multilingual setting by Cohen et al. (2011).

3 Method

In this section, we present our suggested approach
of combining information from multiple src tree-
banks for parsing tgt language sentences in a
crosslingual delex transfer scenario. The method
proceeds as follows:

1. Train a delex parser model on each src tree-
bank (Section 3.1).

2. Normalize the parser models (Section 3.2).
3. Interpolate the parser models (Section 3.3).
4. Parse the tgt text with a delex parser using

the interpolated model.

3.1 Delexicalized MSTParser
Throughout this work, we use MSTperl (Rosa,
2015b), an unlabelled first-order non-projective
single-best implementation of the MSTParser of
McDonald et al. (2005b), trained using 3 iterations
of MIRA (Crammer and Singer, 2003).

The MSTParser model uses a set of binary fea-
tures F that are assigned weights wf by train-
ing on a treebank. When parsing a sentence, the
parser constructs a complete weighted directed
graph over the tokens of the input sentence, and
assigns each edge e a score se which is the sum of
weights of features that are active for that edge:

se =
∑
∀f∈F

f(e) · wf . (1)

The sentence parse tree is the maximum spanning
tree over that graph, found using the algorithm of
Chu and Liu (1965) and Edmonds (1967).

The delex feature set we use is based on the set
of McDonald et al. (2005a) with lexical features

removed. It consists of combinations of signed
edge length (distance of head and parent, bucketed
for values above 4 and for values above 10) with
POS tag of the head, dependent, their neighbours,
and all nodes between them. We use the Universal
POS Tagset (UPOS) of Petrov et al. (2012). The
parser configuration files containing the full fea-
ture set, together with the scripts we used for our
experiments, are available in (Rosa, 2015a).

3.2 Model Normalization
An important preliminary step to model interpo-
lation is to normalize each of the trained models,
as the feature weights in models trained over dif-
ferent treebanks are often not on the same scale
(we do not perform any regularization during the
parser training). We use a simplified version of
normalization by standard deviation. First, we
compute the uncorrected sample standard devia-
tion of the weights of the features in the model as

sM =
√

1
|M |

∑
∀f∈M

(wf − w̄)2 , (2)

where w̄ is the average feature weight, and |M | is
the number of feature weights in model M ; only
features that were assigned a weight by the train-
ing algorithm are taken into account.

We then divide each feature weight by the stan-
dard deviation:1

∀f ∈M : wf :=
wf

sM
. (3)

The choice of normalization by standard devia-
tion is based on its high and stable performance on
our development set, and Occam’s razor.2

3.3 Model Interpolation
The interpolated model is a linear combination of
the normalized models trained over the src tree-
banks. The result is a model that can be used in
the same way as a standard MSTParser model.

1We have not found any further gains in performance
when subtracting the sample mean from the weight before
the division; the MSTParser models seem to be typically cen-
tered very similarly.

2We tried 12 normalization schemes, nearly all of which
achieved an improvement of 2.5% to 5% UAS absolute over
an interpolation of unnormalized models on average, but of-
ten with large differences for individual languages. Another
well-performing method was to divide each feature weight by
the sum of absolute values of all feature weights in the model;
or a similar method, applied during inference individually for
each sentence, using only the feature weights that fired for
the sentence to compute the divisor.
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In unweighted model interpolation, the weight
of each feature (wf ) is computed as the sum of the
weights of that feature in the src models (wf,src):

∀f ∈ F : wf =
∑
∀src

wf,src . (4)

In the weighted variant of model interpolation,
we extend (4) with multiplication by the KL−4

cpos3

weight of Rosa and Žabokrtský (2015):

∀f ∈ F :

wf =
∑
∀src

wf,src ·KL−4
cpos3(tgt , src) . (5)

The KL−4
cpos3 weight corresponds to the similarity

of the src language to the tgt language, and is de-
fined as the negative fourth power of the KL diver-
gence (Kullback and Leibler, 1951) of coarse POS
tag trigram distributions in tgt and src corpora:

KL−4
cpos3(tgt , src) = ∑

∀cpos3

∈tgt

ftgt(cpos3) · log
ftgt(cpos3)
fsrc(cpos3)


−4

, (6)

where cpos3 is a UPOS trigram, and f(cpos3) is
its relative frequency in a src or tgt corpus.3

4 Baseline Methods

In this section, we describe the two baseline re-
source combination methods against which we
compare our model interpolation method.

4.1 Treebank Concatenation
The treebank concatenation method of McDonald
et al. (2011) proceeds as follows:

1. Concatenate all src treebanks.
2. Train a delex parser on the resulting treebank.
3. Apply the parser to the tgt text.

4.2 Parse Tree Combination
The parse tree combination method is defined by
Rosa and Žabokrtský (2015) in the following way:

1. Train a delex parser on each src treebank.
2. Apply each of the parsers to the tgt sentence,

obtaining a set of parse trees.
3fsrc(cpos

3) := 1
N

if the src corpus does not contain the
given trigram (N is the number of tokens in the corpus).

3. Construct a weighted directed graph over tgt
sentence tokens, with each edge assigned a
score equal to the number of parse trees that
contain this edge. (i.e., each parse tree con-
tributes by 0 or 1 to the edge score). In the
weighted variant, the contribution of each src
parse tree is multiplied by KL−4

cpos3 (tgt , src).
4. Find the maximum spanning tree over the

graph with the Chu-Liu-Edmonds algorithm.

Note that if each src parse tree contributed with a
(normalized) score of the edge as assigned by its
model rather than with a 0 or 1, this method would
be equivalent to the model interpolation method.

5 Dataset

We carry out all experiments using HamleDT
2.0 (Rosa et al., 2014), a collection of 30 tree-
banks converted into Universal Stanford Depen-
dencies (de Marneffe et al., 2014). We use gold-
standard UPOS tags in all experiments; while
this is not fully realistic in the setting of under-
resourced languages, there exist high-performance
semi-supervised taggers that could be used instead
of gold tags (Das and Petrov, 2011; Agić et al.,
2015), which we plan to evaluate in future. We
use the treebank training sections for parser train-
ing and KL−4

cpos3 computation, and the test sections
for evaluation. We used 12 of the treebanks as a
development set to select the model normalization
method to avoid overfitting it to the dataset.4

6 Evaluation

Table 1 contains the results of our model interpola-
tion methods, as well as the baseline methods. For
each tgt language, all remaining 29 src treebanks
were used for parser training. We base our evalua-
tion on comparing absolute differences in UAS on
the whole set of 30 languages as targets.5

The performance of the weighted model inter-
polation is comparable to the weighted tree com-
bination – the difference in average UAS of the
methods is lower than 0.1%, with model interpo-
lation achieving a higher UAS than the tree combi-
nation for 16 of the 30 tgt languages. This shows

4The development set was chosen to contain multiple
members of several language families (Uralic, Romance), as
well as a very solitary language (Japanese), etc.; also, we
cared that both smaller and larger treebanks are represented.

5The results of our method are generally better on the test
set than on the development set, suggesting that no overfitting
happened.
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Target Unweighted Weighted
language Conc Tree Inter Tree Inter

Bengali 61.0 63.2 67.1 66.7 66.9
Czech 60.5 60.4 57.5 65.8 65.2
Danish 56.2 54.4 48.9 50.3 49.5
German 12.6 27.6 18.2 56.8 61.6
English 12.3 21.1 16.2 42.6 48.6
Basque 41.2 40.8 39.5 30.6 34.9
Anc. Greek 43.2 44.7 41.4 42.6 44.0
Latin 38.1 40.3 39.7 39.7 39.5
Dutch 55.0 56.2 54.2 58.7 59.4
Portuguese 62.8 67.2 62.8 62.7 63.7
Romanian 44.2 51.2 48.6 50.0 50.3
Russian 55.5 57.8 53.3 57.2 56.3
Slovak 52.2 59.6 55.7 58.4 60.6
Slovenian 45.9 47.1 42.8 53.9 49.6
Swedish 45.4 52.3 49.4 50.8 50.4
Tamil 27.9 28.0 27.6 40.0 37.3
Telugu 67.8 68.7 72.9 77.4 77.4
Turkish 18.8 23.2 25.3 41.1 34.8
Average 44.5 48.0 45.6 52.5 52.8
Std. dev. 16.9 15.0 16.0 11.8 12.0
Arabic 37.0 35.3 30.7 41.3 34.6
Bulgarian 64.4 66.0 60.3 67.4 68.5
Catalan 56.3 61.5 58.5 72.4 72.4
Greek 63.1 62.3 59.6 63.8 64.1
Spanish 59.9 64.3 60.4 72.7 72.7
Estonian 67.5 70.5 67.4 72.0 71.7
Persian 30.9 32.5 29.5 33.3 28.6
Finnish 41.9 41.7 41.5 47.1 44.7
Hindi 24.1 24.6 26.2 27.2 32.7
Hungarian 55.1 56.5 57.4 51.2 53.0
Italian 52.5 59.5 56.0 59.6 60.1
Japanese 29.2 28.8 27.2 34.1 33.0
Average 48.5 50.3 47.9 53.5 53.0
Std. dev. 15.2 16.5 15.6 16.7 17.4
Average 46.1 48.9 46.5 52.9 52.9
Std. dev. 16.1 15.4 15.6 13.7 14.1

Table 1: UAS on test tgt treebanks (upper part of
table) and development tgt treebanks (lower part).
Conc = Treebank concatenation
Tree = Parse tree combination
Inter = Model interpolation
Average = Average UAS (on test/development/all)
Std. dev. = Standard sample deviation of UAS, serving as an
indication of robustness of the method

that weighted model interpolation is a good alter-
native to weighted tree combination.

In the unweighted setting, the situation is
quite different, with model interpolation scoring
much lower than tree combination (-2.4%), and
only slightly higher than treebank concatenation
(+0.4%) on average. This suggests that, contrary
to our original intuition, edge scores assigned by
the src models are not a good proxy for parser con-
fidence, not even when appropriately normalized.6

Furthermore, the weighted methods generally out-

6The same tendency was observed across all normaliza-
tion methods evaluated on the development set.

perform the unweighted ones (by +4.0% for tree
combination and by +6.4% for model interpolation
on average), which suggests, among other, that the
src-tgt language similarity is much more impor-
tant than the exact values of src edge scores for
resource combination in delex transfer.

7 Conclusion

We presented trained parser model interpolation
as an alternative method for multi-source crosslin-
gual delexicalized dependency parser transfer.
Evaluation on a large collection of treebanks
showed that in a setting where the source lan-
guages are weighted by their similarity to the tar-
get language, model interpolation performs com-
parably to the parse tree combination approach.
Moreover, model interpolation is significantly less
computationally demanding than the tree combi-
nation when parsing the target text, as the inter-
polation can be efficiently performed beforehand,
thus only requiring to invoke a single parser at run-
time, while in the tree combination approach, each
source parser has to be invoked individually.

In the unweighted setting, model interpolation
consistently performed much worse than tree com-
bination, which we find rather surprising, and we
therefore plan to further investigate this in fu-
ture. Still, the weighted methods generally outper-
formed the unweighted ones, and as the language
similarity measure that we used only requires the
source treebanks and a target POS-tagged text, i.e.
exactly the resources that are required even for the
unweighted delex transfer methods, there is little
reason not to employ the weighting. Therefore,
the low performance of the unweighted model in-
terpolation is of less importance than its high per-
formance in the weighted setting.

In this work, we only used the unlabelled MST-
Parser for all experiments. We believe that extend-
ing our method to other parsers constitutes an in-
teresting path for future research.
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Željko Agić, Dirk Hovy, and Anders Søgaard. 2015.

If all you have is a bit of the bible: Learning POS
taggers for truly low-resource languages. In Pro-
ceedings of ACL-IJCNLP. Hrvatska znanstvena bib-
liografija i MZOS-Svibor.

Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Clau-
dio Gentile. 2010. Linear algorithms for online
multitask classification. The Journal of Machine
Learning Research, 11:2901–2934.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On
shortest arborescence of a directed graph. Scientia
Sinica, 14(10):1396.

Shay B. Cohen, Dipanjan Das, and Noah A. Smith.
2011. Unsupervised structure prediction with non-
parallel multilingual guidance. In Proceedings of
EMNLP, pages 50–61, Stroudsburg, PA, USA. ACL.

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
The Journal of Machine Learning Research, 3:951–
991.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proceedings of ACL-HLT, pages
600–609. ACL.

Marie-Catherine de Marneffe, Natalia Silveira, Tim-
othy Dozat, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford dependencies: A cross-linguistic typol-
ogy. In Proceedings of LREC’14, Reykjavı́k, Ice-
land. ELRA.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B,
71(4):233–240.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, pages 79–86.

David McClosky, Eugene Charniak, and Mark John-
son. 2010. Automatic domain adaptation for pars-
ing. In Proceedings of HLT-NAACL, pages 28–36.
ACL.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training of de-
pendency parsers. In Proceedings of ACL, pages 91–
98. ACL.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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Abstract

We study non-deterministic oracles for
training non-projective beam search
parsers with swap transitions. We map out
the spurious ambiguities of the transition
system and present two non-deterministic
oracles as well as a static oracle that mini-
mizes the number of swaps. An evaluation
on 10 treebanks reveals that the difference
between static and non-deterministic
oracles is generally insignificant for beam
search parsers but that non-deterministic
oracles can improve the accuracy of
greedy parsers that use swap transitions.

1 Introduction

Training transition-based dependency parsers re-
lies on an oracle – a function that, given a parser
configuration and a gold dependency tree, returns
the correct transition. The sequence of transitions
required to derive a given dependency tree is, how-
ever, typically not unique, and for certain config-
urations more than one transition is correct. This
issue has typically been dealt with by defining a
canonical order among the transitions, thereby re-
solving such ambiguities in a deterministic way.
In addition to the determinism, standard oracles
also make the assumption that the gold tree can be
recovered from the current configuration. Oracles
with this behavior are known as static oracles.

Recently, much work has been devoted to the
development of dynamic oracles that do away with
both of these assumptions (Goldberg and Nivre,
2013; Goldberg et al., 2014; Gómez-Rodrı́guez et
al., 2014). Dynamic oracles have been shown to be
very successful for training greedy parsers. Since
greedy parsers typically suffer from error propa-
gation, dynamic oracles enable the parsers to learn
to do “the next best thing” after having made a
mistake, resulting in considerable improvements
in parsing accuracy.

Nevertheless, greedy transition-based parsers
still lag behind search-based parsers that explore a
larger set of possible transition sequences. Search-
based parsers are typically realized through beam
search and trained using global learning, where a
discriminative model is trained to score not just
single transitions, but a sequence of transitions
(Zhang and Clark, 2008). The combination of
non-greedy inference and global learning enables
search-based parsers to overcome the error prop-
agation problem. However, since the model is
globally trained, oracles that can recover from past
mistakes and do the next best thing are not ap-
plicable in this scenario. On the other hand, it
is an open question whether search-based parsers
should be trained using static oracles, or whether
their performance can be further increased by us-
ing a non-deterministic oracle, i.e., an oracle that
considers all possible transition sequences that can
derive the gold dependency tree.

We evaluate the hypothesis that transition-based
parsers with beam search can be improved by
using non-deterministic oracles during training.
We do this in the context of the transition sys-
tem by Nivre (2009), henceforth SwapStandard,
which extends the ArcStandard system (Nivre,
2004) with a swap transition to accommodate non-
projective dependency trees. This system has been
shown to be very effective with beam search, even
rivaling graph-based dependency parsers (Bohnet
and Nivre, 2012; Bohnet et al., 2013). Empiri-
cally, we find that the utility of non-deterministic
oracles for training beam search parsers is rather
limited and typically the difference compared to a
static oracle is insignificant. However, our experi-
ments also show that the non-deterministic oracles
can be beneficial when training greedy parsers, a
result that has not previously been shown for non-
projective systems.

The main contribution of this paper is the first
characterization of a non-deterministic oracle for
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the SwapStandard system, based on a thorough
analysis of spurious ambiguities. As a side-result,
we also arrive at a static oracle that minimizes the
number of swap transitions required to parse any
non-projective dependency tree, thereby solving
a previously open problem (Nivre, 2009; Nivre
et al., 2009). In addition, we provide the first
empirical evaluation of non-deterministic oracles
for training beam search parsers, as well as the
first evaluation with greedy parsers using a non-
projective transition system.

2 Related Work

During the last decade, a plethora of transition sys-
tems has been described. Early systems, such as
ArcEager (Nivre, 2003) and ArcStandard (Nivre,
2004) were restricted to projective structures. Sev-
eral systems that can accommodate non-projective
structures have subsequently been described (At-
tardi, 2006; Gómez-Rodrı́guez and Nivre, 2010,
inter alia). These systems are, however, re-
stricted to certain subsets of non-projective struc-
tures. In contrast, SwapStandard imposes no such
restrictions and is able to parse unrestricted non-
projective structures.

Dynamic oracles were first introduced by Gold-
berg and Nivre (2012) for the ArcEager system.
They also proposed the standard way of exploiting
dynamic oracles for training greedy parsers known
as training with exploration. Here, the idea is that
sometimes erroneous transitions are predicted dur-
ing training. The dynamic oracle then comes into
play by guiding the model towards the best pos-
sible tree, subject to the mistakes that have al-
ready been made. However, search-based parsers
model the parsing problem as a structured pre-
diction problem and are trained to predict opti-
mal sequences of transitions for an entire sentence.
Training with exploration is thus not applicable.

More recent work on dynamic oracles has pri-
marily focused on developing dynamic oracles
for other transition systems. Goldberg et al.
(2014) present dynamic oracles for the ArcStan-
dard system and the LR-spine parser by Sarto-
rio et al. (2013). The only dynamic oracle for
non-projective dependency trees was introduced
by Gómez-Rodrı́guez et al. (2014) for a special
case of Attardi’s (2006) system. To date no dy-
namic oracle has been presented for transition sys-
tems that can handle unrestricted non-projective
dependencies.

The underlying idea in our work is that there
may be more than a single decomposition (i.e.,
transition sequence) that can recover the correct
output (dependency tree). Rather than selecting a
single unique such decomposition, the choice of
decomposition can be thought of as latent and de-
ferred to the machine learning algorithm. This ap-
proach has been shown to be successful for a num-
ber of tasks, including coreference resolution (Fer-
nandes et al., 2012), semantic parsing (Zhou et al.,
2013), and statistical machine translation (Yu et
al., 2013), to name a few.

3 Transition System

We begin by describing our notation and the
SwapStandard system. For simplicity we omit
the inclusion of arc labels from this description,
although for the experimental evaluation we im-
plement a labeled version of this system. For a
more formal description of the system, as well as
proofs of soundness and completeness, we refer
the reader to Nivre (2009).

The SwapStandard system operates on configu-
rations c = (Σ, B,A), where Σ denotes a stack
of partially processed tokens, B denotes a buffer
of remaining input tokens, and A is a set of arcs.
We denote stack items by si, i ≥ 0 where s0 de-
notes the topmost item on the stack. Similarly, let
bi, i ≥ 0 denote the items of the buffer, b0 denoting
the first element on the buffer. Finally, let h → d
denote an arc from the head h to the dependent d.

The system begins in an initial configuration
c0 = ([0], [1, 2, 3, ...], ∅), where the stack consists
solely of the root token (numbered 0), all input to-
kens are on the buffer (numbered 1, 2, ...), and the
arc set is the empty set. A configuration is termi-
nal when the buffer is empty and the stack consists
only of the root token 0.

The possible transitions of the system are

• Shift (SH) – removes b0 from the buffer and
pushes it onto the stack,

• LeftArc (LA) – introduces an arc s0 → s1 and
removes s1 from the stack,

• RightArc (RA) – introduces an arc s1 → s0 and
removes s0 from the stack,

• Swap (SW) – removes s1 from the stack and
places it as the first element on the buffer.

The SW transition reorders tokens from the input
on the fly, enabling the system to recover non-
projective trees. Informally, a dependency tree is
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root That ’s what they ’re after

nsubj
root pobj

nsubj

ccomp

prep

Figure 1: A non-projective dependency tree.

non-projective if it cannot be drawn without any
crossing arcs. An example sentence with a non-
projective tree is shown in Figure 1.

The total number of transitions required to parse
a sentence of length n is bounded from below by
2n since every token needs to be shifted onto the
stack once and attached to its head through an LA
or RA once. Additionally, every SW moves a token
back onto the buffer which subsequently needs to
be shifted again, adding 2k transitions for k SW.

Eager oracle. Nivre (2009) presents a static or-
acle for the SwapStandard system. A high-level
algorithmic description of this oracle is shown in
Algorithm 1. The functions CANLA, CANRA,
and CANSW define the requirements for the cor-
responding transitions. For LA the requirement is
that s0 is the head of s1 and that s1 has already
collected all of its own dependents, and vice versa
for RA.

To decide when SW can be applied, Nivre (2009)
introduces the notion of projective order which
is obtained through an inorder traversal of the de-
pendency tree. The projective order is a total or-
der over the tokens of a sentence. If the tokens
are sorted accordingly, the tree becomes projec-
tive. The SW transition is allowed when s0 pre-
cedes s1 according to the projective order.

For a given sentence x, which is understood to
include a representation of x’s dependency tree
and projective order, Algorithm 1 can be used to
create a sequence of transitions that can derive the
corresponding dependency tree. Specifically, iter-
atively call the oracle starting from x’s initial con-
figuration until the terminal configuration has been
reached. This transition sequence is the oracle se-
quence for x.

In the example from Figure 1, the projective or-
der is That < ’s < they < ’re < what < after. The
difference compared to the original word order is
that what has been moved two tokens to the right.
This means that SW is permissible when either of
they or ’re are s0 and what is s1. The oracle would
apply SW when what is s1 and they is s0. It would
then continue with two more SH followed by an-

Algorithm 1 Generic static oracle
Input: Configuration c, sentence x
1: if CANLA(c, x) then
2: return LA
3: else if CANRA(c, x) then
4: return RA
5: else if CANSW(c, x) then
6: return SW
7: else
8: return SH

other SW, thereby obtaining the projective order.
Since this oracle applies SW whenever the projec-
tive order admits it, we refer to it as EAGER.

Lazy oracle. For non-projective trees, the se-
quence given by EAGER is often not the shortest
sequence, and shorter sequences that require fewer
SW transitions to produce the same parse may be
possible. Drawing upon this observation, Nivre et
al. (2009) present an improved oracle that consid-
erably reduces the number of swaps. Their oracle
is based on the same basic structure as the one in
Algorithm 1, but the semantics of CANSW are re-
defined. The oracle relies on a notion of maximal
projective components (MPCs). In addition to
requiring that s0 and s1 appear in the wrong or-
der with respect to the projective order, this oracle
also requires s0 and s1 not to be part of the same
MPCs. MPCs are defined as the resulting subtrees
obtained by running the oracle parser without SW
until it hits a dead end. Nivre et al. (2009) show
that this oracle substantially reduces the number
of SW transitions, sometimes by up to 80%.

In the example from Figure 1 this oracle would
not admit the first SW transition when what is s1

and they is s0. Instead, it would continue by shift-
ing ’re and then attaching they through an LA. As
this oracle tries to postpone SW transitions when
possible, we refer to it as LAZY.

4 Spurious Ambiguities

The static oracles presented above can produce a
sequence of transitions to derive any dependency
tree. By design, the algorithm selects among the
possible transitions using a pre-defined order, i.e.,
the order of the tests in the if-clauses. This pro-
cedure yields a deterministic sequence of transi-
tions for any dependency tree. This sequence is
not necessarily the only correct one for a given de-
pendency tree. In fact, most dependency trees seen
in standard treebanks can be derived from more
than one sequence of transitions. Different such
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root John likes Mary
0 1 2 3

subj
root

obj 2 → 1

2 → 3

2 → 1
2 → 1
2 → 3

2 → 1
2 → 3
0 → 2

SH
SH

RASH
LA

SH

RA

RA

LA

Figure 2: A dependency tree which exhibits the SH-LA ambiguity (left) and a lattice that encodes the
two alternative transition sequences (right).

sequences always start and end with the same tran-
sitions, however, somewhere along the way a fork
point occurs where more than one transition can be
applied while still keeping the desired dependency
tree reachable. We call these fork points spurious
ambiguities as they all lead to the same tree. We
have already seen one such ambiguity above, com-
paring EAGER and LAZY, namely the SH-SW am-
biguity. Below we review the remaining spurious
ambiguities of the SwapStandard system and give
examples of each kind.

SH-LA ambiguity. While the canonical way of
constructing the dependency tree is to attach left
dependents as early as possible, these decisions
can sometimes be delayed. Consider the exam-
ple sentence on the left in Figure 2. Here, the
left dependent of likes need not be attached be-
fore the right. The example thus has two possible
transition sequences that create the given depen-
dency tree. These sequences can be illustrated in
the form of a lattice, as depicted on the right in
Figure 2. Nodes in the lattice correspond to parser
configurations and arcs between them to transi-
tions (color-coded for different transitions). The
initial configuration is to the left, and the terminal
configuration is on the right (indicated by a dou-
ble circle). The text in the nodes show the arcs
that have been constructed thus far.1 The SH-LA
ambiguity gives rise to the fork point where there
are two parallel paths, corresponding to early and
late attachments of the left dependent. This am-
biguity is not specific to SwapStandard, but also
occurs in the projective ArcStandard system. In
the projective case, this type of ambiguity always
arises when the parser can make an LA attachment
but b0 is dominated by s0.

SH-RA ambiguity. While the SH-RA ambiguity
is not possible in the plain ArcStandard system the
introduction of SW enables this ambiguity. In the
ArcStandard system, applying an SH when an RA

1While the nodes only display the arc set so far, the merge
points in the lattice truly correspond to equivalent states
where the stack, buffer, and arc set are all identical.

root Ausgelöst wurde sie durch Intel

OC
–

SB

MO

NK

Figure 3: A non-projective dependency tree
which exhibits the SH-RA ambiguity.

is possible results in “burying” tokens on the stack
such that they are irretrievable. Since the SW tran-
sition moves tokens out of the stack and back onto
the buffer, it is sometimes possible to recover these
buried tokens and thus do the RA at a later point.

Consider the German sentence in Figure 3. The
static oracle would parse this sentence by first ap-
plying three SH followed by an RA, attaching sie to
wurde. However, the projective order of this sen-
tence is Ausgelöst < durch < Intel < wurde < sie.
The system is thus able to delay the RA transition,
do another SH and then swap wurde and sie past
durch and handle this attachment later. The lattice
in Figure 4 shows all ambiguities for this sentence.
The first SH-RA ambiguity is highlighted.

In comparison to the SH-LA ambiguity seen ear-
lier, the SH-RA ambiguity always relies on addi-
tional SW transitions and thus leads to longer tran-
sition sequences. Note that the same logic also
holds for LA – sometimes both the head and de-
pendent of an LA transition can be swapped out,
creating a second kind of SH-LA ambiguity in ad-
dition to the one seen already.

4.1 Non-deterministic oracles

Recall that the main hypothesis of our work is that
a search-based parser can be further improved by
using a non-deterministic oracle. So far we have
seen three types of spurious ambiguities. It is easy
to convince oneself that no other ambiguities are
possible – by sheer enumeration of the possible
pairs of transitions, any other ambiguities would
involve one of the pairs LA-RA, LA-SW, or RA-SW.
An LA-RA ambiguity would only be possible if s0

is the head of s1 and s1 is the head of s0 which
implies that the tree has a cycle. The LA-SW and
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Figure 4: A lattice which encodes all possible transition sequences to parse the sentence from Figure 3.
The initial SH-RA ambiguity is highlighted in the red box.

Algorithm 2 Can shift
Input: Configuration c, sentence x
1: if |c.B| = 0 then . Not possible if buffer is empty
2: return false
3: c = DOSH(c) . Initial shift
4: while ¬TERMINAL(c) do
5: if CANLA(c, x) then
6: c = DOLA(c)
7: else if CANRA(c, x) then
8: c = DORA(c)
9: else if CANSWEager(c, x) then

10: c = DOSW(c)
11: else if |c.B| > 0 then . SH if buffer is not empty
12: c = DOSH(c)
13: else
14: return false . Hit dead end
15: return true

RA-SW ambiguities would swap a dependent past
its head, or a head past its dependent. This would,
however, violate the projective order and is there-
fore also not possible.

The key question that needs to be resolved in or-
der to construct a non-deterministic oracle is when
an SH transition can be applied. The EAGER ora-
cle defines when the other three transitions can be
applied, but treats SH as a fallback when no other
transitions are possible. So when is SH applica-
ble? One way to find out is to try an SH and see if
there is any way to recover the full parse. This pro-
cedure is described in Algorithm 2. The algorithm
applies an initial shift (line 3) and uses the EAGER

oracle from then on (lines 4 to 14). If the parser
can recover the correct parse, then SH is permis-
sible. If not, the parser will eventually end up in
a dead end where the buffer is empty, the stack
contains several items, but no other transitions are
applicable (line 14).2

The reason this algorithm works is that after ap-
plying the initial SH, it prefers all the other tran-
sitions over additional SH transitions. The other

2The worst case runtime of this algorithm is O(n2), al-
though it is enough to halt the search when the stack has been
reduced to only two tokens (one being root), since from that
point on the gold tree has to be recoverable. In practice we
observed that applying Algorithm 2 during training had neg-
ligible effect on overall training time.

transitions are all taking clear steps towards avoid-
ing dead ends, either by introducing arcs (remov-
ing tokens from the system) or by applying swaps
(permuting the words in the direction of the pro-
jective order by moving tokens back from the stack
onto the buffer).

The procedure outlined in Algorithm 2 allows
us to construct a non-deterministic oracle for the
SwapStandard system. Specifically, whenever ei-
ther of LA, RA, or SW are permissible, the oracle
also checks if SH is possible. If neither of LA, RA,
or SW are permissible, SH is returned. This oracle
allows for all possible ambiguities and we refer to
it as ND-ALL.

It could be argued that a parser could profit
from having a more eager treatment of arc attach-
ments and that the SH-LA and SH-RA ambiguities
should be avoided. As for the SH-SW ambiguity,
we have seen that there is a continuum of how
eagerly SW transitions should be applied, ranging
from EAGER to LAZY (and beyond, as we will see
shortly). The static oracles apply SW according to
the predefined rules that are primarily grounded in
tree structural characteristics. These rules may not
be the most motivated from a linguistic perspec-
tive, and there could be a more systematic treat-
ment of swaps lying somewhere in between that is
easier to learn. In order to investigate whether the
parser is able to learn better such patterns latently,
we also construct an oracle that only permits the
SH-SW ambiguity but no others. We will refer to
this oracle as ND-SW.

4.2 Minimally swapping oracle

While the LAZY oracle considerably reduces the
number of SW transitions, this oracle still does not
always yield the minimal number of swaps for a
given dependency tree. Given the possibility to
tell when an SH is possible (Algorithm 2), we can
construct lattices as those shown above for any de-
pendency tree. By searching this lattice for the
shortest path from the initial state to the terminal
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state, the shortest possible transition sequence can
be found. As this oracle minimizes the number of
SW transitions, we refer to it as MINIMAL.3

This procedure cannot be formalized as con-
cisely as Algorithm 1 and relies on searching the
corresponding lattice. But it should be noted that
when a static oracle is used for training, the tran-
sition sequence for each sentence only needs to be
computed once before training.

The lattices can grow extremely large, to the
point where the lattice of a single sentence can-
not be kept in main memory.4 A depth-first search
that keeps a stack of fork points in memory cir-
cumvents this problem. After reaching the termi-
nal state the first time, only the path chosen and
the number of transitions need to be remembered.
Any further paths that have not reached the termi-
nal state after as many transitions as the currently
seen shortest path can be terminated immediately.
While this oracle is clearly slower than the other
static ones, we found that the extra overhead is
negligible in comparison to overall training time.

5 Training

We train the parser with a variant of the structured
perceptron (Collins, 2002) and use a beam size of
20. We follow Bohnet et al. (2013) and use the
the Passive-Aggressive algorithm (Crammer et al.,
2006). We deviate slightly from the previous work
and use the Max-Violation framework (Huang et
al., 2012) rather than early update (Collins and
Roark, 2004), as we found that it required fewer
iterations and yielded slightly higher scores, both
for static and non-deterministic oracles. Following
standard practice, we also apply parameter averag-
ing (Collins, 2002).

When training with a static oracle the correct
configuration to update against is well-defined, but
with a non-deterministic oracle there may be more
than one correct configuration and it is unclear
against which to update. Yu et al. (2013) suggest
to compare with the highest scoring correct con-
figuration at every step but in initial experiments
we found that this performed rather poorly. In-
stead, we apply beam search in a constrained set-

3It should be noted that in certain cases the number of SW
transitions can be reduced even further by swapping tokens
that are already in the projective order. The MINIMAL oracle
ensures that the number of SW transitions is minimal while
still respecting the projective order.

4Even with 256gb of main memory we were unable to
keep some of the lattices of the training sets in memory de-
spite an efficient implementation.

ting to arrive at a single best correct sequence us-
ing the current parameters. This sequence is the
latent gold sequence and is recomputed for every
sentence during every iteration.

When we train a greedy parser we fall back
to the standard perceptron algorithm using a non-
deterministic oracle (Goldberg and Nivre, 2013;
Goldberg et al., 2014). Since this model is not
globally trained, only the choice of the next tran-
sition is latent but the basic principle is the same.

The feature model we use is primarily based on
that of Zhang and Nivre (2011) with the obvious
adaptations to the SwapStandard setting. Addi-
tional features are taken from other recent work on
parsers using the SwapStandard system (Bohnet
and Nivre, 2012; Bohnet et al., 2013). Follow-
ing the line of work presented by Bohnet et al.
we also replace the feature mapping function by
a hash function which enables the use of negative
features and yields a considerable speed improve-
ment (Bohnet, 2010).5

6 Experiments

In total we experiment with five different ora-
cles. The three static ones, EAGER, LAZY, and
MINIMAL, all use a single unique transition se-
quence for every sentence in the training data.
The two non-deterministic oracles, ND-SW and
ND-ALL, create latent transition sequences on the
fly relying on the current parameters and may
change across training iterations. Our main hy-
pothesis is that the latent sequences created by
the non-deterministic oracles are easier to learn
and generalize better to unseen data, leading to in-
creased accuracy.

Data sets. We evaluate the oracles on ten tree-
banks. Specifically, we use the nine treebanks
from the SPMRL 2014 Shared Task (Seddah et
al., 2014), comprising Arabic, Basque, French,
German, Hebrew, Hungarian, Korean, Polish,
and Swedish. For these treebanks we use the
train/dev/test splits provided by the Shared Task
organizers. Additionally, we use the English Penn
Treebank (Marcus et al., 1993) converted to Stan-
ford dependencies (de Marneffe et al., 2006) with
the standard split, sections 2-21 for training, sec-
tion 24 for development, and section 23 for test.

A breakdown of the characteristics of the train-
ing sets of each treebank is shown in Table 1. The

5For the sake of reproducibility we make our implemen-
tation available on the first author’s website.
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ar de en eu fr he hu ko pl sv
# Sent. 15,762 40,472 39,832 7,577 14,759 5,000 8,146 23,010 6,578 5,000
% Proj. Sent. 97.32% 67.23% 99.90% 94.71% 99.97% 99.82% 87.75% 100% 99.54% 93.62%
# EAGER Swaps 6,481 155,041 146 984 6 12 3,654 0 91 2,062
% Swap Red. (LAZY) 80.59% 75.09% 71.92% 53.46% 16.67% 8.33% 51.07% - 59.34% 75.90%
% Swap Red. (MINIMAL) 80.79% 83.88% - - - - 54.24% - - 77.79%
% Sent. w/ Unique tr. seq. 9.94% 7.81% 1.31% 1.06% 2.66% 2.82% 10.25% 0.27% 10.57% 7.28%

Table 1: Data set statistics (training sets).

87

88

89

90

91

92

0 5 10 15 20

L
A
S

Iterations

Eager
Lazy

Minimal
Nd-Sw
Nd-All

78

79

80

81

82

83

0 5 10 15 20

L
A
S

Iterations

Eager
Lazy

Minimal
Nd-Sw
Nd-All

Figure 5: Learning curves of the different oracles for German (left) and Hungarian (right).

table shows the total number of sentences and the
percentage of projective sentences. It also shows
the total number of swap transitions required by
EAGER, and the reduction of swaps of LAZY and
MINIMAL relative to EAGER. For instance, in the
Arabic treebank 97.32% of the sentences are pro-
jective and the LAZY and MINIMAL reduce the
number of swaps by 80.59% and 80.79%, respec-
tively. For about half the treebanks LAZY is al-
ready minimal and we exclude MINIMAL.

Korean is the only strictly projective treebank,
although some of the treebanks have very few non-
projective arcs in their training sets, particularly
Hebrew and French. This means that the num-
ber of SH-SW ambiguities considered by the non-
deterministic oracles during training is extremely
small. The ND-SW oracle thus exhibits a very tiny
amount of spurious ambiguity in these cases. Nev-
ertheless, ND-ALL will still consider the SH-LA
ambiguity. The last row of Table 1 shows the per-
centage of sentences that exhibit no spurious am-
biguity under the ND-ALL oracle. This fraction
ranges between almost 0% and up to about 10%,
which means that there are indeed plenty of spuri-
ous ambiguities in the training data.

Preprocessing. We adopt a realistic evaluation
setting and use predicted part-of-speech tags and
morphological features. Specifically, we use Mar-
MoT (Mueller et al., 2013), a state-of-the-art CRF
tagger that jointly predicts part-of-speech tags and

morphology. We train the parsers on 10-fold jack-
knifed training data. For the development and test
sets the tagger is trained on the full training set.

Evaluation. We evaluate the parsers using la-
beled attachment score (LAS), i.e., the percent-
age of arcs that have the correct heads and labels.
We omit the unlabeled version of this metric as
we observed that it is closely correlated with LAS.
We test for significance using the Wilcoxon signed
rank test and mark significance at the p < 0.05 and
p < 0.01 levels with † and ‡, respectively.

Training iterations. Since the parsers trained
using the non-deterministic oracles rely on a latent
sequence, they might require more training itera-
tions before reaching good performance. More-
over, during initial experiments on the develop-
ment data we saw that the learning curves are not
monotonically increasing. To test our main hy-
pothesis – that beam-search parsers can profit from
training with a non-deterministic oracle – we tune
the number of training iterations on the develop-
ment sets for each oracle and treebank.

Figure 5 shows the learning curves of the beam
search parser on German and Hungarian. These
two plots are chosen since they paint a rather di-
vergent picture, where EAGER is clearly under-
performing for German, and ND-ALL is consider-
ably worse than other oracles for Hungarian. For
most of the other treebanks, however, the learning
curves are surprisingly similar for all oracles.
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ar de en eu fr he hu ko pl sv
ND-SW 85.92 91.12 89.08 80.53 83.49 77.89 82.44 - 82.50 74.75
ND-ALL 86.10 91.12 88.80 80.88 83.66 78.00 81.80 85.18 83.98 74.60
EAGER 85.88 90.34 88.96 80.54 83.49 77.85 82.30 85.30 82.74 75.01
LAZY 85.93 91.11 88.94 80.87 83.65 77.99 82.44 - 82.99 75.25
MINIMAL 85.96 91.18 - - - - 82.52 - - 75.41

Table 2: Beam search results on dev sets. The best non-deterministic and static oracles are bold.

ar de en-sd eu fr he hu ko pl sv
Static 85.05 87.53 90.35 79.97 83.10 78.65 83.60 85.03 82.08 79.05
Non-det. +0.06 -0.23 +0.13 +0.55 -0.11 -0.39 +0.08 +0.09 +1.26‡ -0.07

Table 3: Test set result with beam search comparing the best static and non-deterministic oracles.

6.1 Results

Table 2 displays the LAS on the development sets
for each oracle after tuning. When LAZY is al-
ready minimal, we omit MINIMAL. Since Ko-
rean is projective, we only compare ND-ALL and
EAGER, which thus reduces to comparing a static
and a non-deterministic oracle for ArcStandard.

The differences between the oracles are rather
small. The most interesting differences occur for
German, where the EAGER oracle is clearly be-
hind, and Polish, where ND-ALL is considerably
ahead of all the other oracles. Polish is also the
only case where one of the non-deterministic ora-
cles appears to be clearly ahead of the static ones.

Among the static oracles the oracle that requires
the least amount of SW transitions generally per-
forms best. The only exception is English, where
EAGER is marginally ahead of LAZY. While the
English treebank has relatively few non-projective
sentences, the case is even more extreme for He-
brew and French. For these treebanks the differ-
ence between EAGER and LAZY amounts to a sin-
gle swap, yet the difference in LAS is greater than
0.1%. This tiny difference in transition sequences
in the training data appears to have a butterfly ef-
fect during the online learning, such that a single
different update changes the outcome of the result-
ing weight vector to this effect.

For the non-deterministic oracles the picture is
more mixed. Which oracle is better appears to be
rather treebank specific, although for the most part
the differences are not that big.

Finally we compare the best static with the best
non-deterministic oracle on the test sets of each
language. The results are shown in Table 3. In
about half the cases the non-deterministic oracle
does slightly better than the static one, but in the
other half it is the other way around. The only sig-
nificant difference is the improvement of the non-

deterministic oracle for Polish. All in all, however,
we conclude that static oracles generally perform
as well as non-deterministic oracles.

6.2 What about greedy?

Since the non-deterministic oracles do not seem
to be that helpful for the beam search parser, we
wonder if the effect is the same in the greedy set-
ting. This case has previously only been studied
for projective parsers (Goldberg and Nivre, 2012;
Goldberg et al., 2014). Table 4 shows the results
of the greedy parser on the development sets af-
ter tuning. The greedy parser exhibits a clearer
pattern compared to the beam search parser. For
the non-deterministic oracles, ND-ALL is typi-
cally the best. For the static oracles the trend is
that fewer swaps are better.

The final evaluation on the test sets of the
greedy parser is shown in Table 5. In four cases
the non-deterministic oracle is significantly bet-
ter than the best static one, and overall the non-
deterministic oracle is never harmful.

Comparing the results between the greedy and
beam search parsers, it is clear that the greedy
parser generally is behind by one or two points ab-
solute. A peculiar exception is Korean, where the
differences between the two parsers are remark-
ably small, yet in favor of the beam search parser.

6.3 Discussion

So what do the latent transition sequences look
like? Figure 6 shows two plots of the average num-
ber of SW transitions per sentence for German and
Hungarian as a function of the number of training
iterations. The static oracles render straight lines
since the transition sequences do not change be-
tween iterations, while the non-deterministic or-
acles do. Also here these two treebanks exhibit
different extremes. In the case of German, the
EAGER oracle is clearly applying SW much more
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ar de en eu fr he hu ko pl sv
ND-SW 83.84 88.44 86.83 79.34 81.57 75.75 79.17 - 80.31 72.74
ND-ALL 84.12 88.76 87.57 79.59 81.99 76.18 78.87 85.06 80.47 72.72
EAGER 83.68 87.45 86.55 79.07 81.52 75.62 79.04 84.92 80.18 72.53
LAZY 83.74 88.45 86.70 79.40 81.57 75.75 79.18 - 79.60 73.29
MINIMAL 83.76 88.81 - - - - 79.15 - - 73.08

Table 4: Greedy results on dev sets. The best non-deterministic and static oracles are bold.

ar de en eu fr he hu ko pl sv
Static 82.99 84.22 87.85 78.58 81.12 75.27 81.45 84.52 79.10 75.89
Non-det. +0.04 +0.03 +0.60‡ +0.24 +0.40‡ +0.70† +0.22 +0.30 +1.33‡ +0.39

Table 5: Test set result with greedy search comparing the best static and non-deterministic oracles.
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Figure 6: Average number of swaps per sentence during training for German (left) and Hungarian (right).

than any other oracle. The non-deterministic ora-
cles tend to stay very close to the minimal number
of SW transitions. For Hungarian the picture is dra-
matically different. The ND-ALL oracle has a ten-
dency to overswap and gradually applies more and
more SW transitions. These results bear a strik-
ing resemblance to those shown in the learning
curves from Figure 5, where EAGER and ND-ALL

are bad for German and Hungarian, respectively.
For most of the other treebanks the corresponding
curves are much closer. Indeed, as the other tree-
banks exhibit considerably less non-projectivity,
the amount of spurious ambiguity and choice of
swaps is much more constrained.

But why do the non-deterministic oracles seem
to be beneficial for the greedy parser but not for
the beam search parser? One reason might be that
the non-deterministic oracle provides greater di-
versity in the training data. This is the same ef-
fect that dynamic oracles achieve with training by
exploration, although it is less pronounced when
only using a non-deterministic oracle. The beam
search parser, on the other hand, is already ex-
posed to many mistakes during training because of
the global learning. Since the beam search parser
actually does explore multiple possible transition

sequences, it is probably also more lenient towards
only seeing a single (static) sequence of transitions
for every training instance.

7 Conclusion

The SwapStandard transition system for depen-
dency parsing has proven very useful, especially
for parsing languages with a high degree of non-
projectivity, but until now it has not been known
how to define non-deterministic oracles for this
system. By mapping out the spurious ambigui-
ties of the system, we have managed to solve this
problem as well as the open problem of finding
the minimal number of swaps using a static ora-
cle. This has enabled us, for the first time, to eval-
uate the utility of non-deterministic oracles when
training non-projective dependency parsers using
beam search as well as greedy search. In the
beam search case, the results indicate that there
is no real benefit non-deterministic oracles, pre-
sumably because beam search compensates for the
non-determinism. In the greedy case, we have ex-
tended previous results to the non-projective do-
main, showing that non-deterministic oracles are
at least as good as, and sometimes significantly
better than, static ones.
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Abstract

We propose solutions to enhance the
Inside-Outside Recursive Neural Network
(IORNN) reranker of Le and Zuidema
(2014). Replacing the original softmax
function with a hierarchical softmax us-
ing a binary tree constructed by combining
output of the Brown clustering algorithm
and frequency-based Huffman codes, we
significantly reduce the reranker’s com-
putational complexity. In addition, en-
riching contexts used in the reranker
by adding subtrees rooted at (ancestors’)
cousin nodes, the accuracy is increased.

1 Introduction

Using neural networks for syntactic parsing has
become popular recently, thanks to promising re-
sults that those neural-net-based parsers achieved.
For constituent parsing, Socher et al. (2013) using
a recursive neural network (RNN) got an F1 score
close to the state-of-the-art on the Penn WSJ cor-
pus. For dependency parsing, the inside-outside
recursive neural net (IORNN) reranker proposed
by Le and Zuidema (2014) is among the top sys-
tems, including the Chen and Manning (2014)’s
extremely fast transition-based parser employing
a traditional feed-forward neural network.

There are many reasons why neural-net-based
systems perform very well. First, Bansal et al.
(2014) showed that using word-embeddings can
lead to significant improvement for dependency
parsing. Interestingly, those neural-net-based sys-
tems can transparently and easily employ word-
embeddings by initializing their networks with
those vectors. Second, by comparing a count-
based model with their neural-net-based model on

perplexity, Le and Zuidema (2014) suggested that
predicting with neural nets is an effective solution
for the problem of data sparsity. Last but not least,
as showed in the work of Socher and colleagues
on RNNs, e.g. Socher et al. (2013), neural net-
works are capable of ‘semantic transfer’, which is
essential for disambiguation.

We focus on how to enhance the IORNN
reranker of Le and Zuidema (2014) by both reduc-
ing its computational complexity and increasing
its accuracy. Although this reranker is among the
top systems in accuracy, its computation is very
costly due to its softmax function used to com-
pute probabilities of generating tokens: all possi-
ble words in the vocabulary are taken into account.
Solutions for this are to approximate the original
softmax function by using a hierarchical softmax
(Morin and Bengio, 2005), noise-contrastive esti-
mation (Mnih and Teh, 2012), or factorization us-
ing classes (Mikolov et al., 2011). A cost of using
those approximations is, however, drop of the sys-
tem performance. To reduce the drop, we use a hi-
erarchical softmax with a binary tree constructed
by combining Brown clusters and Huffman codes.

We show that, thanks to the reranking frame-
work and the IORNN’s ability to overcome the
problem of data sparsity, more complex contexts
can be employed to generate tokens. We intro-
duce a new type of contexts, named full-history.
By employing both the hierarchical softmax and
the new type of context, our new IORNN reranker
has significantly lower complexity but higher ac-
curacy than the original reranker.

2 The IORNN Reranker

We firstly introduce the IORNN reranker (Le and
Zuidema, 2014).
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2.1 The∞-order Generative Model

The reranker employs the generative model pro-
posed by Eisner (1996). Intuitively, this model
is top-down: starting with ROOT, we generate its
left dependents and its right dependents. We then
generate dependents for each ROOT’s dependent.
The generative process recursively continues until
there is no dependent to generate. Formally, this
model is described by the following formula

P (T (H)) =

L∏
l=1

P
(
HL

l |CHL
l

)
P
(
T (HL

l )
)
×

R∏
r=1

P
(
HR

r |CHR
r

)
P
(
T (HR

r )
)

(1)

where H is the current head, T (N) is the subtree
rooted at N , and CN is the context to generate N .
HL, HR are respectively H’s left dependents and
right dependents, plus EOC (End-Of-Children),
a special token to inform that there are no more
dependents to generate. Thus, P (T (ROOT )) is
the probability of generating the entire T .

Le and Zuidema’s∞-order generative model is
defined as the Eisner’s model in which the context
C∞D to generate D contains all of D’s generated
siblings, its ancestors and theirs siblings. Because
of very large fragments that contexts are allowed
to hold, traditional count-based methods are im-
practical (even if we use smart smoothing tech-
niques). They thus introduced the IORNN archi-
tecture to estimate the model.

2.2 Estimation with the IORNN

Each tree node y carries three vectors: inner rep-
resentation iy, representing y, outer representation
oy, representing the full context of y, and partial
outer representation ōy, representing the partial
context C∞y which generates the token of y.

Without loss of generality and ignoring direc-
tions for simplicity, we assume that the model is
generating dependent y for node h conditioning on
context C∞y (see Figure 1). Under the approxima-
tion that the inner representation of a phrase equals
the inner representation of its head, and thanks to
the recursive definition of full/partial contexts (C∞y
is a combination of C∞h and y’s previously gener-
ated sisters), the (partial) outer representations of
y are computed as follows.

ōy = f(Whiih + Whooh + bo + r)

Figure 1: The process to (a) generate y, (b) com-
pute outer representation oy, given head h and sib-
ling x. Black, grey, white boxes are respectively
inner, partial outer, and outer representations. (Le
and Zuidema, 2014)

where r = 0 if y is the first dependent of h; oth-
erwise, r = 1

|S̄(y)|
∑

v∈S̄(y) Wdr(v)iv, where S̄(y)
is the set of y’s sisters generated before. And,

oy = f(Whiih + Whooh + bo + s)

where s = 0 if y is the only depen-
dent of h (ignoring EOC); otherwise s =

1
|S(y)|

∑
v∈S(y) Wdr(v)iv where S(y) is the set of

y’s sisters. dr(v) is the dependency relation of v
with h. Whi/ho/dr(v) are n× n real matrices, and
bo is an n-d real vector.

The probability P (w|C∞y ) of generating a token
w at node y is given by

softmax(w, ōy) =
eu(w,ōy)∑

w′∈V e
u(w′,ōy)

(2)

where
[
u(w1, ōy), ..., u(w|V |, ōy)

]T = Wōy + b
and V is the set of all possible tokens (i.e. vocab-
ulary). W is a |V | × n real matrix, b is an |V |-d
real vector.

2.3 The Reranker
Le and Zuidema’s (mixture) reranker is

T ∗ = arg max
T∈D(S)

α logP (T (ROOT ))+(1−α)s(S, T ) (3)

where D(S) and s(S, T ) are a k-best list and
scores given by a third-party parser, and α ∈ [0, 1].

3 Reduce Complexity

The complexity of the IORNN reranker above for
computing P (T (ROOT )) is approximately1

O = l × (3× n× n+ n× |V |)
1Look at Figure 1, we can see that each node requires

four matrix-vector multiplications: two for computing chil-
dren’s (partial) outer representation, one for computing sis-
ters’ (partial) outer representations, and one for computing
the softmax.
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where l is the length of the given sentence, n and
|V | are respectively the dimensions of representa-
tions and the vocabulary size (sums of vectors are
ignored because their computational cost is small
w.r.t l × n × n). In Le and Zuidema’s reranker,
|V | ≈ 14000 � n = 200. It means that the
reranker spends most of its time on computing
softmax(w, ōy) in Equation 2. This is also true
for the complexity in the training phase.

To reduce the reranker’s complexity, we need
to approximate this softmax. Mnih and Teh
(2012) propose using the noise-contrastive esti-
mation method which is to force the system to
discriminate correct words from randomly chosen
candidates (i.e., noise). This approach is very fast
in training thanks to fixing normalization factors to
one, but slow in testing because normalization fac-
tors are explicitly computed. Vaswani et al. (2013)
use the same approach, and also fix normalization
factors to one when testing. This, however, doest
not guarantee to give us properly normalized prob-
abilities. We thus employ the hierarchical sofmax
proposed by Morin and Bengio (2005) which is
fast in both training and testing and outputs prop-
erly normalized probabilities.

Assume that there is a binary tree whose leaf
nodes each correspond to a word in the vocabulary.
Let (uw

1 , u
w
2 , ..., u

w
L) be a path from the root to the

leaf node w (i.e. uw
1 = root and uw

L = w). Let
L(u) the left child of node u, and [x] be 1 if x true
and −1 otherwise. We then replace Equation 2 by

P (w|C∞y ) =
L−1∏
i=1

σ
(
[uw

i+1 = L(uw
i )]vT

uw
i
× ōy

)
where σ(z) = 1/(1 + e−z). If the binary tree is
perfectly balanced, the new complexity is approx-
imately l × (3× n× n+ n× log(|V |)), which is
less than 4l × n × n if |V | < 2n (1.6 × 1060 as
n = 200 in the Le and Zuidema’s reranker).

Constructing a binary tree for this hierarchi-
cal softmax turns out to be nontrivial. Morin
and Bengio (2005) relied on WordNet whereas
Mikolov et al. (2013) used only frequency-based
Huffmann codes. In our case, an ideal tree should
reflect both semantic similarities between words
(e.g. leaf nodes for ‘dog’ and ‘cat’ should be close
to each other), and word frequencies (since we
want to minimize the complexity). Therefore we
propose combining output of the Brown hierarchi-
cal clustering algorithm (Brown et al., 1992) and

frequency-based Huffman codes.2 Firstly, we use
the Brown algorithm to find c hierarchical clusters
(c = 500 in our experiments).3 We then, for each
cluster, compute the Huffman code for each word
in that cluster.

4 Enrich Contexts

Although suggesting that predicting with neural
networks is a solution to overcome the problem of
sparsity, Le and Zuidema’s reranker still relies on
two widely-used independence assumptions: (i)
the two Markov chains that generate dependents in
the two directions are independent, given the head,
and (ii) non-overlapping subtrees are generated in-
dependently.4 That is why its partial context (e.g.
the red-dashed shape in Figure 2) used to generate
a node ignores: (i) sisters in the other direction and
(ii) ancestors’ cousins and their descendants.

We, in contrast, eliminate those two assump-
tions by proposing the following top-down left-to-
right generative story. From the head node, we
generate its dependents from left to right. The par-
tial context to generate a dependent is the whole
fragment that is generated so far (e.g. the blue
shape in Figure 2). We then generate subtrees
rooted at those nodes also from left to right. The
full context given to a node to generate the sub-
tree rooted at this node is thus the whole fragment
that is generated so far (e.g. the combination of
the blue shape and the blue-dotted shape in Fig-
ure 2). In this way, the model always uses the
whole up-to-date fragment to generate a depen-
dent or to generate a subtree rooted at a node. To
our knowledge, these contexts, which contain full
derivation histories, are the most complete ones
ever used for graph-based parsing.

Extending the IORNN reranker in this way is
straight-forward. For example, we first generate
a subtree tr(x) rooted at node x in Figure 3. We
then compute the inner representation for tr(x): if
tr(x) contains only x then itr(x) = ix; otherwise

itr(x) = f(Wi
hix+

1
|S(x)|

∑
u∈S(x)

Wi
dr(u)itr(u)+bi)

2Another reason not to use the Brown clustering algo-
rithm alone is that the algorithm is inefficient with high num-
bers of clusters (|V | ≈ 14000 in this case).

3We run Liang (2005)’s implementation at https://
github.com/percyliang/brown-cluster on the
training data.

4Le and Zuidema rephrased this assumption by the ap-
proximation that the meaning of a phrase equals to the mean-
ing of its head.
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Figure 2: Context used in Le and Zuidema’s reranker (red-dashed shape) and full-history context (blue-
solid shape) to generate token ‘authorization’.

Figure 3: Compute the full-history outer represen-
tation for y.

where S(x) is the set of x’s dependents, dr(u) is
the dependency relation of u with x, Wi

h/dr(u) are
n× n real matrices, and bi is an n-d real vector.5

5 Experiments

We use the same setting reported in Le and
Zuidema (2014, Section 5.3). The Penn WSJ Tree-
bank is converted to dependencies using the Ya-
mada and Matsumoto (2003)’s head rules. Sec-
tions 2-21 are for training, section 22 for devel-
opment, and section 23 for testing. The develop-
ment and test sets are tagged by the Stanford POS-
tagger trained on the whole training data, whereas
10-way jackknifing is used to generate tags for the
training set. For the new IORNN reranker, we set
n = 200, initialise it with the 50-dim word em-
beddings from Collobert et al. (2011). We use
the MSTParser (with the 2nd-order feature mode)
(McDonald et al., 2005) to generate k-best lists,
and optimize k and α (Equation 3) on the devel-
opment set.

Table 1 shows the comparison of our new
reranker against other systems. It is a surprise that
our reranker with the proposed hierarchical soft-
max alone can achieve an almost equivalent score
with Le and Zuidema’s reranker. We conjecture
that drawbacks of the hierarchical softmax com-
pared to the original can be lessened by probabil-
ities of generating other elements like POS-tags,

5Note that the overall computational complexity increases
linearly with l × n × n. For instance, for computing
P (T (ROOT )), the increase is approximately 2l × n × n
since each node requires maximally two more matrix-vector
multiplications.

System UAS
MSTParser (baseline) 92.06
Koo and Collins (2010) 93.04
Zhang and McDonald (2012) 93.06
Martins et al. (2013) 93.07
Bohnet and Kuhn (2012) 93.39
Reranking
Hayashi et al. (2013) 93.12
Le and Zuidema (2014) 93.12
Our reranker (h-softmax only, k = 45) 93.10
Our reranker (k = 47) 93.27

Table 1: Comparison with other systems on sec-
tion 23 (excluding punctuation).

dependency relations. Adding enriched contexts,
our reranker achieves the second best accuracy
among those systems.

Because in this experiment no words have paths
longer than 20 � n = 200, our new reranker has
a significantly lower complexity than the one of
Le and Zuidema’s reranker. On a computer with
an Intel Core-i5 3.3GHz CPU and 8GB RAM, it
takes 20 minutes to train this reranker, which is
implemented in C++, and 2 minutes to evaluate it
on the test set.

6 Conclusion

Solutions to enhance the IORNN reranker of Le
and Zuidema (2014) were proposed. We showed
that, by replacing the original softmax function
with a hierarchical softmax, the reranker’s com-
putational complexity significantly decreases. The
cost of this, which is drop on accuracy, is avoided
by enriching contexts with subtrees rooted at (an-
cestors’) cousin nodes. The new reranker, accord-
ing to experimental results on the Penn WSJ Tree-
bank, has even higher accuracy than the old one.
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Abstract

We present a method for finding the best
tree approximation parse of a dependency
digraph for a given sentence, with respect
to a dataset of semantic digraphs as a com-
putationally efficient and accurate alterna-
tive to DAG parsing. We present a training
algorithm that learns the spanning subtree
parses with the highest scores with respect
to the data, and consider the output of this
algorithm a description of the best tree
approximations for digraphs of sentences
from similar data. With the results from
this approach, we acquire some important
insights on the limits of solely data-driven
tree approximation approaches to seman-
tic dependency DAG parsing, and their
rule-based, pre-processed tree approxima-
tion counterparts.

1 Introduction

In semantic dependency parsing, the aim is to
recover sentence-internal predicate argument re-
lationships; structurally speaking, given a sen-
tence, the objective is to recover the possibly dis-
connected digraph (which represents the semantic
structure of the sentence). The sparsity of digraph
representations of some semantic dependency di-
graph datasets (i.e., the fact that the number of
edges is linear in the number of vertices), as well
as the well-performing first attempts at such tree
approximations from Schluter et al. (2014), Agić
and Koller (2014), and Agić et al. (2015) sug-
gest that tree approximations for digraph seman-
tic dependency structures are a relevant avenue to
the development if not the sidestepping of some
computationally harder models of directed acyclic

graph (DAG) and digraph decoding (McDonald
and Pereira, 2006; Martins and Almeida, 2014).

In this paper, we present a simple adaptation
of the passive-aggressive perceptron training algo-
rithm used in (Crammer et al., 2006; Björkelund et
al., 2009) to the task of finding the parameters that
describe the highest scoring tree approximations
of semantic dependency digraphs, given a training
corpus. The key change in the algorithm is to it-
eratively minimise the error in precision between
output spanning subtrees and corresponding train-
ing digraph instances, allowing therefore the algo-
rithm to choose best spanning subtree approxima-
tions with respect to the dataset, rather than form-
ing tree approximations as a pre-processing step
to training as was done by Schluter et al. (2014),
Agić and Koller (2014), and Agić et al. (2015).

Because we directly adapt the software used by
(Björkelund et al., 2009), without increasing any
computational complexity, the approach also ben-
efits from a syntactic parsing algorithm optimised
both practically and theoretically for efficiency,
robustness, and accuracy. Supposing these natu-
ral tree patterns exist in the data, the approach in-
tuitively is very attractive, since it lets natural pat-
terns of the data dictate tree approximations, rather
than depending on either the previous knowledge
of parser behaviour or anecdotal linguistic knowl-
edge. Moreover, the approach promises some in-
sight into the nature of the patterns inherent in
the semantic digraph data, reflecting, namely, the
question of the existence of unique most likely
sub-tree structures in the data and why rule-based
pre-processing tree approximations work so well
for semantic digraph dependency parsing.
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2 Previous work and motivation

In the context of the SemEval task 8 on Broad
Coverage Semantic Dependency Parsing, Schluter
et al. (2014) and Agić and Koller (2014) introduce
a tree approximation definition for the semantic
dependency parsing task, including a number of
different approaches. Both present similar prun-
ing pre-processing steps as a potential approach.
Additionally, Schluter et al. (2014) present a pack-
ing pre-processing step as a further approach. We
discuss the approaches presented in (Schluter et
al., 2014), because we adopt the parts of their pre-
processing which do not remove any edges. Their
approaches also outperformed that of (Agić and
Koller, 2014) in the SemEval task.

In (Schluter et al., 2014), all digraphs were first
transformed into rooted DAGs (that is, with a sin-
gle root, from which all nodes are reachable), fol-
lowing which the authors experimented with creat-
ing the tree approximations for each of the training
set digraphs individually as follows.

In their first approach, (Schluter et al., 2014)
consider underlying undirected cycles of digraphs
and pruned these digraphs by removing from the
cycle the longest edge from the node with the
fewest predecessors (lowest depth) in the digraph.
In their second approach, they attempt to store
almost all digraph information into the graph,
by packing parallel path information, structurally
corresponding to long-distance dependency re-
entrancies, into a single complex edge label; these
removed edges can then recovered as a post-
processing step, by “expanding” the complex edge
label. However, not all parallel path sets between
two nodes include a path of length 1 edge; for
these, an heuristic approach was taken whereby
only the edge of shortest span from among all of
the last edges of these paths was retained.

The result from both these approaches were
trees that were used as tree approximations to
training set digraphs, individually. The packing
approach suffered from complex edge labels with
low frequency in the training set, and which could
not always be resolved fully in post-processing at
test-time; as a result, this approach had relatively
stable precision and recall (with respect to each
other), but with lower precision than the pruning
approach, which achieved high precision, but low
recall. Upon carrying out this research, we posited
that the lower recall of the pruning approach was
caused by not accounting for the tree approxima-

tions with respect to the entire dataset, rather only
with respect to a structural heuristic on individual
digraphs of the training set.

The motivation for this work is therefore an at-
tempt to attain similar precision to the pruning ap-
proach in (Schluter et al., 2014), with similar re-
call to the same authors’ packing approach, by
only pruning edges, but leaving it to the parser
to determine, given the training data, which edges
should be pruned. The sparsity of the graphs in all
three datasets (Cf. Section 4) as well as the dispar-
ity in precision and recall between the approaches
in (Schluter et al., 2014) (Cf. Section 5) suggests
that there is room for improvement in tree approx-
imation approaches to semantic dependency pars-
ing for these particular datasets.

Further improvements to the pre-processing ap-
proach to tree approximation parsing of semantic
digraphs has been obtained by Agić et al. (2015).
This approach was guided by both the ideas of
pruning and packing: they first present a study
on the types of re-entrancies displayed by the di-
graph data, to discover that many of them are
predictable. Such re-entrancy information needs
not be packed into other labels as it is done by
(Schluter et al., 2014), as this pruning is nearly
100% reversible. These observations provide fur-
ther insight into the performance of the approach
presented here, given its behaviour as well as
the dataset used. Indeed, persistent non-tree-like
structures in the training data will inhibit training
algorithms from aggressively deciding on a best
tree-like substructure (Cf. Section 5).

The (non-ensemble approach) state of the art on
the datasets we experiment on is achieved using a
second-order model with approximate digraph de-
coding via alternate directions dual decomposition
(Martins and Almeida, 2014; Martins et al., 2011).

3 Finding the best maximum spanning
subtree approximation

As an approximate approach to finding the best
scoring semantic dependency parse digraph given
a training corpus of such digraphs, we present an
approach to finding the best scoring semantic de-
pendency spanning subtree parse, given a training
corpus of semantic dependency digraphs. That is,
we adopt a second-order approach to the problem
of finding the best semantic dependency parse di-
graph. Our original objective was to find

D∗ = arg max
D∈D(x)

φD(w, x,D),
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where w is a weight vector, D is a dependency di-
graph and x is the input sentence. The best depen-
dency digraph is the output according to a scoring
function φD—a sum over sub-factors representing
some second-order description of the dependency
structure. The parameter w is obtained by some
algorithm that minimises the error defined by a
distance function between digraph parse D′i and
training digraph Di.

Our aim here is to approximate D∗ by a tree
T ∗, so our objective now concerns possible trees
T ∈ T ; we want to find the tree that maximises
the scoring function φT for trees,

T ∗ = arg max
T∈T (x)

φT (w, x, T ),

where φT is composed of second-order factors de-
scribing (and, practically speaking, coincides pre-
cisely with the scoring function φ from (Carreras,
2007)). However, we obtain the parameter w by
training on a dataset of dependency digraphs and
carefully minimising the error between these two
very different types of structures, since a tree can
never contain more than |x| − 1 edges and there is
therefore a risk of non-convergence if the wrong
error measure is chosen.

We directly adapt the mate parser (Bohnet,
2010) for this modified task. To do this, we simply
adjust the unregularised passive-aggressive per-
ceptron algorithm implementation used in train-
ing by the parser, the averaged-perceptron version
of which was presented first in (Carreras, 2007),
in three key ways. First, edge features are taken
from entire digraphs, rather than just trees. These
features, unlike in (Martins and Almeida, 2014),
do not account for multiple heads in digraphs, be-
cause we need to use the scoring function on trees
rather than digraphs. Secondly, the error is min-
imised between the original graphs and the max-
imum spanning subtree implied by w. In doing
so, the algorithm finds weight vectors that min-
imise the error of the tree approximation of the
graph. Finally, we changed the error function
from (1−recall) in the original version of the mate
parser to (1−precision) to avoid punishing trees
for not being digraphs in the updates, and thereby
prevent non-convergence.

Algorithm 1 shows the adaptation, where an in-
stance is a pair (xj , Dj) of xj , a sentence, and Dj ,
a dependency digraph. The algorithm begins by
initialising the weight vector w to the zero vec-
tor. It then extracts the features from the train-

ing set, Z : {(xj , Dj)}Nj=1 and stores them on the
hard disk, after which training is carried out using
the passive-aggressive algorithm. Iteratively, it (1)
reads in the features and calculates possible edge
weights, (2) decodes using the second order ex-
tension of the Eisner algorithm for projective de-
pendency trees (Eisner, 1996) presented in (Car-
reras, 2007), and then (3) tries to find a higher
scoring non-projective tree by exchanging edges
out of the output from (2) using the edge weights
in (1). Details for the original algorithm can be
found (Bohnet, 2010); however, note that in Algo-
rithm 1, T̂ is a dependency tree and Dj is a depen-
dency digraph. Also, error is measured in terms of
precision (for Lines 13 and 14).

Algorithm 1 Training (Z)
// whereZ = {(xj , yj)}Nj=1 is the digraph training
data
1: w ← 0
2: for j ← 1 toN do
3: extract-and-store-features(xj )
4: end for
5: for i← 1 to I do
6: // where I is the number of iterations
7: for j ← 1 toN do
8: k ← (i− 1) ∗N + j
9: γ ← I ×N − k + 2 // passive-aggressive weight
10: A←read-features-and-calc-arrays(j,w)
11: T̂ ←predict-projective-parse-tree(A)
12: T̂ ←non-projective-approx(T̂ , A)
13: e← ∆(T̂ , Dj) // the error
14: w ← update(e, γ)
15: end for
16: end for

4 The graphs and their tree-likeness

Organisers for the SemEval task 8 on Broad
Coverage Semantic Dependency Parsing (SDP)
(Oepen et al., 2014) proposed three different an-
notations for evaluation of the task, resulting in
the three semantically annotated datasets, over the
same text—that is, the Wall Street Journal section
of the English Penn Treebank. As in the original
task, we refer to the datasets as

DM: a transformation of Flickinger et al. (2012)’s
DeepBank by Miyao et al. (2014)’s system.

PAS: the predicate-argument structures of the WSJ
portion of the HPSG treebank.

PCEDT: the tectogrammatical layer of annotations
from the Prague Czech-English Dependency Bank
(Hajič et al., 2012).

Graph sparsity and treewidth. We note that
the average number of edges of a spanning subtree
for training set graphs is 22.93. On the other hand,
after the aforementioned pre-processing, the aver-
age number of edges in the DM-annotated tree-
bank is 23.77, PAS-annotated treebank is 24.32,
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and for PCEDT it is 23.33. By removing edges
from digraphs to make spanning subtrees, we thus
lose at most 5.7% edges, showing the general spar-
sity of digraphs in these datasets and further show-
ing the relevance of the tree approximation ap-
proach. Agić et al. (2015) calculate the average
treewidth of the underlying undirected graphs of
SDP digraphs, to be 1.3 for DM, 1.71 for PAS,
and 1.45, for PCEDT, indicating that DAG pars-
ing algorithms heavily based on the more efficient
tree parsing algorithms are a promising avenue for
further research.

4.1 Pre-processing the graph data

In general, the digraphs amongst three datasets are
disconnected. In order for the solution of finding a
most likely tree approximation to make any sense,
therefore, we transformed digraphs similarly to
the approach taken in (Schluter et al., 2014): (1)
a dummy root node is placed to the left of the in-
put, (2) the top node is connected (as a child) to
the dummy root node, (3) the node of highest de-
gree (=indegree + outdegree) for non-singleton
remaining weakly connected components is at-
tached as a child of the dummy root node, and
(4) all singleton weakly connected components are
connected a child of the node to the left.

In most digraphs of of the three datasets, there
is not any existing spanning subtree. Therefore,
we carry out flow reversal for rooted DAG con-
struction as a further pre-processing step. As in
(Schluter et al., 2014), we created rooted DAGs
during a breadth-first search of the digraph, re-
versing the direction of edges when necessary, and
marking the label of reversed edges (for reversibil-
ity of the transformation). So, our label sets for
the three datasets may at most double, which ad-
mittedly increases (by a factor of 2) instance size
and therefore running time.

5 Experiments and error analysis
For our experiments, we used precisely the same
data split as in SemEval 2014’s task 8 and the
original mate parser default parameters for the
modified version, with the exception that we in-
creased the number of iterations to 15. The re-
sults are given in Table 1. Compared with the pre-
processing tree approximations from (Schluter et
al., 2014), the subgraph score maximisation ap-
proach performs quite poorly. The approach suc-
cessfully closes the gap between precision and re-
call, when compared to the pruning approach in

(Schluter et al., 2014), but both precision and re-
call are relatively low.

data LP LR LF UP UR UF
pack DM 84.8 84.0 84.4 86.8 86.0 86.4

PAS 87.7 88.4 88.0 89.1 89.8 89.4
PCEDT 71.2 68.6 69.9 84.8 81.8 83.2

prune DM 87.2 80.2 83.6 89.2 82.0 85.4
PAS 91.3 81.3 86.0 92.6 82.5 87.3
PCEDT 72.8 62.8 67.4 88.2 76.1 81.7

this DM 67.2 69.7 68.4 69.8 72.4 71.1
paper PAS 83.1 77.5 80.2 86.4 80.7 83.6

PCEDT 62.3 58.5 60.4 79.0 74.3 76.6

Table 1: Precision, recall and f-score over the
three datasets (pack and prune results are from
(Schluter et al., 2014)) .

An analysis of the pre-processing (Schluter et
al., 2014; Agić and Koller, 2014; Agić et al., 2015)
versus statistical (this paper) approaches may pro-
vide some insight as to why. Especially Agić et
al. (2015) show that many non-tree-like structures
of the SDP data are predictable; that is, we can
turn them into trees by consistently pruning edges
and “understand” that they are in fact more com-
plex than trees, without encoding this information
into the resulting pruned tree in any way. In a
post-processing step, these edges are simply re-
introduced using some rules. These are edges for
which it would be difficult for the passive aggres-
sive algorithm that we employ to choose between,
since there are virtually no structures that require
only a subset of them. As a result, making a strict
rule about what tree structures should be predicted
as a pre-processing step results in better tree ap-
proximations than the purely data-driven approach
presented here.

6 Concluding remarks
We have presented an approach to semantic de-
pendency parsing that takes advantage of and sub-
tly adapts an efficient and highly optimised syn-
tactic dependency tree parsing system to the job
of finding best tree approximations of digraphs.
Intuitively, the approach is attractive, because it
requires the data to choose digraph approxima-
tions, rather than using any anecdotal linguistic
knowledge to hard-code a pre-processor to build
the approximations before training. However,
the approach fails to outperform rule-based pre-
processing for tree approximations, seemingly be-
cause there is often no clear statistical preference
among various subtrees of DAGs in the SDP data.
The performance of a combination of the data-
driven and rule-based preprocessing methods re-
mains a viable open question.
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Abstract

The CKY algorithm is an important com-
ponent in many natural language parsers.
We propose a novel type of constraint for
context-free parsing called independence
constraints. Based on the concept of in-
dependence between words, we show how
these constraints can be used to reduce the
work done in the CKY algorithm. We
demonstrate a classifier which can be used
to identify boundaries between indepen-
dent words in a sentence using only sur-
face features, and show that it can be used
to speed up a CKY parser. We investigate
the trade-off between speed and accuracy,
and indicate directions for improvement.

1 Introduction

The CKY algorithm is an O
(|G|n3

)
dynamic pro-

gramming algorithm for finding all of the possi-
ble derivations of a sentence in a context-free lan-
guage. Its complexity depends on both the sen-
tence length n and the size of the grammar |G|.
Methods for improving parsing accuracy typically
increase the size of the grammar (Klein and Man-
ning, 2003; Petrov and Klein, 2007) or even the
exponent of n (Eisner and Satta, 1999). More
powerful “deep” grammar formalisms multiply
the computational complexity even more (Banga-
lore and Joshi, 1999).

A common technique for speeding up such
parsers is coarse-to-fine parsing, where input
is first parsed using a much simpler (and thus
smaller) grammar, and the content of the chart
is then used to constrain the search over the fi-
nal grammar (Torisawa et al., 2000; Charniak and
Johnson, 2005; Petrov and Klein, 2007). Even
with a much smaller grammar, the CKY algorithm
may be expensive—Roark et al. (2012) report that
the initial CKY step in the Berkeley Parser takes
half of the total parse time.

S

NP

DT

0 This 1

VP

VB

is 2

NP

DT

an 3

NN

example 4

.

. 5

Figure 1: In this tree ‘This’ and ‘is’ are indepen-
dent, while ‘is’ and ‘an’ are not.

Other techniques can be used to prune cells
in the chart. Roark et al. (2012) use a finite-
state model to label words that do/don’t begin/end
spans, and skip cells that don’t satisfy the labels.
Bodenstab et al. (2011) directly apply a clas-
sifier to each cell to decide how many spans to
keep. Both approaches reduce the work done by
the parser while preserving accuracy.

We propose a novel type of top-down constraint
for a CFG parser that we call independence con-
straints, described in Section 2. In Section 3 we
show how the CKY algorithm can be easily modi-
fied to accommodate these constraints, and in Sec-
tion 4 we describe a classifier which can provide
the constraints to a parser. We integrate the con-
straints into the Stanford Parser CKY implemen-
tation and show the results in Section 5.

2 Independence Constraints

We propose a concept we call independence.
Given a sentence s = w1w2 . . . wn and a context-
free derivation (parse tree) t of s, words wi and
wi+1 are independent if every node in t that dom-
inates both wi and wi+1 also dominates w1 and
wn. Furthermore, if wi and wi+1 are independent,
then ∀j, k s.t. j ≤ i and k > i, wj and wk are
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independent. Less formally, if the children of the
top node of a parse tree were split into separate
subtrees, two words are independent if they would
end up in different subtrees.

An example is shown in Figure 1. Here, ‘This’
and ‘is’ are independent, as are ‘example’ and ‘.’.
The independent spans are (‘This’), (‘is’, ‘an’, ‘ex-
ample’), and (‘.’), with boundaries 1 and 4. The in-
dependent spans and independent span boundaries
can be derived straightforwardly from the defini-
tion of independent words: the locations between
consecutive words which are independent are the
independent span boundaries, and the independent
spans are simply the spans in between consecutive
boundaries.

3 Modifying The CKY Algorithm With
Independence Constraints

Conceptually, if a CKY parser knows the locations
of the independent span boundaries for a sentence,
it can perform the normal CKY algorithm for each
independent span separately, and simply join the
spans at the top of the tree to finish the parse,
thereby avoiding work which would otherwise be
done while still obtaining the desired 1-best parse.
Two issues make the task more complicated than
this.

The first complication is that if we assume that
the independent boundaries will be identified au-
tomatically, we must allow for errors. If a loca-
tion which is not an independent span boundary is
given as one, the parser will make an error it would
not have otherwise. On the other hand, if a loca-
tion which is an independent span boundary is not
marked as such, the parser may account for this at
the cost of not achieving the minimum computa-
tion possible. By allowing for this second type of
error, the algorithm is made more robust, and al-
lows the independent boundary identification step
to prioritize precision over recall to lessen negative
impact on the parser’s accuracy.

The second issue is caused by the binarization
of the context-free grammar used in the CKY al-
gorithm. Because the CKY algorithm requires a
binary grammar, any rules in the original gram-
mar that have more than two symbols on the right-
hand side must be converted into a sequence of bi-
nary rules. The extra rules created in this process
are called incomplete1 rules. The topmost span in

1E.g., if a rule A → BCD becomes @BC → BC and
A → @BCD, then the former is incomplete and the latter is

Figure 2: Example of a CKY chart with indepen-
dence constraints. In the gray cells the modified
algorithm will only loop over incomplete rules.

particular will usually need to be constructed in
several steps, applying multiple incomplete rules
before creating a complete span. If the grammar
rules are always binarized from the left (right),
then only cells on the left (right) edge of the chart
can affect the top span; however, the grammar
used in our parser is binarized “head-outward”
(Klein and Manning, 2003), which means that po-
tentially any cell in the chart can be used to create
the top span.

The combination of these two issues means that
in order to correctly parse a sentence when an in-
dependent span boundary is missing from the in-
put the modified CKY algorithm must process in-
complete rules even at positions in the chart that
cross a boundary. Thus in the modified algorithm,
cells which do not cross an independent bound-
ary are processed normally, and in cells which do
cross a boundary the algorithm will avoid loop-
ing over complete binary rules.2 Figure 2 shows
an example CKY chart where boundary-crossing
cells are colored gray.

3.1 How much work can we expect to save?

The core of the CKY algorithm is shown in Al-
gorithm 1. For our purposes, we can consider the
amount of work done in the CKY algorithm to be
the number of binary edges visited in the inner
loop (lines 4-10). For each cell the algorithm it-
erates over the binary rules in the grammar, calcu-
lating the probability of the left-hand-side at each
split point. The number of these binary edges is

complete.
2While boundary-crossing cells depend on non-crossing

cells, the reverse is not the case; thus the non-crossing cells
can all be processed before the crossing cells, or the cells can
be looped over in the regular order, with a check inside the
loop. While this may have implications for e.g. paralleliza-
tion, we do not explore this idea further here.
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1 for 1 ≤ i ≤ n do
2 Ti,i+1 ← {A|A→ a ∈ G ∧ wi = a}
3 end
4 for 2 ≤ j ≤ n do
5 for 1 ≤ i ≤ n− j + 1 do
6 for i < k < i + j do
7 Ti,i+j ← {A|A→ BC ∈

G ∧B ∈ Ti,k ∧ C ∈ Tk,i+j}
8 end
9 end

10 end
Algorithm 1: The CKY algorithm. Ti,j is the
cell corresponding to words wi . . . wj−1.

|G|
[
n3

6
− n

6

]
(1)

The amount of work saved depends on the num-
ber and locations of the independent span bound-
aries, as well as the proportion of complete rules
in the grammar, denoted |Gcomp|

|G| . We can consider
two idealized scenarios: a) one boundary at n

K ,
and b) K − 1 boundaries at n

K , 2n
K , . . . , (K−1)n

K ,
where K is an integer 1 < K < n.

For the first case, the ratio of work saved ap-
proaches

|Gcomp|
|G|

[
3
K
− 3

K2

]
(2)

as n grows. This limit converges quickly for
n ≥ 10. If we approximate |Gcomp|/|G| as 0.5
(for the grammar used by the parser in Section 5, it
is ≈ .54), then for K = 2, 3, 4, . . . , the values are
3
8 , 1

3 , 3
32 , . . . Intuitively, for one boundary, the best

location is exactly in the center of the sentence,
and the upper limit on how much work is saved is
about 37%.

For the case of K−1 boundaries equally spaced,
the ratio is

|Gcomp|
|G|

K2 − 1
K2

(3)

The values for K = 2, 3, 4, . . . are 3
8 , 4

9 , 15
32 , . . .

Clearly, the smaller pieces a sentence can be di-
vided into the less work the parser will do; how-
ever, realistically most sentences will not have a
large number of independent spans, and they will
not be equal in length. We might take K = 3 as
best-case estimate, giving us about 44%. Thus we
can guess that a parser will be able to save around

Local Features
tk−1 tk
tk−2, tk−1 tk, tk+1

tk−3, tk−2, tk−1 tk, tk+1, tk+2

Global Features
tli 1 ≤ i < k − 1
tli, t

l
i+1 1 ≤ i < k − 2

tli, t
l
i+1, t

l
i+2 1 ≤ i < k − 3

tli k ≤ i < n− 1
tli, t

l
i+1 k ≤ i < n− 2

tli, t
l
i+1, t

l
i+2 k ≤ i < n− 3

Table 1: Feature templates. k is the boundary po-
sition, tk is the k th POS tag (level 0), and tli is the
i th POS tag in the l-level POS tag sequence.

35-45% of the work it does in the CKY algorithm
loop by using independence constraints.

The derivations of Equations 1-3 are shown in
Appendix A.

4 Classifying Independent Span
Boundaries

In order to use independence constraints in a
parser, we need to be able to identify boundaries
between independent words in a sentence using
only surface features (words and part-of-speech
tags). We created a binary classifier which, given a
POS-tagged sentence and a position between two
words, decides whether those two words are inde-
pendent or not. Our classifier currently uses only
POS tags as features. We used opal (Yoshinaga
and Kitsuregawa, 2010), a tool for fast online clas-
sification, to train and test the models, training
on sentences from Penn Treebank section 02-21
and testing on section 22. We set opal to use the
passive-aggressive perceptron update, and output
probabilities in order to use a threshold to trade
off precision and recall.

4.1 Features

We use only part-of-speech tags to create features
for the classifier (adding lexical or other features
is left to future work). The property of indepen-
dence between two words is inherently global, as
it can be affected by structure arbitrarily far away.
Thus we have both local and global features. The
global features are furthermore distinguished by
POS level, explained in detail in the next section.
The specific feature templates are shown in Ta-
ble 1.
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Features #feats Acc Prec Rec F1 F0.5 TP FP FN TN
p 37001 93.71 80.73 70.49 75.27 78.45 3679 878 1540 32320
P0 33167 87.16 51.69 83.98 63.99 55.99 4383 4097 836 29101
p,P0 70168 95.21 87.38 75.65 81.09 84.75 3948 570 1271 32628
p,P1 37055 94.81 78.38 85.38 81.73 79.69 4456 1229 763 31969
p,P2 39336 95.34 84.25 80.76 82.47 83.53 4215 788 1004 32410
p,P3 46861 95.04 89.47 71.95 79.76 85.31 3755 442 1464 32756
p,P0,P1 70222 95.48 88.95 76.16 82.06 86.06 3975 494 1244 32704
p,P0,P2 72503 95.09 88.28 73.60 80.27 84.89 3841 510 1378 32688
p,P0,P3 80028 94.84 88.81 70.99 78.91 84.56 3705 467 1514 32731
p,P1,P2 39390 95.27 80.99 85.21 83.04 81.80 4447 1044 772 32154
p,P1,P3

∗ 41553 95.44 89.05 75.74 81.86 86.03 3953 486 1266 32712
p,P0,P1,P2,P3 82417 95.35 86.89 77.49 81.92 84.83 4044 610 1175 32588

Table 2: Results of classifier using different combinations of features. (∗Final feature configuration.)

Lvl0 Lvl1 Lvl2 Lvl3 Lvl0 Lvl1 Lvl2 Lvl3
NN N N N CD X X #
NNP N N N -LRB- X X B
NNPS N N N -RRB- X X B
NNS N N N DT X X D
PRP N N N PDT X X D
VB V V V PRP$ X X D
VBD V V V WP$ X X D
VBG V V V JJ X X J
VBN V V V JJR X X J
VBP V V V JJS X X J
VBZ V V V -RQ- X X Q
, X , , -LQ- X X Q
. X . . RB X X R
: X : : RBR X X R
CC X C C RBS X X R
IN X I I EX X X X
RP X I I FW X X X
TO X T T LS X X X
WDT X W W MD X X X
WP X W W POS X X X
WRB X W W SYM X X X
# X X # UH X X X
$ X X #

Table 3: For each POS level, the original tag is
replaced with the corresponding value.

4.2 POS Level

In previous unpublished work on a similar task, we
found that heuristically transforming the POS tag
sequence to create additional features can be ben-
eficial. We refer to these transformations as POS
levels. In this classifier we implemented three lev-
els, in addition to the original POS tags as level
0.

We show all levels in Table 3. Each level spec-
ifies a value by which each level 0 tag is replaced
during the transformation. The motivation behind
each transformation is roughly as follows: level 1
is meant to capture clause nuclei; level 2 is further
intended to show boundaries between clauses; and
level 3 expands almost all the way back to the orig-
inal tags, but with some distinctions erased, mostly
to reduce the number of features.

4.3 Which Features Are Useful?

In order to find the best configuration of features
for the classifier, and to evaluate the proposed POS
levels, we tested the classifier using several differ-
ent combinations. Selected results are shown in
Table 2. In the "Features" column, p denotes the
local features, and Pl denotes the global features
from POS level l.

There are several things worth noting in these
results. First, neither local nor global features are
sufficient alone; it appears that local features pro-
mote precision, while global features promote re-
call. Second, examining the cases where global
features are limited to a single POS level, it is ap-
parent that each POS level has a different effect on
precision and recall, thus confirming that the clas-
sifier is able to extract different signals from the
different POS levels, as intended. Finally, combin-
ing all POS levels together actually reduces accu-
racy, possibly because the features are highly cor-
related (although see the discussion of the kernel
classifier).

4.4 Results

To avoid degrading the accuracy of the parser as
much as possible, we selected the feature config-
uration based on F0.5 score, a measure which fa-
vors precision over recall. We chose p, P1, P3 over
p, P0, P1 because the former had a slight edge in
precision and fewer features.

More detailed results are shown in Table 4. We
used a threshold on the score output by the classi-
fier to reverse some of the classifier’s decisions in a
post-process step. Although it doesn’t improve on
the classifier in accuracy, the precision thresh-
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Features Threshold Acc Prec Rec F1 F0.5 TP FP FN TN
p,P1,P3 default 95.44 89.05 75.74 81.86 86.03 3953 486 1266 32712
p,P1,P3 precision 94.99 91.65 69.44 79.01 86.14 3624 330 1595 32868
p,P1,P3 max precision 92.10 95.80 43.74 60.06 77.38 2283 100 2936 33098
p,P1,P3 recall 94.28 73.82 89.65 80.97 76.53 4679 1659 540 31539

Table 4: Results of linear classifier using different score thresholds.

Features Threshold Acc Prec Rec F1 F0.5 TP FP FN TN
p,P0,P1,P2,P3 default 97.47 92.17 88.91 90.51 91.50 4640 394 579 32804
p,P0,P1,P2,P3 precision 97.27 92.95 86.43 89.58 91.57 4511 342 708 32856
p,P0,P1,P2,P3 max precision 96.57 94.22 79.63 86.31 90.89 4156 255 1063 32943
p,P0,P1,P2,P3 recall 97.15 88.16 91.32 89.71 88.78 4766 640 453 32558

Table 5: Results of polynomial classifier using different score thresholds.

old did slightly improve in F0.5.

4.5 Efficiency of the Classifier

The efficiency of the classifier is as important as
the accuracy—it doesn’t matter how much time
is saved during parsing if it takes even longer to
run the classifier. opal takes less than half a sec-
ond to run on the instances from section 22; how-
ever, the instances are created by a Python script,
which is not very optimized. This script takes
about 100 seconds to run on the machine described
in Section 5.1. While this time is already less than
the time saved in the parser (see Section 5.2), it
could be significantly reduced by re-implementing
in Java or even C++. Thus the potential gains of-
fered by this approach are not just theoretical.

4.6 Polynomial Kernel

For comparison with the linear classifier, we
trained another classifier using a polynomial ker-
nel (with degree 3) with all the features. The re-
sults are shown in Table 5. The polynomial ker-
nel improves over the linear classifier in accu-
racy by 2%, in precision by 3 points, and in re-
call by just over 13 points. This suggests that
there is a large potential for improving the linear
classifier by adding conjunctive features. Alterna-
tively, there are methods for effectively lineariz-
ing a kernel-based classifier, e.g. (Kudo and Mat-
sumoto, 2003; Isozaki and Kazawa, 2002). Cur-
rently, the polynomial classifier takes over 2 hours
to run on section 22 (training the model took al-
most 4 days).

5 Parsing With Independence
Constraints

In order to demonstrate use of the independent
constraints in a parser, we modified the CKY
parser included in the Stanford Parser distribu-
tion to accept independent span boundaries as con-
straints and to use the modified CKY algorithm
described above. Our modifications are:

• after reading in the grammar, index the in-
complete binary rules

• read in the file containing the boundaries out-
put by the classifier from the previous section

• for each CKY cell, if the cell spans a bound-
ary then loop over just the incomplete binary
rules

• if at the end of the CKY loop a parse was not
successful, then loop again over just the cells
which span a boundary and process all of the
binary rules

• output the total number of times entering the
inner loop as well as the number of times the
parser failed

5.1 Experimental Setup
We used the modified Stanford Parser described
above, with an unlexicalized grammar3 extracted
from the WSJ sections 02-21, and evaluated its
performance on section 22 using output from the
classifier as constraints. For the baseline, the

3The grammar was extracted using the Stanford
Parser with command-line options -acl03pcfg
-noRebinarization -compactGrammar 1
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Parser Time (s) Speedup # Binary Edges F1 Parse Failures
baseline 1558 - 1.75×1010 (100%) 85.85 0
linear 1283 (+100) 1.21× (1.12×) 1.08×1010 (62%) 83.71 (-2.14) 15
poly 1106 (+2h) 1.41× (.19×) 9.74×1009 (56%) 84.85 (-1.00) 6
oracle 1016 1.53× 8.47×1009 (48%) 86.71 (+0.86) 4

Table 6: Results of parsing with independence constraints. Results for both linear and polynomial clas-
sifiers are shown, as well as for the gold independent span boundaries. The times in parentheses are the
classifier run times.

parser was given null constraints. The accuracies
and times shown are those reported by the Stan-
ford Parser.

All experiments were run on a DELL Precision
690, with 8 cores and 32G of RAM. Unless other-
wise noted multiple processes were run in parallel,
and times reported were not averaged over multi-
ple runs. Since we saw significant variation of up
to 10%, the times should be taken with a grain of
salt. The computation done in the CKY algorithm
is measured in the number of binary edges visited
in the inner loop. A binary edge is a tuple of a span
(begin & end), a binary rule A→ BC, and a split
point (the position where B and C meet).

5.2 Results

The results of running the parser on section 22 us-
ing the linear classifier from Section 4.4 are shown
in Table 6. The table shows the total time taken,
the total times entering the inner loop, the F1 and
difference from the baseline, and the number of
times the parse failed using the constraints. The
parser with independence constraints saves 38%
of the computation inside the CKY loop over the
baseline, corresponding to about 20% reduction
in total parse time (12% if the running time of
the classifier is included), at the cost of a 2-point
drop in F-score. Detailed results of further exper-
iments with various thresholds on sentence length
and classifier score are shown in Appendix B.

5.3 Polynomial Kernel

A difference of 2 F1 score is not small, but on the
other hand it is about by how much the unlexi-
calized Stanford Parser trails the Collins parser,
for example. However, as shown above in Sec-
tion 4.6, there is room to improve the linear classi-
fier through conjunctive features. As an indication
of an upper bound of the achievable performance,
we tried using the output of the kernel classifier
in the parser as above, while acknowledging that
at present the time needed to produce the classifier

Parser Time (s) Speedup F1
baseline 1538 85.54
linear 1106 1.39× 83.55 (-1.99)

(+100) (1.28×)
poly 1040 1.48× 84.57 (-0.97)

Table 7: Results of parsing WSJ section 23.

output dwarfs the time needed to actually parse the
test data.

The results of running the parser on section 22
with the polynomial classifier output are shown
with the previous results in Table 6. With the
more accurate classifier, the parser is able to re-
duce the necessary computation even further, by
44%, while losing less accuracy.

5.4 Gold Independent Span Boundaries
For another comparison, we tested the parser using
the gold independent span boundaries. The results
for section 22 are shown in Table 6. The number
of binary edges visited is cut in half, and parsing
accuracy is improved by almost 1 point. It is inter-
esting to note that the parser was unable to parse 4
sentences with the gold constraints (the grammar
only allowed a parse that violated the gold bound-
aries).

5.5 WSJ Section 23
To compare with previous work on parsing using
the Penn Treebank, we show the time and accuracy
for parsing section 23, using both linear and ker-
nel classifier output along with the baseline parser
in Table 7. The times reported are the average
of three runs each. Because there was significant
variation in parse time when multiple processes
were run in parallel, for these results only one pro-
cess was run at a time. The results parallel those
shown on the development data.

As a point of comparison, Roark et al. (2012)
reported speedups of 1.6-2x with no loss of ac-
curacy. These results are not directly comparable
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due to differences in parser (their parsers use beam
search variants of CKY and coarse-to-fine prun-
ing) and grammar (they used the Berkeley latent
variable grammar and a lexicalized grammar).

6 Related Work

There are several strains of research related to
adding constraints to the CKY chart. (Roark et
al., 2012) describes an approach using finite-state
taggers to decide whether each word in a sentence
begins or ends a multiword constituent and has a
unary span or not. They show that their tagger is
able to achieve very high precision, reducing parse
time without negatively affecting accuracy.

(Bodenstab et al., 2011) proposes a classifier
which directly decides for each cell in the chart
how many constituents should be created. Their
parser uses beam search with a FOM and a beam
for each chart cell.

Like these approaches, our method uses a clas-
sifier to avoid doing work in certain chart cells.
While not completely orthogonal, we believe our
independence constraints are complementary. A
single decision by our classifier closes a large
swath of cells based on the global structure, while
their methods make local decision using local in-
formation. The high accuracy of their classifiers
shows the necessity of improving our model.

(Yarmohammadi et al., 2014) proposes a con-
cept of ‘hedge’ parsing, where only spans below
a certain length are allowed, and show how this
reduces the computation done by the CKY al-
gorithm. Their system does not create spans of
length larger than the threshold and thus doesn’t
follow the original treebank annotation, while our
approach is able to return the original gold parse
tree, provided that the classifier does not output
a false positive. Their approach of segmenting a
sentence before parsing is essentially the same as
ours, but they segment based on a maximum span
length and their classifier is based on a finite-state
sequence model.

There is some previous research using clause
boundaries to constrain dependency parsers (Ohno
et al., 2006; Husain et al., 2011; Kim and Lee,
2004). This is more linguistically motivated than
our constraints; indeed, the approaches appear to
rely on processing specific to each language. It
is difficult to compare with these results directly;
however, although only (Ohno et al., 2006) re-
ported parse times, all three papers reported im-

proved accuracy.

7 Conclusions

We have proposed a property of independence be-
tween words in a sentence, and shown how to use
this property to create top-down constraints which
can be used to reduce the computation done by
the CKY algorithm. We demonstrated two classi-
fiers for identifying boundaries between indepen-
dent words given a sentence with only surface fea-
tures, a linear classifier which is fast but less ac-
curate, and a classifier with a polynomial kernel
which is much more accurate but very slow. We
then showed a significant improvement in speed
over a strong baseline CKY parser by using the
output of these classifiers to create top-down con-
straints at the cost of some accuracy.

Although the loss of accuracy when using the
linear classifier is currently uncomfortably large,
there are several possible avenues for improve-
ment. The performance of the kernel classifier
indicates that there is room for improvement by
manually adding conjunctive features to the linear
classifier or using a method to automatically lin-
earize the model. Features based on words as well
as POS tags may also be beneficial. Changing the
model itself to, e.g., a sequence model might also
help. However, the current approach has several
weaknesses which should be addressed by future
research.

First, the top-down nature of the independence
constraints does not make a natural fit with the
bottom-up CKY algorithm. In particular, the pres-
ence of incomplete rules in the grammar combined
with the bottom-up search means that the parser
still ends up doing some computation to create
spans which violate the constraints, even though
it is prevented from completing such a span.

Second, the pipelined nature of the classifier
means that it only has access to POS tags and
in particular is not able to make use of informa-
tion generated as the parser processes lower-level
spans. Tighter integration of the classifier into the
parser may be beneficial to both.

Third, the current classifier combines instances
from different syntactic structures into a single
model. It is possible that training multiple mod-
els on different types of sentences would result in
a better classifier.
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Appendix A. Derivation of equations in
section 3.1

The amount of computation done in lines 4-10 of
Algorithm 1 can be calculated as follows:

n∑
j=2

n−j+1∑
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i+j−1∑
k=i+1
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This is the number of binary edges evaluated
by the CKY algorithm. Using independence con-
straints, the algorithm avoids doing any computa-
tion for complete edges in spans which violate the
constraints. The work saved is thus the number
of complete binary edges in the entire chart mi-
nus the number of complete edges that are actually
processed in cells that satisfy the constraints. For
a single independent boundary at n

K , we get:
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The proportion of work saved relative to the
original algorithm is then
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|G|( 1
6
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6
n)

which depends on n as well as K; however, we
can approximate this as the limit as n goes to in-
finity:
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Similarly, the work saved with K evenly-spaced
boundaries is
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and the proportion of the original work saved is
approximately
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Appendix B. Detailed parse results

We experimented with a post-processing step to
adjust the recall and precision of the classifier, as
well as adding a threshold on the minimum length
of a sentence to apply constraints to in the parser
(on the hypothesis that longer sentences are likely
to gain a proportionally larger advantage). We
show the detailed results from the parser in Table
8, using both the linear and polynomial classifiers.
Sentences shorter than MinSentLenwere parsed
without constraints.

The results are largely as expected. Sentences
less than 20 words do not affect the results much.
The recall threshold predictably results in a
large loss in classifier precision and thus parsing
accuracy. We note the results in boldface: with a
high precision threshold, the polynomial classifier
is able to reduce the computation in the CKY loop
by 42% while losing less than half a point in F1
score.
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Classifier MinSentLen Constraints Time (s) # Edges F1 Parse Failures
- - baseline 1558 1.75×1010 (100%) 85.85 0
linear 0 default 1283 1.08×1010 (62%) 83.71 (-2.14) 15
linear 0 precision 1143 1.13×1010 (65%) 84.05 (-1.80) 7
linear 0 max precision 1384 1.42×1010 (81%) 85.55 (-0.30) 2
linear 0 recall 1024 7.80×1009 (45%) 78.74 (-7.11) 136
linear 20 default 1126 1.12×1010 (64%) 84.17 (-1.68) 9
linear 20 precision 1313 1.16×1010 (66%) 84.43 (-1.42) 4
linear 20 max precision 1338 1.44×1010 (82%) 85.59 (-0.26) 2
linear 20 recall 1121 8.24×1009 (47%) 80.38 (-5.47) 103
linear 30 default 1312 1.28×1010 (73%) 84.82 (-1.03) 3
linear 30 precision 1279 1.31×1010 (75%) 85.01 (-0.84) 1
linear 30 max precision 1485 1.53×1010 (87%) 85.63 (-0.22) 1
linear 30 recall 1140 1.02×1010 (58%) 82.79 (-3.06) 57
linear 40 default 1476 1.51×1010 (86%) 85.56 (-0.29) 1
linear 40 precision 1390 1.52×1010 (87%) 85.59 (-0.26) 0
linear 40 max precision 1513 1.65×1010 (94%) 85.75 (-0.10) 0
linear 40 recall 1403 1.33×1010 (76%) 84.65 (-1.20) 14
poly 0 default 1106 9.74×1009 (56%) 84.85 (-1.00) 6
poly 0 precision 1118 9.84×1009 (56%) 85.12 (-0.73) 4
poly 0 max precision 1137 1.02×1010 (58%) 85.42 (-0.43) 2
poly 0 recall 1050 9.25×1009 (53%) 84.05 (-1.80) 33
poly 20 default 1070 1.02×1010 (58%) 85.08 (-0.77) 5
poly 20 precision 1172 1.03×1010 (59%) 85.25 (-0.60) 3
poly 20 max precision 1092 1.06×1010 (61%) 85.41 (-0.44) 2
poly 20 recall 1088 9.68×1009 (55%) 84.75 (-1.10) 7
poly 30 default 1222 1.20×1010 (69%) 85.57 (-0.28) 1
poly 30 precision 1267 1.20×1010 (69%) 85.62 (-0.23) 1
poly 30 max precision 1238 1.23×1010 (70%) 85.65 (-0.20) 1
poly 30 recall 1238 1.16×1010 (66%) 85.44 (-0.41) 2
poly 40 default 1465 1.49×1010 (85%) 85.72 (-0.13) 0
poly 40 precision 1353 1.49×1010 (85%) 85.75 (-0.10) 0
poly 40 max precision 1570 1.50×1010 (86%) 85.78 (-0.07) 0
poly 40 recall 1489 1.47×1010 (84%) 85.69 (-0.16) 1

Table 8: Results from parsing section 22 using constraints from both linear and polynomial classifiers,
varying minimum sentence length and classifier probability threshold.
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Abstract

This article proposes a syntactic parsing
strategy based on a dependency grammar
containing both formal rules and a com-
pression technique that reduces the com-
plexity of those rules. Compression pars-
ing is mainly driven by the single-head
constraint of Dependency Grammar, and
can be seen as an alternative method to
the well-known constructive strategy. The
compression algorithm simplifies the in-
put sentence by progressively removing
from it the dependent tokens as soon as
binary syntactic dependencies are recog-
nized. The performance of our system was
compared to a deterministic parser based
on supervised learning: MaltParser. Both
systems were applied on several test sets
of sentences in Spanish and Portuguese,
from a variety of different domains and
genres. Results showed that our pars-
ing method keeps a similar performance
through related languages and different
domains, while MaltParser, as most super-
vised methods, turns out to be very depen-
dent on the text domain used to train the
system.

1 Introduction

For large scale applications in Information Extrac-
tion (IE), syntactic parsing should be robust, fast,
and relatively accurate. Moreover, for specific IE
applications such as semantic relation extraction,
the output of parsing should be simple, easy to
handle by the IE systems, and close to the seman-
tic relationships to be extracted. For multilingual
purposes, it is important to develop parsing tech-
niques easily adapted to several languages. And
finally, in order to be easily integrated in several
NLP applications and tasks, the parsers should be

applied on different text domains and genres with
similar accuracy.

There are two well known approaches that
could be considered as good approximations to the
ideal system filling all these parsing properties:
both deterministic dependency parsing (Nivre,
2004) and partial parsing using rule-based finite-
state techniques (Abney, 1996). However, these
two parsing approaches have still some problems.

Recent work on deterministic dependency pars-
ing (called ‘transition based’) relies on supervised
techniques requiring fully analyzed training cor-
pora. Given that supervised techniques tend to
have loss of precision when applied on texts of do-
mains and genres different to those used for train-
ing (Rimell et al., 2009; Gildea, 2001), they need
too much manual effort to create, adapt, or modify
the training corpus to the target domain.

Speed is not actually a problem for finite-state
techniques, which can parse large text corpora in a
very efficient way. However, as they rely on com-
plex rule-based notations, their main drawback is
the difficulty to adapt such a rule system to dif-
ferent languages. Moreover, as most finite-state
parsers are based on constituency grammars, their
syntactic output cannot be easily integrated into IE
applications. Unlike phrase constituents, depen-
dencies are seen as simple and flat syntactic repre-
sentations, very close to semantic relations which
are the extraction target of many IE systems.

Many finite-state parsers are based on the con-
structive strategy (Grefenstette, 1996; Abney,
1996; Ait-Mokhtar and Chanod, 1997). In con-
structive parsing, an input sentence is manipulated
by transducers that progressively transform the
input with additional symbols encoding syntac-
tic constituents or dependency relations (Oflazer,
2003). These transducers are pattern rules ar-
ranged in cascades: the output of a transducer
is the input of the next one, which contains new
rules adapted to the symbols added to the input.
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So, parsing consists in transforming a basic input
string into a more complex one by incrementally
adding new symbols, bracket delimiters, labels, or
special markers. This strategy incrementally con-
structs the linguistic representation within the in-
put string, by making use of rules organized at dif-
ferent levels of complexity.

In this article, we propose a new (rule-based)
finite-state parsing strategy based on dependen-
cies, which minimizes the complexity of rules by
using a technique we call compression. Compres-
sion parsing is driven by the ”single-head” con-
straint of Dependency Grammar, and can be seen
as an alternative method to the constructive strat-
egy. It simplifies the input string by progressively
removing the dependent tokens as binary syntac-
tic dependencies are recognized. At the end of the
compression process, if all the dependencies in the
sentence were recognized, the input string should
contain just one token representing the main head
(i.e., the root) of the sentence. This strategy was
inspired by the Right and Left Reduce transitions
used in deterministic dependency parsing. The
input sentence is assumed to be tagged and dis-
ambiguated with a Part-Of-Speech (PoS) tagger.
Moreover, the cost of manually creating rules can
also be reduced by providing a suitable rule nota-
tion for linguists.

As in Ait-Mokhtar and Chanod (1997), we hold
that the ordering of rules/transducers is in itself a
genuine linguistic task, which must preserve the
basic principle of doing the easiest task first (Ab-
ney, 1996). If rules (and so the grammar) are
written following this principle, it is possible to
use finite-state automata to deal with embedding
structures and long-distance dependencies. Note
that this is a deterministic parsing strategy, since
it cannot produce ambiguous structures. The use
of grammars in recent dependency parsers is al-
most non-existent. Our work propose to incor-
porate more linguistic knowledge into the parsing
systems via light-weight grammars.

Finally, a system based on the compression
strategy was implemented and released under
General Public License. In addition, we de-
fined a high level grammar language to define
dependency-based rules and developed a gram-
mar compiler to generate compression parsers in
several languages (Gamallo and González, 2011).
The performance of this system was compared to
MaltParser (Nivre et al., 2007b), a deterministic

parser based on supervised learning. Both systems
were applied on several test sets of sentences of
different domains and genres, in Spanish and Por-
tuguese. One of the main motivations of the evalu-
ation is to test whether the two systems are reliable
to parse sentences of different domains and gen-
res. It is generally accepted that supervised classi-
fiers require some type of domain adaptation when
both the training and test data sets belong to dif-
ferent domains. In particular, the accuracy of sta-
tistical parsers degrades when they are applied to
different genres and domains (Rimell et al., 2009;
Gildea, 2001). Results showed that our system
keeps a similar performance through related lan-
guages and different domains, while MaltParser,
as most supervised methods, is very dependent on
the text domain used to train the system.

The remainder of this article is organized as fol-
lows. Section 2 introduces different approaches on
both dependency and FST parsing. Then, Section
3 is focused on the description of our compres-
sion strategy. Next, Section 4 provides a general
view of the implemented system. Then Section
5 reports the diverse experiments performed over
the Portuguese and Spanish data sets. And finally,
some conclusions are addressed in Section 6.

2 Related Work

Our strategy is based on both dependencies and
FST parsing.

2.1 Dependency-based Syntactic Parsing

Following Nivre (2005), there are two tradi-
tions in dependency parsing: grammar-driven and
data-driven parsing. Within each tradition, it is
also possible to distinguish between two differ-
ent approaches: non-deterministic and determin-
istic parsing. In the latest years, many works on
dependency parsing have been developed within
the approach to data-driven deterministic parsing,
which is also known as transition-based parsing,
in opposition to grammar-driven parsers. Other
data-driven strategies are non-deterministic such
as graph-based dependency parsing (McDonald
and Pereira, 2006; Carreras, 2007; Martins et al.,
2010) .

Transition parsing consists in inducing statis-
tical models in combination with a determinis-
tic strategy based on shift-reduce parsing (Nivre,
2004; Yamada and Matsumoto, 2003; Gómez-
Rodrı́guez and Fernández-González, 2012). In
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Nivre et al. (2004), the parsing strategy uses the
arc-eager algorithm. In Gómez-Rodrı́guez et al.
(2014), this algorithm is simplified by just using
two transitions on undirected dependencies (the
head-dependent information is erased), so as to
avoid error propagation.

As we will show later, the main problem of the
supervised learning strategies arises when the test
sentences belong to linguistic domains very dif-
ferent from those found in the training corpus. We
will show later the negative effect on system per-
formance when the test and training data sets does
not belong to the same domain and genre. As
hand labeling data in new domains is a costly en-
terprise, the domain adaptation problem is a fun-
damental challenge in machine learning applica-
tions. Note that many NLP annotated resources
are based on text from the news domain (in most
cases, the Wall Street Journal), which is a poor
match to other domains such as biomedical texts,
electronic mails, transcription of meetings, admin-
istrative language, etc. (Daumé-III and Marcu,
2007; Daumé-III, 2006).

2.2 Finite-State Parsing Techniques

Finite-state technology has attractive properties
for syntactic parsing, such as conceptual simplic-
ity, flexibility, and efficiency in terms of space and
time. It allows to build robust and deterministic
parsers. Most finite-state based parsing strategies
use cascades of transducers and are known as con-
structive parsers.

Parsing based on cascades of finite-state trans-
ducers can be viewed as a sort of string trans-
formation. Finite-state transducers introduce pro-
gressively markings and labels within the input
text. Transducers are arranged in cascades (or
layers), where the subsequent transducer takes
the output of the previous one as input. After
a certain number of cascades, the initial input
(which is a tagged sentence) is transformed into
a structured text enriched with syntactic marks,
such as chunk boundaries, labels for heads, spe-
cial markers for functions or for relations between
heads, etc. This strategy, known as constructive,
progressively constructs the linguistic representa-
tion within the input string, by making use of
rules/transducers organized at different levels (or
layers) of complexity.

Most of finite state strategies aim to construct,
not dependency graphs, but phrase based struc-

tures (Ait-Mokhtar et al., 2002; Ciravegna and
Lavelli, 2002; Kokkinakis and Kokkinakis, 1999;
Ait-Mokhtar and Chanod, 1997; Abney, 1996;
Joshi, 1996; Grefenstette, 1996). In general, the
construction of these structures is performed with
three main cascades/layer of rules: chunking, head
recognition, and attachment. The first layers of
rules transform the tagged input into sequences of
symbols representing basic chunks. Then, further
rules take those chunks as input to add new sym-
bols marking the heads of each chunk and, finally,
new rules are applied on the output of the previous
ones to annotate the identified heads with labels of
syntactic functions (attachment).

The number of finite-state approaches focused
on constructive dependency parsing is much
smaller. We can merely cite the work by Oflazer
(2003), where the input string is progressively
enriched by additional symbols encoding depen-
dency relations between words.

The finite-state strategy often relies on one fun-
damental property: easy-first parsing. Easy-first
parsing means that the simplest tasks must be done
first, leaving the harder decisions for the last steps
of the parsing process. Parsing proceeds by grow-
ing islands of certainty (Abney, 1996; Eisner and
Smith, 2010; Goldberg and Elhadad, 2010; Tratz
and Hovy, 2011; Versley, 2014).

Finite-state parsers are the fastest systems
among those achieving linear time complexity. So,
they are scalable as the input text increases in size
and are easily integrated into IE applications ex-
ploring the Web as corpus.

3 A Compression Parsing Strategy

We propose yet another FST based method, very
similar to the constructive approaches, but by
making use of a similar strategy to the shift-reduce
algorithm as in incremental parsing. We call it
compression parsing. It consists of a set of trans-
ducers/rules that compress the input sequence of
tokens by progressively removing the dependent
tokens as soon as dependencies are recognized.
So, at each application of a rule, the systems re-
duce the input and make it easier to find new de-
pendencies in further rule applications. In partic-
ular, short dependencies are recognized first and,
as a consequence, the input is simplified so as to
make lighter the recognition of long distance de-
pendencies. This is inspired by the easy-first strat-
egy.
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The input of our parsing method is a sequence
of disambiguated tagged tokens, where each to-
ken is associated with two pieces of information:
a PoS tag representing the basic morpho-syntactic
category of the token (NOUN, VERB, PRP, etc.)
and a feature structure containing other relevant
information of the token: morphological informa-
tion (number, tense, person, etc.), lemma, token
string, token position, etc. Tagged tokens are the
elementary objects of the parsing process, while
rules, which are implemented as finite state trans-
ducers, operates on tagged tokens. More precisely,
rules successively identify dependencies between
tokens, remove the dependents (if required) from
the input sequence, and update (if required) the
feature structures of the heads.

3.1 Description of rules

A rule is a tuple < P, Arc,△, Reduce >, where:

• P is a pattern of tagged tokens, defined as
a regular expression, whose general form is
αXβY γ. X and Y are non-empty strings
representing two tagged tokens, considered
as the core elements of the pattern; while α,
β, and γ represent the left, middle, and right
contexts, respectively, of the core elements;
they may be empty.

• Arc is the action that creates a dependency
link between the core elements (X and Y ),
when a subsequence of the tagged input is
matched by the pattern; two types of arcs are
distinguished: Left Arc adds a dependency
link between X and Y , being X the depen-
dent and Y the head; Right Arc creates a
dependency link between X and Y , being X
the head and Y the dependent. This action
also assigns a label (subject, modifier, ad-
junct, etc) to the dependency.

• △ is a set of operations (Agreement, Add,
Correction, Inherit, etc.) that are applied
on the feature structure of the core elements;
they can be used to perform very different ac-
tions: verifying if the two core elements (i.e.,
head-dependent) share a set of feature-values,
adding new feature-values to the head, modi-
fying some values of the head, correcting PoS
tags, allowing the head to inherit selected val-
ues from the dependent, etc. Add and Inherit
can be seen as constructive operations.

• Reduce is the action that removes the depen-
dent from the input string; this action can be
suspended if the dependent token is likely to
be the head in other dependencies that has not
been recognized yet. So, the dependent will
not be reduced until all its potential depen-
dent tokens have been recognized.

Compressing rules, not only reduce the com-
plexity of the search space (or input) of the re-
maining rules to be applied, but also construct rel-
evant information (by adding linguistic features)
for the application of those rules. In particular,
it may store in the head relevant information of
the removed dependent (Inherit operation), it per-
mits to generate new attributes or modify values
from existing attributes (Add operation), and also
it can correct odd tagged PoS tags (Correction)
(Garcia and Gamallo, 2010). In sum, the main
contribution of our work is to define compressing
rules as the integration of two parsing techniques:
both transition-based and constructive parsing. On
the one hand, the rules reduce the search space
by removing the dependent tokens and, on the
other hand, they can add relevant information to
the head tokens by making use of operations such
as Add or Inherit. Rules compresses the input se-
quence of tokens so as to make it easier the identi-
fication of more distant dependencies.

The Inherit operation is one of the most inno-
vative contributions of our rule system. It allows
transferring linguistic features to heads before re-
moving the dependent tokens from the search
space. This can be considered as one of the main
contributions of our dependency-based strategy.
In combination with Add operation, Inherit is use-
ful to transfer relevant information from auxiliary,
light, or modal verbs to their main verbs. It can
also be used to model coordination by transfering
categorial information from the coordinated struc-
tures to the coordinator, so as to make it possible
subject-verb agreements. For instance, in the sen-
tence ‘Paul and Mary are eating’, the Inherit op-
eration allows the coordinator ‘and’ to inherit the
nominal category of their parts and, by means of
the Add operation, we can assign it the plural num-
ber. In addition, Inherit can also be used to transfer
relevant morphological information (third person,
plural, present tense) to the root verb ‘eat’ from
the auxiliar ‘are’. This way, there is grammatical
agreement between ‘(are) eating’ (3rd person and
plural) and its subject ‘Paul and Mary’. As far as
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we know, no dependency grammar/parser has pro-
posed this solution to the dependency-based anal-
ysis of verbal periphrases and coordinations.

3.2 Rule Ordering: Easy First
As was mentioned above, the ordering of rules in
a FST parser is a genuine linguistic task. Rules
are ordered in such a way that the easiest tasks,
for instance short dependencies, are performed
first. As in (Eisner and Smith, 2010; Goldberg
and Elhadad, 2010; Tratz and Hovy, 2011; Vers-
ley, 2014), we assume that correct parsers exhibit
a short-dependency preference: a word’s depen-
dents tend to be close to it in the string. The fact of
identifying first easy syntactic structures, such as
those ruled by modifiers and specifiers, allows us
to easily find later distant links, for instance those
relating verbs with subordinate conjunctions. Let
us take the expression: ‘if the former president of
USA says ...’. There is here a long distance de-
pendency between the verb ‘says’ and the condi-
tional conjunction ‘if’. In most sentences, both
words are not adjacent since a great variety of to-
kens can be interposed. However, in a compres-
sion approach, we can guess that dependency by
making use of a very simple pattern consisting in
a subordinate conjunction (type:S) appearing im-
mediately to the left of a verb (last rule T6 below in
1). We just need the following sequence of trans-
ductions/rules1:

T1: PRP← PRP NOUN

T2: NOUN← ADJ NOUN

T3: NOUN← DT NOUN

T4: NOUN← NOUN PRP

T5: VERB← NOUN VERB

T6: VERB← CONJ<type:S> VERB
(1)

In Figure 1, we show the application of the six
rules on the input expression, as well as the effect
of the Reduce transition at each level (for the sake
of simplicity, label assignment is not taken into ac-
count).

Each rule processes the input from left to right
repeatedly as long as new dependencies satisfying
the pattern are found. Rules are checked top-down
following the rank imposed by the linguist. When

1To simplify, rule notation is focused on just the final Re-
duce operation

T6: if says

T5: if president says

T4: if president of says

T3: if the president of says

T2: if the former president of says

T1: if the former president of USA says

Figure 1: The six levels of analysis of ‘if the for-
mer president of USA says...’

the parser reaches the last rule of the ranked list,
if at least one dependency has been identified, the
parser starts again from the beginning until no new
dependency is found. So, the parser works itera-
tively until no change is made.

4 The Implementation

4.1 The Modules

Our compression parsing strategy has been in-
serted into a more generic natural language archi-
tecture, which consists of the following modules:

A set of PoS tagging adapters that modify
the output of two PoS taggers, namely FreeLing
(Padró and Stanilovsky, 2012) and Tree-Tagger
(Schimd, 1995), so as to generate an unified PoS
tagged format. The result of this process is the in-
put of compression parsers. A set of grammars
written with a specific grammar notation. The
grammar formalism was described in (Gamallo
and González, 2011). A grammar compiler, writ-
ten in Ruby, that takes a particular grammar as in-
put and generates a compression parser, written in
Perl. An a set of multilingual parsers, generated
by the compiler from various grammars.

The whole system, called DepPattern, is re-
leased under the GNU General Public License
(GPL). 2. Five parsers were generated for the fol-
lowing languages: Spanish, Portuguese, English,
French, and Galician. The parsers are robust and
very efficient: they are able to parse about 3,000

2http://gramatica.usc.es/pln/tools/
deppattern.html
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words per second on a processor Core 2 Quad, 2.8
Ggz. The system can be run on any GNU/Linux
distribution. DepPattern was used for several web-
based IE applications, namely Open Information
Extraction from Wikipedia (Gamallo et al., 2012),
extraction of semantic relations with distant super-
vision (Garcia and Gamallo, 2011), and extraction
of bilingual terminologies from comparable cor-
pora (Gamallo and Pichel, 2008). It has also been
integrated into commercial tools, e.g. Linguakit3

and Avalingua4.

4.2 Multilingual Parsing

The parsers were developed for five languages:
Spanish, Portuguese, Galician, French, and En-
glish. However, we have just written two small,
and not very different, grammars:

Romance Grammar A grammar with 96 rules
that are all applied to four Latin languages,
namely, Spanish, French, Galician, and Por-
tuguese.

English Grammar A grammar with 104 rules for
English.

The cost of writing these two grammars is quite
low. They are small and almost identical, since
they share most rules except a reduced group of
them which is specific for English. The strategy
we followed to write grammars is based on two
methodological principles: to start with rules with
high coverage, and to start with rules shared by as
many languages as possible

The objective is to find a trade-off between high
performance and low effort, i.e. we look for ef-
ficiency. Most DepPattern rules of our gram-
mars satisfy these two principles, giving rise to
broad-coverage parsers. The quality of the French
grammar is not good enough since this Latin lan-
guage is quite different from Spanish, Portuguese,
and Galician. There are important rules specific
for French which have not been integrated in the
shared grammar, for instance rules for dealing
with partitives. Besides, we have not defined non-
projective rules since, in general, they have low
coverage and are language-dependent. Finally, the
grammars also contain lexicalized rules for prepo-
sitions, modal verbs, quantifiers, etc. However, as
the sets of lexical units are declared in external

3https://linguakit.com/
4http://cilenis.com/en/avalingua/

configuration files, the grammars are not required
to be modified.

5 Experiments

Our objective is to compare the performance of
our FST-based strategy with that of a transition-
based system. For this purpose, we compare Dep-
Pattern with MaltParser5 (Nivre et al., 2007b),
one of the top performing systems in the CoNLL
shared tasks on multilingual dependency parsing
in 2006 and 2007 (Hall and Nilsson, 2006; Nivre
et al., 2007a). Experiments were performed on
two languages: Portuguese and Spanish. The rea-
son of making experiments on only two languages
is the very high cost required to adapt the outputs
of our system to the test data set.

5.1 Training and Test Corpora

The experiments were performed by making use
of two dependency treebanks: Spanish Ancora
2.0 (Recasens and Martı́, 2010) and Portuguese
Bosque 8.0 (Afonso et al., 2002), also used by par-
ticipants at the CoNLL 2006 shared task. In order
to have a similar experimental setup for the two
languages, each corpus was divided in a training
part containing 115, 000 words and a test set with
100, 000 words. The two training corpora were
only used to build the statiscal model of Malt-
Parser. DepPattern, which is a grammar-based
system, does not require any training corpus.

5.1.1 MaltParser’s Optimization
We used MaltParser 1.7.1, equipped with nine dif-
ferent transition-based parsing algorithms. To se-
lect the best algorithm running in linear time (5 out
9: Nivre eager, Nivre standard, Stack proj, pla-
nar, and 2-planar), we validated the target algo-
rithms on the Portuguese test data set. The best
performance was achieved by 2planar (Gómez-
Rodrı́guez and Nivre, 2010), based on arc-eager
algorithm, even if the difference among the five
tested algorithms was not statistically significant.
So, the 2planar strategy was chosen to be com-
pared with DepPattern.

All experiments were performed using a classi-
fier based on support vector machines, as imple-
mented in the LIBSVM package (Chang and Lin,
2001). Finally, we have reused the PoS tags and
feature representation that produced the best re-
sults on Portuguese and Spanish for the MaltParser

5htpp://www.maltparser.org/
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system at CoNLL shared task.

5.1.2 Test data sets
The two main data sets are the following:

bosque-test More than 3,000 sentences with
100M tokens taken from the Portuguese tree-
bank.

ancora-test More than 3,000 sentences with
100M tokens taken from the Spanish tree-
bank.

In order to compare MaltParser with Dep-
Pattern, we must address three problems when
preparing the test data set:

• The tagsets and feature structures required by
DepPattern are not the same as those avail-
able in the treebanks to train MaltParser.

• Each treebank was annotated following dif-
ferent criteria regarding some linguistic phe-
nomena. Besides, there are also differences
of criteria between DepPattern and some de-
pendency solutions found in the treebanks.

• MaltParser can take advantage of the fact that
both training and test sets belong to the same
domain.

DepPattern requires as input PoS tagged text
with the format provided by Tree-Tagger or FreeL-
ing. Ancora 2.0 was annotated with FreeLing
tags, but it is not the case of Bosque 8.0. In or-
der to permit DepPattern to have the same en-
try as MaltParser for the Portuguese corpus, the
PoS tags and features of Bosque 8.0 were con-
verted into FreeLing-based PoS tags. Note that
this PoS tag conversion allows us to apply Malt-
Parser, in combination with FreeLing, to raw text.
First, the PoS tags and feature representation of the
two training sets were transformed into the FreeL-
ing format. Then, the best MaltParser configura-
tion was trained on these two sets and, finally, it
was applied on text previously tagged with FreeL-
ing. The results obtained were very similar (even
slightly better) to those obtained with the PoS tags
and features of the original treebanks. Conversion
scripts are freely available.6

However, the main problem to evaluate DepPat-
tern and to compare it with other systems is to

6http://gramatica.usc.es/˜gamallo/
resources/depcorpus-test.tgz

minimize the noise derived from the choice of dif-
ferent linguistic criteria. In particular, we found in
DepPattern grammars several linguistic decisions
to define dependencies that are very different from
those found in the exploited treebanks. For in-
stance:

• All clause arguments (including the subject)
are dependent on lexicalized verbs, and not
on light or auxiliary verbs.

• All members of a coordination are dependent
on the conjunction and not on the first coor-
dinated member.

DepPattern grammars follow these two crite-
ria. Bosque 8.0 follows neither of the two, and
Ancora 2.0 just follows the first one. So, there
are three different dependency criteria for dealing
with these two linguistic phenomena, which have
large coverage. In addition, there are many other
conflicts to be considered: DepPattern analyzes
the Portuguese possesive expressions in a differ-
ent way as the treebank annotators: in ‘a sua mul-
her’ (his wife), ‘sua’ is dependent of ‘mulher’ and
‘a’ of ‘sua’. However, in the Portuguese treebank,
‘a’ and ‘sua’ both depend of ‘mulher’. There are
also different decisions for the internal dependen-
cies of periphrastic verbal expressions: e.g. ‘tiene
que ir’ (have to go). Particle ‘que’ (to) can be ei-
ther dependent of ‘tiene’ or of ‘ir’. All these dif-
ferences are a serious drawback for comparing our
grammar-based parser against a corpus-driven sys-
tem. To solve the problem, we adapted our generic
Romance Grammar to each treebank. As a result,
we generated both a Portuguese parser adapted to
Bosque and a Spanish parser adapted to Ancora.
Another solution would have been to create con-
versor scripts to automatically modify the tree-
banks. However, as the algorithms required are not
trivial, in particular for complex phenomena such
as coordination, this strategy was not considered.

The third problem is related to the content sim-
ilarity between the training and the test corpora,
which could benefit the data-driven system. Apart
from the two data sets extracted from the tree-
banks, we also built a small gold standard, called
open-test, by manually analyzing sentences ex-
tracted from different sources. The description of
this new test data set is the following:

open-test 42 Portuguese sentences with about 1K
words taken from different sources with a
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Precision Recall F-score
ancora-test (es) 84.6 79.7 82
bosque-test (pt) 84.1 79.2 81.6
open-test (pt) 86.2 76.6 81.1

Table 1: Evaluation of DepPattern (unlabeled de-
pendencies)

variety of genres and domains: Wikipedia
(scientific domain and encyclopedic genre),
a Portuguese novel by Machado Assis (lit-
erature genre), documents of the European
Commission (economy domain).

Both bosque-test and ancora-test consist of sen-
tences belonging to the same journalist genre as
those found in the training corpus. By con-
trast, open-test consists of miscellaneous sen-
tences whose content is distributed through differ-
ent genres and domains. So it can be considered
as an open-content test set. The dataset is freely
available7

5.2 Evaluation

To evaluate the performance of the two systems, it
is necessary to take into account that DepPattern
produces partial parses. This system assigns the
dependency relation ‘0’ (or Root) to all unattached
tokens. So, it is relevant to make use of preci-
sion and recall, instead of accuracy, to measure the
performance of the DepPattern parsers. For Malt-
Parser, precision and recall are the same: these val-
ues correspond to the unlabeled attachment score
(UAS).

Furthermore, as the dependency labels of Dep-
Pattern are very different from those found in the
two treebanks, the evaluation was restricted to un-
labeled dependencies. Parser evaluation is con-
ducted by comparing the dependencies guessed by
the system with manually revised dependencies.
Given these two data sets, precision and recall are
defined as in (Lin, 1998). As ‘0’ values, associated
to unattached tokens, are considered as not found
dependencies, they are relevant to measure recall
in DepPattern. Punctuation marks are ignored in
our evaluation.

Tables 1 and 2 show the results obtained with
DepPattern and MaltParser, respectively, when ap-
plied on the different testing sets. The results ob-
tained by MaltParser represent in fact the UAS

7http://gramatica.usc.es/˜gamallo/
resources/depcorpus-test.tgz

Precision Recall F-score
ancora-test (es) 85 85 85
bosque-test (pt) 88.2 88.2 88.2
open-test (pt) 81.3 81.3 81.3

Table 2: Evaluation of MaltParser (unlabeled de-
pendencies)

of the system, since precision and recall are the
same. MaltParser outperforms DepPattern on both
bosque-test and ancora-test.

The scores we obtained using MaltParser fol-
low the same tendency (even if they are not iden-
tical) of those obtained at the CoNLL 2006 shared
task, where the system achieved 91% accuracy on
Portuguese and 85 on Spanish (for unlabeled at-
tachment scores). In our experiments, MaltParser
obtained 88.2% and 85, respectively. The differ-
ences between the Portuguese scores at CoNLL
and those obtained in our experiment could derive
from small changes in the optimization procedure,
and from the size of the training corpus. Notice
that the performance of MaltParser is quite differ-
ent across our three data sets: 88.2% (bosque) 85
(ancora), and 81.3 (open). By contrast, DepPattern
achieves similar results in all the tests.

In the content-open test, we observe that
whereas MaltParser gets down from 88.2 accuracy
to 81.3, DepPattern keeps a similar score in the
three datasets. It seems that the change of do-
main affects the performance of the data-driven
system. By contrast, the grammar-based parser
keeps a similar performance across domains and
genres. It seems to be also most stable across
different languages: it achieves similar results in
Spanish and Portuguese because, on the one hand,
these languages are very close and, on the other,
DepPattern only use those grammar rules shared
by the two languages. However, it is not easy to
explain why MaltParser behaves in a very differ-
ent way on two languages which are very similar
in terms of grammar.

Finally, we also verified whether the two sys-
tems are complementary. This was made by mea-
suring the statistical correlation between the re-
sults obtained by the two types of parsers. For
this purpose, we analysed the Pearson correlation
between the parses resulting from both DepPat-
ter and MaltParser, in order to verify if they tend
to make the same correct decisions. The Pear-
son coefficient obtained was low, namely 0.14,
with only 69% of shared correct decisions. This
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means that the two systems are complementary
since many of the correct dependencies they guess
are not the same. In sum, they are good in differ-
ent ways. This insight essentially encourages to
the pursuit of hybrid approaches and parser com-
binations, since both strategies seem to be com-
plementary and should work together to produce
more efficient results.

6 Conclusions

The work described in the article can be seen as a
contribution to improve old parsing strategies in-
troduced at the end of the twentieth century, when
most efficient techniques were based on rules/FST
and constructive approaches. In particular, we de-
scribed a grammar-driven parser based on FST,
called compression parsing, which takes into ac-
count some elements from deterministic and incre-
mental dependency parsing, namely Arc and Re-
duce transitions. This compression method, im-
plemented in DepPattern, was compared with a
data-driven, transition-based system: MaltParser.

The cost and effort of developing compression
parsers for several languages is not very high,
since they can achieve reasonable performance us-
ing just very simple, multilingual, and general-
purpose grammars. In this article, we have also
introduced a simple methodology to write multi-
lingual and general-purpose grammars.

In future work, it would be interesting to com-
pare a variety of grammar-driven systems by mea-
suring, not only their performance, but also the
complexity of the underlying grammar: number
of rules, size (in bytes) of the source files, etc.
It should also be important to quantify and com-
pare the cost and effort of both writing grammars
and building treebanks. Moreover, to comple-
ment quantitative evaluation, it will be necessary
to define objective protocols to compare parsers
on the basis on qualitative evaluation (Lloberes et
al., 2014).

Finally, we claim that FST-based parsing tech-
niques simulate how we solve problems quickly,
by taking first easy decisions which, in turn, make
it easier to solve further complex tasks. How-
ever, these parsing techniques are far from simu-
lating two other interesting cognitive operations:
first, how grammars are learnt and, second, how
sentences are processed. Data-driven approaches
can be seen as a good approximation to the way
humans learn grammars, while incremental left-

to-right parsing can be seen as a simulation of
how humans process and understand input sen-
tences. Here, a question arises: would it be pos-
sible to define a method taking advantage of all
those parsing strategies? In other words, could be
it possible to model a strategy that learns gram-
mar rules from data, orders them as cascades of
progressively more complex transducers, and ap-
plies them to sentences in an incremental way? A
method provided with these three ‘human prop-
erties’ would be closer to the canonical systems
in Artificial Intelligence, since the main objective
would be, not only to produce parse trees, but also
to simulate how humans understand sentences.
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Carlos Gómez-Rodrı́guez and Daniel Fernández-
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05133, Växjö University: School of Mathematics
and Systems Engineering.

Kemal Oflazer. 2003. Dependency parsing with an
extended finite-state approach. Computational Lin-
guistics, 29(4):515–544.
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§Institute for Natural Language Processing, University of Stuttgart, Germany
�Institute of Computer Science, University of Wrocław, Poland

{falensaa,anders,ozlem,seeker}@ims.uni-stuttgart.de

Abstract

Supertagging was recently proposed to
provide syntactic features for statistical
dependency parsing, contrary to its tradi-
tional use as a disambiguation step. We
conduct a broad range of controlled ex-
periments to compare this specific applica-
tion of supertagging with another method
for providing syntactic features, namely
stacking. We find that in this context su-
pertagging is a form of stacking. We fur-
thermore show that (i) a fast parser and
a sequence labeler are equally beneficial
in supertagging, (ii) supertagging/stacking
improve parsing also in a cross-domain
setting, and (iii) there are small gains when
combining supertagging and stacking, but
only if both methods use different tools.
The important consideration is therefore
not the method but rather the diversity of
the tools involved.

1 Introduction

We present a systematic comparison of two meth-
ods that have been proposed to improve statistical
dependency parsers: supertagging and stacking.

Supertags are labels for tokens much like POS
tags but they also encode syntactic information,
e.g. the head direction or the subcategorization
frame. Supertagging was developed for deep
grammar formalisms as the disambiguation of su-
pertag assignment prior to parsing (Bangalore and
Joshi, 1999; Clark and Curran, 2004; Ninomiya
et al., 2006). Recently, it was presented as a
method to provide syntactic information to the fea-
ture model of a statistical dependency parser. Am-
bati et al. (2013; 2014) provide CCG supertags to
a dependency parser, whereas Ouchi et al. (2014)
extract their supertag tag set from a dependency
treebank (see Figure 1). In this paper, we adopt

tree: John loves Mary

stags: subj/R root/L+L R obj/L

root
subj obj

Figure 1: Supertags that are derived from depen-
dency trees for each token. They encode the la-
bel, the head direction, and the presence of left and
right dependents.

this particular definition and take supertagging as
a way of incorporating syntactic features instead
of the traditional use for disambiguation.

Parser stacking was introduced by Nivre and
McDonald (2008) and Martins et al. (2008). In
stacking, two parsers are run in sequence so that
the second parser can use the output of the first
parser as features, for example, whether a particu-
lar arc was already predicted by the first parser.

When supertags were first proposed by Joshi
and Bangalore (1994), they called supertagging al-
most parsing, because supertags anticipate a lot
of syntactic disambiguation. In stacking, the first
step is running a parser, or in other words: real
parsing. In this paper, we investigate the differ-
ence between almost and real parsing for improv-
ing a statistical dependency parser.

We conduct an extensive number of compara-
tive experiments with two state-of-the-art depen-
dency parsers and a state-of-the-art sequence la-
beler on 10 different data sets. In the first set of
experiments, we use only the two parsers and com-
pare both methods in artificial and realistic set-
tings. In the second set of experiments, we con-
trol for the methods and compare different ways
of realizing them. In the last set, we evaluate the
benefit of combining both methods.

Intuitively, stacking should give higher im-
provements than the version of supertagging de-
fined by Ouchi et al. (2014), since trees in stack-
ing are more informative than supertag sequences
in supertagging. However, our experiments show
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that both methods perform on par. Based on an
in-depth analysis of these findings, we argue that
supertagging is a form of stacking.

One apparent advantage of supertagging is the
fact that one can predict supertags without a
parser and thus possibly faster. However, greedy
transition-based parsers are extremely fast as well.
We show that the output of a CRF sequence labeler
and a greedy transition-based parser are of equal
usefulness when used in supertagging. This setup
suggests application to large-scale (e.g. web) data.
We test both methods on the English Web Tree-
bank (Bies et al., 2012) and show that they also
improve parsing in a cross-domain setting.

Our experiments on combining supertagging
and stacking show small gains only when su-
pertags and trees are predicted by different tools.
Surdeanu and Manning (2010) demonstrate that
diversity of algorithms is important when stacking
parsers. Since supertagging is a form of stacking,
this also holds for supertagging, and we argue that
this is a more important factor than the choice be-
tween the two methods.

We give background on supertagging and stack-
ing in Section 2 and describe our experimental
setup in Section 3. We present our experiments
in Sections 4 to 6 and conclude with Section 7.

2 Background

The term supertag originated in Joshi and Banga-
lore (1994) as an elementary structure associated
with a lexical item. These elementary structures
carry more information than POS tags, hence the
name super POS tags or supertags. Within Lex-
icalized Tree Adjoining Grammar (LTAG) (Sch-
abes et al., 1988) supertags correspond to trees that
localize dependencies. A supertagger assigns su-
pertags to each word of a sentence. A parser then
combines these structures into a full parse (Ban-
galore and Joshi, 1999) that leads to simplified
and faster parsing. The same approach applied to
Combinatory Categorial Grammar (CCG) (Clark
and Curran, 2004) and Head-Driven Phrase Struc-
ture Grammar (HPSG) (Ninomiya et al., 2006)
speeds up the parser dramatically.

Foth et al. (2006) were the first to utilize su-
pertags in a dependency parsing context by incor-
porating them as soft constraints into their rule-
based parser (Foth et al., 2004). In LTAG, CCG, or
HPSG supertags are the elementary components
of the framework in question. In Foth et al. (2006),

supertags are specifically designed to capture syn-
tactic properties.

Ouchi et al. (2014) use supertags as features in a
statistical dependency parser for English. Ambati
et al. (2014) instead utilize CCG categories for En-
glish and Hindi. Both demonstrate significant im-
provements. Björkelund et al. (2014) extend the
positive results to nine other languages.

Another way of exploiting one parser’s output
as features in another parser is stacking. Nivre
and McDonald (2008) define a simple set of lo-
cal features that mark whether an arc is present
in the input tree. They demonstrate that stack-
ing parsers leads to higher parsing accuracy than a
non-stacked baseline. Martins et al. (2008) extend
this feature set to include non-local information,
e.g. information about siblings and grandparents
of dependents. However, the additional non-local
features provide only minor further gains over the
local ones if the parser itself already uses non-
local features.

Surdeanu and Manning (2010) present a study
on parser stacking for English. They find that one
important factor is the diversity of the parsing al-
gorithms involved. Specifically, stacking a parser
on itself does not lead to gains. This effect was
also observed by Martins et al. (2008).

3 Experimental Setup

3.1 Data Sets and Preprocessing

We perform experiments on the data from the
SPMRL 2014 Shared Task (Seddah et al., 2014),
which consists of data sets for 9 languages (see Ta-
ble 1). To these 9, we add the English Penn Tree-
bank converted to Stanford Dependencies.1 We
use sections 2-21 for training, 24 as development
set and 23 as test set.

Contrary to most previous work, we use auto-
matically predicted preprocessing in all the pars-
ing experiments. POS tags and morphological fea-
tures are jointly assigned using MarMoT2 (Müller
et al., 2013), a state-of-the-art morphological CRF
tagger. To improve tagging accuracy we integrate
the analyses of language-specific morphological
analyzers as additional features into MarMoT (see
Table 1). We use the mate-tools3 for lemmatiza-

1We use version 3.4.1 of the Stanford Parser from
http://nlp.stanford.edu/software/lex-parser.

shtml
2https://code.google.com/p/cistern/
3https://code.google.com/p/mate-tools/
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tion. We annotate the training sets via 5-fold jack-
knifing.

ISO Language Morphological Analyzer

ar Arabic AraMorph, a re-impl. of Buckwalter (2002)
eu Basque Apertium (Forcada et al., 2011)
fr French An extension of Zhou (2007)
he Hebrew Analyzer from Goldberg and Elhadad (2013)
de German SMOR (Schmid et al., 2004)
hu Hungarian Magyarlanc (Zsibrita et al., 2013)
ko Korean HanNanum (Park et al., 2010)
pl Polish Morfeusz (Woliński, 2006)
sv Swedish Granska (Domeij et al., 2000)

Table 1: Analyzers used in the tagger.

3.2 Supertag Design

Foth et al. (2006) experiment with different tag
set designs and show that richer supertags improve
their parser’s accuracy more. However, richer tags
increase the tag set size considerably and make it
more difficult to predict them automatically.

Ouchi et al. (2014) test two models for English.
Model 1 includes the relative head position of a
word (hdir), its dependency relation (label), and
information about dependents to the left or right
(hasLdep, hasRdep). The tag set is derived from
the treebank, an example is shown in Figure 1.
Model 2 additionally uses dependency relations of
obligatory dependents of verbs. The difference be-
tween the two models has no impact on the per-
formance of a parser, however. Björkelund et al.
(2014) find the same effect for the same models
on nine other languages.

ar eu fr de he hu ko pl sv en

42 179 128 239 196 280 74 113 253 222

Table 2: Tag set sizes for training sets.

Based on these results we decided to use
Model 1 in all of the experiments. The su-
pertags are extracted from the respective
training sets and follow the template la-
bel/hdir+hasLdep hasRdep. Table 2 gives the
tag set sizes for each data set.

3.3 Notation

We denote stacking and supertagging by STACK

and STAG, respectively. When a tool y uses the
output of another tool x, we mark this by super-
script and subscript. For example, STACKy

x means
that tool y uses the output of tool x in stacking.
Similarly, STAGy

x means that tool y uses the su-
pertags predicted by tool x. We follow Martins et

al. (2008)’s terminology and call x the Level 0 tool
and y the Level 1 tool.

3.4 Parsers and Feature Models
In the experiments, Level 1 tools will always be
dependency parsers since we are interested in the
effect of supertagging and stacking on parsing per-
formance. We experiment with one graph-based
and one transition-based parser to cover the two
major paradigms in dependency parsing.

We extend the parsers’ baseline feature sets in
two directions: (1) to extract features for stack-
ing, i.e., to extract features from a provided de-
pendency tree, and (2) to extract features from
a sequence of supertags. For stacking, features
are taken from Nivre and McDonald (2008) and
slightly adapted to our setting. For supertagging,
we mirror the features from stacking to the best
extent possible given the more limited information
that is contained in the supertags to begin with.

We note that feature engineering can be done
more elaborately both for stacking (Martins et al.,
2008) and supertagging (Ouchi et al., 2014). How-
ever, since not all types of features that can be
extracted necessarily carry over from one method
to the other, a simpler feature set is more useful
for a comparison. Moreover, both of the afore-
mentioned papers only demonstrate minor perfor-
mance gains with more elaborate features.

Transition-based Parser. We use the parser by
Björkelund and Nivre (2015) as our transition-
based parser. It uses the arc-standard decod-
ing algorithm extended with a SWAP transition
(Nivre, 2009) to handle non-projective structures.4

The system applies arc transitions between the
two topmost items of the stack (denoted s0 and
s1). The lazy SWAP oracle by Nivre et al. (2009)
is used during training. The parser is glob-
ally trained using beam-search and early update
(Zhang and Clark, 2008). The implementation
uses the passive-aggressive perceptron (Crammer
et al., 2006) and a hash kernel for feature mapping
following Bohnet (2010). The parser is trained
for 25 iterations using a beam size of 20. We
omit the definition of the baseline feature set of
the transition-based parser, however it is primar-
ily based on that of Zhang and Nivre (2011) with
adaptations to the arc-standard setting.

Table 3 outlines the feature templates used
for stacking and supertagging. The predicates

4This parser is available on the second author’s website.
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Stacking features

headG(s0) = s1 headG(s1) = s0
hdirG(s0) hdirG(s1)
labelG(s0) labelG(s1)
hasLG(s0)⊕ pos(ldep(s0)) hasRG(s0)⊕ pos(rdep(s0))
hasLG(s1)⊕ pos(ldep(s1)) hasRG(s1)⊕ pos(rdep(s1))

Supertag features

stagS(s0) stagS(s1)
labelS(s0) labelS(s1)
hdirS(s0) hdirS(s1)
hasLS(s0) hasRS(s1)
stagS(s0)⊕ pos(ldep(s0)) stagS(s0)⊕ pos(rdep(s0))
stagS(s1)⊕ pos(ldep(s1)) stagS(s1)⊕ pos(rdep(s1))
hasLS(s0)⊕ hdirS(s1) hasRS(s1)⊕ hdirS(s0)
hasLS(s0)⊕ pos(ldep(s0)) hasRS(s1)⊕ pos(rdep(s1))
hasRS(s0)⊕ pos(rdep(s0)) hasLS(s1)⊕ pos(ldep(s1))

Table 3: Feature templates used for stacking and
supertagging in the transition-based parser. ⊕ de-
notes conjunctions of basic templates. All tem-
plates are conjoined with the POS tag of the top-
most stack items s0 and s1.

headX(d), hdirX(d), labelX(d), hasL/RX(d), and
stagX(d) extract the head of d, the direction of d’s
head, the arc label of d, whether d has left/right
dependents, and the supertag according to the
Level 0 prediction X . X is either a dependency
graph (in stacking) or a supertag assignment (in
supertagging), denoted G and S in Table 3, respec-
tively. The predicates l/rdep(d) extract the left-
most/rightmost dependent of d given the current
parser state. pos(d) extracts the POS tag of d, with
a special placeholder if d is undefined.

The stacking features are mostly taken from
Nivre and McDonald (2008) with the exception of
the last two rows. These features encode whether
d should have left/right dependents according to
G conjoined with whether d has left/right depen-
dents in the current configuration. We added these
features because existence of left/right dependents
is also encoded in the supertags. Conjoining the
existence of left/right dependents according to the
Level 0 predictions with the POS tag of left/right
dependents in the current parser state thus encodes
whether dependents were attached or not. Since
the arc-standard algorithm works bottom-up, ev-
ery token needs to collect all its dependents before
it can be attached to its own head.

The supertag features mimic the information
provided by stacking. For instance, in stacking the
Level 0 predictions explicitly include whether s0

is the head of s1. In supertagging this is approx-
imated by combining the direction of the head of
s1 with whether s0 expects dependents on the left.

Stacking features

headG(d) = h
labelG(d)
headG(d) = h⊕ labelG(d)

Supertag features

stagS(h) stagS(d)
labelS(d) hdirS(d)
labelS(d)⊕ hdirS(d)
hasLS(h) hasRS(h)
hdirS(d)⊕ hasLS(h) hdirS(d)⊕ hasRS(h)
labelS(d)⊕ hasLS(h) labelS(d)⊕ hasRS(h)
labelS(d)⊕ hdirS(d)⊕ hasLS(h)
labelS(d)⊕ hdirS(d)⊕ hasRS(h)

Table 4: Feature templates used for stacking and
supertagging in the graph-based parser. ⊕ denotes
conjunctions of basic templates. All templates are
conjoined with the direction of that arc and with
the POS tag of the head and the dependent.

Graph-based Parser. The graph-based parser
we use is TurboParser,5 which solves the parsing
task by doing global inference using a dual de-
composition algorithm and outputs non-projective
structures natively (Martins et al., 2013).

Table 4 shows the stacking and supertagging
features as we implemented them in TurboParser.
They are synchronized with the features for the
transition-based parser where possible. We extract
these features only on first-order factors, with d
and h denoting the dependent and the head, re-
spectively. Unlike in Nivre and McDonald (2008),
the features cannot access the label of the current
arc during feature extraction, as it is automatically
combined with the features after the extraction.

Like in the transition-based parser, supertag and
stacking features are modeled to capture similar
information. However, features that combine in-
formation about dependents of dependents with
information about the head are not included since
these would require higher-order factors.

3.5 Evaluation

We evaluate the parsing experiments using La-
beled Attachment Score (LAS).6 We mark statis-
tical significance against respective baselines by †
and ‡, denoting p-value < 0.05 and p-value < 0.01
respectively. Significance testing is carried out us-
ing the Wilcoxon signed-rank test. Averages and
oracle experiments are not tested for significance.

5We use version 2.0.1 from http://www.ark.cs.cmu.

edu/TurboParser/. We train TurboParser with MODEL-
TYPE=FULL which uses third-order features.

6The ratio of tokens with a correct head and label to the
total number of tokens in the test data.
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avg. ar eu fr de he hu ko pl sv en

1 BLGB 84.45 84.99 82.79 83.95 88.53 79.41 83.98 86.18 84.96 79.59 90.12

2 STAGGB
TB 85.15 85.54‡ 83.24‡ 84.33‡ 89.14‡ 80.10† 85.52‡ 86.48 85.48 80.63‡ 90.99‡

3 STACKGB
TB 85.16 85.65‡ 83.32‡ 84.29‡ 89.15‡ 80.03‡ 85.46‡ 86.59‡ 85.52† 80.66‡ 90.95‡

4 BLTB 84.37 85.09 81.77 83.47 87.89 79.70 85.25 85.71 84.34 79.97 90.54

5 STAGTB
GB 85.01 85.58‡ 82.99‡ 83.88‡ 88.88‡ 80.04 85.37 86.31‡ 85.03 81.04‡ 90.98‡

6 STACKTB
GB 85.08 85.60‡ 83.14‡ 84.16‡ 88.91‡ 80.30 85.38 86.06† 85.06† 81.32‡ 90.88‡

Table 5: Parsing results (LAS) on test sets.

4 Comparing Supertagging and Stacking

The purpose of the following experiments is to
compare supertagging and stacking and to derive
some conclusions about their relationship to each
other. We use one parser as the Level 0 parser and
the other one as Level 1 parser. In stacking, the
Level 1 parser exploits the tree produced by the
Level 0 parser as additional features. In supertag-
ging, we derive the supertag of each token from
the tree that is output by the Level 0 parser. The
Level 1 parser then uses these supertags as addi-
tional features. Although supertags are normally
predicted with sequence labelers, using a parser
on Level 0 in both cases ensures that the only
difference between the two settings is the means
by which the information is given to the Level 1
parser, i.e. as a tree or as a sequence of supertags.
Figure 2 illustrates this setup.

John loves Mary
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el
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obj/L
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p
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Figure 2: Setup for comparing stacking and su-
pertagging.

The training sets are annotated with predicted
dependency trees or supertags via 5-fold jackknif-
ing. In the tables, GB stands for the graph-based
parser and TB for the transition-based parser.

4.1 Supertagging and Stacking Accuracy

First of all we convince ourselves that both strate-
gies, supertagging and stacking, indeed improve
over the baseline. Table 5 gives the performance
of the Level 1 parser on the test sets: In the base-
line setting (BL) the parser is run without any ad-
ditional information. STAG and STACK show the
performance of the Level 1 parser when provided
with supertags or a tree from the Level 0 parser.

As demonstrated by previous work, both stack-

ing and supertagging consistently improve the
parsing performance of the Level 1 parser. More-
over, both methods improve the parsing accuracies
to the same extent, with the average improvements
about 0.7% points absolute for both the graph-
based and the transition-based parser. Almost all
of the improvements are statistically significant,
with a few exceptions, most notably Polish. For
supertagging, our results confirm the findings by
Ouchi et al. (2014) and Ambati et al. (2014). The
stacking results are in line with Nivre and McDon-
ald (2008) and Martins et al. (2008). Here, it is
worth noting that even though dependency parsers
have markedly advanced since 2008, the fact re-
mains that stacking parsers improves performance.

We now continue with a more in-depth analy-
sis to find out where the improvements are coming
from. We perform the analysis on the development
sets in order to not compromise our test sets. The
corresponding accuracies for the development sets
can be found in Tables 6 and 7 in rows 1 to 3 .

4.2 In-Depth Analysis

The overall improvements with supertagging and
stacking are similar, but they might still come
about in different ways. To investigate this, we
follow McDonald and Nivre (2007) and look into
accuracy distributions of comparable systems rela-
tive to sentence length and dependency length, i.e.
the distance between the dependent and the head.

We present the analysis on the concatenation of
all the development sets. We also looked at the
corresponding plots for the individual treebanks.
While the absolute numbers vary across the differ-
ent data sets, the relative differences between the
baseline, supertagging, and stacking models are
consistent with the concatenation.

Figure 3 gives the accuracy of both parsers rela-
tive to sentence length in bins of size 10. Bin sizes
are represented as grey bars.7

7Note that if there are fewer items in a bin, the curves are
more sensitive to small absolute changes.
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Figure 3: The accuracy of the graph-based (left) and transition-based (right) parser relative to sentence
length.

Figure 4: The dependency precision and recall of the graph-based parser relative to dependency length.

avg. ar eu fr de he hu ko pl sv en

1 BLGB 84.16 85.64 83.37 84.78 91.46 78.71 82.60 86.08 85.17 75.24 88.59

2 STAGGB
TB 84.81 86.25‡ 83.96‡ 85.05† 92.10‡ 79.36† 83.92‡ 86.24 85.52† 76.27† 89.47‡

3 STACKGB
TB 84.79 86.25‡ 83.78‡ 85.14‡ 92.01‡ 79.56‡ 83.72‡ 86.34† 85.29 76.44‡ 89.41‡

4 STAGGB
oracle 95.73 93.78 96.66 96.43 98.60 94.43 94.37 93.48 97.41 94.22 97.91

5 STACKGB
oracle 96.43 98.67 96.87 98.38 98.90 92.62 94.21 96.46 96.55 93.33 98.34

6 STAGGB
GB 84.44 85.83‡ 83.68‡ 84.91 91.64‡ 79.31‡ 82.87‡ 86.28‡ 85.18 75.89‡ 88.77‡

7 STACKGB
GB 84.23 85.69† 83.44 84.80 91.49 78.90† 82.64 86.08 85.24 75.39 88.62

Table 6: Results (LAS) for the graph-based parser for different experiments on development sets.

avg. ar eu fr de he hu ko pl sv en

1 BLTB 84.04 85.69 82.22 84.07 91.15 78.80 83.27 85.97 84.51 75.65 89.06

2 STAGTB
GB 84.94 86.06‡ 84.02‡ 84.68‡ 91.98‡ 79.82 83.83‡ 86.56‡ 85.73† 77.20‡ 89.48‡

3 STACKTB
GB 84.86 86.19‡ 83.86‡ 84.55‡ 91.98‡ 79.76 83.87‡ 86.25 85.65 77.16‡ 89.30

4 STAGTB
oracle 96.66 94.09 97.65 96.64 98.80 95.70 96.46 94.90 98.50 95.65 98.16

5 STACKTB
oracle 96.83 98.80 97.08 98.62 98.65 92.96 96.14 97.27 97.21 93.18 98.42

6 STAGTB
TB 84.16 85.77 82.49 84.05 91.44‡ 78.69 83.61‡ 85.92 84.84 75.78 89.01

7 STACKTB
TB 84.12 85.73 82.24 84.29† 91.35‡ 78.67 83.45† 85.86 84.76 75.66 89.22

Table 7: Results (LAS) for the transition-based parser for different experiments on development sets.

Figure 4 displays the graph-based parser’s per-
formance relative to dependency length in terms of
precision and recall.8 Precision is defined as the
percentage of correct predictions among all pre-

8The corresponding curves for the transition-based parser
look very similar.

dicted arcs of length l and recall is the percent-
age of correct predictions among gold standard
arcs of length l.9 In all graphs, the stacked and

9For precision, the bin sizes shown as grey bars are aver-
ages over all three systems, as the number of predicted arcs
of a certain length can vary.
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supertagged systems show a consistent improve-
ment over the baseline. Moreover, the curves of
the stacked and supertagged systems are mostly
parallel and close to each other.

Supertagging and stacking thus do not just ap-
pear similar at the macro level in terms of LAS.
The analysis shows that their contributions are also
very similar when broken down by dependency or
sentence length and the improvements are not re-
stricted to sentences or arcs of particular lengths.
We therefore conclude that both methods are in-
deed doing the same thing.

4.3 Oracle Experiments

In order to assess the potential utility of supertags
we provided the parsers with gold supertags. We
expect the gold supertags to give a considerable
boost to accuracy as they encode correct syntactic
information. Intuitively, we would expect the cor-
responding stacking experiment (providing gold
trees) to reach 100% accuracy since the parser re-
ceives the full solution as features. However, this
assumption turns out not to hold.

Row 4 in Tables 6 and 7 shows the results for
the supertag experiments. Comparing row 4 with
row 2 , we find big jumps (between 7 and 20%
absolute) in performance. For German, English,
and Polish performance goes up even to 97/98%.
These huge jumps are due to the amount of syntac-
tic information encoded in the supertags, which is
much higher than in POS tags for example.

Row 5 in Tables 6 and 7 shows the results for
the stacking experiments. Surprisingly, stacking
with gold dependency trees does not reach 100%
accuracy. Moreover, comparing rows 4 and 5 we
find that on average supertagging and stacking im-
prove performance of a parser to the same extent.

The fact that gold supertags do not yield max-
imum accuracy is not so surprising since a su-
pertag sequence does not encode the full depen-
dency tree, but merely indicates direction of heads
and dependents. However, it is puzzling that stack-
ing with gold trees does not lead to perfect parsing
results. In case of the transition-based parser, the
reason might be that the parser does not do exhaus-
tive search but uses beam search to explore only a
fraction of the search space. That is, the gold so-
lution can get pruned early enough that the parser
never considers it. For the graph-based parser this
result is more unexpected since this parser does
exact search. We currently do not have any expla-

nation for this, however we hypothesize that the
lack of regularization during training might assign
enough weight on the regular features such that
they can override the few stacking features that
convey the correct solution.

4.4 Self-Application

Rows 6 and 7 in Tables 6 and 7 show experi-
ments where we use the same parser at Level 0 and
Level 1. We know from Martins et al. (2008) that
self-application, i.e. stacking a parser on its own
output, leads to at most tiny improvements, espe-
cially compared to a setting with different parsers.
Our results corroborate these findings. More in-
terestingly, we find a similar effect for supertag-
ging.10 This effect demonstrates that it is impor-
tant that Level 0 and Level 1 use different ways
of modeling the data in order to benefit from the
combination (cf. Surdeanu and Manning (2010)).

5 Supertagging Without Parsers

One potential advantage of supertagging over
stacking is the fact that one can predict supertags
without a parser. Most previous work predicts
supertags using classifiers or sequence models,
which is the standard for tagging problems. As
tagging is commonly considered an “easier” task
than parsing, one could assume that supertags can
be predicted very efficiently using standard se-
quence labeling algorithms. But sequence labelers
would not be able to predict the dependency tree
in a stacking setup.

The two parsers that we use in the experi-
ments are indeed unlikely to outperform standard
sequence labelers in terms of speed. However,
greedy arc-standard parsers are very fast. In the
next experiment, we therefore compare a greedy
arc-standard parser, which is the transition-based
parser without beam search, with MarMoT (see
Section 3.1). We follow Ouchi et al. (2014) in
adding POS tags and morphological information
to the feature model of the sequence labeler.

The purpose of this experiment is two-fold: So
far, we predicted supertags by predicting a tree
first and then deriving the supertags from that tree.
Now we test how our previous results compare to
supertags predicted by a sequence labeler, which is

10Note that most of the improvements in STAGGB
GB are actu-

ally statistically significant. However, the difference to BLGB

is considerably smaller than in the predicted setting in row 2
(avg. difference is 0.28% vs. 0.65% points absolute).
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avg. ar eu fr de he hu ko pl sv en

1 BLGB 84.16 85.64 83.37 84.78 91.46 78.71 82.60 86.08 85.17 75.24 88.59

2 STAGGB
SL 84.91 86.24‡ 84.33‡ 84.89 91.89‡ 79.82‡ 83.54‡ 86.85‡ 85.89† 76.62‡ 89.06‡

3 STAGGB
GTB 84.65 86.16‡ 83.56 85.02† 91.97‡ 79.41‡ 83.36‡ 86.07 85.29 76.56‡ 89.12‡

4 STACKGB
GTB 84.66 86.24‡ 83.57 85.11† 91.97‡ 79.50‡ 83.22‡ 86.22 85.45 76.26† 89.09‡

5 BLTB 84.04 85.69 82.22 84.07 91.15 78.80 83.27 85.97 84.51 75.65 89.06

6 STAGTB
SL 84.63 85.81 83.58‡ 84.07 91.37† 79.86‡ 83.91‡ 86.98‡ 84.93 76.87† 88.91

7 STAGTB
GTB 84.16 85.70 82.44 84.16 91.31 79.38 83.16 85.91 84.59 76.12 88.81

8 STACKTB
GTB 84.17 85.84† 82.46 84.19 91.22 78.93 83.30 85.77 84.92 76.12 88.95

Table 8: Parsing results (LAS) with a sequence labeler and a greedy transition-based parser on develop-
ment sets.

the common way of predicting supertags. But fur-
thermore, we want to see how supertagging with
a sequence labeler compares to supertagging and
stacking with a parser that is equally efficient.

Table 8 gives the result of the experiment. We
denote the sequence labeler by SL and the greedy
parser by GTB. Rows 2 and 6 show that, on aver-
age, the parsing performance is not harmed by pre-
dicting supertags with the sequence labeler instead
of one of the parsers (compare to row 2 in Ta-
bles 6 and 7). It depends on the individual data set
whether the sequence labeler is more useful than
one of the parsers or not. The supertags predicted
by the sequence labeler improve parsing perfor-
mance to a similar extent.

The experiments with the greedy parser yield
different results for the graph-based and the
transition-based parser on Level 1: When the
graph-based parser acts as Level 1, the greedy
parser is slightly behind the sequence labeler. This
holds both for supertagging and stacking experi-
ments (compare row 2 to rows 3 and 4 ), which
again suggests that supertagging and stacking are
interchangeable. However, when Level 1 is the
transition-based parser, we find a self-application
effect for the greedy parser, both in supertagging
and stacking (rows 5 vs. 7 and 8 ). This is not sur-
prising since the decoding algorithms in the beam-
search and greedy transition-based parser are iden-
tical. It simply underlines the importance of hav-
ing different algorithms in the setup.

5.1 Out-of-Domain Application
The previous experiment shows that the greedy
parser at Level 0 gives competitive results com-
pared to a sequence labeler. Having fast predictors
available for stacking or supertagging suggests an
application where speed matters, e.g. Ambati et
al. (2014) propose supertags to improve the per-
formance of fast parsers in a web scale scenario.

As web data can be any kind of text, the ques-

tion is whether the positive effects of supertagging
and stacking are actually preserved in such an out-
of-domain setting. To test this, we conduct exper-
iments on the English Web Treebank (Bies et al.,
2012) converted to Stanford Dependency format.
Models are trained on sections 2-21 from the En-
glish Penn Treebank.

avg. answ. email news. review blog

BLGB 76.28 74.09 75.06 76.16 76.32 79.78

STAGGB
SL 76.82 74.52‡ 75.75‡ 76.88‡ 76.99‡ 79.98

STACKGB
TB 76.93 74.88‡ 75.72‡ 76.49 77.10‡ 80.44‡

BLTB 76.51 74.41 75.16 76.09 76.76 80.13

STAGTB
SL 76.83 74.37 75.85‡ 76.61† 77.06 80.28

STACKTB
GB 76.83 74.64 75.68‡ 76.96‡ 77.14‡ 81.05‡

BLGTB 74.42 72.32 73.25 74.00 74.73 77.79

STAGGTB
SL 75.01 72.75 73.86‡ 74.88‡ 75.33‡ 78.24‡

Table 9: Results (LAS) on the English Web Tree-
bank.

The results in Table 9 show consistent improve-
ments on the five genres of the data set both for
supertagging and stacking. Both are thus good
methods to improve parsing accuracies when pars-
ing out-of-domain data. Since parsing speed also
depends on the Level 1 parser, a greedy transition-
based parser would be preferable in such an ap-
plication. Using supertagging with a sequence
labeler to provide syntactic information to the
greedy parser is then a good choice because it
avoids a self-application effect.

The last two rows in Table 9 show the perfor-
mance when the greedy parser is acting as Level 1.
Supertagging improves over the baseline signif-
icantly on 4 out of 5 data sets. However, the
baseline for the greedy parser is on average about
2% points absolute behind the other two parsers.
This loss in accuracy buys a significant speed-
up though. The greedy parser is about 29 times
faster11 than the graph-based parser on the English

11We report parsing time. Exact runtimes depend on im-
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avg. ar eu fr de he hu ko pl sv en

1 BLGB 84.16 85.64 83.37 84.78 91.46 78.71 82.60 86.08 85.17 75.24 88.59

2 max(STAGGB
SL , STACKGB

TB) 85.00 86.25‡ 84.33‡ 85.14‡ 92.01‡ 79.82‡ 83.72‡ 86.85‡ 85.89† 76.62‡ 89.41‡

3 (STAGSL+STACKTB)GB 85.20 86.62‡ 84.51‡ 85.35‡ 92.22‡ 79.90‡ 84.23‡ 86.67‡ 85.78† 76.98‡ 89.74‡

4 BLTB 84.04 85.69 82.22 84.07 91.15 78.80 83.27 85.97 84.51 75.65 89.06

5 max(STAGTB
SL , STACKTB

GB ) 84.94 86.19‡ 83.86‡ 84.55‡ 91.98‡ 79.86‡ 83.91‡ 86.98‡ 85.65 77.16‡ 89.30
6 (STAGSL+STACKGB)TB 85.13 86.43‡ 84.09‡ 84.59‡ 92.04‡ 79.75† 84.08‡ 87.32‡ 86.01† 77.30‡ 89.67‡

Table 10: Results (LAS) on development sets for combining supertags and stacking.

data set and even 80 times faster on the Arabic data
set. As the Arabic data set has very long sentences,
the higher complexity of the graph-based parser
has a notable effect on its performance. Com-
pared to the beam-search transition-based parser,
the greedy parser is about 10 times faster on En-
glish and 5 times faster on Arabic.

6 Combining Supertagging and Stacking

We now explore whether the combination of su-
pertagging and stacking yields even better parsers.

In rows 3 and 6 in Table 10, we show re-
sults when supertag and stacking features come
from different sources, i.e. they were predicted by
different tools12. For both parsers, the sequence
labeler predicts the supertags and the respective
other parser provides the tree for the stacking fea-
tures. The combinations are better than the base-
line. Rows 2 and 5 give results from the best sin-
gle source, i.e. either STAGy

SL or STACKy
x.

For most of the languages the difference
between the combination and the best sin-
gle component is statistically not significant,
except Arabic, German, Hungarian, and En-
glish for (STAGSL+STACKTB)GB, and Arabic for
(STAGSL+STACKGB)TB. The increment goes up
to 0.51 in case of Hungarian. On average, the
gains are, however, marginal – the graph-based
parser’s accuracy increases by 0.2% absolute and
the transition-based parser improves by 0.18% ab-
solute. Although these differences denote im-
provements, they are not nearly as high as the im-
provements over the baseline for the single com-
ponents and it depends on the actual data set
whether it is worth the effort.

In Section 4, we argued that supertagging and
stacking are similar and the diversity of tools is the

plementation and hardware. We therefore give relative num-
bers so the reader gets an impression of the magnitude.

12We did experiments with combining supertags and stack-
ing from the same Level 0 tool, however since the features
were derived from the same tree the differences compared to
stacking only were negligible as expected.

more important factor. The improvements by the
combination can also be interpreted along these
lines: They are caused by using different tools
rather than the fact that we are combining the two
methods. It is like stacking onto two parsers in-
stead of one.

7 Conclusion

In this paper, we have shown that supertagging as
a method for providing syntactic features for sta-
tistical dependency parsing (Ambati et al., 2014;
Ouchi et al., 2014) is a form of stacking. Although
supertags do not convey as much information as
full trees, they improve dependency parsers to an
equal amount. The two methods are thus in prin-
ciple interchangeable.

Combining stacking and supertagging only
gives improvements if different tools are used. In
this case, the improvements come from the in-
volvement of different tools rather than their com-
bination. Furthermore, using supertags in a parser
that predicted them itself does not lead to improve-
ments. This is in line with findings by Surdeanu
and Manning (2010) on stacking, of which su-
pertagging is a variant. Therefore, while it is not
so important which method is used, it is important
to use different algorithms in these setups.

Finally, we have shown that sequence labelers
can be replaced by greedy parsers in supertagging
without compromising quality or speed. We ap-
plied them in a cross-domain parsing scenario and
demonstrated that supertagging and stacking im-
prove parsing also in this setting.

However, there are circumstances where one
method might be preferable over the other, for ex-
ample, when one wants to stack on a slow parser
(cf. Øvrelid et al. (2009)). Rather than running the
slow parser on every sentence in a stacking setup,
it can be run once on some training data. A su-
pertagger can then be trained on this data to pro-
vide syntactic information at a fraction of the cost
(see Ambati et al. (2014) for CCG).
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Wrocław-Szeged-CIS entry at the SPMRL 2014
Shared Task: Reranking and Morphosyntax meet
Unlabeled Data. In Notes of the SPMRL 2014
Shared Task on Parsing Morphologically-Rich Lan-
guages, Dublin, Ireland, August.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 89–97, Bei-
jing, China, August. Coling 2010 Organizing Com-
mittee.

Tim Buckwalter. 2002. Buckwalter Arabic Mor-
phological Analyzer Version 1.0. Linguistic Data
Consortium, University of Pennsylvania, 2002. LDC
Catalog No.: LDC2002L49.

Stephen Clark and James R. Curran. 2004. The Im-
portance of Supertagging for Wide-coverage CCG
Parsing. In Proceedings of the 20th International
Conference on Computational Linguistics, COLING
’04, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
Passive–Aggressive Algorithms. Journal of Ma-
chine Learning Reseach, 7:551–585, March.

Rickard Domeij, Ola Knutsson, Johan Carlberger, and
Viggo Kann. 2000. Granska-an efficient hybrid
system for Swedish grammar checking. In In Pro-
ceedings of the 12th Nordic Conference in Compu-
tational Linguistics.

Mikel L. Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim ORegan, Sergio Ortiz-Rojas, Juan An-
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