
Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015), pages 300–309,
Uppsala, Sweden, August 24–26 2015.

ParsPer: A Dependency Parser for Persian

Mojgan Seraji
Uppsala University

Department of Linguistics
and Philology, Sweden

mojgan.seraji@lingfil.uu.se

Bernd Bohnet
Google in London
bohnetbd@gmail.com

Joakim Nivre
Uppsala University

Department of Linguistics
and Philology, Sweden

joakim.nivre@lingfil.uu.se

Abstract

We present a dependency parser for Per-
sian, called ParsPer, developed using the
graph-based parser in the Mate Tools. The
parser is trained on the entire Uppsala
Persian Dependency Treebank with a spe-
cific configuration that was selected by
MaltParser as the best performing parsing
representation. The treebank’s syntactic
annotation scheme is based on Stanford
Typed Dependencies with extensions for
Persian. The results of the ParsPer evalua-
tion revealed a best labeled accuracy over
82% with an unlabeled accuracy close to
87%. The parser is freely available and re-
leased as an open source tool for parsing
Persian.

1 Introduction

Data-driven dependency parsing is a modern ap-
proach that has been successfully applied to
develop dependency parsers for different lan-
guages (Böhmová et al., 2003; Haverinen et al.,
2010; Kromann, 2003; Foth et al., 2014; Vincze
et al., 2010). The approach relies solely on a
syntactically annotated dataset (treebank). How-
ever, achieving the best results by this method re-
lies partly on parsing algorithms and selecting the
best feature settings. As data-driven dependency
parsers induce the syntactic structure backbone in
a treebank, they are further, to a great extent, de-
pendent on the representation setup for part-of-
speech and dependency labels. These representa-
tions are always built upon an already tokenized
text. In other words, different tokenizations re-
quire different part-of-speech and dependency an-
notations, which in turn impact the quality of pars-
ing analysis.

Processing and analysis of a language like Per-
sian pose a variety of challenges on various lev-

els, from orthography to syntactic structure (Ser-
aji, 2015). Persian orthography does not follow
a consistent standardization. The most challeng-
ing cases concern the handling of fixed expres-
sions and various types of clitics. Different varia-
tions of writing such cases as attached or detached
forms (either delimited with whitespace or zero-
width non-joiner)1 pose challenges for tokeniza-
tion which in turn impacts the quality of mor-
phological and syntactic analysis. Furthermore,
the prevalence of multi-word compound verbs,
functioning as a single verb in the form of so
called complex predicates or light verb construc-
tions (LVC), is another remarkable feature in the
Persian syntactic structure. The situation for auto-
matic analysis of Persian is further complicated by
its high degree of free word order.

Therefore, in preparing the treebank data for
Persian many difficult decisions had to be made
concerning handling fixed expressions and differ-
ent types of clitics such as pronominal and copula
clitics (Seraji, 2015). Fixed expressions in Per-
sian are sometimes written as one single token and
sometimes as several tokens. The same happens
for different types of clitics. They are sometimes
segmented and sometimes unsegmented from the
head words. Since the treebank data is taken from
the large and open source Uppsala Persian Cor-
pus (UPC),2 it was impossible to manually sepa-
rate fixed expressions and clitics from head words
in a consistent way in a large corpus like the UPC,
containing 2,703,265 tokens. On the other hand, to
automatically handle such cases was also impossi-

1The zero-width non-joiner (ZWNJ), also known as zero-
space or pseudo-space, is a non-printing character used as
a boundary inside a word that keeps different affixes and/or
clitics unjoined next to the head words.

2For a more detailed description of the Uppsala
Persian Corpus related to the tokenization and mor-
phological annotation see Seraji (2015, Chapter 3).
The corpus is open source and freely available at
http://stp.lingfil.uu.se/∼mojgan/UPC.html

300



ble since the process could result in many incorrect
conversions by impacting orthographically similar
words or endings with different part-of-speech cat-
egories.

Hence, to avoid introducing errors in the cor-
pus, fixed expressions are handled as distinct to-
kens, as long as they were not written as attached
forms, and clitics are not separated from the head
words but analyzed with special labels at the syn-
tactic level instead. Therefore, in the annotation
scheme of the Uppsala Persian Dependency Tree-
bank, apart from 48 dependency labels for basic
relations there are 48 complex dependency labels
to cover syntactic relations for words containing
unsegmented clitics.

Fine-grained annotated data in treebanks nor-
mally provides a more complete grammatical
analysis which in turn enhances the quality of
parsing results. However, complex annotation
may not always be beneficial and can impair auto-
matic analysis (Mille et al., 2012; Jelínek, 2014).
In this paper, we present different empirical stud-
ies where we systematically simplify the annota-
tion schemes for part-of-speech tags and depen-
dency relations within the treebank.

This paper is organized as follows: Section 2
briefly presents the Uppsala Persian Dependency
Treebank. Section 3 introduces the experimental
design. In Section 4, ParsPer is presented and eval-
uated. Finally, Section 5 concludes the paper.

2 The Uppsala Persian Dependency
Treebank

The Uppsala Persian Dependency Treebank
(UPDT)3 (Seraji et al., 2013; Seraji, 2015)4 is a
dependency-based syntactically annotated corpus
of contemporary Persian with annotation scheme
based on dependency structure. The treebank con-
sists of 6000 annotated and validated sentences,
151,671 tokens, and 15,692 word types with an
average sentence length of 25 words. The data
is extracted from the open source part-of-speech
annotated and validated Uppsala Persian Corpus
(UPC) with different genres, containing newspa-
per articles and texts on various topics such as cul-
ture, technology, fiction, and art.

3The treebank is freely available and can be downloaded
from http://stp.lingfil.uu.se/∼mojgan/UPDT.html

4For the updated version and a more comprehensive
description of the Uppsala Persian Dependency Treebank
guidelines see Seraji (2015, Chapter 5).

The treebank’s syntactic annotation scheme is
based on Stanford Typed Dependencies (STD) (de
Marneffe and Manning, 2008) with extensions for
Persian. This version of STD has a total of 96
dependency relations of which 48 (including 10
new additions to define the syntactic relations in
Persian that could not be covered by the primary
scheme developed for English) are used for indi-
cating basic relations. The remaining 48 labels
are complex, and are used to assign syntactic re-
lations to words containing unsegmented clitics.
The treebank is open source and freely available
in CoNLL-format.5

3 Experimental Design

We carry out two types of experiments, experi-
ments with different parsing representations (we
define these as basic experiments henceforth) and
experiments with different dependency parsers.
For the experiments, the treebank is sequentially
split into 10 parts, of which segments 1–8 are used
for training (80%), 9 for development (10%), and
10 for test (10%). In the basic experiments, we
train MaltParser on the training set and test on
the development set. In the latter experiments, we
train different parsers on the joint training and de-
velopment sets (90%) and test on the test set.

We perform the basic experiments under four
different conditions. We first experiment with all
features and labels that already exist in the tree-
bank. The results achieved by this experiment will
be used as the baseline results. We then experi-
ment with different relation sets by removing or
merging various feature distinctions in the part-of-
speech tagset and the syntactic annotation scheme.
The experiments are designed as indicators to see
if the conversions help or do not help the parser.
In order to get a realistic picture of the parser per-
formance, all these experiments will be performed
using automatically generated part-of-speech tags.

All the above experiments will be carried out
using MaltParser (Nivre et al., 2006). After dis-
covering the best label set for both part-of-speech
tags and dependency relations, we will experi-
ment with other parsers such as MSTParser (Mc-
Donald et al., 2005), MateParsers (Bohnet, 2010;
Bohnet and Nivre, 2012; Bohnet and Kuhn, 2012),
and TurboParser (Martins et al., 2010) to find a
state-of-the-art parser for Persian. We evaluate the
parsers by experimenting with various feature set-

5http://ilk.uvt.nl/conll/#dataformat

301



tings when optional parameter settings for opti-
mization are available and given by the parsers.
However, only results for final settings are pre-
sented.

The selected state-of-the-art parser for Persian
will be called ParsPer. For evaluation of ParsPer
we first perform a parsing experiment on the tree-
bank data. We then make an independent pars-
ing evaluation by applying the parser on out-of-
domain text and present the final results.

3.1 Basic Experiments with MaltParser

To evaluate the overall performance of the parser,
we tune parameters to acquire the highest possi-
ble results. Thus, we experiment with different
algorithms and feature settings to optimize Malt-
Parser. To accomplish the optimization process,
we apply MaltOptimizer (Ballesteros and Nivre,
2012). Parser accuracy is evaluated on automati-
cally generated part-of-speech tags.

In order to generate automatic part-of-speech
tags, we used the Persian part-of-speech tagger,
TagPer (Seraji, 2015). However, for the tree-
bank experiments we retrained the tagger to ex-
clude the treebank data to avoid data overlap. The
tagging evaluation performed by the new TagPer
revealed an overall accuracy of 97.17%, when
trained on 90% of the UPC and evaluated on
the remaining 10%. The four different experi-
ments include (1) an overall parsing evaluation on
full treebank annotation (baseline), (2) an experi-
ment without morphological features in the part-
of-speech tagset, (3) an experiment without fine-
grained LVC labels, and (4) an experiment without
complex labels.

3.1.1 Baseline: Full Treebank Annotation
In this parsing evaluation we trained MaltParser
on the UPDT with full part-of-speech tags and all
existing dependency relations. The experiment re-
sulted in a labeled attachment score of 78.84% and
an unlabeled attachment score of 83.07%. The re-
sults will be used as the baseline for subsequent
experiments. Labeled recall and precision for the
20 most frequently dependency relations are pre-
sented in Table 1.

The results vary greatly across the relation
types, with recall ranging from 53.75% for direct
object (dobj) to 97.12% for object of a preposition
(pobj), and precision varying between 55.37% for
clausal complement (ccomp) to 95.57% for object
of a preposition (pobj). As indicated in Table 1

DepRel Freq. (%) R (%) P (%)
pobj 16237 97.12 95.57
poss 16067 89.96 79.28
prep 15643 76.00 74.49
punct 13442 75.04 76.10
amod 9211 90.64 90.72
nsubj 8653 67.60 66.26
conj 8629 67.78 67.78
cc 7657 78.34 77.81
root 5918 81.21 79.87
cop 4427 66.22 73.51
dobj-lvc 4185 91.63 92.06
advmod 4157 70.27 65.82
ccomp 4021 63.54 55.37
det 3929 93.79 91.71
dobj 3723 53.75 57.01
nn 3339 57.28 79.73
num 2872 92.00 92.00
acc 2535 69.76 69.48
aux 2287 92.14 90.95
complm 2022 77.71 78.61

Table 1: Labeled recall and precision on the devel-
opment set for the 20 most frequent dependency
types in the UPDT, when MaltParser is trained on
the full treebank annotation. DepRel = Depen-
dency Relations, Freq. = Frequency, R = Recall,
P = Precision.

the results for labeled recall and precision for core
arguments such as nominal subject (nsubj) and di-
rect object (dobj) are slightly low. This can be ex-
plained by the fact that, despite the SOV structure
in Persian, subjects and objects may shift order in
a sentence. As Persian is a pro-drop language, an
object might be placed at the beginning of a sen-
tence (with or without the accusative marker rā)
and the subject might either be positioned next
or be completely omitted in the sentence but in-
stead be inflected as a personal ending on the verb.
There are further cases when subject and object
are both omitted but appear as personal endings
on the verb, as Persian, syntactically, contains a
vast amount of dropped subjects and objects. In
all cases, it is hard for the system to identify the
correct subject and object in the sentence, which
may lead to the dependency relations nsubj and
dobj frequently being interchanged or not being
correctly identified. The dependency relation noun
compound modifier (nn) is another relation with
low recall. We further discovered that the parser
had often selected the label possession modifier
(poss) instead of nn. This can be explained by their
usage similarities in the way that both labels are al-
ways governed by a noun and used for nouns. The
possession modifier (poss) is applied to genitive
complements and the compound modifier (nn) to

302



noun compounds (and proper names). However,
this difference is not marked in the part-of-speech
annotation. Moreover, the number of occurrences
of the label poss in the training data is higher than
the label nn, therefore, it is easier for the parser to
identify the structure as the dependency relation
poss than nn.

3.1.2 Coarse-Grained Part-of-Speech Tags
The second empirical study was performed in or-
der to select the best part-of-speech encoding set
for parsing. In this experiment, we merged all
morphological features with their main categories.
In this way, feature distinctions that existed for ad-
jective, adverb, noun, and verb were all discarded.
For instance, ADJ_CMPR, ADJ_INO, ADJ_SUP,
and ADJ_VOC were merged with ADJ, and so
forth. Hence, we ran MaltParser on UPDT with
15 auto part-of-speech tags instead of 31. Parsing
evaluation revealed the scores of 79.24% for la-
beled attachment and 83.45% for unlabeled attach-
ment. Comparing the results to the ones obtained
by the baseline experiment shows that MaltParser
performs better on coarse-grained part-of-speech
tags. Table 2 shows the results for labeled recall
and precision for the 20 most frequent dependency
labels in the UPDT. Again, object of a preposition
(pobj) shows the best results with 97.07% for re-
call and 95.72% for precision, and direct object
(dobj) shows the lowest recall and precision, with
52.55% and 55.56%, respectively.

Comparing the recall and precision results of
the 20 most frequent dependency labels to the
baseline, we see an improvement in many depen-
dency relations. The highest improvement is indi-
cated by the relation clause complement (ccomp)
with 3.75% enhancement for recall and 6.3% for
precision. The dependency relation clause com-
plement (ccomp), in the treebank, is assigned for
complements that are presented by verbs, nouns,
or adjectives. Using coarse-grained part-of-speech
tags for verbs, nouns, and adjectives leads to
higher results. This further assists the relation
complementizer (complm) that always introduces
a clausal complement (ccomp) achieving 2.29%
higher recall and 3.74% higher precision. To
follow up the tables, copula (cop) is also one
of the dependency relations that shows good im-
provements specifically for precision, resulting in
1.61% higher recall and 4.82% higher precision.
As comparison goes on, results show an improve-
ment for most of the dependency labels. However,

DepRel Freq. (%) R (%) P (%)
pobj 16237 97.07 95.72
poss 16067 90.18 79.43
prep 15643 76.85 75.57
punct 13442 76.07 76.80
amod 9211 88.69 90.37
nsubj 8653 68.62 64.55
conj 8629 68.85 68.28
cc 7657 78.88 78.14
root 5918 81.38 80.17
cop 4427 67.83 78.33
dobj-lvc 4185 90.23 91.94
advmod 4157 73.31 66.16
ccomp 4021 67.29 61.67
det 3929 94.35 92.78
dobj 3723 52.55 55.56
nn 3339 57.04 82.46
num 2872 92.92 91.79
acc 2535 69.35 70.20
aux 2287 92.14 89.41
complm 2022 80.00 82.35

Table 2: Labeled recall and precision on the devel-
opment set for the 20 most frequent dependency
types in the UPDT, when MaltParser is trained on
the UPDT with coarse-grained auto part-of-speech
tags. DepRel = Dependency Relations, Freq. =
Frequency, R = Recall, P = Precision.

coarse-grained part-of-speech tags have a nega-
tive impact on some dependency labels. This is
more or less visible in the dependency relations
object of a preposition (pobj), adjectival modi-
fier (amod), nominal subject (nsubj), direct object
in light verb construction (dobj-lvc), direct object
(dobj), noun compound modifier (nn), and auxil-
iary (aux) which may due to the lack of various
distinctions of nouns, adjectives, and verbs. For
instance, plural nouns never appear in complex
predicates and as seen in the tables direct object in
light verb construction (dobj-lvc) has a drop with
1.40% and 0.12% for recall and precision, respec-
tively.

3.1.3 Coarse-Grained LVC Relations
We carried out this experiment by converting
all variations of light verb constructions such as
acomp-lvc, dobj-lvc, nsubj-lvc, and prep-lvc to
merely lvc. The evaluation showed that the parser
achieved a labeled attachment score of 79.46%
and an unlabeled attachment score of 83.52%.
With respect to the fact that the labeled attachment
score is based on the number of correct depen-
dency labels and correct head, the LAS results ob-
tained in this experiment cannot directly be com-
pared to the baseline results, as the two experi-
ments use different label sets. Therefore, output

303



DepRel Freq. (%) R (%) P (%)
pobj 16237 97.45 95.89
poss 16067 89.91 79.65
prep 15643 75.04 73.88
punct 13442 76.22 76.72
amod 9211 89.90 90.32
nsubj 8653 70.30 66.92
conj 8629 67.66 67.90
cc 7657 78.88 78.14
root 5918 82.05 81.23
cop 4427 68.10 78.64
lvc 5427 85.92 90.54
advmod 4157 72.64 68.04
ccomp 4021 64.08 57.18
det 3929 94.07 92.76
dobj 3723 55.26 56.79
nn 3339 58.01 83.28
num 2872 92.92 92.07
acc 2535 70.97 70.97
aux 2287 92.58 92.17
complm 2022 80.57 81.50

Table 3: Labeled recall and precision on the devel-
opment set for the 20 most frequent dependency
types in the UPDT, when MaltParser is trained on
the treebank with fine-grained auto part-of-speech
tags only one light verb construction. DepRel =
Dependency Relations, Freq. = Frequency, R =
Recall, P = Precision.

differing in this regard can only be evaluated un-
labeled. Thus, the unlabeled attachment score that
measures the number of tokens with correct head
can directly be compared with the baseline. This
accordingly means that removing the LVC distinc-
tions from the treebank helps the parser to obtain
higher accuracy. As shown in Table 3, the highest
recall and precision scores are shown by object of
a preposition (pobj), with 97.45% and 95.89% re-
spectively. The lowest recall and precision scores
are shown by direct object (dobj) with 55.26% and
56.79%, respectively.

Compared to the baseline results, recall and
precision have decreased for the dependency re-
lations prepositional modifier (prep) and adjecti-
val modifier (amod). This can probably be ex-
plained by the fact that merging LVC variations
makes it harder for the system to select, for in-
stance, a preposition as a prepositional modifier
(prep) or an lvc, as well as an adjectival modi-
fier (amod) or an lvc. A striking finding from
the results is the outcome achieved by the con-
version of different light verb constructions to lvc,
resulting in 85.92% for recall and 90.54% for pre-
cision. Moreover Table 4 shows recall and pre-
cision for different types of LVC relations from
the baseline experiment when we applied the fine-

grained annotated treebank as well as recall and
precision of the dependency label lvc from Exper-
iment 3 when we tested the treebank with fine-
grained part-of-speech tags and merged LVC re-
lations. The entries in the table further present
information about frequency of acomp-lvc, dobj-
lvc, nsubj-lvc, and prep-lvc in Experiment 16 as
well as the frequency of the label lvc in Experi-
ment 3. As presented in Table 4, results for re-
call and precision are lower than the baseline re-
sults for direct object in light verb construction
(dobj-lvc) but higher than the results obtained by
the adjectival complement in light verb construc-
tion (acomp-lvc) and the prepositional modifier in
light verb construction (prep-lvc). However, we
should be reminded that the label lvc covers all
types of LVC relations and, as mentioned earlier, it
is harder for the system to select a proper label to
tokens that sometimes participate in LVC relations
and sometimes participate in similar relations to
LVC labels such as prepositions that occasionally
appear either as the dependency relations preposi-
tional modifier (prep) or as the prepositional mod-
ifier in light verb construction (prep-lvc). On the
other hand, recall and/or precision for the core ar-
guments nominal subject (nsubj) and direct object
(dobj) are improved. In other words, recall is im-
proved by 2.7% and 1.51% for nominal subject
(nsubj) and direct object (dobj), respectively. The
dependency relation root is further improved by
0.84% for recall and 1.36% for precision. Thus,
this merging might be a disadvantage for the rela-
tion prepositional modifier (prep) but favors other
relations for instance the nominal subject (nsubj).
Although providing recall and precision for each
and every LVC distinction on a label-by-label ba-
sis is most informative, because the label lvc cov-
ers all types of the LVC variations, we cannot di-
rectly compare the results of each with the results
obtained by the dependency relation lvc in Exper-
iment 3, unless we calculate an overall recall and
precision score for all the LVC types in Experi-
ment 1. The results of such statistical calculations
revealed an overall recall and precision of 85.55%
and 89.16%. Hence, the overall results show that
having various types of LVC distinctions in the
treebank do not contribute to higher parsing per-
formance.

6Given the low frequency of the LVC relations acomp-
lvc, nsubj-lvc, and prep-lvc in the treebank, their recall and
precision are not presented together with the 20 most frequent
dependency types in Table 1.

304



DepRel Freq. R (%) P (%)
acomp-lvc 681 80.56 78.38
dobj-lvc 4185 91.63 92.06
nsubj-lvc 7 – –
prep-lvc 554 46.88 78.95
lvc 5427 85.92 90.54

Table 4: Recall and precision for LVC relations
with fine-grained predicted part-of-speech tags in
Experiments 1 and 3. DepRel = Dependency Re-
lations, Freq. = Frequency, R = Recall, P = Preci-
sion.

3.1.4 No Complex Relations
We additionally experimented with modifying all
complex syntactic relations that were used for
complex unsegmented word forms (words con-
taining unsegmented clitics). In this experiment,
all complex dependency relations, containing 48
labels, were merged with basic Persian STD re-
lations, containing 48 labels. The evaluation re-
vealed a labeled attachment score of 79.63% and
an unlabeled attachment score of 83.42%. As
noted earlier, the results from labeled attachment
score do not allow a direct comparison with the
ones presented for baseline as the two experiments
use different label sets. Hence, the comparison
evaluation is considered for the unlabeled attach-
ment score that shows an improvement in pars-
ing performance when simplifying the complex
dependency relations. This improvement is un-
derstandable as some complex relations7 such as
ccomp\cpobj, ccomp\nsubj, and so forth, occur
only once in the treebank and it is almost impos-
sible for a data-driven machine to learn such rare
cases from the given data.

As presented in Table 5, there are variations
in recall, ranging from 54.14% for direct object
(dobj) to 97.47% for object of a preposition (pobj),
and in precision, varying between 56.31% for
clausal complement (ccomp) to 96.90% for object
of a preposition (pobj). Compared to the base-
line, recall and precision for the dependency rela-
tions adjectival modifier (amod) and complemen-
tizer (complm) have dropped in the figures. The
relations root and noun compound modifier (nn)
as well as punctuation (punct) and auxiliary (aux)
further show a decline in recall and precision re-
spectively. This can probably be explained by the
way it has been annotated for the complex labels.

7Complex relations in the treebank are marked by back-
slash (\) if they precede the segment carrying the main func-
tion and a forward slash (/) if they follow it.

DepRel Freq. (%) R (%) P (%)
pobj 16412 97.47 96.90
poss 16268 90.27 79.59
prep 15734 76.52 75.62
punct 13442 75.04 75.76
amod 9277 89.75 90.59
nsubj 8847 68.40 66.56
conj 8753 68.63 69.28
cc 7657 79.16 78.41
root 6010 81.17 80.90
cop 4427 66.76 74.55
dobj-lvc 4204 90.76 92.25
advmod 4168 71.62 67.52
ccomp 4105 64.10 56.31
det 3929 94.07 93.28
dobj 3862 54.14 57.19
nn 3340 56.31 81.98
num 2872 93.23 93.23
acc 2535 71.37 71.08
aux 2287 92.14 90.56
complm 2022 77.14 78.03

Table 5: Labeled recall and precision on the devel-
opment set for the 20 most frequent dependency
types in the UPDT, when MaltParser is trained on
the treebank with fine-grained auto part-of-speech
tags and only basic dependency relations. DepRel
= Dependency Relations, Freq. = Frequency, R =
Recall, P = Precision.

Removing the information provided by the these
relations makes it harder for the parser to achieve
high results when assigning these labels. How-
ever, the parser shows higher scores for the re-
maining dependency relations.

3.1.5 Best Parsing Representation
In the recently presented experiments we system-
atically simplified the annotation schemes for part-
of-speech tags and dependency labels. Table 6
presents a summary of the 4 basic experiments we
performed. Although the results in the table are
presented with labeled and unlabeled attachment
score as well as label accuracy score, figures ob-
tained as labeled attachment in Experiments 3 and
4 are not comparable with the one presented in the
baseline results, as each performed study uses dif-
ferent dependency relation sets. To conclude the
four experiments:

• Using coarse-grained part-of-speech tags
in the dependency representation improves
parsing performance without losing any in-
formation. By using the part-of-speech tag-
ger TagPer we can recreate and restore this
information at the end once the parsing is
done. Thus, fined-grained part-of-speech
tags can still be in the output.

305



Basic Ex. LAS (%) UAS (%) LA (%)
Baseline 78.84 83.07 88.48
CPOS 79.24 83.45 88.43
1 LVC 79.46 83.52 88.86
Basic DepRel 79.63 83.42 89.09

Table 6: Labeled and unlabeled attachment scores,
and label accuracy in the model selection resulted
from 4 empirical studies when MaltParser was
trained on UPDT with different simplifications
of annotation schemes in predicted part-of-speech
tagset and dependency relations. Basic Ex. = Ba-
sic Experiments, Baseline = Experiment with a
fine-grained annotated treebank, CPOS = Experi-
ment with coarser-grained part-of-speech tags and
fine-grained dependency relations, 1LVC = Ex-
periment with fine-grained part-of-speech tags and
dependency relations free from distinctive features
in light verb construction, and Basic DepRel = Ex-
periment with fine-grained part-of-speech tags and
merely basic dependency relations.

• The studies additionally show that simplify-
ing the representation of light verb construc-
tions helps the parser to perform better with-
out loss of important information. In other
words, by using coarse LVC, the results be-
come less specific and less informative only
with respect to the LVC construction, and
show better parsing performance. Further-
more, the lvc specification at the end can
mostly be recovered from the part-of-speech
tags in the output.

• Using merely basic relations might provide a
marginal improvement but this is not a suf-
ficient justification to remove them, because
by eliminating the complex labels we lose es-
sential information that cannot be recovered
by the tagger and this affects the quality of
parsing analysis. Applying the treebank with
complex relations provides a richer grammat-
ical analysis that boost the quality of parsing
results.

These results provided us with a valuable insight
about how different morphosyntactic parameters
in data influence the parsing analysis. The stud-
ies also brought us to the point of how we can
select the best configuration for further experi-
ments. In other words, we will use a representa-
tion with coarse-grained part-of-speech tags, sin-
gle LVC representation, and fine-grained depen-

dency relations containing both basic and complex
labels (96 labels).

3.2 Experiments with Different Parsers

This part is designed for estimating the perfor-
mance of different parsers on the best performing
data representations selected by MaltParser in the
baseline experiments. Hence, we set up the data
with the best achieved parameters which are using
the automatically generated coarse-grained part-
of-speech tags with a single LVC label and the
fine-grained dependency relations consisting of 96
basic and complex labels. The treebank is further
organized with a different split than in the basic
experiments. In other words, we train the parser on
the joint training and development sets (90%) and
test on the test set (10%). We will experiment with
MaltParser (Nivre et al., 2006), MSTParser (Mc-
Donald et al., 2005), MateParsers (Bohnet, 2010;
Bohnet and Nivre, 2012), and TurboParser (Mar-
tins et al., 2010).

For evaluating MaltParser, we used Nivre’s al-
gorithms as the algorithms were the best pars-
ing algorithms offered by MaltOptimizer during
the previous experiments. The parser resulted in
scores of 79.40% and 83.47% for labeled and un-
labeled attachment, respectively.

For evaluating MSTParser, we used the second-
order model with projective parsing as this setting
had presented the highest results in the earlier pa-
rameter tuning experiments. The parser presented
the results of 77.79% for labeled and 83.45% for
unlabeled attachment scores.

For experimenting with MateParsers, we trained
the graph-based and transition-based parsers on
the UPDT with the best parameters selected.
The results of Mate experiments showed that the
graph-based parser outperformed the transition-
based parser, resulting in 82.58% for labeled and
86.69% for unlabeled attachment scores.

For experimenting with TurboParser, we trained
the second-order non-projective parser with fea-
tures for arcs, consecutive siblings and grandpar-
ents, using the AD3 algorithm as a decoder. We
adapted the full setting as the setting had per-
formed best with our earlier parameter-tuning ex-
periments. The full setting enables arc-factored,
consecutive sibling, grandparent, arbitrary sibling,
head bigram, grand-sibling (third-order), and tri-
sibling (third-order) parts. The parser showed the
results of 80.57% for labeled and 85.32% for un-

306



Evaluations LAS (%) UAS (%) LA (%)
MaltParser 79.40 83.47 88.72
MSTParser 77.79 83.45 87.11
MateGraph 82.58 86.69 90.55
MateTrans. 81.72 85.94 89.87
TurboParser 80.57 85.32 88.93

Table 7: Best results given by different parsers
when trained on UPDT with auto part-of-speech
tags, 1LVC, CompRel in the model assessment.
MateGraph. = Mate graph-based, MateTrans. =
Mate transition-based

labeled attachment scores.
As shown in Table 7 the graph-based parser in

the Mate tools achieves the highest results for Per-
sian. The developed parser will be treated as the
state-of-the-art parser for the language and will be
called ParsPer. The parser will undergo further
evaluations which will be presented more in detail
in the next section.

4 Dependency Parser for Persian:
ParsPer

As results of the previous experiments showed,
the graph-based MateParser outperformed Malt-
Parser, MSTParser, and TurboParser obtaining
scores of 82.58% and 86.69% for labeled and un-
labeled attachment. This means that we need to
train the graph-based MateParser, this time, on the
entire UPDT with the selected configuration. The
developed parser is called ParsPer.8 It is released
as a freely available tool for parsing of Persian
and is open source under GNU General Public Li-
cense. The parser will further be evaluated in the
next subsection.

4.1 The Evaluation of the ParsPer

To evaluate the performance of the ParsPer we
made an independent parsing evaluation by run-
ning the parser on out-of-domain text. For
this, we used texts from the web-based journal
www.hamshahri.com. We downloaded multiple
texts based on different genres and then randomly
picked 100 sentences containing 2778 tokens with
an average sentence length of 28 tokens to develop
a test set. As our experiment involved some man-
ual work we opted for a small-sized sample to
make the evaluation task more feasible. We first
created a gold file by manually normalizing the
internal word boundaries and character sets and

8http://stp.lingfil.uu.se/∼mojgan/parsper-mate.html

then segmenting the text into sentence and token
levels. We then manually annotated the file with
part-of-speech and dependency information using
the same part-of-speech and dependency scheme
that ParsPer was built on to be served as gold.

In this task we performed three different parsing
evaluations. First we applied the parser on the au-
tomatically normalized, tokenized and tagged text.
This is the main experiment in the ParsPer evalu-
ation that also indicates the performance of auto-
matic processing of Persian texts at various levels.
Next, we performed two more experiments with
the 100 randomly selected sentences in order to
analyze the results in a more nuanced way, by ex-
perimenting on the sentences when they are man-
ually normalized and tokenized but automatically
tagged and then, when they are manually normal-
ized, tokenized, and tagged.

To create our test set for our first experiment, we
automatically normalized the 100 sentences us-
ing the Persian normalizer PrePer,9 segmented it
with SeTPer,10 and tagged with TagPer.11 A com-
prehensive description of the tools PrePer, SeT-
Per, and TagPer are given in Seraji (2015, Chapter
4). Then we parsed the automatically tokenized
and tagged text with ParsPer. Since the sentences
were automatically tokenized, contained 10 tokens
fewer than the gold file (the number of tokens in
the gold file were 2788).12 Therefore we could not
directly present labeled and unlabeled attachment
scores. However, instead, we present labeled re-
call and precision as well as unlabeled recall and
precision. The parsing evaluation revealed a la-
beled recall and precision of 73.52% and 73.79%,
and an unlabeled recall and precision of 81.99%
and 82.28%, respectively. As could be expected,
the results for labeled recall and precision are low.
This is due to the fact that apart from incorrect to-
kens in the automatically tokenized file there are
incorrect part-of-speech tags made by the tagger
TagPer that have had a negative impact on the re-
sults.

Subsequently, we automatically parsed the
manually normalized, tokenized, but automati-
cally tagged text and compared the parsing results
with the manually parsed gold text. By this ex-

9http://stp.lingfil.uu.se/∼mojgan/preper.html
10http://stp.lingfil.uu.se/∼mojgan/setper.html
11http://stp.lingfil.uu.se/∼mojgan/tagper.html
12In addition to the 10 fewer tokens, there were two more

tokens that were not successfully been normalized by the
PrePer in the normalization process and looked differently.

307



Evaluations LR (%) LP (%) UR (%) UP (%)
AS+AT+AP 73.52 73.79 81.99 82.28
MS+AT+AP 78.50 78.50 86.27 86.27
MS+MT+AP 78.76 78.76 86.12 86.12

Table 8: The evaluation of the ParsPer when tested on 100 randomly selected sentences from the web-
based journal Hamshahri. LR = Labeled Recall, LP = Labeled Precision, UR = Unlabeled Recall, UP =
Unlabeled Precision, AS = Automatically Segmented, AT = Automatically Tagged, AP = Automatically
Parsed, MS = Manually Segmented, and MT = Manually Tagged.

periment, we wanted to isolate the impact of tag-
ging errors. The evaluation resulted in labeled and
unlabeled attachment scores (recall and precision)
of 78.50% and 86.27% on the test set with 100
sentences and 2788 tokens. As the results indi-
cate, the unlabeled attachment score is close to the
unlabeled attachment score obtained by the parser
when evaluated on in-domain text. Furthermore,
the unlabeled attachment score is 7.77% higher
than the labeled attachment score. This may partly
be due to fact that the structural variation for the
head nodes is lower than the variation for labels.
Moreover, we have a firm structure for the head
nodes in the syntactic annotation when invariably
choosing content words as head position. This
solid structure in turn makes it easier for the parser
to learn that after repeatedly seeing it. Hence, the
parser assigns the head nodes more accurately than
the combinations of head and label. This does not
mean that it does not exist a consistent structure
for the dependency relations. What we mean is
that the number of occurrence of certain cases for
dependency relations may not be as many as the
number of repeated cases for head structures. This
might be perceived as a sparseness by the parser
which can directly affect the labeled attachment
score. Moreover, the syntactic (non)complexity in
the data can have a direct impact on the parser per-
formance.

Finally, we automatically parsed the manually
normalized, tokenized, and tagged text and com-
pared the parsing with the manually parsed gold
file. The evaluation resulted in a straightfor-
ward labeled and unlabeled attachment scores of
78.76% and 86.12% on the test set with 100 sen-
tences and 2788 tokens. The same kind of pattern
as in the previous experiment was further found
here. In other words, we see nearly similar gap of
7.36% between the labeled and unlabeled attach-
ment scores. Table 8 shows results from different
evaluations of the ParsPer.

The comparison of Experiments 1, 2, and 3

shows that tokenization is a greater problem than
tagging for syntactic parsing. Whereas a perfectly
tokenized text with tagging errors degrades pars-
ing results by less than 1%, errors in tokenization
may decrease parsing accuracy as much as 5%.
To some extent, this is probably due to additional
tagging errors caused by tokenization errors. It is
nevertheless clear that tokenization errors disrupt
the syntactic structure more than tagging errors do.
Adding variations of writing styles (as mentioned
earlier) on top of this triggers variations in the tok-
enization process, which in turn leads to the parser
being unable to realize similar sentences with dif-
ferent tokenizations. However, this normally hap-
pens when the parser is not familiar with the to-
kens (or the order of how tokens are represented)
in the sentence, which is due to the fact that the
structure is not prevalent enough in the training
data.

It might be possible to improve the parsing per-
formance by adding to or modifying the part-of-
speech tag set as well as eliminating or modifying
some structures in the syntactic annotation scheme
that are not properly favor the parser. Moreover,
one can use joint segmentation and tagging sim-
ilar to that made for Chinese (Zhang and Clark,
2010). However, this matter will remain for our
future research.

5 Conclusion

In this paper, we have presented an open source
dependency parser for Persian based on the graph-
based parser in the Mate Tools. The dependency
parser is called ParsPer and developed on the
best performing data representation of the Uppsala
Persian Dependency Treebank, selected by Malt-
Parser. The parser resulted in a labeled attachment
score of 82.58% and unlabeled attachment score
of 86.69%

308



References

Ballesteros, Miguel and Joakim Nivre (2012).
“MaltOptimizer: A System for MaltParser Op-
timization”. In: Proceedings of the 8th Interna-
tional Conference on Language Resources and
Evaluation (LREC), pp. 833–841.

Böhmová, Alena, Jan Hajič, Eva Hajičocá, and
Barbora Hladká (2003). “The Prague de-
pendency treebank”. In: Treebanks. Springer
Netherlands, pp. 103–127.

Bohnet, Bernd (2010). “Top Accuracy and Fast
Dependency Parsing is not a Contradiction”. In:
Coling ’10, pp. 89–97.

Bohnet, Bernd and Jonas Kuhn (2012). “The Best
of Both Worlds: A Graph-based Completion
Model for Transition-Based Parsers”. In: EACL
’12, pp. 77–87.

Bohnet, Bernd and Joakim Nivre (2012). “A
Transition-Based System for Joint Part-of-
Speech Tagging and Labeled Non-Projective
Dependency Parsing”. In: EMNLP-CoNLL ’12,
pp. 1455–1465.

de Marneffe, Marie-Catherine and Christopher
D. Manning (2008). “The Stanford Typed De-
pendencies Representation”. In: COLING’08,
pp. 1–8.

Foth, Kilian, Arne Köhn, Niels Beuck, and Wolf-
gang Menzel (2014). “Because size does matter:
The Hamburg dependency treebank”. In: LREC
’14, pp. 2326–2333.

Haverinen, Katri, Timo Viljanen, Veronika Laip-
pala, Samuel Kohonen, Filip Ginter, and Tapio
Salakoski (2010). “Treebanking Finnish”. In:
TLT ’10, pp. 79–90.

Jelínek, Tomáš (2014). “Improvements to Depen-
dency Parsing Using Automatic Simplification
of Data”. In: LREC’14, pp. 73–77.

Kromann, Matthias T. (2003). “The Danish De-
pendency Treebank and the DTAG Treebank
Tool”. In: TLT ’03. Brown University Press,
pp. 217–220.

Martins, André F. T., Noah A. Smith, Eric P.
Xing, Pedro M. Q. Aguiar, and Mário A. T.
Figueiredo (2010). “Turbo Parsers: Dependency
Parsing by Approximate Variational Inference”.
In: EMNLP ’10, pp. 34–44.

McDonald, Ryan, Fernando Pereira, Kiril Rib-
arov, and Jan Hajič (2005). “Non-Projective De-
pendency Parsing Using Spanning Tree Algo-
rithms”. In: HLT-EMNLP ’05, pp. 523–530.

Mille, Simon, Alicia Burga, Gabriela Ferraro, and
Leo Wanner (2012). “How Does the Granular-
ity of an Annotation Scheme Influence Depen-
dency Parsing Performance?” In: COLING ’12,
pp. 839–852.

Nivre, Joakim, Johan Hall, and Jens Nilsson
(2006). “MaltParser: A Data-Driven Parser-
Generator for Dependency Parsing”. In: LREC
’06, pp. 2216–2219.

Seraji, Mojgan (2015). “Morphosyntactic Corpora
and Tools for Persian”. PhD Thesis. Studia Lin-
guistica Upsaliensia 16.

Seraji, Mojgan, Carina Jahani, Beáta Megyesi,
and Joakim Nivre (2013). The Uppsala Per-
sian Dependency Treebank Annotation Guide-
lines. Technical Report. Department of Linguis-
tics and Philology, Uppsala.

Vincze, Veronika, Dóra Szauter, Attila Almási,
György Móra, Zoltán Alexin, and János Csirik
(2010). “Hungarian Dependency Treebank”. In:
LREC ’10, pp. 1855–1862.

Zhang, Yue and Stephen Clark (2010). “A fast
decoder for joint word segmentation and POS-
tagging using a single discriminative model”.
In: EMNLP ’10, pp. 843–852.

309


