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Abstract

Full recovery of argument structure infor-
mation for question answering or infor-
mation extraction requires that parsers can
analyse long-distance dependencies. Pre-
vious work on statistical dependency pars-
ing has used post-processing or additional
training data to tackle this complex prob-
lem. We evaluate an alternative approach
to recovering long-distance dependencies.
This approach uses a two-level parsing
model to recover both grammatical depen-
dencies, such as subject and object, and
full argument structure. We show that this
two-level approach is competitive, while
also providing useful semantic role infor-
mation.

1 Introduction

One of the main motivations for adopting depen-
dency representations in the parsing and computa-
tional linguistics community is their direct expres-
sion of the lexical-semantic properties of words
and their relations. Argument structure is the rep-
resentation of the argument taking properties of a
predicate. It represents those semantic properties
of a predicate that are expressed grammatically. It
is usually defined as the specification of the arity
of the predicate, its grammatical functions and the
substantive labels of the arguments in the struc-
ture, what are usually called thematic or semantic
roles. For example the argument structure of the
verb hit comprises the specification that hit is a
transitive verb and that it takes an AGENT subject
and a THEME object.

Constructions involving long-distance depen-
dencies (LDDs) — such as questions, or relative

clauses — are the stress test of the ability to rep-
resent argument structure, because in these con-
structions argument structure information is not
directly reflected in the surface order of the sen-
tence. Despite the complexity of their represen-
tation, Rimell et al. (2009) report that these con-
structions cover roughly ten percent of the data in
a corpus such as the PennTreebank, and therefore
cannot be ignored. LDDs are illustrated in Fig-
ure 1. Representing argument structure in long-
distance dependency constructions, thus, requires
special mechanisms to deal with the divergence
between the argument taking properties of the verb
and the surface order of the sentence. The most
frequently used ways to encode long-distance de-
pendencies is either by a copy mechanism, shown
in Figure 1, or by turning the tree into a directed
graph, shown in Figure 2. 1

Many current statistical dependency parsers fail
to represent many long-distance dependencies and
their related argument structure directly, often be-
cause the relevant information, such as traces, has
been stripped from the training data. For exam-
ple, most current statistical parsers do not repre-
sent directly the links drawn below the sentences
in Figure 2. Moreover, there is no attempt in these
representations, to encode the full argument struc-
ture directly, as the semantic role labels are usually
inferred from their correlation with the grammati-
cal function labels, but not explicitly represented.
The argument structure of the verb spread in the
first sentence in Figure 2 comprises a THEME sub-
ject in the intransitive form of the verb. This ar-
gument structure must be inferred indirectly from
the graph: first the long-distance nsubj relation

1Recall that the red arcs shown in the figures are for ex-
pository purposes only, current representations do not show
these direct links for long-distance dependencies.
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must be inferred from a sequence of links typi-
cal of subject extraction from an embedded clause.
Moreover, the notion that verbs like spread take
THEME subjects in some, but not all cases, is not
represented, and therefore the argument structure
cannot be, strictly speaking, fully recovered.

These parsers can recover the long-distance de-
pendency only through a post-processing step,
which recovers the information about predicate-
argument relation and the grammatical function.
The semantic role label is usually not recovered
even in post-processing.

We investigate here, then, the hypothe-
sis whether current two-level syntactic-semantic
parsers can fill in for the missing information, and
recover the long-distance and argument structure
information during parsing without need for post-
processing and without loss in performance. If this
were possible, we would be able to produce long-
distance dependencies with more direct and per-
spicuous representations, and also fill in some of
the semantic information currently missing from
argument structure representations.

It is important to recall that the reason why
predicate-argument structure is considered central
for NLP applications hinges on the assumption
that what needs recovering is the lexical semantics
content. For example, it is likely that for informa-
tion extraction, it is more useful to know which
are the manner, temporal and location arguments
than to know an underspecified adverbial modifier
label.

In the rest of the paper, then, we will first con-
trast the one-level representation of long-distance
dependencies to a two-level representation, where
grammatical functions and argument structure
are both explicitly represented. We will then
briefly recall a recently proposed two-level pars-
ing model (Henderson et al., 2013), and then
present the main contribution of the paper: the
evaluation of parsing models that parse these two-
level syntactic-semantic dependencies on long-
distance dependencies. We also compare the re-
sults to other statistical dependency parsers, in-
vestigate the usefulness and informativeness of the
extracted information, discuss and conclude.

2 Single-level and Two-level Encoding of
LDDs

As discussed in the introduction, traditional lin-
guistic encodings of LDDs are integrated in the

(1) Questions

Whati did William hiti with his arrow?

(2) Relative clauses

This is the applei that William hiti with his
arrow.

Figure 1: LDDs and their coindexed antecedent-
trace representation.
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Figure 2: LDDs represented as a syntactic de-
pendency tree labeled with grammatical relations.
Recall that the LDD encoded in the arcs under
the sentence are the LDD that must be recovered.
They are shown for expository purpose and they
are not usually part of the syntactic tree.

parse tree, either as co-indexed “traces”, such as
in the Penn Treebank, as illustrated in Figure 1, or
as arcs as in a dependency representation. In prac-
tice, current statistical parsers do not encode LDD
directly, as illustrated in Figure 2, and leave it to
post-processing procedures to recover the LDD re-
lation (Johnson, 2002; Nivre et al., 2010). These
approaches exploit the very strong constraints that
govern long-distance relations syntactically, and
ignore the full or partial recovery of the semantic
roles entirely.

Consider, for example, the representations for
subject embeddings (first tree) and object reduced
relatives (second tree) in Figure 2. This figure il-
lustrates the Stanford dependency representation
that was used in Rimmel et al. (2009), and Nivre
et al. (2010), indicating below the sentence the
long distance dependency that needs to be recov-
ered, but that is not in the representation. The
first tree encodes the subject relation between ac-
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Figure 3: LDDs represented as a syntactic de-
pendency tree above the sentence (in blue) and
argument structure labels under the sentence (in
green). The label A0 stands for AGENT and A1
stands for THEME. The prefix AM indicates a
modifier argument. Recall that the LDDs encoded
in the arcs under the sentence (in red) are the
LDDs that must be recovered. They are shown for
expository purpose and they are neither part of the
syntactic tree nor of the semantic graph.

tions and spreading as a sequence of two arcs rc-
mod(actions, saw) and xcomp(saw, spreading).
This sequence indicates a dependency relation in
the opposite direction from the one needed to cor-
rectly recover the argument structure of the verb
spread, and does not explicitly indicate the gram-
matical function,SUBJECT, nor the semantic role
relation, THEME. The label rcmod is the same la-
bel used to indicate the relationship between do
and things in the second sentence, but in this case
the relation is an object relation, so the distinc-
tion between subject-oriented and object-oriented
relative clauses is encoded very indirectly. This
kind of encoding of argument structure and long-
distance dependency is indirect and potentially
lacking in perspicuity.

In a dependency formalism, two-level represen-
tations have been proposed to represent the syn-
tactic and argument structures of a sentence in
terms of dependencies. Consider the representa-
tions in Figure 3. The syntactic representation
is the same as in the previous figures, but LDDs
and argument structures are represented directly.
For example, the verb saw has two arguments, an
AGENT and a THEME, while the verb spread has a

long-distance dependency with the word actions,
which is its THEME subject.2 The verb do in the
second sentence has a long-distance THEME ob-
ject. Therefore, the overall complex graph that
represents both the syntax and the underlying ar-
gument structure of the sentences comprises two
half graphs, sharing all vertices, the words. They
are indicated by the blue and green arcs, respec-
tively, in Figure 3.

These representations factor the syntactic parse
tree information from the argument structure in-
formation and provide, overall, more labelling in-
formation. The parse tree is needed to provide
a connected graph, to provide information about
constituency/dependency relations for grammati-
cal correctness (agreement, for example, is trig-
gered in environments defined by grammatical
functions, and not by semantic relations) and
grammatical functions. Argument structures are
represented separately, for each predicate in the
sentence and give explicit labels to the arguments.
While these labels are correlated to the grammati-
cal functions, it is a well-established fact that they
are not coextensive, for instance not all subjects
are Agents as shown in Figure 3, and therefore are
not redundant.

From a linguistic point of view, these represen-
tations are related to many grammar formalisms
that invoke the need to represent both grammati-
cal functional level and argument structure level,
such as tectogrammatical dependency representa-
tions (Hajic, 1998), or early versions of transfor-
mational grammar.

From a graph-theoretic and parsing point of
view, the complete graph of both the syntax and
the semantics of the sentences is composed of two
half graphs, which share all their vertices, namely
the words. Internally, these two half graphs ex-
hibit different properties. The syntactic graph is
a single connected tree. The semantic graph is a
forest of one-level treelets, one for each proposi-
tion, which may be disconnected and may share
children. In both graphs, it is not generally appro-
priate to assume independence across the different
treelets in the structure. In the semantic graph, lin-
guistic evidence that propositions are not indepen-
dent of each other comes from constructions such

2This sentence also exemplifies the well-known fact, re-
ferred to in the introduction, that the mapping from grammat-
ical function to the semantic roles useful for interpretation is
not simple: the subject is not an AGENT, the most frequent
mapping, but a THEME.
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as coordinations where some of the arguments are
shared and semantically parallel. Arcs in the se-
mantic graph do not correspond one-to-one to arcs
in the syntactic graph, indicating that a rather flex-
ible framework is needed to capture the correla-
tions between graphs. The challenge, then, arises
in developing models of these two-level represen-
tations. These models must find an effective way
of communicating the necessary information be-
tween the syntax and the argument structure rep-
resentation.

From the practical point of view of existing re-
sources, one version of these representations re-
sults from the merging of widely used and care-
fully annotated linguistic resources, PennTree-
bank (Marcus et al., 1993) and PropBank (Palmer
et al., 2005). They are PennTreebank-derived de-
pendency representations that have been stripped
of long-distance dependencies, and merged with
PropBank encoding of argument structures. But
PropBank encodings are often based on the trace-
enriched PennTreeBank representations as a start-
ing point. Hence, these representations encode
all LDDs, enriched with substantive semantic
role labels, according to the PropBank labelling
scheme.3 They could also be constructed from
other resources, for example by augmenting the
current Universal dependency annotation scheme
with extra semantic annotations (de Marneffe et
al., 2014).

3 Parsing Two-level Representations

Developing models to learn these two-level analy-
ses of syntax and argument structure raises sev-
eral interesting questions regarding the design
of the interface between the syntactic and the
argument structure representations and how to
learn these complex representations (Merlo and
Musillo, 2008; Surdeanu et al., 2008).4

A model that can parse these two level-
dependencies is proposed in Henderson et al.
(2013) and we adopt it here without modifica-
tions. We choose this model for our evaluation of

3These representations are the same, in practice, as the
encoding used in some recent shared tasks (CoNLL 2008 and
CoNLL 2009 (Surdeanu et al., 2008; Hajič et al., 2009)) for
syntactic-semantic dependencies.

4Joint syntactic-semantic dependency parsing was the
theme of two CoNLL shared tasks. CoNLL 2008 explored
syntactic-semantic parsing for English, CoNLL 2009 ex-
tended the task to several languages. Only four truly joint
models were developed, and most of the multi-lingual mod-
els were fine-tuned specifically for each language.

long-distance dependencies as the best performing
among those approaches that have attempted to
model jointly the relationship between argument
structure and surface syntax (Lluı́s and Màrquez,
2008; Surdeanu et al., 2008) and developments of
this model have shown good performance on sev-
eral languages (Gesmundo et al., 2009), without
any language-specific tailoring. These results sug-
gest that this model can capture abstract linguistic
regularities in a single parsing architecture.5 We
describe this model here very briefly. For more
detail on the parser and the model, we refer the
interested reader to Henderson et al. (2013) and
references therein.

The crucial intuitions behind the two-level ap-
proach is that the parsing mechanism must cor-
relate the two half-graphs, but allow them to be
constructed separately as they have very differ-
ent properties. The derivations for both syn-
tactic dependency trees are based on a standard
transition-based, shift-reduce style parser (Nivre
et al., 2006). The derivations for argument struc-
ture dependency graphs use virtually the same
set of actions, but are augmented with a Swap
action, that swaps the two words at the top of
the stack. The Swap action is inspired by the
planarisation algorithm described in Hajicova et
al.(2004), where non-planar trees are transformed
into planar ones by recursively rearranging their
sub-trees to find a linear order of the words for
which the tree is planar.

The probability model to determine which ac-
tion to pursue is a joint generative model of syntac-
tic and argument structure dependencies. The two
dependency structures are specified as the syn-
chronised sequences of actions for a shift-reduce
parser that operates on two different stacks. By
synchronising parsing for both the syntactic and
the argument structure representations, a proba-
bilistic model is learnt which maximises the joint
probability of the syntactic and semantic depen-
dencies and thereby guarantees that the output
structure is globally coherent, while at the same
time building the two structures separately. The
probabilistic estimation is based on Incremental
Sigmoid Belief Networks (ISBNs). The use of
latent variables allows ISBNs to induce their fea-

5The version of the parser, the one we use, described in
Henderson et al. (2013), has a syntactic labelled accuracy of
87.5%, a semantic role F-score of 76.1%, and a syntactic-
semantic F-score of 81.8%, using the data and evaluation
measures of the CoNLL 2008 shared task.
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(3) Each must match Wisman’s pie with the frag-
ment that they carry with him.

(4) Five things you can do for 15,000 dollars or
less.

(5) They will remain on a lower-priority list that
includes 17 other countries.

(6) How he felt ready for the many actions he
saw spreading out before him.

(7) What you see are self-help projects.

(8) What effect does a prism have on light?

(9) The men were at first puzzled then angered
by the aimless tacking.

Figure 4: Sentences exemplifying the different
constructions involving LDDs, used in the test set
developed by Rimell et al. (2009).

tures automatically.

4 Experiments

In this section we assess how well the two-level
parser performs on constructions involving long-
distance dependencies. In so doing, we verify that
these two-level models of syntactic and argument
structure representations can be learnt even in dif-
ficult cases, while also producing an output that
is richer than what statistical parsers usually pro-
duce. To confirm this statement, we expect to see
that the syntactic dependency parsing performance
is not degraded, compared to more standard statis-
tical parsing architectures on long-distance depen-
dencies, while also producing semantic role labels
on these difficult constructions.

4.1 The Test Data
To test the performance on LDDs, we use the
test suites developed by Rimell et al. (2009) for
English. They comprise 560 test sentences, 80
for each type of construction. Half of them are
extracted from the Penn Treebank, half of them
from the Brown corpus, balanced across construc-
tion types. None of these sentences is included
in the training set of the parser. These sentences
cover seven types of long-distance relations, il-
lustrated in Figure 4: object extraction from rela-
tive clauses (ORC) in (3) or from reduced relative
clauses (ORed) in (4), subject extraction from rel-

ative clauses (SRC) in (5) or from an embedded
clause (SEmb) in (6), free relatives (Free) in (7),
object-oriented questions (OQ) in (8), and right
node raising constructions (RNR) in (9).

Compared to the other statistical dependency
parsers, questions (OQ) are not well represented
in our training data, since they do not include the
additional QB data (Nivre et al., 2010) used to im-
prove the performance of MSTParser and Malt-
Parser.

4.2 Parsing set up

Like the dependency parser in Nivre et al. (2010),
the parser was not trained on the same data or tree
representations as those used in the test data. The
parser is trained on the data derived by merging
a dependency transformation of the Penn Tree-
bank with Propbank and Nombank (Surdeanu et
al., 2008). An illustrative example of the kind of
labelled structures that we need to parse was given
in Figure 3. Training and development data fol-
low the usual partition as sections 02-21, 24 of the
Penn Treebank. More details and references on the
data, and the conversion of the Penn Treebank for-
mat to dependencies are given in Surdeanu et al.
(2008).

Like for standard statistical and dependency
parsers, the syntactic representation used by the
two-level parser has been stripped of all traces.
The predicates of the argument structures and their
locations are not provided at testing, unlike some
of the CONLL shared tasks.

Unlike Nivre et al. (2010), we did not use
an external part-of-speech tagger to annotate the
data of the development set. To minimize pre-
processing of the data, we choose to have part-of-
speech tagging as an internal part of the parsing
model, which therefore, takes raw input.

In order for our results to be comparable to
those reported in previous evaluations (Rimell et
al., 2009; Nivre et al., 2010), we ran the parser
“out of the box” directly on the test sentences,
without using the development sentences to fine-
tune. We were able to parse all the sentences in the
test suites without any adjustments to the parser.6

6According to Rimell et al. (2009) only the C&C parser
required some little adjustments to parse all sentences in the
test suite. Evaluation results without these adjustments are
not reported.
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4.3 Evaluation Methodology

Like in previous papers (Rimell et al., 2009; Nivre
et al., 2010), we evaluate the parser on its abil-
ity to recover LDDs. Two evaluations were done.
The first one was semi-automatic, performed with
a modified version of the evaluation script devel-
oped in Rimell et al. (2009). An independent man-
ual evaluation was also performed.

A dependency is considered correctly recovered
if a dependency in the gold data is found in the
output. A dependency is a triple comprising three
items: the nodes connected by the arc in the graph
and the label of the arc. In principle, a depen-
dency is considered correct if all three elements
of the triple are correct. However, in this evalu-
ation the representations vary across models and
exact matches would not allow a fair assessment.
Both previous evaluation exercises (Rimell et al.,
2009; Nivre et al., 2010) suggest some avenues to
relax the matching conditions, and define equiva-
lence classes of representations.

4.3.1 Equivalence classes of arcs

To relax the requirement of exact match on the def-
inition of arc, a set of equivalence classes between
single arcs and paths connecting two nodes indi-
rectly is precisely defined in the post-processing
scheme of Nivre et al. (2010), which applies to the
Stanford labelling scheme. In Nivre et al. (2010),
the encoding of long-distance dependencies in a
dependency parser is categorised as simple, com-
plex, and indirect. In the simple case, the LDD co-
incides with an arc in a tree. In the complex case,
the LDD is represented by a path of arcs. In the
indirect case, the dependency is not directly en-
coded in a path in the tree, but it must be inferred
from a larger portion of the tree using heuristics.
The two last cases require post-processing of the
tree. In Rimell et al. (2009), two dependencies are
considered equivalent if they differ only in their
definition of what counts as head. For example, in
some dependency schemes the preposition is the
head of a prepositional phrase, while in others it is
the noun.

We develop a definition of equivalence classes
of arcs inspired by both these approaches. Fol-
lowing Nivre et al. (2010), we define a long-
distance dependency as simple or complex. In the
simple case, the LDD coincides with an arc in a
tree. A complex dependency is defined as a path of
at most two simple dependencies. Unlike single-

level statistical parsers, our two-level representa-
tion could create more than one path to connect
two nodes, since two nodes could be connected
both by a syntactic arc and by a semantic arc.
Following Rimell et al. (2009), we define which
path of two arcs is considered correct by allow-
ing some flexibility in the definition of the head
in very specific predefined cases, such as preposi-
tional phrases. The head can be either the word
in the position indicated in the gold annotation,
or its parent. This definition applies, for example,
to extraction from prepositional phrases which in
our case are related to the semantic head, while in
Rimell et al.’s scheme they are connected to the
preposition. This relaxed definition is triggered in
31 cases of semantic matches and 40 cases of syn-
tactic matches, over a total of 398 matches.

The evaluation script was also augmented with
a construction-specific rule to capture complex de-
pendencies with be-constructions. Sentence (10)
is an example of a be-construction, where the
gold dependency in (10a) corresponds to a path
of two dependencies in (10b). The latter consists
of the subject dependency between the copula is,
the head, and its subject childhood, and the pred-
icative dependency between the head is and the
predicative what. For a complex dependency of
this type to be counted correct, the end points of
the path have to match the endpoints of the long-
distance dependency in the gold and the labels
have to be exactly as indicated, sbj and prd. This
specific rule adds seven correct cases to the total.

(10) That is what childhood is , he told himself .

a. nsubj what 2 childhood 3
b. sbj is 1 childhood 3

prd is 1 what 2

4.4 Equivalence classes of labels
The evaluation in Rimell et al. (2009) is largely
done manually, and equivalences are decided by
the authors. Different labelling schemes are con-
sidered correct, as long as they can make the dis-
tinction between subject, object, indirect object
and adjunct modifier.

We establish a correspondence of labels. In our
two-level representation, labels are the grammat-
ical functions of the syntactic dependencies, and
the semantic role labels, taken from PropBank. 7

7The PropBank annotation was developed based on the
deep structure representations of the PennTreebank and Levin
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Core arguments
nsubj A0, A1, SBJ
obj,dobj, pobj OBJ, A1, PMOD
passive subj A1
obj2 A1

Other labels
advmod LOC,TMP,MNR
amod MNR,NMOD
aux MOD,VC
nn NAME, DEP
partmod MOD

Figure 5: Gold data and two-level output label
equivalences.

Our equivalences might depend only on the labels
or on the labels in the context of the sentence type.
For example, the subject of a passive is an A1,
that is a THEME. In some cases, direct inspection
of the predicate was necessary: A1 corresponds to
subjects for some verbs even in the active voice.
A simple rule was applied to decide what verbs
can exhibit an A1 subject, based on PropBank’s
framesets: If the frameset allowed A1 as a sub-
ject, in the appropriate sense of the verb, then the
correspondence was accepted. This decision rule
applied to 33 cases (the (nsubj, A1) cell in Table
2). The label equivalences are given in detail in
Figure 5: the grammatical function labels of the
gold data are shown on the left and labels of the
two-level parser are shown on the right. The con-
fusion matrix by labels is provided in Table 2.

Manual evaluation The evaluation was also
done manually by a judge, a trained linguist, who
had not developed the initial script. We used a vi-
sualisation tool (Tred) (Pajas and S̆tĕpánek, 2008),
adapted to our output, to facilitate the inspection of
the two-level representations and avoid mistakes.

In the manual evaluation, a dependency is
correctly recovered if an arc and its syntac-
tic/semantic label (see Figure 4) are correct.

Three different constructions need to be men-
tioned, because they have special chracteristics
that had to be taken into account: coordination,
right node raising and small clauses.

A dependency may be found directly, as a sin-
gle arc, or by coordination. Regarding coordina-

(1993)’s semantic propositions of alternating verbs. Prop-
Bank propositions have been shown to be closely related to
grammatical functions (Merlo and van der Plas, 2009). So we
can assume that grammatical functions can also be inferred
from PropBank relations in most cases.

tion, we follow the Stanford scheme, according to
which an argument or adjunct must be attached to
the first conjunct to indicate that it belongs to both
conjuncts.

Right node raising is too difficult to evaluate au-
tomatically. In Rimell et al. (2009)’s definition,
right node raising is represented by two arcs. It
is considered correctly recovered if one of the arcs
was correct and the other was found either directly
or by coordination. We evaluate right node raising
by hand, in the same way: either the dependency
was found directly or by coordination, either in the
syntax or in the argument structure.

Small clauses are rare, complex dependencies
that were evaluated by hand. Sentence (11) is an
example of a small clause construction, where the
nsubj dependency of the gold data (11a) corre-
sponds to two dependencies (11b): one between
the head called and its object/theme horses, and
one between called and the object predicative
Dogs. We found only five cases of this construc-
tion. However, these five dependencies do make
a difference, because they all appear in SEmb,
which has a low percent recall, as shown in Table
1.

(11) The sound rose on the other side of the hills ,
vanished and rose again and he could imagine
the mad , disheveled hoofs of the Appaloosas
, horses the white men once had called the
Dogs of Hell .

a. nsubj Dogs 36 horses 28
b. obj called 34 horses 28

oprd called 34 Dogs 36

5 Results and Discussion

Automatic and manual results (percent recall) are
shown in Table 1, where we compare our results
to the relevant ones of those reported in previous
evaluations (Rimell et al., 2009; Nivre et al., 2010;
Nguyen et al., 2012).8 These papers compare sev-
eral statistical parsers. Some parsers like Nguyen,
the C&C parser (Clark and Curran, 2007) and Enju
(Miyao and Tsujii, 2005) are based on rich gram-
matical formalisms, and others others are repre-
sentative of statistical dependency parsers (MST,
MALT, (McDonald, 2006; Nivre et al., 2006)).

8All these evaluations, like ours, can report only recall,
because of the nature of the output of the parsers, which
do not explicitly label a dependency with a dedicated long–
distance label.
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ORC ORed SRC Free OQ RNR SEmb Total
Nguyen 53 69 68 69 57 26 39 56
C&C 59 63 80 73 28 49 22 54
Enju 47 66 82 76 32 47 33 54
This paper 36/35 55/48 44/57 72/73 18/15 63 18/22 48/48
MST 34 47 79 66 14 46 38 46
Malt 41 51 84 70 16 40 24 46

Table 1: Our percent recall results, construction by construction, automatic and manual (A/M), compared
to some of the results reported in Rimell et al. (2009) and Nivre et al. (2010). Abbreviations are explained
in subsection 4.1. Right node raising was evaluated only manually.

dobj nsubj pobj prep
A0 0/6 37/39 0/2
A1 146/146 12/33 6/6 3/3
A2 2/2 3/3

OBJ 16/16 1/1
SBJ 0/7 10/10 0/4

PMOD 5/5 0/1 13/13 2/2
TOT 167/186 75/87 20/26 25/25

Table 2: Labelled error confusion matrix of
most frequent labels. Cells indicate correct la-
belling/total labelling. The first three rows show
the results for semantic labels, and the last three
rows show results for syntactic dependency labels.
For reasons of space only labels with at least five
occurrences are shown. The table also does not
show the following perfect matches: LOC: adv-
mod 5/5; TMP: advmod 5/5; A1: nsubjpass 14/14;
NMOD: amod 7/7.

These last two parsers constitute the relevant com-
parison for our approach.9

Like the other parsers discussed in Rimell et al.
(2009) and Nivre et al. (2010), the overall per-
formance on these long-distance constructions is
much lower than the overall scores for this parser.
However, the parser recovers long-distance depen-
dencies at least as well as standard statistical de-
pendency parsers that use a post-processing step,
and better than standard statistical parsers.10

9Other parsers were evaluated in Rimell et al. (2009),
with worse results than what reported here. However, because
of differences in set up and parsing architecture, comparing
results here would be misleading. For example, the Stanford
parser was evaluated, reaching 38% recall. But it should be
borne in mind that this result is not directly comparable, as it
is likely that this parser too would have benefitted from the
post-processing step used in Nivre et al. (2010) to evaluate
dependency parsers.

10Manual inspection indicates that if we allowed more
complex dependencies, such as those proposed by Nivre et
al.’s evaluation, our score on subject relative clauses would
increase from 57% to 69%, for a total of 49% correct. This
explains in part the apparent difference between our architec-
ture and other dependency parsers for subject relative clauses.

The differences in recall between manual and
automatic evaluation in Table 1 show that the auto-
matic evaluation is sometimes too strict and some-
times too lenient. The former cases arise primarily
in small clause dependencies and dependency re-
covery by coordination across all LDD construc-
tions, which were taken into account in the man-
ual evaluation, but not in the automatic evaluation,
because, as indicated above, scoring coordination
automatically is too difficult. This explains the re-
call difference between the two evaluation meth-
ods in SRC and SEmb. The latter case is due to
the stricter definition of head in the manual evalu-
ation. This is the main reason why ORed and OQ
have lower recall in this evaluation.

Table 2 reports some of the labelled error counts
of the most frequent labels. In general, the con-
fusion matrix shows that the labelled correspon-
dence is accurate, and that it corresponds to mean-
ingful generalisations. As can also be observed, a
single grammatical function label corresponds to
several different semantic relations and vice versa.
Full recovery of argument structure, then, requires
both grammatical syntactic relations and semantic
role labelling.

5.1 Error Analysis of Development Sets

We classify the errors made by our parser on the
development set based on Nivre et al. (2010)’s
three main error categories, Global, Arg, Link,
with some more restrictive modifications that are
appropriate for the two-level representation. Fol-
lowing Nivre et al. (2010), we define a Global er-
ror as one that applies to cases where the parser
fails to build the relevant clausal structure (e.g.,
the relative clause and what it modifies in ORed,
ORC, Free, and SRC) due to parsing/tagging er-
rors. We split Nivre et al.’s definition of Arg errors
(errors on labels) in two cases. An Arg error is
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Tot G Arg S SA L Dep
ORed 10 3 4 3 0 0 23
ORC 14 9 2 3 0 0 20
Free 8 3 5 0 0 0 22
OQ 23 14 7 1 1 0 25
RNR 15 1 2 3 0 9 28
SEm 10 4 4 2 0 0 13
SRC 16 12 0 4 0 0 43

Table 3: Distribution of error types in the develop-
ment sets. (G= Global; S= Sem; SA= Sem+Arg;
L= Link; Dep= number of dependencies).

Us MST Malt Dep
ORed 10 9 13 23
ORC 14 13 16 20
Free 8 5 6 22
OQ 23 17 20 25
RNR 15 14 15 28
SEm 10 9 9 13
SRC 16 10 14 43

Table 4: Comparison of the three dependency
parsers based on the total number of errors in each
development set.

one which occurs when the parser fails to assign
the correct functional relation (e.g., subject, ob-
ject), while a Sem error is one in which the parser
fails to assign the correct semantic relation (e.g.,
A1, A2). Nivre et al’s Link error is one where the
parser fails to find a dependency by coordination
in the case of right node raising.

Our restrictive modifications follow the con-
straints indicated above on what counts as a cor-
rect dependency. In particular, we only count
as correct two types of dependencies: simple, in
which the dependency is represented as a single
arc in the parse tree; and complex, where a gold
dependency corresponds to a path of only two di-
rect dependencies, such as in the case of predica-
tive constructions and prepositional phrases dis-
cussed above. Our definition of complex depen-
dencies is stricter than Nivre et al.’s, and we do not
count indirect dependencies. Link errors related to
relative clauses (indirect dependencies) are classi-
fied as Sem errors.11

Table 3 shows the frequency of the error types

11Nivre et al.’s Link errors also include cases where the
parser fails to find the crucial Link relations rcmod in ORed,
ORC, SRC, and SEmb. This type of Link error is not relevant
for us.

for our parser in the seven development sets.
Global errors are most frequent for OQ, ORC and
SRC. Questions (OQ) are not well represented in
our training data, since they do not include the ad-
ditional QB data (Nivre et al., 2010) used to im-
prove the performance of MSTParser and Malt-
Parser (see Table 4 for comparison of number of
errors for each parser). With respect to ORC and
SRC, most Global errors are related to part-of-
speech tagging errors and wrong head assignment
of complex NPs which are modified by the rele-
vant relative clause. In particular there seems to
be a strong recency preference, which assigns the
relative clause to the closest noun head in a com-
plex NP. A closer look at Arg errors shows that,
in ORed, ORC and OQ, the most frequent errors
are because the parser fails to find the Arg relation
between a preposition and its argument in cases of
preposition stranding.

Based on the comparison of errors of other sta-
tistical dependency parsers on the development
set, shown in Table 4, we can conclude that the
trends of errors by constructions are the same in
all three parsers.

6 Conclusions and Future Work

In this paper, we have evaluated an approach to
learn two-level long-distance representations that
encode argument structure information directly, as
a particularly difficult test case, and shown that
we can learn these difficult constructions as well
as dependency parsers augmented with a dedi-
cated long-distance dependency post-processing
step. This work also shows that resources and
methods to recover these richer representations al-
ready exist.

It is important to recall that the predicate-
argument structure of a clause is considered cen-
tral for NLP applications because it represents
the grammatically relevant lexical semantic con-
tent of the clause. The two-level parser de-
scribed in this paper can recover this information,
while purely syntactic parsers, whether they re-
cover long-distance dependencies or not, would
still need further enhancements.
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