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Abstract

Return-on-Investment (ROI) is a cost-
conscious approach to active learning (AL)
that considers both estimates of cost and
of benefit in active sample selection. We
investigate the theoretical conditions for
successful cost-conscious AL using ROI by
examining the conditions under which ROI
would optimize the area under the cost/benefit
curve. We then empirically measure the
degree to which optimality is jeopardized in
practice when the conditions are violated.
The reported experiments involve an English
part-of-speech annotation task. Our results
show that ROI can indeed successfully reduce
total annotation costs and should be consid-
ered as a viable option for machine-assisted
annotation. On the basis of our experiments,
we make recommendations for benefit esti-
mators to be employed in ROI. In particular,
we find that the more linearly related a benefit
estimate is to the true benefit, the better the
estimate performs when paired in ROI with
an imperfect cost estimate. Lastly, we apply
our analysis to help explain the mixed results
of previous work on these questions.

1 Introduction

In active learning (AL), a sample selection algorithm
sequentially chooses instances, or “samples,” to be
labeled/annotated by an oracle. Each annotated in-
stance results in a measurable benefit, such as an in-
crease in model accuracy, and incurs a specific cost,
such as the time needed to obtain the label. Unfor-
tunately some AL research has ignored the fact that

instances have varying costs. Decision-theoretic ap-
proaches (e.g., Liang et al., 2009) can incorporate
per-instance cost but typically ignore it during ex-
perimentation, due in part to the difficulty of sub-
tracting cost from benefit when they are measured in
different units (Donmez and Carbonell, 2008; Haer-
tel et al., 2008). Return-on-investment (ROI) is a
cost-conscious technique that avoids this require-
ment by selecting the instance x∗ having maximum
net benefit per unit cost, i.e.,

x∗ = argmax
x

bene f it(x)− cost(x)
cost(x)

. (1)

This approach to AL was independently proposed by
Donmez and Carbonell (2008), Haertel et al. (2008),
and Settles et al. (2008); in addition, Tomanek and
Hahn (2010) evaluated the effectiveness of ROI. Un-
fortunately, the published results regarding the use-
fulness of ROI are mixed. In addition, despite its
intuitive appeal as a practical cost-conscious algo-
rithm, there has been little theoretical justification
for the ROI approach to AL.

The purpose of this paper is to provide an initial
theoretical analysis of ROI that, in turn, allows us
to identify the conditions needed for the successful
application of ROI in a practical environment. We
also empirically assess the degree to which violated
conditions affect the overall performance of ROI and
shed some light on the previously published results.
The paper is organized as follows: related work is
presented in Section 2. Section 3 examines the con-
ditions under which ROI would be optimal. Sec-
tion 4 discusses the experimental methodology. Sec-
tion 5 experimentally assesses the extent to which
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the conditions hold in practice – but outside the con-
text of AL – while Section 5 explores the overall
effect on AL. Finally, Section 6 presents our conclu-
sions.

2 Related Work

The essence of active learning is to select the next
“best” instance to be annotated. Naturally, the ques-
tion arises: which sample selection function is op-
timal? Cohn et al. (1996) derive a solution for se-
lecting the instance that minimizes model variance.
A related class of solutions based on optimal ex-
perimental design uses Fisher information to select
the optimal instance (Zhang and Oles, 2000). How-
ever, these approaches fail to account for problems
in which instances are not equally costly to annotate.

Decision theory offers an elegant framework for
(greedily) selecting the next best instance based on
the utility of the instance and considering variable
query costs. Some examples include Liang et al.
(2009), Anderson and Moore (2005), Margineantu
(2005), and Kapoor et al. (2007). In this frame-
work, the optimal instance is the one with maximum
net utility, that is, utility minus cost. However, this
approach requires that utility and cost be measured
in the same units. This requirement is particularly
problematic when heuristics (such as entropy) are
used to approximate expected utility.

Another approach, borrowed from the financial
industry, is return-on-investment (ROI) (Donmez
and Carbonell, 2008; Haertel et al., 2008; Settles
et al., 2008). ROI is related to the decision theo-
retic approach (Haertel et al., 2008); however, un-
like the decision theoretic approach, ROI does not
require conversion between units of utility (benefit)
and cost. ROI has explicitly been employed with
mixed results on a variety of tasks. Donmez and Car-
bonell (2008) show positive results with ROI on face
detection, letter recognition, spam detection, and
high revenue detection tasks but do not evaluate ROI
using variable instance costs. Settles et al. (2008)
evaluate ROI on entity-relation tagging, speculative
text classification, and information extraction. They
limit themselves to an N-best approximation to en-
tropy for the sequence labeling tasks, but in this
study ROI does not outperform basic AL. Haertel et
al. (2008) show positive performance of ROI on En-

glish part-of-speech tagging. Finally, Tomanek and
Hahn (2010) find that ROI slightly outperforms two
new cost-conscious algorithms when an appropriate
benefit function is used.

3 Theoretical Analysis of ROI

The purpose of this section is to provide a bottom-
up theoretical explanation of ROI. The analysis also
provides a framework within which we can explain
why in some previous work ROI has succeeded
while in other work it has failed. This section ex-
amines Area Under the cost/benefit Curve (AUC)
as a suitable objective function and then enumerates
a set of conditions that, if true, would lead to ROI
maximizing AUC. Within the context of a bottom-
up derivation of ROI, the assumptions introduced are
somewhat strong, but we dedicate the remainder of
the paper to analyzing the degree to which they hold
in practice and their effect on practical results.

We begin with a brief set of definitions. AL algo-
rithms sequentially select instances from a set of un-
labeled instances U (“the pool”). As an instance x∈
U is annotated with label y, it results in a measur-
able benefit and also incurs a specific cost. For the
purposes of this section, we follow previous work in
assuming a single annotator and in recognizing that
the benefit and cost of obtaining a particular anno-
tation may depend on previously obtained annota-
tions. Thus, we define total benefit and cumulative
cost to be functions (b(·) and c(·), respectively) of a
sequence of labeled data L = 〈(x1,y1), . . . ,(xn,yn)〉.
For simplicity, we assume that the cost to annotate
an instance is independent of its place in the se-
quence, although it can be shown that this assump-
tion has no bearing on the final analysis. Therefore,
c(L1...i) = ∑i′ c(Li′).

All previous work of which we are aware eval-
uates AL using cost/benefit curves or some deriva-
tion thereof. Cost/benefit curves (a generaliza-
tion of standard learning curves) parametrically plot
b(L1...i) against c(L1...i) for i ∈ {1, . . . , |L|}. Rather
than focusing on a single point, these curves cap-
ture the performance of algorithms over a range of
costs. AUC represents the expected benefit across
the full range of costs and generally speaking algo-
rithms with higher AUC are more desirable. Note
that Settles and Craven (2008) and Baldridge and
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Osborne (2004) use AUC to evaluate AL algorithms.
We now formally define AUC. Assuming linear

interpolation between discrete neighboring points,
AUC is the sum of the area of the right trapezoids
defined by adjacent points on the curve. Let ai(L)
be the area of the ith trapezoid:

ai(L) =
1
2

[c(L1...i)− c(L1...i−1)]

· [b(L1...i−1)+b(L1...i)] (2)

(where c( /0) = b( /0) = 0). Then, the AUC defined by
the sequence L is:

auc(L) = ∑|L|i=1 ai (L) . (3)

Maximizing AUC using AL can be seen as a sequen-
tial decision problem in which each decision con-
sists of selecting an instance for annotation. The op-
timal instance to select given previous annotations
L, will depend on the decision’s effect on the next
decision, and the effect of the second decision on
the third, and so forth, until all decisions have been
made. To account for this recursive dependence, we
must consider entire sequences of decisions. Note
that if we do not allow instances to be selected more
than once from U we will eventually choose every
instance and the number of decisions per sequence
is N = |U |.1 Additionally, since the actual annota-
tions that the oracle will provide are unknown, they
must be considered in expectation, represented with
random variables Yi. Given a sequence of already an-
notated data L, one approach to maximizing AUC in
expectation that accounts for this recursive effect of
decisions is (see Haertel et al., 2008 for a decision-
theoretic variant):

x∗1, . . . ,x
∗
N = argmax

x1,...,xN

EY1...YN |x1...xN ,L [auc(L⊕〈(x1,y1) . . .(xN ,yN)〉)] (4)

where ⊕ represents sequence concatenation. Al-
though finding the optimal sequence in this way ac-
counts for the effects each decision has on succes-
sive decisions, in fact, the sequential decision pro-
cess protocol requires only the first instance in this

1This limit is rarely reached in practice due to budgetary
constraints, however, such a constraint does not affect the cur-
rent analysis. One simply performs computation as if they were
going to annotate all instances, but then only selects the best
instance, repeating the process until the budget is exhausted.

sequence, viz., x∗1. We then append x∗1 and the ora-
cle’s annotation for the instance y1 to L. The result
is an updated belief reflected in the expectations (via
the new L) used to select the next instance.

We now derive ROI from equation 4 under the fol-
lowing conditions:

1. The covariance of cost and benefit is zero.

2. The cost and benefit of each instance are in-
dependent of the order in which instances are
annotated.

3. Each random variable yi (i.e., label) is condi-
tionally independent of all other y j 6=i, given xi

and L.

4. Cost and benefit are exact up to a scalar con-
stant.

The reader is reminded that we do not necessarily
presume these conditions to hold in practice; we
briefly discuss their practicality herein and later em-
pirically examine the degree to which they hold.

First, while it is conceivable that cost and ben-
efit have zero covariance in some annotation prob-
lems, there are certainly cases where there may be
some correlation. This correlation is especially evi-
dent in structured prediction problems, e.g., “larger”
instances (e.g., long sentences) will tend to contain
more information but be more costly. However, to
our knowledge, the amount of correlation in such
cases has not been studied previously. Second, al-
though cost may be independent of annotation order
(as implicitly assumed by previous work, e.g., Set-
tles et al., 2008), the benefit of an instance will, in
fact, usually depend on the order in which it is an-
notated. Consider, for example, a pool of instances
in which there are several similar instances (e.g., the
same word in the same context with the same part-
of-speech). By annotating one of the instances, the
model will likely learn what it needs from this single
instance and therefore the benefit of annotating the
others is greatly diminished. Third, the conditional
independence assumption is similar to the assump-
tion that benefit is independent of the order in which
instances are annotated, but applies distributionally
and is more mathematically precise. Finally, opti-
mal (exact) benefit estimators are computationally
intractable. While some approaches are optimal for
the last decision and perform very well (e.g., Roy
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and McCallum, 2001), these approaches are imprac-
tical for structured prediction tasks; we will exam-
ine the effectiveness of several heuristic benefit esti-
mators in our empirical examination. Similarly, al-
though cost is sometimes knowable a priori it often
is not. However, Settles et al. (2008) showed that
cost can be reliably learned in practice.

While we defer the question of the degree to
which these assumptions are violated in practice to
our experiments, we proceed with the analysis as
if they were true to better understand the theoreti-
cal underpinnings of ROI. In the context of maxi-
mization, the scalar constants allowed by condition
4 can be ignored. The linearity property of expec-
tations allows us to move the expectation in equa-
tion 4 inside of the sum in equation 3. The first con-
dition then allows us to move the expectation further
into the area calculation so that equation 2 becomes
(omitting expectation indices for brevity):

ai(L) =
1
2

(E [c(L1...i)]−E [c(L1...i−1)])

· (E [b(L1...i−1)]+E [b(L1...i)]) . (5)

Condition 2 implies that b(L1...i) = ∑i
i′=1 b(Li′); ap-

plying linearity, we obtain:

E [b(L1...i)] =
i

∑
i′=1

Eyi′ |x1...i′ ,y1...i′−1,L [b(Li′)] (6)

(idem. for cost). Finally, condition 3 implies that:

E [b(L1...i)] =
i

∑
i′=1

Eyi′ |xi′ ,L [b(Li′)] (7)

(idem. for cost). This result allows us to compute the
expected cost and benefit of each instance once per
iteration of active learning (as is common outside
of decision theoretic frameworks). Because these
quantities can be computed independently of one an-
other, we can represent each instance xi by a line
segment with fixed width and height—the expected
cost and benefit, respectively, according to the cur-
rent model—and statically compute the area using
these line segments.

It can be proven that, under these conditions, the
sequence x∗1, . . . ,x

∗
N that maximizes AUC is the se-

quence that is in non-strict slope-non-increasing or-
der.2 This is precisely the ordering provided by ROI

2A detailed proof sketch is provided by Haertel (2013).

(see equation 1). Thus, under these conditions, ROI
is optimal. (Recall that typically only the first ele-
ment x∗1 is annotated, models are updated, then the
process repeats).

4 Experimental Methodology

In this section, we describe our methodology for em-
pirically assessing the degree to which the condi-
tions of Section 3 hold in practice and define what
we mean by practical contexts. Space constraints
limit our experiments to a single task: English part-
of-speech (POS) tagging on the POS-tagged Wall
Street Journal text in the Penn Treebank version 3
(Marcus et al., 1993).

For this task, we employ Maximum Entropy
Markov Models (MEMMs) to model the distribu-
tion of tags given words, p(t|w). The model choice
is motivated primarily by the speed of retraining.
AL typically begins with a small set of randomly
selected instances: we use 100 instances annotated
“from scratch” (i.e., without AL). However, we do
account for the cost incurred by annotating the seed
set using the cost simulation described below. Each
experiment is run 5 times with a different random
seed. For TVE (a committee-based approach; see
below), we use a committee size of 5 and train
all members in parallel. We additionally score in-
stances in parallel, using 4 threads; the remaining
processors are used for training the cost model, eval-
uating benefit, and garbage collection. For non-
committee methods, we found that extra scoring
threads do not improve results. All simulations
are run on dual hex-core Intel Westmere 2.67 GHz
CPUs equipped with 24 GB of RAM.

4.1 Active Learning Simulation

We are interested in empirically testing ROI outside
of the clean mathematical environment implied by
Section 2. However, the number of experiments we
performed necessitated running AL in simulation.
Nevertheless, we employ various techniques to keep
the simulation as true-to-life as possible.

Most importantly, each time we select an instance
for an annotator to annotate, we simulate the length
of time the annotator will need to annotate the in-
stance (i.e., the cost) using Ringger et al.’s (2008)
linear cost model derived from user study data. This
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model assumes that instances are pre-annotated us-
ing an automatic annotation model, and the task of
the annotator is to correct the errors from the predic-
tive model. The length of time required to annotate
a sequence w, pre-annotated with hypothesis tags t
and true tags y, is:

cost(w,y, t) = α +β · |w|+ γ ·∑|y|i=11(yi 6= ti) (8)

The sum represents the number of tags from the pre-
annotation that the annotator changed. We estimate
the parameters of the linear model (α = 50.534,β =
2.638,γ = 4.440) using the user-study data from
Ringger et al. (2008). To add noise to the simulated
cost, we generate a random deviate from a shifted
Gamma distribution having mean equal to the time
predicted by the model, a variance of 5063.35 (the
empirical variance of the user-study data), and a
shift of 10.0 (near the minimum time). We chose a
(shifted) Gamma distribution because the data from
the user study appear to be Gamma distributed; as an
added benefit, the generated values are guaranteed to
always be positive.

In our experiments, we simulate the scenario
in which annotators request instances to annotate
on demand, e.g., by requesting work on a crowd-
sourcing service; we call this annotator-initiated AL.
This AL contrasts to the alternative in which the al-
gorithm spends time determining the next instance
to be annotated and then sends the instance to an
annotator to perform the work. We call this lat-
ter paradigm learner-initiated AL. The usual implicit
assumption in learner-initiated AL is that no cost is
incurred between the time the machine sends a re-
quest to the annotator and the time the annotator
actually starts the work. This assumption is unre-
alistic, despite being the approach to AL simula-
tion in previous work; real annotation projects are
annotator-initiated (e.g., crowd-sourcing). The “Par-
allel No-Wait” active learning framework introduced
by Haertel et al. (2010) follows the more true-to-life
annotator-initiated paradigm and provides the guar-
antee that annotators never need to wait for an in-
stance. We further extend the framework by scoring
instances, training the cost model, and training the
tagging model in parallel.

Realistic annotation environments also often in-
volve multiple annotators (cf. Donmez and Car-
bonell, 2008). We take an incremental step towards

allowing multiple annotators by assuming that all
annotators are infallible and have the same distribu-
tion over the amount of time to annotate any given
instance. Under these circumstances, each instance
needs to be annotated only once, and annotators are
interchangeable. We simulate in real time 20 tire-
less oracles who continuously and simultaneously
annotate instances for 50 hours each. In contrast to
learner-initiated AL, this represents the worst possi-
ble case for the no-wait framework since models are
maximally out-of-date. Thus, this simulation pro-
vides an empirical lower bound on the AUC.

4.2 Cost Estimation

The denominator in ROI is an estimate of the cost
to obtain a label for the instance being scored. This
estimate is not to be confused with the simulation of
annotation times for selected instances, as described
in the previous section. The cost estimate (as used in
ROI) is computed over many instances to help select
an informative instance when the annotator requests
one. Once the instance has been selected, we then
(noisily) simulate what it would cost for the anno-
tator to annotate it, as described above. For algo-
rithms that estimate cost as the time to annotate an
instance, we learn a linear model of the same form
as equation 8. The coefficients are learned using the
data obtained during AL (ultimately obtained from
the noisy simulation). However, since we do not
know which of the automatically pre-annotated tags
are incorrect during estimation, we must compute
the expected number of incorrect tags in place of the
sum in equation 8.

The results of our experiments are potentially
better than in practice since our cost estimate has
exactly the same form as the simulated true cost.
However, the results are still useful because (1) the
gamma-distributed noise in the true cost has high
variance and (2) the estimate is computed in expec-
tation (using the learned model).

4.3 Benefit Estimation

ROI’s numerator is an estimate of the benefit of ob-
taining a label for a given instance. As previously
mentioned, optimal benefit estimators are imprac-
tical for structured learning problems; uncertainty-
based heuristics are typically employed instead. Let
t represent a sequence of tag assignments for sen-
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tence w. Drawing mostly from previous studies, we
consider the following:

Constant (CONST) assumes all instances have
equal benefit.

Approximate Token Entropy (ATE) (Settles
and Craven, 2008) approximates the true sequence
entropy as the sum of the entropy of the individual
marginal distributions p(ti|w). The marginal distri-
butions can in turn be approximated as p(ti|w) ≈
p(ti|t∗i−1,w) where t∗i−i is the (i− 1)th tag in the
Viterbi best sequence t∗; a beam search can signifi-
cantly reduce computation.

Monte Carlo Entropy (MCE) uses a Monte
Carlo approximation to compute the entropy, i.e.,
E[− log p(t|w)], using samples taken from t|w (the
trained MEMM).

N-best Sequence Entropy (NSE) (Settles and
Craven, 2008) approximates sequence entropy by
computing the entropy of the top-n sequences,
where the probabilities are re-normalized to sum to
unity.

Least Confidence (LC) (Culotta and McCallum,
2005), in contrast to entropy, is not concerned with
the distribution over the entire support, but rather fo-
cuses on the best option and its complement (the rest
of the support). It is the probability of being wrong,
i.e., 1−maxt p(t|w).

Negative Max Log Probability (NMLP) (Haer-
tel et al., 2010) is defined as −maxt log p(t|w); it
ranks instances the same as LC but with different
scores under the assumption that the relationship be-
tween probabilities and change in accuracy is loga-
rithmic rather than linear.

Token Vote Entropy (TVE) (Engelson and Da-
gan, 1996) uses a committee of classifiers trained
from bootstrapped samples of the annotated data.
For each word, each committee member votes for
the tag it predicts for its word; the entropy of the
distribution over votes is summed over each word in
the sentence.

5 From Theory to Practice: To What
Degree Are the Conditions Met?

In this section, we empirically test some of the con-
ditions from the preceding analysis in practical con-
texts. For the purposes of this work, we are mostly
interested in examining conditions 1 and 4. While

condition 3 (conditional independence) is assumed
in most previous work, we leave quantification of
the effects of violating this condition and the related
condition 2 to future work.

For these experiments, it is necessary to estimate
true benefit and cost. Due to the complexity of so
doing, we compute the various metrics along a pas-
sive learning curve (i.e., without AL). We compute
the true cost of each instance as described in Sec-
tion 4.1. In order to estimate the true benefit of a par-
ticular instance at a particular point on the learning
curve, we assume that the true benefit of an instance
is the change in held-out accuracy that would result
from incorporating the instance with its annotation
into the training data; we ignore the effects of future
choices. We compute the change in accuracy (ben-
efit) by adding the instance and its true label to the
training data, retraining the model, and then com-
puting the model’s new accuracy on the held-out set.
The process is repeated to compute the true benefit
of at least 1,000 instances and the statistics noted be-
low are averaged over 5 random initial training sets.
We use one standard error as a simple measure of
statistical significance.

Is the covariance of cost and benefit zero? Us-
ing the aforementioned methodology, we compute
Pearson’s correlation coefficient (a normalized form
of covariance) between benefit and cost. As seen
in figure 1a, true benefit and cost have virtually no
correlation when model quality is high, and is only
weakly correlated in the early stages. Thus, condi-
tion 1 roughly holds.

To what extent is the cost estimate a scalar mul-
tiple of true cost? Using the technique mentioned
above, we produce pairs of true cost and estimated
cost at various locations along the learning curve
and compute R2 values of a linear model estimated
with the y-intercept fixed at zero. Pearson’s corre-
lation coefficient is inappropriate since it would al-
low for the cost estimate to be shifted in addition
to being scaled. An R2 of 1.0 would indicate that
the cost estimate was an exact scalar multiple of the
true cost, while a zero would indicate no scalar rela-
tionship. We repeat this test with differing amounts
of variance in the simulated cost, which allows us
to assess the effect of poor cost models (good mod-
els will account for most of the variance). The re-
sults are shown in Figure 1b. The exponential decay
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(a) (b)

(c) (d)

Figure 1: At various points on the learning curve: (a) correlation between true cost and true benefit (b) R2

values representing the degree to which the cost estimate is a scalar multiple of the true cost, for varying
amounts of variance in the noise model at two points on the learning curve (83% and 96%). (c) R2 values
representing the degree to which various benefit estimators are scalar multiples of true benefit (d) POMAS
of the top-20 instances. Error bars represent one standard error.

as variance increases underscores the importance of
accounting for as much variance as possible in the
cost model. We found the R2 values to be around
0.745 and 0.785 when the variance was equal to that
of the aforementioned user study (and the one used
through the remainder of the experiments). We note
that these numbers may be overly optimistic given
the similarity between the model used to simulate
annotation times and that used to estimate cost. As
a point of reference, Settles et al. (2008) and Arora

and Nyberg (2011) report R2 values for cost mod-
els for different tasks on the order of 0.3–0.4. Even
these values indicate some scalar relationship be-
tween true and estimated cost as per condition 4.

To what extent are various benefits estimators
scalar multiples of true benefit? We repeat the
experiment described for cost, but reporting the R2

values for the fit between true benefit and several
benefit estimators; Figure 1c depicts the results. Al-
though the R2 values are much worse than for the
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cost estimate, they are still reasonable. Most of
the separation of algorithms (where it exists statis-
tically) occurs during the beginning stages of learn-
ing. NMLP has a slight (though not statistically sig-
nificant) advantage over ATE and MCE while all
three are more linearly related to true benefit than
NSE and LC. Once the model achieves 91% accu-
racy, there is no separation. The results suggest that
condition 4 holds weakly for benefit estimators.

Are instances with the highest slopes being se-
lected? The success of ROI depends on its ability to
select the instance with the highest slope. Using the
aforementioned setup, we compute the largest slope
of the candidate instances on the basis of estimated
benefit and cost and divide it by the largest slope ac-
cording to the true values; we call this value the Per-
centage of Maximum Attainable Slope (POMAS).
Since multiple instances can be selected using the
same model in the no-wait framework, we repeat this
procedure for the second highest slopes, etc., for the
top-20 slopes and average them. The results are in
Figure 1d. The separation between algorithms at the
beginning mirror those of Figure 1c. We note that
there is ample room for improvement even amongst
the best algorithms we tried.

6 Active Learning Results and Discussion

The previous experiments were conducted outside of
the context of AL in order to gain insight into how
well the conditions of section 2 are met in practice.
However, the most direct evaluation is the compar-
ison of the actual quantity of interest, AUC, in the
type of practical AL defined above. We compare
normalized AUC (expected benefit) for several ben-
efit estimators and two cost estimates and discuss the
results in light of the previous section and the theory
from Section 2.

Although not predicted by the theory per se,
we would expect AUC to decrease with degrada-
tions in the cost and/or benefit estimates. First,
we compare the AUC when using the true cost in
the ROI calculations (thus satisfying one half of
condition 4) and compare the results to using esti-
mated cost learned during AL. The results are dis-
played in Figure 2. Interestingly, when cost is ex-
actly known (perfectly predictable), all estimators–
even CONST–readily outperform the random base-

Figure 2: Expected benefit (normalized AUC) for
various benefit estimators with true and estimated
costs. The median baseline performance (rnd) is
depicted as a dashed line and is the same for both
experiments. Estimated cost affects the benefit esti-
mates to different degrees.

line. Furthermore, the difference between most of
the estimators (except perhaps CONST) is not sta-
tistically significant, which suggests that a good cost
estimate may be capable of overcoming deficiencies
in even very poor benefit estimators like CONST.
Not surprisingly, all algorithms perform worse when
using the learned estimate of cost during AL (in-
dicated by the downward arrows), even though the
MSE of the learned cost models was high–on the or-
der of the variance in the simulated times.

Further support that AUC depends on the qual-
ity of estimates comes from the fact that the per-
formance of the various algorithms exactly follows
the quality of the corresponding benefit estimate (see
Figures 1c and 1d). In fact, LC and NSE do no better
than random and CONST does much worse. Upon
further examination, we found a common property
between these benefit estimators, namely, that most
scores fall within an extremely narrow range; i.e.,
there was very little difference between the (benefit)
scores of most instances (CONST being the extreme
case). NSE differs from the other entropy estimates
primarily in the re-normalization. Due to their na-
ture, structured prediction problems have very large
supports which tend to have long tails. Therefore
the top-n probabilities grossly underrepresent these
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distributions and renormalization makes scores very
similar to each other—even for instances of differing
lengths. Similarly, although LC and NMLP would
rank instances the same (before dividing by cost; di-
viding by cost alters the rankings), the log in NLMP
produces greater spread in the score. Since the cost
estimates are better dispersed, they tend to dominate
ROI for these “low-spread” benefit estimators. To
illustrate, consider the extreme case of CONST by
substituting an arbitrary constant for benefit in equa-
tion 1: instances are selected lowest-expected-cost
first. On our particular task, this scenario is particu-
larly undesirable as the shortest sentences are nearly
always the cheapest but disproportionately informa-
tion poor (a contributing factor to the non-zero cor-
relation). In more general terms, as the spread in the
benefit estimates approaches zero (as in CONST),
the cost estimates increasingly become the discrim-
inating factor. While this behavior is correct for
perfect benefit and cost estimates, it is problematic
when condition 4 is violated.

The results also highlight the fact that expen-
sive scoring algorithms are naturally penalized in
annotator-initiated AL. The relatively expensive
sampling in MCE leads to slightly lower perfor-
mance than cheaper entropy estimates (ATE); the
relatively cheap NMLP outperforms TVE, which in-
curs the expense of multiple models.

The mixed results of previous work are explain-
able based on our analysis. While condition 4 re-
quires that cost and benefit estimators be scalar mul-
tiples of the true values, our empirical results sug-
gest that better estimates yield higher AUC. We have
explained why NSE has poor mathematical prop-
erties for structured learning tasks and is therefore
expected to produce relatively low AUC, hence the
negative results on the structured prediction tasks
of Settles et al. (2008). In contrast, the authors
report positive results on a standard classification
problem using exact entropy calculations, coincid-
ing with our results in which the good (i.e., non-
NSE) entropy estimators are good estimators. We
have also explained the poor properties of LC for
structured prediction; the results of Tomanek and
Hahn (2010) present further empirical evidence. In-
terestingly, they find that exponentiating LC leads to
positive results. Mathematically, exp(β (1− p)) be-
haves similarly to−log(p) (NLMP) in that they both

separate scores that are close together—the former
much more so than the latter, especially for proba-
bilities of the very low magnitudes seen in structured
prediction problems. This separation gives the ben-
efit estimate more influence relative to cost as com-
pared to LC. In sum, the negative results of previous
work are due to poor benefit estimators, in particular
LC and NSE; in contrast, positive results are due to
better benefit estimators.

7 Conclusions and Future Work

ROI-based AL successfully reduces annotation costs
in practice by maximizing the area under the
cost/benefit curve. We have provided an initial the-
oretical justification for ROI-based AL in a bottom-
up fashion. We have shown empirically that, for our
task, true benefit and cost have little-to-no correla-
tion when model quality is high; cost estimates have
a scalar relationship to true cost; similarly for benefit
estimates, though to a lesser degree; and the estima-
tors that demonstrated the most scalar relationships
to the truth resulted in higher AUC.

Although we focused our empirical analysis on a
single task, other studies have applied ROI to several
tasks and problem types, and their results are consis-
tent with our analysis. As a result of this work, we
recommend that practitioners carefully select their
benefit and cost estimators, ensuring that they are
“good” estimators for their task as described above.
Particular attention should be paid to the cost esti-
mator: even trivial benefit estimators out-performed
random with a perfect cost estimator. Also note that
estimators (e.g. NSE and LC) that produce scores
with relatively little “spread” should be avoided. Fu-
ture work could consider using a small set of anno-
tated data to estimate how scalar the relationship of
the estimators are to true benefit and cost before an-
notation begins.

Our empirical results suggest that deficiencies in
even the best benefit estimators lead to the selection
of suboptimal instances. Future work could focus on
directly and tractably estimating true cost and bene-
fit for structured prediction problems, and automat-
ically tuning heuristic estimators to match true ben-
efit during AL. Future work may also benefit from
investigating a different set of conditions for simpli-
fying equation 4.
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