
Proceedings of NAACL-HLT 2015, pages 8–16,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Unsupervised Text Normalization Using Distributed Representations of
Words and Phrases

Vivek Kumar Rangarajan Sridhar∗
AT&T Labs - Research

1 AT&T Way, Bedminster, NJ 07920

Abstract

Text normalization techniques that use
rule-based normalization or string similar-
ity based on static dictionaries are typ-
ically unable to capture domain-specific
abbreviations (custy, cx → customer) and
shorthands (5ever, 7ever → forever) used
in informal texts. In this work, we ex-
ploit the property that noisy and canoni-
cal forms of a particular word share simi-
lar context in a large noisy text collection
(millions or billions of social media feeds
from Twitter, Facebook, etc.). We learn
distributed representations of words to
capture the notion of contextual similarity
and subsequently learn normalization lex-
icons from these representations in a com-
pletely unsupervised manner. We experi-
ment with linear and non-linear distributed
representations obtained from log-linear
models and neural networks, respectively.
We apply our framework for normalizing
customer care notes and Twitter. We also
extend our approach to learn phrase nor-
malization lexicons (g2g → got to go) by
training distributed representations over
compound words. Our approach outper-
forms Microsoft Word, Aspell and a man-
ually compiled urban dictionary from the
Web and achieves state-of-the-art results
on a publicly available Twitter dataset.

1 Introduction

Text normalization is a prerequisite for a variety of
tasks involving speech and language. Most natu-
ral language processing (NLP) tasks require a tight
and compact vocabulary to reduce the model com-
plexity in terms of feature size. As a consequence,
applications such as syntactic tagging and parsing,
semantic tagging, named entity extraction, infor-
mation extraction, machine translation, language

∗The author is currently with Apple, Inc., and can be
contacted at vrangarajansridh@apple.com.

models for speech recognition, etc., are trained
on clean data that is normalized and restricted to
some user defined vocabulary. Conventionally,
most NLP researchers perform such normalization
through rule-based mapping that can get unwield-
ily and cumbersome for extremely noisy texts as
in SMS, chat or social media.

Unnormalized text, as witnessed in social me-
dia forums such as Facebook, Twitter and message
boards, or short messaging service (SMS), have
a variety of issues with spelling that include re-
peating letters, eliminating vowels, using phonetic
spellings, substituting letters (typically syllables)
with numbers, using shorthands and user created
abbreviations for phrases. The remarkable prop-
erty of such texts is that new variants of canonical
words and phrases evolve constantly (e.g., jghome
→ just got home). Hence, it is important to de-
sign a framework that can learn the mapping be-
tween unnormalized and canonical forms of such
words and phrases in an unsupervised and exten-
sible manner.

Conventional edit distance (Levenshtein, 1966)
based approaches are not accurate for predicting
spelling correction for large number of edits in
abbreviations and shorthands found in informal
texts. In this work, we exploit the property that
noisy and canonical forms of a particular word
share similar context in a large noisy text collec-
tion (millions or billions of social media feeds
from Twitter, Facebook, etc.). We represent the
words in a vector space using distributed repre-
sentations to capture the notion contextual similar-
ity and subsequently learn normalization lexicons
from these representations. The distributed repre-
sentations are induced either through neural net-
works (non-linear embeddings) or log-linear mod-
els (linear embeddings). The proposed approach
uses the property of contextual similarity between
canonical and noisy versions of a particular word
to cluster them in RD, where D is the dimen-
sion of the distributed representation. We also
extend our framework to learn one-to-many map-
pings (e.g., ily → i love you, nbd → no big deal

8

by learning distributed representations over words
and phrases.

We demonstrate the fidelity of our approach
on customer care domain and Twitter. We also
compare our approach with Microsoft Word, As-
pell, custom dictionaries compiled from the Web
as well as state-of-the-art techniques for unsuper-
vised normalization.

2 Related Work

Text normalization has been traditionally per-
formed in a task specific manner through string
edit operations. While a large proportion of NLP
researchers still perform this exercise manually by
writing regular expression patterns, several auto-
matic procedures have been proposed. A sim-
ple way to perform this string edit operation is
by using a noisy channel model (Brill and Moore,
2000). However, this requires supervised training
data in the form of the canonical and erroneous
strings. Since words are spoken using phonet-
ics, it is instructive to look at the problem from
the point of pronunciation changes. For exam-
ple, (Toutanova and Moore, 2002) extended the
noisy channel framework to include word pronun-
ciation information. The aspell tool for spelling
correction also works on a phonetic algorithm for
string normalization (Philips, 1990).

(Cook and Stevenson, 2009) introduced an un-
supervised noisy channel model that considered
several word formation processes in a generative
model. Another popular way to normalize or even
punctuate text is by using phrase-based machine
translation. (Aw et al., 2009) used a character
level phrase-based machine translation approach
to translate SMS text into clean English text. How-
ever, such an approach still requires supervised
training data. Furthermore, noisy channel mod-
els typically do not use wider context in resolving
the normalization problem. Clearly, many of the
unnormalized forms appear in the same context as
the canonical form and exploiting such informa-
tion is critical.

Social media text normalization using contex-
tual graph random walks was recently proposed
in (Hassan and Menezes, 2013). They use a lexi-
con based approach where the normalization lex-
icon is obtained in an unsupervised manner by
performing random walks on contextual similar-
ity graphs (bipartite) constructed from n-gram se-
quences. A similar approach using distributional

similarity was also proposed in (Han et al., 2012a)
where a pairwise similarity deems two words with
identical context to be normalization equivalences.
Due to the pairwise computation, it does not result
in a globally optimized equivalence. Our frame-
work is most similar to (Hassan and Menezes,
2013) as we also use the notion of distributional
similarity between strings at a corpus level to iden-
tify normalization equivalences in an unsupervised
manner. In contrast, we use distributed representa-
tion of words to capture contextual similarity and
learn unsupervised lexicons using both lexical and
vector space feature functions. The proposed ap-
proach is relatively simple, scalable and easily re-
producible.

3 Distributed Representation of Words

Conventional NLP applications typically use one-
hot encoding where each word in the vocabulary
is represented by a bit vector. Such a represen-
tation exacerbates the data sparsity problem and
does not exploit any semantic or syntactic rela-
tionship that may be present amongst subset of
words. Distributed representation of words (also
called word embeddings or continuous space rep-
resentation of words) has become a popular way
for capturing distributional similarity (lexical, se-
mantic or even syntactic) between words. The ba-
sic idea is to represent each word wi ∈ V with a
real-valued vector of some fixed dimensionD, i.e.,
wi ∈ RD ∀ i = 1, · · · , V . The idea of repre-
senting words in vector space was originally pro-
posed in (Rumelhart et al., 1986; Elman, 1991).
However, improved training techniques and tools
in the recent past have made it possible to obtain
such representations for large vocabularies.

Distributed representations can be induced for a
given vocabulary V in several ways. While they
are typically induced in the context of a deep neu-
ral network framework for a given task (Bengio
et al., 2003; Collobert and Weston, 2008; Bengio
et al., 2009; Turian et al., 2010; Mikolov et al.,
2010), recent work in (Mikolov et al., 2013) has
also shown that they can also be induced by using
simple log-linear models. Since in many practical
NLP applications, the distributed representations
are learnt along with the task, the word vectors
will have some notion of task dependent distribu-
tional similarity. It is this exact notion of contex-
tual and distributional similarity that we exploit in
this work to learn normalization lexicons in an un-

9

wt�2

wt�1

wt+1

wt+2

wt

{forever, 5ever, 4ever, forevr}

{took,love}

{you,me}

{to,with}

{go,heart}

Projection

(a) Continuous Bag-of-Words Architecture

Lookup Table d

d*5 (concatenation)

Linear

Tanh

Linear

Lookup Table d

d*5 (concatenation)

Linear

Tanh

Linear

love you forever with heart love you example with heart
took you 4ever to go took you washington to go

f✓(s) f✓(sc)

Loss = max(0, 1� f✓(s) + f✓(sc))

(b) Neural Network Architecture

Figure 1: Illustration of obtaining distributed representations for text normalization using two different
approaches

supervised manner.
Figure 1 shows two different architectures for

inducing distributed representations. On the left
side, the architecture for the continuous bag-of-
words model (Mikolov et al., 2013) is shown while
the neural network learning architecture for induc-
ing distributed representations in language mod-
els (Collobert and Weston, 2008) is shown on the
right. Both these frameworks essentially perform
a similar function in that the word representations
are created based on contextual similarity. Fig-
ure 1 also shows an example of the contextual sim-
ilarity that can be exploited such that canonical
and noisy versions of a particular word have sim-
ilar vector representation (in terms of some simi-
larity metric). It is shown that the words {forever,
4ever, 5ever, forevr} share similar context. It is
also interesting to note that the word 5ever that is
used to mean longer than 4ever can be identified
to mean forever that edit distance matching is typ-
ically not able to capture.

Language
en

Corpus Vocabulary #Sentences
Customer care 7846840 870491324
Twitter 8371078 178770137

Table 1: Statistics of the data used to learn dis-
tributed representations

4 Data

We use two sources of data in our work. One is
internal anonymized customer care notes and the
other is Twitter. The customer care data refers to
notes made by agents at mobility call centers when

customers make a call. Each call typically results
in one record and the notes typically consist of a
brief summary of the call from the representative
side. The data we use does not contain any meta-
data beyond the text description. We used all the
data between Dec 2012 and Jan 2014. The text
data is extremely noisy as the agents are making
these notes either during their interaction or imme-
diately afterward. Hence, the data contains several
spelling errors and abbreviations that need to be
corrected before performing any large scale data
analytics.

We also acquired a 10% random sample of
Twitter firehose data across all languages. As a
first step, we filtered the tweets by language code.
Since the language code is a property set in the
user profile, the language code does not guarantee
that all tweets are in the same language. We used
a simple frequency threshold for language iden-
tification based on language specific word lists.
Subsequently, we performed some basic clean-up
such as replacing usernames, hashtags, web ad-
dresses and numerals with generic symbols such
as user , hashtags , url and number . Finally,
we removed all punctuations from the strings and
lowercased the text. In this work, we perform our
experiments on English.

5 Training Distributed Representations

We used two approaches (see Figure 1) for learn-
ing both linear and non-linear distributed represen-
tations of words. For the non-linear neural net-
work approach, we used an architecture identical
to that in (Collobert and Weston, 2008), i.e., the
network consisted of a lookup table, hidden layer

10

with 100 nodes and a linear layer with one output.
However, we used a right and left context of 5 (or
7) words and corrupted the centre word instead of
the last word to learn the distributed representa-
tions. Given a text window s = {w}wlen1 , wlen1

is the window length, and a set of parameters as-
sociated with the network θ, the network outputs
a score fθ(x). The approach then minimizes the
ranking criterion with respect to θ such that:

θ 7→
∑
s∈X

∑
w∈V

max{0, 1− fθ(s) + fθ(sc)} (1)

where X is the set of all windows of length wlen
in the training data, V is the vocabulary and sc
denotes the corrupted version of s with the mid-
dle word replaced by a random word w in V .
We used a frequency threshold of 10 occurrences
for the centre word, i.e., all words below this
frequency was not considered in training. We
performed stochastic gradient minimization over
1000 epochs on each dataset and used the Torch
toolkit (Collobert et al., 2011) to train the repre-
sentation.

We also used a log-linear model for inducing the
distributed representations using the continuous-
bag-of-words architecture proposed in (Mikolov
et al., 2013). The continuous-bag-of-words
model is similar to the neural network language
model (Bengio et al., 2003) with the non-linear
layer replaced by a sum pooling layer, i.e., the
model uses a bag of surrounding words to pre-
dict the centre word. Since the implementation of
this architecture was readily available through the
word2vec tool2, we used it for inducing the repre-
sentations. We used hierarchical sampling for re-
ducing the vocabulary during training and used a
minimum count of 10 occurrences for each word.

The framework presented in this paper can also
work with word vectors obtained using other tech-
niques such as latent semantic indexing, convolu-
tional neural networks, recurrent neural networks,
etc.

6 Learning Normalization Lexicons

Once we obtain the set of word embeddings
wi 7→ di, ∀i ∈ V ;di ∈ RD, our frame-
work requires a list of canonical words as in-
put. For English, we used a wordlist from Project

1wlen in our work is an odd number, e.g., wlen = 11
implies a left and right context of 5 words

2https://code.google.com/p/word2vec/

Gutenberg (http://www.gutenberg.org/
ebooks/3201) consisting of 113809 words.
Given a canonical word s1, we find the K-nearest
neighbors in the vector space and objectively mea-
sure the similarity between s1 and the neighbors,
i.e., from each pair of strings s1 and s2 with cor-
responding vectors u and v, we obtain lexical and
vector space features described below.

6.1 Similarity Cost
The cosine distance between two D-dimensional
vectors u and v is defined as,

cosine similarity =

D∑
i=1

ui × vi√
D∑
i=1

(ui)2 ×
D∑
i=1

(vi)2

(2)

The lexical similarity cost is computed similar to
that presented in (Hassan and Menezes, 2013).

lexical similarity(s1, s2) =
LCSR(s1, s2)
ED(s1, s2)

(3)

LCSR(s1, s2) =
LCS(s1, s2)

Max Length(s1, s2)
(4)

where LCSR refers to the Longest Common Sub-
sequence Ratio (Melamed, 1995), LCS refers to
Longest Common Subsequence and ED refers to
the edit distance between the two strings. For
English, the edit distance computation was mod-
ified to find the distance between the consonant
skeleton of the two strings s1 and s2, i.e., all the
vowels were removed. Repetition in the strings
was reduced to a single letter and numbers in the
words were substituted by their equivalent letters.
The general algorithm for learning a normalization
lexicon through our approach is presented in Al-
gorithm 1. While it is possible to learn optimal
weights for several feature functions through min-
imum error rate training (Och, 2003), we use uni-
form weights in the absence of a significant held-
out set for optimization.

6.2 Representation of Lexicons using FSTs
We compile the lexicon L obtained using Algo-
rithm 1 into a finite-state transducer with the arc
score equal to the negative logarithm of the sim-
ilarity cost (for finding the path with least cost).

11

0/0

adavised:advised/-9999
adbised:advised/-0.87
adbised:advise/-0.49
adised:advised/-0.88
adivced:advised/-0.75

csuotmer:customer/-9999
csustomer:customer/-9999
cuostmer:customer/-9999
cusst:customer/-0.41
custy:customer/-0.42
cux:customer/-0.29

<unknown>:<unknown>/0

° ° LM)adavised cux to call
hotline

advised customer to call
hotlinebestpath(input fsm

1.38

0.86
0.89

-13.8

-13.8
-13.8

0.28

-13.8

0.12

0.71

0.14

Figure 2: Illustration of the normalization technique using finite state transducers. The unknown words
in the input are preserved in the output.

Algorithm 1 Unsupervised Lexicon Learning

input {di}|V |i=1: distributed representation of
words for vocabulary |V |
input K: number of nearest neighbors
input COST: lexical similarity metric
input W: list of canonical words
for each w ∈ W do

for each i ∈ |V | do
if wi 7→ di /∈ W then

Compute cosine distance between di
and d(w)
Store top K neighbors in map L(w)

for each w ∈ W do
for each o ∈ L(w) do

Compute COST(w,o)
Push w 7→ {o,COST(w,o)} into D

Invert the map D to obtain lexicon L

The normalization lexicon is converted into a sin-
gle state finite-state transducer (FST) with the in-
put and output labels being the noisy and canoni-
cal word, respectively. In all our experiments, we
used the number of nearest neighbors K = 25.

Given a sentence that needs to be normalized,
we form a linear FSM s from the text string and
compose it with the FST lexicon N. The result-
ing FSM is then composed with a language model
(LM) L, if available, and the best path is found
to obtain snorm. We used a trigram language
model that was trained on a variety of texts (En-
glish Gigaword, Web, Opensubtitles, etc.). We
used Kneser-Ney discounting and the LM was not
optimized in any way.

snorm = bestpath(s ◦N ◦ L) (5)

Figure 2 illustrates this procedure. The unknown
words in the input are preserved in the output (the

language model is trained with an open vocabu-
lary).

6.3 Evaluation

First, we evaluated our approach on customer care
data. A set of 300 sentences from the customer
care data was randomly selected and the refer-
ence sentences were created manually by a pro-
fessional transcriber. A total of 2387 tokens were
normalized by the transcribers. The distributed
representation was trained on the remaining cus-
tomer care data through neural network learning
approach (Collobert and Weston, 2008) over a
window of 11 words with a vector dimension of
100. We compare our approach with Microsoft
Word and Aspell, where the best option was man-
ually chosen (oracle) from the suggestion list. If
no option was appropriate, the word was left in
it’s original form. We measure the fidelity of nor-
malization using precision and recall. The results
are presented in Table 2.

Precision Recall F1
Tokens Model (%) (%) (%)

Microsoft Word (Oracle) 53.2 55.0 54.0
All Aspell (Oracle) 33.0 41.2 36.7

Our approach without LM 59.8 58.2 59.0
Our approach with LM 64.2 70.4 67.1
Microsoft Word (Oracle) 62.3 49.7 55.3

Edit Aspell (Oracle) 41.9 36.4 38.9
distance Our approach without LM 44.4 58.2 50.4
> 2 Our approach with LM 50.61 75.1 60.5

Table 2: Sentence level normalization on customer
care notes

Our approach achieves good performance on
the customer care notes. We achieve precision and
recall of 64.2% and 70.4%. The performance us-
ing our approach outperforms the oracle accuracy
using Microsoft Word and Aspell. It is important

12

Category Model Precision (%) Recall (%) F1 (%)
Microsoft Word (Oracle) 72.7 30.8 43.3
Aspell (Oracle) 83.0 35.4 49.6
Web dictionary with LM 79.8 24.2 37.1
Neural Network (wlen:11+D:100) lexicon without LM 53.4 74.7 62.3
Neural Network (wlen:11+D:100) lexicon with LM 54.4 77.1 63.8

Word Neural Network (wlen:11+D:200) lexicon with LM 50.5 75.1 60.4
Neural Network (wlen:15+D:100) lexicon with LM 54.2 73.5 62.4
Neural Network (wlen:15+D:200) lexicon with LM 48.5 75.4 59.0
Log-Linear Model (wlen:11+D:100) lexicon with LM 54.5 77.2 63.9
Log-Linear Model (wlen:11+D:200) lexicon with LM 51.2 75.9 61.1
Log-Linear Model (wlen:15+D:100) lexicon with LM 54.6 76.1 63.5
Log-Linear Model (wlen:15+D:200) lexicon with LM 47.1 75.1 57.9

Table 3: Sentence level word normalization on English Twitter data

to note that while our approach is customized to
the domain, the baseline comparisons are not. The
performance for noisy words that differ in edit dis-
tance by more than 2 from the canonical word is
also shown in Table 2. Our framework achieves
significantly better performance for abbreviations
that typically have edit distance> 2. Since our ap-
proach combines the strength of distributional and
lexical similarity as opposed to most approaches
that rely only on string similarity, we are also able
to correctly normalize domain specific abbrevia-
tions, e.g., custy→ customer, cx→ customer, lqd
→ liquid, bal → balance, exp → expectations,
etc. The use of a language model significantly im-
proves the normalization accuracy.

We also performed sentence (tweet) level nor-
malization on Twitter data. We manually an-
notated (expanded abbreviations, shorthands and
spelling errors) 1000 tweets and performed nor-
malization using our approach. The annotation
was performed serially by two professional tran-
scribers. We compare our approach with Mi-
crosoft Word, Aspell and a dictionary compiled
from several websites. We use a log-linear model
(continuous-bag-of-words) as well as a neural net-
work (see Section 5) to automatically learn nor-
malization lexicons. For each model, we experi-
mented with window length (wlen) of 11 and 15
while the dimension of distributed representation
was either 100 or 200. The results in Table 3 indi-
cate that using Algorithm 1 we achieve impressive
performance with both models in comparison with
the other schemes. The log-linear model works
just as well as the non-linear model and is much
quicker to train. One should note that the results
from Microsoft Word and Aspell overestimate the
fidelity of normalization since the task was per-
formed manually, i.e., we picked the best option

from the suggestion list. In case of no correct sug-
gestion, we left the original form as is. Hence, the
results are skewed towards achieving high preci-
sion. In contrast, our approach is completely un-
supervised in design and evaluation. We also com-
pared our approach with a Twitter and SMS dictio-
nary compiled from several websites. The dictio-
nary contained entries for 3864 words and 3536
phrases. The dictionary was compiled into a FST
and the procedure in Section 6.2 was used for eval-
uation. Since, the dictionary entries do not have an
associated score, the FST lexicon N is unweighted.
Our results clearly indicate that for construction of
the normalization lexicon all we need is a reliable
distributed representation trained on large amount
of noisy text. The non-linearity with the neural
network does not help significantly for this task.

Precision Recall F1
Approach (%) (%) (%)
(Han et al., 2012b) 70.0 17.9 26.3
(Hassan and Menezes, 2013) 85.3 56.4 69.9
Our approach 64.8 76.3 70.1

Table 4: Sentence level normalization on Twitter
test set from (Han et al., 2012b)

We also tested our approach on a publicly avail-
able Twitter test set (Han et al., 2012b) compris-
ing of 548 sentences to compare our framework
with other state-of-the-art approaches. The train-
ing data and approach for each of these schemes is
different and we did not optimize our model in any
way on the test domain or data. The normalization
was performed at the sentence level and we used
the language model described in Section 6.2. The
results in Table 4 demonstrates that our framework
performs favorably in comparison with other tech-
niques.

13

Category Model Precision (%) Recall (%) F1 (%)
Microsoft Word (Oracle) 99.2 18.7 31.5
Aspell (Oracle) 75.0 0.4 0.8
Web dictionary with LM 34.0 19.0 24.4
Neural Network (wlen:11+D:100) without LM 91.4 60.7 73.0
Neural Network (wlen:11+D:100) with LM 92.4 71.3 80.5

Phrase Neural Network (wlen:11+D:200) lexicon with LM 92.5 71.8 80.8
Neural Network (wlen:15+D:100) lexicon with LM 92.4 71.4 80.6
Neural Network (wlen:15+D:200) lexicon with LM 92.5 71.8 80.8
Log-Linear Model (wlen:11+D:100) lexicon with LM 92.6 72.0 81.0
Log-Linear Model (wlen:11+D:200) lexicon with LM 92.3 71.1 80.3
Log-Linear Model (wlen:15+D:100) lexicon with LM 92.6 71.5 80.6
Log-Linear Model (wlen:15+D:200) lexicon with LM 92.0 70.9 80.0

Table 5: Sentence level phrase normalization on English Twitter data

7 Learning Phrase Normalizations

A major drawback of inducing normalization lex-
icons using most approaches described in Sec-
tion 2 is that they are restricted to learning one-
to-one word mappings. However, social media
text is strewn with abbreviations that span multi-
ple words, e.g., ily2 refers to i love you too. With
our framework, one can obtain 1-to-many (or vice
versa) mappings if the training data is modified
to contain compound words, i.e., i love you too is
replaced with i love you too and treated as a sin-
gle token. The biggest obstacle is to get a reli-
able list of such phrases since they keep changing
and growing. Unsupervised phrase induction us-
ing likelihood ratio test, point-wise mutual infor-
mation, etc., may be used for such a task but they
typically do not capture phrases formed from high
frequency function words.

We used a dataset of speech-based SMS mes-
sage transcriptions for compiling a list of com-
mon phrases. The SMS messages were collected
through a smartphone application and a majority
of them were collected while the users used the
application in their cars. We had access to a to-
tal of 41.3 million English messages. The speech
transcripts were mostly automatic and only a sub-
set of around 400K utterances were manually tran-
scribed. To avoid the use of erroneous transcripts,
we sorted the messages by frequency and picked
phrases between length 2 and 4 that resulted in
27356 English phrases. The training data was
then phrasified (words were compounded) with
the above phrase lists and the experiments to learn
distributed representations was repeated. We per-
formed this experiment only on Twitter data.

Once the representations were learned, we com-
puted the K-nearest neighbors using the cosine

Tokens Canonical phrase
tyvm, tysm, ty, thxs thank you very much
idk, idfk, irdk, idkk i don’t know
ihy, ihu, i hate you
ily, ilym, ilyy, ilu i love you
lmk, hum let me know
omw, omww, otw on my way
jgh, jghome just got home
g2g, gottago got to go
2b, 2ba to be
2u, 2us to you
4u, 4you for you
cme, callme call me

Table 6: Phrase normalizations learned through
our framework

similarity metric for each phrase. The lexi-
cal similarity cost was computed differently for
the phrases. The first character of each word
in the phrase was picked to form a new string
(e.g., i love you too would be converted into ilyt)
and a similar technique was used on the nearest
neighbors; singleton numbers were expanded into
strings (e.g., ily2 would be converted into ilyt).
The lexical similarity metric in Equation (3) was
then used to compute the distance between the
two strings. The normalization table was subse-
quently inverted and compiled into a FST. Table 6
shows some of the phrase normalizations learnt by
our framework. The phrase normalization results
for English are presented in Table 5. Our frame-
work learns phrase normalizations quite well. We
achieve precision and recall of 92.6% and 72.0%,
respectively. Even the mistakes committed are not
very different from the ground truth, e.g., idk →
i do not know while the reference is i don’t know,
wtf → what the hell instead of what the f*** and
omfg→ oh my god in place of oh my f**** god.
Our framework does not capture expansions of ge-
ographic locations present in the reference data

14

such as nz→ new zealand, la→ los angeles and
some highly context dependent expansions such
as dw→ doctor who, dm→ direct message, etc.,
since the compiled phrase list did not contain these
entries.

8 Discussion

The normalization lexicons learned in this work
are completely unsupervised. The quality and cov-
erage of the lexicon is dependent on the size and
distribution of words in the training data. Our
approach assumes that the data contains both the
noisy and canonical form of a word. In practice,
we have observed that for large text collections,
such as millions of tweets, words appear in both
canonical and noisy forms. One can also augment
noisy corpora with clean text to improve the dis-
tributional similarity of the two forms. Choosing
the optimal size of noisy data set and appropriate
augmentation is beyond the scope of this work.

The main parameters in our model are wlen, D
and K. The choice of K is dependent on the size
of the training data, i.e., a larger K can potentially
yield more noisy to canonical mappings. For our
datasets, the choice of K = {25, 50, 100} did not
result in any significant difference in performance.
Hence, we used K = 25 to increase the speed of
Algorithm 1. We also performed several experi-
ments to understand the choice of dimension D.
In general, the choice of D is dependent on the
vocabulary size of the training data. For vocabu-
lary size between 100K-500K, we found that vec-
tor dimension of D = 50 is sufficient and for vo-
cabulary size greater than 1M , D = 100 works
well empirically. For wlen, a context of 5 words
to the left and right, i.e., wlen = 11 works well
and adding more context does not necessarily im-
prove performance. We conjecture that this is due
to the length of an average customer care note (12
words) and tweet (15 words). For datasets with
longer sentences, larger values of wlen may be
beneficial.

The performance reported using Microsoft
Word and Aspell was obtained by manually se-
lecting the best suggestion. We resorted to this
approach since both schemes do not provide an
option to automatically normalize a document. In
choosing the best suggestion option, we focused
on precision, i.e., picked the best suggestion or left
the original form as is. If we had forcefully picked
an option from the suggestion list for all correc-

tions, the recall would have been higher at the cost
of lower precision. The results using the Web dic-
tionary and our unsupervised framework performs
a blind evaluation.

In contrast with conventional string similar-
ity based normalization schemes, our approach is
good at modeling abbreviations. Abbreviations
are generally hard to normalize with Levenshtein
distance based approaches but the combination of
distributional and lexical similarity is very help-
ful in learning the mapping between abbreviated
and canonical forms. In most off-the-shelf sys-
tems, e.g., Microsoft Word, a standard dictionary
is used and any corrections for domain specific
spellings are typically performed manually. Since
our scheme can be trained with raw data, we are
able to address the domain specific idiosyncrasies.

The word and phrase normalizations learned in
this work use a particular type of lexical similarity
metric. While it captures abbreviations well for
English, our framework is open to the use of any
linguistically motivated lexical similarity metric.
Such metrics can be designed by language experts
and linguistic knowledge can potentially be incor-
porated into the unsupervised scheme, thus, lend-
ing a way to embed linguistic rules into a statistical
framework.

9 Conclusion

We presented an unsupervised framework for nor-
malizing domain-specific and informal noisy texts
using distributed representation of words. Our ap-
proach exploits the property that noisy and canoni-
cal forms of a particular word share similar context
in a large noisy text collection (millions or billions
of social media feeds from Twitter, Facebook,
etc.). Subsequently, we use a combination of dis-
tributional and lexical similarity between canoni-
cal and noisy form of words to automatically con-
struct a normalization lexicon. The distributed
representations were learned using both log-linear
and non-linear models and we used a finite-state
transducer framework for representing the lexi-
cons and performing normalization. Our exper-
iments on customer care data and Twitter indi-
cate that our approach can capture spelling errors
of different types and achieves good performance
in comparison with several baselines and state-of-
the-art approaches. Finally, we used our frame-
work to learn phrase normalizations by learning
distributed representations over compound words.

15

References
A. Aw, M. Zhang, J. Xiao, and J. Su. 2009. A phrase-

based statistical model for SMS text normalization.
In Proceedings of COLING, pages 33–40.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin.
2003. A neural probabilistic language model. Jour-
nal of Machine Learning Research, 3:1137–1155.

Y. Bengio, J. Louradour, R. Collobert, and J. We-
ston. 2009. Curriculum learning. In Proceedings
of ICML.

E. Brill and R. C. Moore. 2000. An improved error
model for noisy channel spelling correction. In Pro-
ceedings of ACL, pages 286–293.

R. Collobert and J. Weston. 2008. A unified archi-
tecture for natural language processing: deep neural
networks with multitask learning. In Proceedings of
ICML.

R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011.
Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop.

P. Cook and S. Stevenson. 2009. An unsupervised
model for text message normalization. In Proceed-
ings of Workshop on Computational Approaches to
Linguistic Creativity, pages 71–78.

J. L. Elman. 1991. Distributed representations, sim-
ple recurrent networks, and grammatical structure.
Machine Learning, 7(2-3):195–225.

B. Han, P. Cook, and Baldwin. 2012a. Automati-
cally constructing a normalization dictionary for mi-
croblogs. In Proceedings of EMNLP, pages 421–
432.

B. Han, P. Cook, and T. Baldwin. 2012b. Automati-
cally constructing a normalisation dictionary for mi-
croblogs. In EMNLP-CoNLL 2012, pages 421–432.

H. Hassan and A. Menezes. 2013. Social text nor-
malization using contextual graph random walks. In
Proceedings of ACL, pages 1577–1586.

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions, and reversals. Soviet
Physics Doklady (in English), 10(8):707710, Febru-
ary.

D. Melamed. 1995. Automatic evaluation and uniform
filter cascades for inducing n-best translation lexi-
cons. In Proceedings of the 3rd ACL Workshop on
Very Large Corpora (WVLC).

T. Mikolov, S. Kopecký, L. Burget, J. C̆ernocký, and
S. Khudanpur. 2010. Recurrent neural network
based language model. In Proceedings of Inter-
speech.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013.
Efficient estimation of word representations in vec-
tor space. In Proceedings of Workshop at ICLR.

F. J. Och. 2003. Minimum error rate training in statis-
tical machine translation. In Proceedings of ACL.

L. Philips. 1990. Hanging on the metaphone. Com-
puter Language, 7(12):39–43.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
1986. Parallel distributed processing: Explorations
in the microstructure of cognition, vol. 1. chapter
Learning Internal Representations by Error Propa-
gation, pages 318–362.

K. Toutanova and R. C. Moore. 2002. Pronunciation
modeling for improved spelling correction. In Pro-
ceedings of ACL, pages 141–151.

J. Turian, L. Ratinov, and Y. Bengio. 2010. Word rep-
resentations: a simple and general method for semi-
supervised learning. In Proceedings of ACL.

16

