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Abstract

Neuroimaging while participants listen to au-
diobooks provides a rich data source for
theories of incremental parsing. We com-
pare nested regression models of these data.
These mixed-effects models incorporate lin-
guistic predictors at various grain sizes rang-
ing from part-of-speech bigrams, through sur-
prisal on context-free treebank grammars,
to incremental node counts in trees that
are derived by Minimalist Grammars. The
fine-grained structures make an independent
contribution over and above coarser predic-
tors. However, this result only obtains with
time courses from anterior temporal lobe
(aTL). In analogous time courses from infe-
rior frontal gyrus, only n-grams improve upon
a non-syntactic baseline. These results sup-
port the idea that aTL does combinatoric pro-
cessing during naturalistic story comprehen-
sion, processing that bears a systematic rela-
tionship to linguistic structure.

1 Introduction

The cognitive science of language confronts two dif-
ferent notions of its own subject matter. One notion
is rooted in the psychology of an individual: what
states of mind does this person go through as he or
she uses language? The other notion starts from lan-
guages themselves. As a structural system, how does
this language differ from another? There is a tension
between these two views. Classically, this tension
is resolved by adopting the Competence Hypothe-
sis (Chomsky, 1965, page 9). It suggests that the
best description of the language system should also

figure as a “basic component” in the best descrip-
tion of the language-user. This Hypothesis is pro-
grammatic enough to have received several different
interpretations over the years (Bresnan and Kaplan,
1982; Steedman, 1989; Stabler, 1991). Can a re-
fined version of it be accepted or rejected in light of
experimental data?

Recent work with eye-tracking has wrestled with
just this question (Frank and Bod, 2011; Fossum
and Levy, 2012; van Schijndel and Schuler, 2015).
The argument concerns the strength of the fitted
coefficients for different types of grammatical pre-
dictors. These “language model” predictors con-
tribute to varying degrees in regression models of
the eye-fixation record. In certain cases, it ap-
pears that higher-order structure — for instance,
phrase structure — is unhelpful. On the other hand,
other cases suggest that higher-order structure does
shine through in the eye-movement record. In this
debate, fitted coefficients on the more linguistically-
sophisticated predictors have been taken to quantify
the veridicality of the Competence Hypothesis. The
linguistic predictors that researchers examine qual-
ify as “basic components” to the extent that they im-
prove the regression model that they are part of.

Of course, psycholinguists have known for a
long time that low-level factors such as word fre-
quency and bigram probability are useful in explain-
ing eye-fixation times (Thibadeau et al., 1982; Mc-
Donald and Shillcock, 2003). These are not rele-
vant to the Competence Hypothesis. Rather, the ac-
tion is with higher-order factors: predictors based on
larger domains of locality, as defined by grammars
that could plausibly play a role in the best descrip-
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tion of language as a structural system.
The research reported in this paper adopts the

same model-comparison methodology as Frank,
Fossum, van Schijndel and their co-authors. But
it applies this method to spatially localized neural
time courses obtained using fMRI. Using grammat-
ical predictors at six different levels of “richness”
we compare a family of nested regression models.
We find that phrase structure in the style of the
Penn Treebank (Marcus et al., 1993) improves a re-
gression, over and above various n-gram baselines.
X-bar structures generated by Minimalist Gram-
mars (Stabler, 1997, 2011) improve yet further over
that. This holds for time courses taken from anterior
temporal lobe (aTL), an area that has been impli-
cated in “basic syntactic processing” (Friederici and
Gierhan, 2013). But only the n-gram predictors are
useful in modeling time courses from inferior frontal
gyrus (IFG), a traditional syntax area (Grodzinsky
and Friederici, 2006). Section 6 discusses this pat-
tern of results in light of other work on naturalistic
language comprehension.

2 Methods and Materials

The methodology follows Brennan et al. (2012) in
the use of spoken narrative as a stimulus. Partici-
pants listen to an audiobook while in the scanner.
The sequence of images collected during the spo-
ken presentation becomes the dependent variable in
a regression against a times series of linguistic pre-
dictors derived from the text of the story. In contrast
to the work of Frank, Fossum and van Schijndel, we
used auditory rather than visual presentation.

Participants
Thirteen college-age volunteers (6 women) partic-
ipated for pay, but we excluded two individuals
whose inferred head-movements exceeded 0.6mm
or had eight or more movements≥0.1mm. All qual-
ified as right-handed on the Edinburgh handedness
inventory (Oldfield, 1971). They self-identified as
native English speakers and gave their informed
consent.

Data Collection
Imaging was performed using a 3T MRI scan-
ner (Discovery MR750, GE Healthcare, Milwau-
kee, WI) with a 32-channel head coil at the Cor-

nell MRI Facility. Blood Oxygen Level Depen-
dent (BOLD) signals were collected using a T2∗-
weighted echo planar imaging (EPI) sequence (rep-
etition time: 2000 ms, echo time: 27 ms, flip an-
gle: 77deg, image acceleration: 2X, field of
view: 216 x 216 mm, matrix size 72 x 72, and
44 oblique slices, yielding 3 mm isotropic vox-
els). Anatomical images were collected with a
high resolution T1-weighted (1 x 1 x 1 mm3 voxel)
with a Magnetization-Prepared RApid Gradient-
Echo (MP-RAGE) pulse sequence.

Presentation

Auditory stimuli were delivered through MRI-safe,
high-fidelity headphones (Confon HP-VS01, MR
Confon, Magdeburg, Germany) inside the head coil.
The headphones were secured against the plastic
frame of the coil using foam blocks. Using a spo-
ken recitation of the US Constitution, an experi-
menter increased the volume until participants re-
ported that they could hear clearly.

Stimuli

The audio stimulus was Kristin McQuillan’s
reading of the first chapter of Lewis Carroll’s
Alice in Wonderland from librivox.org. We
chose this text both because of its use in prior imag-
ing work (Brennan et al., 2012) and because fine-
grained syntactic annotations are available for it.
We used Praat to normalize the spoken-language
audio signal to 70dB and dilate it by 20%. This
slowed speech improved comprehension in the scan-
ner. The audio presentation lasted 12.4 minutes.
Upon emerging from the scanner, participants com-
pleted a twelve-question, multiple-choice quiz con-
cerning events and situations described in the story.

3 Data analysis

Preprocessing

We used SPM8 (Friston et al., 2007) to spatially-
realign functional images (EPI) and co-register them
with participants’ structural images (MP-RAGE).
Smoothing was 3mm isotropic, and SPM8’s ICBM
template was used to put the data into MNI stereo-
taxic coordinates.
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Linking hypotheses

We linked linguistic structures (e.g. POS tag se-
quences, Penn-style trees, X-bar trees) to predictions
about BOLD signal in two different ways.

Link #1: Surprisal
For probabilistic language models, we linked the

probability of a word in its left-context to BOLD sig-
nal using the log-reciprocal of the probability of
the next word. This is “surprisal” in the sense of
Hale (2001).

Link #2: Node Count
With non-probabilistic grammars, we linked the

syntactic structure of a sentence to the BOLD sig-
nal it evokes by counting the number of tree nodes
between successive words, including “empty” nodes
such as the traces of movement. This link expresses
the basic claim that more grammatical structure im-
plies greater comprehension effort. While intuitive,
the precise formulation of this idea has been tricky;
see Frazier (1985, section 4.4) for critical discus-
sion. Our two node count hypotheses were based, re-
spectively, on top-down and bottom-up parsing (see
e.g. Hale, 2014, chapter 3). The top-down traver-
sal that we used enumerates nodes in a depth-first,
left to right order analogous to an LL parser. The
bottom-up traversal that we used enumerates daugh-
ters before mothers in the manner of a shift-reduce
LR parser. Taking the stimulus text to be largely
unambiguous for native English-speaking listeners,
we assume a perfect oracle that enumerates nodes of
just the correct tree.

Hemodynamic Response
Via these linking hypotheses, we derived time se-

ries of predictions about the effortfulness of com-
prehending each word in the text. Following Just &
Varma (2007) we convolved these time series with
SPM8’s canonical hemodynamic response function
(HRF) to arrive at an expected BOLD signal. This
HRF is a difference of Gamma functions (Friston
et al., 2007, chapter 14). Figure 1 summarizes this
methodology graphically.

Regions of interest

By defining an impulse at the offset of each spo-
ken word, an atheoretical predictor call Rate local-
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Figure 1: Deriving an expected BOLD signal from a se-
quence of linguistic structures (analogous to Fig. 11 of
Just & Varma (2007)): (A) Segmentation of a spoken nar-
rative (B) Complexity metric, such as surprisal, defines
intensity of point event (C) Points shown over a longer
interval (D) Points convolved with canonical HRF (E)
Summed HRFs yield estimate of BOLD response (dot-
ted) made orthogonal to low-level covariates (solid).
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izes brain regions whose BOLD signal varies in time
with the speech stimulus. We localized spherical re-
gions of interest, each with radius 10mm, centered
on the maxima of the Rate predictor within three
anatomically-constrained regions that were defined
based on prior work on the neural bases of syntax.

Maxima for this predictor that fell bilaterally in
temporal lobe anterior to Heschl’s Gyrus served to
define the center of left and right anterior temporal
region. Anterior temporal lobe has shown sensitiv-
ity to the presence vs. absence of constituent struc-
ture (Stowe et al., 1998; Vandenberghe et al., 2002;
Humphries et al., 2006; Snijders et al., 2009; Bemis
and Pylkkänen, 2011; Pallier et al., 2011) and brain
damage to this region correlates with deficits in mor-
phosyntax (Dronkers et al., 2004). These data, and
others, have led to the proposal that the anterior tem-
poral lobe is involved in “basic syntactic processes.”
(Friederici and Gierhan, 2013, p. 252).

Maxima of the Rate predictor that fell in the
left frontal lobe and were listed as “inferior frontal
gyrus” in the Harvard-Oxford Brain Atlas defined
the center of our left inferior frontal gyrus region.
Numerous findings from lesion-induced syntactic
deficits (Caramazza and Zurif, 1976; Grodzinsky,
2000) and neuroimaging of brain activations for sim-
ple and syntactically complex sentences (Just et al.,
1996; Stromswold et al., 1996; Stowe et al., 1998;
Snijders et al., 2009; Santi and Grodzinsky, 2007)
have implicated this region in various aspects of
grammatical processing.

Statistical Analysis
Statistical analysis was conducted in two stages. In
the first stage, we constructed a family of mixed-
effects regression models using non-syntactic pre-
dictors together with one syntax predictor drawn
from each model. Parameters more than two stan-
dard errors away from zero were taken to “signifi-
cant” in this analysis (Gelman and Hill, 2007).

In the second stage we conducted a set of step-
wise model comparisons to evaluate the unique con-
tribution of each “grain size” which showed a signif-
icant contribution in stage one. Comparisons were
evaluated using likelihood ratio tests. Models were
nested in order of smallest to largest grain size (i.e.
amount of hierarchy), and least to most predictive
for measures of node count. The list of fixed effects

for each model entered in to this comparison is given
in Table 1.

All models included fixed effects for word Rate
(see above), log unigram frequency, and three prin-
ciple components representing head-movements,
heart rate, and lung action. A fixed effect for
prosodic breaks was also included to control for
correlations between acoustic variance and syntactic
structure. This predictor is a perceptual judgment of
break index strength made in light of ToBI annota-
tion guidelines by two independent raters. Subjects
were treated as a random intercept in all models.

4 Structure at various grain sizes

Markov Models

2gram.l, 2gram.p, 3gram.l, 3gram.p – We used
OpenGRM to fit Markov Models of various or-
ders (Allauzen et al., 2007). These models were
trained on the version of Alice in Wonderland that
is distributed by Project Gutenberg, etext # 11. As a
preprocessing step, chapter headings were removed
and all words converted to lowercase. Lexicalized
(.l) and unlexicalized POS (.p) models were created.

Penn-style Phrase Structure

cfg.surp, cfg.bu, cfg.td – We used the EarleyX im-
plementation of Stolcke’s probabilistic Earley parser
to compute surprisal values from phrase structure
grammars (Luong et al., 2013; Stolcke, 1995). We
used a grammar whose rules came from Stanford
parser output, when applied to the entire Alice
in Wonderland book (Klein and Manning, 2003).
Punctuation was removed. This renders the train-
ing data comparable across cfg.surp and {2,3}gram.
The node count predictors were based on the same
Penn-style structures as in Brennan et al. (2012).

X-bar Trees

mg.bu, mg.td – We used Minimalist Grammars to
define more detailed analyses for each sentence.
These grammars extend and reorganize the anal-
yses discussed in Hale (2003, chapter 4) in a
way that is guided by Sportiche, Koopman & Sta-
bler (2013). They derive “X-bar” structural descrip-
tions that integrate constituency, dependency and
movement information. Figure 3 highlights a case
where the X-bar predictor includes additional de-
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Figure 2: Magnitude of fitted coefficients across all syntax predictors, considered individually. Fine-grained linguistic
structure from Penn-style cfg.surp and X-bar structures mg.{bu, td} are positive predictors of the neural time-course
in anterior temporal lobe. See Table 2 for stepwise model comparison.

tail, namely about movement. Of course, these
trees encode many other aspects of sentence struc-
ture that are treated in Minimalist theories of syn-
tax (see e.g. Adger (2003) or Hornstein, Nunes and
Grohmann (2005) for an introduction). Traversing
these trees in either Bottom-Up or Top-Down order,
we obtain node counts analogous to those used in
Brennan et al (2012).

5 Results

Fine-grained predictors based on X-bar trees and
Penn-style phrase structure each improved a mixed-
effects model of the neural time course in anterior
temporal lobe during naturalistic story comprehen-
sion. This did not obtain in the time courses from
inferior frontal gyrus. Figure 2 shows the estimated
coefficients (±2 standard errors) for each of the syn-
tax predictors when included alone in a model with
only word-level and physiological “nuisance” pre-
dictors. Table 2 reports a model comparison that
tests which predictors contribute independently of
other, coarser-grained predictors. It lists the steps
that reached statistical significance at the p < 0.05
level for each ROI. Table 2 uses the letters A–F
to identify increasingly refined models along a pro-
gression that is described in Table 1.

Performance on the post-scan was substantially
higher (median=11) than chance (3 out of 12). This
confirms that participants were indeed attending to
the story.

model description
Ø lexical, prosodic, and physiolog-

ical but no syntactic predictors
A add POS tag 2-gram
B add POS tag 3-gram
C add CFG surprisal
D add bottom-up CFG node count
E add bottom-up X-bar node count
F add top-down X-bar node count

Table 1: Nested models

left aTL predictor χ2(1) p
Ø to A 2gram.p 38.9 < .001
B to C cfg.surp 22.3 < .001
D to E mg.bu 5.5 < 0.05
right aTL
Ø to A 2gram.p 23.7 < .001
D to E mg.bu 4.3 < 0.05
left IFG
Ø to A 2gram.p 19.6 < .001
A to B 3gram.p 8.4 < .01

Table 2: Statistically-significant steps
in a model comparison

6 Discussion

As Figure 2 indicates, a variety of grammatical pre-
dictors turned out to be helpful in explaining BOLD
signals. Even the most abstruse predictors that we
considered, ones based on X-bar structures gener-
ated by Minimalist Grammars, led to reliable im-
provements over baseline models. This suggests
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that indeed, the human sentence processing system
is sensitive to hierarchical structure at least in the
anterior temporal lobe. It is possible that the null re-
sult reported by Frank et al. (2011; 2015) reflects the
difficulty of measuring nuanced syntactic processing
activity with behavioral and ERP measures.

While n-gram predictors were helpful through-
out, Penn phrase structures and X-bar structures did
not gain purchase in inferior frontal gyrus the way
they did in anterior temporal regions. This “aTL-
specificity” corroborates earlier findings that used
node count but not surprisal (Brennan et al., 2012).

The bilateral character of the aTL results aligns
well with related work with written stimuli by We-
hbe et al (2014). Using word features related to la-
belled dependency arcs (i.e. noun modifier, verbal
complement) and part of speech tags, Wehbe and
colleagues found a cluster of voxels in right ante-
rior temporal lobe where syntactic information con-
tributed to high performance in a classification-by-
prediction task. This points to a temporal lobe lan-
guage network whose normal mode of operation em-
ploys both hemispheres.

7 Conclusion

If we take the model comparison approach — as
applied to neural time courses — to be an empiri-
cal test of the Competence Hypothesis, then the Hy-
pothesis survives. These data support the view that
humans use linguistic structure to comprehend spo-
ken narratives. This finding re-prompts the ques-
tion that occupied Bresnan, Kaplan, Steedman &
Stabler: which linguistic theory is most helpful in
understanding that comprehension? Answering this
question is more than one lab can manage. We there-
fore plan to release this time course data so that the
broader cognitive science community can try out al-
ternative models based on a wider variety of pars-
ing theories.
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Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, pages 68–95. Springer.

Edward P. Stabler. 2011. Computational perspectives on
minimalism. In The Oxford Handbook of Linguistic
Minimalism, chapter 27. Oxford University Press.

Mark Steedman. 1989. Grammar, interpretation and
processing from the lexicon. In William Marslen-
Wilson, editor, Lexical Representation and Process,
chapter 16, pages 463–504. MIT Press, Cambridge,
MA.

Andreas Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–
201.

96



Laurie A. Stowe, Cees A. J. Broere, Anne M. J. Paans,
Albertus A. Wijers, Gijsbertus Mulder, Wim Vaalburg,
and Frans Zwarts. 1998. Localizing components of a
complex task: Sentence processing and working mem-
ory. Neuroreport, 9(13):2995–2999.

Karin Stromswold, David Caplan, Nathaniel Alpert, and
Scott Rauch. 1996. Localization of syntactic compre-
hension by positron emission tomography. Brain and
Language, 52:452–473.

Robert Thibadeau, Marcel A. Just, and Patricia Carpen-
ter. 1982. A model of the time course and content of
reading. Cognitive Science, 6:157–203.

Marten van Schijndel and William Schuler. 2015. Hi-
erarchic syntax improves reading time prediction. In
Proceedings of NAACL 2015, Denver, Colorado, USA,
June. Association for Computational Linguistics.

Rik R.C. Vandenberghe, Anna C. Nobre, and Cathy J.
Price. 2002. The response of left temporal cor-
tex to sentences. Journal of Cognitive Neuroscience,
14(4):550–560, 05.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona
Fyshe, Aaditya Ramdas, and Tom Mitchell. 2014.
Simultaneously uncovering the patterns of brain re-
gions involved in different story reading subprocesses.
PLOS ONE, 9(11):e112575, November.

97


