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Abstract

Distributional Semantic Models (DSMs) have
been successful at modeling the meaning of
individual words, with interest recently shift-
ing to compositional structures, i.e., phrases
and sentences. Network-based DSMs repre-
sent and handle semantics via operators ap-
plied on word neighborhoods, i.e., seman-
tic graphs containing a target’s most similar
words. We extend network-based DSMs to
address compositionality using an activation
model (motivated by psycholinguistics) that
operates on the fused neighborhoods of vari-
able size activation. The proposed method is
evaluated against and combined with the lexi-
cal function method proposed by (Baroni and
Zamparelli, 2010). We show that, by fusing a
network-based with a lexical function model,
performance gains can be achieved.

1 Introduction

Vector Space Models (VSMs) have proven their ef-
ficiency at representing word semantics, which are
vital components for numerous natural language ap-
plications, such as paraphrasing and textual entail-
ment (Androutsopoulos and Malakasiotis, 2010), af-
fective text analysis (Malandrakis et al., 2013), etc.
VSMs constitute the most-widely used implemen-
tation of Distributional Semantic Models (DSMs)
(Baroni and Lenci, 2010). A fundamental task ad-

dressed in the framework of DSMs is the computa-
tion of semantic similarity between words, adopting
the distributional hypothesis of meaning, i.e., “simi-
larity of context implies similarity of meaning” (Har-
ris, 1954). DSMs have been successful when ap-
plied to the representation of word lexical semantics,
enabling the computation of word semantic similar-
ity (Turney and Pantel, 2010). However, the ap-
plication of DSMs for representing the semantics
of more complex structures, e.g., phrases or sen-
tences, is not trivial since the meaning of such struc-
tures is the result of various compositional phenom-
ena (Pelletier, 1994) that are inherent properties of
natural language creativity. The key idea behind
current approaches in semantic composition (using
DSMs) is the combination of word vectors using
simple functions, e.g., vector addition or multipli-
cation (Mitchell and Lapata, 2008; Mitchell and La-
pata, 2010), or other transformational functions. Re-
gardless of the used function, the resulting represen-
tations adhere to the paradigm of VSMs, while the
cosine between the (composed) vectors is used for
estimating similarity. Such efforts proved to be ef-
fective when computing the similarity between two-
word phrases, however, their limitations were re-
vealed for the case of longer structures (Polajnar et
al., 2014), where the composition of meaning be-
comes more complex. Bengio and Mikolov (2003;
2013) proposed an approach based on deep learning
for building language models that address the prob-
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lem of language creativity. The models appear to
constantly gain support in comparison with the tra-
ditional DSMs. A preliminary comparative analysis
of them is provided in (Baroni et al., 2014b) with re-
spect to a number of tasks related to lexical seman-
tics.

In this work, we extend a recent network-based
implementation of DSMs (Iosif and Potamianos,
2015) in order to represent the semantics of com-
positional structures. The used framework consists
of activation models motivated by semantic prim-
ing (McNamara, 2005). For each structure, an ac-
tivation area (i.e, semantic neighborhood) is com-
puted which is regarded as a sub-space within the
network. The novelty of the present work is two-
fold. First, we propose various approaches for
the creation of activation areas for compositional
structures, within a framework alternative to VSMs.
Second, we investigate the fusion of the proposed
network-based model with VSM-based transforma-
tional approaches from the literature. In addition,
we investigate the role of words as operators on the
meaning of the structures they occur in by measur-
ing their transformative degree.

The remainder of this paper is organized as fol-
lows: in Section 2 we describe work related to
DSMs. In Section 3 we describe the work on which
we based the proposed models. We present the pro-
posed models in Section 4. The lexical function
model is described in Section 5, and a fusion model
integrating the former with network-based models is
proposed. We describe the experimental procedure
that we followed and evaluate the proposed models
in Section 6. We elaborate on the effects of modifiers
in compositional structures in Section 7, concluding
in Section 8.

2 Related Work

Word-level DSMs can be categorized into unstruc-
tured, that employ a bag-of-words model, and struc-
tured, that employ syntactic relationships between
words (Grefenstette, 1994; Baroni and Lenci, 2010).
DSMs are typically constructed from co-occurrence
statistics of word tuples. An unstructured approach
for the construction of network-based DSMs was
proposed in (Iosif and Potamianos, 2015), where
nodes represent words, and edges are formulated ac-

cording to the semantic similarity of the connected
nodes. For each node, the notion of semantic neigh-
borhood (i.e., the most semantically similar words)
is utilized for estimating an improved similarity be-
tween the nodes.

Moving beyond the word-level, Turney (2012)
proposed a “dual-space” model that combines re-
lational and compositional methods for represent-
ing phrasal semantics. This approach utilized two
complementary models in an attempt to address a
series of phenomena that apply to compositional
semantics, namely, “linguistic creativity”, “order
sensitivity”, “adaptive capacity”, and “information
scalability”1. Three types of phrases were investi-
gated: noun-noun (NN), adjective-noun (AN), and
verb-object (VO). In (Baroni and Zamparelli, 2010),
particular focus was given to the AN type, where
adjectives were represented as matrices acting as
functions to the vectorial representation of head
nouns. Recent research efforts have been expanded
to longer text segments such as sentences (Agirre et
al., 2012; Agirre et al., 2013; Polajnar et al., 2014).
In (Socher et al., 2012), based on the functional
space proposed in (Baroni and Zamparelli, 2010),
phrase constituents were treated as both a continu-
ous vector and a parameter matrix, where the repre-
sentation of sentence semantics was constructed via
a recursive bottom-up procedure.

3 Baseline Network-based Model

In this section, we generalize the ideas regard-
ing network-based DSMs presented in (Iosif and
Potamianos, 2015), for the case of more complex
structures. The network consists of two layers: 1)
activation, and 2) similarity layer. Given a lexical
unit, the first layer represents an activation area that
includes a set of lexical units that are semantically
related with it. The notion of “lexical unit” refers
to any semantically coherent lexical structure, span-
ning from words (unigrams) up to word sequences
(n-grams). The second layer is used for the com-
putation of semantic similarity between two lexi-
cal units, based on their respective activation layers.
The network can be defined as a graph Q = (V,E)
whose set of vertices V includes the lexical units un-

1These phenomena are defined and discussed in (Turney,
2012)
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der investigation and whose set of edges E contains
links between the vertices. The links between the
lexical units in the network are weighted according
to their pairwise semantic similarity.

3.1 Layer 1: Activation Model

The activation layer of a lexical unit, ξ, can be re-
garded as a sub-graph of Q, Qξ, also referred to as
the semantic neighborhood of ξ. Its vertices (neigh-
bors of ξ) are determined according to their seman-
tic similarity with ξ. Given a set of lexical units,
the most similar to ξ are selected as neighbors. The
activation layer is motivated by the phenomenon of
semantic priming (McNamara, 2005), especially for
highly coherent lexical units, such as unigrams and
bigrams. In the framework of DSMs, activation
layers were computed for the case of unigrams in
(Iosif and Potamianos, 2015), and were extended to
short phrases (bigrams) in (Iosif, 2013). Consider a
phrase, i = (i1 i2), where i1 and i2 denote its first
and second constituent. Assuming that the Ni1 and
Ni2 sets represent neighborhoods of i1 and i2, re-
spectively, the neighborhood of i,Ni, was computed
by taking the intersection of Ni1 and Ni2 .

3.2 Layer 2: Semantic Model

Two similarity metrics are defined for computing the
similarity between two lexical units, i and j. The
metrics are defined on top of their respective acti-
vation models, Ni and Nj , computed in the previ-
ous layer. This approach relies on two assumptions,
namely, maximum sense and attributional similarity,
for unigrams. In this work, we extend these metrics
to bigrams (see Fig. 1 and Fig. 2) in order to com-
pute the semantic similarity between two phrases,
i = (i1 i2) and j = (j1 j2), exploiting their respec-
tive activation layers Ni and Nj .
Maximum Neighborhood Similarity. The key idea
of this metric, M , is the computation of similar-
ities between the constituents of phrase i (i1 and
i2) and the members of Nj . The same is done
for j1 and j2 and the members of Ni. The sim-
ilarity between i and j (e.g., “assistant manager”
and “board member” in Fig. 1) is computed by tak-
ing the maximum of the aforementioned similarities
(0.50 in Fig. 1). The underlying hypothesis is that
the neighborhoods encode senses that are shared be-
tween the constituents. The selection of the maxi-

Figure 1: Maximum neighborhood similarity metric (M ):
bigram usecase.

mum score suggests that the similarity between i and
j can be approximated by considering their closest
senses (Iosif and Potamianos, 2015).
Attributional Neighborhood Similarity. In this
metric, R, similarities between i1 and i2 and the
members of Nj are computed and stored into a vec-
tor. This is also done for j1 and j2 and the members
of Nj . The correlation coefficient between the two
vectors (e.g., the two right-most vectors in Fig. 2)
is computed. The process is repeated, using Ni in
the place of Nj , which results into another corre-
lation coefficient. The similarity between i and j

Figure 2: Attributional neighborhood similarity metric
(R): bigram usecase.

is estimated by selecting the maximum correlation
coefficient. The underlying motivation is attribu-
tional similarity, i.e., the hypothesis that the neigh-
borhoods encode semantic or affective features. Se-
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mantically similar phrases are expected to exhibit
correlated similarities with respect to such features
(Iosif and Potamianos, 2015).

4 Extended Network-based Model

The major limitation of the model presented in Sec-
tion 3 is that the neighborhoods of phrase con-
stituents (e.g., Ni1 and Ni2) are of fixed size. This
allows the computation of an empty neighborhood
for the phrase (e.g., Ni), when there is no overlap
between the neighborhoods of its constituents.

In this section, we propose an extension of the
aforementioned model by relaxing the hard con-
straint regarding the fixed size of neighborhoods.
The intuition behind this idea is that the activa-
tion areas are not of the same size for all words.
For example, a semantically abstract word, such as
“democracy”, is expected to have a larger neighbor-
hood compared to semantically concrete words, e.g.,
“computer”. Given a phrase, e.g., i = (i1 i2), in or-
der to compute the activation Ni, we gradually ex-
tend the activation areas (i.e., sizes) of Ni1 and Ni2

until a minimum size θ for Ni is reached.

4.1 Layer 1: Activation Model

We propose three different schemes for the com-
putation of neighborhoods. An example of those

Figure 3: Activation model schemes for the phrase “na-
tional government”: intersection-based, union-based, and
selection of most similar neighbors (words in bold).

schemes is depicted in Fig. 3.
Scheme 1. The phrase neighborhood is computed by
taking the intersection of the constituent neighbor-
hoods, i.e., Ni=Ni1∩Ni2 . This adheres to findings
from the literature of psycholinguistics suggesting
that the phrase activation (and, thus, the respective

meaning) should be more specific than those of its
constituents (Osherson and Smith, 1981).
Scheme 2. The union of neighborhoods is used, i.e.,
Ni =Ni1∪Ni2 . This is motivated by the idea that,
in some cases, a phrase may be associated with a
larger activation area, compared to those of its con-
stituents.
Scheme 3. The members of the phrase neighbor-
hood are selected based on their average semantic
similarity with respect to the phrase constituents.
Let Ni be {n1, ..., nm, ..., nθ}, where nm ∈ {Ni1 ∪
Ni2}. The Ni set can be regarded as a list, which is
ranked according to 1

2(S(nm, i1)+S(nm, i2)), where
S(.) stands for a metric of semantic similarity. This
scheme is motivated by the idea that different areas
ofNi1 andNi2 may be activated given the context of
words i1 and i2, respectively. The scheme also ad-
dresses the issue of scalability: the phrase neighbor-
hood has the same size as the constituents’ neigh-
borhoods, enabling the recursive application of the
model over longer structures.

4.2 Layer 2: Semantic Model
An extension of the M metric (described in Sec-
tion 3) is proposed, along with two more metrics for
computing the semantic similarity between lexical
units utilizing their respective neighborhoods. The
metrics are defined with respect to two lexical units,
i and j, which are represented by their neighbor-
hoods, Ni and Nj , respectively.
Average of top-k similarities (Mk). This metric ex-
tends the M metric (see Section 3) by considering
the top k similarity scores instead of the maximum
score. Similarity between i and j, Mk(i, j), is com-
puted by taking the arithmetic mean of the k scores.
Average of top-k pairwise similarities (Pk). Let
C be a ranked list including the pairwise similarities
computed between the members of Ni and Nj :

C = { S
x∈Ni

y∈Nj

(x, y) }, (1)

where S(.) stands for a metric of semantic similarity.
The similarity between i and j is computed as:

Pk(i, j) =
1
k

k∑
l=1

cl, (2)

where cl is the l–th member of C.
Hausdorff-based similarity (H). This metric is
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motivated by the Hausdorff distance (Hung and
Yang, 2004). Let h(Ni, Nj) be defined as

h(Ni, Nj) = min
x∈Ni

{
max
y∈Nj

{S(x, y)}}, (3)

where S(.) is a semantic similarity metric. The sim-
ilarity between i and j is computed as:

H(i, j) = max{h(Ni, Nj), h(Nj , Ni)} (4)

5 Fusion of Lexical Function with
Network-based Models

The representation of phrase semantics requires the
consideration of the consituents’ functional influ-
ence on the composed meaning. For example, when
considering an adjective-noun phrase, such as “bad
cat”, the former word (“bad”) acts as an operator,
i.e., modifier, to the latter word (“cat”), modifying
its meaning. In (Baroni and Zamparelli, 2010; Ba-
roni et al., 2014a), it was proposed that such modifi-
cations can be implemented via the use of functions
that act as linear transformations in VSMs. Appli-
cation of these functions is realized via matrix-by-
vector multiplication as (Baroni et al., 2014a):

f(α) =def F × a = b, (5)

where F is the matrix-encoded function f , a is the
vectorial representation of the argument α, and b is
the compositional vector output. The F function is
learnt according to examples of observed input and
output (distributional) representations. The input is
the representation of the head word, and the output
is the representation of the phrase. Regression is
employed for calculating the set of weights in the
matrix that best approximate the observed vectors.
For example, the function for the modifier “bad” is
learnt by regressing over phrase examples and their
head nouns, such as <pet, bad pet>, <dog, bad
dog>, <bird, bad bird>. Using the trained set of
weights and the vectorial representation of the head
noun, e.g., “cat”, the composite representation for
the phrase “bad cat” is induced.

5.1 Fusion
The proposed network-based model, presented in
Section 4, exploits the merging of word senses for
computing activation areas for phrases. The model

defined by (5) utilizes the transformational function
of an operator for changing the meaning of a phrase.
Both models (intuitively) seem to be aligned with
the human process of phrase comprehension, how-
ever, there are cases that one of the models applies
better than the other. Consider two example phrases,
“football manager” and “successful engineer”. The
transformational model is expected to perform bet-
ter for the latter phrase, while for the first phrase
an intersection of word senses (i.e., a network-based
model) seems to be more appropriate.

Based on the above considerations, we propose
a fusion of the lexical function (lf ), defined by (5),
with the proposed network-based models. The fu-
sion is aimed to model more accurately the seman-
tic representations of complex structures. To do so,
we measure the Mean Squared Error (MSE) when
training the lexical function model, in order to quan-
tify the transformative degree of the modifier un-
der investigation. The transformative degree is used
for deciding whether a network-based or a trans-
formational model is more appropriate. Given two
phrases, i= (i1 i2) and j = (j1 j2), the transforma-
tive degree T (i, j) is defined as:

T (i, j) =
1
2

(MSE(i1) +MSE(j1)), (6)

whereMSE(i1) andMSE(j1) is the MSE that cor-
responds to modifiers i1 and j1, respectively. The
proposed fusion metric, Φlf

net(i, j), used for estimat-
ing the similarity between the i and j phrases, is de-
fined as:

Φlf
net(i, j) = λ(i, j) SN + (1− λ(i, j)) SLF , (7)

where SN and SLF are similarity scores computed
by the network-based and lexical function models,
respectively. λ is a function of i and j, computed
using a sigmoid function as:

λ(i, j) = 0.5/
(

1 + e−T (i,j)
)
. (8)

The sigmoid function is applied in order to smooth
and normalize (within [0,1]) the values of T (i, j).

Finally, in addition to the aforementioned fusion,
we also implement a fusion combining the lf and
the widely-used additive (add) (Mitchell and Lap-
ata, 2008; Mitchell and Lapata, 2010) model. This
fusion metric, Φlf

add, is defined similarly to (7).
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6 Experiments and Evaluation

The procedure for creating the network and conduct-
ing the experiments is described in Section 6.1. In
Section 6.2, we evaluate the proposed models and
compare them with results from the literature.

6.1 Experimental Procedure

We defined our vocabulary (network nodes) by in-
tersecting the English vocabulary found in the AS-
PELL2 dictionary and the Wikipedia dump3 to de-
rive an English vocabulary of approximately 135K
words. Using it, a corpus comprising of web-
harvested document snippets was constructed by
downloading 1000 snippets for each word in the
vocabulary. Word-level similarities were computed
among all vocabulary entries’ pairs. To this end, the
Normalized Google Distance (G) was utilized, pro-
posed in (Vitanyi, 2005; Cilibrasi and Vitanyi, 2007)
and motivated by Kolmogorov complexity. LetG be
defined as

G(w1, w2) =
max{A} − log |D |w1, w2 |

log |D | −min{A} , (9)

where w1 and w2 are two vocabulary words under
investigation, | D | is the total number of docu-
ments in the corpus, |D |w1, w2 | is the total num-
ber of documents containing both w1 and w2, and
A = {log | D | w1 |, log | D | w2 |}. We used
a variation of (9), proposed in (Gracia et al., 2006),
referred to as “Google-based Semantic Relatedness”
(G

′
). This variation defines a similarity measure,

bounded within the [0, 1] range and defined as

G
′
(w1, w2) = e−2G(w1,w2), (10)

where G(w1, w2) is computed according to (9). In
this work, D denotes the sentence rather than the
document, as the co-occurrence of words was de-
fined at sentence-level. This metric was adopted
based on its good performance in word-level seman-
tic similarity tasks (Iosif and Potamianos, 2015).
Network-based model. We used sizes of θ =
{10, 25, 50, 100, 150, 500} for the case of fixed-size
neighborhoods, and θ = {1, 5, ..., 40} for the ex-
tended activation models described in Section 4.1.

2http://www.aspell.net/
3As of the 4th quarter of 2012.

We used both the baseline and the extended activa-
tion layers for the M model, the latter being defined
as M ′. For Mk and Pk, we set k = {1, ..., 5}.
Transformational model. For the lf model de-
scribed in (5), we computed co-occurence counts for
bigrams occurring at least 50 times in the corpus.
Positive Pointwise Mutual Information (PPMI) was
applied to reweigh them. We used a) Singular Value
Decomposition (SVD), and b) Non-Negative Matrix
Factorization (NMF) (Lee and Seung, 2001) to re-
duce the dimensionality of the space down to a) 300,
and b) 500 dimensions. To train lf, we selected cor-
pus bigrams comprising of a modifier and a noun.
We used a) Least Squares (LSR), and b) Ridge
(RR) (Hastie et al., 2009) regression. The DIStribu-
tional SEmantics Composition Toolkit (DISSECT 4,
(Dinu et al., 2013)) was used to implement lf, as
well as the widely-used additive (add) and multi-
plicative (mult) models proposed in (Mitchell and
Lapata, 2008; Mitchell and Lapata, 2010).
Fusion model. We combined the best performing
model configurations on NNs (see Section 6.2) in
order to implement the proposed fusion models.

6.2 Evaluation Results

For evaluation purposes, we used the widely-used
Mitchell & Lapata (2010) datasets comprising of
108 noun-noun (NN), adjective-noun (AN), and
verb-object (VO) phrase pairs, evaluated by human
judgements and averaged per phrase pair. The mod-
els were evaluated using Spearman’s correlation co-
efficient. Evaluation results are presented in Ta-
ble 1. Due to space limitations, only the best per-
forming network-based model configurations are re-
ported here. Also, since the mult model performs
poorly when the composed vectors contain negative
values, as is the case with SVD, we only report re-
sults for the NMF variations for it. Finally, since
training the lf model with RR had significantly su-
perior performance over LSR in all configurations,
we only report evaluations of the former.

The lf model, when using RR in combination with
NMF, performs best (.76) for the case of NNs. Best
performances for ANs and VOs are obtained by the
add model (.63 and .59, respectively).

4http://clic.cimec.unitn.it/composes/
toolkit/
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Model NN AN VO
add (NMF300) .67 .61 .53
add (NMF500) .66 .63 .56
add (SVD300) .63 .59 .59
add (SVD500) .66 .63 .59
mult (NMF300) .59 .38 .36
mult (NMF500) .59 .36 .42

lf (NMF300, RR) .76 .46 .35
lf (NMF500, RR) .67 .41 .28
lf (SVD300, RR) .63 .35 .26
lf (SVD500, RR) .56 .33 .23
M (Intersection) .56 .46 .37
M ′ (Intersection) .61 .57 .47
Mk=3 (Intersection) .64 .51 .41
Pk=3 (Most-similar) .63 .46 .23
H (Intersection) .58 .39 .26

fusion Φlf
net .80 .54 .35

fusion Φlf
add .76 .57 .44

Table 1: Performance of models on NN, AN, and VO
phrase pairs. Evaluations are reported using Spearman’s
correlation coefficient with human ratings.

Regarding network-based models, performance is
improved when using the extended activation model
over the baseline. This is confirmed by the absolute
5%, 11% and 10% increase for the case of NN, AN,
and VO pairs, respectively, for the M metric. All
the extended network-based models perform consis-
tently better than the baseline of M , in the case of
NNs, although their performance drops for the case
of ANs and VOs. In the case of Pk, the scheme
that constructs neighborhoods via the selection of
the most similar neighbors performs better than the
intersection- or the union-based scheme.

Φlf
add yields no relative improvements over the

best performances of the separate models. Φlf
net pro-

vides an improvement for the case of NNs, reach-
ing .80, which is also the best observed performance
overall. However, Φlf

net does not improve perfor-
mance in the case of ANs and VOs.

Performance improvements when using the ex-
tended activation layer for compositional structures
is consistent with experimental observations from
psycholinguistics (Osherson and Smith, 1981), and
shows that the activation area for phrases might be
adaptive to the degree of relatedness between words.

7 Discussion

The results displayed in Table 1 for the fusion mod-
els provide an indication of the different ways in
which the operator changes the meaning of a phrase.
In this section, we investigate the transformational
properties of phrases as defined by their modifiers.
By observing the properties of modifiers, we discuss
whether their use in a phrase has mainly a transfor-
mational or a merely compositional effect, based on
the goodness of fit of each model, estimated during
model training.

7.1 The Transformative Effect of Modifiers

Early research on compositionality involved apply-
ing the word-level semantic similarity estimation
techniques to phrases using context-based, bag-of-
words models, i.e., defining the structures’ meaning
as a function of the words in their context. Though
simple and cost-effective, the aforementioned tech-
niques fail to detect the effect that a word has to
its linguistic context and the semantic changes on
its meaning, e.g., a “nice” table is still a table but a
“fake” or “broken” table is not.

Depending on context, a modifier can affect the
meaning of the encompassing phrase in different
ways. For example, the modifier “normal” changes
the meaning of “normal cat” much less than the
modifier “dead” in “dead cat”. Moreover, the mod-
ifier effect may vary for each syntactic category.
For example, verbs can be transitive or intransitive,
nouns can be abstract or concrete, and adjectives can
be intensional or not (Boleda et al., 2013). Words
that act as functions on their linguistic context have
attracted much interest, and have recently been suc-
cessfully handled by computational models.

7.2 Estimating the Transformative Degree

We categorise modifiers based on their regression
performance, when training them for the lf model.
Specifically, we acquire the MSE of their training
as a measure for deciding the degree of their trans-
formative effect on a given head noun. Taking the
MSE is a sensible approach, since regression tries to
derive a close approximation to observed vectorial
representations of phrases and head nouns by means
of transforming the head noun vector; high error in
training indicates that the lf model is a poor match
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for this modifier. We trained the lf model using
Ridge Regression and estimated the MSE for each
modifier. In Table 2, we present example modifiers
of low, neutral, and high transformative degree, as
defined by their MSE score. We observe that highly-

Degree Nouns Adjectives Verbs

Low

news new like
service great buy

business black help
world general use
state good provide

Neutral
company various face

care right need
community better cut

High

railway old encourage
labour rural attend

defence elderly remember
personnel efficient satisfy
committee practical suffer

Table 2: Examples of low, neutral, and high transforma-
tive modifiers.

transformative modifiers have a more functional in-
fluence, when used in bigram structures. For exam-
ple, in “efficient machine”, “efficient” has a greater
effect on the meaning of “efficient machine” rather
than, e.g., “new” in “new machine”. A “new ma-
chine” retains the same properties of a generic ma-
chine. However, an “efficient machine” should con-
tain mechanisms that account for optimization of
speed, cost, etc. Our observations suggest that mod-
ifiers affect the structure in which they occur in dif-
ferent ways. Some modifiers have a stronger effect
on the meaning of the head noun, while others act
merely as constituents of simple compositions. The
proposed fusion of the transformational, lf model,
with network-based or simple compositional models
indicates that combining different models can yield
improved performance when the transformative de-
gree of modifiers is used as a fusion criterion.

8 Conclusions

We presented a network-based model that operates
on neighborhoods of variable size to calculate simi-
larity of compositional structures. We investigated
various methods for composing neighborhoods of

adjacent words and presented three metrics, moti-
vated by psycholinguistics and metric space alge-
bra, for estimating similarity between activation ar-
eas. Employing variable size activation improves
semantic similarity performance, revealing a differ-
ent activational behavior among bigrams. We also
presented a fusion of the proposed models with the
lexical function model based on the transformative
degree of modifiers, achieving an improvement of
performance for noun-noun compositions, reaching
state-of-the-art performance of 80% Spearman cor-
relation with human judgements. We further inves-
tigated the transformative degree of modifiers, and
elaborated on their role as mostly compositional or
transformational.

In future work, we will further investigate the role
of modifiers and their application in the proposed ac-
tivation composition approaches, while also explore
the criteria for deriving activations and deciding on
fusion strategies. We also plan to apply network-
based models on longer semantic structures.
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