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Introduction

The papers in these proceedings were presented at the 6th annual workshop on Cognitive Modeling
and Computational Linguistics (CMCL), held in Denver, Colorado on June 4th, 2015. As with
earlier CMCL meetings, CMCL 2015 provided a venue to support a broad spectrum of computational
psycholinguistic inquiry. This year, we were pleased to receive fifteen submissions, ten of which were
selected for final presentation at the workshop and are included in these proceedings. The submissions
this year were exceptionally strong and reviewers commented that many of them could easily have
been accepted as main conference submissions. We would like to thank all submitting authors for the
quality and variety of the papers we received, and we would like to thank the program committee for
their time, expertise, and insightful comments on the submissions. Thanks to the generous support
of our sponsors, The Center for Cognitive and Brain Sciences at The Ohio State University and The
Ohio State University Department of Linguistics, we were able to obtain invited speakers and provide
travel grants to a number of student authors. We extend our appreciation to our invited speakers, Dr.
Andrew Kehler of the University of California, San Diego and Dr. Mark Steedman of the University
of Edinburgh, for sharing their work with us. Thanks to everyone for your continued support of this
workshop and for helping to foster the growth of the field of computational psycholinguistics.

Marten van Schijndel and Tim O’Donnell
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Predictions for self-priming from incremental updating models unifying
comprehension and production

Cassandra L. Jacobs
Department of Psychology

University of Illinois at Urbana-Champaign
603 E. Daniel St.

Champaign, IL 61820
cljacob2@illinois.edu

Abstract

Syntactic priming from comprehension to pro-
duction has been shown to be robust: we are
more likely to repeat structures that we have
previously heard. Many current models do not
distinguish between comprehension and pro-
duction. Here we contrast human language
processing with two variants of a Bayesian
belief updating model. In the first model,
production-to-production priming (i.e. self-
priming) is as strong as comprehension-to-
production priming. In the second, both in-
dividuals who self-prime and those who do
not are exposed to a syntactic construction
via comprehension. Our results suggest that
when production-to-production priming is as
robust as comprehension-to-production prim-
ing, then speakers who self-prime are simul-
taneously less likely to be primed by input
from comprehension and demonstrate differ-
ent distributions of responses than speakers
who do not self-prime. The computational
model accords with recent results demonstrat-
ing no self-priming, and provides evidence for
an account of syntactic priming that distin-
guishes between production and comprehen-
sion input.

1 Introduction

Syntactic priming in production is the increased
probability of using a syntactic structure when we
have recently encountered it. Many models of syn-
tactic priming treat comprehension and production
as equally influential on the language production
system (Pickering & Garrod, 2013; Chang et al.,

2006; Reitter et al., 2011). This means that syn-
tactic priming can occur without another person be-
ing present, from production to production (self-
priming). Unfortunately, little experimental research
has assessed the degree to which priming occurs
from production to production in a controlled con-
text.

The primary phenomena that are of interest to re-
search on syntactic priming are as follows: (1) Do
we incrementally and cumulatively adapt to our lin-
guistic environment, changing how we talk based on
what we hear (Jaeger & Snider, 2013; Chang et al.,
2006; Kaschak et al., 2012; Reitter et al., 2011; Pick-
ering & Garrod, 2013)? (2) Do we change how we
talk more when we encounter less probable struc-
tures (Jaeger & Snider, 2013; Chang et al., 2006)?
(3) How long-lasting is syntactic priming (Kaschak,
2007; Bock, 1986)? And finally: (4) Are we more
likely to repeat the structures that we ourselves have
said, as predicted by models that unify priming in
comprehension and production (Pickering & Gar-
rod, 2013; Chang et al., 2006)? The model presented
here accounts for these phenomena and makes addi-
tional predictions about the potential ramifications
of self-priming on linguistic representations and ef-
ficient communication.

2 Psycholinguistic evidence

In any model where speakers are influenced by their
prior experience, regardless of the source, prim-
ing should occur. Corpus linguistics has provided
evidence of self-priming in production. Some of
these studies assessed priming of specific construc-
tions such as the dative alternation or relative clauses
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(Jaeger & Snider, 2013; Myslin & Levy, submit-
ted) or instead model the whole syntactic system
using probabilistic rules in several grammatical for-
malisms (Gries, 2005; Healey et al., 2014; Reitter
et al., 2011). These models generally find evidence
for syntactic priming from production to production,
or structural repetition that occurs more often than
would be expected by chance. In contrast to some
of these results, some studies report that structural
repetition occurs less than would be expected by
chance (Healey et al., 2014). Healey et al. (2014)
argued that this is because speakers avoid continu-
ously reusing syntactic structures.

The evidence for self-priming in a more con-
trolled environment is weaker. Within experimen-
tal psycholinguistics, structural priming in produc-
tion is almost always mediated by some intervening
comprehension task like sentence completion or a
memory task (e.g. Kaschak, 2007, Bock, 1986, etc.),
making it difficult or impossible to assess whether
self-priming occurs. Some studies have reported
that some speakers have an almost uniform bias to-
ward one structure or another (e.g. Jaeger & Snider,
2013). However, despite these claims that compre-
hension and production show similar amounts of
syntactic priming (Tooley & Bock, 2014), produc-
tion has also been shown to be substantially less
flexible than comprehension (Remez, 2013). Syn-
tactic persistence within a speaker could simply be a
product of an individual’s own syntactic preferences
rather than self-priming per se.

Some experimental work has been conducted
to test whether comprehension and production are
weighted equally in structural priming in produc-
tion. Counter to what has been found in corpus
studies, Jacobs et al. (2015) failed to find evidence
for self-priming despite strong comprehension-to-
production priming. In their study, participants pro-
duced 7 dative descriptions, comprehended 6 da-
tive descriptions of a single form of the construc-
tion, and produced an additional 7 descriptions in
order to identify effects of self-priming, individual
differences, and comprehension input on the magni-
tude of comprehension-to-production priming. They
found that the rates of structural repetition were flat
across the experiment, but speakers were strongly
sensitive to comprehension input, showing large and
sustained comprehension-to-production priming ef-

fects. They also found larger priming effects for
the less probable syntactic structure, consistent with
error-driven learning accounts of the inverse fre-
quency effect (Jaeger & Snider, 2013).

While the evidence for self-priming has been
weaker, almost all syntactic priming studies have
demonstrated that comprehension plays a very large
role in production preferences. This is to be ex-
pected if priming is a means of achieving effi-
cient communication, which requires using compre-
hended language to modify our own productions
to be more easily understood (Pickering & Garrod,
2013; Tooley & Bock, 2014). It is less clear what the
functional role of self-priming would be, however.
If speakers are likely to repeat structures they have
recently used, the language community may end up
with two types of speakers: those who only use one
structure or the other, which would pose some diffi-
culty for comprehenders (MacDonald, 2013).

We aim to address the question of the equiva-
lence of learning from comprehension and produc-
tion, as well as account for the results of Jacobs et al.
(2015). To do this, we constructed a very simple
Bayesian belief-updating model that makes predic-
tions about syntactic preferences with and without
self-priming. This model is very similar to those of
Fine et al. (2010), Kleinschmidt et al. (2012), and
Myslin & Levy (submitted), who have modeled up-
dating in syntactic comprehension. These models
perform Bayesian belief-updating of the probabili-
ties of outcomes in a syntactic alternation. In ours,
we focus on the prepositional versus double object
dative, though the model can be extended to any syn-
tactic alternation. In the computational model, we
demonstrate differences at the individual and pop-
ulation levels differences between self-priming and
no self-priming (Model 1), as well as characterize
what self-priming does to syntactic adaptation in
production after comprehension (Model 2).

3 Model structure

Many of the recent computational models that have
sought to account for syntactic priming effects in
comprehension and production use incremental al-
gorithms to represent trial-by-trial effects, while also
treating experience in comprehension and produc-
tion as contributing equally to the implicit learning
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process (Jaeger & Snider, 2013; Chang et al., 2006;
Reitter et al., 2011; Pickering & Garrod, 2013). The
model here is simple but relies on similar assump-
tions: representations are changed when language is
processed.

Each utterance choice can be conceptualized as a
single coin flipped randomly (i.e. a binomial pro-
cess). We generate sequences of utterances by sam-
pling from either a static Binomial distribution or
one that is continually being updated. The struc-
tural alternation we consider here is the double ob-
ject dative construction, which has been extensively
studied in syntactic priming experiments (Jaeger &
Snider, 2013; Kaschak, 2007; Bock, 1986; Picker-
ing & Garrod, 2013). In this syntactic alternation,
direct and indirect objects can change places after
some English verbs like give, hand, throw, or show:

• The librarian gave the book to the boy. (prepo-
sitional object - PO)

• The librarian gave the boy the book. (double
object - DO)

For every sentence a speaker intends to use a da-
tive structure, the production system will select ei-
ther the PO or the DO form of the sentence. Selec-
tions are single samples from a Binomial distribu-
tion with p(PO) = .55, which was derived from the
empirical probability of individuals producing a PO
in Jacobs et al. (2015).

Previous models have used error-driven learning
to account for incremental adjustments in syntactic
preferences (Jaeger & Snider, 2013; Chang et al.,
2006). In our model, as in similar models, we update
the probability of using a PO using the Beta prior,
which is conjugate to the Binomial distribution. This
prior is also appropriate because in any syntactic al-
ternation, there are two possible outcomes. The Beta
distribution has only two hyperparameters, α and β.
α roughly corresponds to the number of times the
model believes that it has experienced a PO dative,
and β represents the analogous number for the DO
dative.

The selection of the α and β values was based
on exploring an integer-valued parameter space be-
tween 1 and 10 for both parameters. In Figure 1
we plot the amount of self-priming all 100 mod-
els demonstrated as a function of the two hyper-

β

α

Size of
 self−priming

 effect

0

500

1000

1500

2000

2500

Figure 1: As values of α and β increase from 1 to 10,
the models become less capable of self-priming. At the
smallest values of β, the model is very sensitive to its own
prior productions, while α does not seem to play a large
role in self-priming.

parameters. We determined that α does not influ-
ence the sensitivity the model has to its own produc-
tions. Contrarily, β values on the smaller end tended
to lead to large self-priming effects. Consequently
we chose identical values for α and β that would
allow for both self-priming and sensitivity to com-
prehension input. This was therefore a compromise
between flexibility and rigidity.

We initialized the model with relatively weak, but
not completely unbiased, priors that both structures
were equally possible: α = 4, β = 4. We assume that
one of the structures is slightly more probable, with
p(PO) = .55, as observed in Jacobs et al. (2015).

With every subsequent dative description that the
model processes (either via production or compre-
hension), with k POs and n descriptions containing
either a DO or a PO, the priors are adjusted via the
following update rules:

α = α+ k (1)

β = β + n− k (2)

The new probability of a PO is therefore:

p(PO) =
α+ k + 1

α+ β + n− 2
(3)
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For both Model 1 and Model 2, we ran 1000 “ex-
periments” of 200 “participants” each. Model 1
looks at the production of seven double object da-
tives to assess self-priming. Model 2 is structured
like the experiments of Jacobs et al. (2015) and con-
sists of three stages. First, seven datives are pro-
duced, then six datives of a single syntactic structure
are comprehended, and then seven additional datives
are produced. In the production tasks, participants’
syntactic choices were randomly sampled from a Bi-
nomial distribution initialized at p(PO) = .55. This
allows us to treat individual subjects differently prior
to exposing them to the comprehension materials.

The model always updates the probability of a PO
when it encounters a PO or DO. In Model 1 we as-
sess what should happen to participants’ later pro-
ductions if they are influenced by their own produc-
tions (self-prime) to the same extent as in compre-
hension. In Model 2 we look at the magnitude of
comprehension-to-production priming when partici-
pants are allowed to self-prime versus not.

4 Model 1 - Self-priming in production

This task can be conceptualized as a spontaneous
production task. We conducted 1000 experiments
with 200 participants each. Each participant pro-
duces seven sentences. Participants’ syntactic
choices are sampled from an incrementally updat-
ing Binomial distribution where the calculated pos-
terior probability for each subject replaces the prior
probability of p(PO). Each utterance that the model
produces contains either a prepositional object da-
tive construction (e.g. The librarian gave the book
to the boy) or a double object dative (e.g. The librar-
ian gave the boy the book).

Qualitatively, the model makes the prediction
that, in general, models where self-priming occurs
should be more likely to prefer one form of a struc-
ture over the other. Self-priming increases the en-
tropy of the distribution, though it is naturally biased
toward producing more probable structures since
those are initially more likely to be drawn. We sum-
marize the results of our simulations for self-primers
and non self-primers below in Figure 2.

Importantly, self-priming always produces some
change to the model parameters. At the limit, the
production system’s predictions are often correct,
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Figure 2: Self-priming without adjustment from compre-
hension results in a more uniform distribution of syntac-
tic preferences across a population of speakers than in a
model where speakers do not prime themselves.

leading to minimal prediction error (e.g. Chang,
Dell, & Bock, 2006; Jaeger & Snider, 2013). A
lack of prediction error can be conceptualized as the
same thing as no self-priming in production, since
neither leads to changes in syntactic preferences.
Analogously, as the hyperparameters increase for an
individual iteration of the model, the more confi-
dent the model is in its initial representations, lead-
ing to a stable distribution for a single speaker. It is
also possible, however, that production and compre-
hension are updated separately, but production pos-
sesses more conservative hyperparameters, in line
with research showing the static preferences of the
production system (Remez, 2013).

The bulk of priming occurs early in the experi-
ment. Participants’ prior productions should play an
influential role on their later productions, with the
population’s structural preferences stabilizing over
the course of seven trials. This implies that predic-
tion error made by the model decreases over many
productions by a single speaker. We visualize this
below in Figure 3.

5 Model 2 - Transfer from comprehension
to production

We wanted to see how much self-priming diminishes
the effect of comprehension-to-production priming,
since self-priming changes the hyperparameters of
the model, meaning that the model becomes more
conservative in its estimates of the probability of us-

4



0.5!

0.525!

0.55!

0.575!

0.6!

0.625!

0.65!

1! 2! 3! 4! 5! 6! 7!

%
 P

O
!

Trial number!

Self-priming!
No self-priming!

Figure 3: Models where self-priming is permitted
converge on preferring the higher-probability structure
within two trials. Models that do not permit self-priming
show the same syntactic bias over the course of the ex-
periment.

ing a PO (that is, the values of both α and β are
larger). This experiment is structured in the same
way as Model 1, except participants later compre-
hend 1 or 6 utterances containing a single structure
(DOs or POs only) and produce an additional seven
utterances in a final production task, following the
experimental design of Jacobs et al. (2015).

Priming from comprehension to production is ac-
complished via the same updating process that we
defined above. When a participant encounters a DO
or PO structure, this updates the α and β parame-
ters, and the observed posterior probability replaces
the prior probability of a PO. The α and β parame-
ters after comprehension are therefore adjusted in fa-
vor of the primed structure, which makes the primed
structure more likely to be drawn on the next trial.

The model changes more for low-probability
structures. Because the model has flexible priors,
after hearing a single structure for six consecutive
trials, the model will believe that the primed struc-
ture, regardless of which structure was primed, will
be a certain likelihood (e.g. p(PO) or p(DO) = .75)
after the comprehension stage. The model therefore
shows more priming after exposure to the less com-
mon structure (DO) than after exposure to the more
probable structure (PO). The model here demon-
strates greater priming for dispreferred structures
because the gap to bridge is larger for the dispre-
ferred structure. Our results accord with models that
employ error-based learning principles (Chang et al.,
2006; Jaeger & Snider, 2013), where model param-

eters are adjusted via experience and change more
in response to lower-probability structures. Figure
4 summarizes the relationship between prime prob-
ability, self-priming, and cumulativity.

Self-priming leads to much smaller effects of
priming from comprehension. Even when exposed
to a relatively high number of primes (6 versus 1),
participants who self-prime do not align to com-
prehension input as much as participants who are
not affected by their own prior productions. This
is because the hyperparameters are tuned an addi-
tional seven trials before these participants go into
the comprehension stage of the experiment, which
makes it more difficult to change the probability dis-
tribution on later trials. Should the non self-priming
models’ hyperparameters be set sufficiently high, to
perhaps the same level as the average self-priming
model, this particular difference would likely disap-
pear. Additionally, if hyperparameters for both mod-
els were even higher, it is likely that the magnitude
of priming would not differ much between the two
model types. Keeping the hyperparameters small
before relevant linguistic experience (via compre-
hension or via both comprehension and production),
makes it easier to see that self-primers require more
comprehension input to offset their learned produc-
tion biases.

0!

0.05!

0.1!

0.15!

0.2!

0.25!

0.3!

0.35!

1 prime! 6 primes! 1 prime! 6 primes!

No self-priming! Self-priming!

In
cr

ea
se

 in
 p

ro
ba

bi
lit

y 
of

 u
si

ng
 p

rim
ed

 
ta

rg
et

 s
tru

ct
ur

e!

DO % Change!
PO % Change!

Figure 4: Increase in use of primed target structures in
the second half of the experiment as a function of the
number of primes, whether the models self-prime or not,
and which structure was primed. All models accommo-
date the comprehension input. Priming is strongest when
the primed structure was less frequent (DO). Similarly,
when participants are exposed to more primes (6 ver-
sus 1), the priming effects are larger. Self-primers show
smaller priming effects in all cases.
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To assess the possibility that having high values
of α and β diminishes the effect of comprehension-
to-production priming, we ran an additional set of
experiments with α and β set to 40 and 50, re-
spectively. These values were selected to produce
a probability of p(PO) roughly equal to .55. This
experiment definitively demonstrated that an addi-
tional 6 primes of a particular structure still re-
sults in change to the model, though the non self-
priming model is much more sensitive to six items
of a single structure than the self-priming model,
which has stronger beliefs about p(PO). The self-
priming model seems inclined to not accommo-
date at all (.4% change), while the non self-priming
model changes at a measurable amount (3%, compa-
rable to the self-priming model that received 1 prime
in Figure 4). The results of these simulations are
demonstrated below in Figure 5. This suggests that
even when the model’s hyperparameters are made to
be very conservative, self-priming is detrimental to
comprehension-to-production priming.
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Figure 5: In comprehension-to-production priming mod-
els where self-priming is allowed to occur, the ability to
accommodate novel comprehension input is greatly re-
duced. The self-priming model changes toward the com-
prehension input .4%, while the non self-priming model
changes 3%.

6 Comparison to psycholinguistic data

An important test of the model is to compare its
output to existing psycholinguistic data. While the
model can account neither for the corpus linguis-
tic studies that have demonstrated repetition greater
than would be expected by chance (Jaeger & Snider,

2013; Reitter et al., 2011; Gries, 2005; Myslin
& Levy, submitted), nor for those studies report-
ing speakers with strong structural biases (Jaeger
& Snider, 2013), nor for anti-repetition and decay
(Healey et al., 2014; Reitter et al., 2011), it can ac-
count for several phenomena that have been well-
demonstrated in structural priming in production, as
well as the results of Jacobs et al. (2015).

Self-priming is predicted by many accounts of
syntactic priming where comprehension and produc-
tion input are equated (Chang et al., 2006; Pickering
& Garrod, 2013; Jaeger & Snider, 2013; Tooley &
Bock, 2014). We have demonstrated here that self-
priming leads to self-convergence. In a model where
one’s own prior productions weigh in on one’s later
productions, speakers quickly converge on a syntac-
tic preference, with the majority of speakers com-
ing to prefer the more probable structure (Figure 2).
These results are counter to the experimental results
of Jacobs et al. (2015), who reported that repetition
of syntactic structures was constant at all stages of
the production task. Had speakers primed them-
selves, the probability of using the more probable
structure should have increased, however modestly
(Figure 3).

Models allowing for self-priming with sufficiently
large hyperparameters (Figure 1) would likely show
both very little self-priming (having converged on
a particular syntactic preference) as well as rela-
tively little sensitivity to comprehension input (Fig-
ure 4). This is again counter to the results of Jacobs
et al. (2015), who found very large comprehension-
to-production structural priming effects. Production
and comprehension sharing hyperparameters leads
to radically different results than what is empirically
observed.

Altogether, the computational model and the ex-
perimental data suggest that comprehension and
production should be modeled separately. In or-
der to obtain a production system that maintains
its own internal representations and accommodates
comprehension input (Remez, 2013; Pickering &
Garrod, 2013), it is important that speakers not
overweight their own syntactic preferences. This
can be accomplished by having separate produc-
tion and comprehension systems, where production-
to-production priming (updating) is minimal while
comprehension-to-production priming is large. An
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alternative, as described in Model 2, is to only allow
updating from comprehension to production.

The model agrees with both existing computa-
tional models of syntactic priming and psycholin-
guistic data. The model updates incrementally, as
many others have done (Chang et al., 2006; Jaeger &
Snider, 2013; Fine et al., 2010; Kleinschmidt et al.,
2012) and shows greater priming effects when ex-
posed to multiple instances of the same structure
(Kaschak et al., 2012). The priming effects are
larger for less common structures than for more
common structures because of the sensitivity of the
model to error, demonstrating the inverse frequency
effect (Chang et al., 2006; Jaeger & Snider, 2013).
Finally, in a model where self-priming does not oc-
cur, or where updating from production to produc-
tion is extremely low, structural preferences persist
(Reitter et al., 2011; Tooley & Bock, 2014; Bock &
Griffin, 2000; Kaschak, 2007; Kaschak et al., 2012).

7 Conclusion

The present model accounts for the incremental-
ity, cumulativity, error sensitivity, and persistence of
syntactic priming in production. In contrast to pre-
vious models of syntactic priming (Jaeger & Snider,
2013; Chang et al., 2006; Reitter et al., 2011; Picker-
ing & Garrod, 2013), we tested the effects of equat-
ing comprehension and production input in struc-
tural priming in production. Self-priming has con-
sequences for both individual and population-level
language use.

This model makes predictions for all of these phe-
nomena by making a single assumption: prior expe-
rience affects syntactic choices in production. Re-
gardless of whether self-priming is allowed to oc-
cur or not, we are sensitive to recent and cumu-
lative linguistic input and are primed to produce
the structures we hear. Additionally, we change
our representations more when we encounter low-
probability structures. Because syntactic represen-
tations are updated without respect to time, syntac-
tic priming effects do not necessarily decay in this
model as in others (e.g. Reitter et al., 2011). How-
ever, most syntactic priming studies report struc-
tural persistence, making the model consistent with
such studies (Bock, 1986; Tooley & Bock, 2014;
Bock & Griffin, 2000; Kaschak et al., 2012). Fi-

nally, if individuals are allowed to self-prime, prim-
ing from comprehension will be weak and a popula-
tion of speakers may be very variable in their struc-
tural preferences.

The functional value of self-priming is tempting
if language is structured optimally to be easy for
the speaker (MacDonald, 2013). Speakers can em-
ploy their own syntactic preferences, with compre-
henders accommodating them. Other theories have
stated that priming between speakers is necessary
for efficient communication (Pickering & Garrod,
2013; Jaeger & Snider, 2013), especially because
speakers must learn the distributions of the language
around them in order to become successful commu-
nicators (Chang et al., 2006). In a language commu-
nity, it may be sufficient to accommodate conversa-
tion partners rather than to develop highly idiosyn-
cratic production preferences, making self-priming
and structural repetition sub-optimal (Healey et al.,
2014). At the same time, comprehenders are sensi-
tive to the repetitive nature of conversations and may
come to expect repetition during dialogue (Myslin
& Levy, submitted). To that end, we are extending
this model to simulate population dynamics in com-
munities where speakers prime each other and pos-
sibly also prime themselves. Self-priming has con-
sequences for language-level statistics, so it is im-
portant to see what changes might take place in a
language community where individual speakers are
allowed to become highly idiosyncratic.

It is still an open question as to whether one’s
own productions influence later syntactic choices.
Some more recent psycholinguistic evidence sug-
gests that they do not (Jacobs et al., 2015). If speak-
ers do not self-prime, is it because they tend to avoid
repeating syntactic structures (e.g. Healey et al.,
2014), or is there an error-driven learning compo-
nent, where predictions about one’s own production
are almost always correct, leading to no learning? To
answer these questions, further experimental work
is needed. In the meantime, we have outlined some
predictions and accounted for the vast majority of
phenomena in syntactic priming in production with
a very simple belief-updating model.
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Abstract

Linguistic alignment, such as lexical
and syntactic alignment, is a universal
phenomenon influencing dialogue participants
in online conversations. While adaptation
can occur at lexical, syntactic and pragmatic
levels, relationships between alignments at
multiple levels are neither theoretically nor
empirically well understood. In this study,
we find that community members show
pragmatic alignment on social support type,
distinguishing emotional and informational
support, both of which provide benefits to
members. We also find that lexical alignment
is correlated with emotional support. This
finding can contribute to our understanding
of the linguistic signature of different types
of support as well as the theory of Interactive
Alignment in dialogue.

1 Introduction

Linguistic alignment is a psycholinguistic
phenomenon that causes dialogue participants
to adjust their language patterns to those of
their conversation partners. These linguistic
patterns include words (Gries, 2005), syntax
(Bock, 1986; Branigan et al., 2000; Jaeger and
Snider, 2007), gestures (Bergmann and Kopp,
2012) and more. This phenomenon has been well
examined and explored under experimental settings
(Fusaroli et al., 2012; Reitter and Moore, 2007), in
naturalistic discourse (Gries, 2005; Reitter et al.,
2006), as well as in online conversations (Huffaker
et al., 2006; Scissors et al., 2008; Backstrom et al.,
2013), social media, and fictional dialogue in

film scripts (Danescu-Niculescu-Mizil and Lee,
2011). Moreover, according to the Interactive
Alignment Model (IAM) (Pickering and Garrod,
2004), linguistic alignment has been suspected to
be a driver of mutual understanding, building up
over different levels (lexicon, syntax, situation,
pragmatic, agreement).

Alignment is a universal phenomenon that
reaches beyond the linguistic decisions we make
once we have decided to communicate an idea.
Pragmatics is commonly taken to refer to the
way we express and understand communications in
context, encoding higher-level intent. How people
understand words and phrases in a given situation is
indeed subject to alignment (Garrod and Anderson,
1987). Generally, games can elucidate pragmatic
reasoning and mutual adaptation thereof (Frank and
Goodman, 2012). To the best of our knowledge,
there is no prior report of pragmatic alignment in
naturalistic situations. For the purposes of this study,
we define the pragmatics of an utterance as the
intended effect on the reader or listener, regardless
of the way it is semantically expressed. Unlike
in pragmatics in linguistics, however, our focus is
not on the differences between explicitly stated and
implied meaning.

The first question this paper will focus on is
analyzing pragmatic alignment in naturalistic
dialogue, specifically in internet forum
conversation. To understand what we mean by
higher-level semantics or pragmatics in these data,
we need to understand the motivation and dynamics
of these communities.

An increasing number of people with serious
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disease seek and give social support in group
discussions in online social networks such as
Facebook and online health support communities.
Basically, there are four types of social support,
emotional support, informational support,
tangible/instrumental support and appraisal support
(Langford et al., 1997; Malecki and Demaray, 2003).
In online communities, the social support exchange
is primarily of an informational or emotional
nature (Wang et al., 2012; Rimer et al., 2005).
Understandably, people with a life-threatening
illness are in need of both information, such as
side-effects of a specific drug, and emotional care,
such as empathy. Previous research on behavior
analysis, such as stress-buffering theory (Cohen
and McKay, 1984), also suggested that exchanging
useful social support protects people from stressful
and pathological events. Analyzing the social
support and the kind of support conveyed in the
messages will be of benefit to support-oriented
community building. Furthermore, previous studies
(Zhao et al., 2014) suggested that earlier responses
to a new support seeking request help predict
leaders in self-supported communities. Although,
the proportion of emotional or informational
support in a message can, of course, be influenced
by many factors, such as previous messages in
the conversation, word choices and personality.
Nevertheless, we use this measure for further
analysis. From the alignment perspective, we will
focus on whether people tend to align in the type
of support in online health communities. In other
words, we first analyze the pragmatic alignment
phenomenon, which is defined as alignment of
the type of support provided by one community
member to another. We validate it in one of the
largest online health communities, Cancer Survivor
Network. To the best of our knowledge, pragmatic
alignment in online communities has not been
explored yet.

The second question is whether we could find
evidence for or against the Interactive Alignment
Model (Pickering and Garrod, 2004) in this dataset.
As IAM suggested, alignment at different levels
is linked, building up from lower-level adaptation.
At a functional level, linguistic alignment
indicates and may help build social relationships
(Danescu-Niculescu-Mizil and Lee, 2011), reveal

social status (Danescu-Niculescu-Mizil et al.,
2011; Jones et al., 2014) and strengthen situational
awareness in dialogic tasks (Fusaroli et al., 2012;
Reitter and Moore, 2007, 2014).

Thus, an important question in this context is
whether adaptation also applies to higher-level
pragmatic goals, such as providing support
that is more informational or more emotional.
Convergence at lower levels would theoretically be
expected to correlate to higher-level convergence,
and conversations that show convergence would be
expected to be more effective. Do priming effects at
levels of lexicon and syntax influence the proportion
of the type of support in a message within the
conversation? We predict that social support
adaptation exists in thread based discussions.
Theoretically, we would also expect that low-level
priming facilitates any social support adaptation we
find.

To sum up, there are two concrete questions we
will address in this paper:

• (1) Does the type of support (i.e, emotional vs.
informational) provided by early responders
(i.e, first responder) on a thread influence the
type of support provided by later responders in
self-support communities?

• (2) Does lexical and syntactic alignment
(henceforth “linguistic alignment”) between
early responders and later responders correlate
to the type of support matching?

The alignment we are concerned with would
clearly happen at the level of communicative intent.
We consider this pragmatics. The pragmatics we
refer to is not the same as it’s used in linguistics
concerning contextual and indirect interpretation of
sentence semantics, but rather the sense of intent,
in a psychological sense. In psychology, pragmatic
communication comprises social and conventional
messages that take the recipient’s needs into
account. Social support adaptation specifically
considers the unspoken rule that we perceive an
interlocutor’s emotional and informational needs
and react accordingly.

Some studies in behavior analysis (Backstrom
et al., 2013; Cheng et al., 2014) showed that word
use in the conversations may influence members’
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behavior in the communities. Althoff et al.
(2014) stated that request presentation influences
members’ feedbacks in a variety of ways, such
as sentiment, politeness and length of reply posts.
Cheng et al. (2014) mentioned that members’
feedbacks also shapes users’ behavior in the
communities. Furthermore, automated content (Qiu
et al., 2011) and discourse analysis using machine
learning methods provided important insights about
the benefits and causal relationships (Bui et al.,
2015) with support behaviors in online health
communities. Thus, modeling members’ feedbacks
at the pragmatic level could help us build better
communities.

A recent study from Vlahovic et al. (2014) was
similar to our study. They used profit regression
to predict members’ satisfaction after receiving
emotional and informational support in a breast
cancer online support community. For one thread, a
trained profit regression model predicted the thread
initiators’ satisfaction scale from 1 to 7. In this
study, both receiving emotional and informational
support increased thread initiators’ satisfaction in
general. However, if a thread initiator received
support that did not match the type requested, this
user’s satisfaction decreased. In this work, we focus
on whether previous messages will influence other
responders’ behavior in the ensuing conversation.

2 Measures

In this paper, we use adaptation measures at
two levels, linguistic alignment and pragmatic
similarity. Linguistic alignment quantifies by how
much conversation participants adapt their language
patterns to those of their interlocutors. Studies differ
in the kinds of patterns examined: Some approaches
measure linguistic adaptation using Linguistic
Inquiry and Word Count (LIWC) (Tausczik and
Pennebaker, 2010; Danescu-Niculescu-Mizil et al.,
2011), and some focus on functional words (Jones
et al., 2014). Other approaches measure repetition
of words or syntactic rules (Church, 2000; Dubey
et al., 2005; Fusaroli et al., 2012; Gries, 2005;
Reitter et al., 2006). We use Indiscriminate
Local Linguistic Alignment (Fusaroli et al., 2012)
to measure linguistic alignment in this paper.
Pragmatic similarity, for the purposes of the present

study, evaluates the degree of matching social
support types in conversation messages. In the
following, we will introduce these measures.

2.1 Linguistic Alignment Measures
In this paper, we implement Indiscriminate Local
Linguistic Alignment (Fusaroli et al., 2012) at lexical
and syntactic levels to evaluate linguistic alignment.
Generally, it measures the repetition of linguistic
patterns among messages in the same conversation.

To be specific, Lexical Indiscriminate Local
Linguistic Alignment (LILLA) measures word
repetition between between pairs of messages
(Wang et al., 2014; Fusaroli et al., 2012). The
messages, ordered by occurrence in a thread of
messages, will be called prime post and target post,
respectively. In this study, they will sampled from
the Cancer Support Network corpus. Formally,
LILLA is calculated as

LILLA(target, prime) =∑
wordiεtarget

δ(wordi)
length(prime) ∗ length(target) (1)

δ(wordi) =
{

1 if wordi ε prime
0 otherwise

(2)

where length(X) is the number of words in post X.
We also measure syntactic alignment. Every

sentence in each post is annotated with phrase
structure trees using the Stanford CoreNLP parser
(Klein and Manning, 2003). Each syntax tree is
translated to a series of syntactic rules to encode
the sequence of syntactic decisions. Syntactic
Indiscriminate Local Linguistic Alignment (SILLA)
is analogous to LILLA and measures repetition of
syntactic rules between prime and target post pair,
where length(X) in SILLA is the number of rules in
post X. (Fusaroli et al., 2012; Wang et al., 2014).

2.2 Support Measures
As discussed above, emotional support and
informational support are two most major support
types in self support health communities (Wang
et al., 2012; Rimer et al., 2005). Emotional
support gives individual a feeling that s/he is cared
for, or the facility of “understanding/empathy,
encouragement, affirmation/validation, sympathy,
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and caring/concern” (Bambina, 2007). Emotional
support does not include information. Here is an
example of emotional support in CSN: “I pray
for you every night XXX.....and send you hugs and
encouragement....you have the very BEST attitude
and you must have a totally wonderful family. Love,
XX”

However, different from emotional support,
informational support provides facts, advices and
referrals (Bambina, 2007). Also, in our case,
informational support only provides experience
and information, without any emotional support.
Another example of informational support in our
data is: ”I am having similar problem with sacrum
and hip, however not ready for biopsy in those areas.
If you can tolerate pain waiting for new drugs to
come will be beneficial. a new drug palbociclib
(PD-0332991) expected to receive FDA approval in
April of 2015”.

In order to quantify the amount of one type of
support in a reply post, we quantify the amount
of one type of support (i.e. informational support,
emotional support) in a comment post as support
index Biyani et al. (2014), as follows: Indextype =
numtype/numclassified, which is the proportion of
sentences of a specific type in a post.

We will predict the emotional support index,
Indexemo = 1 − Indexinfo (for presentational
reasons). The measure is produced automatically
using the previously published classifier (Biyani
et al., 2014).

3 Data Description

The data we use in this paper is from Cancer
Survivor’s Network (CSN) (csn.cancer.org),
which is the largest active online community for
cancer survivors. The CSN contains more than
166,000 users and 41 sub-communities (Portier
et al., 2013). Users in one sub-community have
experienced the same primary disease, similar health
issues, surgeries. Furthermore, many users express
depression. Most of the discussions in CSN are
goal-directed and support-oriented conversations,
which attracted our attention. Users would like to
exchange their experiences and emotions in facing
these tough situations.

We used threads from two largest sub-forums

in the CSN: Breast cancer and Colorectal cancer.
These sub-forums contain posts from the period
of June 2000 to October 2010. The majority of
posts in the breast cancer sub-forum are from female
members, while most posts in the colorectal cancer
sub-forum were authored by male patients. Thus,
the two corpora are from relatively distinct, but
representative user groups.

Mirroring the structure of other online
communities, we refer to an initial post followed
by a sequence of reply post as a thread. We treat
the structure of these threads as a sequence of plain
texts in temporal order, as members often use a
general “reply” button to initiate replies, even when
such messages are direct replies to a post. Thus,
more detailed post relationships within each thread
are sparse and not very reliable. A discussion
thread is represented as a sequence of posts,
< P0, P1, · · · , Pi, · · · , Pn >, where P0 is called
initial post, P1 is called the first reply of one thread
(simply called first reply) and the author of initial
post is called the thread initiator. In most cases, the
rest of replies provide help and emotional support
to the thread initiator. The variable i is called
the absolute position of post Pi. Posts in which
the thread initiator replies to his or her message
are excluded (as thread initiator may not provide
support to themselves). The number of replies in a
thread (without the initial post) is called the length
of that thread. Both sub-communities have similar
distributions of thread length. 90% of threads in
Breast Cancer forum and Colorectal Cancer forum
are shorter than 23 and 19, respectively.

We used a binary sentence classifier described by
Biyani et al. (2014), which classifies sentences as
providing either emotional or informational support.
The classifier was trained in that work on more than
1, 000 hand-annotated sentences; annotators reached
89% initial agreement. The classifier uses a variety
of features, including subjective and cancer-related
words, part-of-speech, phrases indicating support
types. It yields an F-measure of 0.840.

4 Method

We treat the first reply of a thread as the prime,
and each following reply as a target; thus, we
include several prime-target data points per thread.
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Table 1: Data Distribution in Breast Cancer and Colorectal Cancer sub-forums in CSN

# of Users # of Threads # of Comments # of Comment Pairs
% of Users
who have posted
in both forums

Breast Cancer 4,290 14,061 153,160 139,444 2.66%
Colorectal Cancer 2,348 13,282 125,527 112,602 4.85%

To address our first and second research questions,
we fit a generalized linear mixed effects regression
model with binominal kernel to predict the support
index of a reply post given lexical and syntactical
alignment measures, the support index in the first
reply, post distance, number of sentences of that
post and interactions terms among predictors in the
thread. All the predictors in the model have been
rescaled (but not centered).

4.1 Covariates

As a reminder, the model predicts the support index
of a reply post (response variable) as a function of
the following variables and interaction terms based
on the previous work Wang et al. (2014). While
the predicted informational support level is the sum
of all predictors, pragmatic alignment is indicated
as a positive correlation between the first reply’s
information support index and the response variable
(see Table 3).

First Reply Support Index: This variable
measures the proportion of informational support
sentences in the post. A positive estimate (β) would
indicate positive correlation of support type between
the posts.

Post Distance: The distance between the data
point (current post) and first reply in the thread can
be seen as a proxy for how much information has
been discussed so far in this thread, or for how
much time has elapsed between the posts. A large
post distance indicates that a post is far away from
the initial post. Distance is measured in number of
posts, as this is the most informative number: dates
and times are not indicative of when a member has
actually read the posts. Distance is interesting in
our context, as the priming effect decays rapidly, as
shown previously for the case of this corpus (Wang
et al., 2014).

Linguistic Alignment: As discussed in the
previous section, we use two linguistic alignment
measures, Linguistic Alignment (LILLA) and
Syntactic Alignment (SILLA) to link the linguistic
to support index. This main effect helps us address
the second research question.

Number of Sentences: This variable approximates
the complexity and the amount of information in a
given post.

Interaction terms between first reply Support
Index and Post Distance: The distance effect on
pragmatic alignment would indicate a decay effect
which is similar to decay previous observations for
linguistic repetition (Reitter et al., 2006).

Interaction terms between first reply Support
Index and Linguistic Alignment Measurement: To
address our second research question, we measure
the correlation between linguistic alignment and
support matching.

Interaction terms between Linguistic Alignment
and Post Distance: These two interaction terms
evaluate a correlation between linguistic decay and
support index, which follows the IAM’s cascade of
alignment effects at different representational levels.

4.2 Experimental Settings

We treat predicting online social support as a
generalized mixed effects linear regression with
binomial kernel (e.g., Jaeger, 2008). Compared
to other black-box machine learning algorithms,
such as SVM, this model is directly interpretable.
It predicts the probability of a message being
emotional/informational support message using
logit-link kernel. In this regression model, we also
consider the effect of different threads. This is of
concern because social support types in different
posts influenced by various topics and authors of
initial posts. Therefore, we employ a logistic
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Table 2: Model performance of full model and drop one feature off model. Numbers in bold shows the best performing
feature set.

Dataset Breast Cancer Sub Forum Colorectal Cancer Sub Forum
Predictor pseudo R-sq AIC BIC pseudo R-sq AIC BIC
- first reply Info Support Index 11.19% 61838 61912 14.53% 49514 49586
- PostDistance 18.29% 58658 58732 27.93% 46987 47060
- Lexical Alignment 10.84% 59060 59142 10.52% 47519 47601
- Syntactic Alignment 20.46% 58633 58717 28.78% 46943 47026
- # of Sentence in the current post 19.63% 58898 59000 29.63% 47111 47211
- Lexical Alignment × first reply
Info Support Index

15.95% 58836 58938 28.97% 46889 46997

- Syntactic Alignment × first reply
Info Support Index

19.55% 58695 58796 28.27% 46844 46944

- first reply Info Support Index
× Post Distance

21.34% 58750 58851 29.40% 46963 47063

- Lexical Alignment × Post-
Distance

18.96% 58513 58614 29.39% 46883 46983

- Syntactic Alignment × Post-
Distance

17.99% 58633 58735 28.93% 46664 46763

Full Model 21.82% 58511 58622 28.58% 46774 46882

regression model with random effects, grouped by
ThreadID.

We use the lme4 R package (Bates et al.,
2014). To evaluate the performance of drop one
feature off models, we give conditional pseudo
R-squared (pseudo R-sq), Akaike Information
Criterion (AIC) and Bayesian Information Criterion
(BIC) (Burnham and Anderson, 2002). The
conditional R squared shows the proportion of
variance explained (Barto, 2014, using R package
MuMIN). AIC and BIC are measures of the quality
of logistic regression model of current dataset.

All results reported in Table 2 are produced
from 10 random sub-sampling validation with 70%
training and 30% testing splits of threads.

4.3 Experiment Results

Table 3 reports effect sizes and directions, and
Table 2 gives the performance of the informational
support index prediction using generalized mixed
effects linear regression model with binomial kernel.
In Table 2, it shows the pseudo R-squared, AIC and
BIC of models for different set of features and the

full model.1

Overall, the full model which considers all
the features we have listed out-performs other
models. From the proportion of explained variable
perspective (R-squared), it shows that the linguistic
alignment and informational support index of the
first reply are the two most important predictors, and
increase a relatively larger proportion of variance
explained in the model. Also, interaction terms
considerably improve the model performance.

We rebuilt the model using the whole dataset
in order to show and interpret effects of different
predictors. The estimates and associated p-values
given in Table 3 pertain to the two best models,
predicting informational support index separately
for the two sub-forums.

5 Discussion

Initially, we focus on the effect of the first
reply support index addressing research question 1,
whether online support provided by early responders

1We use the AIC scores to select the best generalized mixed
effects linear regression model with binomial kernel, since AIC
score evaluates the model based on both goodness of fit and
model complexity (Burnham and Anderson, 2002).

14



Table 3: Predicting Information Support Index with generalized mixed effects linear regression models with
binomial kernel, fitted to data from Breast Cancer and Colorectal Cancer Sub-Communities.

Dataset Breast Cancer Sub Forum Colorectal Cancer Sub Forum
Predictor beta SE p beta SE p
Intercept -1.552 0.022 0.000 -1.545 0.023 0.000
first reply Info Support Index 1.295 0.045 0.000 1.204 0.048 0.000
PostDistance -0.351 0.051 0.000 -0.253 0.057 0.000
Lexical Alignment -29.369 2.180 0.000 -47.786 2.588 0.000
Syntactic Alignment 0.989 0.266 0.000 0.861 0.276 0.001
# of Sentence in the current post 7.464 0.243 0.000 5.426 0.169 0.000
Lexical Alignment × first reply
Info Support Index

58.150 3.592 0.000 73.163 4.410 0.000

Syntactic Alignment × first reply
Info Support Index

0.433 0.655 0.509 -0.084 0.806 0.917

Post Distance × first reply
Info Support Index

-0.114 0.113 0.310 -0.244 0.128 0.057

Lexical Alignment × Post-
Distance

-23.346 6.080 0.000 -20.691 7.108 0.004

Syntactic Alignment × Post-
Distance

0.256 0.702 0.715 0.181 0.807 0.823

influences the support index of replies from later
responders. According to the regression models
in Table 3, the support index of the first reply is
positively correlated with the support indices of the
later replies in both datasets. In short, people align
at the pragmatic level when it comes to overall
communicative intent. The intent of the first reply
is matched by the intent shown in future replies.

Similar to linguistic alignment effects, we also
consider the post distance effect. Previous studies
(Reitter et al., 2006) showed that strong syntactic
adaptation diminishes in seconds in spoken dialogue
corpora. This phenomenon also has been found
for individual syntactic constructions in written
and spoken language (see Pickering and Ferreira,
2008, for a review) and also in dialogues in online
communities (Wang et al., 2014). In order to
test and measure the effect of early messages
on later messages, we examine whether support
index has the same characteristic. There are two
components to an answer. First, the regression
model (Table 3) suggests that informational support
index generally decreases by post distance. In
other words, less informational support is given as
discussions proceed. It is worthwhile to note that

conversations shift towards emotional support in
this support-oriented community. Does alignment
decay by distance? This answer is given by the
interaction between distance and support index of
the first reply. Evidence for such decay is weak: we
have no support for decay in the Breast Cancer case,
and some decay (β = −0.244, p = 0.057) in the
Colorectal Cancer forum.

Another notable result is how linguistic and
pragmatic alignment interact. The LILLA measure
quantifies lexical adaptation between messages.
Lexical alignment is reliably indicative of emotional
support (negative information support) in both
forums. The reasons for this correlation may be
found in properties of informational support in
both datasets. Informational support provided at
a later time is likely to include new information,
introducing new words. Emotional support, on the
other hand, implies more consistent word choice.
Syntactic adaptation (SILLA) shows no effect of
syntactic alignment on support index.

To address our second initial question, we
also evaluate the relationship of linguistic and
pragmatic alignment using interaction terms
between Linguistic Alignment and first reply
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Support Index. From a theoretical perspective and
previous empirical results, we expect to see that
adaptation is consistent across different linguistic
choices: it may be due to a cascade of priming
effects and joint situational understanding (Garrod
and Pickering, 2009), joint languages (Fusaroli
et al., 2012), and/or a cognitive (memory) process
that is common to the different choices (Reitter
et al., 2011). We find a strong positive interaction
between lexical alignment and Informational
Support Index in the first reply. This means that
when first-reply (prime) and other-reply (target)
align in terms of their kinds of social support, then
they also tend to show much more lexical alignment.
The same cannot be said for the syntactic level.

Linguistic adaptation is correlated with high-level
alignment. In order to validate this theoretical
effect on our corpora, we observe interaction effects
between lexical alignment and the support type
alignment. We caution the reader, however, that this
interaction effect is expected given that our measure
of support type is a function not least of word
choices. Thus, these predictors are by no means
independent. However, as stated before, lexical
alignment also correlates with stronger emotional
support. The interaction effect of lexical alignment
and post distance, present in both datasets, suggests
that in later portions of each thread, lexical
alignment is no longer predictive of such emotional
support.

To summarize, the observations of main effects
suggest that the type of support provided by early
responders on the thread positively influences the
type of support provided by later responders in our
data. That is, pragmatic adaptation based on support
index exists in our data. Also, the observations
provide clues that informational support messages
are more likely to be provided at the beginning of
the thread discussions.

Moreover, with regard to our research question
2, there is a correlation between some linguistic
alignment measurements and support index.
Naturally, these results are observational: taken by
themselves, they suggest no causality. We make
our argument solely because the hypotheses tested
were motivated by theoretical predictions. Our
results are compatible with a theoretical perspective
that explains mutual understanding and successful

communication as being aided by a cascade of
priming or language adaptation effects (Pickering
and Garrod, 2004).

6 Conclusion

Motivated by the large proportion of online social
support in peer-to-peer support online communities,
we quantify and predict online support in the
thread-based conversations. In a regression
model, we have considered multiple factors, such
as previous messages, linguistic alignment, and
complexity. The results point to alignment
phenomena at a pragmatic level. Such alignment
tends to coincide with alignment of word choices.
Both of these results are, to our knowledge novel.
The interpretation of our regression model is
congruent with the interactive alignment theory
(Pickering and Garrod, 2004).

From an applied perspective the models we fitted
to the forum data could facilitate filters to display
certain useful posts, or to improve ranking of search
results after analyzing a specific users’ needs (i.e.
providing results with high informational support
index for seeking informational support). We
believe that it might help health communities to
improve user experience.
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Abstract

The “uniform information density” (UID) hy-
pothesis proposes that language producers aim
for a constant rate of information flow within
a message, and research on monologue-like
written texts has found evidence for UID in
production. We consider conversational mes-
sages, using a large corpus of tweets, and
look for UID behavior. We do not find ev-
idence of UID behavior, and even find con-
text effects that are opposite that of previous,
monologue-based research. We propose that
a more collaborative conception of informa-
tion density and careful consideration of chan-
nel noise may be needed in the information-
theoretic framework for conversation.

1 Introduction

Linguistic communication can be viewed from an
information theoretic standpoint as communication
via a noisy channel. If humans are approximately
rational in their communications and the noisy chan-
nel model is appropriate, then we expect to see com-
munication follow an approximately constant rate of
information flow. This is the Uniform Information
Density (UID) hypothesis.

Evidence in favor of UID has been found in
many levels of language production. At the level
of within-sentence context, there is clear evidence
from phonology that speakers reduce more pre-
dictable sounds (Aylett and Turk, 2004; Aylett and
Turk, 2006; Bell et al., 2003; Demberg et al.,
2012), suggesting that they are giving more “air
time” to less predictable material to equalize infor-
mation density. And in syntax, speakers tend to

drop optional materials (like the word “that” as a
sentence-complementizer) in more predictable sce-
narios (Levy and Jaeger, 2007; Frank and Jaeger,
2008; Jaeger, 2010), again implying a process of al-
locating communication time relative to predictabil-
ity. These effects appear in both monologues and
dialogues, suggesting that local linguistic context
shapes message complexity.

There is also some evidence for UID based on
broader, discourse-level context. Genzel and Char-
niak (2002) showed that word-by-word complexity
(measured by a standard n-gram language model)
increases across sequences of sentences. They hy-
pothesized that this increase was due to a corre-
sponding increase in non-linguistic information that
would make even more complex linguistic structures
easier to predict. Follow-ups have shown that this
same complexity increase effect is attested in dif-
ferent document types and across languages (Genzel
and Charniak, 2003; Qian and Jaeger, 2012). How-
ever, these studies draw almost exclusively from
long, well-structured written texts that function as
monologues from writer to reader.

This leaves an important gap in these tests of
the UID hypothesis: little work has looked at the
influence of discourse-level context on information
structure in interpersonal dialogue, the archetype of
human linguistic communication. With the excep-
tion of one preliminary study that provided a partial
replication of the original complexity increase ef-
fect using the Switchboard corpus (Vega and Ward,
2009), to our knowledge no work has explored how
the broader dynamics of conversation interact with
UID.
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The present study applies information-theoretic
analysis to a corpus of social media microblog posts
that include a large number of natural dialogues.
Surprisingly, we do not see clear evidence of the
UID hypothesis in these dialogues. Instead, we pro-
pose that differences in the discourse-level struc-
ture of conversation compared to monologues, such
as the desire to establish that mutual understand-
ing has been reached, may interfere with attaining
UID in the standard formulation. A more collabora-
tive view of UID, encompassing content generation
and grounding (Clark and Schaefer, 1987), may be
needed to fully represent conversational structure.

1.1 Conversations, context, and content
One common motivation for the UID hypothesis is
a rational analysis based on a noisy-channel model
of communication (Levy and Jaeger, 2007).1 In the
noisy-channel analysis, the amount of noise in the
channel sets an optimal value for information den-
sity to obtain fast, error-free transmission. For a
noise level α, we will refer to the optimal informa-
tion content per discourse unit Yi as Hα(Yi). Dis-
course units, depending on the analysis, range from
syllables to whole documents; in our analyses, we
focus on words and tweets as our discourse units.

In the course of a message, as argued by Genzel
and Charniak (2002), the actual information content
per discourse unit is predicted by the entropy of the
random variable Xi representing the precise word
choice or choices within the discourse unit, condi-
tioned on the available context. The precise extent
of this context is difficult to pin down.

We estimate context for our studies by thinking in
terms of the common ground that a rational speaker
believes to exist, given the expected audience of
their message. Common ground is defined as the
knowledge that participants in a discourse have and
that participants know other participants have, in-
cluding the current conversational context (Clark,
1996). This common ground can be built from a
combination of linguistic and non-linguistic context,
including previous messages within the discourse,
preceding interactions between the conversation par-
ticipants, and world knowledge.

1The other common motivation is a surprisal-based argu-
ment (Levy, 2008): maintaining UID also minimizes the lis-
tener’s comprehension effort.

To formalize this relationship, let Ci be the com-
mon ground that exists prior to the production of
discourse unit Yi, and let α be the expected noise
level in the channel that Yi is transmitted through.
Then optimality within a noisy channel model pre-
dicts that the noise-dependent optimal information
rate Hα(Yi) is related to the actual information rate
as follows:

Hα(Yi|Ci) = H(Xi)− I(Xi;Ci) (1)

Here, H(Xi) is the apparent decontextualized en-
tropy of the discourse unit independent of the com-
mon ground. This quantity is often estimated from
a language model that uses only local context, not
higher-level discourse context or common ground.
We use a trigram Markov model in this study.

I(Xi;Ci) is the mutual information of the dis-
course unit random variable Xi and the common
ground Ci—essentially how much more predictable
the next discourse unit becomes from knowing the
common ground. Common ground is difficult to
quantify—both in the particular datasets we con-
sider and more generally—so we rely on the as-
sumption that more common ground is correlated
with greater mutual information, as in Genzel and
Charniak (2002).

Then, based on this assumption, Eq. 1 allows us to
make two UID-based predictions. First, as channel
noise increases, transmission error should increase,
which in turn should cause the optimal information
transfer rate Hα(Yi) to decrease. Thus, to main-
tain equality with rising noise, the apparent entropy
H(Xi) should decrease. This prediction translates
into communicators “slowing down” their speech
(albeit in terms of information per word, rather than
per unit time) to account for increased errors.

Second, as common ground increases, I(Xi;Ci)
should increase. To maintain equality with rising
common ground, H(Xi) should thus also increase,
so as not to convey information slower than neces-
sary. This prediction translates into communicators
“going faster” (e.g., packing more information into
each word) because of an assumption that listeners
share more common ground with them.
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1.2 The current study

We take advantage of the conversational structure
of the popular social media microblogging platform
Twitter (http://twitter.com) to test these
predictions. Twitter allows users to post 140 char-
acter “tweets” in a number of different conversa-
tional contexts. In particular, because some tweets
are replies to previous tweets, we can use this re-
ply structure to build conversational trees, and to
track the number of participants. In addition, spe-
cific choices in tweet production can affect what au-
dience is likely to see the tweet. These variables are
discussed in depth in Section 2.2.

To test the entropy effects predicted by Eq. 1, we
first examine different types of tweets that reach dif-
ferent audience sizes. We then restrict our analysis
to reply tweets with varying audience sizes to ana-
lyze audience size independently of noise. Finally,
we look at the effects of common ground (by way
of conversation structure) on tweet entropy. Con-
trary to previous UID findings, we do not see a clear
increase in apparent entropy estimates due to more
extensive common ground, as had been found in pre-
vious non-conversational work (Genzel and Char-
niak, 2002; Qian and Jaeger, 2012; Doyle and Frank,
2015).

We propose two factors that may be influenc-
ing conversational content in addition to UID fac-
tors. First, achieving conversational goals may
be more dependent on certain discourse units that
carry low linguistic informativity but substantial so-
cial/conversational importance. Second, consider-
ing and adapting to two different types of noise—
message loss and message corruption—may cause
tweeters to make large-scale decisions that over-
whelm UID effects.

2 Corpus

Randomly sampling conversations on a medium like
Twitter is a difficult problem. Twitter users routinely
use the medium to converse in smaller groups via the
mention functionality (described in more detail be-
low). Yet such conversations are not uniformly dis-
tributed: A random sample of tweets—perhaps cho-
sen because they contain the word “the” or a simi-
larly common token (Doyle, 2014)—yields mostly
isolated tweets rather than complete dialogues. Di-

Seed Users Category
@camerondallas

Youtube stars
@rickypdillon
@edsheeran

Musicians
@yelyahwilliams
@felixsalmon

Journalists
@tanehisicoates

@jahimes
Politicians@jaredpolis

@leezeldin
@larrymishel

Economists
@paulnvandewater

@neiltyson
Scientists@profbriancox

@richardwiseman

Table 1: Seed users for our dataset.

alogues depend on users interacting back and forth
within communities.

2.1 Seed strategy

To sample such interactions, we developed a “seed”
strategy where we identified popular Twitter ac-
counts and then downloaded a large sample of their
tweets, then downloaded a sample of the tweets of
all the users they mentioned. This strategy allowed
us to reconstruct a relatively dense sample of dia-
logues (reply chains).

We began by choosing a set of 14 seed Twitter
accounts (Table 1) that spanned a variety of genres,
were popular enough to elicit replies, and interacted
with other users often enough to build up a commu-
nity.

To build conversations, we needed to obtain
tweets directed to and from these seed users. For
each seed user, we downloaded their last 1500
tweets, extracted all users mentioned within those
tweets, and downloaded each of their last 1500
tweets. To capture tweets that failed to start con-
versations with the seed users, we also added the
last 1000 tweets mentioning each seed user’s handle.
Tweets that appeared in multiple communities were
removed. Each reply contains the ID of the tweet
it replies to, so we could rebuild conversation trees
back to their roots, so long as all of the preceding
tweets were made by users in our communities.
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2.2 Conversation structure and visibility

Twitter conversations follow a basic tree structure
with a unique root node. Each tweet is marked as a
reply or not; for replies, the user and tweet IDs of
the tweet it replies to is stored. Each tweet can be
a reply to at most one other tweet, so a long con-
versation resembles a linked list with a unique root
node. “Mentions,” the inclusion of a username in a
tweet, are included in tweets by default throughout
a conversation unless a tweeter chooses to remove
some of them, so tweets deep in a conversation may
be primarily composed of mentions rather than new
information.

After some processing described below, our sam-
pling process resulted in 5.5 million tweets, of which
3.3 million were not part of a conversation (not a
reply, and received no replies). Within this data,
we found 63,673 conversations that could be traced
back to a root tweet, spanning 228,923 total tweets.
Unfortunately, Twitter only tracks replies up a tree,
so while we know with certainty whether a tweet is
a reply (even if it is to a user outside our commu-
nities), we do not know with certainty that a tweet
has received no replies, especially from users out-
side our communities. If anything, this fact makes
our analyses conservative, as they may understate
differences between reply and non-reply tweets. The
remaining 2 million tweets were replies whose con-
versations could not be traced back to the root.

2.3 Information content estimation

To estimate the information content of a tweet,
we first tokenized the tweets using Twokenizer
(Owoputi et al., 2013). We then removed any num-
ber of mentions at the beginning or end of a tweet, as
these are usually used to address certain users rather
than to convey information themselves. (Tweets that
only contained mentions were removed.) Tweet-
medial mentions were retained but masked with the
single type [MENTION] to reduce sparsity. Links
were similarly masked as [URL]. Punctuation and
emoji were retained. We then built trigram lan-
guage models using SRILM with default settings
and Kneser-Ney discounting. Types with fewer than
5 tokens were treated as out-of-vocabulary items.

For each community, the training set was the set
of all tweets from all other communities. This train-

ing set provides tweets that are contemporaneous to
the test set and cover some of the same topics with-
out containing the same users’ tweets.

3 Analyses

We describe the results of three sets of analyses
looking at the influence of audience size and avail-
able context on apparent tweet entropy. The first
examines the effect of expected audience size at a
coarse level, comparing tweets directed at a small
subset of users, all one’s followers, or the wider
realm of a hashtag. The second examines the effect
of finer differences in known audience size on appar-
ent informativity. The third examines the effects of
conversational context and length on informativity.

3.1 Expected audience size

First, we consider three different types of tweets and
their expected audience size. Tweets whose first
character is a mention (whether or not it is a reply)
do not show up by default when browsing a user’s
tweets, unless the browser follows both the tweeter
and first-mentioned user.2 We will refer to these
as “invisible” tweets as they are invisible to follow-
ers by default. A tweeter making an initial-mention
tweet thus should expect such a tweet to have a rel-
atively limited audience, with a focus on the men-
tioned users.3

On the other side, a hashtag serves as a categoriza-
tion mechanism so that interested users can discover
new content. Hashtags are often used to expand the
potential audience for a tweet to include the feeds
of users tracking that hashtag, regardless of whether
they follow the original tweeter, and so a tweeter us-
ing a hashtag should expect a larger audience than

2This behavior varies slightly depending on what applica-
tion is used to view Twitter. On the website, mention-first
tweets do not appear in lists and only appear after clicking the
’tweets & replies’ option on a timeline. On the Twitter mobile
app, mention-first tweets appear by default on a timeline but
still not in lists.

3Some Twitter users consciously manipulate audience using
these markers: many tweets have an initial period or other punc-
tuation mark to prevent it from being hidden. Some users rou-
tinely switch between initial-mention replies and “dot”-replies
in the course of a conversation to change the audience, presum-
ably depending on their estimate of the wider relevance of a
remark.
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Type Tweet Per-word entropy

invisible

[MENTION] [MENTION] this is so accurate tho 6.00
[MENTION] can you come to my high school ? ;3 7.61
[MENTION] Hi Kerry , Please send us your email address in order to dis-
cuss this matter further . Thanks !

8.58

post your best puns in the comments of my latest instagram photo : [URL] 7.44

baseline
I wish I could start a blog dedicated to overly broad and sweeping introduc-
tory sentences

9.98

this new year’s eve in NYC , keep an eye peeled 4 Sad Michael Stipe .
[URL] already found him : [URL]

7.17

I will probably be quitting my job when #GTAV comes out 7.63

hashtagged
#UMAlumni what is the number one thing graduating seniors should know
? #MGoGrad

6.80

Brilliant interactive infographic : shows cone of uncertainty for #climate-
change [URL] #howhotwillitget

12.1

Table 2: Example tweets from each category.

normal.4 Finally, we have baseline tweets which
contain neither mentions nor hashtags and whose ex-
pected audience size is approximately one’s follow-
ers.

Intuitively, common ground is higher for smaller
audiences. It should be highest for the invisible
tweets, where the audience is limited and has seen
or can readily access the previous tweets in the con-
versation. It should be lowest for the hashtagged
tweets, where the audience is the largest and will
likely contain many users who are completely unfa-
miliar with the tweeter. If contextualized UID is the
driving force affecting information content, then the
invisible tweets should have the highest entropy and
hashtagged tweets should have the lowest.

In this analysis, we use the full 5.5 million tweet
database. Figure 1 plots the entropy of tweets for
these three audience sizes. Per-word and per-tweet
entropy both significantly increase with expected
audience size (p < .001 by likelihood-ratio test), the
opposite direction of our prediction. We discuss this
finding below in the context of our next analyses.

4Not all hashtags are intended for categorization; some are
used for emphasis or metalinguistic comment (e.g. #notmyfa-
voritefridaymeal, #toomuchinformation). These comments are
probably not intended to broaden the tweet’s audience. The
presence of such hashtags should, if anything, cause our analy-
sis to underestimate variability across audience types.

●

●

●

7.8

8.2

8.6

9.0

invisible
baseline

hashtagged

tweet type

pe
r−

w
or

d 
pe

rp
le

xi
ty

 (
bi

ts
)

●

●

●

100

110

120

130

invisible
baseline

hashtagged

tweet type

pe
r−

tw
ee

t p
er

pl
ex

ity
 (

bi
ts

)
Figure 1: Per-word (left) and per-tweet (right) entropy
are higher for tweets with larger expected audience size.
Error bars (in some cases smaller than plotting marker)
show by-user 95% confidence intervals.

3.2 Known audience size

The results from expected audience size in Section
3.1 have a potential explanation: different tweet
types are received and viewed in different ways,
which may encourage different kinds of commu-
nicative behavior. Tweets with mentions are highly
likely to be seen by the mentioned user (unless
the mentioned user is very popular), whereas the
likelihood of a given hashtagged tweet being seen
through the hashtag-searching mechanism is very
low. This uncertainty about audience may lead a
rational tweeter to package information into tweets
differently: they may include more redundant in-
formation across tweets when the likelihood of any
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Figure 2: Per-word entropy of tweets with different num-
bers of mentions and different visibility. Invisible tweets’
entropy increases with mentions, while visible tweets’
entropy decreases. Logarithmic fits with 95% confidence
intervals; x-axis is log-scaled.

given tweet being read is low.
To assess audience size effects in a more con-

trolled setting, we look at invisible tweets with vary-
ing numbers of mentions. Invisible tweets provide
a quantifiable audience size; those with few men-
tions have a smaller audience than those with more
mentions. Visible tweets, on the other hand, have
approximately the same audience size regardless of
the number of mentions, since all of a user’s fol-
lowers can see them. Visible mentions can be used
for a wide range of discourse functions (e.g., self-
promotion, bringing one’s followers into an argu-
ment, entering contests), and so we do not have a
clear prediction of their behavior. But invisible men-
tions should, under the UID hypothesis, show de-
creased common ground as the number of conver-
sation participants grows and it is harder to achieve
consensus on what all participants know.

Figure 2 shows that the per-word entropy of invis-
ible tweets goes up with the logarithm of the number
of mentions. We look only at tweets with between
one and five mentions, as invisible tweets must have
at least one mention, and five mentions already sub-
stantially cut into the 140-character limit.5 This
leaves 1.4 million tweets.

The fact that invisible tweet entropy increases

5Usernames can be up to 15 characters (plus a space and an
symbol per mention); even if each username is only 7 charac-
ters, five mentions use almost one-third of the character limit.
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Figure 3: Per-word (top) and per-tweet (bottom) entropy
decrease with reply level and increase with conversation
length. Logarithmic fits with 95% confidence intervals;
x-axis is log-scaled.

with number of mentions, even as visible tweet en-
tropy decreases, suggests that audience size is hav-
ing an effect. However, this effect is causing en-
tropy to increase as common ground should be de-
creasing due to the larger number of conversation
participants. Furthermore, this effect is not driven
by reply level (Sect 3.3); there is a significant in-
crease (p < .001) in explanatory power from adding
number of mentions to a mixed-effects model with
fixed-effects of reply level and a by-user random in-
tercept.

3.3 Reply level and conversation length

We next turn to our second UID prediction: that
information content should increase as common
ground increases. As common ground is assumed to
increase in dialogues (Clark, 1996), we thus predict
that Twitter conversations should show increases in
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information content that scale with reply level, the
number of replies between the current tweet and the
conversation root. Such a result would constitute a
replication of Genzel and Charniak (2002) in the dis-
course context, and would confirm preliminary re-
sults on the Switchboard corpus by Vega and Ward
(2009). As is clear from our analysis below, that is
not what we found.

Figure 3 plots mean perplexities for different re-
ply levels and conversation lengths, with confidence
intervals based on by-user means. Increasing the re-
ply level decreases the information content of the
tweet, while increasing the conversation length in-
creases the information content.

We fit a linear mixed-effects regression model to
per-word and per-tweet perplexity. Control factors
were the logarithm of the tweet reply level and the
logarithm of the conversation length, along with a
separate binary variable for whether the tweet was
part of a conversation at all, and random by-user
intercepts. Both log reply level and log conversa-
tion length had significant effects by likelihood-ratio
tests.

Log reply level had negative effects on per-word
and per-tweet perplexity (per-word: −.341 ± .009;
per-tweet: −39.6± .3; both p < .001). Log conver-
sation length had positive effects on per-word and
per-tweet perplexity (per-word: .285 ± .010; per-
tweet: 35.1± .3; both p < .001).

To summarize these effects, all conversations lose
entropy as they go along, and tweets that start longer
conversations tend to have higher entropy to start.
Whereas previous work has suggested that messages
become more unpredictable as context builds up,
Twitter conversations appear to shift to more pre-
dictable messages as context builds up, and seem to
go until messages get sufficiently predictable. We
discuss these results below.

4 General Discussion

Previous work supports the UID hypothesis that ra-
tional communicators adjust their messages so as
to spread information as uniformly as possible in
response to local context (Aylett and Turk, 2004;
Levy and Jaeger, 2007), as well as to discourse-level
context in monologic writing (Genzel and Charniak,
2002; Qian and Jaeger, 2012).

Our current work synthesizes these two bodies
of work by looking for evidence of discourse-level
UID effects in a large corpus of Twitter conver-
sations, including dialogues and many-party con-
versations. Contrary to expectations, we failed to
find UID effects; in fact, we often found informa-
tion rate increasing when context changes would
have predicted decreasing information rates. Specif-
ically, we found that messages to smaller audiences,
which should have lower noise and greater context
and hence higher information density, actually have
lower information density than messages to larger,
noisier, and less context-sharing audiences. Further-
more, we found that later messages within a reply
chain, which should have greater context, have less
information. This last result is especially surprising
because UID context effects have been repeatedly
found in less conversational texts.

So should we give up on UID? While our re-
sults were unexpected, as we discuss below, we be-
lieve that they instead encourage more reflection on
how speakers conceptualize information for conver-
sational UID. We consider two aspects of these con-
versations: first, that the collaborative nature of con-
versation introduces rational uses for messages with
low (lexicosyntactic) information density; second,
that rational behaviors resulting from the nature of
noise in social media communication complicates
our evaluations of UID.

4.1 Information in terms of contributions
Why do Twitter conversations look different from
the increasingly-informative texts studied in previ-
ous work? For one, our dataset contains true con-
versations, whereas almost all of the sentence-level
context informativity results were based on single-
author texts.

In monologues, there is neither an ability nor a
need to check that common ground has been es-
tablished. Participants in a conversation, though,
must both produce content and establish ground-
ing (Clark and Schaefer, 1987). Participants em-
ploy many methods to establish grounding, includ-
ing backchannels (Yngve, 1970; Schegloff, 1982;
Iwasaki, 1997), which have little lexicosyntactic
information but provide crucial turn-taking and
grounding cues.

Dialogues are often reactive; for instance, a re-
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ply may be a clarification question, such as this re-
ply in our dataset: [MENTION] What do you mean
you saw the pattern? Such replies are typically
shorter and more predictable than the original state-
ment, and are often part of adjacency or coordinate
pairs (Schegloff and Sacks, 1973; Clark and French,
1981), where one participant’s utterance massively
constrains the other’s next utterance. Such pairs
cover a wide range of low-entropy messages that are
likely to appear in multi-party conversation but not
in monologic text, including question-and-answers,
offer-and-acceptances, and goodbyes.

As a result, Clark and Schaefer (1987) argue for
a collaborative view of conversation structure, with
conversations best viewed not as a series of utter-
ances but as a series of contributions—sets of utter-
ances that, combined, both specify some new con-
tent and establish it as part of the common ground.
UID as a rational behavior is based on the idea that
a rational speaker seeks to maximize linguistic in-
formation transfer, which would seem to be the pri-
mary goal during the content-specification portion
of a contribution. During the grounding portion of
a contribution, though, the primary goal is likely to
be to establish common ground as quickly as pos-
sible. This goal is potentially more complex, as it
depends on a variety of factors including the quality
of the content-specification portion. If the content
specification was simple and clear, grounding can be
acheived with low-entropy backchannels (mm-hmm,
right, etc.); if it was complex or unclear, grounding
will require more messages and greater message en-
tropy.

Furthermore, conversations may contain ex-
changes that have little linguistic context but serve
important social ends. Many response tweets in
our dataset are single, common words (haha, lol)
or emoji/emoticons. These provide important emo-
tional information in a very low lexicosyntactic en-
tropy package, much as a backchannel or meta-
linguistic cue (e.g., a smile) might in face-to-face
conversation. This suggests that the information
measure within UID may not be strictly based on lit-
eral lexicosyntactic information but rather a combi-
nation of linguistic and metalinguistic information.

In sum, this conception suggests that in discourse,
UID may operate as usual for parts of a contri-
bution, but not necessarily throughout it. Ratio-

nal conversational behavior may resemble an error-
checking system in which UID may be observed at
a contribution-by-contribution level.

4.2 Multiple types of noise

In most of the previously-studied genres, the authors
of the texts could reasonably expect their readers to
be both focused and unlikely to stop while reading.
Tweets, however, are often read and responded to
while doing other tasks, reducing focus and increas-
ing disengagement rates. Interestingly, the one genre
where Genzel and Charniak (2003) found a nega-
tive effect of sentence number on informativity was
tabloid newspapers, where readers are likely to be
distractable and disengaged.

It may be that Twitter requires an idiosyncratic
adjustment to the noisy-channel model: perhaps the
locus of the noise in tweets should not be in com-
prehension of the tweet per se (or at least not exclu-
sively on comprehension). Instead, the main source
of noise for Twitter users may be whether a reader
engages with the tweet at all. Many Twitter users
follow an enormous number of users, so outside of
directed mentions and replies, there is a substantial
chance that any given tweet will go unread by the
larger part of its intended audience.6

The decreases we observed may have to do with
users optimizing the amount of information content
relative to the likelihood of an audience-member
seeing more than one message. For tweets that
go the largest audience, it is unlikely that multiple
tweets would all be seen; thus it makes more sense
to send information-rich tweets that can stand alone.
In contrast, for replies, the intended audience should
notice each sent tweet.

Evidence in favor of the conversation- or noise-
based explanation could be obtained by compar-
ing the Twitter reply chain effects against a corpus
of conversations in which message reception is es-
sentially certain, as in person-to-person chat logs
(e.g., Potts 2012). If noise at the message level
accounts for the anomalous Twitter behavior, then

6As a result, tweeters often create tweets that include their
own context; for instance, a reply may quote part of its preced-
ing tweet, or a user may talk about a recent event and include an
explanatory link. This example from the corpus does both: Pls
help if you can! RT [MENTION]: Henry broke his foot [URL]
Please donate: [URL].
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chat logs should show the UID effect of increas-
ing entropy through the conversation. If turn-taking
or meta-linguistic discourse functions drive it, chat
logs would show decreasing entropy, as in our data.

4.3 Conclusions

We tested the Uniform Information Density hy-
pothesis, which has been robustly demonstrated in
monologue-like settings, on dialogues in Twitter.
Surprisingly, we failed to find the predicted effects
of context within these dialogues, and at times found
evidence for effects going in the opposite direction.
We proposed that this behavior may indicate a cru-
cial difference in how information flow is structured
between monologues and conversations, as well as
how rational adaptation to noise manifests in differ-
ent conversational settings.

Acknowledgments

We gratefully acknowledge the support of ONR
Grant N00014-13-1-0287.

References
Matthew Aylett and Alice Turk. 2004. The smooth sig-

nal redundancy hypothesis: A functional explanation
for relationships between redundancy, prosodic promi-
nence, and duration in spontaneous speech. Language
and Speech, 47(1):31–56.

Matthew Aylett and Alice Turk. 2006. Language redun-
dancy predicts syllabic duration and the spectral char-
acteristics of vocalic syllable nuclei. The Journal of
the Acoustical Society of America, 119(5):3048–3058.

Alan Bell, Daniel Jurafsky, Eric Fosler-Lussier, Cynthia
Girand, Michelle Gregory, and Daniel Gildea. 2003.
Effects of disfluencies, predictability, and utterance
position on word form variation in English conversa-
tion. The Journal of the Acoustical Society of America,
113(2):1001–1024.

Herbert H. Clark and J. Wade French. 1981. Telephone
goodbyes. Language in Society, 10:1–19.

Herbert H. Clark and Edward F. Schaefer. 1987. Collab-
orating on contributions to conversations. Language
and Cognitive Processes, 2:19–41.

Herbert H. Clark. 1996. Using language, volume 1996.
Cambridge University Press Cambridge.

Vera Demberg, Asan Sayeed, Phillip Gorinski, and Niko-
laos Engonopoulos. 2012. Syntactic surprisal af-
fects spoken word duration in conversational con-
texts. In Proceedings of the 2012 Joint Conference

on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 356–367.

Gabriel Doyle and Michael C. Frank. 2015. Shared
common ground influences information density in mi-
croblog texts. In Proceedings of NAACL-HLT.

Gabriel Doyle. 2014. Mapping dialectal variation by
querying social media. In Proceedings of the Euro-
pean Chapter of the Association for Computational
Linguistics.

Austin Frank and T. Florian Jaeger. 2008. Speaking
rationally: Uniform information density as an opti-
mal strategy for language production. In Proceed-
ings of the 30th Annual Meeting of the Cognitive Sci-
ence Society, pages 933–938. Cognitive Science Soci-
ety Washington, DC.

Dmitriy Genzel and Eugene Charniak. 2002. Entropy
rate constancy in text. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 199–206. Association for Computa-
tional Linguistics.

Dmitriy Genzel and Eugene Charniak. 2003. Variation
of entropy and parse trees of sentences as a function of
the sentence number. In Proceedings of the 2003 con-
ference on Empirical Methods in Natural Language
Processing, pages 65–72. Association for Computa-
tional Linguistics.

Shoichi Iwasaki. 1997. The northridge earthquake
conversations: The floor structure and the ’loop’ se-
quence in japanese conversation. Jouranl of Pragmat-
ics, 28:661–693.

T. Florian Jaeger. 2010. Redundancy and reduction:
Speakers manage syntactic information density. Cog-
nitive Psychology, 61(1):23–62.

Roger Levy and T. Florian Jaeger. 2007. Speakers opti-
mize information density through syntactic reduction.
In Advances in Neural Information Processing Sys-
tems, pages 849–856.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126–1177.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conver-
sational text with word clusters. In Proceedings of
NAACL-HLT.

Christopher Potts. 2012. Goal-driven answers in the
Cards dialogue corpus. In Nathan Arnett and Ryan
Bennett, editors, Proceedings of the 30th West Coast
Conference on Formal Linguistics, Somerville, MA.
Cascadilla Press.

Ting Qian and T. Florian Jaeger. 2012. Cue effective-
ness in communicatively efficient discourse produc-
tion. Cognitive Science, 36(7):1312–1336.

27



Emanuel Schegloff and Harvey Sacks. 1973. Opening
up closings. Semiotica, 8:289–327.

Emanuel Schegloff. 1982. Discourse as an interactional
achievement: Some uses of ’uh huh’ and other things
that come between sentences. In Deborah Tannen, ed-
itor, Analyzing Discourse: Text and Talk, pages 71–93.
Georgetown Univ. Press.

Alejandro Vega and Nigel Ward. 2009. Looking for en-
tropy rate constancy in spoken dialog. Technical Re-
port UTEP-CS-09-19, UTEP.

Victor Yngve. 1970. On getting a word in edgewise. In
Papers from the Sixth Regional Meeting of the Chicago
Linguistic Society, pages 567–578. Univ. of Chicago
Dept. of Linguistics.

28



Proceedings of CMCL 2015, pages 29–38,
Denver, Colorado, June 4, 2015. c©2015 Association for Computational Linguistics

Centre Stage:
How Social Network Position Shapes Linguistic Coordination

Bill Noble and Raquel Fernández
Institute for Logic, Language and Computation

University of Amsterdam
winobes@gmail.com, raquel.fernandez@uva.nl

Abstract

In conversation, speakers tend to echo the lin-
guistic style of the person they are interact-
ing with. This paper contributes to a body of
work that addresses how this linguistic style
coordination is affected by the social context
in which the interaction occurs. In particu-
lar, we investigate the effect that an agent’s
social network centrality has on the coordina-
tion exhibited in replies to their utterances. We
find that linguistic coordination is positively
correlated with social network centrality and
that this effect is greater than previous results
showing a similar connection between status-
based power and linguistic coordination. We
conjecture that the social value of coordina-
tion may reside in the wish to conform to the
linguistic norms of a community.

1 Introduction

In communicative contexts, there is more to lan-
guage use than the individual processing of repre-
sentations. When two or more interlocutors take part
in a conversation, they engage in a joint activity —
a type of social interaction that requires an intricate
level of interpersonal coordination. This often leads
to interlocutors converging on similar patterns of
language use, including phonetic production (Kim
et al., 2011; Babel, 2012), lexical choice (Brennan,
1996), use of function words (Niederhoffer and Pen-
nebaker, 2002), and of syntactic constructions (Pick-
ering and Ferreira, 2008).

It is a matter of debate what mechanisms give rise
to the observed convergences and whether different
factors may simultaneously and complementarily be

at play. For instance, the “collaborative” approach
led by Clark (1996) considers that adaptation or en-
trainment is mainly motivated by the communicative
need to reach mutual understanding, which leads
to speakers reasoning about their common ground
(Clark and Murphy, 1982; Brennan and Clark, 1996;
Brennan and Hanna, 2009). In contrast, Picker-
ing and Garrod (2004) have argued that stimulus-
response priming is the key mechanism underlying
alignment of representations in conversation (Brani-
gan et al., 1995; Pickering and Garrod, 2006; Reit-
ter and Moore, 2014). Yet, within social psychology
researchers have emphasised the role of social pro-
cesses and goals as triggers of linguistic “imitation”
(Shepard et al., 2001; Giles, 2008; Babel, 2012).

In this paper, we contribute to this latter line of
research by investigating the effects of social fac-
tors on linguistic coordination. In particular, we ex-
ploit notions of network centrality from Social Net-
work Analysis (Wasserman, 1994) to study the ex-
tent to which an individual’s position in a social net-
work is connected to differences in linguistic adap-
tation observed within a community. We use online
discussions amongst Wikipedia1 editors as our case
study, leveraging a corpus compiled by Danescu-
Niculescu-Mizil et al. (2012), who found that the
social status of editors (whether they have the role
of administrator) is relevant to explain the patterns
of linguistic coordination observed in this online
community. In the present study we show that net-
work centrality factors (which are largely implicit)
also bear on linguistic coordination in this scenario,
largely independently of explicit social status.

1https://www.wikipedia.org
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The paper proceeds as follows: In Sections 2
and 3, we introduce key notions related to socially-
driven linguistic coordination and social network
analysis, respectively, and review related work in
these areas. In Section 4, we put forward our work-
ing hypotheses. The experimental setup and the par-
ticular measures we use to test these hypotheses are
described in Section 5. In Section 6, we present our
results in detail. Finally, we conclude in Section 7
with a discussion of the implications of these results.

2 Socially-Driven Linguistic Coordination

The influence of social factors on how we linguisti-
cally communicate with each other has been studied,
amongst others, by sociologists working within the
framework of Conversation Analysis (Atkinson and
Drew, 1979; Heritage, 2005) and by social psychol-
ogists employing more quantitative approaches such
as Communication Accommodation Theory (Giles,
2008). CAT claims that linguistic adaptation is moti-
vated by individuals’ aim to be socially accepted and
to negotiate the social distance that separates them
from their interlocutors (increasing, maintaining, or
decreasing it). Such adaptation can take place at dif-
ferent levels: pitch, vocabulary, gestures, etc. (Giles
et al., 1991). An approach in this direction has been
put forward by Pennebaker and colleagues, who fo-
cus on style matching, in particular the matching of
function words such as pronouns, articles, and quan-
tifiers (Chung and Pennebaker, 2007). For instance,
it has been shown that function word matching in
speed dating conversations predicts relationship ini-
tiation and stability (Ireland et al., 2011) and that it
is indicative of relative social status between inter-
locutors (Niederhoffer and Pennebaker, 2002). An
advantage of focusing on function words is that their
choice is genuinely stylistic, i.e. not directly related
to the topic of the conversation and thus largely do-
main independent.

Linguistic style matching has been exploited by
Danescu-Niculescu-Mizil et al. (2012) to investi-
gate power differences in two domains: the com-
munity of Wikipedia editors and the U.S. Supreme
Court. The authors found that power differences be-
tween interlocutors bear upon the degree to which a
speaker echoes the linguistic style of the addressee
to whom they are responding. In the Wikipedia

domain (which is the most relevant for our own
study), it was observed that speakers tend to linguis-
tically coordinate more with editors who have the
role of administrator. Adminship confers a certain
authority since these editors can block user accounts
and protect or delete Wikipedia pages.2 Therefore
admins have a higher social status than other edi-
tors (non-admins), which endows them with status-
based power.

We examine the same corpus of textual conversa-
tional exchanges amongst Wikipedia editors, but in
addition to status-based power, we consider linguis-
tic style coordination in relation to an individual’s
position in a social network structure. In particu-
lar, we investigate the effect that a speaker’s network
centrality has on how much other individuals coor-
dinate with her linguistically.

3 Importance in Social Network Structure

A social network is a graph model of a community
where nodes represent individuals (of some kind)
and edges represent links between those individu-
als. Edges may be weighted to capture the strength
of certain links or directed to represent asymmetri-
cal relationships. Given a social network, one may
extract information about how important an individ-
ual is in the community. Importance is of course a
slippery notion. Which individuals are important de-
pends on what it means to be important in a particu-
lar community and how these criteria are encoded in
the network model. Network centrality is a family
of measures that attempt to capture importance by
assigning a numerical value to each node based on
its position in the network structure. We shall con-
sider two measures of network centrality, which will
be defined in Section 5.3.

High centrality might be seen as a source of power
(be it status-based or of some other kind), but this is
not always so. A case in point are exchange net-
works: An exchange network is one where social
relations involve the exchange of valued commodi-
ties, be they physical, like goods and services, or
less tangible, like affection or information. In such
networks, power often increases with access to non-
central individuals who have less choice in partners

2https://en.wikipedia.org/wiki/Wikipedia:
Administrators
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for exchange. In such situations it may present a
power advantage not to be centrally located (Cook
et al., 1983). Regardless of whether importance cor-
responds to high or low centrality values in a partic-
ular social community, network centrality certainly
does not confer any institutionalised title or explicit
authority. For this reason we consider centrality as
related to implicit social power, to be considered in
parallel with status-based power.

The ease with which social network structure can
be extracted from online communities has made
network analysis of such communities a very ac-
tive method of research in different fields concerned
with social interaction at large, not necessarily with
language (Chakrabarti, 2003; Guha et al., 2004;
Leskovec et al., 2010). In sociolinguistics, however,
the effect of network structure on language had been
observed long before the prevalence of the Inter-
net. Sociolinguists have examined the relationship
between social network features and aspects of lin-
guistic variation and change to draw conclusions on
how the linguistic behaviour of individuals reflects
their membership in small-scale social clusters (Mil-
roy, 1987; Milroy and Milroy, 1997). For example,
Eckert (1988) considers the effects of the social net-
work of suburban Detroit area adolescents on their
susceptibility to phonological innovations. She ar-
gues that linguistic change can be better explained
by features of the social network than by unstruc-
tured demographic data and that alignment of lin-
guistic styles is an important factor in maintaining
acceptance in a rapidly developing social structure.

Thanks to the ubiquity of the Internet, it is now
possible to apply social network analysis techniques
to address sociolinguistic concerns to much larger
amounts of linguistic data than ever before. Here we
exploit this opportunity, in particular the availability
of interactional data from a rich online community
such as the Wikipedia editors. Although Wikipedia
has been used as a testbed to study the connection
between structural network properties and factors
such as contentious topics (Laniado et al., 2011),
quality improvement of Wikipedia articles (Kittur
and Kraut, 2008) or editing activity (Crandall et al.,
2008), to the best of our knowledge this is the first
study that investigates the links between social net-
work features of this community and linguistic style
coordination amongst its members.

4 Hypotheses

We investigate the following three hypotheses that
relate linguistic style coordination to the concept of
social network centrality:

H1. Speakers coordinate more towards individuals
that occupy more central social positions.

H2. Individuals in more central social network po-
sitions tend to possess status-based power.

H3. The effect hypothesized in H1 holds indepen-
dently of any effect observed in relation to H2.

While we are primarily interested in the relation-
ship between linguistic coordination and network
centrality, we do so in a context where something
is known about the status-based power born by in-
dividuals: We have access to the adminship role
of editors and editors themselves are aware of the
admin status of other users.3 We expect to find
that social network centrality correlates with status-
based power, i.e., that individuals at the centre stage
of the community are more likely to be admins
(H2). With this in mind, we would like to sepa-
rate the effect of status-based power on coordination
from that of implicit centrality-based power (H3).
Given that linguistic style coordination correlates
with status-based power (Danescu-Niculescu-Mizil
et al., 2012), it is not enough simply to show that
it also correlates with network centrality (H1) since
such a result may be wholly explained by status-
based power as a confounding factor.

5 Experimental Setup

In this section we describe the corpus used in our ex-
periments and define the measures of linguistic co-
ordination and network centrality that we compute
from the data.

5.1 Data

The Wikipedia Talk Page Conversations Corpus
consists of a collection of exchanges from Wikipedia
editors’ user talk pages. A talk page, as opposed to
a Wikipedia article, is a page for discussion between

3There is a symbol identifying admins as such on their
Wikipedia user page, although it is worth noting that no such
identifying marks are visible where discussions take place.
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editors that is not part of the content of Wikipedia.
User talk pages, which are not associated with a
particular article, tend to feature more community-
oriented discussions.4

The corpus contains information on 26,397 users,
including whether or not the editor is a Wikipedia
administrator (an admin). There are 1,825 admins.
Each utterance (or post) is annotated with metadata
including the username of the editor who made the
post and which previous contribution it is a reply
to (if any). Of 391,294 total posts in the corpus,
we consider a subset of 342,800 that were made by
users whose admin status is known (i.e., by one of
the 26,397 for whom we have metadata). The corpus
was collected in August 2011 and made available by
Danescu-Niculescu-Mizil et al. (2012).5

We derived a weighted network structure from the
corpus as follows: A node was created for each indi-
vidual. Undirected, weighted edges were formed be-
tween editors based on the number of direct replies
between them. An edge with weight w between user
a and user b indicates that w is the total number
of times user a replied to a post of user b or visa
versa. The edges in this model are intended to rep-
resent the degree to which two users know each other
(as members of the Wikipedia editors’ community).
The talk page is the locus of an editor’s involvement
in Wikipedia as a community. The rationale for our
edge definition is that a’s reply to b’s contribution is
directed at b as a member of the community. The
more that a and b reply to one another, the better
connected they are in the network.

The resulting network was pruned to its largest
connected component such that there is a path be-
tween every pair of nodes. Pruning eliminated 575
users from 556 different disconnected components
(mostly singletons). The final network consists of
25,822 nodes and 103,992 edges with an average
weight of 3.3.

5.2 Linguistic Coordination Measures

We want to measure how much participants align
their language with that of the interlocutors to whom
they are immediately replying. Following Danescu-

4http://en.wikipedia.org/wiki/Wikipedia:
Talk_page_guidelines

5http://www.cs.cornell.edu/˜cristian/Echoes_
of_power.html

Niculescu-Mizil et al. (2012), we use the pres-
ence of a word in a particular category of func-
tion words as linguistic style markers. We con-
sider the same eight categories of functional mark-
ers as these authors: quantifiers, personal pronouns,
impersonal pronouns, articles, auxiliary verbs, con-
junctions, prepositions, and adverbs. However,
while Danescu-Niculeascu-Mizil and colleagues use
the markers provided by the commercial text analy-
sis software LIWC (Pennebaker et al., 2007),6 we
compiled our own list of markers for each of these
eight categories using freely available frequency
lists of part-of-speech classes from the British Na-
tional Corpus (Burnard, 2000).7 We took the most
common words for each relevant POS (manually fil-
tering out any content words) to match the length
of the LIWC category lists reported in the software
documentation.8

Linguistic style coordination quantifies the degree
to which an agent b immediately echoes the linguis-
tic style of agent a. We use the linguistic style co-
ordination measure Cm(b, a) defined by Danescu-
Niculeascu-Mizil, et al. (2012), where the coordina-
tion of b (the speaker) towards a (the target) with re-
spect to a markerm encodes how much a’s use ofm
increases the probability that b will use that marker
in her reply to a, relative to the overall frequency of
m in b’s replies to a:9

Cm(b, a) = P (Em
ub
| Em

ua
)− P (Em

ub
)

where Em
u indicates that utterance u exhibits a

marker m and (ua, ub) belongs to the set of pairs
of utterances made by b in response to a. If none of
the utterances of a that b responds to exhibit m, then
Cm(b, a) is undefined.

We introduce a variant of this measure that con-
siders the coordination of a group of speakers B to-
wards an individual a by making the same calcula-
tion across all utterance pairs (ua, uB) where some
member of B is replying to individual a. When B

6http://www.liwc.net
7http://ucrel.lancs.ac.uk/bncfreq/flists.html
8The relevant LIWC documentation can be found at http:

//www.liwc.net/descriptiontable1.php. Our lists of
markers are freely available upon request.

9This ensures that Cm(b, a) captures the influence of a’s use
of marker m on b’s immediate reply. It may be that b uses m
more in general when speaking to a, but such an effect would
have no bearing on Cm(b, a).
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is the set of all members of a social network who
have addressed a, we refer to Cm(B, a) as a’s coor-
dination received. This is the main measure we will
employ in the analyses reported in Section 6.

It is sometimes desirable to have a single score
that combines a’s coordination received across all
markers. This is made complicated by the fact
that coordination may be undefined for one or more
markers. Since we generally consider coordination
received by a in the context of a’s membership in
some groupA (e.g., admins), there are several differ-
ent aggregation schemes available. Again, we fol-
low Danescu-Niculeascu-Mizil et al. (2012) in the
naming and definition of these schemes, but apply
them to coordination received.

Aggregate 1 Take a simple average across mark-
ers, but only for those users a in A for whom
Cm(B, a) is defined for all markers. Otherwise
the aggregate is undefined for a.

Aggregate 2 Wherever Cm(B, a) is undefined,
substitute with the average ofCm(B, a′) across
those a′ in A for whom it is defined.

Aggregate 3 Whenever Cm(B, a) is undefined,
substitute with the average ofCm′(B, a) across
those m′ for which it is defined.

When taking an average aggregate coordination re-
ceived over a group of users A, aggregate 1 takes
into account only those users for whom all mea-
sures are defined. Aggregates 2 and 3 take into ac-
count all users for whom at least one measure is
defined, but exhibit slightly different smoothing as-
sumptions. Aggregate 2 assumes that people in B
would have behaved towards a with regard to m as
they did towards the rest of A, whereas aggregate 3
assumes that members of B would have behaved to-
wards a with regard to m as they did with regard to
the other markers.

5.3 Network Centrality Measures

As mentioned in Section 3, a network centrality
measure assigns a numerical value to each individ-
ual in the network based on features of their position
in the graph. This value is intended to represent the
importance of that individual in the social network.

What kind of importance it captures depends on ex-
actly how centrality is calculated. Here we consider
two well-known measures of network centrality.

Eigenvector centrality (Bonacich, 1987) tries to
capture the notion that your importance in a network
depends on the importance of your closest contacts.
Let M(n) be the neighborhood of n; that is, the
nodes in N that share an edge with n. Then the
Eigenvector centrality of n∗ is defined by

EC(n∗) =
1
λ

∑
n∈M(n∗)

EC(n)

where λ is a constant, the eigenvalue. There may
be multiple values of λ for which the Eigenvector
centrality is defined, but taking the largest value pro-
vides a consistent measure across the network.

Betweenness centrality (Freeman, 1977) mea-
sures how much a node contributes to the over-
all connectivity of the network. Nodes who lie on
more shortest paths between pairs of other nodes
have higher Betweenness centrality. Specifically it
looks at all of the shortest paths between each pair
of nodes, and counts how many of them contain the
node in question. Letting Path(m,n) stand for the
set of shortest paths between m and n, the Between-
ness centrality of n∗ is defined by:

BC(n∗) =
∑

n6=m∈N

|{σ ∈ Path(m,n)|n∗ ∈ σ}|
|Path(m,n)|

Both Eigenvector and Betweenness centrality mea-
sures have generalizations for weighted networks
which we use here. For Betweenness, path length is
calculated using the inverse weight of edges (so that
paths along edges with higher weights are consid-
ered shorter). For Eigenvector centrality, the notion
of “neighbour” is adjusted so that adjacent nodes
connected with a higher weight count for more. We
use the implementation of these algorithms avail-
able in the Python library NetworkX (Hagberg et al.,
2008).10

6 Analyses and Results

To investigate our hypotheses regarding the impact
of social network position on linguistic coordina-
tion, we computed scores for all the measures in-

10https://networkx.github.io
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Agg. 3 Eigenvector Betweenness Users
admins 1.85 (6.44) 1.01 (15.9) 1.66 (9.44) 1825

non-admins 0.48 (6.85) 0.16 (4.72) 0.14 (2.67) 23,997
Total 0.60 (6.83) 0.22 (6.22) 0.25 (3.62) 25,822

Table 1: Descriptive statistics of the computed measures:
Averages (and standard deviations) for Coordination re-
ceived according to Aggregate 3 (scaled by 100), Eigen-
vector and Betweenness centrality (scaled by 1000) for
admin and non-admin users.

troduced in the previous section (coordination re-
ceived, Eigenvector and Betweenness centrality) for
each individual in the social network. Table 1 pro-
vides some basic descriptive statistics.

6.1 Coordination and Status-Based Power
We start by replicating the relevant result by
Danescu-Niculescu-Mizil et al. (2012), according to
which Wikipedia editors coordinate more towards
admins than non-admins. We compare the average
linguistic coordination received by each of these two
social groups for each functional marker as well as
for each of the aggregate measures. The results are
shown in Figure 1. As can be seen, in all cases in-
dividuals coordinate significantly more towards ad-
min addressees than towards non-admins (indepen-
dent Welch two sample t-test, p < 0.001). We are
thus able to reproduce this basic result despite the
fact that we use a self-compiled list of functional
markers instead of the full power of the LIWC tool
(Pennebaker et al., 2007). The results we obtain
are in fact stronger, since we observe high levels of
significance for all aggregate measures and markers
while Danescu-Nicolescu-Mizil and colleagues ob-
tained significant results only for the aggregate mea-
sures and for conjunctions, indefinite pronouns, ad-
verbs and articles. We point out however that re-
gardless of the high significance values across the
board, the size of the effect is larger for the aggre-
gate measures (average Cohen’s d = 0.2) than for
any of the individual markers (for which the effect
size is in fact very small: on average d < 0.15).11

6.2 Coordination and Centrality
We now turn to investigate each of the hypotheses
formulated in Section 4. Our data provide evidence

11Danescu-Niculescu-Mizil et al. (2012) do not report effect
size and hence a more detailed comparison is not possible.
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Figure 1: Linguistic style coordination towards
admins/non-admins. Note on all figures: Coordination
scores are reported as percentages for clarity (i.e.,
multiplied by 100). Measures are marked for signifi-
cance by independent t-test as follows: ∗ = p < 0.05,
∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001.

in support of H1 (speakers coordinate more towards
individuals that occupy more central social posi-
tions). As shown in Table 2, we find significant (al-
beit weak) positive correlations in all cases between
the level of coordination received by an individual a
(Cm(B, a)) and a’s position in the social network,
as quantified by Eigenvector and Betweenness cen-
trality scores.12 Betweenness centrality correlates
slightly better with coordination received.

Agg. 1 Agg. 2 Agg. 3
Eigenvector 0.1911 0.1175 0.1878
Betweenness 0.2028 0.1491 0.2113

Table 2: Spearman’s rank correlation ρ between network
centrality measures and linguistic coordination received
(p < 0.001 for all values).

We consider an individual highly central with re-
spect to some centrality measure if this individual’s
centrality score is higher than one standard devia-
tion above the mean score. Given the large amount
of variation in our dataset (see Table 1), this is a
very selective criterion: Out of 25,822 editors, only
119 (∼0.5%) are highly Eigenvector-central and 239
(∼0.9%) are highly Betweenness-central. We ob-
serve that speakers coordinate more with individu-

12This is also the case for the individual markers, which are
not shown in Table 2 for conciseness.

34



Agg
re

ga
te

 1
**

*

Agg
re

ga
te

 2
**

*

Agg
re

ga
te

 3
**

*

Qua
nt

ifi
er

*

Im
pe

rs
. p

ro
no

un
**

Arti
cl
e

Aux
. v

er
b

Con
ju

nc
tio

n

Pe
rs

. p
ro

no
un

*

Pr
ep

os
iti

on

Adv
er

b
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
C

o
o
rd

in
a
ti

o
n

targets: high eigenv.

targets: low eigenv.

Agg
re

ga
te

 1

Agg
re

ga
te

 2
*

Agg
re

ga
te

 3
*

Qua
nt

ifi
er

Im
pe

rs
. p

ro
no

un
*

Arti
cl
e

Aux
. v

er
b

Con
ju

nc
tio

n

Pe
rs

. p
ro

no
un

Pr
ep

os
iti

on

Adv
er

b

C
o
o
rd

in
a
ti

o
n

targets: high between.

targets: low between.

Figure 2: Linguistic style coordination towards users
with high/low Eigenvector and Betweenness centrality.

als that are highly central, significantly so for most
of the aggregate measures, pronouns and quantifiers
(independent Welch two sample t-test; see Figure 2).
The average effect size for the aggregate measures is
d = 0.32 for Eigenvector centrality and d = 0.35 for
Betweenness centrality.

Regarding H2 (individuals in more central so-
cial network positions tend to possess status-based
power), in our dataset only 29% of editors who are
highly Eigenvector-central are also admins. The
percentage goes up to 53% in the case of highly
Betweenness-central editors. Editors with admin
status make up around 45% of those individuals who
are highly central according to at least one mea-
sure (319 editors) and around 49% of those who are
highly central according to both measures (39 edi-
tors). To further investigate the connection between
status-based power as represented by adminship and
network centrality, we examined the mean central-
ity scores of admin versus non-admin editors. We
find that on average admins are more centrally po-
sitioned in the network than non-admins. An inde-
pendent Welch t-test confirms that this is significant
for both Eigenvector centrality (p < 0.5, Cohen’s
d = 0.07) and Betweenness centrality (p < 0.001,
Cohen’s d = 0.22), although the effect is practically
nonexistent for the former centrality measure. Thus,
H2 is only relatively supported, with Betweenness
centrality exhibiting a closer connection with admin-
ship than Eigenvector centrality.

Finally, to assess H3 (the effect hypothesized in
H1 holds independently of any effect observed in re-

lation to H2), we compared the average coordination
received scores for admins and non-admins within
each class of highly central users. Our aim was to
check whether users coordinate more towards edi-
tors who are both administrators and highly central
in the social network. As shown in Figure 3 (left),
no effects of adminship were found (for all mark-
ers and aggregate measures, p > 0.05 in an inde-
pendent Welch t-test), which provides evidence sup-
porting the hypothesis. Analogous calculations were
made for users who are not highly central (Figure 3,
right). Amongst these, significant differences were
found (albeit with small effect sizes: 0.16 < d < 0.2
across the board for both centrality measures), with
admins receiving more linguistic coordination for all
markers and aggregate measures.13

7 Discussion and Conclusions

In this paper we have put forward the hypothesis that
speakers coordinate more with targets who occupy a
more central position in the social context in which
the communication takes place. We have provided
evidence for this claim by measuring linguistic style
coordination in the Wikipedia talk pages corpus.

We confirmed the result by Danescu-Niculescu-
Mizil et al. (2012) that correlates coordination with
explicit status-based power represented by admin-
ship, and went on to show that there is a further pos-
itive relationship between how much linguistic style
coordination an editor receives and her network cen-
trality. Furthermore, while editors coordinate more
with admins in general, we found that adminship
has no significant effect on how much coordination
highly central editors receive. We may conclude
that in certain situations, considerations of network
centrality trump explicit status-based power in de-
termining how much a speaker immediately aligns
with the person to whom she is responding.

This conclusion provides evidence for the claim
of Communication Accommodation Theory accord-
ing to which linguistic adaptation is motivated by
the desire for social acceptance (Giles, 2008). Ex-
actly how aligning with highly central members of

13We chose this analysis over a regression analysis because
the data violates the normality assumption and is affected by
very severe heteroscedasticity, i.e., the variance in the error is
not constant, with very large residuals when the centrality mea-
sures are low and much smaller ones as they increase.
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Figure 3: Linguistic style coordination towards admins/non-admins among users with high (left) and low (right)
Eigenvector/Betweenness centrality.

the community achieves this goal is open to some
interpretation, though it is likely that there is more
than one mechanism at play. We consider two pos-
sibilities.

First, aligning with highly central community
members can be seen as an instance of aligning to
power, since network centrality (especially Eigen-
vector centrality) is often used as a proxy for im-
plicit social power. Aligning with highly central
members helps to achieve social acceptance since
those with implicit social power have more power to
grant it. This interpretation is supported by our re-
sults: Just as coordination more closely follows net-
work centrality than it does adminship, it is natural
to assume that the power to confer social acceptance
more closely follows implicit social power than it
does any official title.

The second possible interpretation has more ex-
pressly linguistic motivations. It has been observed
that those in central social positions make more ut-
terances characteristic of the group they are central
to (Eckert, 1988; Kooti et al., 2012). Since learn-
ing the linguistic practices of a community is impor-
tant to social acceptance, it is beneficial to coordi-
nate with highly central members of the community
as a way of picking up those linguistic practices. In
other words, coordination towards a highly central
individual may have a social goal that does not have
anything to do with that individual in particular, but
rather with adapting to the linguistic norms of the
community at large.

Although Eigenvector centrality is most closely
associated with implicit power (Bonacich, 1987), we

found that in the Wikipedia corpus it is actually Be-
tweenness centrality that correlates somewhat more
strongly with coordination. This may have some-
thing to say about the relationship between the two
mechanisms mentioned above. While it may still
be true that people align to power for the immedi-
ate social benefit, the greater effect of Betweenness
centrality suggests that the social benefit of coordi-
nation may be mediated by something more than the
power of the individual who is being responded to.
One possible explanation is that community mem-
bers who are more vital to the connectivity of the
social network (i.e., those with high Betweenness
centrality) tend to conform better with the linguistic
norms of the community as a whole (rather than, for
example, to the norms of some clique or subgroup).
Assuming that some of the social motivations for
alignment are expressly linguistic, this would ex-
plain why Betweenness centrality correlates better
with coordination received than the centrality mea-
sure more typically associated with social power.
More research is needed to determine whether (a)
community members with high Betweenness cen-
trality better represent the linguistic norms of the
community and (b) immediate linguistic coordina-
tion is the mechanism by which those norms are
propagated.

The results of this paper are suggestive in both
those regards, while providing good evidence that,
at the very least, network centrality is a more impor-
tant factor in linguistic coordination than is formal
status-based power.
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Abstract

Distributional Semantic Models (DSMs) have
been successful at modeling the meaning of
individual words, with interest recently shift-
ing to compositional structures, i.e., phrases
and sentences. Network-based DSMs repre-
sent and handle semantics via operators ap-
plied on word neighborhoods, i.e., seman-
tic graphs containing a target’s most similar
words. We extend network-based DSMs to
address compositionality using an activation
model (motivated by psycholinguistics) that
operates on the fused neighborhoods of vari-
able size activation. The proposed method is
evaluated against and combined with the lexi-
cal function method proposed by (Baroni and
Zamparelli, 2010). We show that, by fusing a
network-based with a lexical function model,
performance gains can be achieved.

1 Introduction

Vector Space Models (VSMs) have proven their ef-
ficiency at representing word semantics, which are
vital components for numerous natural language ap-
plications, such as paraphrasing and textual entail-
ment (Androutsopoulos and Malakasiotis, 2010), af-
fective text analysis (Malandrakis et al., 2013), etc.
VSMs constitute the most-widely used implemen-
tation of Distributional Semantic Models (DSMs)
(Baroni and Lenci, 2010). A fundamental task ad-

dressed in the framework of DSMs is the computa-
tion of semantic similarity between words, adopting
the distributional hypothesis of meaning, i.e., “simi-
larity of context implies similarity of meaning” (Har-
ris, 1954). DSMs have been successful when ap-
plied to the representation of word lexical semantics,
enabling the computation of word semantic similar-
ity (Turney and Pantel, 2010). However, the ap-
plication of DSMs for representing the semantics
of more complex structures, e.g., phrases or sen-
tences, is not trivial since the meaning of such struc-
tures is the result of various compositional phenom-
ena (Pelletier, 1994) that are inherent properties of
natural language creativity. The key idea behind
current approaches in semantic composition (using
DSMs) is the combination of word vectors using
simple functions, e.g., vector addition or multipli-
cation (Mitchell and Lapata, 2008; Mitchell and La-
pata, 2010), or other transformational functions. Re-
gardless of the used function, the resulting represen-
tations adhere to the paradigm of VSMs, while the
cosine between the (composed) vectors is used for
estimating similarity. Such efforts proved to be ef-
fective when computing the similarity between two-
word phrases, however, their limitations were re-
vealed for the case of longer structures (Polajnar et
al., 2014), where the composition of meaning be-
comes more complex. Bengio and Mikolov (2003;
2013) proposed an approach based on deep learning
for building language models that address the prob-
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lem of language creativity. The models appear to
constantly gain support in comparison with the tra-
ditional DSMs. A preliminary comparative analysis
of them is provided in (Baroni et al., 2014b) with re-
spect to a number of tasks related to lexical seman-
tics.

In this work, we extend a recent network-based
implementation of DSMs (Iosif and Potamianos,
2015) in order to represent the semantics of com-
positional structures. The used framework consists
of activation models motivated by semantic prim-
ing (McNamara, 2005). For each structure, an ac-
tivation area (i.e, semantic neighborhood) is com-
puted which is regarded as a sub-space within the
network. The novelty of the present work is two-
fold. First, we propose various approaches for
the creation of activation areas for compositional
structures, within a framework alternative to VSMs.
Second, we investigate the fusion of the proposed
network-based model with VSM-based transforma-
tional approaches from the literature. In addition,
we investigate the role of words as operators on the
meaning of the structures they occur in by measur-
ing their transformative degree.

The remainder of this paper is organized as fol-
lows: in Section 2 we describe work related to
DSMs. In Section 3 we describe the work on which
we based the proposed models. We present the pro-
posed models in Section 4. The lexical function
model is described in Section 5, and a fusion model
integrating the former with network-based models is
proposed. We describe the experimental procedure
that we followed and evaluate the proposed models
in Section 6. We elaborate on the effects of modifiers
in compositional structures in Section 7, concluding
in Section 8.

2 Related Work

Word-level DSMs can be categorized into unstruc-
tured, that employ a bag-of-words model, and struc-
tured, that employ syntactic relationships between
words (Grefenstette, 1994; Baroni and Lenci, 2010).
DSMs are typically constructed from co-occurrence
statistics of word tuples. An unstructured approach
for the construction of network-based DSMs was
proposed in (Iosif and Potamianos, 2015), where
nodes represent words, and edges are formulated ac-

cording to the semantic similarity of the connected
nodes. For each node, the notion of semantic neigh-
borhood (i.e., the most semantically similar words)
is utilized for estimating an improved similarity be-
tween the nodes.

Moving beyond the word-level, Turney (2012)
proposed a “dual-space” model that combines re-
lational and compositional methods for represent-
ing phrasal semantics. This approach utilized two
complementary models in an attempt to address a
series of phenomena that apply to compositional
semantics, namely, “linguistic creativity”, “order
sensitivity”, “adaptive capacity”, and “information
scalability”1. Three types of phrases were investi-
gated: noun-noun (NN), adjective-noun (AN), and
verb-object (VO). In (Baroni and Zamparelli, 2010),
particular focus was given to the AN type, where
adjectives were represented as matrices acting as
functions to the vectorial representation of head
nouns. Recent research efforts have been expanded
to longer text segments such as sentences (Agirre et
al., 2012; Agirre et al., 2013; Polajnar et al., 2014).
In (Socher et al., 2012), based on the functional
space proposed in (Baroni and Zamparelli, 2010),
phrase constituents were treated as both a continu-
ous vector and a parameter matrix, where the repre-
sentation of sentence semantics was constructed via
a recursive bottom-up procedure.

3 Baseline Network-based Model

In this section, we generalize the ideas regard-
ing network-based DSMs presented in (Iosif and
Potamianos, 2015), for the case of more complex
structures. The network consists of two layers: 1)
activation, and 2) similarity layer. Given a lexical
unit, the first layer represents an activation area that
includes a set of lexical units that are semantically
related with it. The notion of “lexical unit” refers
to any semantically coherent lexical structure, span-
ning from words (unigrams) up to word sequences
(n-grams). The second layer is used for the com-
putation of semantic similarity between two lexi-
cal units, based on their respective activation layers.
The network can be defined as a graph Q = (V,E)
whose set of vertices V includes the lexical units un-

1These phenomena are defined and discussed in (Turney,
2012)
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der investigation and whose set of edges E contains
links between the vertices. The links between the
lexical units in the network are weighted according
to their pairwise semantic similarity.

3.1 Layer 1: Activation Model

The activation layer of a lexical unit, ξ, can be re-
garded as a sub-graph of Q, Qξ, also referred to as
the semantic neighborhood of ξ. Its vertices (neigh-
bors of ξ) are determined according to their seman-
tic similarity with ξ. Given a set of lexical units,
the most similar to ξ are selected as neighbors. The
activation layer is motivated by the phenomenon of
semantic priming (McNamara, 2005), especially for
highly coherent lexical units, such as unigrams and
bigrams. In the framework of DSMs, activation
layers were computed for the case of unigrams in
(Iosif and Potamianos, 2015), and were extended to
short phrases (bigrams) in (Iosif, 2013). Consider a
phrase, i = (i1 i2), where i1 and i2 denote its first
and second constituent. Assuming that the Ni1 and
Ni2 sets represent neighborhoods of i1 and i2, re-
spectively, the neighborhood of i,Ni, was computed
by taking the intersection of Ni1 and Ni2 .

3.2 Layer 2: Semantic Model

Two similarity metrics are defined for computing the
similarity between two lexical units, i and j. The
metrics are defined on top of their respective acti-
vation models, Ni and Nj , computed in the previ-
ous layer. This approach relies on two assumptions,
namely, maximum sense and attributional similarity,
for unigrams. In this work, we extend these metrics
to bigrams (see Fig. 1 and Fig. 2) in order to com-
pute the semantic similarity between two phrases,
i = (i1 i2) and j = (j1 j2), exploiting their respec-
tive activation layers Ni and Nj .
Maximum Neighborhood Similarity. The key idea
of this metric, M , is the computation of similar-
ities between the constituents of phrase i (i1 and
i2) and the members of Nj . The same is done
for j1 and j2 and the members of Ni. The sim-
ilarity between i and j (e.g., “assistant manager”
and “board member” in Fig. 1) is computed by tak-
ing the maximum of the aforementioned similarities
(0.50 in Fig. 1). The underlying hypothesis is that
the neighborhoods encode senses that are shared be-
tween the constituents. The selection of the maxi-

Figure 1: Maximum neighborhood similarity metric (M ):
bigram usecase.

mum score suggests that the similarity between i and
j can be approximated by considering their closest
senses (Iosif and Potamianos, 2015).
Attributional Neighborhood Similarity. In this
metric, R, similarities between i1 and i2 and the
members of Nj are computed and stored into a vec-
tor. This is also done for j1 and j2 and the members
of Nj . The correlation coefficient between the two
vectors (e.g., the two right-most vectors in Fig. 2)
is computed. The process is repeated, using Ni in
the place of Nj , which results into another corre-
lation coefficient. The similarity between i and j

Figure 2: Attributional neighborhood similarity metric
(R): bigram usecase.

is estimated by selecting the maximum correlation
coefficient. The underlying motivation is attribu-
tional similarity, i.e., the hypothesis that the neigh-
borhoods encode semantic or affective features. Se-
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mantically similar phrases are expected to exhibit
correlated similarities with respect to such features
(Iosif and Potamianos, 2015).

4 Extended Network-based Model

The major limitation of the model presented in Sec-
tion 3 is that the neighborhoods of phrase con-
stituents (e.g., Ni1 and Ni2) are of fixed size. This
allows the computation of an empty neighborhood
for the phrase (e.g., Ni), when there is no overlap
between the neighborhoods of its constituents.

In this section, we propose an extension of the
aforementioned model by relaxing the hard con-
straint regarding the fixed size of neighborhoods.
The intuition behind this idea is that the activa-
tion areas are not of the same size for all words.
For example, a semantically abstract word, such as
“democracy”, is expected to have a larger neighbor-
hood compared to semantically concrete words, e.g.,
“computer”. Given a phrase, e.g., i = (i1 i2), in or-
der to compute the activation Ni, we gradually ex-
tend the activation areas (i.e., sizes) of Ni1 and Ni2

until a minimum size θ for Ni is reached.

4.1 Layer 1: Activation Model

We propose three different schemes for the com-
putation of neighborhoods. An example of those

Figure 3: Activation model schemes for the phrase “na-
tional government”: intersection-based, union-based, and
selection of most similar neighbors (words in bold).

schemes is depicted in Fig. 3.
Scheme 1. The phrase neighborhood is computed by
taking the intersection of the constituent neighbor-
hoods, i.e., Ni=Ni1∩Ni2 . This adheres to findings
from the literature of psycholinguistics suggesting
that the phrase activation (and, thus, the respective

meaning) should be more specific than those of its
constituents (Osherson and Smith, 1981).
Scheme 2. The union of neighborhoods is used, i.e.,
Ni =Ni1∪Ni2 . This is motivated by the idea that,
in some cases, a phrase may be associated with a
larger activation area, compared to those of its con-
stituents.
Scheme 3. The members of the phrase neighbor-
hood are selected based on their average semantic
similarity with respect to the phrase constituents.
Let Ni be {n1, ..., nm, ..., nθ}, where nm ∈ {Ni1 ∪
Ni2}. The Ni set can be regarded as a list, which is
ranked according to 1

2(S(nm, i1)+S(nm, i2)), where
S(.) stands for a metric of semantic similarity. This
scheme is motivated by the idea that different areas
ofNi1 andNi2 may be activated given the context of
words i1 and i2, respectively. The scheme also ad-
dresses the issue of scalability: the phrase neighbor-
hood has the same size as the constituents’ neigh-
borhoods, enabling the recursive application of the
model over longer structures.

4.2 Layer 2: Semantic Model
An extension of the M metric (described in Sec-
tion 3) is proposed, along with two more metrics for
computing the semantic similarity between lexical
units utilizing their respective neighborhoods. The
metrics are defined with respect to two lexical units,
i and j, which are represented by their neighbor-
hoods, Ni and Nj , respectively.
Average of top-k similarities (Mk). This metric ex-
tends the M metric (see Section 3) by considering
the top k similarity scores instead of the maximum
score. Similarity between i and j, Mk(i, j), is com-
puted by taking the arithmetic mean of the k scores.
Average of top-k pairwise similarities (Pk). Let
C be a ranked list including the pairwise similarities
computed between the members of Ni and Nj :

C = { S
x∈Ni

y∈Nj

(x, y) }, (1)

where S(.) stands for a metric of semantic similarity.
The similarity between i and j is computed as:

Pk(i, j) =
1
k

k∑
l=1

cl, (2)

where cl is the l–th member of C.
Hausdorff-based similarity (H). This metric is
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motivated by the Hausdorff distance (Hung and
Yang, 2004). Let h(Ni, Nj) be defined as

h(Ni, Nj) = min
x∈Ni

{
max
y∈Nj

{S(x, y)}}, (3)

where S(.) is a semantic similarity metric. The sim-
ilarity between i and j is computed as:

H(i, j) = max{h(Ni, Nj), h(Nj , Ni)} (4)

5 Fusion of Lexical Function with
Network-based Models

The representation of phrase semantics requires the
consideration of the consituents’ functional influ-
ence on the composed meaning. For example, when
considering an adjective-noun phrase, such as “bad
cat”, the former word (“bad”) acts as an operator,
i.e., modifier, to the latter word (“cat”), modifying
its meaning. In (Baroni and Zamparelli, 2010; Ba-
roni et al., 2014a), it was proposed that such modifi-
cations can be implemented via the use of functions
that act as linear transformations in VSMs. Appli-
cation of these functions is realized via matrix-by-
vector multiplication as (Baroni et al., 2014a):

f(α) =def F × a = b, (5)

where F is the matrix-encoded function f , a is the
vectorial representation of the argument α, and b is
the compositional vector output. The F function is
learnt according to examples of observed input and
output (distributional) representations. The input is
the representation of the head word, and the output
is the representation of the phrase. Regression is
employed for calculating the set of weights in the
matrix that best approximate the observed vectors.
For example, the function for the modifier “bad” is
learnt by regressing over phrase examples and their
head nouns, such as <pet, bad pet>, <dog, bad
dog>, <bird, bad bird>. Using the trained set of
weights and the vectorial representation of the head
noun, e.g., “cat”, the composite representation for
the phrase “bad cat” is induced.

5.1 Fusion
The proposed network-based model, presented in
Section 4, exploits the merging of word senses for
computing activation areas for phrases. The model

defined by (5) utilizes the transformational function
of an operator for changing the meaning of a phrase.
Both models (intuitively) seem to be aligned with
the human process of phrase comprehension, how-
ever, there are cases that one of the models applies
better than the other. Consider two example phrases,
“football manager” and “successful engineer”. The
transformational model is expected to perform bet-
ter for the latter phrase, while for the first phrase
an intersection of word senses (i.e., a network-based
model) seems to be more appropriate.

Based on the above considerations, we propose
a fusion of the lexical function (lf ), defined by (5),
with the proposed network-based models. The fu-
sion is aimed to model more accurately the seman-
tic representations of complex structures. To do so,
we measure the Mean Squared Error (MSE) when
training the lexical function model, in order to quan-
tify the transformative degree of the modifier un-
der investigation. The transformative degree is used
for deciding whether a network-based or a trans-
formational model is more appropriate. Given two
phrases, i= (i1 i2) and j = (j1 j2), the transforma-
tive degree T (i, j) is defined as:

T (i, j) =
1
2

(MSE(i1) +MSE(j1)), (6)

whereMSE(i1) andMSE(j1) is the MSE that cor-
responds to modifiers i1 and j1, respectively. The
proposed fusion metric, Φlf

net(i, j), used for estimat-
ing the similarity between the i and j phrases, is de-
fined as:

Φlf
net(i, j) = λ(i, j) SN + (1− λ(i, j)) SLF , (7)

where SN and SLF are similarity scores computed
by the network-based and lexical function models,
respectively. λ is a function of i and j, computed
using a sigmoid function as:

λ(i, j) = 0.5/
(

1 + e−T (i,j)
)
. (8)

The sigmoid function is applied in order to smooth
and normalize (within [0,1]) the values of T (i, j).

Finally, in addition to the aforementioned fusion,
we also implement a fusion combining the lf and
the widely-used additive (add) (Mitchell and Lap-
ata, 2008; Mitchell and Lapata, 2010) model. This
fusion metric, Φlf

add, is defined similarly to (7).
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6 Experiments and Evaluation

The procedure for creating the network and conduct-
ing the experiments is described in Section 6.1. In
Section 6.2, we evaluate the proposed models and
compare them with results from the literature.

6.1 Experimental Procedure

We defined our vocabulary (network nodes) by in-
tersecting the English vocabulary found in the AS-
PELL2 dictionary and the Wikipedia dump3 to de-
rive an English vocabulary of approximately 135K
words. Using it, a corpus comprising of web-
harvested document snippets was constructed by
downloading 1000 snippets for each word in the
vocabulary. Word-level similarities were computed
among all vocabulary entries’ pairs. To this end, the
Normalized Google Distance (G) was utilized, pro-
posed in (Vitanyi, 2005; Cilibrasi and Vitanyi, 2007)
and motivated by Kolmogorov complexity. LetG be
defined as

G(w1, w2) =
max{A} − log |D |w1, w2 |

log |D | −min{A} , (9)

where w1 and w2 are two vocabulary words under
investigation, | D | is the total number of docu-
ments in the corpus, |D |w1, w2 | is the total num-
ber of documents containing both w1 and w2, and
A = {log | D | w1 |, log | D | w2 |}. We used
a variation of (9), proposed in (Gracia et al., 2006),
referred to as “Google-based Semantic Relatedness”
(G

′
). This variation defines a similarity measure,

bounded within the [0, 1] range and defined as

G
′
(w1, w2) = e−2G(w1,w2), (10)

where G(w1, w2) is computed according to (9). In
this work, D denotes the sentence rather than the
document, as the co-occurrence of words was de-
fined at sentence-level. This metric was adopted
based on its good performance in word-level seman-
tic similarity tasks (Iosif and Potamianos, 2015).
Network-based model. We used sizes of θ =
{10, 25, 50, 100, 150, 500} for the case of fixed-size
neighborhoods, and θ = {1, 5, ..., 40} for the ex-
tended activation models described in Section 4.1.

2http://www.aspell.net/
3As of the 4th quarter of 2012.

We used both the baseline and the extended activa-
tion layers for the M model, the latter being defined
as M ′. For Mk and Pk, we set k = {1, ..., 5}.
Transformational model. For the lf model de-
scribed in (5), we computed co-occurence counts for
bigrams occurring at least 50 times in the corpus.
Positive Pointwise Mutual Information (PPMI) was
applied to reweigh them. We used a) Singular Value
Decomposition (SVD), and b) Non-Negative Matrix
Factorization (NMF) (Lee and Seung, 2001) to re-
duce the dimensionality of the space down to a) 300,
and b) 500 dimensions. To train lf, we selected cor-
pus bigrams comprising of a modifier and a noun.
We used a) Least Squares (LSR), and b) Ridge
(RR) (Hastie et al., 2009) regression. The DIStribu-
tional SEmantics Composition Toolkit (DISSECT 4,
(Dinu et al., 2013)) was used to implement lf, as
well as the widely-used additive (add) and multi-
plicative (mult) models proposed in (Mitchell and
Lapata, 2008; Mitchell and Lapata, 2010).
Fusion model. We combined the best performing
model configurations on NNs (see Section 6.2) in
order to implement the proposed fusion models.

6.2 Evaluation Results

For evaluation purposes, we used the widely-used
Mitchell & Lapata (2010) datasets comprising of
108 noun-noun (NN), adjective-noun (AN), and
verb-object (VO) phrase pairs, evaluated by human
judgements and averaged per phrase pair. The mod-
els were evaluated using Spearman’s correlation co-
efficient. Evaluation results are presented in Ta-
ble 1. Due to space limitations, only the best per-
forming network-based model configurations are re-
ported here. Also, since the mult model performs
poorly when the composed vectors contain negative
values, as is the case with SVD, we only report re-
sults for the NMF variations for it. Finally, since
training the lf model with RR had significantly su-
perior performance over LSR in all configurations,
we only report evaluations of the former.

The lf model, when using RR in combination with
NMF, performs best (.76) for the case of NNs. Best
performances for ANs and VOs are obtained by the
add model (.63 and .59, respectively).

4http://clic.cimec.unitn.it/composes/
toolkit/
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Model NN AN VO
add (NMF300) .67 .61 .53
add (NMF500) .66 .63 .56
add (SVD300) .63 .59 .59
add (SVD500) .66 .63 .59
mult (NMF300) .59 .38 .36
mult (NMF500) .59 .36 .42

lf (NMF300, RR) .76 .46 .35
lf (NMF500, RR) .67 .41 .28
lf (SVD300, RR) .63 .35 .26
lf (SVD500, RR) .56 .33 .23
M (Intersection) .56 .46 .37
M ′ (Intersection) .61 .57 .47
Mk=3 (Intersection) .64 .51 .41
Pk=3 (Most-similar) .63 .46 .23
H (Intersection) .58 .39 .26

fusion Φlf
net .80 .54 .35

fusion Φlf
add .76 .57 .44

Table 1: Performance of models on NN, AN, and VO
phrase pairs. Evaluations are reported using Spearman’s
correlation coefficient with human ratings.

Regarding network-based models, performance is
improved when using the extended activation model
over the baseline. This is confirmed by the absolute
5%, 11% and 10% increase for the case of NN, AN,
and VO pairs, respectively, for the M metric. All
the extended network-based models perform consis-
tently better than the baseline of M , in the case of
NNs, although their performance drops for the case
of ANs and VOs. In the case of Pk, the scheme
that constructs neighborhoods via the selection of
the most similar neighbors performs better than the
intersection- or the union-based scheme.

Φlf
add yields no relative improvements over the

best performances of the separate models. Φlf
net pro-

vides an improvement for the case of NNs, reach-
ing .80, which is also the best observed performance
overall. However, Φlf

net does not improve perfor-
mance in the case of ANs and VOs.

Performance improvements when using the ex-
tended activation layer for compositional structures
is consistent with experimental observations from
psycholinguistics (Osherson and Smith, 1981), and
shows that the activation area for phrases might be
adaptive to the degree of relatedness between words.

7 Discussion

The results displayed in Table 1 for the fusion mod-
els provide an indication of the different ways in
which the operator changes the meaning of a phrase.
In this section, we investigate the transformational
properties of phrases as defined by their modifiers.
By observing the properties of modifiers, we discuss
whether their use in a phrase has mainly a transfor-
mational or a merely compositional effect, based on
the goodness of fit of each model, estimated during
model training.

7.1 The Transformative Effect of Modifiers

Early research on compositionality involved apply-
ing the word-level semantic similarity estimation
techniques to phrases using context-based, bag-of-
words models, i.e., defining the structures’ meaning
as a function of the words in their context. Though
simple and cost-effective, the aforementioned tech-
niques fail to detect the effect that a word has to
its linguistic context and the semantic changes on
its meaning, e.g., a “nice” table is still a table but a
“fake” or “broken” table is not.

Depending on context, a modifier can affect the
meaning of the encompassing phrase in different
ways. For example, the modifier “normal” changes
the meaning of “normal cat” much less than the
modifier “dead” in “dead cat”. Moreover, the mod-
ifier effect may vary for each syntactic category.
For example, verbs can be transitive or intransitive,
nouns can be abstract or concrete, and adjectives can
be intensional or not (Boleda et al., 2013). Words
that act as functions on their linguistic context have
attracted much interest, and have recently been suc-
cessfully handled by computational models.

7.2 Estimating the Transformative Degree

We categorise modifiers based on their regression
performance, when training them for the lf model.
Specifically, we acquire the MSE of their training
as a measure for deciding the degree of their trans-
formative effect on a given head noun. Taking the
MSE is a sensible approach, since regression tries to
derive a close approximation to observed vectorial
representations of phrases and head nouns by means
of transforming the head noun vector; high error in
training indicates that the lf model is a poor match

45



for this modifier. We trained the lf model using
Ridge Regression and estimated the MSE for each
modifier. In Table 2, we present example modifiers
of low, neutral, and high transformative degree, as
defined by their MSE score. We observe that highly-

Degree Nouns Adjectives Verbs

Low

news new like
service great buy

business black help
world general use
state good provide

Neutral
company various face

care right need
community better cut

High

railway old encourage
labour rural attend

defence elderly remember
personnel efficient satisfy
committee practical suffer

Table 2: Examples of low, neutral, and high transforma-
tive modifiers.

transformative modifiers have a more functional in-
fluence, when used in bigram structures. For exam-
ple, in “efficient machine”, “efficient” has a greater
effect on the meaning of “efficient machine” rather
than, e.g., “new” in “new machine”. A “new ma-
chine” retains the same properties of a generic ma-
chine. However, an “efficient machine” should con-
tain mechanisms that account for optimization of
speed, cost, etc. Our observations suggest that mod-
ifiers affect the structure in which they occur in dif-
ferent ways. Some modifiers have a stronger effect
on the meaning of the head noun, while others act
merely as constituents of simple compositions. The
proposed fusion of the transformational, lf model,
with network-based or simple compositional models
indicates that combining different models can yield
improved performance when the transformative de-
gree of modifiers is used as a fusion criterion.

8 Conclusions

We presented a network-based model that operates
on neighborhoods of variable size to calculate simi-
larity of compositional structures. We investigated
various methods for composing neighborhoods of

adjacent words and presented three metrics, moti-
vated by psycholinguistics and metric space alge-
bra, for estimating similarity between activation ar-
eas. Employing variable size activation improves
semantic similarity performance, revealing a differ-
ent activational behavior among bigrams. We also
presented a fusion of the proposed models with the
lexical function model based on the transformative
degree of modifiers, achieving an improvement of
performance for noun-noun compositions, reaching
state-of-the-art performance of 80% Spearman cor-
relation with human judgements. We further inves-
tigated the transformative degree of modifiers, and
elaborated on their role as mostly compositional or
transformational.

In future work, we will further investigate the role
of modifiers and their application in the proposed ac-
tivation composition approaches, while also explore
the criteria for deriving activations and deciding on
fusion strategies. We also plan to apply network-
based models on longer semantic structures.
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Abstract

While several data sets for evaluating thematic
fit of verb-role-filler triples exist, they do not
control for verb polysemy. Thus, it is unclear
how verb polysemy affects human ratings of
thematic fit and how best to model that. We
present a new dataset of human ratings on high
vs. low-polysemy verbs matched for verb fre-
quency, together with high vs. low-frequency
and well-fitting vs. poorly-fitting patient role-
fillers. Our analyses show that low-polysemy
verbs produce stronger thematic fit judge-
ments than verbs with higher polysemy. Role-
filler frequency, on the other hand, had little
effect on ratings. We show that these results
can best be modeled in a vector space using a
clustering technique to create multiple proto-
type vectors representing different “senses” of
the verb.

1 Introduction

Being able to accurately estimate thematic fit (e.g.,
is cake a good patient of cut?) can be useful both for
a wide range of NLP applications and for cognitive
models of human language processing difficulty, as
human processing difficulty is highly sensitive to se-
mantic plausibilities (Ehrlich and Rayner, 1981).

Previous studies obtained quantitative thematic fit
data by asking human participants to rate how com-
mon, plausible, typical, or appropriate some test
role-fillers are for given verbs on a scale from 1
(least plausible) to 7 (most plausible) (McRae et al.,
1998; Binder et al., 2001; Padó, 2007; Padó et al.,
2009; Vandekerckhove et al., 2009). For example,

as part of the McRae et al. (1998) dataset, the the-
matic fit of the noun “principal” as the patient of the
verb “dismiss” is 2.0 out of 7.0. As an agent, its rat-
ing is 6.3. The McRae et al. (1998) dataset has a to-
tal of 720 verb-noun pairs (146 different verbs) with
typicality ratings. The Padó (2007) dataset includes
18 verbs as well as up to twelve nominal arguments,
totalling 207 verb-noun pairs. The verbs and nouns
were chosen based on their frequent occurrence in
the Penn Treebank and FrameNet.

While these datasets are very useful, e.g. for eval-
uating automatic systems for estimating thematic fit
via correlations with these human judgements, they
do not systematically vary polysemy of verbs or fre-
quency of role-fillers. Further, it is unclear what
effect polysemy and frequency have on thematic
fit judgements. We thus ask: (1) are thematically
well-fitting role-fillers for more polysemous verbs
(e.g., “execute killer” or “execute will”) judged to
be equally well-fitting as thematically well-fitting
role-fillers for less polysemous verbs (“jail crimi-
nal”)? (2) Is a prototypical role-filler of a polyse-
mous verb’s less-frequent sense judged to be equally
well-fitting as a prototypical role-filler of the verb’s
more frequent sense? (3) Finally, will a well-fitting
but less frequent role-filler obtain the same rating as
a more frequent but similarly-fitting role-filler?

The answers to these questions have implications
for modeling thematic fit. An increasingly common
method for determining the fit between a verb and its
argument involves calculating typical role-fillers of
that verb, calculating a centroid (or average) over the
most typical role-fillers in a vector space model, and
then calculating the similarity between the centroid
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and the proposed role-filler via a similarity mea-
sure. Arguments that have high similarities with the
prototypical centroid vector representing most com-
mon role-fillers for a given verb-role combination
are then asserted to have good thematic fit (Baroni
and Lenci, 2010; Erk, 2012).

This conceptualization, however, assumes that
there is a single type of most typical filler for a role
and that all good fillers will be distributionally sim-
ilar. This assumption leads to problems when this
process is to be applied to ambiguous verbs; when a
verb has many different senses, there can exist typ-
ical role-fillers for each sense which are all highly
suitable role-fillers for the given role but are distribu-
tionally very different from one another. This means
that the calculated prototypical role-filler will be a
mixture of the arguments that are typical role-fillers
for the main senses of the verb.

Greenberg et al. (2015) addressed this problem
by clustering the most common role-fillers in or-
der to represent the prototypes of each of the verb
senses. They found that better correlations with hu-
man judgements on the Padó (2007) and McRae
et al. (1998) datasets are achieved when calculating
the maximal cosine similarity for a candidate role-
filler with respect to the prototypical role-fillers of
each word sense.

Thus, their model represents the similarity to the
most similar prototype role-filler, which means that
a good role-filler of an infrequent verb sense could
get the same level of ratings as a good role-filler of
a frequent verb sense. There exists, however, cur-
rently no data to assess whether this is desirable be-
havior, or whether we, in fact, need a model that
calculates similarity to prototypical role-fillers and
takes into account verb sense frequencies.

2 Thematic fit modeling

Quantifications of thematic fit are a ternary relation
between a verb, a semantic role, and a role-filler.
For example, given human judges, we would expect
cake to be a highly-rated patient-filler of cut, but we
would expect cake to be a poorly-rated agent-filler
of cut. There have been multiple attempts to model
thematic fit judgements. The goal is generally to es-
timate a probability for a thematic role-filler given
a verb and a role. However, due to data sparse-

ness, it is not possible to estimate this probability
directly. Existing approaches estimate a candidate
noun’s thematic fit via its similarity to typical role-
fillers that have been observed. Similarity between
the candidate noun and prototypical fillers is thereby
assessed via WordNet classes (e.g., Resnik, 1996;
Padó et al., 2009), or by cosine similarities in a vec-
tor space model (e.g., Baroni and Lenci, 2010; Erk,
2012). However, vector space methods achieve bet-
ter coverage than WordNet class methods (Erk et al.,
2010).

In vector-space modeling approaches like the one
used in this paper, the calculation of a thematic fit for
a verb-role-noun triple proceeds though the identifi-
cation of a prototype vector of a verb’s role-fillers.
The prototype vector is constructed from the rep-
resentations of words that are previously known to
be typical role-fillers for that verb. For example,
we might identify typical patient-fillers of cut to be
meat, budget, paper, and so on. A geometric mea-
sure such as cosine similarity is used to compare the
vector for the candidate role-filler with the prototype
vector.

2.1 Distributional memory vector space models

The models evaluated in this paper (TypeDM,
SDDM, and SDDMX) are based on the distribu-
tional memory (DM) framework originally promul-
gated by Baroni and Lenci (2010). DM is a gen-
eralized, broad-coverage, unsupervised model for
representing linguistic relationships in a very high-
dimensional vector space. A DM is an order 3 ten-
sor, two of whose axes are words and one of whose
axes is a syntactic or semantic link between words.
In other words, a cell of a DM represents a tuple
< w1, link, w2 >, and the value contained in that
cell is an adjusted frequency count—here, local mu-
tual information (LMI; OFRV log OFRV

EFRV
, where O

and E are the observed and expected frequencies
of filler F , role R, and verb V appearing together).
Using a structured vector space model is crucial for
modeling thematic fit (as we need to distinguish be-
tween explicit roles, e.g. typical agents vs. patients
of a verb).

The TypeDM model1 (Baroni and Lenci, 2010) is
constructed from the ukWaC, BNC, and WaCkype-

1Available at http://clic.cimec.unitn.it/dm/.
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dia corpora. In TypeDM, the links represent both
connections between words in the corpora found
via the dependency parser MaltParser (Nivre et al.,
2007) and further semantic dependencies derived
from these connections via hand-crafted rules.

An alternative way of constructing DMs was pro-
posed by Sayeed and Demberg (2014), where links
between words are derived directly from SENNA,
a neural network-based semantic role labeller (Col-
lobert and Weston, 2007; Collobert et al., 2011).
This DM is called SENNA-DepDM, or SDDM for
short in this paper. Unlike TypeDM, the links in this
tensor are not processed by hand-crafted rules.

SDDMX2 is a version of SDDM with one expan-
sion: it includes additional links between role-fillers
that are found to be related via a verb. Both SDDM
and SDDMX are trained on ukWaC and the BNC.

Greenberg et al. (2015) tested TypeDM, SDDM,
and SDDMX on multiple datasets of human judge-
ments for agent, patient, location, and instrument
roles. They used multiple models and datasets be-
cause robustness of trends across these different con-
figurations lends support to their generality. They
found that the methods tested had comparable per-
formance across the three models, with TypeDM
outperforming considerably on the McRae et al.
(1998) agent/patient dataset and SDDMX likewise
on locations. We included TypeDM, SDDM, and
SDDMX in our experimental evaluation on the new
dataset to allow similar cross-model analysis.

2.2 Modeling verb senses

While prior vector space models for thematic fit
have ignored verb polysemy, Greenberg et al. (2015)
recently proposed to partition the “typical” role-
fillers of a verb like “observe” such that each par-
tition reflects typical role-fillers of separate senses
of the verb.

In that work, they compared the traditional
method of representing a prototypical role-filler by
calculating a single Centroid from a verb’s 20
highest-LMI role-fillers with three other thematic fit
estimation methods: OneBest , in which the cosine
is taken separately with all of the 20 highest-LMI
fillers and the best cosine is reported; 2Clusters , in

2SDDM, SDDMX, and this paper’s dataset are available at
http://rollen.mmci.uni-saarland.de/.

which the 20 fillers are partitioned into two clusters
and the best fit is taken from the corresponding pro-
totypes; and kClusters , in which the 20 fillers are
dynamically partitioned into three or more clusters
using NLTK’s (Bird et al., 2009) group-average ag-
glomerative clustering package and using the Vari-
ance Ratio Criterion (Caliński and Harabasz, 1974)
as a stopping criterion for partitioning. They con-
cluded that variable clustering (kClusters) provides
gains in thematic fit modeling over the other meth-
ods, suggesting a need to take into account verb
polysemy with respect to thematic roles in order to
model human judgements more accurately. Also,
since their clustering methods helped patients much
more than agents, they successfully reproduced the
previously known notion that patients are more spe-
cific to individual senses of a verb than agents.

3 Methods and stimuli

In this work, we describe a novel dataset of the-
matic fit judgements that systematically varies verb
polysemy and role-filler frequency. Then, we eval-
uate the automatic thematic fit estimation methods
from Greenberg et al. (2015) on this dataset. If verb
polysemy and filler frequency can be shown to affect
human thematic fit judgements, these results would
suggest certain desirable traits for automatic systems
and provide evidence for or against the claims made
by Greenberg et al. (2015). In addition to whether
the factors of polysemy and frequency are associ-
ated with shifts in the rating scale, we also would
like to know how these shifts change at both scale
extrema, whether good role-fillers of different verb
senses receive relatively equal ratings, and how an
automatic thematic fit estimation system with proto-
type clustering handles different types of verbs with
respect to these manipulations.

We begin with the necessary evil of operational-
izing polysemy. It is probably impossible to prove
without a doubt that a certain verb has only one
meaning, usage, etc. However, a binary classifica-
tion between less polysemous and more polysemous
verbs is certainly attainable, even if the boundary
is not beyond reproach. For our purposes, we will
define a verb as MONOSEMOUS if its lemma is a
member of only one SynSet in WordNet (Fellbaum,
1998). Hence, a verb is POLYSEMOUS if its lemma
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is a member of more than one SynSet in WordNet.
A possible confound when manipulating polysemy
is verb frequency, as higher frequency words in gen-
eral tend to be more polysemous. We control for
verb frequency by selecting POLYSEMOUS verbs to
match the frequency of the MONOSEMOUS verbs in
our dataset as much as possible. Furthermore, we
systematically vary the frequency of the role-fillers,
i.e., selecting a high and low frequency noun in each
condition.

3.1 Task format and template

Since Greenberg et al. (2015) were able to confirm
that patients are more specific to individual senses
of a verb than agents, we decided to focus on patient
role-fillers in our new dataset, thus emphasizing the
effects of polysemy. For patient-fillers, both McRae
et al. (1998) and Padó (2007) used questions of the
form “How common is it for a NOUN to be VERB-
ed?” to elicit judgements for their datasets. But con-
sider the example: “How common is it for croquet
to be played?” Since croquet is not a very com-
mon game, we would expect the rating in response
to this question to be relatively low. But, intuitively,
croquet is an excellent patient-filler for play. So,
instead, we decided to ask participants to rate how
much they agree with statements of the form “A
NOUN is something that is VERB-ed” (template for
non-human patient-fillers) and “A NOUN is some-
one who is VERB-ed” (template for human patient-
fillers) on a Likert scale from 1 (never) to 7 (always).
We chose this construction as our template because
it does not use any technical terms and avoids con-
flating absolute frequency of the verb with condi-
tional probability of the patient-filler, e.g. croquet is
always something that is played, so it should receive
a high rating.

3.2 Selection of experimental items

Given that MONOSEMOUS verbs are far less plen-
tiful than POLYSEMOUS ones, we first selected the
MONOSEMOUS verbs. To start, we filtered the
500,000 most frequent tokens in COCA (Davies,
2008) for parts of speech starting with v (verbs
sorted by descending frequency). Then, using the
WordNet lemmatizer as part of NLTK (Bird et al.,
2009), we lemmatized the verbs, combined the du-
plicate entries that arose from multiple inflected

forms, and then filtered out all lemmata that were
part of multiple SynSets. The top 48 most fre-
quent MONOSEMOUS verbs that were acceptable in
our template constructions were compiled into a list.
These vary in frequency from “thank” (82987 occur-
rences) down to “sample” (1275 occurrences).

Then, by querying COCA with the trigram
VERB [at*] [nn*], we obtained a list of ex-
cerpts from the corpus in which the verb was fol-
lowed by a determiner (article) and then a noun.
This targeted patient-fillers, since in English, they
usually appear right after the verb. Therefore,
the results of this query formed a list of can-
didate patient-fillers sorted by cooccurrence fre-
quency. One particularly well-fitting patient-filler
was selected from this list, giving priority to the
higher (more frequent) entries. After this, using
Roget’s 21st Century Thesaurus accessed through
http://www.thesaurus.com, we selected a
very similar but less frequent version of the patient-
filler. The relevant unigram patient-filler frequencies
were obtained by querying a version of the 500,000
most frequent tokens in COCA that was filtered for
only nouns and lemmatized using the WordNet lem-
matizer as part of NLTK. The median ratio of the
high frequency patient-fillers to their low frequency
counterparts was 9.912.

Once the MONOSEMOUS verbs were finalized, we
compiled the POLYSEMOUS verbs. First, we gen-
erated the same list from which the MONOSEMOUS

verbs were selected, except that instead of filtering
out lemmata that were part of more than one SynSet,
we filtered out lemmata that were part of fewer than
three SynSets. While this is stronger than our ini-
tial definition of POLYSEMOUS, we wanted to make
sure that polysemy is effectively manipulated. Then,
beginning at the frequency of each MONOSEMOUS

verb, we looked for a verb as close in frequency
as possible to that MONOSEMOUS verb that had at
least two significantly contrasting, transitive senses
according to experimenter intuition, confirmed by
corresponding SynSets in WordNet, giving priority
to verbs that were members of many SynSets. The
median number of WordNet SynSets belonging to
each of these 48 POLYSEMOUS verbs was 7. The
frequencies of the POLYSEMOUS verbs varied from
“started” (80898 occurrences) down to “scratched”
(1465 occurrences).
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The same format trigram COCA queries aided
this POLYSEMOUS verb selection process as well
as the selection of a high frequency good patient-
filler for each of two senses. Priority was still
given to those nouns with greatest cooccurrence with
the verb, but the two-sense requirement made this
more difficult. Low frequency versions of these
good patient-fillers were analogously selected us-
ing the thesaurus. The more frequent of the two
experimental senses of these POLYSEMOUS verbs,
according to SynSet ordering in WordNet, was la-
belled as Sense1 and the less frequent was labelled
Sense2. The median ratio of the high frequency
patient-fillers to their low frequency counterparts
was 7.335 for Sense1 and 10.288 for Sense2.

To investigate multiplicative as well as additive
adjustments to the thematic fit rating scale, we
needed to determine bad patient-fillers explicitly.
For this we randomly shuffled the good role-fillers
for the MONOSEMOUS verbs and paired them with
each MONOSEMOUS verb again. If the thematic fit
of a randomly assigned pair of bad patient-fillers
was too good, possibly because the verb had co-
incidently been paired with its good patient-fillers
again, a swap was made. To ensure that polysemy
and other idiosyncrasies of the selected patient-
fillers for MONOSEMOUS verbs were controlled, we
used a random ordering of the patient-fillers for the
MONOSEMOUS verbs also as the bad patient-fillers
for the POLYSEMOUS verbs. Once again, swaps
were made if the thematic fit of a randomly assigned
pair of bad patient-fillers was too good. Note that
another way to obtain bad role-fillers would have
been to invert the animacy and/or concreteness of
the good role-fillers. However, since this study is
concerned with scalar thematic fit judgements as op-
posed to hard classifications, we thought that the
variation in thematic fit arising from randomly se-
lecting bad fillers would be more appropriate.

To summarize the experimental items, this dataset
has 48 MONOSEMOUS verbs each with frequency-
contrasting pairs of good and bad patient-fillers.
Also it has 48 POLYSEMOUS verbs each with
frequency-contrasting pairs of good patient-fillers
for Sense1, good patient-fillers for Sense2, and
bad patient-fillers. In Table 1, we show the selected
patient-fillers for the POLYSEMOUS verb whip and
the MONOSEMOUS verb punish.

Filler type Frequency whip punish
Sense1 high horse criminal

low stallion outlaw
Sense2 high cream -

low frosting -
Bad high party baby

low gathering fetus

Table 1: Example items from our thematic fit dataset.

3.3 Fillers

In order to evaluate consistency with the “How com-
mon is it...” format and also to identify excessively
divergent responses, we adapted 240 (patient-filler,
verb) pairs from McRae et al. (1998) as a counter-
part to our novel experimental items. To select these
pairs, we excluded all verbs that appeared as exper-
imental items, scored each remaining pair using the
sum of the COCA unigram frequencies of the verb
and patient-filler, and selected the 240 highest scor-
ing pairs. Note that because of this procedure, the
verbs that were selected as fillers did not necessarily
appear with all of their role-fillers from the McRae
et al. (1998) dataset.

3.4 Experimental setup

In order to prepare the 480 total (patient-filler,
verb) pairs for inclusion in a human experiment, we
rewrote each verb by hand in its past participle form
and each patient-filler by hand in its singular form
with an appropriate (possibly null) determiner. Also,
each patient-filler was hand tagged with a +human
or -human feature. That way, each (patient-filler,
verb) pair could be felicitously entered into the non-
human-filler template or the human-filler template.

We obtained participants for this study using
Amazon Mechanical Turk. For a survey consist-
ing of six POLYSEMOUS items, four MONOSEMOUS

items, and five filler items, counterbalanced for con-
dition and question order, a worker was paid $0.15.
Workers were restricted such that they were not al-
lowed to rate a verb in more than one condition. So,
each worker could complete a maximum of eight
surveys. A total of 159 workers participated, and
each sentence was rated by 10 different workers.
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Figure 1: Interaction between Fit and Polysemy .

4 Results

The Spearman’s ρ correlation between the human
judgements we obtained on our filler items and the
human judgements obtained by McRae et al. (1998)
is 0.753.

Our highest level experimental analysis was a fac-
torial ANOVA with “hc3” correction as suggested
by Long and Ervin (2000), which had three, be-
tween participant, binary factors: Polysemy , exper-
imenter judgement (Fit), and Frequency (binned).
This analysis provided two important results. First,
it empirically confirmed the choices of our exper-
imental patient-fillers, which were designed to fit
either very well or poorly. This effect of Fit was
significant and very large: F (1, 4668) = 3029.692,
p < 2× 10−16, η2

p = 0.394.
Second, there was a significant Polysemy ∗

Fit interaction, summarized visually in Figure 1,
F (1, 4668) = 125.729, p < 2× 10−16, η2

p = 0.026.
Namely, for POLYSEMOUS verbs, bad patient-fillers
were not as bad (POLYSEMOUS: M = 2.43, SD =
1.56 versus MONOSEMOUS: M = 2.06, SD =
1.38) and good patient-fillers were not as good
(POLYSEMOUS: M = 4.55, SD = 1.65 versus
MONOSEMOUS: M = 5.23, SD = 1.44). We used
two-tailed Welch t-tests on both bad patient-fillers,
t(1813.212) = 5.4756, p = 4.968× 10−8, Cohen’s
d = 0.173, and good patient-fillers, t(2139.706) =
11.3243, p < 2.2 × 10−16, Cohen’s d = 0.272,

to confirm that these differences were significant.
Finally, we found significant, but very small, main
effects of Polysemy , F (1, 4668) = 16.175, p =
5.87 × 10−5, η2

p = 0.003, and also Frequency ,
F (1, 4668) = 11.184, p = 0.000832, η2

p = 0.002
on how people generally rated thematic fit.

Then, we ran four follow-up 2 × 2 factorial
ANOVAs with “hc3” correction, each holding a
Polysemy or Fit condition constant. First, for
good patient-fillers, both Polysemy , F (1, 2830) =
117.761, p < 2 × 10−16, η2

p = 0.040,
and Frequency , F (1, 2830) = 8.670, p =
0.00326, η2

p = 0.003 were significant. Second,
for bad patient-fillers, Polysemy was significant,
F (1, 1838) = 29.997, p = 4.92×10−8, η2

p = 0.016,
but Frequency was not, F (1, 1838) = 2.524, p =
0.112, η2

p = 0.001. That Frequency has a signifi-
cant effect on good role-fillers but not on bad ones
makes intuitive sense. After all, a less frequent ver-
sion of a poorly-fitting role-filler should fit poorly to
approximately the same degree.

Third, for POLYSEMOUS verbs, Fit was signifi-
cant, F (1, 2803) = 1054.885, p < 2× 10−16, η2

p =
0.273, but Frequency was not, F (1, 2803) = 2.866,
p = 0.0906, η2

p = 0.001. Fourth, for MONOSE-
MOUS verbs, both Fit , F (1, 1865) = 2373.263,
p < 2 × 10−16, η2

p = 0.560, and Frequency ,
F (1, 1865) = 11.105, p = 0.000878, η2

p = 0.006,
were significant. That Frequency has a significant
effect on MONOSEMOUS verbs but not on POLYSE-
MOUS ones appears to be indicative of a character-
istic of low polysemy. These verbs produce such a
strong expectation for certain role-fillers that even
role-fillers that are semantically very similar but less
frequent are deemed worse-fitting. POLYSEMOUS

verbs, on the other hand, are more flexible than
MONOSEMOUS verbs for fitting with less frequent
role-fillers.

While verb frequency was very closely con-
trolled in our stimuli via experimental design,
we also ran a linear mixed effects model
with thematic fit as a response variable and
POLYSEMY*FIT+LOGVERBFREQ+FREQUENCY

as predictors (with random intercepts under par-
ticipant and item, as well as random slopes for
POLYSEMY and FIT under both participants and
items). The linear mixed effects model confirmed all
results from the factorial ANOVAs, and furthermore
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Figure 2: More frequent vs. less frequent senses of POLY-
SEMOUS verbs.

showed that our matching of verb frequencies in the
experimental design was effective: LOGVERBFREQ

did not explain away the effects of verb polysemy.

Next, we compared good patient-fillers for the
two predetermined senses for the POLYSEMOUS

verbs. A Factorial ANOVA with “hc3” correction
and with Sense and Frequency as between par-
ticipant factors indicated that there was a signifi-
cant main effect of Sense , F (1, 1881) = 23.076,
p = 1.68 × 10−6, η2

p = 0.012. Neither Frequency ,
F (1, 1881) = 3.024, p = 0.0822, η2

p = 0.002, nor
the Sense ∗ Frequency interaction, F (1, 1881) =
1.386, p = 0.2392, η2

p = 0.001 was significant. A
two-tailed Welch t-test confirmed that good patient-
fillers for the more frequent sense of these POLYSE-
MOUS verbs were rated significantly higher (M =
4.73, SD = 1.58) than good patient-fillers for the
less frequent sense (M = 4.37, SD = 1.70),
t(1868.449) = 4.7985, p = 1.725 × 10−6, Co-
hen’s d = 0.254, as shown in Figure 2. Therefore,
while the unigram frequencies of the patient-fillers
do not have an impact when comparing senses of the
same verb, the frequencies of the senses themselves
do have an effect.

Finally, in Table 2, we give the results of running
the four automatic thematic fit scoring methods from
Greenberg et al. (2015) on SDDM, SDDMX, and

SDDM SDDMX TypeDM
Centroid 0.406 0.448 0.528
2Clusters 0.448 0.476 0.539
OneBest 0.509 0.531 0.544
kClusters 0.520 0.535 0.548

Table 2: Spearman’s ρ values for correlation with MTurk
judgements on experimental items.

POLY. MONO. FILLERS ALL

Centroid 0.405 0.655 0.313 0.464
2Clusters 0.442 0.642 0.311 0.474
OneBest 0.447 0.641 0.223 0.452
kClusters 0.432 0.669 0.304 0.479

Table 3: Spearman’s ρ values for TypeDM correlation
with MTurk judgements by verb type.

TypeDM and calculating the correlation with the hu-
man judgements we obtained on the experimental
(role-filler, verb) pairs. For the kClusters method,
10 was set as the maximum number of clusters. In
Table 3 we break down the TypeDM correlations by
verb type. Note that the ALL column in Table 3 in-
cludes the filler items, but Table 2 does not.

5 Discussion

The reasonably high correlation between our human
judgements and those from McRae et al. (1998) is
encouraging and provides a possible upper-bound on
computational models of thematic fit as well as a hu-
man annotator agreement score for our study.

Since the Fit factor was experimentally designed
to have an effect on ratings, it is unsurprising that
there was an effect. But it is surprising that the
Polysemy and Frequency effect sizes are much
smaller than those of Fit and the interaction. This
suggests that humans do not have such a vary-
ing process for assessing thematic fit for POLY-
SEMOUS versus MONOSEMOUS verbs. Therefore,
these judgements further motivate clustering as part
of an automatic thematic fit scoring system be-
cause clustering minimizes the effects of highly con-
trastive senses.

Overall, the interaction between Polysemy and
Fit showed that in the case of POLYSEMOUS verbs,
it is harder to achieve extremely low or high the-
matic fit. Only one sense needs to be relevant for a
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role-filler to achieve a somewhat high score, but the
inability to fit well with all senses may block a good
role-filler from achieving the highest possible score.

For the comparison of the two experimental
senses for the POLYSEMOUS verbs, it is important to
note a terminological subtlety. Our Frequency fac-
tor, which was found not to have a significant effect,
is based on the unigram frequency of the role-filler,
while the Sense factor, which was found to have a
significant effect, is based on the relative frequency
of that sense, which could be estimated using the
(skip) bigram frequency of the verb with the role-
filler. Since these bigram frequencies affect thematic
fit ratings, automatic thematic fit estimation systems
that analyze the frequency distribution of senses are
likely to perform better than those that do not.

Table 2 reproduces the trends in correlations ob-
served in Greenberg et al. (2015) on our new dataset.
Again, we see that the trends occur on each of the
DM models, which shows their generality. But, by
breaking down the dataset by verb type, we can
see a clearer picture of the strengths and weakness
of the different scoring methods. For instance, the
OneBest method achieves the best performance on
POLYSEMOUS verbs, but worsens performance on
MONOSEMOUS verbs. We can attribute this dif-
ference to a trade-off between negative impacts of
polysemy and noise. Namely, for MONOSEMOUS

verbs, the negative impact of noise is greater than
the negative impact of polysemy, and vice versa for
POLYSEMOUS verbs. Clustering, however, achieves
the greatest correlation with human judgements on
mixed polysemy datasets presumably by avoiding
the greater negative effect for each verb.

As an example, consider the MONOSEMOUS verb
obey. kClusters put the patient-fillers of obey into
nine clusters: [[injunction], [will], [wish], [limit],
[equation], [master], [law, rule, commandment,
principle, regulation, teaching, convention], [voice,
word], [order, command, instruction, call, sum-
mons]]. Due to a large number of singleton clusters,
each cluster is quite pure. Hence, the noise has been
neutralized. Similar role-fillers are still smoothed to-
gether, but no strongly dissimilar ones are averaged.

In contrast, kClusters put the patient-fillers
for the POLYSEMOUS verb observe into six clus-
ters: [[day], [silence], [difference, change], [ob-
ject, star, bird], [effect, phenomenon, pattern, be-

haviour, practice, behavior, reaction, movement,
trend], [rule, custom, law, condition]]. Now, there
are only two singleton clusters, and the largest clus-
ter is quite noisy. Each of the clusters except the
largest happens to correspond uniquely to a Word-
Net SynSet, so the polysemy has been addressed, but
not the noise. However, polysemy was more impor-
tant than noise for this verb. We also note that the
number of clusters, usually between six and nine, is
not particularly informative about polysemy and has
much more to do with noise in the set.

Finally, to explain the sharp discrepancy in per-
formance between fillers and experimental items, re-
call that our main experiment had three independent
variables: Polysemy , Frequency , and Fit . Both
levels of Polysemy enjoyed the same positive ef-
fect when moving from the Centroid to kClusters .
Frequency had a very small effect. This just leaves
Fit . For each of our experimental verbs, we ensured
that there was a pair of good role-fillers and a pair
of bad role-fillers. The McRae et al. (1998) dataset
did not ensure that there was a mix of good and
bad role-fillers for each verb. Additionally, our filler
item selection procedure did not always include ev-
ery available role-filler for a given verb. If the se-
lected role-fillers are either all good or all bad, these
points “vote”, during the Spearman’s ρ calculation,
to minimize all distinctions (good and bad) that the
model makes. The more of these verbs we have, the
flatter our model becomes and the less we will be
able to see. But, none of our experimental items had
this problem.

6 Conclusions and Future Work

We developed a new substantial dataset of thematic
fit judgements: 720 verb-noun pairs, each judged by
10 Amazon Mechanical Turk workers. Our dataset
contains 48 MONOSEMOUS and 48 POLYSEMOUS

verbs, matched for frequency. For each of the POLY-
SEMOUS verbs, it has a total of six patient-fillers:
two good for Sense1, two good for Sense2, two
bad, each pair with contrasting frequencies. The
MONOSEMOUS verbs in our dataset have a total of
four patient-fillers: two good and two bad, each pair
with contrasting frequencies. This dataset consti-
tutes the first thematic fit judgement dataset that sys-
tematically manipulates polysemy and frequency.
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We found that human judgements of thematic fit
are affected by the number of senses that a verb
has (good role-fillers for MONOSEMOUS verbs are
judged better than those for POLYSEMOUS verbs,
and bad role-fillers are judged worse for MONOSE-
MOUS verbs than for POLYSEMOUS verbs), and that
this effect cannot be explained away by the verb’s
frequency. This effect may reflect the different lev-
els of constraint that a MONOSEMOUS vs. POLYSE-
MOUS verb exerts on its arguments. A further im-
portant finding was that the frequency of a role-filler
has little influence on thematic fit judgements. This
supports the notion that semantic similarity and the-
matic fit are extremely important notions for model-
ing thematic fit well.

We then evaluated distributional memory mod-
els and computational estimation methods on this
dataset, comparing methods that can account for
verb polysemy by clustering most typical fillers
(kClusters) to methods that assume a single verb
sense (Centroid ). Our results show that the method
that allows for representing verb polysemy con-
sistently outperforms the traditional single-centroid
method by Baroni and Lenci (2010). As expected,
the most substantial improvements are achieved for
POLYSEMOUS verbs, but we also found that model
performance on MONOSEMOUS verbs was not hurt
by using the kClusters method.

The data we collected also suggests that both the
probability of the verb sense and the similarity of
a role-filler to a prototypical argument for a spe-
cific verb sense play a role in human thematic fit
judgements: this explains why highly prototypical
role fillers for MONOSEMOUS verbs get significantly
higher thematic fit judgements than highly prototyp-
ical role-fillers for the most frequent verb sense of a
POLYSEMOUS verb, and why, in turn, highly proto-
typical role-fillers for a less frequent verb sense get
again significantly lower thematic fit judgements in
comparison.

A model implementing this would conceptually
estimate thematic fit in terms of a noun’s surprisal
given the verb (− logP (filler |verb)), thereby using
the semantic vector space as a back-off model in or-
der to handle rare or unseen combinations of verbs
and their arguments. The importance of this is high-
lighted by our result that noun frequency had little
effect on thematic fit judgements. In all, polysemy,

frequency, and thematic fit are intertwined in a com-
plex web of dependencies, but the more carefully we
obtain human judgements, the more equipped we are
to build highly accurate computational models.
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Abstract

Linguistic alignment has emerged as an im-
portant property of conversational language
and a driver of mutual understanding in dia-
logue. While various computational measures
of linguistic alignment in corpus and experi-
mental data have been devised, a systematic
evaluation of them is missing. In this study,
we first evaluate the sensitivity and distribu-
tional properties of three measures, indiscrim-
inate local linguistic alignment (LLA), Spear-
man’s correlation coefficient (SCC), and repe-
tition decay (RepDecay). Then we apply them
in a study of interactive alignment and individ-
ual differences to see how well they conform
to the Interactive Alignment Model (IAM),
and how well they can reveal the individual
differences in alignment propensity. Our re-
sults suggest that LLA has the overall best per-
formance.

1 Introduction

The alignment of language between dialogue part-
ners has garnered much interest in the computational
linguistics community. Alignment not only provides
insight into the mechanisms of dialogue, but also has
the potential to improve both human-computer dia-
logue systems and the analysis tool-chain. In this
context, alignment refers to the convergence of lin-
guistic choices among interlocutors. This may hap-
pen at different representational levels, such as the
phonological, lexical and syntactic (Garrod and An-
derson, 1987). Alignment, also known as entrain-
ment or accommodation, has become recognized as
a key feature of linguistic communication.

Several theoretical accounts exist that address the
nature and implications of linguistic alignment. In
psycholinguistics, the Interactive Alignment Model
(IAM) assumes that interlocutors align their linguis-
tic representations (Pickering and Garrod, 2004),
from lower ones (lexical, syntactic) to higher ones
(e.g., semantics), leading to shared situation mod-
els. Sociolinguistic studies point out that interac-
tants converge in their communication styles to sig-
nal social affinity and diverge to emphasize social
distance (Danescu-Niculescu-Mizil and Lee, 2011;
Giles, 2008). Furthermore, evidence has been found
showing that certain individuals tend to have higher
propensity of alignment than others (Gnisci, 2005;
E. Jones et al., 1999; S. Jones et al., 2014; Wille-
myns et al., 1997).

Several computational measures have been devel-
oped to help validating these theoretical accounts.
Some of them use the probability of co-occurrence
of words (or other linguistic elements) to describe
the language alignment (Church, 2000; Dubey,
Sturt, and Keller, 2005; Reitter, Keller, and Moore,
2006), while some others take inspiration from doc-
uments similarity measures (Huffaker et al., 2006;
S. Jones et al., 2014; Wang, Reitter, and Yen, 2014).

However, little research is available that evalu-
ates the properties of these linguistic alignment mea-
sures. How sensitive are these measures? What kind
of distributions do they have? Can they consistently
describe the alignment at multiple linguistic levels
(e.g., lexical and syntactic)? Can they describe the
individual differences in propensity of alignment?
Essentially, are they good/reliable measures? These
questions are not answered (or fully answered) yet.
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To answer these questions in this study, we
first conduct an evaluation of the intrinsic prop-
erties of three well defined and commonly used
measures, indiscriminate local linguistic alignment
(LLA) (Fusaroli et al., 2012; Wang, Reitter, and Yen,
2014), Spearman’s correlation coefficient (SCC)
(Huffaker et al., 2006; Kilgarriff, 2001), and repeti-
tion decay (RepDecay) (Reitter, Keller, and Moore,
2006), in which two basic properties are investi-
gated, normality of distribution and sensitivity. Then
we apply these measures to a study about the IAM
and individual differences in alignment propensity
as an extrinsic evaluation. We examine how well
they follow the basic assumption of IAM, i.e., show-
ing correlations between alignment at lexical and
syntactic levels, and how well they can reveal the
individual differences in alignment propensity.

Our study aims to provide potential guidance to
future studies of linguistic alignment in terms of
which computational measures to use. Basically, we
favor a measure that has good normality in its distri-
bution, that has higher sensitivity, and that conforms
with the IAM theory and the existing findings about
individual differences in alignment propensity.

2 Related Work

We will first briefly review the existing computa-
tional measures of linguistic alignment. Then we
give a short reivew of IAM and the work on indi-
viduals’ propensity of alignment.

2.1 Existing measures and their limitations

We categorize the existing computational measures
into three basic types based on the different methods
they use. Though different methods are used, all the
three types of measures are conducted upon a similar
structure: (prime, target) pairs, in which prime
and target are pieces of text.
Probabilistic measures

Probabilistic measures work on multiple (prime,
target) pairs, and compute the probability of a sin-
gle word or syntactic rule appearing in target after
its appearance in prime, by counting the frequency
of their co-occurrence. For example, Church (2000)
used the first half of documents as prime and the
second half as target to measure the lexical adapta-
tion in text. Dubey, Sturt, and Keller (2005) used

similar measures to investigate the parallelism ef-
fect of syntactic structures in coordinate constructs
in corpora. Gries (2005) was among the first to use
logistic regression to estimate linear models of syn-
tactic priming.

The limitation of the frequency-based measure is
that it needs a relatively large amount of text to con-
duct the computation, because it uses the observed
frequency of words (or syntactic rules), to estimate
the probability of co-occurrence.
Document similarity measures

Several measures originate from information re-
trieval (IR). They have seen little use by corpus-
based priming and alignment researchers, although
they could conceivably be adopted for our purposes.
Huffaker et al. (2006) compared the performance of
three computational measures of document similar-
ity in measuring the language convergence in an on-
line community over time. The measures they exam-
ined are: Spearman’s correlation coefficient (SCC),
which measures document similarity based on word
frequency and co-occurrence, Zipping, a data com-
pression algorithm that has been used in document
comparison, and Latent Semantic Analysis (LSA),
a technology for measuring semantic similarity be-
tween documents.

Fusaroli et al. (2012) proposed a measure based
on probabilities that falls in this category as well: the
concept of indiscrimiate local linguistic alignment
(LLA). Based on this work, Wang, Reitter, and Yen
(2014) implemented LLA at lexical level (LILLA)
and syntactic level (SILLA). They essentially mea-
sure the number of words (or syntactic rules) that
appear in both prime and target, normalized by the
size of the two text sets.
Repetition decay

Repetition effects have been observed to be short-
lived in experiments (e.g., Branigan, Pickering, and
Cleland, 1999). Reitter, Keller, and Moore (2006)
proposed to use the decay rate of repetition proba-
bilities of syntactic rules to measure the strength of
syntactic alignment, and to apply it to all syntactic
rules in an observational study.

In their work, Reitter, Keller, and Moore (2006)
built a generalized linear model, using the repetition
of the syntactic rules as the dependent variable and
the distance between prime and target as the pre-
dictor. They observed that repetition rate of syntac-
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tic rules decays as the distance increases, and used
the regression coefficient of the predictor to estimate
the strength of syntactic alignment.

Repetition decay gives a strict mathematical ac-
count to the alignment phenomena from the prob-
abilistic point of view, and distinguishes the align-
ment caused by priming from other random repeti-
tions of linguistic elements. One limitation of the
repetition decay measure is that it cannot quantify
the alignment between a single pair of texts (in fact,
it assumes that the simple repetition between two
text sets tells us nothing about the overall alignment
level). Another limitation is that the fitting a general-
ized linear model is not as computationally efficient
as other measures.

2.2 Interactive alignment model

Pickering and Garrod (2004) proposed the Inter-
active Alignment Model (IAM) to account for the
mechanism that underlie language processing in di-
alogue. The central assumption of IAM is that, in
a dialogue, the linguistic representations employed
by the interlocutors become aligned at many lev-
els, and the aligned representations at one level lead
to aligned representations at other levels (Pickering
and Garrod, 2004). The correlation between dif-
ferent linguistic levels has been shown by corpora-
based studies (Wang, Reitter, and Yen, 2014).

2.3 Propensity of alignment

One area that has long been overlooked is the indi-
vidual speaker’s inherent propensity of alignment,
i.e., whether some individuals inherently have a
stronger tendency to align to their interlocutors than
others. Previous studies have shown that individ-
uals in lower social power status tend to converge
their language style to those in higher social power
status during conversations, e.g., interviewees con-
verging towards their interviewers during employ-
ment interviews (Willemyns et al., 1997), students
adapting their language to teachers (E. Jones et al.,
1999), and witnesses accommodating their linguistic
style to that of the lawyers and the judges (Gnisci,
2005). More recently, S. Jones et al. (2014) pro-
posed Zelig Quotient, a measure that characterizes
an individual’s inherent tendency to accommodate
to the linguistic style of others, defined by the move-
ment in a high-dimensional linguistic style space.

These studies provide evidence that different indi-
viduals have different levels of alignment propen-
sity, and this difference can be quantified by compu-
tational measures.

However, the main limitation of existing studies
is that the individuals’ propensity of alignment is
only characterized using a proportion of lexical ele-
ments. For example, Zelig Quotient only uses func-
tional words (S. Jones et al., 2014). Thus they do
not characterize the propensity of alignment at the
full range of lexical and syntactic levels.

3 Evaluation Criteria

In this study, we first evaluate two intrinsic proper-
ties of the computational measures, and then eval-
uate their performance in two extrinsic investiga-
tions related with IAM and individuals’ propensity
of alignment.

3.1 Intrinsic evaluation
The two intrinsic properties that we find desirable
are: normality of distribution and sensitivity. We
expect a good measure to have a normal (or nearly
normal) distribution over the whole population, be-
cause normal distribution is the most common dis-
tribution in nature, and it is desirable from a statisti-
cal point of view to have a normal distribution. The
sensitivity criterion is straight-forward: we expect a
good measure to have satisfactory “resolution”, i.e.,
the capability of detecting relatively small amount
of linguistic alignment.

3.2 Extrinsic evaluation
According to the IAM, linguistic alignment between
interlocutors occurs at many levels, and aligned rep-
resentations at one level leads to aligned represen-
tations at other levels. For instance, syntactic align-
ment is enhanced when there are more shared lexical
items (Pickering and Garrod, 2004). Thus, it is rea-
sonable to expect that a good measure can capture
this effect, demonstrating that higher lexical align-
ment should co-occur with higher syntactic align-
ment.

Secondly, due to the empirical evidence that
demonstrates the individual’s inherent propensity of
alignment (Gnisci, 2005; E. Jones et al., 1999; S.
Jones et al., 2014; Willemyns et al., 1997), it is rea-
sonable to expect that a good measure of linguis-
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tic alignment should be able to characterize an in-
dividual’s propensity of alignment. If we view the
propensity of alignment as a relatively stable in-
dividual characteristic that is associated with other
social and psychological factors, a good measure
should be able to show more variation when measur-
ing text produced by different individuals, and show
less variation when measuring text produced by the
same individual.

In sum, for the evaluation of the measures’ in-
trinsic properties, we have two criteria: the normal-
ity of distribution and the sensitivity. For the ex-
trinsic evaluation, we examine the performance of
measures in three aspects: consistency, the mea-
sures at lexical level should be correlated with the
measures at syntactic level. Between-individual dif-
ference, whether the measure can reveal significant
differences in alignment propensity among different
individuals. Within-individual stability, whether the
alignment measures from the same individual have
relatively small variance.

4 Methods

4.1 Processing of corpora
Four corpora are used in this study, including the text
data from two online forums, the Cancer Survivors’
Network (CSN) 1 and a massive open online course
on visual art Art taught on Coursera by Penn State
(MOOC), and two published corpora, the Switch-
board Corpus (SWBD) (Marcus et al., 1994) and
the spoken part of British National Corpus (BNC,
2007).2

The threads in CSN and MOOC have similar
structures. They consist of an original post fol-
lowed by reply posts ordered by time. We use a
sequence of posts to represent a thread of length n,
[P0, P1, P2, ..., Pn], in which P0 represents the origi-
nal post started by a forum user, and Pi(i = 1, ..., n)
represent the reply posts from other users or the orig-
inal poster. There is a “reply” relationship between
the posts in a thread, indicating that one post is a re-
sponse to another. For example, if post j (by user

1http://csn.cancer.org
2CSN has more than 48,000 threads collected in over 10

years. Switchboard contains more than 80,0000 transcribed ut-
terances annotated with phrase structure trees (Marcus et al.,
1994). We use 200 randomly sampled, spontaneous, multi-party
conversations from BNC.

B) is a “reply” to post i (by user A), then it means
that post j is the direct response from user B to
user A in terms of the content of post i. We con-
struct the (prime, target) pairs for the linguistic
alignment measures based on the “reply” relation-
ship between the posts, i.e., using the original post as
prime, and the corresponding reply post as target.
Those pairs of posts whose authors are the same user
(“self-reply”) are excluded.

Switchboard has only two interlocutors in each
conversation, whose utterances are ordered by turn.
In BNC, one conversation might contain more than
two interlocutors, which results in the relative loose
structure of the conversation. The ways we construct
(prime, target) pairs for the two corpora are sim-
ilar: selecting one utterance as prime, and all the
following utterances (within the distance of 10 utter-
ances) that are from the other speaker are selected as
target respectively. We restrict the distance to 10 to
avoid overtly long conversations. In total, we use all
the 80,000 utterances in SWBD and randomly sam-
ple 95,441 conversations from BNC.

4.2 LLA
We use the methods implemented by Wang, Reitter,
and Yen (2014) to compute the indiscriminate local
linguistic alignment (LLA). The lexical and syntac-
tic versions of LLA are implemented and abbrevi-
ated as LILLA and SILLA respectively. LILLA and
SILLA are the normalized measures of the number
of words (or syntactic rules) that occur in both the
prime text and the target text:

LLA(P, T ) =

∑
wi∈P δ(wi, T )

length(P ) ∗ length(T )
(1)

δ(wi, P ) =
{

1, if wi ∈ P
0, otherwise

(2)

For the computation of LILLA, |P | and |T | are
the numbers of words in prime and target, and wi
is the individual word in prime (or target). For
the computation of SILLA, we first use the Stanford
Parser (De Marneffe, MacCartney, Manning, et al.,
2006) to parse each sentence in prime and target
to get their full syntax trees, and then collect all the
sub-trees from each sentence. For example, if the
first sentence in prime is “I am a teacher.”, then the
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parser generates the full syntax tree: (S (NP (PRP
I)) (VP (VBP am) (NP (DT a) (NN teacher)))). The
sub-trees extracted are: “S → NP + VP”, “NP →
PRP”, “VP→VBP + NP”, “NP→DT + NN”. Then
we use the collection of all the sub syntax trees from
prime and target as the |P | and |T | in Equation 1,
and let wi refer to the individual syntactic rules.

Differing from Wang, Reitter, and Yen (2014)’s
work, we use the natural logarithm of LILLA and
SILLA instead, i.e., log-LILLA and log-SILLA, as
a simple way to achieve normality of errors.

4.3 Spearman’s correlation coefficient
Spearman’s correlation coefficient (SCC) originate
from the Spearman rank correlation that has been
widely used in statistics. It is essentially a non-
parametric version of Pearson’s correlation coeffi-
cient (Myers, Well, and Lorch, 2010). SCC was first
proposed by Kilgarriff (2001) to measure the sim-
ilarity between text and further evaluated by Huf-
faker et al. (2006). Huffaker et al. (2006) imple-
mented SCC as the following: given a document
pair (prime, target), for each document, rank the n
common words in prime and target by frequency.
For each word, let d be the difference of ranks in two
documents. SCC is defined as the normalized sum
of squared differences:

SCC = 1− 6
∑
d2

n(n2 − 1)
(3)

SCC was originally implemented only for mea-
suring the similarity at lexical level. In this study,
we also implement the syntactic version of SCC by
applying equation (3) to syntactic rules instead of
words, i.e., first parse the prime and target into
syntactic rules and get a list of common rules be-
tween the two sets, and then compute d in a similar
way. In this study, we name the syntactic version of
SCC as SCCsyn, and the original lexical version as
SCClex.

4.4 Repetition decay
We compute the repetition decay (RepDecay) mea-
sure based on the procedure proposed by Reitter,
Keller, and Moore (2006). We go through the se-
quence of (prime, target) pairs constructed from
the corpora with a window of fixed width, e.g., 10
posts/utterances, and look at every element (a word

or a syntactic rule) that is in target. If one element is
also in prime, we record this in the variable Rep as
1, and otherwise, we record Rep as 0. Meanwhile,
each Rep is associated with another variable Dist,
which records the distance (from 1 to 10) between
prime and target. Finally, we build a generalized
linear regression model using Rep as the response
variable and ln(Dist) as the predictor. We use the
regression coefficient β associated with ln(Dist) to
represent the strength of linguistic alignment. The-
oretically, β is always negative, and the smaller β
indicates stronger alignment.

The computation of RepDecay relies on the pre-
cise definition of distance between prime and
target, because its basic assumption is that the
priming effect from prime to target decreases as
the distance between them increases. In the context
of conversations in online forums, the distance be-
tween prime and target is difficult to define, be-
cause a long distance between two posts, whether it
is calculated by time or by number of posts between
them, does not necessarily result in the weak prim-
ing effect. Based on these considerations, we only
compute RepDecay in the SWBD corpus, which
solely consists of two-party dialogues. BNC cor-
pus is also excluded because it contains multi-party
dialogues that makes it difficult to extract a clear
prime-target relationship.

4.5 Propensity of alignment

We use all the posts/utterances produced by one in-
dividual to measure his/her propensity of alignment.
For LLA and SCC, we use all of the (prime, target)
pairs within a certain distance where individual Ii
produces the target to represent Ii’s propensity of
alignment. For RepDecay, we compute the regres-
sion coefficient βi from the sequence of (prime,
target) pairs in which target is produced by Ii and
use βi to represent Ii’s propensity of alignment.

We select only those active individuals from the
four corpora whose number of posts/utterances is
above a common threshold (above 90% of the popu-
lation). For CSN corpus, we select 1066 active users
who have composed at least 50 posts. For MOOC
corpus, we select 829 active users who have com-
posed at least 10 posts. For SWBD corpus, all 1296
speakers are selected. For BNC corpus, 502 active
speakers who have at least over 26 utterances are se-
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Figure 1: The quantile-quantile plots of LLA and SCC
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Figure 2: The quantile-quantile plot of RepDecay in
SWBD

lected. These active forum-users or speakers are re-
ferred to as active individuals.

5 Intrinsic Evaluation Results

5.1 Normality of distribution
We use Shapiro-Wilt test (Shapiro and Wilk, 1965)
to examine the normality of distributions of LLA
and SCC in all of the four corpora, and the normal-
ity of distribution of RepDecay in the SWBD corpus
(because RepDecay is only computed in SWBD).

The test results show that all these distributions
are significantly different from a normal distribution
(p < 0.001).

But we can still use the quantile-quantile plot of
each distribution to compare their normality rela-
tively. Figure 1 show quantile-quantile plots of LLA
and SCC in all of the four corpora, and Figure 2
shows the quantile-quantile plot of RepDecay in the
SWBD corpus. It can be seen that the quantile-
quantile plots of LLA and RepDecay are closer to
straight lines (demonstrated by the dot-line) than
SCC, thus they have relatively better normality in
their distributions.

5.2 Sensitivity
We use NPS Chat Corpus (Forsyth and Martell,
2007) to construct several pieces of pseudo text with
different levels of alignment strength, and then in-
vestigate the performance of the measures in reveal-
ing the difference.

The structure of the pseudo text assembles a se-
quence of turn-by-turn utterances in a dialogue. We
control the strength of alignment by adjusting the
probability of a word appearing in an utterance given
whether it has appeared in the previous utterance or
not. In a non-alignment control condition, the prob-
ability of the occurrence of a word is independent of
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Table 2: Correlation coefficients between lexical and syntactic measures.

Measure CSN MOOC SWBD BNC

log-LILLA and log-SILLA 0.374*** 0.237*** 0.188*** 0.369***
SCClex and SCCsyn 0.045*** -0.008 -0.001 0.200***
RepDecaylex and RepDecaysyn NA NA 0.695*** NA

*p < 0.05, ***p < 0.001

Table 1: t-test results of comparing measures between
different α values

α = 1 t-score
vs. log-LILLA SCClex

α = 1.05 -1.610 0.000
α = 1.10 -2.704* -0.061
α = 1.15 -3.925** -0.152
α = 2.25 -17.47*** -2.463*
... ... ...
α = 3.00 -22.23*** -2.839*
∗p < 0.05, ∗∗p < .01, ∗∗∗p < .001

its occurrence in the previous utterance. In condi-
tions where alignment exists, this probability is de-
pendent on the word’s previous occurrences. For ex-
ample, the prior probability of word “like” is 0.005,
if it appears in the first utterance, then we set its
probability to appear again in the second utterance is
0.005∗α (α >= 1), which is slightly larger than the
prior. Larger α indicates higher strength of align-
ment between utterances, and α = 1 indicates no
alignment.

We use α = 1, 1.05, 1.1, ..., 3, to construct se-
quences of text. Each sequence has 100 utterances,
and each utterance randomly has 50 to 100 words.
In each sequence, we compute the log-LILLA and
SCClex measures for all the 99 pairs of adjacent pairs
of utterances, i.e., u1 and u2, u2 and u3 etc., using
the precedent utterance as prime and the following
one as target. Finally we conduct pairwise t-test on
the measures between the condition of α = 1 and the
conditions of other α values respectively (Table 1).
RepDecay is not included in this analysis, because
the decay effect is not considered when we construct
the pseudo text.

Table 1 shows that LLA can detect the alignment
effect atα = 1.10 (at p < 0.05), while SCC can only
detect α >= 2.25. Thus, LLA has higher sensitivity
than SCC.

6 Extrinsic Evaluation Results

As introduced in Section 3, we evaluate the per-
formance of LLA, SSC, and RepDecay in three as-
pects: Consistency across different linguistic repre-
sentation levels, between-individual difference, and
within-individual stability.

6.1 Consistency

We calculate the Pearson correlation coefficients be-
tween lexical syntactic measures for LLA, SCC, and
RepDecay (Table 2).

It is shown that the correlation between
RepDecaylex and RepDecaysyn is strongest,
followed by the correlation between log-LILLA
and log-SILLA. The correlation between SCClex
and SCCsyn is only significant in CSN and BNC,
but not in MOOC and SWBD. Thus, it indicates
that RepDecay and LLA show better consistency
between lexical and syntactic alignment than SCC.

6.2 Between-individual differences

We use one-way ANOVA to examine whether
the between-individual differences of alignment
propensity outweigh within-individual variance (Ta-
ble 3). RepDecay is not included in the analysis be-
cause it generates only one value for each individual.

While all F scores indicate significant differences,
LLA shows higher F scores than SCC. This result
indicates that the alignment measures from some in-
dividuals are significantly higher than the others, and
this tendency holds for both lexical alignment and
syntactic alignment.
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Table 3: F scores resulting from one-way ANOVAs (All
values are significant at p < 0.001 level)

Measure CSN MOOC SWBD BNC

log-LILLA 15.05 2.761 51.52 14.32
log-SILLA 20.66 2.402 25.44 5.289
SCClex 8.884 1.205 3.448 1.937
SCCsyn 1.494 1.185 4.242 3.492

6.3 Within-individual stability

We use the coefficient of variation (CV ) (Abdi,
2010) (also known as relative standard deviation), to
evaluate the within-individual stability of the mea-
sures. CV is defined as the ratio of the standard
deviation σ to the mean µ: cv = σ/µ. A smaller CV
indicates less variability of a random variable in re-
lation to its mean.

We calculate the CV s of LLA and SCC for each
active individual in the four corpora, and then use
t-tests to compare LLA vs. SCC (for lexical and
syntactic measures respectively). RepDecay is not
included in this analysis because it generates one
value for each individual and thus there is no within-
individual variance.

The t-tests results indicate that log-LILLA has
smaller CV s than SCClex across the four corpora
(p < 0.001). log-SILLA also has smaller CV s
than SCCsyn for CSN, MOOC and SWBD corpora
(p < 0.001), and there is no significant difference
for BNC corpus (p = 0.299). This indicates that
LLA has better within-individual stability than SCC.

7 Conclusions and Discussion

In this study, we evaluate the intrinsic proper-
ties of three computational measures of linguistic
alignment: indiscriminate local linguistic alignment
(LLA), Spearman’s correlation coefficient (SCC),
and repetition decay (RepDecay). We also evalu-
ate their performance when applied to an extrinsic
study about the IAM theory and individuals’ align-
ment propensity.

From the intrinsic evaluations, we find that LLA
and RepDecay are more normally distributed than
SCC, and that LLA is more sensitivity than SCC.
The main cause for the poorer normality of SCC

roots in its way of computation: there has to be at
least two common elements in order to get a valid
value, but if target is a pure repetition of prime,
the value is always 1. Thus for short utterances that
are common in spoken dialogues (SWBD and BNC),
they are more likely to generate 1s, which result in
the skewed distribution of SCC.

From the extrinsic evaluations, our main con-
clusions are: First, in terms of the propensity of
alignment, both LLA and SCC can reveal signifi-
cant individual differences. Meanwhile, LLA shows
larger effect size for individual differences, and
higher within-individual stability than SCC. Sec-
ond, in terms of the correlation between alignment
at the lexical and syntactic levels, RepDecay shows
the strongest correlation, but LLA also consistently
shows strong correlation across all corpora investi-
gated. However, SCC does not consistently show
this correlation.

Our study provides potential suggestions to fu-
ture computational investigations about linguistic
alignment. LLA is more favorable if the research
question relates to individuals’ inherent propen-
sity of alignment, because it yields more signifi-
cant between-individual differences and has better
within-individual stability. LLA has better normal-
ity and sensitivity properties. RepDecay is more
favorable if the research question is to explore the
correlations between alignment at different linguis-
tic levels, because it shows strongest correlation be-
tween lexical and syntactic levels in this study.

For future work, to explore the application of
computational measures in revealing individuals’
propensity of alignment at multiple linguistic levels
(other than lexical and syntactic) could be an inter-
esting direction.
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Abstract

Models of language acquisition are typically
evaluated against a “gold standard” meant to
represent adult linguistic knowledge, such as
orthographic words for the task of speech seg-
mentation. Yet adult knowledge is rarely the
target knowledge for the stage of acquisition
being modeled, making the gold standard an
imperfect evaluation metric. To supplement
the gold standard evaluation metric, we pro-
pose an alternative utility-based metric that
measures whether the acquired knowledge fa-
cilitates future learning. We take the task of
speech segmentation as a case study, assess-
ing previously proposed models of segmen-
tation on their ability to generate output that
(i) enables creation of language-specific seg-
mentation cues that rely on stress patterns, and
(ii) assists the subsequent acquisition task of
learning word meanings. We find that behav-
ior that maximizes gold standard performance
does not necessarily maximize the utility of
the acquired knowledge, highlighting the ben-
efit of multiple evaluation metrics.

1 The problem with model evaluation

Over the past decades, computational modeling has
become an increasingly useful tool for studying the
ways children acquire their native language. Model-
ing allows researchers to explicitly evaluate learning
strategies by whether these strategies would enable
acquisition success. But how do researchers deter-
mine if a particular learning strategy is successful?
Traditionally, models have been evaluated against
adult linguistic knowledge, typically captured in an

explicit “gold standard”. If the modeled learner suc-
ceeds at acquiring this adult linguistic knowledge,
then it is said to have succeeded and the learning
strategy is held up as a viable option for how the ac-
quisition process might work.

Gold standard evaluation has two key benefits.
First, it provides a uniform measure of evaluation,
especially when gold standards are relatively simi-
lar across corpora (e.g. orthographic segmentation
for speech). Second, this kind of evaluation is typ-
ically straightforward to implement for labeled cor-
pora, and so is easy to use for model comparison.

Still, there are several potential disadvantages to
gold standard evaluation. First, the choice of an
appropriate gold standard is non-trivial for many
linguistic tasks since there is disagreement about
what the adult knowledge actually is (e.g., speech
segmentation, grammatical categorization, syntac-
tic parsing). Second, implementation may require
a large amount of time-consuming manual annota-
tion (e.g. visual scene labeling for word-object map-
ping). Third, and perhaps most importantly, it is un-
clear that adult knowledge is the appropriate output
for some modeled learning strategies, particularly
those that are meant to occur early in acquisition.

For example, consider the early stages of speech
segmentation that rely only on probabilistic cues.
The earliest evidence of speech segmentation comes
at six months (Bortfeld, Morgan, Golinkoff, & Rath-
bun, 2005) and it appears that probabilistic cues
to segmentation, which are language-independent
because their implementation does not depend on
the specific language being acquired, give way to
language-dependent cues between eight and nine
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months (Johnson & Jusczyk, 2001; Thiessen & Saf-
fran, 2003). So, accurate models of this early stage
of speech segmentation should output the knowl-
edge that a nine-month-old has, and this may differ
quite significantly from the knowledge an adult has
about how to segment speech.

Unfortunately, addressing this last issue with gold
standard evaluation is non-trivial. One strategy
might be to create a gold standard representing age-
appropriate knowledge. However, without empirical
data that can identify exactly what children’s knowl-
edge at a particular age is, this is difficult. Because
of this, few (if any) age-specific gold standards exist
for the many acquisition tasks that we wish to evalu-
ate learning strategies for. An alternative is to com-
pare model results against qualitative patterns that
have been reported in the developmental literature.
For instance, Lignos (2012) compares his segmen-
tation model results against qualitative patterns of
over- and undersegmentation reported in diary data
(Brown, 1973; Peters, 1983). Still, such compar-
isons are often difficult to make since the behavioral
data may come from children of different ages than
the modeled learners (e.g., the segmentation patterns
mentioned above come from two- and three-year-
olds while the modeled learners are at most nine
months old).

So, the essence of the evaluation problem is this:
the true target for model output is potentially un-
known, but we still wish to evaluate different mod-
els. Fortunately for language acquisition modelers,
this is exactly the problem faced in computer sci-
ence when unsupervised learning algorithms are ap-
plied and a gold standard does not exist. There are
two main ways a model without a gold standard can
be explicitly evaluated (Theodoridis & Koutroubas,
1999; von Luxburg, Williamson, & Guyon, 2011):

1. Apply real-world, expert knowledge to deter-
mine if the output is reasonable.

2. Measure the “utility” of the output.

Adding these two evaluation approaches to a lan-
guage acquisition modeler’s toolbox can help allevi-
ate the issues surrounding gold standards. Still, the
first option of applying expert knowledge is often
time intensive, since this typically involves query-
ing human knowledge. Moreover, given the key

concern about what the output of language acquisi-
tion models ought to look like anyway, it is unclear
that querying linguistic experts is appropriate. Given
this, we focus on measuring the utility of the model’s
output (Mercier, 1912; von Luxburg et al., 2011) to
supplement a gold standard analysis.

This means we must be more precise about “util-
ity”. Because children acquire linguistic knowledge
and then apply that acquired knowledge to learn
more of their native language system (Landau &
Gleitman, 1985; Morgan & Demuth, 1996), one def-
inition of utility for language acquisition is for the
model output to facilitate further knowledge acqui-
sition. Importantly, determining what future knowl-
edge is acquired is often much easier than determin-
ing the exact state of that knowledge, as with a gold
standard. This is because we often have empiri-
cal data about the order in which linguistic knowl-
edge is acquired (e.g., language-independent cues to
speech segmentation are used to identify language-
dependent cues, which are then used to facilitate
further segmentation). We can use these empirical
data to identify what a model’s output should be
used for, and assess if the acquired knowledge helps
the learner acquire the appropriate additional knowl-
edge. Then, if a modeled strategy yields this kind
of useful knowledge, the modeled strategy should
be counted as successful; in contrast, if the acquired
knowledge isn’t useful (or is actively harmful), then
this is a mark of failure. Under this view, a strat-
egy’s utility is equivalent to its ability to prepare the
learner for subsequent acquisition tasks.

As we will see when we apply this utility-based
evaluation to speech segmentation strategies, we
may still encounter some familiar evaluation issues.
In particular, to evaluate whether a model’s output
prepares a learner for subsequent acquisition tasks,
we must have some idea as to what counts as “good
enough” preparation for those subsequent tasks. The
simplest answer seems to be that “good enough”
for the subsequent task means that the output for
that task is “good enough” for the next task after
that. In some sense then, the best indicator of util-
ity would be that the modeled strategy yields adult
level knowledge once the entire acquisition process
is complete. However, it is currently impractical to
model the entire language acquisition process. In-
stead, we have to restrict ourselves to smaller seg-
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ments of the entire process – here, two sequential
stages. Given the available empirical data, it may
be that we have a better idea about what children’s
knowledge is for the second stage than we do for
the first stage. That is, an age-appropriate gold stan-
dard may be available for the subsequent acquisition
task. For both utility evaluations we do here, we
have something like this for each subsequent task,
though it is likely still an imperfect approximation
of young children’s knowledge.

We note that this utility-based approach differs
from a joint inference approach, where two tasks
occur simultaneously and information from one
task helpfully informs the other (Jones, Johnson, &
Frank, 2010; Feldman, Griffiths, Goldwater, & Mor-
gan, 2013; Dillon, Dunbar, & Idsardi, 2013; Doyle
& Levy, 2013; Börschinger & Johnson, 2014). Joint
inference is appropriate when we have empirical ev-
idence that children accomplish both tasks at the
same time. In contrast, the utility-based evaluation
approach is appropriate when empirical evidence
suggests children accomplish tasks sequentially.

In this paper, we consider the task of speech
segmentation and investigate different ways of as-
sessing the utility of previously proposed strate-
gies. Notably, these strategies have generally suc-
ceeded when evaluated against some version of a
gold standard (Phillips & Pearl, in press, 2014a,
2014b). We first briefly review speech segmenta-
tion in infants, and then describe the segmentation
strategies previously investigated: a Bayesian seg-
mentation strategy (Goldwater, Griffiths, & John-
son, 2009; Pearl, Goldwater, & Steyvers, 2011) and
a subtractive segmentation strategy (Lignos, 2011,
2012). We then evaluate each modeled strategy on
two utility measures relating to (i) the creation of
language-dependent segmentation cues relying on
stress, and (ii) the subsequent acquisition task of
learning word meanings.

We find that the strategies differ significantly in
their ability to identify stress segmentation cues
and facilitate word meaning acquisition, with the
Bayesian strategy yielding more useful output than
the subtractive segmentation strategy. We discuss
how these utility results relate to other qualitative
patterns, such as oversegmentation, noting that be-
havior that maximizes performance against a gold
standard does not necessarily maximize the utility

of the acquired knowledge for subsequent learning.

2 Speech segmentation strategies

One of the first acquisition tasks infants solve is
identifying useful units in fluent speech, and the
useful units are typically thought of as words.
While word boundaries are inconsistently marked
by pauses (Cole & Jakimik, 1980), there are sev-
eral linguistic cues that infants can leverage (Morgan
& Saffran, 1995; Jusczyk, Houston, & Newsome,
1999; Mattys, Jusczyk, & Luce, 1999; Jusczyk,
Hohne, & Baumann, 1999; Johnson & Jusczyk,
2001). However, many of these cues are spe-
cific to the language being acquired (e.g., whether
words of the language generally begin or end with
a stressed syllable), and so require infants to iden-
tify some words in the language before the language-
specific cue can be instantiated. Fortunately, exper-
imental evidence suggests that infants can leverage
language-independent probabilistic cues to identify
that initial seed pool of words (Saffran, Aslin, &
Newport, 1996; Aslin, Saffran, & Newport, 1998;
Thiessen & Saffran, 2003; Pelucchi, Hay, & Saf-
fran, 2009). This had led to significant interest in
the early probabilistic segmentation strategies in-
fants use (Brent, 1999; Batchelder, 2002; Goldwater
et al., 2009; Blanchard, Heinz, & Golinkoff, 2010;
Pearl et al., 2011; Lignos, 2011).

The two strategies we examine here, a Bayesian
strategy (Goldwater et al., 2009; Pearl et al., 2011;
Phillips & Pearl, 2014a, 2014b, in press) and a
subtractive segmentation strategy (Lignos, 2011,
2012), have two attractive properties. First, they
can be implemented so that the modeled learner
perceives the input as a sequence of syllables,
in accord with the infant speech perception ex-
perimental literature (Jusczyk and Derrah (1987);
Bertonicini, Bijeljac-Babic, Jusczyk, Kennedy, and
Mehler (1988); Bijeljac-Babic, Bertoncini, and
Mehler (1993); Eimas (1999) and see Phillips and
Pearl (in press) for more detailed discussion). Sec-
ond, their syllable-based implementations perform
well on English child-directed speech when com-
pared against a gold standard (Phillips & Pearl, in
press; Lignos, 2011).
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2.1 Bayesian segmentation
The Bayesian strategy1 has two variants, using either
a unigram or bigram generative assumption for how
words are generated in fluent speech. The model as-
sumes utterances are produced via a Dirichlet pro-
cess (Ferguson, 1973). In the unigram case, the
identity of the ith word is chosen according to (1):

P (wi|w1 . . . wi−1) =
ni−1(w) + αP0(w)

i− 1 + α
(1)

where ni−1 is the number of times w appears in
the previous i − 1 words, α is a free parameter, and
P0 is a base distribution specifying the probability
that a novel word will consist of the perceptual units
x1 . . . xm (which are syllables here):

P0(w = x1 . . . xm) =
∏
j

P (xj) (2)

In the bigram case, the model assumes a hierar-
chical Dirichlet Process (Teh, Jordan, Beal, & Blei,
2006) and additionally tracks the frequencies of two-
word sequences:

P (wi|wi−1 = w′, w1 . . . wi−2) =
ni−1(w′, w) + βP1(w)

n(w′)− 1 + β
(3)

P1(wi = w) =
bi−1(w) + γP0(w)

b− 1 + γ
(4)

where ni−1(w′, w) is the number of times the bi-
gram (w′, w) has occurred in the first i − 1 words,
n(w′) is the number of bigrams beginning with word
w′, bi−1(w) is the number of times w has occurred
as the second word of a bigram, b is the total number
of bigrams, and β and γ are free parameters.2

In both the unigram and bigram variants, this gen-
erative model implicitly incorporates preferences for
smaller lexicons by preferring words that appear fre-
quently (due to equations 1, 3, and 4) and prefer-
ring shorter words in the lexicon (due to equation

1Called DPSEG by Goldwater et al. (2009).
2α, β, and γ for all modeled learners were chosen, as in

previous work, to maximize the gold standard word token F-
score of the unigram and bigram Batch learner: α = 1, β =
1, γ = 90.

2). These can be thought of as domain-general par-
simony biases.

The ideal (Batch) learner for this model is taken
from Goldwater et al. (2009) and utilizes Gibbs
sampling (Geman & Geman, 1984) to batch pro-
cess the entire input corpus, sampling every poten-
tial word boundary 20,000 times. This represents
the most idealized learner, since Gibbs sampling is
guaranteed to converge on the segmentation which
best fits the underlying generative model. Because
this learner does not include cognitive processing
or memory constraints, we also implement one of
the constrained learners developed by Pearl et al.
(2011) that better approximates actual human in-
ference. In addition, that constrained learner was
shown to be very successful on English (Phillips &
Pearl, in press).

The constrained (Online) learner processes data
incrementally, but uses a Decayed Markov Chain
Monte Carlo algorithm (Marthi, Pasula, Russell, &
Peres, 2002) to implement a kind of limited short-
term memory. This learner is similar to the Batch
learner in that it uses something like Gibbs sam-
pling. However, the Online learner does not sample
all potential boundaries; instead, it samples s previ-
ous boundaries using the decay function b−d to se-
lect the boundary to sample, where b is the number
of potential boundary locations between the bound-
ary under consideration bc and the end of the current
utterance, while d is the decay rate. Thus, the fur-
ther bc is from the end of the current utterance, the
less likely it is to be sampled. Larger values of d in-
dicate a stricter memory constraint. All results pre-
sented here use a set, non-optimized value for d of
1.5, which was chosen to implement a heavy mem-
ory constraint (e.g., 90% of samples come from the
current utterance, while 96% are in the current or
previous utterance). Having sampled a set of bound-
aries3, the learner can then update its beliefs about
those boundaries and subsequently update its lexi-
con before moving on to the next utterance.

3The Online learner samples s = 20, 000 boundaries per ut-
terance. For a syllable-based learner, this works out to approx-
imately 74% less processing than the Batch learner (Phillips &
Pearl, in press).
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2.2 Subtractive segmentation

The subtractive segmentation strategy (Lignos,
2011) processes the corpus one utterance a time. It
begins by assuming that every utterance is a sin-
gle word and then, as it adds vocabulary to its
lexicon, it segments out those words when possi-
ble. The specific variant we investigate is the beam
search subtractive segmenter without stress informa-
tion, which is allowed the same segmentation cues
as the Bayesian strategy.

In cases where there is ambiguity with respect to
a particular word boundary, the model considers the
two possible segmentations (the one with the bound-
ary and the one without) and chooses the one with
the higher score. A segmentation’s score is the ge-
ometric mean of the score of each word in the po-
tential segmentation. A word’s score is determined
by two factors: (i) its frequency in previous inferred
segmentations, and (ii) how often it has been part of
potential segmentation that was previously rejected.

2.3 Baseline comparison: Random oracle

We additionally examine a random oracle base-
line (Lignos, 2012). This strategy makes guesses
about word boundaries as a series of Bernoulli trials,
where the probability of a boundary pb is set to the
true probability according to the gold standard. Al-
though this is unrealistic as an actual strategy infants
use because it assumes knowledge of word bound-
ary frequency, this strategy serves as a best-case sce-
nario for what random guessing might achieve.

3 Previous results with the gold standard

These strategies were evaluated against a gold stan-
dard in English by using the UCI Brent Syllables
corpus of English child-directed speech (Phillips
& Pearl, in press) available through CHILDES
(MacWhinney, 2000), which contains 28,391 utter-
ances of speech directed to American English chil-
dren between six and nine months old. Word token
F-scores (shown in Table 1) provide a convenient
summary statistic for segmentation model evalua-
tion, where the F-score is the harmonic mean of
precision and recall. So, the F-score balances how
accurate the set of identified words is (precision =
# correctly identified

# identified ) with how complete the set of

identified words is (recall = #correctly identified
# true ).

Word Token F-scores
Batch (Uni) 0.531 Online (Uni) 0.551
Batch (Bi) 0.771 Online (Bi) 0.863
Subtractive Seg 0.879 Random 0.588

Table 1: Word token F-score results on the UCI Brent
Syllables corpus as reported by Phillips and Pearl (in
press) for the Bayesian learners (Batch vs. Online, Un-
igram vs. Bigram), the subtractive segmenter, and the
random oracle baseline.

Based on this evaluation metric, the subtractive
segmenter performs the best, though the Bayesian
Online bigram learner does nearly as well. Notably,
the Bayesian unigram learners suffer significantly in
comparison, doing worse than even the random ora-
cle baseline. This suggests the unigram assumption
is harmful if the goal is to generate the adult knowl-
edge represented in the gold standard.

4 Stress cue identification

A language-dependent segmentation cue that in-
fants use fairly early is their native language’s pre-
dominant stress pattern (Jusczyk, Houston, & New-
some, 1999; Morgan & Saffran, 1995). In particu-
lar, while seven-month-olds rely more on probabilis-
tic cues, nine-month-olds rely more on stress-based
cues (Johnson & Jusczyk, 2001; Thiessen & Saf-
fran, 2003). So, while probabilistic cues and stress-
based cues may be used jointly (Lignos, 2012; Doyle
& Levy, 2013), infants likely use probabilistic cues
only until enough evidence has been accumulated to
identify the language-dependent stress cue. In par-
ticular, infants want to identify whether words tend
to begin with stressed syllables or end with stressed
syllables, since that can provide a convenient heuris-
tic for identifying word boundaries. For example, if
words begin with stressed syllables, then a stressed
syllable signals that the previous word has ended and
a new word has begun.

Given this, a measure of the utility of a segmenta-
tion strategy’s output is whether the generated lex-
icon yields the appropriate stress cue. To deter-
mine this, we must first identify where stressed syl-
lables are in the English child-directed data. Be-
cause the UCI Brent Syllables corpus does not mark
stress, we make use of the English Callhome Lexi-
con (Kingsbury, Strassel, McLemore, & MacIntyre,
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1997) to identify the main stress in words. For
child-register words not found in standard dictio-
naries (like moosha), we manually coded the stress
when the words were familiar enough to us to de-
duce the stress pattern. If a word was not familiar
enough for us to be confident about its stress pattern
(e.g., bonino), we ignored it for the purposes of this
analysis. All words in the analyses presented below
were given their dictionary stress patterns. In order
to better approximate the stress of actual utterances,
monosyllabic words were left unstressed.

Table 2 presents the stress pattern of the bisyl-
labic word types in each learner’s lexicon.4 Our
corpus of English child-directed speech has 1344
unique bisyllabic words with 89.9% beginning with
a stressed syllable (SW: báby) and 10.1% ending
with a stressed syllable (WS: ballóon), as shown by
the Adult Seg row. For the learner to correctly in-
fer that English words tend to be stress-initial, the
inferred lexicon should have more words with the
stress-initial pattern. This serves as an approximate
age-appropriate gold standard, since the goal is to
match the qualitative stress distribution pattern that
would yield the stress cue English nine-month-olds
use (i.e., stressed syllables begin words).

SW WS
Adult Seg 89.9% 10.1%

Batch (Uni) 80.0% 20.0%
Online (Uni) 80.8% 19.2%
Batch (Bi) 80.4% 19.6%
Online (Bi) 79.6% 20.4%

Subtractive Seg 59.4% 40.6%
Random 68.5% 31.5%

Table 2: Stress pattern results for all learners on bisyl-
labic word types. Percentages are calculated out of all
bisyllabic words identified by the model.

All Bayesian learners capture the qualitative
stress pattern, and come fairly close to capturing
the quantitative distribution, with 79.6% - 80.8% of
the bisyllabic word types having word-initial stress
(SW). The subtractive segmenter weakly shows the
same pattern, identifying more bisyllabic word types

4We note that we calculate this over word types rather than
word tokens, since learners may ignore frequency when de-
ciding how far to extend generalizations (Yang, 2005; Perfors,
Ransom, & Navarro, 2014).

with word-initial stress (59.4% SW). The random
oracle baseline actually produces a stronger word-
initial bias than the subtractive segmenter (68.5%
SW). This suggests an advantage for the Bayesian
strategy when it comes to inferring the English stress
segmentation cue from the bisyllabic words in the
inferred lexicon.

When we turn to trisyllabic words, however, the
Bayesian strategy no longer does better – both strate-
gies fail to capture the qualitative stress pattern (as
does the random oracle baseline). Table 3 shows the
results across the 345 trisyllabic word types. The
qualitative pattern in the true distribution is similar
to the bisyllabic words (though the distribution is
less pronounced), with the majority (69.2%) having
initial stress. However, all strategies yield a pref-
erence for word-medial stress in trisyllabic words
(37.4% - 50.1%). Interestingly, if a learner was at-
tempting to infer a segmentation cue, word-medial
stress actually doesn’t yield an obvious cue – there
is no word boundary either immediately before or
immediately after the stressed syllable. So, even if
the inferred stress pattern is incorrect for trisyllabic
words, it may not actually harm a learner who is
looking for segmentation cues – it just fails to help.

SWW WSW WWS
Adult Seg 69.2% 2.2% 28.6%

Batch (Uni) 22.7% 50.1% 27.2%
Online (Uni) 22.8% 49.2% 28.0%
Batch (Bi) 22.0% 46.6% 31.4%
Online (Bi) 23.7% 47.7% 28.6%

Subtractive Seg 19.1% 48.7% 32.2%
Random 28.6% 37.4% 34.0%

Table 3: Stress pattern results for all learners on trisyl-
labic word types. Percentages are calculated out of all
trisyllabic words identified by the model.

More generally, these results suggest that the
word token F-score is not necessarily correlated with
knowledge utility, at least when it comes to inferring
language-dependent stress-based cues to segmen-
tation. For instance, the Online Bayesian bigram
learner and the subtractive segmenter have similar
word token F-scores (0.863 vs. 0.879), but gener-
ate quantitatively different predictions for the En-
glish stress-based segmentation cue. Similarly, the
Bayesian unigram learners have far lower word to-

73



ken F-scores (0.531-0.551), yet yield correct predic-
tions for the English stress cue, based on bisyllabic
word types.

If any of these strategies are the ones infants use,
then we would predict that infants in the early stages
of segmentation have different expectations about
the prevalent stress pattern for bisyllabic vs. trisyl-
labic words in English. This is something that can
be verified experimentally. However, we do note
that the current analyses leading to this prediction
are based on particular assumptions about how ac-
curately infants perceive stress in their input (here,
perfectly accurately), and so future analyses should
consider other cognitively plausible instantiations
of infant stress perception. In addition, while this
stress analysis was only applied to English here, it is
worthwhile to do so for other languages that vary in
how their stress system operates.

5 Word meaning

A task that infants tackle after they are somewhat
able to segment the speech stream is learning word
meaning. In particular, word meaning learning be-
gins as early as six months (Tincoff & Jusczyk,
1999, 2012; Bergelson & Swingley, 2012), focusing
on concrete items in the learner’s environment like
apple and hand. So, another test of a segmentation
strategy’s utility is whether the lexicon it generates
facilitates this kind of early word-object mapping.

5.1 A model of early word-object mapping

Drawing on the intuition that early word-object
mapping could leverage cross-situational learning,
Frank, Goodman, and Tenenbaum (2009) developed
a Bayesian learning strategy for early word-object
mapping. The modeled learner infers a referential
lexicon of word-object mappings based on the utter-
ances spoken and the set of objects visually salient
in the environment. In the generative model shown
in the plate diagram in Figure 1, the learner assumes
there are some objects (O) in the environment, and
the speaker intends to refer to some subset of them
(I) using words. The speaker draws words from the
referential lexicon (L) to refer to those intended ob-
jects, with non-referential words also occurring in
the utterances with some probability. So, based on a
set of situations (S) containing observable utterances

comprised of words (W) and sets of visually salient
objects (O), the modeled learner can infer the refer-
ential lexicon L of word-object mappings as well as
the specific intended objects (I).

Figure 1: Plate diagram of the Frank et al. (2009) word-
object mapping generative model.

This model vastly outperformed other word-
object mapping strategies on a sample of English
child-directed speech, yielding a referential lexicon
that was significantly more accurate (higher preci-
sion) compared to other strategies. High lexicon pre-
cision is likely more important than high lexical re-
call for early word-object mapping because this is
only the first stage of word meaning learning. So, it
is better to have a small set of reliable word-object
mappings than a large set of unreliable word-object
mappings if the learner is using these mappings to
bootstrap future word meaning acquisition.

Notably, the model assumes the utterances are al-
ready segmented into words. So, a natural evalu-
ation measure for segmentation strategies is to use
the inferred segmentation of the utterances, rather
than the adult orthographic segmentation used in the
original Frank et al. (2009) demonstration. We can
then see if the mapping strategy is still able to iden-
tify a reliable referential lexicon. As with the pre-
vious utility evaluation, the desired output (a lexi-
con of word-object mappings) is a gold standard, in
this case based on how adults construct word-object
mappings. However, because the inferred mappings
focus on concrete objects infants are known to learn
mappings for, we believe it is at least an approxima-
tion of an age-appropriate gold standard.

5.2 Segmentation strategy evaluation
Originally, the word-object model was evaluated on
a small subset of 700 utterances from the Rollins
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corpus from CHILDES (MacWhinney, 2000) which
was labeled with visually salient objects (O in the
Figure 1). We used this corpus to evaluate the seg-
mentation strategies. We first trained the segmenta-
tion strategies on the 28,391 utterances of the UCI
Brent Syllables corpus (Phillips & Pearl, in press)
so that the modeled learners using those strategies
could infer a lexicon of word forms with associated
probabilities of occurrence. We then applied the re-
sulting knowledge to the Rollins corpus subset, let-
ting each strategy segment those utterances as best
it could, given the knowledge it had inferred from
the training set. The word-object mapping model
was then applied with the inferred segmentations as
part of the observed input (W). Due to the stochas-
tic nature of the inference process, we repeated this
process five times and present averaged results.

We present lexical precision scores due to the im-
portance of inferring high quality mappings during
early word meaning learning. However, to mea-
sure precision we need to identify what constitutes
a “correct” mapping. Frank et al. (2009) created a
gold standard referential lexicon by hand and we fol-
low their basic guidelines in creating our own.

One consideration when dealing with non-adult
segmentation is the possibility of legitimate map-
pings between non-words and objects. For instance,
the undersegmenation abunny might reasonably be
mapped onto the object BUNNY. Our gold standard
referential lexicon allows these combinations of de-
terminers and content words as legitimate “words”
for an object to be mapped to, unlike the original
Frank et al. (2009) study. In contrast, an oversge-
mentation like du or ckie for duckie was not allowed
as a correct “word” for the object DUCK. This is
because neither unit (du or ckie) captures the true
word form. For instance, it isn’t good if the child
thinks every instance of /ki/ – key, ckie, etc. – refers
to DUCK. Given this, oversegmention errors are
worse than undersegmentations, since they damage
the ability to form a reasonable word-object map-
ping.

5.3 Results

Table 4 presents the evaluation results for all mod-
eled learners, including the segmentation word to-
ken F-scores, the rate of oversegmentation errors,
and the referential lexicon precision scores. We

additionally show the word-object mapping results
based on the adult orthographic segmentation as an
upper-bound comparison.

Segmentation Mapping
F-score Overseg. Lex. prec.

Adult Seg 1.000 0.0% 0.583
Batch (Uni) 0.514 1.7% 0.427
Online (Uni) 0.524 9.0% 0.458
Batch (Bi) 0.746 13.8% 0.544
Online (Bi) 0.813 44.8% 0.347

Subtractive Seg 0.833 90.7% 0.336
Random 0.576 53.2% 0.406

Table 4: Average results over five runs from all modeled
learners, showing word token F-score segmentation per-
formance, the rate of oversegmentation errors, and the
precision of the inferred referential lexicon.

First, we can see that using the adult segmenta-
tion yields a referential lexicon with precision 0.583.
While this may not seem very high, it is far more
precise than other competing word-object mapping
strategies investigated by Frank et al. (2009), which
had precision scores between 0.06-0.15.

When we turn to the segmentation performance
of the learners, we see similar results on the Rollins
corpus as we found before. The Bayesian unigram
learners have F-scores around 50% (0.514-0.524),
which is worse than the random oracle guesser
(0.576). In contrast, the Bayesian bigram learners
fare much better (0.746-0.813), with almost as good
token F-score performance as the subtractive seg-
menter (0.833).

Interestingly, we see vast differences in the rate
of oversegmentation errors. The subtractive seg-
menter’s errors are nearly always oversegmentations
(90.7%). The Online Bayesian bigram learner and
the random oracle guesser have about half their er-
rors as oversegmentations (44.8%, 53.2%), while the
remaining Bayesian learners have very few overseg-
mentation errors (1.7%-13.8%). Given how damag-
ing oversegmentation errors can be for word-object
mapping, we might expect high oversegmentation
rates to take their toll despite highly “accurate” word
segmentation.

This is precisely what we find for the subtractive
segmenter: it has the highest token F-score for seg-
mentation but the worst lexical precision for word-
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object mappings (0.336). The Online Bayesian bi-
gram learner suffers in lexical precision for a simi-
lar reason (0.347), though its oversegmentation bias
is lower. Notably, both these learners generate ref-
erential lexicons that are worse than what can be
achieved by best-case random guessing (0.406). In
contrast, the Bayesian learners with very few over-
segmentations fare better (0.427-0.544). Given that
the best possible performance for lexical precision
was 0.583, 0.544 seems quite respectable.

When we examine the mapping errors made by
each modeled learner (samples shown in Table 5),
the detrimental impact of oversegmentation is more
apparent. Notably, many words in English child-
directed speech are made up of two syllables (e.g.
birdie, bunny, piggy). If these words are overseg-
mented, the model cannot create a lexical mapping
from birdie to its object and instead tends to map
both bir and die to the same object. The Bayesian
unigram learners never produce these types of over-
segmentations for the concrete nouns which the
model is attempting to learn (they do, however, pro-
duce oversegmentations such as hip-hop segmented
as hip and hop). In contrast, the Bayesian bigram
learners, the subtractive segmenter, and random or-
acle learner generate these errors for words that oth-
erwise might have been learned correctly (between
6.4% - 10.2% of all inferred mappings).

Word Object % Over Err

Batch (Bi)
bu(nnies) RABBIT 6.4%
(bu)nnies RABBIT

Online (Bi)
(bir)die DUCK 10.2%
bir(die) DUCK

Subtr. Seg
bu(nnies) RABBIT 8.1%
bir(die) DUCK

Random
pi(ggy) PIG 8.5%
bir(die) DUCK

Table 5: Example oversegmentation errors from the four
learners that make them for items in the referential lexi-
con. Oversegmented lexical items are shown in bold with
the remainder of the correct word in parentheses. The
percentage of all lexical mappings that were incorrect be-
cause of oversegmentation is also given.

More generally, similar to the stress utility eval-
uation, this word-object mapping utility evaluation
reveals that segmentations which are more “cor-

rect” are not necessarily more useful. In particular,
having a non-detrimental segmentation error pattern
(i.e., preferring undersegmentation to oversegmen-
tation) may matter more than having a more accu-
rate segmentation for the early stages of both speech
segmentation and word-object mapping. However,
these results do not necessarily indicate that the on-
line bigram Bayesian or subtractive segmentation
strategies are not used by infants. It simply means
that if they are, oversegmentations may need to be
corrected before word-object mapping can success-
fully get off the ground. We note that the particular
parameters used for the Bayesian strategy can influ-
ence the rates of over- and undersegmentation. Be-
cause we selected parameters that optimized word
token F-score performance, it may be that parame-
ters can be optimized for word-object mapping (and
also stress cue induction).

6 Conclusion

We have presented two concrete suggestions for
evaluating the utility of speech segmentation strate-
gies, capitalizing on the bootstrapping nature of lan-
guage acquisition. This utility-focused evaluation
approach demonstrates that a more accurate seg-
mentation when compared to a gold standard does
not equate to a more useful segmentation for subse-
quent language acquisition processes. Notably, the
types of errors made may significantly impact the
utility of the inferred lexicon, so it is worthwhile
to analyze not just what is right about a model’s
output but also exactly what is wrong. This is a
specific demonstration of a larger methodological
point about how to evaluate unsupervised models of
language acquisition. While gold standard evalua-
tion can tell us whether a strategy reproduces adult
knowledge, measuring model output utility can indi-
cate what strategies are actually useful for learners.
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Abstract

While reading times are often used to measure
working memory load, frequency effects (such
as surprisal or n-gram frequencies) also have
strong confounding effects on reading times.
This work uses a naturalistic audio corpus
with magnetoencephalographic (MEG) anno-
tations to measure working memory load dur-
ing sentence processing. Alpha oscillations
in posterior regions of the brain have been
found to correlate with working memory load
in non-linguistic tasks (Jensen et al., 2002),
and the present study extends these findings
to working memory load caused by syntactic
center embeddings. Moreover, this work finds
that frequency effects in naturally-occurring
stimuli do not significantly contribute to neu-
ral oscillations in any frequency band, which
suggests that many modeling claims could be
tested on this sort of data even without con-
trolling for frequency effects.

1 Introduction

Current accounts of sentence processing (e.g., Gib-
son, 2000; Lewis and Vasishth, 2005) usually in-
volve working memory: parts of sentences are
stored while unrelated material is processed, then re-
trieved when they can be integrated. But evidence
for the role of memory in sentence processing usu-
ally comes in the form of latency measurements in
self-paced reading or eye-tracking data, in which
frequency effects are a powerful potential confound
(Hale, 2001; Levy, 2008; Demberg and Keller, 2008;

∗ Formerly of the Dept. of Machine Learning, Carnegie
Mellon University

Roark et al., 2009; Smith and Levy, 2013; van
Schijndel et al., 2014). For example, the direction
of the correlation between memory load and reading
times has been shown to be highly sensitive to com-
plex frequency effects (Vasishth and Lewis, 2006;
Schuler and van Schijndel, 2014).

Experiments described in this paper therefore at-
tempt to find a clearer measure of variable mem-
ory usage in sentence processing, independent of
frequency influences. In particular, this paper fo-
cuses on the coherence of oscillatory neural activity
between anterior and posterior areas of left cortex.
Areas including the left inferior frontal gyrus and
the posterior left temporal cortex have been impli-
cated in language use, especially passive listening
tasks (Hagoort and Indefrey, 2014). Synchronous
firing among neurons in disparate parts of the brain
is thought to be a possible mechanism for the for-
mation of cued associations in memory by caus-
ing rapidly repeated communication between asso-
ciation cue neurons and association target neurons,
which strengthens their connection through a pro-
cess of long-term potentiation (von der Malsburg,
1995; Singer, 1999; Sederberg et al., 2003; Jensen
et al., 2007; Fell and Axmacher, 2011). During pe-
riods of high memory load, synchronous firing in
the alpha band is thought to be associated with in-
hibition of memory formation so as to protect ex-
isting cues from interference (Jensen et al., 2002;
Jensen et al., 2007). If this is correct, we should ex-
pect to find high alpha power and coherence among
brain regions responsible for language use when lan-
guage users are processing center embedded text
(e.g., the bracketed text in ‘The reporter [the senator
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met] left’). Magnetoencephalographic (MEG) imag-
ing results reported in this paper show that this does
indeed seem to be the case. Exploratory analyses
with the development partition of a dataset of MEG
recordings of subjects listening to narrative text re-
vealed a strong effect for memory load on alpha-
band coherence between an anterior and posterior
pair of left-hemisphere sensors. Follow-on valida-
tion with a larger test partition confirmed the signif-
icance of this effect. Moreover, these effects could
not be explained by frequency or sentence position
predictors, unlike effects on self-paced reading and
eye-tracking latencies (Demberg and Keller, 2008;
Roark et al., 2009; Wu et al., 2010).

The remainder of this paper is organized as fol-
lows: Section 2 provides a brief introduction to
magnetoencephalography, Section 3 describes the
MEG dataset used in these experiments, Section 4
describes the oscillatory coherence measure used
to evaluate phase-aligned activation, Section 5 de-
scribes the center-embedding depth predictor, Sec-
tion 6 describes the regression experiments and their
results, and Section 7 discusses implications of these
results for some open debates about hierarchic sen-
tence processing.

2 MEG Background

Magnetoencephalography (MEG), like electroen-
cephalography (EEG), is a non-invasive means to
record the electrical activity of the brain, specifically
the aggregate of post-synaptic potentials produced
by individual neurons. MEG has certain advan-
tages over EEG, which is the most widely used neu-
roimaging technique in psycholinguistics, due to its
low cost, convenience and portability. While EEG’s
high temporal resolution (�100Hz) makes it suit-
able for examining the neural processing timeline
down to the level of individual words and phonemes,
its spatial resolution does not compare to other tech-
niques like fMRI (functional magnetic resonance
imaging). In addition, the signals recorded with
EEG (volume currents) are distorted as they pass
through the skull and tissues of the head, attenuating
higher frequencies, and blurring their spatial source.

MEG records magnetic fields from the same neu-
ral sources that generate the EEG-visible voltages
at the scalp. As the head is transparent to mag-

netic fields, MEG signals are less noisy, have finer
spatial resolution, and capture a wider range of fre-
quencies. The EEG signal components familiar to
psycholinguists (e.g., the N400 and P600) are also
visible but produce different scalp distributions in
MEG recordings (Pylkkänen and Marantz, 2003;
Salmelin, 2007; Service et al., 2007), because of dif-
fering spatial sensitivities: EEG and MEG are more
sensitive to radial and tangential sources respec-
tively, and MEG’s higher spatial resolution means
that it is not as sensitive to deep sources. And cor-
respondingly, any magnetic coherence between two
sensors can be more reliably traced to coherence be-
tween the two corresponding regions of the brain,
whereas the poor spatial resolution of EEG means
that coherence between sensors does not necessarily
reflect coherence between the corresponding regions
of the brain.

3 Data Collection

This study makes use of a naturalistic audio-book
listening task during MEG recording. This de-
sign allows us to examine language processing in a
more ecologically realistic manner (Brennan et al.,
2012; Wehbe et al., 2014a; Wehbe et al., 2014b), as
both the participant experience (reading/listening to
a story for enjoyment) and author’s aim are authentic
language acts.

Participants were asked to sit still in an upright
position with their eyes closed, while they listened to
an 80-minute excerpt of an English-language novel.
The listening task was split into 8 sections of ap-
proximately 10 minutes each, and participants had
the opportunity to rest between them.

The text used was the second chapter of the
novel Heart of Darkness by Joseph Conrad, con-
taining 628 sentences and 12,342 word tokens. The
plain-text and audio book recording used were both
sourced from the Gutenberg project.1

The data was recorded at 1000Hz on a 306-
channel Elekta Neuromag device at the UPMC
MEG Brain Mapping Center, Pittsburgh, USA. Dur-
ing the experiment, the audio track was recorded
in parallel to enable subsequent synchronization be-
tween the brain activity and audio-book content.

1http://www.gutenberg.org/cache/epub/219/pg219.txt;
http://www.gutenberg.org/ebooks/20270
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The 306 channels are distributed across 102 loca-
tions in the device helmet. Each position has a
magnetometer which measures the magnitude of the
magnetic flux entering or leaving the helmet at that
location. The two gradiometers measure gradients in
local flux (i.e. its first derivative), each in a direction
perpendicular to the other.

Informed consent was obtained from 3 healthy
right-handed participants, following ethical approval
provided by the Institutional Review Boards of both
the University of Pittsburgh, and Carnegie Mellon
University.

After recording, the MEG data was preprocessed
in the following way to normalize and clean the
signals. The Elekta custom MaxFilter software
was used to apply SSP, SSS and tSSS methods
(Taulu and Hari, 2009), correcting for head motion
on a run-wise basis, and removing signal compo-
nents which originated outside the recording hel-
met and other non-brain artefacts. The EEGlab
package was then used to apply a band-pass filter
between 0.01–50 Hz, down-sample to 125Hz, and
apply Independent Components Analysis (Delorme
and Makeig, 2003). The signal time-courses and
component scalp-maps were visually inspected for
eye-movement and line-noise components, but none
were identified.

The parallel audio recording channel was used
to identify the precise sample points at which each
of the 8 audio runs began and ended (these var-
ied as participants chose to take breaks of differ-
ent lengths). The eight excerpts were then spliced
together to form a continuous set of MEG signals
corresponding exactly to the complete audio-book
time-course. This allowed us to use speech recog-
nition forced alignment methods (MS HTK; Wood-
land et al., 1994) to precisely locate the onset and
offset times of each auditory word. These auto-
matically derived onset and offset times were sub-
sequently validated by hand.

4 Coherence

There are a variety of measures available that reflect
the connectivity between two brain regions. This
study makes use of ‘spectral coherence,’ which is
sensitive both to power/energy increases registered
by the relevant sensors and to the degree of phase

synchronization observed by those sensors. Spectral
coherence is computed with the following formula:

coherence(x, y) =
E[Sxy]√

E[Sxx] · E[Syy]
(1)

where x and y are waveform signals from two sen-
sors, and Sij is the spectral density of waveforms i
and j. When i = j, S is the power spectral density
of i, and when i 6= j, S is the cross-spectral density
between i and j. The expectations in the numerator
and the denominator must be obtained by averaging
over multiple frequency bands, multiple instances
of the same frequency band in different epochs, or
over both frequency bands and epochs.2 The present
work adopts the second approach of averaging each
frequency band over multiple epochs (see Section 6
for details), which enables higher frequency resolu-
tion than if multiple frequencies had been averaged
together, though it necessarily reduces the number of
trials in the dataset. This work uses the MNE-python
package to compute spectral coherence (Gramfort et
al., 2013; Gramfort et al., 2014).3

As a measure of the correlation between two sig-
nals, coherence can be between 0 and 1. When two
signals have a constant phase difference and are of
the same amplitude, their coherence is 1. As ei-
ther the amplitudes diverge or the phase difference
changes, the coherence approaches 0.

5 Center Embedding Depth

This study evaluates a measure of syntactic work-
ing memory load as a predictor of MEG coherence.
A canonical means of calculating syntactic working
memory load is to count the number of center em-
beddings in a sentence. For example, the sentence
in Figure 1, ‘The cart that the horse that the man
bought pulled broke,’ is thought to induce greater
working memory load than the same sentence with-
out the depth 3 region: ‘The cart that the horse
pulled broke,’ (Chomsky and Miller, 1963).4 The in-
creased memory load stems from an incomplete de-
pendency (a subject lacking a predicate in the above

2If multiple instances are not averaged in Equation 1, coher-
ence is simply 1 (Benignus, 1969).

3http://martinos.org/mne/stable/mne-python.html
4In fact, this is an example of self embedding, the most dif-

ficult form of center embedding, which was chosen for ease of
exposition.
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d1 The cart broke.
d2 that the horse pulled
d3 that the man bought

Figure 1: Center embeddings in ‘The cart that the horse
that the man bought pulled broke.’ Each lexeme is asso-
ciated with the given embedding depth on the left.

example) that must be retained in working mem-
ory until the dependency can be completed (Gibson,
2000). The load should increase every time there is a
right branch from a left branch in a syntactic binary-
branching tree.5

Experiments described in this paper estimate syn-
tactic memory load when processing a particular
word of a sentence as the center-embedding depth
of that word, which is the number of incomplete
categories maintained while processing that word
using a left-corner parser (Aho and Ullman, 1972;
Johnson-Laird, 1983; Abney and Johnson, 1991;
Gibson, 1991; Resnik, 1992; Stabler, 1994). To ob-
tain an accurate estimate of center-embedding depth,
this study uses the van Schijndel et al. (2013) left-
corner PCFG parser trained on the Penn Treebank
(Marcus et al., 1993) reannotated into a Nguyen et
al. (2012) generalized categorial grammar (GCG),6

which makes PCFG probabilities sensitive to filler-
gap propagation. This parser achieves a linguis-
tic accuracy comparable to the Petrov and Klein
(2007) parser, and the PCFG surprisal estimates it
outputs using this grammar provide a state-of-the-art
fit to psycholinguistic measures like self-paced read-
ing times and eye-tracking fixation durations (van
Schijndel and Schuler, 2015).

The experiments described in Section 6 run this
parser on transcripts of the Heart of Darkness
dataset described in Section 3, calculating center-
embedding depth for each word epoch based on its
position in the best output parse. This parser is also
used to calculate PCFG surprisal as a potentially
confounding predictor.

5In fact, there are conditions where a post-modifier can cre-
ate a complex left-branching structure that does not cause an
associated increase in memory load, but that effect is beyond
the scope of this paper.

6http://sourceforge.net/projects/modelblocks/

6 Methodology

In this section we describe how we establish a reli-
able effect of sentence embedding depth on alpha-
band coherence in the MEG recordings. While our
analysis is motivated by experimental results using
non-linguistic stimuli (e.g., Jensen et al., 2002), we
do not expect the scalp topology of EEG effects to
be exactly replicated in MEG recordings, and we
do not necessarily expect coherence observations
during skilled behavior like sentence comprehen-
sion to exactly match observations while processing
word lists. This, and the possibility of frequency-
based confounds, requires an exploratory analysis of
a range of sensor-pairs, frequency bands, and time
windows. To avoid the danger of selection biases
we partition one third of the data into a development
set and the rest of the data into a test set. The devel-
opment data gives an indication of which sensor pair
best reflects a stable correlation between embedding
depth and MEG coherence, which is later confirmed
using the test partition.

The van Schijndel et al. (2013) parser is used to
obtain estimates of the embedding depth of each
word in the corpus according to the best output parse
of the sentence. As described in Section 5, these es-
timates are used as a measure of the memory load
that is present as each word is processed.

The data is divided into epochs, which extend
from one second pre-onset to two seconds post-onset
for each word. This window extends beyond the av-
erage auditory duration of a word (∼0.4s), and as-
sumes that the processing timeline for each word is
time-locked to its auditory onset (Hagoort, 2008).
In order to clean up extraneous noise in the signal,
words are omitted if they are in a sentence that fails
to parse, if they are in an extremely short or an ex-
tremely long sentence (<4 or >50 words), or if they
follow a word at a different depth, which could in-
troduce a possible confound due to storage or inte-
gration effects (Gibson, 2000). The remaining sen-
tences should provide regions where the parser is
confident about its depth estimates, where sentence
length is unexceptional, and where linguistic mem-
ory load is not changing. Every third sentence is put
into the exploratory development dataset, and the
rest are put into the test set. For each dataset, the
epochs are grouped based on their associated em-
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Figure 2: Top-down depiction of sensor locations in the
Elekta Neuromag helmet. The front of the helmet is at
the top of the figure. The sensors in blue are those used
in this study.

bedding depths. Each depth grouping is further clus-
tered into sets of four epochs; these sets are used to
calculate the expectations necessary to compute co-
herence.7 Continuous wavelet decomposition (Ga-
bor, 1946) is employed to decompose the waveform
signal recorded by each sensor into its component
frequencies.

The memory load of a given epoch should be rel-
atively constant throughout the duration of a given
word, so the dependent variable tested in this study
is the average coherence from 0-500 ms after the
onset of each word. If the average coherence of a
frequency is high due to a brief spike in coherence
during that window rather than due to repeated syn-
chronous firing of the neural clusters under investi-
gation, the increased variance will penalize the sig-

7The choice to cluster into sets of four epochs was driven by
the data. In order to obtain valid statistical significance in the
development data regarding embeddings at an embedding depth
of one, the data could only be divided by 4 before n dropped
below 30. While statistical significance is not needed for ex-
ploration, a less-than-representative sample in the development
set would negate the purpose of having a development set for
exploration.
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Figure 3: A time-frequency depiction of the mean coher-
ence in the depth = 1 condition subtracted from the mean
coherence in the depth = 2 condition in development data.
An overlay conveys the variance of different frequency
bands. Faded regions have higher variance than clearer
regions.

nificance of that frequency. Although this work ini-
tially averaged over epochs during computation of
coherence in order to obtain good frequency reso-
lution, exploration using development data revealed
that coherence often appears across several adjacent
frequency bands, so to boost the signal-to-noise ra-
tio, the dependent variable was recast as the average
coherence within ±2 Hz of each frequency band.
Since this study is focused on linguistic process-
ing, the development data was searched for two sen-
sors in the anterior and posterior regions of the left
hemisphere with a high degree of depth-sensitive al-
pha coherence. In analysis of the development set,
gradiometer sensors 0132 and 1712 (anterior and
posterior sensors, respectively; shown in Figure 2)
showed a high coherence, so these were used in the
evaluation on the test set. This was the only sensor
pair evaluated on the test data.

To avoid making the statistical analyses vulnera-
ble to assumptions about data distribution, statistical
significance of depth as a predictor in the develop-
ment and test datasets is calculated using the Mann-
Whitney U-test, a non-parametric alternative to the
t-test for testing differences between two unpaired
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Factor Coef p-value
Unigram 5.1 · 10−5 0.941
Bigram 5.6 · 10−4 0.257
Trigram 4.3 · 10−4 0.073
PCFG Surprisal 2.8 · 10−4 0.482
Sentence Position −5.1 · 10−4 0.031
Depth 3.6 · 10−2 0.005

Table 1: Development data results using each factor to
predict alpha coherence from 0-500ms at 10±2Hz.

samples. The U-test is used to see whether the dis-
tribution of coherence at a given depth is the same
as the distribution of coherence at another depth.

Development analysis finds that the depth 1 data
(n = 40) and the depth 2 data (n = 1118) have sig-
nificantly different coherence distributions around
10 Hz (p = 0.005; see Figure 3), which is in
the middle of the alpha frequency range (8-12Hz).
This finding suggests that alpha coherence between
these two regions are predictive of linguistic work-
ing memory load. To ensure that this finding was not
caused by a single subject, the same analysis was re-
peated over the development data after omitting each
subject in turn, with similar results.

It may be, however, that these alpha coherence ef-
fects are driven by confounding factors like sentence
position (alpha coherence may be more likely to oc-
cur near the beginnings or ends of sentences) or fre-
quency (alpha coherence may tend to increase when
processing rare or common words), which may be
collinear with depth. In order to check for these
possible confounds, the data must be re-ordered by
sentence position or frequency predictors, then re-
grouped into sets of four before computing coher-
ence, in order to avoid computing coherence over
unrelated factor levels.8

To rule out the confounds of sentence position
and frequency, a variety of independent predictors
are separately linearly regressed against the depen-
dent variable of coherence. Four different frequency
predictors are used: unigrams, bigrams, trigrams,
and PCFG surprisal. The n-gram factors are all log-
probabilities computed from the Corpus of Contem-

8Since only two values of depth are tested in the present
study, depth is always tested using a U-test, while the more con-
tinuous variables are tested using linear regression.

Factor Coef p-value
Unigram −2.2 · 10−4 0.6480
Bigram −9.8 · 10−5 0.7762
Trigram 3.7 · 10−4 0.0264
PCFG Surprisal 2.9 · 10−4 0.3295
Sentence Position 1.3 · 10−4 0.4628
Depth 4.6 · 10−2 0.00002

Table 2: Test data results using each factor to predict al-
pha coherence from 0-500ms at 10±2Hz. Note that the
trigram factor is not a significant predictor after applying
Bonferroni correction.

porary American English (COCA; Davies, 2008)
and PCFG surprisal is computed by the van Schijn-
del et al. (2013) incremental parser. While sentence
position is significant on the development partition
(Table 1), none of the frequency-based effects are
significant in the development set, but this may be
due to having too little data in the development set,
so all factors are tested again in the larger test set.9

To retain an α-level of 0.05 with six statistical
tests, the threshold for significance must be Bonfer-
roni corrected to 0.008. As shown in Table 2, sen-
tence position fails to be a significant predictor of al-
pha coherence on the test data (even without Bonfer-
roni correction), but embedding depth remains a sig-
nificant predictor of alpha coherence. The marginal
effect of trigram predictability observed in the de-
velopment set remains in the test set, but the effect
is not significant after correcting for multiple com-
parisons.

While Bonferroni correction would rule out tri-
gram probability as a significant predictor even if
it was the only non-depth predictor tested in this
work, the fact that it is marginally significant in both
datasets is suggestive of a true underlying effect.
To determine whether trigram probability is actually
predictive of MEG coherence, we increase the reso-
lution of the coherence by using six epochs (rather
than the previous four) to compute the expectations
in Equation 1. The increase in resolution further

9In development testing, ‘significance’ is merely a conve-
nient tool for summarizing how strongly correlated the inde-
pendent and dependent variables are. The general lack of corre-
lation between MEG coherence and position/frequency predic-
tors in development data suggests this is a promising dependent
variable for our purposes.
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Factor Coef p-value
Trigram 1.6 · 10−4 0.3817
Depth 3.2 · 10−2 0.0046

Table 3: Test data results after increasing coherence res-
olution to six epochs.

shrinks the dataset, but the larger test set can absorb
the loss and still provide valid significance results.10

The results (Table 3) show that, with greater coher-
ence resolution, embedding depth remains a signif-
icant predictor of MEG coherence, and that trigram
probability is not even a marginally significant pre-
dictor. These results reinforce the theory that alpha
coherence reflects memory load and further shows
that alpha coherence between the anterior and pos-
terior regions of the left hemisphere may specifically
reflect linguistic memory load.

7 Discussion

This study found that alpha coherence between the
anterior and posterior regions of the left hemisphere
of the brain is significantly correlated with embed-
ding depth, which suggests that alpha coherence
may reflect an effect of memory load on linguis-
tic processing in those regions. This correlation
was found in an exploratory study using develop-
ment data and subsequently confirmed by general-
izing to held-out test data. These results are consis-
tent with patterns observed in fMRI experiments: a
large survey (Hagoort and Indefrey, 2014) identifies
activation of the left inferior frontal gyrus (LIFG, in-
cluding “Broca’s area”) and posterior parts of the
left temporal cortex (including “Wernicke’s area”),
during both passive listening and passive reading
tasks. Their findings indicate that, with listening
tasks in particular, the anterior region of the right
hemisphere is also active, and the results of Weiss
et al. (2005) suggest that EEG coherence between
the left and right hemispheres of the brain increases
with embedding depth. Future study is needed to
determine if rightside coherence or left-right coher-
ence in MEG data is also associated with embedding
depth.

Importantly, the alpha coherence found in this
10After increasing coherence resolution, trigram n = 1933,

depth 1 n = 57, and depth 2 n = 1428.

study did not correlate with sentence position or fre-
quency effects. The lack of influence of position and
frequency effects on MEG coherence could greatly
facilitate future research on sentence processing,
since these effects often present large confounds
in predicting other psycholinguistic measures. The
cost associated with collecting MEG data may limit
the immediate widespread application of the present
findings, but since MEG and EEG signals are pro-
duced by electrical activity from the same under-
lying brain sources, this gives hope that anterior-
posterior left hemisphere alpha coherence in EEG
may be able to provide a similarly clear signal for
future studies.

The present data support findings like those of van
Schijndel and Schuler (2015), who claim hierarchic
structure must be used during linguistic process-
ing because hierarchic structure improves the fit to
reading times over competitive non-hierarchic mod-
els. A potential criticism of that finding is that hu-
mans may make use of linear sequences of part-of-
speech tags but not hierarchic structure during lin-
guistic processing (Frank and Bod, 2011). In that
case, the improved fit of the hierarchic grammars in
van Schijndel and Schuler (2015) may simply stem
from the fact that hierarchic grammars also happen
to contain part-of-speech information as well as hi-
erarchic structure. The findings of the present study
support the theory that hierarchic structure is used
during linguistic processing since this study finds a
clear effect of alpha coherence conditioned on hier-
archic embedding depth.

Having identified a working-memory based signal
that is seemingly free of many of the confounding
influences associated with reading times, it should
be interesting to use the same procedure to study
linguistic regions where embedding depth changes.
Such studies could tell us what activation patterns
arise due to storage and integration of linguistic el-
ements in working memory. Contrary to the previ-
ous studies of such influences, which relied on in-
direct measures such as reading time latencies, if
coherence is construed as attentional focus (Jensen
et al., 2007), the present methods could directly in-
vestigate theoretical claims such as those made by
Gibson (2000) and Lewis et al. (2006) regarding the
attentional resources required for storage and inte-
gration of incomplete dependencies under different
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conditions. That is, it permits direct measurement of
whether and how much attentional resources must
be expended in cohering disparate regions of the
brain in those conditions. Such resource expendi-
tures could manifest themselves in reading times in
a variety of ways, but the present work has outlined
a technique, seemingly independent of frequency ef-
fects, of directly testing the underlying theoretical
linguistic claims in naturalistic data.
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Elisabet Service, Päivi Helenius, Sini Maury, and Riitta
Salmelin. 2007. Localization of Syntactic and Seman-
tic Brain Responses using Magnetoencephalography.
Journal of Cognitive Neuroscience, 19(7):1193–1205.

Wolf Singer. 1999. Neuronal synchrony: A versatile
code for the definition of relations? Neuron, 24(1):49–
65.

Nathaniel J. Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128:302–319.

Edward Stabler. 1994. The finite connectivity of linguis-
tic structure. In Perspectives on Sentence Processing,
pages 303–336. Lawrence Erlbaum.

Samu Taulu and Riitta Hari. 2009. Removal of mag-
netoencephalographic artifacts with temporal signal-
space separation: demonstration with single-trial
auditory-evoked responses. Human Brain Mapping,
30:1524–1534.

Marten van Schijndel and William Schuler. 2015. Hi-
erarchic syntax improves reading time prediction. In
Proceedings of NAACL-HLT 2015. Association for
Computational Linguistics.

Marten van Schijndel, Andy Exley, and William Schuler.
2013. A model of language processing as hierarchic
sequential prediction. Topics in Cognitive Science,
5(3):522–540.

Marten van Schijndel, William Schuler, and Peter W
Culicover. 2014. Frequency effects in the processing
of unbounded dependencies. In Proc. of CogSci 2014.
Cognitive Science Society.

Shravan Vasishth and Richard L. Lewis. 2006.
Argument-head distance and processing complexity:
Explaining both locality and antilocality effects. Lan-
guage, 82(4):767–794.

Christoph von der Malsburg. 1995. Binding in models of
perception and brain function. In Current Opinion in
Neurobiology, pages 520–526.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona
Fyshe, Aaditya Ramdas, and Tom Mitchell. 2014a.
Simultaneously uncovering the patterns of brain re-
gions involved in different story reading subprocesses.
PloS one, 9(11):e112575.

Leila Wehbe, Ashish Vaswani, Kevin Knight, and Tom
Mitchell. 2014b. Aligning context-based statistical
models of language with brain activity during reading.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing. ACL.

Sabine Weiss, Horst M. Mueller, Baerbel Schack,
Jonathan W. King, Martha Kutas, and Peter Rappels-
berger. 2005. Increased neuronal communication ac-
companying sentence comprehension. International
Journal of Psychophysiology, 57:129–141.

87



P.C. Woodland, J.J. Odell, V. Valtchev, and S.J. Young.
1994. Large vocabulary continuous speech recog-
nition using HTK. In Proceedings of ICASSP ’94.
IEEE International Conference on Acoustics, Speech
and Signal Processing, volume ii, pages II/125–II/128.
IEEE.

Stephen Wu, Asaf Bachrach, Carlos Cardenas, and
William Schuler. 2010. Complexity metrics in an in-
cremental right-corner parser. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics (ACL’10), pages 1189–1198.

88



Proceedings of CMCL 2015, pages 89–97,
Denver, Colorado, June 4, 2015. c©2015 Association for Computational Linguistics

Modeling fMRI time courses with linguistic structure at various grain sizes

John T. Hale and David E. Lutz and Wen-Ming Luh
Cornell University

Ithaca, NY 14853 USA
{jthale,del82,wenmingluh}@cornell.edu

Jonathan R. Brennan
The University of Michigan
Ann Arbor, MI 48109 USA
jobrenn@umich.edu

Abstract

Neuroimaging while participants listen to au-
diobooks provides a rich data source for
theories of incremental parsing. We com-
pare nested regression models of these data.
These mixed-effects models incorporate lin-
guistic predictors at various grain sizes rang-
ing from part-of-speech bigrams, through sur-
prisal on context-free treebank grammars,
to incremental node counts in trees that
are derived by Minimalist Grammars. The
fine-grained structures make an independent
contribution over and above coarser predic-
tors. However, this result only obtains with
time courses from anterior temporal lobe
(aTL). In analogous time courses from infe-
rior frontal gyrus, only n-grams improve upon
a non-syntactic baseline. These results sup-
port the idea that aTL does combinatoric pro-
cessing during naturalistic story comprehen-
sion, processing that bears a systematic rela-
tionship to linguistic structure.

1 Introduction

The cognitive science of language confronts two dif-
ferent notions of its own subject matter. One notion
is rooted in the psychology of an individual: what
states of mind does this person go through as he or
she uses language? The other notion starts from lan-
guages themselves. As a structural system, how does
this language differ from another? There is a tension
between these two views. Classically, this tension
is resolved by adopting the Competence Hypothe-
sis (Chomsky, 1965, page 9). It suggests that the
best description of the language system should also

figure as a “basic component” in the best descrip-
tion of the language-user. This Hypothesis is pro-
grammatic enough to have received several different
interpretations over the years (Bresnan and Kaplan,
1982; Steedman, 1989; Stabler, 1991). Can a re-
fined version of it be accepted or rejected in light of
experimental data?

Recent work with eye-tracking has wrestled with
just this question (Frank and Bod, 2011; Fossum
and Levy, 2012; van Schijndel and Schuler, 2015).
The argument concerns the strength of the fitted
coefficients for different types of grammatical pre-
dictors. These “language model” predictors con-
tribute to varying degrees in regression models of
the eye-fixation record. In certain cases, it ap-
pears that higher-order structure — for instance,
phrase structure — is unhelpful. On the other hand,
other cases suggest that higher-order structure does
shine through in the eye-movement record. In this
debate, fitted coefficients on the more linguistically-
sophisticated predictors have been taken to quantify
the veridicality of the Competence Hypothesis. The
linguistic predictors that researchers examine qual-
ify as “basic components” to the extent that they im-
prove the regression model that they are part of.

Of course, psycholinguists have known for a
long time that low-level factors such as word fre-
quency and bigram probability are useful in explain-
ing eye-fixation times (Thibadeau et al., 1982; Mc-
Donald and Shillcock, 2003). These are not rele-
vant to the Competence Hypothesis. Rather, the ac-
tion is with higher-order factors: predictors based on
larger domains of locality, as defined by grammars
that could plausibly play a role in the best descrip-
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tion of language as a structural system.
The research reported in this paper adopts the

same model-comparison methodology as Frank,
Fossum, van Schijndel and their co-authors. But
it applies this method to spatially localized neural
time courses obtained using fMRI. Using grammat-
ical predictors at six different levels of “richness”
we compare a family of nested regression models.
We find that phrase structure in the style of the
Penn Treebank (Marcus et al., 1993) improves a re-
gression, over and above various n-gram baselines.
X-bar structures generated by Minimalist Gram-
mars (Stabler, 1997, 2011) improve yet further over
that. This holds for time courses taken from anterior
temporal lobe (aTL), an area that has been impli-
cated in “basic syntactic processing” (Friederici and
Gierhan, 2013). But only the n-gram predictors are
useful in modeling time courses from inferior frontal
gyrus (IFG), a traditional syntax area (Grodzinsky
and Friederici, 2006). Section 6 discusses this pat-
tern of results in light of other work on naturalistic
language comprehension.

2 Methods and Materials

The methodology follows Brennan et al. (2012) in
the use of spoken narrative as a stimulus. Partici-
pants listen to an audiobook while in the scanner.
The sequence of images collected during the spo-
ken presentation becomes the dependent variable in
a regression against a times series of linguistic pre-
dictors derived from the text of the story. In contrast
to the work of Frank, Fossum and van Schijndel, we
used auditory rather than visual presentation.

Participants
Thirteen college-age volunteers (6 women) partic-
ipated for pay, but we excluded two individuals
whose inferred head-movements exceeded 0.6mm
or had eight or more movements≥0.1mm. All qual-
ified as right-handed on the Edinburgh handedness
inventory (Oldfield, 1971). They self-identified as
native English speakers and gave their informed
consent.

Data Collection
Imaging was performed using a 3T MRI scan-
ner (Discovery MR750, GE Healthcare, Milwau-
kee, WI) with a 32-channel head coil at the Cor-

nell MRI Facility. Blood Oxygen Level Depen-
dent (BOLD) signals were collected using a T2∗-
weighted echo planar imaging (EPI) sequence (rep-
etition time: 2000 ms, echo time: 27 ms, flip an-
gle: 77deg, image acceleration: 2X, field of
view: 216 x 216 mm, matrix size 72 x 72, and
44 oblique slices, yielding 3 mm isotropic vox-
els). Anatomical images were collected with a
high resolution T1-weighted (1 x 1 x 1 mm3 voxel)
with a Magnetization-Prepared RApid Gradient-
Echo (MP-RAGE) pulse sequence.

Presentation

Auditory stimuli were delivered through MRI-safe,
high-fidelity headphones (Confon HP-VS01, MR
Confon, Magdeburg, Germany) inside the head coil.
The headphones were secured against the plastic
frame of the coil using foam blocks. Using a spo-
ken recitation of the US Constitution, an experi-
menter increased the volume until participants re-
ported that they could hear clearly.

Stimuli

The audio stimulus was Kristin McQuillan’s
reading of the first chapter of Lewis Carroll’s
Alice in Wonderland from librivox.org. We
chose this text both because of its use in prior imag-
ing work (Brennan et al., 2012) and because fine-
grained syntactic annotations are available for it.
We used Praat to normalize the spoken-language
audio signal to 70dB and dilate it by 20%. This
slowed speech improved comprehension in the scan-
ner. The audio presentation lasted 12.4 minutes.
Upon emerging from the scanner, participants com-
pleted a twelve-question, multiple-choice quiz con-
cerning events and situations described in the story.

3 Data analysis

Preprocessing

We used SPM8 (Friston et al., 2007) to spatially-
realign functional images (EPI) and co-register them
with participants’ structural images (MP-RAGE).
Smoothing was 3mm isotropic, and SPM8’s ICBM
template was used to put the data into MNI stereo-
taxic coordinates.
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Linking hypotheses

We linked linguistic structures (e.g. POS tag se-
quences, Penn-style trees, X-bar trees) to predictions
about BOLD signal in two different ways.

Link #1: Surprisal
For probabilistic language models, we linked the

probability of a word in its left-context to BOLD sig-
nal using the log-reciprocal of the probability of
the next word. This is “surprisal” in the sense of
Hale (2001).

Link #2: Node Count
With non-probabilistic grammars, we linked the

syntactic structure of a sentence to the BOLD sig-
nal it evokes by counting the number of tree nodes
between successive words, including “empty” nodes
such as the traces of movement. This link expresses
the basic claim that more grammatical structure im-
plies greater comprehension effort. While intuitive,
the precise formulation of this idea has been tricky;
see Frazier (1985, section 4.4) for critical discus-
sion. Our two node count hypotheses were based, re-
spectively, on top-down and bottom-up parsing (see
e.g. Hale, 2014, chapter 3). The top-down traver-
sal that we used enumerates nodes in a depth-first,
left to right order analogous to an LL parser. The
bottom-up traversal that we used enumerates daugh-
ters before mothers in the manner of a shift-reduce
LR parser. Taking the stimulus text to be largely
unambiguous for native English-speaking listeners,
we assume a perfect oracle that enumerates nodes of
just the correct tree.

Hemodynamic Response
Via these linking hypotheses, we derived time se-

ries of predictions about the effortfulness of com-
prehending each word in the text. Following Just &
Varma (2007) we convolved these time series with
SPM8’s canonical hemodynamic response function
(HRF) to arrive at an expected BOLD signal. This
HRF is a difference of Gamma functions (Friston
et al., 2007, chapter 14). Figure 1 summarizes this
methodology graphically.

Regions of interest

By defining an impulse at the offset of each spo-
ken word, an atheoretical predictor call Rate local-
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Figure 1: Deriving an expected BOLD signal from a se-
quence of linguistic structures (analogous to Fig. 11 of
Just & Varma (2007)): (A) Segmentation of a spoken nar-
rative (B) Complexity metric, such as surprisal, defines
intensity of point event (C) Points shown over a longer
interval (D) Points convolved with canonical HRF (E)
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ted) made orthogonal to low-level covariates (solid).
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izes brain regions whose BOLD signal varies in time
with the speech stimulus. We localized spherical re-
gions of interest, each with radius 10mm, centered
on the maxima of the Rate predictor within three
anatomically-constrained regions that were defined
based on prior work on the neural bases of syntax.

Maxima for this predictor that fell bilaterally in
temporal lobe anterior to Heschl’s Gyrus served to
define the center of left and right anterior temporal
region. Anterior temporal lobe has shown sensitiv-
ity to the presence vs. absence of constituent struc-
ture (Stowe et al., 1998; Vandenberghe et al., 2002;
Humphries et al., 2006; Snijders et al., 2009; Bemis
and Pylkkänen, 2011; Pallier et al., 2011) and brain
damage to this region correlates with deficits in mor-
phosyntax (Dronkers et al., 2004). These data, and
others, have led to the proposal that the anterior tem-
poral lobe is involved in “basic syntactic processes.”
(Friederici and Gierhan, 2013, p. 252).

Maxima of the Rate predictor that fell in the
left frontal lobe and were listed as “inferior frontal
gyrus” in the Harvard-Oxford Brain Atlas defined
the center of our left inferior frontal gyrus region.
Numerous findings from lesion-induced syntactic
deficits (Caramazza and Zurif, 1976; Grodzinsky,
2000) and neuroimaging of brain activations for sim-
ple and syntactically complex sentences (Just et al.,
1996; Stromswold et al., 1996; Stowe et al., 1998;
Snijders et al., 2009; Santi and Grodzinsky, 2007)
have implicated this region in various aspects of
grammatical processing.

Statistical Analysis
Statistical analysis was conducted in two stages. In
the first stage, we constructed a family of mixed-
effects regression models using non-syntactic pre-
dictors together with one syntax predictor drawn
from each model. Parameters more than two stan-
dard errors away from zero were taken to “signifi-
cant” in this analysis (Gelman and Hill, 2007).

In the second stage we conducted a set of step-
wise model comparisons to evaluate the unique con-
tribution of each “grain size” which showed a signif-
icant contribution in stage one. Comparisons were
evaluated using likelihood ratio tests. Models were
nested in order of smallest to largest grain size (i.e.
amount of hierarchy), and least to most predictive
for measures of node count. The list of fixed effects

for each model entered in to this comparison is given
in Table 1.

All models included fixed effects for word Rate
(see above), log unigram frequency, and three prin-
ciple components representing head-movements,
heart rate, and lung action. A fixed effect for
prosodic breaks was also included to control for
correlations between acoustic variance and syntactic
structure. This predictor is a perceptual judgment of
break index strength made in light of ToBI annota-
tion guidelines by two independent raters. Subjects
were treated as a random intercept in all models.

4 Structure at various grain sizes

Markov Models

2gram.l, 2gram.p, 3gram.l, 3gram.p – We used
OpenGRM to fit Markov Models of various or-
ders (Allauzen et al., 2007). These models were
trained on the version of Alice in Wonderland that
is distributed by Project Gutenberg, etext # 11. As a
preprocessing step, chapter headings were removed
and all words converted to lowercase. Lexicalized
(.l) and unlexicalized POS (.p) models were created.

Penn-style Phrase Structure

cfg.surp, cfg.bu, cfg.td – We used the EarleyX im-
plementation of Stolcke’s probabilistic Earley parser
to compute surprisal values from phrase structure
grammars (Luong et al., 2013; Stolcke, 1995). We
used a grammar whose rules came from Stanford
parser output, when applied to the entire Alice
in Wonderland book (Klein and Manning, 2003).
Punctuation was removed. This renders the train-
ing data comparable across cfg.surp and {2,3}gram.
The node count predictors were based on the same
Penn-style structures as in Brennan et al. (2012).

X-bar Trees

mg.bu, mg.td – We used Minimalist Grammars to
define more detailed analyses for each sentence.
These grammars extend and reorganize the anal-
yses discussed in Hale (2003, chapter 4) in a
way that is guided by Sportiche, Koopman & Sta-
bler (2013). They derive “X-bar” structural descrip-
tions that integrate constituency, dependency and
movement information. Figure 3 highlights a case
where the X-bar predictor includes additional de-
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Figure 2: Magnitude of fitted coefficients across all syntax predictors, considered individually. Fine-grained linguistic
structure from Penn-style cfg.surp and X-bar structures mg.{bu, td} are positive predictors of the neural time-course
in anterior temporal lobe. See Table 2 for stepwise model comparison.

tail, namely about movement. Of course, these
trees encode many other aspects of sentence struc-
ture that are treated in Minimalist theories of syn-
tax (see e.g. Adger (2003) or Hornstein, Nunes and
Grohmann (2005) for an introduction). Traversing
these trees in either Bottom-Up or Top-Down order,
we obtain node counts analogous to those used in
Brennan et al (2012).

5 Results

Fine-grained predictors based on X-bar trees and
Penn-style phrase structure each improved a mixed-
effects model of the neural time course in anterior
temporal lobe during naturalistic story comprehen-
sion. This did not obtain in the time courses from
inferior frontal gyrus. Figure 2 shows the estimated
coefficients (±2 standard errors) for each of the syn-
tax predictors when included alone in a model with
only word-level and physiological “nuisance” pre-
dictors. Table 2 reports a model comparison that
tests which predictors contribute independently of
other, coarser-grained predictors. It lists the steps
that reached statistical significance at the p < 0.05
level for each ROI. Table 2 uses the letters A–F
to identify increasingly refined models along a pro-
gression that is described in Table 1.

Performance on the post-scan was substantially
higher (median=11) than chance (3 out of 12). This
confirms that participants were indeed attending to
the story.

model description
Ø lexical, prosodic, and physiolog-

ical but no syntactic predictors
A add POS tag 2-gram
B add POS tag 3-gram
C add CFG surprisal
D add bottom-up CFG node count
E add bottom-up X-bar node count
F add top-down X-bar node count

Table 1: Nested models

left aTL predictor χ2(1) p
Ø to A 2gram.p 38.9 < .001
B to C cfg.surp 22.3 < .001
D to E mg.bu 5.5 < 0.05
right aTL
Ø to A 2gram.p 23.7 < .001
D to E mg.bu 4.3 < 0.05
left IFG
Ø to A 2gram.p 19.6 < .001
A to B 3gram.p 8.4 < .01

Table 2: Statistically-significant steps
in a model comparison

6 Discussion

As Figure 2 indicates, a variety of grammatical pre-
dictors turned out to be helpful in explaining BOLD
signals. Even the most abstruse predictors that we
considered, ones based on X-bar structures gener-
ated by Minimalist Grammars, led to reliable im-
provements over baseline models. This suggests
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that indeed, the human sentence processing system
is sensitive to hierarchical structure at least in the
anterior temporal lobe. It is possible that the null re-
sult reported by Frank et al. (2011; 2015) reflects the
difficulty of measuring nuanced syntactic processing
activity with behavioral and ERP measures.

While n-gram predictors were helpful through-
out, Penn phrase structures and X-bar structures did
not gain purchase in inferior frontal gyrus the way
they did in anterior temporal regions. This “aTL-
specificity” corroborates earlier findings that used
node count but not surprisal (Brennan et al., 2012).

The bilateral character of the aTL results aligns
well with related work with written stimuli by We-
hbe et al (2014). Using word features related to la-
belled dependency arcs (i.e. noun modifier, verbal
complement) and part of speech tags, Wehbe and
colleagues found a cluster of voxels in right ante-
rior temporal lobe where syntactic information con-
tributed to high performance in a classification-by-
prediction task. This points to a temporal lobe lan-
guage network whose normal mode of operation em-
ploys both hemispheres.

7 Conclusion

If we take the model comparison approach — as
applied to neural time courses — to be an empiri-
cal test of the Competence Hypothesis, then the Hy-
pothesis survives. These data support the view that
humans use linguistic structure to comprehend spo-
ken narratives. This finding re-prompts the ques-
tion that occupied Bresnan, Kaplan, Steedman &
Stabler: which linguistic theory is most helpful in
understanding that comprehension? Answering this
question is more than one lab can manage. We there-
fore plan to release this time course data so that the
broader cognitive science community can try out al-
ternative models based on a wider variety of pars-
ing theories.
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Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, pages 68–95. Springer.

Edward P. Stabler. 2011. Computational perspectives on
minimalism. In The Oxford Handbook of Linguistic
Minimalism, chapter 27. Oxford University Press.

Mark Steedman. 1989. Grammar, interpretation and
processing from the lexicon. In William Marslen-
Wilson, editor, Lexical Representation and Process,
chapter 16, pages 463–504. MIT Press, Cambridge,
MA.

Andreas Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–
201.

96



Laurie A. Stowe, Cees A. J. Broere, Anne M. J. Paans,
Albertus A. Wijers, Gijsbertus Mulder, Wim Vaalburg,
and Frans Zwarts. 1998. Localizing components of a
complex task: Sentence processing and working mem-
ory. Neuroreport, 9(13):2995–2999.

Karin Stromswold, David Caplan, Nathaniel Alpert, and
Scott Rauch. 1996. Localization of syntactic compre-
hension by positron emission tomography. Brain and
Language, 52:452–473.

Robert Thibadeau, Marcel A. Just, and Patricia Carpen-
ter. 1982. A model of the time course and content of
reading. Cognitive Science, 6:157–203.

Marten van Schijndel and William Schuler. 2015. Hi-
erarchic syntax improves reading time prediction. In
Proceedings of NAACL 2015, Denver, Colorado, USA,
June. Association for Computational Linguistics.

Rik R.C. Vandenberghe, Anna C. Nobre, and Cathy J.
Price. 2002. The response of left temporal cor-
tex to sentences. Journal of Cognitive Neuroscience,
14(4):550–560, 05.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona
Fyshe, Aaditya Ramdas, and Tom Mitchell. 2014.
Simultaneously uncovering the patterns of brain re-
gions involved in different story reading subprocesses.
PLOS ONE, 9(11):e112575, November.

97





Author Index

Brennan, Jonathan, 89

Demberg, Vera, 48
Doyle, Gabriel, 19

Fernandez, Raquel, 29
Frank, Michael, 19

Georgiladakis, Spiros, 39
Greenberg, Clayton, 48

Hale, John, 89

Iosif, Elias, 39

Jacobs, Cassandra L., 1

Luh, Wen-Ming, 89
Lutz, David, 89

Murphy, Brian, 79

Noble, Bill, 29

Pearl, Lisa, 68
Phillips, Lawrence, 68
Potamianos, Alexandros, 39

Reitter, David, 9, 58

Sayeed, Asad, 48
Schuler, William, 79

van Schijndel, Marten, 79

Wang, Yafei, 9

Xu, Yang, 58

Yen, John, 9

99


	Program
	Predictions for self-priming from incremental updating models unifying comprehension and production
	Pragmatic Alignment on Social Support Type in Health Forum Conversations
	Audience size and contextual effects on information density in Twitter conversations
	Centre Stage: How Social Network Position Shapes Linguistic Coordination
	Fusion of Compositional Network-based and Lexical Function Distributional Semantic Models
	Verb polysemy and frequency effects in thematic fit modeling
	An Evaluation and Comparison of Linguistic Alignment Measures
	Utility-based evaluation metrics for models of language acquisition: A look at speech segmentation
	Evidence of syntactic working memory usage in MEG data
	Modeling fMRI time courses with linguistic structure at various grain sizes

