
Proceedings of the 3rd Workshop on EVENTS at the NAACL-HLT 2015, pages 11–15,
Denver, Colorado, June 4, 2015. c©2015 Association for Computational Linguistics

Word Sense Disambiguation via PropStore and OntoNotes
for Event Mention Detection

Nicolas Fauceglia, Yiu-Chang Lin, Xuezhe Ma, and Eduard Hovy
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213

USA
{fauceglia, yiuchanl, xuezhem, hovy}@cs.cmu.edu

Abstract

In this paper, we propose a novel approach
for Word Sense Disambiguation (WSD) of
verbs that can be applied directly in the
event mention detection task to classify
event types. By using the PropStore, a
database of relations between words, our
approach disambiguates senses of verbs by
utilizing the information of verbs that ap-
pear in similar syntactic contexts. Impor-
tantly, the resource our approach requires
is only a word sense dictionary, without
any annotated sentences or structures and
relations between different senses (as in
WordNet). Our approach can be extended
to disambiguate senses of words for parts
of speech besides verbs.

1 Introduction

The task of Word Sense Disambiguation (WSD)
is to identify the correct meaning or sense of an
ambiguous word in a given context. As a funda-
mental task in natural language processing (NLP),
WSD can benefit applications such as machine
translation (Chan et al., 2007) and information re-
trieval (Stokoe et al., 2003). Most of the top per-
formance WSD systems (Agirre and Soroa, 2009;
Zhong and Ng, 2010), however, rely on manually
annotated data or on lexical knowledge bases (e.g.,
WordNet), which are highly expensive to create.

In this paper, we propose a novel approach for
Word Sense Disambiguation of verbs using the
PropStore. With the help of PropStore, our ap-
proach can utilize information about verbs’ ap-
pearance in syntactic contexts similar to the target
sentence. This information significantly enriches

the given contexts, and makes our approach ob-
viate the need for annotated data and knowledge
bases. The only resource our approach requires is
a word sense dictionary that defines the senses and
their descriptions for each word. Obviously, this
dictionary is much easier to acquire than resources
such as annotated data or Wordnet. Moreover, our
approach can be extended to disambiguate senses
of words in other types of part-of-speech. We
demonstrate in this paper how our WSD method
can be applied to the event mention detection task
to classify event types.

1.1 Event Mention Detection Task

Event understanding has recently attracted a lot
of attention1. A fundamental task in event un-
derstanding is to conduct Event Mention Detec-
tion (EMD). The EMD task requires a system to
identify text spans in which events are mentioned,
and to provide their attributes. The major attribute
studied in recent EMD tasks (Li et al., 2013; Li et
al., 2014) is event mention type, which is one of the
most salient attributes relating to its semantics. In
this paper, we propose a novel method on identify-
ing event mention types. In particular, we focus on
one major source of event mentions: verb-based
mentions.

Given a list of possible candidates, the event
mention detection task consists in identifying the
type of each candidate mention (being one of the
predefined event types or other). In this paper, we
simply regard all verbs as mention candidates. In
this setting, event mention detection can be cast as
a verb sense disambiguation task, where the target
senses are simply event types. We argue that our

1https://sites.google.com/site/wsevents2014/home

11

method is especially suitable for this task because
it naturally captures argument information (which
is proven to be important in previous tasks) in a
distributional manner.

2 The PropStore

The PropStore is a proposition knowledge base,
essentially a triple store implemented as a
database of relations between words, created us-
ing Wikipedia articles.

Each relation is represented in the form of a
triple of two words connected by a relation:

< word1, relation, word2 >

Each word is an instance in the PropStore dictio-
nary, and consists of its original form, as present
in the text2, the POS, lemma, and language. Each
triple can occur one or thousands of times in the
corpus. For each occurrence of a triple in a sen-
tence, we store a new entry in the PropStore with
that information.

The PropStore supports different types of rela-
tions, including dependency, semantic role, etc.,
and for each type, many values, including nsubj,
dobj, etc. The current implementation of the Prop-
Store uses just a single type of relation: depen-
dency.

The source of the triples is every Wikipedia ar-
ticle available for each supported language. Each
article is parsed and POS tagged using the Fanse
Dependency Parser (Tratz and Hovy, 2011). For
each triple occurrence in the corpus, we store the
source article title, the sentence number, and the
position of the child word in the sentence. This
way, for every occurrence of a triple within a sen-
tence, we can re-build the sentence, and also we
can distinguish between two occurrences of the
same triple in a sentence, allowing us to chain two
or more triples in a tree configuration.

With this structure we can query the database to
retrieve, for example, all sentences with a partic-
ular relation configuration; all verbs which have a
particular dobj; all subjects of a given verb; two or
more siblings of a shared head; or more compli-
cated configurations, with their frequencies.

2except for normalized expressions such as numbers,
punctuation and foreign words

They express these packages to corporate headquarters.

PRP VBP DT NNS IN JJ NNS

root

nsubj

adpmod

dobj

det

adpobj

amod

Figure 1: Dependency tree and POS tags for the example
sentence.

express packages to

VBP NNS IN

adpmod

dobj

Figure 2: Sig(express, X)

Previous work us=ed a similar PropStore ap-
proach to build a Structured Distributional Seman-
tics Model for event coreference (Goyal et al.,
2013).

3 Our Approach for WSD

In the following, we use X = x1, x2, . . . , xn to
denote a generic sentence. For a given sentence
X and a word x ∈ X which we want to dis-
ambiguate, we define the signature of x in X ,
Sig(x,X), as a “small part” of the dependency
parse of X including x. For example, the sentence
They express these packages to corporate head-
quarters is shown in Figure 1 along with its de-
pendency tree, and Figure 2 gives the signature of
express, Sig(express,X), in this sentence.

Suppose x has m different senses in a dictio-
nary (e.g., OntoNotes), v1, . . . , vm, our task is to
predict the correct sense of x in the given sentence
X . This is done by selecting the sense with the
highest score:

v∗ = argmax
v

score(v, x,X)

To simplify the model, we restrict the score func-
tion only to the signature of x:

score(v, x,X) = score(v, Sig(x,X))

which means we only use the context information
within the signature of Sig(x,X), ignoring other
information.

12

3.1 WSD Algorithm via PropStore
The intuition of our approach is that verbs which
appear in the same signature should have simi-
lar senses. Based on this assumption, we can
define the score function score(v, Sig(x,X)) by
two steps: first querying PropStore to collect all
the verbs that appear in the same signature of
Sig(x,X); second defining the similarity measure
for two words: sim(x1, x2).

Specifically, to disambiguate verb x ∈ X , we
first query PropStore to get the list of verb candi-
dates:

W (Sig(x,X)) = {w : Sig(w,X) ∈ PropStore}
Here W (Sig(x,X)) is the set of all the verbs
which appear in the same signature Sig(x,X).
Besides the verb list, we can also get the
weight (frequency) θ(w) of each verb w ∈
W (Sig(x,X)) from PropStore.

With the list of verb candidates and their
weights, we can define the score function as fol-
lows:

score(v, Sig(x,X)) =
∑

w∈W

Sim(v, w)θ(w)

where Sim(v, w) is a function to measure the sim-
ilarity between a verb w and a word sense v of x.

To define this similarity function Sim(v, w),
we utilize the short description of word sense v
in the dictionary. We extract all the verbs in the
short description of word sense v and denote it as
W (v). Then

Sim(v, w) =
1

|W (v)|
∑

w′∈W (v)

sim(w,w′)

where sim(w1, w2) is the similarity function be-
tween two verbs. To summarize, we define the
similarity between a verb and a word sense as the
average similarities between the verb and all the
verbs which appear in the short description of this
word sense.

Now, there are three remaining problems to re-
solve to complete the WSD algorithm:

1. How to extract signature structure Sig(x,X)
for the verb x in the given sentence X .

2. How to query PropStore to obtain the set of
verb candidates W (Sig(x,X)).

3. How to measure similarity between two verbs
sim(w1, w2).

3.1.1 Extract Signature
For the first problem, the signature of a word is
extracted by applying syntactic rules. Currently,
we only extract the objects and prepositional mod-
ifiers (if any exist) of the verb we want to disam-
biguate. In the examples shown in Section 4, the
signatures extracted by our simple rules perform
well.

3.1.2 PropStore Query
For the second one, we query PropStore with
Sig(x,X) to get the lemmas of all the verbs
that occur in the same signature structure as the
target one. After querying PropStore, it re-
turns a list of top k candidate words (verbs)
W = {w1, w2, ..., wk} with their correspond-
ing frequency of occurrence in descending order.
For example, for the head-and-children template,
which consists of a target head node, and two
or more children, linked through a relation, we
should formulate the query as follows:

r e l 1 = (’ dobj ’ , (’N’ , ’ package ’))
r e l 2 = (’ adpmod ’ , (’ IN ’ , ’ to ’))
s i g = h e a d a n d c h i l d r e n (’V’ , r e l 1 , r e l 2)
v e r b s = p r o p s t o r e . que ry (s i g)

Then we obtain a list of verbs occurring in con-
texts with ‘package’ (POS: N) as direct object and
a ‘adpmod‘ dependency relation pointing to ‘to’
(POS: IN) along with their frequencies.

3.1.3 Word Vectors
To measure the similarity between two words, we
compute the distance between their corresponding
word vectors which are trained by the word2vec
continuous bag of words model (Mikolov et al.,
2013). For training, we ran 15 iterations for vec-
tors with 50 dimensions and a window size of 8,
with 25 negative examples and the downsampling
threshold being 1e−4. Slightly different from typ-
ical training methods, we treat the same word
with different POS tags as different words so they
do not share the same vector. In other words,

13

mail.noun and mail.verb are two different vectors
instead of one. This is reasonable for doing WSD
because distinct POS implies distinct senses. Ac-
cordingly, the distance between two words can be
calculated by their Euclidean distance in the vec-
tor space:

dist (w1, w2) = ‖v1 − v2‖
and the similarity can be defined as the negative of
distance:

sim(w1, w2) = −dist (w1, w2)

4 Example Results

In this section, we provide three example sen-
tences to illustrate our WSD approach and show
the corresponding result. From OntoNotes,
“express-v” has the following three senses:

• “convey, show, state in some form”

• “press out physically”

• “to mail or post something via a rapid
method”

An example sentence for the third sense
is “X = They express these packages to
corporate headquarters.”. Its signature,
Sig(express,X), was previously shown in
Fig 1 and Fig 2. The signature is composed
of two triples, < express, dobj, packages >
and < express, adpmod, to > with their first
words anchored together. We then query the
PropStore to get the set of candidate verbs
W (Sig(express,X)) and their correspond-
ing weight (frequency) θ(w) for each verb
w ∈W (Sig(express,X)) in descending order.

The resulting top 5 words and their weights
are shown in Table 1. The most frequent word
in PropStore that occurs in the same signature as
Sig(express,X) is “deliver”, which does make
sense because “deliver packages to” is a common
usage and it provides hints to disambiguate the
sense of “express”. (“deliver” here is semanti-
cally closer to sense3 than the others.)

After applying the WSD algorithm mentioned
in Sec 3.1, we obtain the result shown in Table 2.

word frequency
deliver 76
offer 35

provide 28
send 25
sell 20

Table 1: Top 5 words in
W (Sig(express, X)) and
their frequency.

vi -Score(vi)
sense1 9922.32
sense2 10069.5
sense3 9236.79

Table 2: −Score(vi) ob-
tained from the WSD algo-
rithm.

We use the value of −Score(si) for reading con-
venience. Therefore, the best sense is given by the
lowest score. In this example sentence, the best
sense for “express” is sense3.

Another example sentence for the first sense of
express is “X’ = Picasso’s Guernica vividly ex-
presses the horrors of war.”. The signature and
WSD results are shown in Fig 3, Table 3 and Ta-
ble 4, respectively.

The last example is “X” = She pronounced
her first syllables at six months.”, where “pro-
nounce” is the word to disambiguate. From
OntoNotes, “pronounce-v” has two senses: “utter
in a certain way”(sense1) and “pronounce judge-
ment on”(sense2). Fig 4, Table 5 and Table 6
shows the corresponding siganture and results.

expresses horros of

VBZ NNS IN

adpmod

dobj

Figure 3: Sig(express, X ′)

word frequency
know 3

demonstrate 1

Table 3: Top 5 words
in W (Sig(express, X ′))
and their frequency.

vi -Score(vi)
sense1 202.49
sense2 216.91
sense3 206.43

Table 4: −Score(vi) ob-
tained from our WSD algo-
rithm.

14

pronounced syllables at

VBD NNS IN

adpmod

dobj

Figure 4: Sig(pronounce, X ′′)

word frequency
have 3
leave 2

change 1
add 1
use 1

Table 5: Top 5 words in
W (Sig(pronounce, X ′′))
and their frequency.

vi -Score(vi)
sense1 343.36
sense2 426.71

Table 6: −Score(vi) ob-
tained from our WSD algo-
rithm.

5 Conclusion

In this paper, we propose a approach for Word
Sense Disambiguation (WSD) of verbs using
PropStore. Our approach does not require any
annotated data or lexical knowledge base except
an word sense dictionary. From the examples
we showed in this paper, our approach can suc-
cessfully disambiguate the senses of verbs express
even when the hints from the given contexts are
weak. Our approach can disambiguate senses for
other POSs, too. Moreover, we described how our
approach can be applied to event mention detec-
tion task to classify mention types.

There is a wide range of possible future work.
First, we will build an automated system to per-
form all the steps together. Second, we will evalu-
ate our approach for WSD on benchmark data sets,
such as OntoNotes, and compare with current top
WSD systems. At last, we will apply our approach
to some really semantic tasks like event mention
detection and event coreference resolution.

References

Eneko Agirre and Aitor Soroa. 2009. Personal-
izing PageRank for word sense disambigua-
tion. In Proceedings of the 12th Conference
of the European Chapter of the ACL (EACL
2009), pages 33–41, Athens, Greece, March.

Yee Seng Chan, Hwee Tou Ng, and David Chi-
ang. 2007. Word sense disambiguation im-
proves statistical machine translation. In An-
nual Meeting-Association for Computational
Linguistics, volume 45, page 33. Citeseer.

Kartik Goyal, Sujay Kumar Jauhar, Huiying Li,
Mrinmaya Sachan, Shashank Srivastava, and
Eduard Hovy. 2013. A structured distribu-
tional semantic model for event co-reference.
In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguis-
tics, pages 467–473, Sofia, Bulgaria, August.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint
Event Extraction via Structured Prediction
with Global Features. In Proceedings of the
51st Annual Meeting of the Association for
Computational Linguistics (ACL2013).

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014.
Constructing Information Networks Using
One Single Model. In Proceedings the 2014
Conference on Empirical Methods on Natu-
ral Language Processing (EMNLP2014).

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. arXiv
preprint arXiv:1301.3781.

Christopher Stokoe, Michael P. Oakes, and John
Tait. 2003. Word sense disambiguation in in-
formation retrieval revisited. In Proceedings
of the 26th Annual International ACM SIGIR
Conference on Research and Development in
Informaion Retrieval, SIGIR 03, pages 159–
166, New York, NY, USA. ACM.

Stephen Tratz and Eduard Hovy. 2011. A
fast, accurate, non-projective, semantically-
enriched parser. In Proceedings of the Con-
ference on Empirical Methods in Natural
Language Processing, pages 1257–1268.

Zhi Zhong and Hwee Tou Ng. 2010. It makes
sense: A wide-coverage word sense disam-
biguation system for free text. In Proceed-
ings of the ACL 2010 System Demonstra-
tions, pages 78–83, Uppsala, Sweden, July.

15

