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Abstract

The task of Native Language Identification
(NLI) is typically solved with machine learn-
ing methods, and systems make use of a wide
variety of features. Some preliminary studies
have been conducted to examine the effective-
ness of individual features, however, no sys-
tematic study of feature interaction has been
carried out. We propose a function to mea-
sure feature independence and analyze its ef-
fectiveness on a standard NLI corpus.

1 Introduction

Researchers in Second Language Acquisition (SLA)
investigate the multiplex of factors that influence our
ability to acquire new languages and chief among
these is the role of the learner’s mother tongue.
This core factor has recently been studied in the
task of Native Language Identification (NLI), which
aims to infer the native language (L1) of an au-
thor based on texts written in a second language
(L2). Machine Learning methods are usually used
to identify language use patterns common to speak-
ers of the same L1 (Tetreault et al., 2012). While
NLI has applications in security, most research has
a strong linguistic motivation relating to language
teaching and learning. In this context, by identifying
L1-specific language usage and error patterns, NLI
can be used to better understand SLA and develop
teaching methods, instructions and learner feedback
that is tailored to their mother tongue (Malmasi and
Dras, 2014b).

Although researchers have employed tens of fea-
ture types, no effort has been made to measure the
overlap of information they capture. Results from
previous studies show that while some feature types
yield similar accuracies independently, combining
them can improve performance (Brooke and Hirst,

2012). This indicates that the information they cap-
ture is diverse, but how diverse are they and how can
we measure the level of independence between the
feature types?

This is a question that has not been tackled in NLI,
despite researchers having examined numerous fea-
ture types to date. We examine one approach to mea-
suring the degree of diversity between features and
perform several analyses based on the results.

2 Data and Methodology

We use the TOEFL11 corpus (Blanchard et al., 2013)
released with the 2013 NLI shared task (Tetreault et
al., 2013). It includes 12,100 learner texts from 11
L1 groups, divided into train, dev. and test sets.

We use a linear Support Vector Machine1 to per-
form multi-class classification in our experiments.

We experiment with a wide range of previ-
ously used syntactic and lexical features: Adap-
tor Grammars (AG) (Wong et al., 2012), charac-
ter n-grams (Tsur and Rappoport, 2007),2 Func-
tion word unigrams and bigrams (Malmasi et al.,
2013), Lemma and Word n-grams, CFG Produc-
tion Rules (Wong and Dras, 2011), Penn Tree-
bank (PTB) part-of-speech n-grams, RASP part-of-
speech n-grams (Malmasi et al., 2013), Stanford De-
pendencies with POS transformations (Tetreault et
al., 2012), and Tree Substitution Grammar (TSG)
fragments (Swanson and Charniak, 2012). The in-
dividual feature accuracies3 are shown in Figure 1.4

1We use LIBLINEAR. Additional preliminary experiments
with alternative learners yielded similar results.

2We treat character n-grams as lexical features in this work
but restrict our investigation to 1–3-grams. Recent work has
also shown improvements from longer sequences (Jarvis et al.,
2013; Ionescu et al., 2014).

3Obtained by training on the TOEFL11 train and develop-
ment sets and evaluating on the test set.

4Listed in alphabetical order.
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Figure 1: Individual classification accuracy for each one
of our features on the TOEFL11 test set.

3 Measuring Feature Diversity
An ablation study is a common approach in machine
learning that aims to measure the contribution of
each feature in a multi-component system. This ab-
lative analysis is usually carried out by measuring
the performance of the entire system with all com-
ponents (i.e. features) and then progressively remov-
ing the components one at a time to measure how the
performance degrades.5

While useful for estimating the potential contri-
bution of a component, this type of analysis does
not directly inform us about the pairwise relation be-
tween any two given components. This shortcoming
has been noted by other researchers, e.g. Wellner et
al. (2009, p. 122), and highlights the need to quan-
tify the overlap between any two given components
in a system. Our approach to quantifying the diver-
sity between two feature types is based on measuring
the level of agreement between the two for predict-
ing labels on the same set of documents. Here, we
aim to examine feature differences by holding the
classifier parameters and data constant.

Past research suggests that Yule’s Q-coefficient
statistic (Yule, 1912) is a useful measure of pair-
wise dependence between two classifiers (Kuncheva
et al., 2003). This notion of dependence relates to
complementarity and orthogonality, and is an impor-
tant factor in combining classifiers (Lam, 2000).

Yule’s Q statistic is a correlation coefficient for
binary measurements and can be applied to classi-

5Other variations exist, e.g. compare Richardson et al.
(2006) and Wellner et al. (2009)

fier outputs for each data point where the output val-
ues represent correct (1) or incorrect (0) predictions
made by that learner. Each classifier Ci produces a
result vector yi = [yi,1, . . . , yi,N ] for a set of N doc-
uments where yi,j = 1 if Ci correctly classifies the
jth document, otherwise it is 0. Given these output
vectors from two classifiers Ci and Ck, a 2×2 con-
tingency table can be derived, as shown in Table 1.

Ck Correct Ck Wrong
Ci Correct N11 N10

Ci Wrong N01 N00

Table 1: Contingency table for two classifiers.

Here N11 is the frequency of items that both
classifiers predicted correctly, N00 where they were
both wrong, and so on. The Q-coefficient for the two
classifiers can then be calculated as:

Qi,k =
N11N00 −N01N10

N11N00 + N01N10
.

This distribution-free association measure6 is
based on taking the products of the diagonal cell fre-
quencies and calculating the ratio of their difference
and sum. Q ranges between −1 to +1, where −1
signifies negative association, 0 indicates no associ-
ation (independence) and +1 means perfect positive
correlation (dependence).

Here our classifiers are always of the same type, a
linear SVM, but they are trained with different fea-
tures on the same data, allowing us to measure the
dependence between feature types themselves.

4 Results
The matrix of the Q-coefficients for all features is
shown graphically in Figure 2. The most discernible
feature is the red cluster in the bottom left of the
matrix. This region covers the correlations between
syntactic and lexical features, showing that they dif-
fer the most.

Another interesting aspect is the strong correla-
tions between the lexical features, shown by the
clustering of high values in the bottom right corner.
It also shows that character n-grams capture similar
information to word unigrams and bigrams. Even
character unigrams – the lowest performing lexical
feature – show much stronger dependence with word
unigrams than other syntactic features. Addition-
ally, the high values in the bottom middle section

6This is equivalent to the 2×2 version of Goodman and
Kruskal’s gamma measure for ordinal variables.
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Figure 2: The Q-coefficient matrices of our feature set. The matrices are displayed as heat maps.

of the matrix show that Stanford Dependencies and
TSG fragments largely capture the same information
as Word and Lemma bigrams. These issues are ex-
plored further in §5.

In contrast to the lexical features, the syntactic
ones show much lower inter-correlation levels, ev-
idenced by lower values in the top left corner and
absence of a visible cluster. This seems to indicate
that there is greater diversity among these features.

Such analyses can help us better understand the
linguistic properties of features and guide interpre-
tation of the results. This knowledge can also be
useful in creating classifier ensembles. One goal
in creating such committee-based classifiers is the
identification of the most diverse independent learn-
ers and this method can be applied to that end. To
assess this, we also measure the accuracy for all 171
possible feature pair combinations fi and fj in our
feature set. Each pair is combined in a weighted
sum ensemble classifier (Malmasi et al., 2013) and
run against the TOEFL11 test set. For each pair we
also calculate the relative increase over only using
the more accurate feature of the two;7 this measures

7The relative increase is defined as:
Accuracyfi+fj −max(Accuracyfi , Accuracyfj )
An alternative metric here for this could be the “Oracle” base-

line used by Malmasi et al. (2015).
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Figure 3: Scatterplot of the Q-coefficient vs relative in-
crease in accuracy for all 171 feature pairs.

the net effect of combining the two: positive for im-
provements and negative for degradation.

The increase for each pair is compared against the
Q-coefficient, and Pearson’s correlation for the two
variables shows a medium, statistically significant
negative correlation (r = −.303, p = .000). A scat-
terplot is shown in Figure 3, where we observe that
almost all feature pairs with Q < 0.5 yielded a net
increase while many pairs with Q > 0.6 resulted in
performance degradation.

The measure is particularly useful when compar-
ing features with similar individual accuracy to iden-
tify sets with the highest diversity. This is because
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Figure 4: The Q-coefficient matrix for dependencies,
word n-grams and skip-grams.

diversity itself cannot be the sole criterion for fea-
ture selection; a weak feature such as character uni-
grams will be very diverse to a strong one like POS
n-grams but this does not ipso facto make it a good
feature and we must also consider accuracy.

5 Analyzing Words and Dependencies
Grammatical dependencies have been found to be
a very useful NLI feature and thought to capture
a “more abstract representation of syntactic struc-
tures” (Tetreault et al., 2012; Bykh and Meurers,
2014). Accordingly, we were initially surprised to
find the high correlation between dependencies and
word bigrams (Q = 0.93). However, this relation
may not be unexpected after all.

One source of supporting evidence comes from
examining dependency distances. Using English
data,8 Liu (2008) reports a Mean Dependency Dis-
tance (MDD) of 2.54 with 51% of the dependencies
being adjacent and thus also captured by word bi-
grams. This also suggests that we can capture more
of this information by considering non-adjacent to-
kens. We test this hypothesis by using k-skip word
bigrams (Guthrie et al., 2006) as classification fea-
tures, with k = 1–3.

The 1-skip bigrams yield an accuracy of 79.3%
on the TOEFL11 test set, higher than either word
bigrams or Stanford Dependencies. The 2- and 3-
skip grams achieve 78.4% and 77.9%. The matrix
of Q-coefficients for these features is shown in Fig-
ure 4, showing that the 1-skip word bigrams feature
is the closest to the dependencies feature with a Q-

8120k sentences averaging 21 tokens each.

coefficient of 0.96. It is also the closest to standard
word unigrams and bigrams with Q-coefficients of
0.91 and 0.97, respectively.

These results suggest that skip-grams are a very
useful feature for NLI.9 They could also be used
as a substitute for dependencies in scenarios where
running a full parser may not be feasible, e.g. real-
time data processing. Moreover, with NLI being in-
vestigated with other languages (Malmasi and Dras,
2014a), this feature can be a good approximation
of the dependencies feature for low-resourced lan-
guages without an accurate parser. However, re-
sults may vary by language and possibly genre (Liu,
2008). We also note that the skip-gram feature space
grows prodigiously as k increases.

Another related issue is whether sub-lexical char-
acter n-grams are independent of word features.
Previously, Tsur and Rappoport (2007) hypothe-
sized that these n-grams are discriminative due to
writer choices “strongly influenced by the phonol-
ogy of their native language”. Nicolai and Kon-
drak (2014) also investigate the source of L1 dif-
ferences in the relative frequencies of character bi-
grams. They propose an algorithm to identify the
most discriminative words and subsequently, the bi-
grams corresponding to these words. They found
that removing a small set of highly discriminative
words greatly degrades the accuracy of a bigram-
based classifier. Based on this they conclude that bi-
grams capture differences in word usage and lexical
transfer rather than L1 phonology. Evidence from
our analysis also points to a similar pattern with the
predictions of character bigrams and trigrams being
strongly correlated with word and lemma unigrams.

Such lexical transfer effects have been previously
noted by others (Odlin, 1989). The effects are me-
diated not only by cognates and word form similar-
ities, but also semantics and meanings. We also ex-
amine the link between L1 and word usage.

Using the Etymological WordNet10 database (de
Melo, 2014), we extracted two lists of English words
with either Old English (508 words) or Latin origins
(1,310 words). These words were used as unigram
features to train two classifiers. The F1-scores for
classification on TOEFL11 are shown in Figure 5.
The Old English words, with their West Germanic
roots, yield the best results for classifying German
data. Conversely, the Latinate features achieve the

9Hladka et al. (2013) and Henderson et al. (2013) previ-
ously used a skip-gram variant that did not include 0 skips as
per (Guthrie et al., 2006) and did not improve accuracy.

10http://www1.icsi.berkeley.edu/%7edemelo/etymwn/
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best results for Italian followed by French, both lan-
guages descended from Latin.

This experiment, albeit limited in scope, provides
some empirical evidence suggesting that small sets
of words can capture lexical transfer effects poten-
tially mediated by L1 similarity and cognates.

6 Parent-Annotated CFG Rules
As demonstrated by our results, CFG production
rules are a diverse syntactic feature with good ac-
curacy. This feature type is processed by first gener-
ating constituent parses for each sentence and then
extracting its production rules,11 excluding lexical-
izations. Each rule is then used as a feature. Figure
6 illustrates this with an example tree and its rules.
They have been successfully used in NLI (Wong and
Dras, 2011) and in this section we experiment with
a new extension of this feature type previously not
applied to NLI.

Parent-annotated PCFG models have previously
been applied in parsing and shown to yield improved

11These are the phrase structure rules used to generate con-
stituent parts of sentences, such as noun phrases.

ROOT → S^<ROOT>

S^<ROOT> → NP^<S> VP^<S> .

NP^<S> → DT JJ JJ NN

VP^<S> → VBD PP^<VP>

PP^<VP> → IN NP^<PP>

NP^<PP> → DT JJ NN

Figure 7: Parent-annotated CFG rules from Fig. 4.

results over other models (Johnson, 1998). In this
experiment we apply this feature to NLI and eval-
uate whether it can provide any improvement over
standard production rule models.

This feature involves a modification of the lin-
guistic tree representation, appending the category
of each node’s parent as additional contextual in-
formation (Johnson, 1998, p. 623). This transfor-
mation can be described as adding “pseudo context-
sensitivity” (Charniak and Carroll, 1994). Figure 7
shows the parent-annotated CFG rule features ex-
tracted from the tree shown in Figure 6.

Testing this feature on the TOEFL11 test set, we
achieve an accuracy of 55.6%, a +1.3% increase
over the standard CFG rules feature. Analyzing fea-
ture diversity, we observe a Q-coefficient of 0.92 be-
tween the two CFG rule based features. These re-
sults show that parent annotation leads to a sizeable
increase in accuracy and also a notable change in di-
versity levels.

Although these initial results suggest that this is
a useful feature, more testing with other data can
help determine if these patterns hold across corpora
(Malmasi and Dras, 2015). This additional informa-
tion could also help in other tasks such as language
transfer hypothesis formulation (Malmasi and Dras,
2014b) through the examination of more specific en-
vironmental contexts for features.

We leave to future work the investigation of im-
proved ensemble classifiers that would be informed
by the results of this study. The exploration of other
linguistic tree representations and transformations,
including Chomsky Normal Form, is another avenue
for future work.

7 Conclusion

In this work we examined a method for measuring
feature diversity in NLI and highlighted several in-
teresting trends. We demonstrated how this analy-
sis can be used to better understand the information
captured by features and used it to examine the re-
lationship between lexical features. We show that a
variant of 1-skip bigrams can in fact be a useful fea-
ture and also proposed a new NLI feature, parent-
annotated CFG rules, showing how feature diversity
can guide feature engineering.
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